Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
lbmpy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pycodegen
lbmpy
Commits
f58d60c4
Commit
f58d60c4
authored
5 years ago
by
RudolfWeeber
Browse files
Options
Downloads
Patches
Plain Diff
Test for fluctuating LB, avg temperature and velocity distribution
parent
d4679714
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!16
Test for fluctuating LB, avg temperature and velocity distribution
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lbmpy_tests/test_fluctuating_lb.py
+94
-0
94 additions, 0 deletions
lbmpy_tests/test_fluctuating_lb.py
with
94 additions
and
0 deletions
lbmpy_tests/test_fluctuating_lb.py
0 → 100644
+
94
−
0
View file @
f58d60c4
"""
This tests that for the thermalized LB (MRT with 15 equal relaxation times),
the correct temperature is obtained and the velocity distribution matches
the Maxwell-Boltzmann distribution
"""
import
pystencils
as
ps
from
lbmpy.lbstep
import
LatticeBoltzmannStep
from
lbmpy.creationfunctions
import
create_lb_collision_rule
from
lbmpy.relaxationrates
import
relaxation_rate_from_lattice_viscosity
,
relaxation_rate_from_magic_number
import
numpy
as
np
import
pickle
import
gzip
from
time
import
time
def
single_component_maxwell
(
x1
,
x2
,
kT
):
"""
Integrate the probability density from x1 to x2 using the trapezoidal rule
"""
x
=
np
.
linspace
(
x1
,
x2
,
1000
)
return
np
.
trapz
(
np
.
exp
(
-
x
**
2
/
(
2.
*
kT
)),
x
)
/
np
.
sqrt
(
2.
*
np
.
pi
*
kT
)
def
run_scenario
(
scenario
,
steps
):
scenario
.
pre_run
()
for
t
in
range
(
scenario
.
time_steps_run
,
scenario
.
time_steps_run
+
steps
):
scenario
.
kernel_params
[
'
time_step
'
]
=
t
scenario
.
time_step
()
scenario
.
post_run
()
scenario
.
time_steps_run
+=
steps
def
create_scenario
(
domain_size
,
temperature
=
None
,
viscosity
=
None
,
seed
=
2
,
target
=
'
cpu
'
,
openmp
=
4
,
method
=
None
,
num_rel_rates
=
None
):
rr
=
[
relaxation_rate_from_lattice_viscosity
(
viscosity
)]
rr
=
rr
*
num_rel_rates
cr
=
create_lb_collision_rule
(
stencil
=
'
D3Q19
'
,
compressible
=
True
,
method
=
method
,
relaxation_rates
=
rr
,
fluctuating
=
{
'
temperature
'
:
temperature
,
'
seed
'
:
seed
},
optimization
=
{
'
cse_global
'
:
True
,
'
split
'
:
False
,
'
cse_pdfs
'
:
True
,
'
vectorization
'
:
True
}
)
return
LatticeBoltzmannStep
(
periodicity
=
(
True
,
True
,
True
),
domain_size
=
domain_size
,
compressible
=
True
,
stencil
=
'
D3Q19
'
,
collision_rule
=
cr
,
optimization
=
{
'
target
'
:
target
,
'
openmp
'
:
openmp
})
def
run_for_method
(
method
,
num_rel_rates
):
print
(
"
Testing
"
,
method
)
# Unit conversions (MD to lattice) for parameters known to work with Espresso
agrid
=
1.
m
=
1.
# mass per node
tau
=
0.01
# time step
temperature
=
4.
/
(
m
*
agrid
**
2
/
tau
**
2
)
viscosity
=
3.
*
tau
/
agrid
**
2
n
=
8
sc
=
create_scenario
((
n
,
n
,
n
),
viscosity
=
viscosity
,
temperature
=
temperature
,
target
=
'
cpu
'
,
openmp
=
4
,
method
=
method
,
num_rel_rates
=
num_rel_rates
)
assert
np
.
average
(
sc
.
velocity
[:,
:,
:])
==
0.
# Warmup
run_scenario
(
sc
,
steps
=
500
)
# sampling:
steps
=
20000
v
=
np
.
zeros
((
steps
,
n
,
n
,
n
,
3
))
for
i
in
range
(
steps
):
run_scenario
(
sc
,
steps
=
2
)
v
[
i
,
:,
:,
:,
:]
=
np
.
copy
(
sc
.
velocity
[:,
:,
:,
:])
v
=
v
.
reshape
((
steps
*
n
*
n
*
n
,
3
))
np
.
testing
.
assert_allclose
(
np
.
mean
(
v
,
axis
=
0
),
[
0
,
0
,
0
],
atol
=
6E-7
)
np
.
testing
.
assert_allclose
(
np
.
var
(
v
,
axis
=
0
),
[
temperature
,
temperature
,
temperature
],
rtol
=
1E-2
)
v_hist
,
v_bins
=
np
.
histogram
(
v
,
bins
=
11
,
range
=
(
-
.
08
,
.
08
),
density
=
True
)
# Calculate expected values from single
v_expected
=
[]
for
i
in
range
(
len
(
v_hist
)):
# Maxwell distribution
res
=
np
.
exp
(
-
v_bins
[
i
]
**
2
/
(
2.
*
temperature
))
/
\
np
.
sqrt
(
2
*
np
.
pi
*
temperature
)
res
=
1.
/
(
v_bins
[
i
+
1
]
-
v_bins
[
i
])
*
\
single_component_maxwell
(
v_bins
[
i
],
v_bins
[
i
+
1
],
temperature
)
v_expected
.
append
(
res
)
v_expected
=
np
.
array
(
v_expected
)
# 8% accuracy on the entire histogram
np
.
testing
.
assert_allclose
(
v_hist
,
v_expected
,
rtol
=
0.08
)
# 0.5% accuracy on the middle part
remove
=
3
np
.
testing
.
assert_allclose
(
v_hist
[
remove
:
-
remove
],
v_expected
[
remove
:
-
remove
],
rtol
=
0.005
)
def
test_mrt
():
run_for_method
(
'
mrt
'
,
15
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment