Skip to content
Snippets Groups Projects
Commit f58d60c4 authored by RudolfWeeber's avatar RudolfWeeber
Browse files

Test for fluctuating LB, avg temperature and velocity distribution

parent d4679714
1 merge request!16Test for fluctuating LB, avg temperature and velocity distribution
"""
This tests that for the thermalized LB (MRT with 15 equal relaxation times),
the correct temperature is obtained and the velocity distribution matches
the Maxwell-Boltzmann distribution
"""
import pystencils as ps
from lbmpy.lbstep import LatticeBoltzmannStep
from lbmpy.creationfunctions import create_lb_collision_rule
from lbmpy.relaxationrates import relaxation_rate_from_lattice_viscosity, relaxation_rate_from_magic_number
import numpy as np
import pickle
import gzip
from time import time
def single_component_maxwell(x1, x2, kT):
"""Integrate the probability density from x1 to x2 using the trapezoidal rule"""
x = np.linspace(x1, x2, 1000)
return np.trapz(np.exp(-x**2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT)
def run_scenario(scenario, steps):
scenario.pre_run()
for t in range(scenario.time_steps_run, scenario.time_steps_run + steps):
scenario.kernel_params['time_step'] = t
scenario.time_step()
scenario.post_run()
scenario.time_steps_run += steps
def create_scenario(domain_size, temperature=None, viscosity=None, seed=2, target='cpu', openmp=4, method=None, num_rel_rates=None):
rr = [relaxation_rate_from_lattice_viscosity(viscosity)]
rr = rr*num_rel_rates
cr = create_lb_collision_rule(
stencil='D3Q19', compressible=True,
method=method, relaxation_rates=rr,
fluctuating={'temperature': temperature, 'seed': seed},
optimization={'cse_global': True, 'split': False,
'cse_pdfs': True, 'vectorization': True}
)
return LatticeBoltzmannStep(periodicity=(True, True, True), domain_size=domain_size, compressible=True, stencil='D3Q19', collision_rule=cr, optimization={'target': target, 'openmp': openmp})
def run_for_method(method, num_rel_rates):
print("Testing", method)
# Unit conversions (MD to lattice) for parameters known to work with Espresso
agrid = 1.
m = 1. # mass per node
tau = 0.01 # time step
temperature = 4. / (m * agrid**2/tau**2)
viscosity = 3. * tau / agrid**2
n = 8
sc = create_scenario((n, n, n), viscosity=viscosity, temperature=temperature,
target='cpu', openmp=4, method=method, num_rel_rates=num_rel_rates)
assert np.average(sc.velocity[:, :, :]) == 0.
# Warmup
run_scenario(sc, steps=500)
# sampling:
steps = 20000
v = np.zeros((steps, n, n, n, 3))
for i in range(steps):
run_scenario(sc, steps=2)
v[i, :, :, :, :] = np.copy(sc.velocity[:, :, :, :])
v = v.reshape((steps*n*n*n, 3))
np.testing.assert_allclose(np.mean(v, axis=0), [0, 0, 0], atol=6E-7)
np.testing.assert_allclose(
np.var(v, axis=0), [temperature, temperature, temperature], rtol=1E-2)
v_hist, v_bins = np.histogram(v, bins=11, range=(-.08, .08), density=True)
# Calculate expected values from single
v_expected = []
for i in range(len(v_hist)):
# Maxwell distribution
res = np.exp(-v_bins[i]**2/(2.*temperature)) / \
np.sqrt(2*np.pi*temperature)
res = 1./(v_bins[i+1]-v_bins[i]) * \
single_component_maxwell(v_bins[i], v_bins[i+1], temperature)
v_expected.append(res)
v_expected = np.array(v_expected)
# 8% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.08)
# 0.5% accuracy on the middle part
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.005)
def test_mrt():
run_for_method('mrt', 15)
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment