Skip to content
Snippets Groups Projects
Commit d947c880 authored by Stephan Seitz's avatar Stephan Seitz
Browse files

Create ill-formed lenna in test_superresolution

parent f13ac79e
No related merge requests found
Pipeline #20864 failed with stage
in 1 hour and 1 second
......@@ -8,13 +8,18 @@
"""
from os.path import dirname, join
from time import sleep
import numpy as np
import skimage.io
import sympy
import pystencils
from pystencils_reco.resampling import downsample, resample, scale_transform, translate
import pystencils_reco.transforms
from pystencils_reco.filters import gauss_filter
from pystencils_reco.resampling import (
downsample, resample, resample_to_shape, scale_transform, translate)
from pystencils_reco.stencils import BallStencil
try:
import pyconrad.autoinit
......@@ -70,13 +75,179 @@ def test_polar_transform():
x.set_coordinate_origin_to_field_center()
y.set_coordinate_origin_to_field_center()
y.coordinate_transform = lambda x: sympy.Matrix((x.norm(), sympy.atan2(*x) / (2 * sympy.pi) * y.shape[1]))
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
transformed = np.zeros((500, 500), np.float32)
transformed = np.zeros((400, 400), np.float32)
resample(x, y).compile()(x=lenna, y=transformed)
pyconrad.imshow(transformed)
pyconrad.show_everything()
while True:
sleep(100)
def test_polar_transform2():
x, y = pystencils.fields('x, y: float32[2d]')
class PolarTransform(sympy.Function):
def eval(args):
return sympy.Matrix(
(args.norm(), sympy.atan2(args[1]-x.shape[1]/2, args[0]-x.shape[0]/2) / sympy.pi * x.shape[1]/2))
x.set_coordinate_origin_to_field_center()
y.coordinate_transform = PolarTransform
y.set_coordinate_origin_to_field_center()
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
transformed = np.zeros((400, 400), np.float32)
resample(x, y).compile()(x=lenna, y=transformed)
pyconrad.show_everything()
while True:
sleep(100)
def test_polar_inverted_transform():
x, y = pystencils.fields('x, y: float32[2d]')
class PolarTransform(sympy.Function):
def eval(args):
return sympy.Matrix(
(args.norm(), sympy.atan2(args[1]-x.shape[1]/2, args[0]-x.shape[0]/2) / sympy.pi * x.shape[1]/2))
def inv():
return lambda l: sympy.Matrix((sympy.cos(l[1] * sympy.pi / x.shape[1]*2) * l[0],
sympy.sin(l[1] * sympy.pi / x.shape[1]*2) * l[0])) + sympy.Matrix(x.shape) * 0.5
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
# transformed = np.zeros((400, 400), np.float32)
# back_transformed = np.zeros((400, 400), np.float32)
transformed = np.zeros_like(lenna)
back_transformed = np.zeros_like(lenna)
x.set_coordinate_origin_to_field_center()
y.coordinate_transform = PolarTransform
y.set_coordinate_origin_to_field_center()
resample(x, y).compile()(x=lenna, y=transformed)
resample(y, x).compile()(x=back_transformed, y=transformed)
pyconrad.show_everything()
while True:
sleep(100)
def test_shift():
x, y = pystencils.fields('x, y: float32[2d]')
class ShiftTransform(sympy.Function):
def eval(args):
return args + sympy.Matrix((5, 5))
def inv():
return lambda l: l - sympy.Matrix((5, 5))
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
transformed = np.zeros_like(lenna)
back_transformed = np.zeros_like(lenna)
x.set_coordinate_origin_to_field_center()
y.coordinate_transform = ShiftTransform
y.set_coordinate_origin_to_field_center()
resample(x, y).compile()(x=lenna, y=transformed)
resample(y, x).compile()(x=back_transformed, y=transformed)
diff = lenna - back_transformed
assert diff is not None
pyconrad.show_everything()
while True:
sleep(100)
def test_motion_model():
x, y = pystencils.fields('x, y: float32[2d]')
transform_field = pystencils.fields('t_x, t_y: float32[2d]')
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
# transformed = np.zeros((400, 400), np.float32)
# back_transformed = np.zeros((400, 400), np.float32)
transformed = np.zeros_like(lenna)
back_transformed = np.zeros_like(lenna)
translate_x = np.zeros((10, 10), np.float32)
translate_y = np.zeros((10, 10), np.float32)
pystencils_reco.transforms.extend_to_size_of_other_field(transform_field[0], x)
pystencils_reco.transforms.extend_to_size_of_other_field(transform_field[1], x)
shift = sympy.Matrix(sympy.symbols('s:2'))
shift_val = sympy.Matrix([transform_field[i].interpolated_access(
transform_field[i].physical_to_index(x.physical_coordinates))
for i in range(x.ndim)])
class ShiftTransform(sympy.Function):
def eval(args):
return args + shift
def inv():
return lambda args: args - shift
y.coordinate_transform = ShiftTransform
pystencils_reco.AssignmentCollection([*resample(x, y),
*[pystencils.Assignment(shift[i], shift_val[i]) for i in range(2)]]
).compile()(x=lenna, y=transformed, t_x=translate_x, t_y=translate_y)
pystencils_reco.AssignmentCollection([*resample(x, y),
*[pystencils.Assignment(shift[i], shift_val[i]) for i in range(2)]]
).compile()(x=back_transformed,
y=transformed,
t_x=translate_x,
t_y=translate_y)
pyconrad.show_everything()
while True:
sleep(100)
def test_motion_model2():
x, y = pystencils.fields('x, y: float32[2d]')
transform_field = pystencils.fields('t_x, t_y: float32[2d]')
lenna_file = join(dirname(__file__), "test_data", "lenna.png")
lenna = skimage.io.imread(lenna_file, as_gray=True).astype(np.float32)
# transformed = np.zeros((400, 400), np.float32)
# back_transformed = np.zeros((400, 400), np.float32)
transformed = np.zeros_like(lenna)
blurred = np.zeros_like(lenna)
translate_x = np.zeros_like(lenna)
translate_y = np.zeros_like(lenna)
amplitude = 20
resample_to_shape(amplitude * np.random.randn(10, 10).astype(np.float32), lenna.shape).compile()(output=translate_x)
resample_to_shape(amplitude * np.random.randn(10, 10).astype(np.float32), lenna.shape).compile()(output=translate_y)
translate(x, y, sympy.Matrix((transform_field[0].center, transform_field[1].center))
).compile()(x=lenna, y=transformed, t_x=translate_x, t_y=translate_y)
# resample(x, y).compile()(x=back_transformed, y=transformed, t_x=translate_x, t_y=translate_y)
kernel = gauss_filter(transformed, blurred, BallStencil(5, ndim=2), 10).compile()
print(pystencils.show_code(kernel))
kernel(input_field=transformed, output_field=blurred)
pyconrad.show_everything()
while True:
sleep(100)
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment