Skip to content
Snippets Groups Projects
Commit c5a35d60 authored by Stephan Seitz's avatar Stephan Seitz
Browse files

Add README.rst

parent 9277ca55
No related branches found
No related tags found
No related merge requests found
.. image:: https://badge.fury.io/py/pyronn-torch.svg
:target: https://badge.fury.io/py/pyronn-torch
:alt: PyPI version
============ ============
pyronn-torch pyronn-torch
============ ============
This repository provides PyTorch bindings for `PYRO-NN <https://github.com/csyben/PYRO-NN>`_
Feel free to cite our publication:
.. code-block:: bibtex
@article{PYRONN2019,
author = {Syben, Christopher and Michen, Markus and Stimpel, Bernhard and Seitz, Stephan and Ploner, Stefan and Maier, Andreas K.},
title = {Technical Note: PYRO-NN: Python reconstruction operators in neural networks},
year = {2019},
journal = {Medical Physics},
}
Installation
============
From PyPI:
.. code-block:: bash
pip install pyronn-torch
From this repository:
.. code-block:: bash
git clone --recurse-submodules --recursive https://github.com/theHamsta/pyronn-torch.git
cd pyronn-torch
pip install torch
pip install -e .
You can build a binary wheel using
.. code-block:: bash
python setup.py bdist_wheel
Usage
=====
.. code-block:: python
#ConeBeamProjector(volume_shape,
# volume_spacing,
# volume_origin,
# projection_shape,
# projection_spacing,
# projection_origin,
# projection_matrices)
projector = pyronn_torch.ConeBeamProjector(
(128, 128, 128),
(2.0, 2.0, 2.0),
(-127.5, -127.5, -127.5),
(2, 480, 620),
[1.0, 1.0],
(0, 0),
np.array([[[-3.10e+2, -1.20e+03, 0.00e+00, 1.86e+5],
[-2.40e+2, 0.00e+00, 1.20e+03, 1.44e+5],
[-1.00e+00, 0.00e+00, 0.00e+00, 6.00e+2]],
[[-2.89009888e+2, -1.20522754e+3, -1.02473585e-13,
1.86000000e+5],
[-2.39963440e+2, -4.18857765e+0, 1.20000000e+3,
1.44000000e+5],
[-9.99847710e-01, -1.74524058e-2, 0.00000000e+0,
6.00000000e+2]]]) # two projection matrices
)
projection = projector.new_projection_tensor(requires_grad=True)
projection += 1.
result = projector.project_backward(projection, use_texture=with_texture)
Add a short description here! assert projection.requires_grad
assert result.requires_grad
loss = result.mean()
loss.backward()
Description Or easier with `PyCONRAD <https://pypi.org/project/pyconrad/>`_ (``pip install pyconrad``)
===========
A longer description of your project goes here... .. code-block:: python
projector = pyronn_torch.ConeBeamProjector.from_conrad_config()
Note The configuration can then be done using `CONRAD <https://github.com/akmaier/CONRAD>`_
==== (startable using ``conrad`` from command line)
This project has been set up using PyScaffold 3.2.3. For details and usage
information on PyScaffold see https://pyscaffold.org/.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment