Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pystencils_autodiff
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
pycodegen
pystencils_autodiff
Commits
3d2c1f56
Commit
3d2c1f56
authored
5 years ago
by
Stephan Seitz
Browse files
Options
Downloads
Patches
Plain Diff
Move NativeTextureBinding to framework_integration.texture_astnodes
parent
05e213a1
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Pipeline
#19188
failed
5 years ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/pystencils_autodiff/framework_integration/astnodes.py
+2
-197
2 additions, 197 deletions
src/pystencils_autodiff/framework_integration/astnodes.py
src/pystencils_autodiff/framework_integration/texture_astnodes.py
+210
-0
210 additions, 0 deletions
...encils_autodiff/framework_integration/texture_astnodes.py
with
212 additions
and
197 deletions
src/pystencils_autodiff/framework_integration/astnodes.py
+
2
−
197
View file @
3d2c1f56
...
@@ -11,17 +11,17 @@ waLBerla currently uses `pystencils-walberla <https://pypi.org/project/pystencil
...
@@ -11,17 +11,17 @@ waLBerla currently uses `pystencils-walberla <https://pypi.org/project/pystencil
"""
"""
import
itertools
import
itertools
from
collections.abc
import
Iterable
from
collections.abc
import
Iterable
from
functools
import
reduce
from
typing
import
Any
,
List
,
Set
from
typing
import
Any
,
List
,
Set
import
jinja2
import
jinja2
import
sympy
as
sp
import
pystencils
import
pystencils
import
sympy
as
sp
from
pystencils.astnodes
import
KernelFunction
,
Node
,
NodeOrExpr
,
ResolvedFieldAccess
from
pystencils.astnodes
import
KernelFunction
,
Node
,
NodeOrExpr
,
ResolvedFieldAccess
from
pystencils.data_types
import
TypedSymbol
from
pystencils.data_types
import
TypedSymbol
from
pystencils.kernelparameters
import
FieldPointerSymbol
,
FieldShapeSymbol
,
FieldStrideSymbol
from
pystencils.kernelparameters
import
FieldPointerSymbol
,
FieldShapeSymbol
,
FieldStrideSymbol
from
pystencils_autodiff.framework_integration.printer
import
FrameworkIntegrationPrinter
from
pystencils_autodiff.framework_integration.printer
import
FrameworkIntegrationPrinter
from
pystencils_autodiff.framework_integration.texture_astnodes
import
NativeTextureBinding
class
DestructuringBindingsForFieldClass
(
Node
):
class
DestructuringBindingsForFieldClass
(
Node
):
...
@@ -88,201 +88,6 @@ class DestructuringBindingsForFieldClass(Node):
...
@@ -88,201 +88,6 @@ class DestructuringBindingsForFieldClass(Node):
return
self
.
body
.
atoms
(
arg_type
)
|
{
s
for
s
in
self
.
symbols_defined
if
isinstance
(
s
,
arg_type
)}
return
self
.
body
.
atoms
(
arg_type
)
|
{
s
for
s
in
self
.
symbols_defined
if
isinstance
(
s
,
arg_type
)}
class
NativeTextureBinding
(
pystencils
.
backends
.
cbackend
.
CustomCodeNode
):
"""
Bind texture to CUDA device pointer
Recommended read: https://devblogs.nvidia.com/cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility/
The definition from cudaResourceDesc and cudaTextureDesc
.. code:: c
/**
* CUDA resource descriptor
*/
struct __device_builtin__ cudaResourceDesc {
enum cudaResourceType resType; /**< Resource type */
union {
struct {
cudaArray_t array; /**< CUDA array */
} array;
struct {
cudaMipmappedArray_t mipmap; /**< CUDA mipmapped array */
} mipmap;
struct {
void *devPtr; /**< Device pointer */
struct cudaChannelFormatDesc desc; /**< Channel descriptor */
size_t sizeInBytes; /**< Size in bytes */
} linear;
struct {
void *devPtr; /**< Device pointer */
struct cudaChannelFormatDesc desc; /**< Channel descriptor */
size_t width; /**< Width of the array in elements */
size_t height; /**< Height of the array in elements */
size_t pitchInBytes; /**< Pitch between two rows in bytes */
} pitch2D;
} res;
};
.. code:: c
/**
* CUDA texture descriptor
*/
struct __device_builtin__ cudaTextureDesc
{
/**
* Texture address mode for up to 3 dimensions
*/
enum cudaTextureAddressMode addressMode[3];
/**
* Texture filter mode
*/
enum cudaTextureFilterMode filterMode;
/**
* Texture read mode
*/
enum cudaTextureReadMode readMode;
/**
* Perform sRGB->linear conversion during texture read
*/
int sRGB;
/**
* Texture Border Color
*/
float borderColor[4];
/**
* Indicates whether texture reads are normalized or not
*/
int normalizedCoords;
/**
* Limit to the anisotropy ratio
*/
unsigned int maxAnisotropy;
/**
* Mipmap filter mode
*/
enum cudaTextureFilterMode mipmapFilterMode;
/**
* Offset applied to the supplied mipmap level
*/
float mipmapLevelBias;
/**
* Lower end of the mipmap level range to clamp access to
*/
float minMipmapLevelClamp;
/**
* Upper end of the mipmap level range to clamp access to
*/
float maxMipmapLevelClamp;
};
"""
# noqa
CODE_TEMPLATE_LINEAR
=
jinja2
.
Template
(
"""
cudaResourceDesc {{resource_desc}}{};
{{resource_desc}}.resType = cudaResourceTypeLinear;
{{resource_desc}}.res.linear.devPtr = {{device_ptr}};
{{resource_desc}}.res.linear.desc.f = {{cuda_channel_format}};
{{resource_desc}}.res.linear.desc.x = {{bits_per_channel}}; // bits per channel
{{resource_desc}}.res.linear.sizeInBytes = {{total_size}};
cudaTextureDesc {{texture_desc}}{};
cudaTextureObject_t {{texture_object}}=0;
cudaCreateTextureObject(&{{texture_object}}, &{{resource_desc}}, &{{texture_desc}}, nullptr);
{{texture_desc}}.readMode = cudaReadModeElementType;
auto {{texture_object}}Destroyer = std::unique_ptr(nullptr, [&](){
cudaDestroyTextureObject({{texture_object}});
});
"""
)
CODE_TEMPLATE_PITCHED2D
=
jinja2
.
Template
(
"""
!!! TODO!!!
"""
)
CODE_TEMPLATE_CUDA_ARRAY
=
jinja2
.
Template
(
"""
auto channel_desc_{{texture_name}} = {{channel_desc}};
{{ create_array }}
{{ copy_array }}
{{ texture_name }}.addressMode[0] = cudaAddressModeBorder;
{{ texture_name }}.addressMode[1] = cudaAddressModeBorder;
{{ texture_name }}.addressMode[2] = cudaAddressModeBorder;
{{ texture_name }}.filterMode = cudaFilterModeLinear;
{{ texture_name }}.normalized = false;
cudaBindTextureToArray(&{{texture_name}}, {{array}}, &channel_desc_{{texture_name}});
std::shared_ptr<void> {{array}}Destroyer(nullptr, [&](...){
cudaFreeArray({{array}});
cudaUnbindTexture({{texture_name}});
});
"""
)
def
__init__
(
self
,
texture
,
device_data_ptr
,
use_texture_objects
=
True
):
self
.
_texture
=
texture
self
.
_device_ptr
=
device_data_ptr
self
.
_dtype
=
self
.
_device_ptr
.
dtype
.
base_type
self
.
_shape
=
tuple
(
sp
.
S
(
s
)
for
s
in
self
.
_texture
.
field
.
shape
)
self
.
_ndim
=
texture
.
field
.
ndim
assert
use_texture_objects
,
"
without texture objects is not implemented
"
super
().
__init__
(
self
.
get_code
(
dialect
=
'
c
'
,
vector_instruction_set
=
None
),
symbols_read
=
{
device_data_ptr
,
*
[
s
for
s
in
self
.
_shape
if
isinstance
(
s
,
sp
.
Symbol
)]},
symbols_defined
=
{})
self
.
headers
=
[
'
<memory>
'
,
'
<cuda.h>
'
,
'
<cuda_runtime_api.h>
'
]
def
get_code
(
self
,
dialect
,
vector_instruction_set
):
texture_name
=
self
.
_texture
.
symbol
.
name
code
=
self
.
CODE_TEMPLATE_CUDA_ARRAY
.
render
(
resource_desc
=
'
resDesc_
'
+
texture_name
,
texture_desc
=
'
texDesc_
'
+
texture_name
,
channel_desc
=
f
'
cudaCreateChannelDesc<
{
self
.
_dtype
}
>()
'
,
# noqa
texture_object
=
'
tex_
'
+
texture_name
,
array
=
'
array_
'
+
texture_name
,
texture_name
=
texture_name
,
ndim
=
self
.
_ndim
,
device_ptr
=
self
.
_device_ptr
,
create_array
=
self
.
_get_create_array_call
(),
copy_array
=
self
.
_get_copy_array_call
(),
dtype
=
self
.
_dtype
,
bits_per_channel
=
self
.
_dtype
.
numpy_dtype
.
itemsize
*
8
,
total_size
=
self
.
_dtype
.
numpy_dtype
.
itemsize
*
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
_shape
,
1
))
return
code
def
_get_create_array_call
(
self
):
texture_name
=
self
.
_texture
.
symbol
.
name
ndim
=
''
if
self
.
_ndim
<=
2
else
f
'
{
self
.
_ndim
}
D
'
array
=
'
array_
'
+
texture_name
return
f
"""
cudaArray *
{
array
}
;
cudaMalloc
{
ndim
}
Array(&
{
array
}
, &channel_desc_
{
texture_name
}
,
"""
+
(
(
f
'
{{
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
}});
'
if
self
.
_ndim
==
3
else
f
'
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
);
'
))
def
_get_copy_array_call
(
self
):
texture_name
=
self
.
_texture
.
symbol
.
name
array
=
'
array_
'
+
texture_name
if
self
.
_texture
.
field
.
ndim
==
3
:
copy_params
=
f
'
cpy_
{
texture_name
}
_params
'
return
f
"""
cudaMemcpy3DParms
{
copy_params
}
{{}};
{
copy_params
}
.srcPtr = {{
{
self
.
_device_ptr
}
,
{
self
.
_texture
.
field
.
strides
[
-
1
]
*
self
.
_texture
.
field
.
shape
[
-
1
]
*
self
.
_dtype
.
numpy_dtype
.
itemsize
}
,
{
self
.
_texture
.
field
.
shape
[
-
1
]
}
,
{
self
.
_texture
.
field
.
shape
[
-
2
]
}
}};
{
copy_params
}
.dstArray =
{
array
}
;
{
copy_params
}
.extent = {{
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
}};
{
copy_params
}
.kind = cudaMemcpyDeviceToDevice;
cudaMemcpy3D(&
{
copy_params
}
);
"""
# noqa
elif
self
.
_texture
.
field
.
ndim
==
2
:
# noqa: cudaMemcpy2DToArray(cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind);
return
f
"""
cudaMemcpy2DToArray(
{
array
}
,
0u,
0u,
{
self
.
_device_ptr
}
,
{
self
.
_texture
.
field
.
strides
[
-
1
]
*
self
.
_texture
.
field
.
shape
[
-
1
]
*
self
.
_dtype
.
numpy_dtype
.
itemsize
}
,
{
self
.
_texture
.
field
.
shape
[
-
1
]
}
,
{
self
.
_texture
.
field
.
shape
[
-
2
]
}
,
cudaMemcpyDeviceToDevice);
"""
# noqa
else
:
raise
NotImplementedError
()
class
KernelFunctionCall
(
Node
):
class
KernelFunctionCall
(
Node
):
"""
"""
AST nodes representing a call of a :class:`pystencils.astnodes.KernelFunction`
AST nodes representing a call of a :class:`pystencils.astnodes.KernelFunction`
...
...
This diff is collapsed.
Click to expand it.
src/pystencils_autodiff/framework_integration/texture_astnodes.py
0 → 100644
+
210
−
0
View file @
3d2c1f56
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
from
functools
import
reduce
import
jinja2
import
sympy
as
sp
import
pystencils.backends
class
NativeTextureBinding
(
pystencils
.
backends
.
cbackend
.
CustomCodeNode
):
"""
Bind texture to CUDA device pointer
Recommended read: https://devblogs.nvidia.com/cuda-pro-tip-kepler-texture-objects-improve-performance-and-flexibility/
The definition from cudaResourceDesc and cudaTextureDesc
.. code:: c
/**
* CUDA resource descriptor
*/
struct __device_builtin__ cudaResourceDesc {
enum cudaResourceType resType; /**< Resource type */
union {
struct {
cudaArray_t array; /**< CUDA array */
} array;
struct {
cudaMipmappedArray_t mipmap; /**< CUDA mipmapped array */
} mipmap;
struct {
void *devPtr; /**< Device pointer */
struct cudaChannelFormatDesc desc; /**< Channel descriptor */
size_t sizeInBytes; /**< Size in bytes */
} linear;
struct {
void *devPtr; /**< Device pointer */
struct cudaChannelFormatDesc desc; /**< Channel descriptor */
size_t width; /**< Width of the array in elements */
size_t height; /**< Height of the array in elements */
size_t pitchInBytes; /**< Pitch between two rows in bytes */
} pitch2D;
} res;
};
.. code:: c
/**
* CUDA texture descriptor
*/
struct __device_builtin__ cudaTextureDesc
{
/**
* Texture address mode for up to 3 dimensions
*/
enum cudaTextureAddressMode addressMode[3];
/**
* Texture filter mode
*/
enum cudaTextureFilterMode filterMode;
/**
* Texture read mode
*/
enum cudaTextureReadMode readMode;
/**
* Perform sRGB->linear conversion during texture read
*/
int sRGB;
/**
* Texture Border Color
*/
float borderColor[4];
/**
* Indicates whether texture reads are normalized or not
*/
int normalizedCoords;
/**
* Limit to the anisotropy ratio
*/
unsigned int maxAnisotropy;
/**
* Mipmap filter mode
*/
enum cudaTextureFilterMode mipmapFilterMode;
/**
* Offset applied to the supplied mipmap level
*/
float mipmapLevelBias;
/**
* Lower end of the mipmap level range to clamp access to
*/
float minMipmapLevelClamp;
/**
* Upper end of the mipmap level range to clamp access to
*/
float maxMipmapLevelClamp;
};
"""
# noqa
CODE_TEMPLATE_LINEAR
=
jinja2
.
Template
(
"""
cudaResourceDesc {{resource_desc}}{};
{{resource_desc}}.resType = cudaResourceTypeLinear;
{{resource_desc}}.res.linear.devPtr = {{device_ptr}};
{{resource_desc}}.res.linear.desc.f = {{cuda_channel_format}};
{{resource_desc}}.res.linear.desc.x = {{bits_per_channel}}; // bits per channel
{{resource_desc}}.res.linear.sizeInBytes = {{total_size}};
cudaTextureDesc {{texture_desc}}{};
cudaTextureObject_t {{texture_object}}=0;
cudaCreateTextureObject(&{{texture_object}}, &{{resource_desc}}, &{{texture_desc}}, nullptr);
{{texture_desc}}.readMode = cudaReadModeElementType;
auto {{texture_object}}Destroyer = std::unique_ptr(nullptr, [&](){
cudaDestroyTextureObject({{texture_object}});
});
"""
)
CODE_TEMPLATE_PITCHED2D
=
jinja2
.
Template
(
"""
!!! TODO!!!
"""
)
CODE_TEMPLATE_CUDA_ARRAY
=
jinja2
.
Template
(
"""
auto channel_desc_{{texture_name}} = {{channel_desc}};
{{ create_array }}
{{ copy_array }}
{{ texture_name }}.addressMode[0] = cudaAddressModeBorder;
{{ texture_name }}.addressMode[1] = cudaAddressModeBorder;
{{ texture_name }}.addressMode[2] = cudaAddressModeBorder;
{{ texture_name }}.filterMode = cudaFilterModeLinear;
{{ texture_name }}.normalized = false;
cudaBindTextureToArray(&{{texture_name}}, {{array}}, &channel_desc_{{texture_name}});
std::shared_ptr<void> {{array}}Destroyer(nullptr, [&](...){
cudaFreeArray({{array}});
cudaUnbindTexture({{texture_name}});
});
"""
)
def
__init__
(
self
,
texture
,
device_data_ptr
,
use_texture_objects
=
True
):
self
.
_texture
=
texture
self
.
_device_ptr
=
device_data_ptr
self
.
_dtype
=
self
.
_device_ptr
.
dtype
.
base_type
self
.
_shape
=
tuple
(
sp
.
S
(
s
)
for
s
in
self
.
_texture
.
field
.
shape
)
self
.
_ndim
=
texture
.
field
.
ndim
assert
use_texture_objects
,
"
without texture objects is not implemented
"
super
().
__init__
(
self
.
get_code
(
dialect
=
'
c
'
,
vector_instruction_set
=
None
),
symbols_read
=
{
device_data_ptr
,
*
[
s
for
s
in
self
.
_shape
if
isinstance
(
s
,
sp
.
Symbol
)]},
symbols_defined
=
{})
self
.
headers
=
[
'
<memory>
'
,
'
<cuda.h>
'
,
'
<cuda_runtime_api.h>
'
]
def
get_code
(
self
,
dialect
,
vector_instruction_set
):
texture_name
=
self
.
_texture
.
symbol
.
name
code
=
self
.
CODE_TEMPLATE_CUDA_ARRAY
.
render
(
resource_desc
=
'
resDesc_
'
+
texture_name
,
texture_desc
=
'
texDesc_
'
+
texture_name
,
channel_desc
=
f
'
cudaCreateChannelDesc<
{
self
.
_dtype
}
>()
'
,
# noqa
texture_object
=
'
tex_
'
+
texture_name
,
array
=
'
array_
'
+
texture_name
,
texture_name
=
texture_name
,
ndim
=
self
.
_ndim
,
device_ptr
=
self
.
_device_ptr
,
create_array
=
self
.
_get_create_array_call
(),
copy_array
=
self
.
_get_copy_array_call
(),
dtype
=
self
.
_dtype
,
bits_per_channel
=
self
.
_dtype
.
numpy_dtype
.
itemsize
*
8
,
total_size
=
self
.
_dtype
.
numpy_dtype
.
itemsize
*
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
_shape
,
1
))
return
code
def
_get_create_array_call
(
self
):
texture_name
=
self
.
_texture
.
symbol
.
name
ndim
=
''
if
self
.
_ndim
<=
2
else
f
'
{
self
.
_ndim
}
D
'
array
=
'
array_
'
+
texture_name
return
f
"""
cudaArray *
{
array
}
;
cudaMalloc
{
ndim
}
Array(&
{
array
}
, &channel_desc_
{
texture_name
}
,
"""
+
(
(
f
'
{{
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
}});
'
if
self
.
_ndim
==
3
else
f
'
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
);
'
))
def
_get_copy_array_call
(
self
):
texture_name
=
self
.
_texture
.
symbol
.
name
array
=
'
array_
'
+
texture_name
if
self
.
_texture
.
field
.
ndim
==
3
:
copy_params
=
f
'
cpy_
{
texture_name
}
_params
'
return
f
"""
cudaMemcpy3DParms
{
copy_params
}
{{}};
{
copy_params
}
.srcPtr = {{
{
self
.
_device_ptr
}
,
{
self
.
_texture
.
field
.
strides
[
-
1
]
*
self
.
_texture
.
field
.
shape
[
-
1
]
*
self
.
_dtype
.
numpy_dtype
.
itemsize
}
,
{
self
.
_texture
.
field
.
shape
[
-
1
]
}
,
{
self
.
_texture
.
field
.
shape
[
-
2
]
}
}};
{
copy_params
}
.dstArray =
{
array
}
;
{
copy_params
}
.extent = {{
{
"
,
"
.
join
(
str
(
s
)
for
s
in
reversed
(
self
.
_shape
))
}
}};
{
copy_params
}
.kind = cudaMemcpyDeviceToDevice;
cudaMemcpy3D(&
{
copy_params
}
);
"""
# noqa
elif
self
.
_texture
.
field
.
ndim
==
2
:
# noqa: cudaMemcpy2DToArray(cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, enum cudaMemcpyKind kind);
return
f
"""
cudaMemcpy2DToArray(
{
array
}
,
0u,
0u,
{
self
.
_device_ptr
}
,
{
self
.
_texture
.
field
.
strides
[
-
1
]
*
self
.
_texture
.
field
.
shape
[
-
1
]
*
self
.
_dtype
.
numpy_dtype
.
itemsize
}
,
{
self
.
_texture
.
field
.
shape
[
-
1
]
}
,
{
self
.
_texture
.
field
.
shape
[
-
2
]
}
,
cudaMemcpyDeviceToDevice);
"""
# noqa
else
:
raise
NotImplementedError
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment