Skip to content
Snippets Groups Projects
Commit e7b9976b authored by Markus Holzer's avatar Markus Holzer
Browse files

Remove LLVM

parent 96c04e6b
Branches
Tags
1 merge request!292Rebase of pystencils Type System
Showing
with 13 additions and 1741 deletions
# Change Log
## Unreleased
### Removed
* LLVM backend because it was not used much and not good integrated in pystencils.
...@@ -2,6 +2,7 @@ include README.md ...@@ -2,6 +2,7 @@ include README.md
include COPYING.txt include COPYING.txt
include AUTHORS.txt include AUTHORS.txt
include CONTRIBUTING.md include CONTRIBUTING.md
CHANGELOG.md
global-include *.pyx global-include *.pyx
include versioneer.py include versioneer.py
include pystencils/_version.py include pystencils/_version.py
...@@ -60,7 +60,6 @@ All options: ...@@ -60,7 +60,6 @@ All options:
- `autodiff`: enable derivation of adjoint kernels and generation of Torch/Tensorflow operations - `autodiff`: enable derivation of adjoint kernels and generation of Torch/Tensorflow operations
- `doc`: packages to build documentation - `doc`: packages to build documentation
- `kerncraft`: use kerncraft for automatic performance analysis - `kerncraft`: use kerncraft for automatic performance analysis
- `llvm_jit`: llvmlite as additional CPU backend
Options can be combined e.g. Options can be combined e.g.
```bash ```bash
...@@ -73,12 +72,12 @@ Documentation ...@@ -73,12 +72,12 @@ Documentation
------------- -------------
Read the docs [here](https://pycodegen.pages.i10git.cs.fau.de/pystencils) and Read the docs [here](https://pycodegen.pages.i10git.cs.fau.de/pystencils) and
check out the Jupyter notebooks in `doc/notebooks`. check out the Jupyter notebooks in `doc/notebooks`. The **Changelog** of pystencils can be found [here](https://i10git.cs.fau.de/pycodegen/pystencils/-/blob/master/CHANGELOG.md).
Authors Authors
------- -------
Many thanks go to the [contributors](AUTHORS.txt) of pystencils. Many thanks go to the [contributors](https://i10git.cs.fau.de/pycodegen/pystencils/-/blob/master/AUTHORS.txt) of pystencils.
### Please cite us ### Please cite us
......
Source diff could not be displayed: it is too large. Options to address this: view the blob.
...@@ -6,9 +6,3 @@ try: ...@@ -6,9 +6,3 @@ try:
__all__.append('print_dot') __all__.append('print_dot')
except ImportError: except ImportError:
pass pass
try:
from .llvm import generate_llvm # NOQA
__all__.append('generate_llvm')
except ImportError:
pass
...@@ -138,22 +138,11 @@ def create_folder(path, is_file): ...@@ -138,22 +138,11 @@ def create_folder(path, is_file):
pass pass
def get_llc_command():
"""Try to get executable for llvm's IR compiler llc
We try if one of the following is in PATH: llc, llc-10, llc-9, llc-8, llc-7, llc-6
"""
candidates = ['llc', 'llc-10', 'llc-9', 'llc-8', 'llc-7', 'llc-6']
found_executables = (e for e in candidates if shutil.which(e))
return next(found_executables, None)
def read_config(): def read_config():
if platform.system().lower() == 'linux': if platform.system().lower() == 'linux':
default_compiler_config = OrderedDict([ default_compiler_config = OrderedDict([
('os', 'linux'), ('os', 'linux'),
('command', 'g++'), ('command', 'g++'),
('llc_command', get_llc_command() or 'llc'),
('flags', '-Ofast -DNDEBUG -fPIC -march=native -fopenmp -std=c++11'), ('flags', '-Ofast -DNDEBUG -fPIC -march=native -fopenmp -std=c++11'),
('restrict_qualifier', '__restrict__') ('restrict_qualifier', '__restrict__')
]) ])
...@@ -164,7 +153,6 @@ def read_config(): ...@@ -164,7 +153,6 @@ def read_config():
default_compiler_config = OrderedDict([ default_compiler_config = OrderedDict([
('os', 'windows'), ('os', 'windows'),
('msvc_version', 'latest'), ('msvc_version', 'latest'),
('llc_command', get_llc_command() or 'llc'),
('arch', 'x64'), ('arch', 'x64'),
('flags', '/Ox /fp:fast /OpenMP /arch:avx'), ('flags', '/Ox /fp:fast /OpenMP /arch:avx'),
('restrict_qualifier', '__restrict') ('restrict_qualifier', '__restrict')
...@@ -173,7 +161,6 @@ def read_config(): ...@@ -173,7 +161,6 @@ def read_config():
default_compiler_config = OrderedDict([ default_compiler_config = OrderedDict([
('os', 'darwin'), ('os', 'darwin'),
('command', 'clang++'), ('command', 'clang++'),
('llc_command', get_llc_command() or 'llc'),
('flags', '-Ofast -DNDEBUG -fPIC -march=native -Xclang -fopenmp -std=c++11'), ('flags', '-Ofast -DNDEBUG -fPIC -march=native -Xclang -fopenmp -std=c++11'),
('restrict_qualifier', '__restrict__') ('restrict_qualifier', '__restrict__')
]) ])
......
...@@ -28,11 +28,6 @@ class Backend(Enum): ...@@ -28,11 +28,6 @@ class Backend(Enum):
""" """
Use the C Backend of pystencils. Use the C Backend of pystencils.
""" """
LLVM = auto()
r"""
Use the ``llvmlite`` package to transform the pystensilc AST to the LLVM ir.
From this point all of LLVMs optimisations can be used.
"""
CUDA = auto() CUDA = auto()
""" """
Use the CUDA backend to generate code for NVIDIA GPUs. Use the CUDA backend to generate code for NVIDIA GPUs.
......
...@@ -278,11 +278,6 @@ def create_domain_kernel(assignments: List[Assignment], *, config: CreateKernelC ...@@ -278,11 +278,6 @@ def create_domain_kernel(assignments: List[Assignment], *, config: CreateKernelC
raise ValueError("Blocking cannot be combined with cacheline-zeroing") raise ValueError("Blocking cannot be combined with cacheline-zeroing")
else: else:
raise ValueError("Invalid value for cpu_vectorize_info") raise ValueError("Invalid value for cpu_vectorize_info")
elif config.backend == Backend.LLVM:
from pystencils.llvm import create_kernel
ast = create_kernel(assignments, function_name=config.function_name, type_info=config.data_type,
split_groups=split_groups, iteration_slice=config.iteration_slice,
ghost_layers=config.ghost_layers)
elif config.target == Target.GPU or config.target == Target.OPENCL: elif config.target == Target.GPU or config.target == Target.OPENCL:
if config.backend == Backend.CUDA or config.backend == Backend.OPENCL: if config.backend == Backend.CUDA or config.backend == Backend.OPENCL:
from pystencils.gpucuda import create_cuda_kernel from pystencils.gpucuda import create_cuda_kernel
......
from .kernelcreation import create_kernel
from .llvmjit import make_python_function
__all__ = ['create_kernel', 'make_python_function']
import llvmlite.ir as ir
class Loop(object):
def __init__(self, builder, start_val, stop_val, step_val=1, loop_name='loop', phi_name="_phi"):
self.builder = builder
self.start_val = start_val
self.stop_val = stop_val
self.step_val = step_val
self.loop_name = loop_name
self.phi_name = phi_name
def __enter__(self):
self.loop_end, self.after, phi = self._for_loop(self.start_val, self.stop_val, self.step_val, self.loop_name,
self.phi_name)
return phi
def _for_loop(self, start_val, stop_val, step_val, loop_name, phi_name):
# TODO size of int??? unisgned???
integer = ir.IntType(64)
# Loop block
pre_loop_bb = self.builder.block
loop_bb = self.builder.append_basic_block(name='loop_' + loop_name)
self.builder.branch(loop_bb)
# Insert an explicit fall through from the current block to loop_bb
self.builder.position_at_start(loop_bb)
# Add phi
phi = self.builder.phi(integer, name=phi_name)
phi.add_incoming(start_val, pre_loop_bb)
loop_end_bb = self.builder.append_basic_block(name=loop_name + "_end_bb")
self.builder.position_at_start(loop_end_bb)
next_var = self.builder.add(phi, step_val, name=loop_name + '_next_it')
cond = self.builder.icmp_unsigned('<', next_var, stop_val, name=loop_name + "_cond")
after_bb = self.builder.append_basic_block(name=loop_name + "_after_bb")
self.builder.cbranch(cond, loop_bb, after_bb)
phi.add_incoming(next_var, loop_end_bb)
self.builder.position_at_end(loop_bb)
return loop_end_bb, after_bb, phi
def __exit__(self, exc_type, exc, exc_tb):
self.builder.branch(self.loop_end)
self.builder.position_at_end(self.after)
from pystencils.enums import Target, Backend
from pystencils.llvm.llvmjit import make_python_function
from pystencils.transformations import insert_casts
def create_kernel(assignments, function_name="kernel", type_info=None, split_groups=(),
iteration_slice=None, ghost_layers=None, target=Target.CPU):
"""
Creates an abstract syntax tree for a kernel function, by taking a list of update rules.
Loops are created according to the field accesses in the equations.
Args:
assignments: list of sympy equations, containing accesses to :class:`pystencils.field.Field`.
Defining the update rules of the kernel
function_name: name of the generated function - only important if generated code is written out
type_info: a map from symbol name to a C type specifier. If not specified all symbols are assumed to
be of type 'double' except symbols which occur on the left hand side of equations where the
right hand side is a sympy Boolean which are assumed to be 'bool' .
split_groups: Specification on how to split up inner loop into multiple loops. For details see
transformation :func:`pystencils.transformation.split_inner_loop`
iteration_slice: if not None, iteration is done only over this slice of the field
ghost_layers: a sequence of pairs for each coordinate with lower and upper nr of ghost layers
if None, the number of ghost layers is determined automatically and assumed to be equal for a
all dimensions
:return: :class:`pystencils.ast.KernelFunction` node
"""
if target == Target.CPU:
from pystencils.cpu import create_kernel
code = create_kernel(assignments, function_name, type_info, split_groups, iteration_slice, ghost_layers)
elif target == Target.GPU:
from pystencils.gpucuda.kernelcreation import create_cuda_kernel
code = create_cuda_kernel(assignments,
function_name,
type_info,
iteration_slice=iteration_slice,
ghost_layers=ghost_layers)
else:
NotImplementedError(f'{target} is not implemented for LLVM kernel creation')
code._backend = Backend.LLVM
code.body = insert_casts(code.body)
code._compile_function = make_python_function
return code
import functools
import llvmlite.ir as ir
import llvmlite.llvmpy.core as lc
import sympy as sp
from sympy import Indexed, S
from sympy.printing.printer import Printer
from pystencils import Target
from pystencils.assignment import Assignment
from pystencils.data_types import (
collate_types, create_composite_type_from_string, create_type, get_type_of_expression,
to_llvm_type)
from pystencils.llvm.control_flow import Loop
# From Numba
def set_cuda_kernel(lfunc):
from llvmlite.llvmpy.core import MetaData, MetaDataString, Constant, Type
m = lfunc.module
ops = lfunc, MetaDataString.get(m, "kernel"), Constant.int(Type.int(), 1)
md = MetaData.get(m, ops)
nmd = m.get_or_insert_named_metadata('nvvm.annotations')
nmd.add(md)
# set nvvm ir version
i32 = ir.IntType(32)
md_ver = m.add_metadata([i32(1), i32(2), i32(2), i32(0)])
m.add_named_metadata('nvvmir.version', md_ver)
# From Numba
def _call_sreg(builder, name):
module = builder.module
fnty = lc.Type.function(lc.Type.int(), ())
fn = module.get_or_insert_function(fnty, name=name)
return builder.call(fn, ())
def generate_llvm(ast_node, module=None, builder=None, target=Target.CPU):
"""Prints the ast as llvm code."""
if module is None:
module = lc.Module()
if builder is None:
builder = ir.IRBuilder()
printer = LLVMPrinter(module, builder, target=target)
return printer._print(ast_node)
# noinspection PyPep8Naming
class LLVMPrinter(Printer):
"""Convert expressions to LLVM IR"""
def __init__(self, module, builder, fn=None, target=Target.CPU, *args, **kwargs):
self.func_arg_map = kwargs.pop("func_arg_map", {})
super(LLVMPrinter, self).__init__(*args, **kwargs)
self.fp_type = ir.DoubleType()
self.fp_pointer = self.fp_type.as_pointer()
self.integer = ir.IntType(64)
self.integer_pointer = self.integer.as_pointer()
self.void = ir.VoidType()
self.module = module
self.builder = builder
self.fn = fn
self.ext_fn = {} # keep track of wrappers to external functions
self.tmp_var = {}
self.target = target
def _add_tmp_var(self, name, value):
self.tmp_var[name] = value
def _remove_tmp_var(self, name):
del self.tmp_var[name]
def _print_Number(self, n):
if get_type_of_expression(n) == create_type("int"):
return ir.Constant(self.integer, int(n))
elif get_type_of_expression(n) == create_type("double"):
return ir.Constant(self.fp_type, float(n))
else:
raise NotImplementedError("Numbers can only have int and double", n)
def _print_Float(self, expr):
return ir.Constant(self.fp_type, float(expr))
def _print_Integer(self, expr):
return ir.Constant(self.integer, int(expr))
def _print_int(self, i):
return ir.Constant(self.integer, i)
def _print_Symbol(self, s):
val = self.tmp_var.get(s)
if not val:
# look up parameter with name s
val = self.func_arg_map.get(s.name)
if not val:
raise LookupError(f"Symbol not found: {s}")
return val
def _print_Pow(self, expr):
base0 = self._print(expr.base)
if expr.exp == S.NegativeOne:
return self.builder.fdiv(ir.Constant(self.fp_type, 1.0), base0)
if expr.exp == S.Half:
fn = self.ext_fn.get("sqrt")
if not fn:
fn_type = ir.FunctionType(self.fp_type, [self.fp_type])
fn = ir.Function(self.module, fn_type, "sqrt")
self.ext_fn["sqrt"] = fn
return self.builder.call(fn, [base0], "sqrt")
if expr.exp == 2:
return self.builder.fmul(base0, base0)
elif expr.exp == 3:
return self.builder.fmul(self.builder.fmul(base0, base0), base0)
exp0 = self._print(expr.exp)
fn = self.ext_fn.get("pow")
if not fn:
fn_type = ir.FunctionType(self.fp_type, [self.fp_type, self.fp_type])
fn = ir.Function(self.module, fn_type, "pow")
self.ext_fn["pow"] = fn
return self.builder.call(fn, [base0, exp0], "pow")
def _print_Mul(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
if get_type_of_expression(expr) == create_type('double'):
mul = self.builder.fmul
else: # int TODO unsigned/signed
mul = self.builder.mul
for node in nodes[1:]:
e = mul(e, node)
return e
def _print_Add(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
if get_type_of_expression(expr) == create_type('double'):
add = self.builder.fadd
else: # int TODO unsigned/signed
add = self.builder.add
for node in nodes[1:]:
e = add(e, node)
return e
def _print_Or(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.or_(e, node)
return e
def _print_And(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.and_(e, node)
return e
def _print_StrictLessThan(self, expr):
return self._comparison('<', expr)
def _print_LessThan(self, expr):
return self._comparison('<=', expr)
def _print_StrictGreaterThan(self, expr):
return self._comparison('>', expr)
def _print_GreaterThan(self, expr):
return self._comparison('>=', expr)
def _print_Unequality(self, expr):
return self._comparison('!=', expr)
def _print_Equality(self, expr):
return self._comparison('==', expr)
def _comparison(self, cmpop, expr):
if collate_types([get_type_of_expression(arg) for arg in expr.args]) == create_type('double'):
comparison = self.builder.fcmp_unordered
else:
comparison = self.builder.icmp_signed
return comparison(cmpop, self._print(expr.lhs), self._print(expr.rhs))
def _print_KernelFunction(self, func):
# KernelFunction does not posses a return type
return_type = self.void
parameter_type = []
parameters = func.get_parameters()
for parameter in parameters:
parameter_type.append(to_llvm_type(parameter.symbol.dtype, nvvm_target=self.target == Target.GPU))
func_type = ir.FunctionType(return_type, tuple(parameter_type))
name = func.function_name
fn = ir.Function(self.module, func_type, name)
self.ext_fn[name] = fn
# set proper names to arguments
for i, arg in enumerate(fn.args):
arg.name = parameters[i].symbol.name
self.func_arg_map[parameters[i].symbol.name] = arg
# func.attributes.add("inlinehint")
# func.attributes.add("argmemonly")
block = fn.append_basic_block(name="entry")
self.builder = ir.IRBuilder(block) # TODO use goto_block instead
self._print(func.body)
self.builder.ret_void()
self.fn = fn
if self.target == Target.GPU:
set_cuda_kernel(fn)
return fn
def _print_Block(self, block):
for node in block.args:
self._print(node)
def _print_LoopOverCoordinate(self, loop):
with Loop(self.builder, self._print(loop.start), self._print(loop.stop), self._print(loop.step),
loop.loop_counter_name, loop.loop_counter_symbol.name) as i:
self._add_tmp_var(loop.loop_counter_symbol, i)
self._print(loop.body)
self._remove_tmp_var(loop.loop_counter_symbol)
def _print_SympyAssignment(self, assignment):
expr = self._print(assignment.rhs)
lhs = assignment.lhs
if isinstance(lhs, Indexed):
ptr = self._print(lhs.base.label)
index = self._print(lhs.args[1])
gep = self.builder.gep(ptr, [index])
return self.builder.store(expr, gep)
self.func_arg_map[assignment.lhs.name] = expr
return expr
def _print_boolean_cast_func(self, conversion):
return self._print_cast_func(conversion)
def _print_cast_func(self, conversion):
node = self._print(conversion.args[0])
to_dtype = get_type_of_expression(conversion)
from_dtype = get_type_of_expression(conversion.args[0])
if from_dtype == to_dtype:
return self._print(conversion.args[0])
# (From, to)
decision = {
(create_composite_type_from_string("int32"),
create_composite_type_from_string("int64")): functools.partial(self.builder.zext, node, self.integer),
(create_composite_type_from_string("int16"),
create_composite_type_from_string("int64")): functools.partial(self.builder.zext, node, self.integer),
(create_composite_type_from_string("int"),
create_composite_type_from_string("double")): functools.partial(self.builder.sitofp, node, self.fp_type),
(create_composite_type_from_string("int16"),
create_composite_type_from_string("double")): functools.partial(self.builder.sitofp, node, self.fp_type),
(create_composite_type_from_string("double"),
create_composite_type_from_string("int")): functools.partial(self.builder.fptosi, node, self.integer),
(create_composite_type_from_string("double *"),
create_composite_type_from_string("int")): functools.partial(self.builder.ptrtoint, node, self.integer),
(create_composite_type_from_string("int"),
create_composite_type_from_string("double *")): functools.partial(self.builder.inttoptr,
node, self.fp_pointer),
(create_composite_type_from_string("double * restrict"),
create_composite_type_from_string("int")): functools.partial(self.builder.ptrtoint, node, self.integer),
(create_composite_type_from_string("int"),
create_composite_type_from_string("double * restrict")): functools.partial(self.builder.inttoptr, node,
self.fp_pointer),
(create_composite_type_from_string("double * restrict const"),
create_composite_type_from_string("int")): functools.partial(self.builder.ptrtoint, node,
self.integer),
(create_composite_type_from_string("int"),
create_composite_type_from_string("double * restrict const")): functools.partial(self.builder.inttoptr,
node, self.fp_pointer),
}
# TODO float, TEST: const, restrict
# TODO bitcast, addrspacecast
# TODO unsigned/signed fills
# print([x for x in decision.keys()])
# print("Types:")
# print([(type(x), type(y)) for (x, y) in decision.keys()])
# print("Cast:")
# print((from_dtype, to_dtype))
return decision[(from_dtype, to_dtype)]()
def _print_pointer_arithmetic_func(self, pointer):
ptr = self._print(pointer.args[0])
index = self._print(pointer.args[1])
return self.builder.gep(ptr, [index])
def _print_Indexed(self, indexed):
ptr = self._print(indexed.base.label)
index = self._print(indexed.args[1])
gep = self.builder.gep(ptr, [index])
return self.builder.load(gep, name=indexed.base.label.name)
def _print_Piecewise(self, piece):
if not piece.args[-1].cond:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
if piece.has(Assignment):
raise NotImplementedError('The llvm-backend does not support assignments'
'in the Piecewise function. It is questionable'
'whether to implement it. So far there is no'
'use-case to test it.')
else:
phi_data = []
after_block = self.builder.append_basic_block()
for (expr, condition) in piece.args:
if condition == sp.sympify(True): # Don't use 'is' use '=='!
phi_data.append((self._print(expr), self.builder.block))
self.builder.branch(after_block)
self.builder.position_at_end(after_block)
else:
cond = self._print(condition)
true_block = self.builder.append_basic_block()
false_block = self.builder.append_basic_block()
self.builder.cbranch(cond, true_block, false_block)
self.builder.position_at_end(true_block)
phi_data.append((self._print(expr), true_block))
self.builder.branch(after_block)
self.builder.position_at_end(false_block)
phi = self.builder.phi(to_llvm_type(get_type_of_expression(piece), nvvm_target=self.target == Target.GPU))
for (val, block) in phi_data:
phi.add_incoming(val, block)
return phi
def _print_Conditional(self, node):
cond = self._print(node.condition_expr)
with self.builder.if_else(cond) as (then, otherwise):
with then:
self._print(node.true_block) # emit instructions for when the predicate is true
with otherwise:
self._print(node.false_block) # emit instructions for when the predicate is true
# No return!
def _print_Function(self, expr):
name = expr.func.__name__
e0 = self._print(expr.args[0])
fn = self.ext_fn.get(name)
if not fn:
fn_type = ir.FunctionType(self.fp_type, [self.fp_type])
fn = ir.Function(self.module, fn_type, name)
self.ext_fn[name] = fn
return self.builder.call(fn, [e0], name)
def empty_printer(self, expr):
try:
import inspect
mro = inspect.getmro(expr)
except AttributeError:
mro = "None"
raise TypeError("Unsupported type for LLVM JIT conversion: Expression:\"%s\", Type:\"%s\", MRO:%s"
% (expr, type(expr), mro))
# from: https://llvm.org/docs/NVPTXUsage.html#nvptx-intrinsics
INDEXING_FUNCTION_MAPPING = {
'blockIdx': 'llvm.nvvm.read.ptx.sreg.ctaid',
'threadIdx': 'llvm.nvvm.read.ptx.sreg.tid',
'blockDim': 'llvm.nvvm.read.ptx.sreg.ntid',
'gridDim': 'llvm.nvvm.read.ptx.sreg.nctaid'
}
def _print_ThreadIndexingSymbol(self, node):
symbol_name: str = node.name
function_name, dimension = tuple(symbol_name.split("."))
function_name = self.INDEXING_FUNCTION_MAPPING[function_name]
name = f"{function_name}.{dimension}"
return self.builder.zext(_call_sreg(self.builder, name), self.integer)
import ctypes as ct
import subprocess
from functools import partial
from itertools import chain
from os.path import exists, join
import llvmlite.binding as llvm
import llvmlite.ir as ir
import numpy as np
from pystencils.data_types import create_composite_type_from_string
from pystencils.enums import Target
from pystencils.field import FieldType
from ..data_types import StructType, ctypes_from_llvm, to_ctypes
from .llvm import generate_llvm
def build_ctypes_argument_list(parameter_specification, argument_dict):
argument_dict = {k: v for k, v in argument_dict.items()}
ct_arguments = []
array_shapes = set()
index_arr_shapes = set()
for param in parameter_specification:
if param.is_field_parameter:
try:
field_arr = argument_dict[param.field_name]
except KeyError:
raise KeyError("Missing field parameter for kernel call " + param.field_name)
symbolic_field = param.fields[0]
if param.is_field_pointer:
ct_arguments.append(field_arr.ctypes.data_as(to_ctypes(param.symbol.dtype)))
if symbolic_field.has_fixed_shape:
symbolic_field_shape = tuple(int(i) for i in symbolic_field.shape)
if isinstance(symbolic_field.dtype, StructType):
symbolic_field_shape = symbolic_field_shape[:-1]
if symbolic_field_shape != field_arr.shape:
raise ValueError("Passed array '%s' has shape %s which does not match expected shape %s" %
(param.field_name, str(field_arr.shape), str(symbolic_field.shape)))
if symbolic_field.has_fixed_shape:
symbolic_field_strides = tuple(int(i) * field_arr.itemsize for i in symbolic_field.strides)
if isinstance(symbolic_field.dtype, StructType):
symbolic_field_strides = symbolic_field_strides[:-1]
if symbolic_field_strides != field_arr.strides:
raise ValueError("Passed array '%s' has strides %s which does not match expected strides %s" %
(param.field_name, str(field_arr.strides), str(symbolic_field_strides)))
if FieldType.is_indexed(symbolic_field):
index_arr_shapes.add(field_arr.shape[:symbolic_field.spatial_dimensions])
elif FieldType.is_generic(symbolic_field):
array_shapes.add(field_arr.shape[:symbolic_field.spatial_dimensions])
elif param.is_field_shape:
data_type = to_ctypes(param.symbol.dtype)
ct_arguments.append(data_type(field_arr.shape[param.symbol.coordinate]))
elif param.is_field_stride:
data_type = to_ctypes(param.symbol.dtype)
assert field_arr.strides[param.symbol.coordinate] % field_arr.itemsize == 0
item_stride = field_arr.strides[param.symbol.coordinate] // field_arr.itemsize
ct_arguments.append(data_type(item_stride))
else:
assert False
else:
try:
value = argument_dict[param.symbol.name]
except KeyError:
raise KeyError("Missing parameter for kernel call " + param.symbol.name)
expected_type = to_ctypes(param.symbol.dtype)
ct_arguments.append(expected_type(value))
if len(array_shapes) > 1:
raise ValueError("All passed arrays have to have the same size " + str(array_shapes))
if len(index_arr_shapes) > 1:
raise ValueError("All passed index arrays have to have the same size " + str(array_shapes))
return ct_arguments
def make_python_function_incomplete_params(kernel_function_node, argument_dict, func):
parameters = kernel_function_node.get_parameters()
cache = {}
cache_values = []
def wrapper(**kwargs):
key = hash(tuple((k, v.ctypes.data, v.strides, v.shape) if isinstance(v, np.ndarray) else (k, id(v))
for k, v in kwargs.items()))
try:
args = cache[key]
func(*args)
except KeyError:
full_arguments = argument_dict.copy()
full_arguments.update(kwargs)
args = build_ctypes_argument_list(parameters, full_arguments)
cache[key] = args
cache_values.append(kwargs) # keep objects alive such that ids remain unique
func(*args)
wrapper.ast = kernel_function_node
wrapper.parameters = kernel_function_node.get_parameters()
return wrapper
def generate_and_jit(ast):
target = ast.target
gen = generate_llvm(ast, target=target)
if isinstance(gen, ir.Module):
return compile_llvm(gen, target, ast)
else:
return compile_llvm(gen.module, target, ast)
def make_python_function(ast, argument_dict=None, func=None):
if argument_dict is None:
argument_dict = {}
if func is None:
jit = generate_and_jit(ast)
func = jit.get_function_ptr(ast.function_name)
try:
args = build_ctypes_argument_list(ast.get_parameters(), argument_dict)
except KeyError:
# not all parameters specified yet
return make_python_function_incomplete_params(ast, argument_dict, func)
return lambda: func(*args)
def compile_llvm(module, target=Target.CPU, ast=None):
jit = CudaJit(ast) if target == Target.GPU else Jit()
jit.parse(module)
jit.optimize()
jit.compile()
return jit
class Jit(object):
def __init__(self):
llvm.initialize()
llvm.initialize_all_targets()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()
self.module = None
self._llvmmod = llvm.parse_assembly("")
self.target = llvm.Target.from_default_triple()
self.cpu = llvm.get_host_cpu_name()
try:
self.cpu_features = llvm.get_host_cpu_features()
self.target_machine = self.target.create_target_machine(cpu=self.cpu, features=self.cpu_features.flatten(),
opt=2)
except RuntimeError:
self.target_machine = self.target.create_target_machine(cpu=self.cpu, opt=2)
llvm.check_jit_execution()
self.ee = llvm.create_mcjit_compiler(self.llvmmod, self.target_machine)
self.ee.finalize_object()
self.fptr = None
@property
def llvmmod(self):
return self._llvmmod
@llvmmod.setter
def llvmmod(self, mod):
self.ee.remove_module(self.llvmmod)
self.ee.add_module(mod)
self.ee.finalize_object()
self.compile()
self._llvmmod = mod
def parse(self, module):
self.module = module
llvmmod = llvm.parse_assembly(str(module))
llvmmod.verify()
llvmmod.triple = self.target.triple
llvmmod.name = 'module'
self.llvmmod = llvmmod
def write_ll(self, file):
with open(file, 'w') as f:
f.write(str(self.llvmmod))
def write_assembly(self, file):
with open(file, 'w') as f:
f.write(self.target_machine.emit_assembly(self.llvmmod))
def write_object_file(self, file):
with open(file, 'wb') as f:
f.write(self.target_machine.emit_object(self.llvmmod))
def optimize(self):
pmb = llvm.create_pass_manager_builder()
pmb.opt_level = 2
pmb.disable_unit_at_a_time = False
pmb.loop_vectorize = True
pmb.slp_vectorize = True
# TODO possible to pass for functions
pm = llvm.create_module_pass_manager()
pm.add_instruction_combining_pass()
pm.add_function_attrs_pass()
pm.add_constant_merge_pass()
pm.add_licm_pass()
pmb.populate(pm)
pm.run(self.llvmmod)
def compile(self):
fptr = {}
for func in self.module.functions:
if not func.is_declaration:
return_type = None
if func.ftype.return_type != ir.VoidType():
return_type = to_ctypes(create_composite_type_from_string(str(func.ftype.return_type)))
args = [ctypes_from_llvm(arg) for arg in func.ftype.args]
function_address = self.ee.get_function_address(func.name)
fptr[func.name] = ct.CFUNCTYPE(return_type, *args)(function_address)
self.fptr = fptr
def __call__(self, func, *args, **kwargs):
target_function = next(f for f in self.module.functions if f.name == func)
arg_types = [ctypes_from_llvm(arg.type) for arg in target_function.args]
transformed_args = []
for i, arg in enumerate(args):
if isinstance(arg, np.ndarray):
transformed_args.append(arg.ctypes.data_as(arg_types[i]))
else:
transformed_args.append(arg)
self.fptr[func](*transformed_args)
def print_functions(self):
for f in self.module.functions:
print(f.ftype.return_type, f.name, f.args)
def get_function_ptr(self, name):
fptr = self.fptr[name]
fptr.jit = self
return fptr
# Following code more or less from numba
class CudaJit(Jit):
CUDA_TRIPLE = {32: 'nvptx-nvidia-cuda',
64: 'nvptx64-nvidia-cuda'}
MACHINE_BITS = tuple.__itemsize__ * 8
data_layout = {
32: ('e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-'
'f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64'),
64: ('e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-'
'f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64')}
default_data_layout = data_layout[MACHINE_BITS]
def __init__(self, ast):
# super().__init__()
# self.target = llvm.Target.from_triple(self.CUDA_TRIPLE[self.MACHINE_BITS])
self._data_layout = self.default_data_layout[self.MACHINE_BITS]
# self._target_data = llvm.create_target_data(self._data_layout)
self.indexing = ast.indexing
def optimize(self):
pmb = llvm.create_pass_manager_builder()
pmb.opt_level = 2
pmb.disable_unit_at_a_time = False
pmb.loop_vectorize = False
pmb.slp_vectorize = False
# TODO possible to pass for functions
pm = llvm.create_module_pass_manager()
pm.add_instruction_combining_pass()
pm.add_function_attrs_pass()
pm.add_constant_merge_pass()
pm.add_licm_pass()
pmb.populate(pm)
pm.run(self.llvmmod)
pm.run(self.llvmmod)
def write_ll(self, file):
with open(file, 'w') as f:
f.write(str(self.llvmmod))
def parse(self, module):
llvmmod = module
llvmmod.triple = self.CUDA_TRIPLE[self.MACHINE_BITS]
llvmmod.data_layout = self.default_data_layout
llvmmod.verify()
llvmmod.name = 'module'
self._llvmmod = llvm.parse_assembly(str(llvmmod))
def compile(self):
from pystencils.cpu.cpujit import get_cache_config, get_compiler_config, get_llc_command
import hashlib
compiler_cache = get_cache_config()['object_cache']
ir_file = join(compiler_cache, hashlib.md5(str(self._llvmmod).encode()).hexdigest() + '.ll')
ptx_file = ir_file.replace('.ll', '.ptx')
try:
from pycuda.driver import Context
arch = "sm_%d%d" % Context.get_device().compute_capability()
except Exception:
arch = "sm_35"
if not exists(ptx_file):
self.write_ll(ir_file)
if 'llc' in get_compiler_config():
llc_command = get_compiler_config()['llc']
else:
llc_command = get_llc_command() or 'llc'
subprocess.check_call([llc_command, '-mcpu=' + arch, ir_file, '-o', ptx_file])
# cubin_file = ir_file.replace('.ll', '.cubin')
# if not exists(cubin_file):
# subprocess.check_call(['ptxas', '--gpu-name', arch, ptx_file, '-o', cubin_file])
import pycuda.driver
cuda_module = pycuda.driver.module_from_file(ptx_file) # also works: cubin_file
self.cuda_module = cuda_module
def __call__(self, func, *args, **kwargs):
shape = [a.shape for a in chain(args, kwargs.values()) if hasattr(a, 'shape')][0]
block_and_thread_numbers = self.indexing.call_parameters(shape)
block_and_thread_numbers['block'] = tuple(int(i) for i in block_and_thread_numbers['block'])
block_and_thread_numbers['grid'] = tuple(int(i) for i in block_and_thread_numbers['grid'])
self.cuda_module.get_function(func)(*args, **kwargs, **block_and_thread_numbers)
def get_function_ptr(self, name):
return partial(self._call__, name)
This diff is collapsed.
import pytest
try:
from pystencils.llvm.llvmjit import generate_and_jit
from pystencils.llvm import create_kernel, make_python_function
from pystencils.cpu.cpujit import get_llc_command
from pystencils import Assignment, Field, Target
import numpy as np
import sympy as sp
except ModuleNotFoundError:
pytest.importorskip("llvmlite")
def test_jacobi_fixed_field_size():
size = (30, 20)
src_field_llvm = np.random.rand(*size)
src_field_py = np.copy(src_field_llvm)
dst_field_llvm = np.zeros(size)
dst_field_py = np.zeros(size)
f = Field.create_from_numpy_array("f", src_field_llvm)
d = Field.create_from_numpy_array("d", dst_field_llvm)
jacobi = Assignment(d[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4)
ast = create_kernel([jacobi])
for x in range(1, size[0] - 1):
for y in range(1, size[1] - 1):
dst_field_py[x, y] = 0.25 * (src_field_py[x - 1, y] + src_field_py[x + 1, y] +
src_field_py[x, y - 1] + src_field_py[x, y + 1])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
error = np.sum(np.abs(dst_field_py - dst_field_llvm))
np.testing.assert_almost_equal(error, 0.0)
@pytest.mark.skipif(not get_llc_command(), reason="Tests requires llc in $PATH")
def test_jacobi_fixed_field_size_gpu():
pytest.importorskip("pycuda")
size = (30, 20)
import pycuda.autoinit # noqa
from pycuda.gpuarray import to_gpu
src_field_llvm = np.random.rand(*size)
src_field_py = np.copy(src_field_llvm)
dst_field_llvm = np.zeros(size)
dst_field_py = np.zeros(size)
f = Field.create_from_numpy_array("f", src_field_py)
d = Field.create_from_numpy_array("d", dst_field_py)
src_field_llvm = to_gpu(src_field_llvm)
dst_field_llvm = to_gpu(dst_field_llvm)
jacobi = Assignment(d[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4)
ast = create_kernel([jacobi], target=Target.GPU)
for x in range(1, size[0] - 1):
for y in range(1, size[1] - 1):
dst_field_py[x, y] = 0.25 * (src_field_py[x - 1, y] + src_field_py[x + 1, y] +
src_field_py[x, y - 1] + src_field_py[x, y + 1])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
error = np.sum(np.abs(dst_field_py - dst_field_llvm.get()))
np.testing.assert_almost_equal(error, 0.0)
def test_jacobi_variable_field_size():
size = (3, 3, 3)
f = Field.create_generic("f", 3)
d = Field.create_generic("d", 3)
jacobi = Assignment(d[0, 0, 0], (f[1, 0, 0] + f[-1, 0, 0] + f[0, 1, 0] + f[0, -1, 0]) / 4)
ast = create_kernel([jacobi])
src_field_llvm = np.random.rand(*size)
src_field_py = np.copy(src_field_llvm)
dst_field_llvm = np.zeros(size)
dst_field_py = np.zeros(size)
for x in range(1, size[0] - 1):
for y in range(1, size[1] - 1):
for z in range(1, size[2] - 1):
dst_field_py[x, y, z] = 0.25 * (src_field_py[x - 1, y, z] + src_field_py[x + 1, y, z] +
src_field_py[x, y - 1, z] + src_field_py[x, y + 1, z])
kernel = make_python_function(ast, {'f': src_field_llvm, 'd': dst_field_llvm})
kernel()
error = np.sum(np.abs(dst_field_py - dst_field_llvm))
np.testing.assert_almost_equal(error, 0.0)
def test_pow_llvm():
size = (30, 20)
src_field_llvm = 4 * np.ones(size)
dst_field_llvm = np.zeros(size)
f = Field.create_from_numpy_array("f", src_field_llvm)
d = Field.create_from_numpy_array("d", dst_field_llvm)
ur = Assignment(d[0, 0], sp.Pow(f[0, 0], -1.0))
ast = create_kernel([ur])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert np.all(0.25 == dst_field_llvm)
ur = Assignment(d[0, 0], sp.Pow(f[0, 0], 0.5))
ast = create_kernel([ur])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert np.all(2.0 == dst_field_llvm)
ur = Assignment(d[0, 0], sp.Pow(f[0, 0], 2.0))
ast = create_kernel([ur])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert np.all(16.0 == dst_field_llvm)
ur = Assignment(d[0, 0], sp.Pow(f[0, 0], 3.0))
ast = create_kernel([ur])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert np.all(64.0 == dst_field_llvm)
ur = Assignment(d[0, 0], sp.Pow(f[0, 0], 4.0))
ast = create_kernel([ur])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert np.all(256.0 == dst_field_llvm)
def test_piecewise_llvm():
size = (30, 20)
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
f = Field.create_from_numpy_array("f", src_field_llvm)
d = Field.create_from_numpy_array("d", dst_field_llvm)
picewise_test_strict_less_than = Assignment(d[0, 0], sp.Piecewise((1.0, f[0, 0] > 10), (0.0, True)))
ast = create_kernel([picewise_test_strict_less_than])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[:, :] == 0.0))
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
picewise_test_less_than = Assignment(d[0, 0], sp.Piecewise((1.0, f[0, 0] >= 10), (0.0, True)))
ast = create_kernel([picewise_test_less_than])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[0:15, :] == 1.0))
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
picewise_test_strict_greater_than = Assignment(d[0, 0], sp.Piecewise((1.0, f[0, 0] < 5), (0.0, True)))
ast = create_kernel([picewise_test_strict_greater_than])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[15:, :] == 1.0))
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
picewise_test_greater_than = Assignment(d[0, 0], sp.Piecewise((1.0, f[0, 0] <= 10), (0.0, True)))
ast = create_kernel([picewise_test_greater_than])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[:, :] == 1.0))
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
picewise_test_equality = Assignment(d[0, 0], sp.Piecewise((1.0, sp.Equality(f[0, 0], 10.0)), (0.0, True)))
ast = create_kernel([picewise_test_equality])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[0:15, :] == 1.0))
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.0
picewise_test_unequality = Assignment(d[0, 0], sp.Piecewise((1.0, sp.Unequality(f[0, 0], 10.0)), (0.0, True)))
ast = create_kernel([picewise_test_unequality])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[15:, :] == 1.0))
def test_piecewise_or_llvm():
size = (30, 20)
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 10.5
f = Field.create_from_numpy_array("f", src_field_llvm)
d = Field.create_from_numpy_array("d", dst_field_llvm)
picewise_test_or = Assignment(d[0, 0], sp.Piecewise((1.0, sp.Or(f[0, 0] > 11, f[0, 0] < 10)), (0.0, True)))
ast = create_kernel([picewise_test_or])
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[0:15, :] == 0.0))
def test_print_function_llvm():
size = (30, 20)
src_field_llvm = np.zeros(size)
dst_field_llvm = np.zeros(size)
src_field_llvm[0:15, :] = 0.0
f = Field.create_from_numpy_array("f", src_field_llvm)
d = Field.create_from_numpy_array("d", dst_field_llvm)
up = Assignment(d[0, 0], sp.sin(f[0, 0]))
ast = create_kernel([up])
# kernel = make_python_function(ast, {'f': src_field_llvm, 'd': dst_field_llvm})
jit = generate_and_jit(ast)
jit('kernel', dst_field_llvm, src_field_llvm)
assert (np.all(dst_field_llvm[:, :] == 0.0))
if __name__ == "__main__":
test_jacobi_fixed_field_size_gpu()
import numpy as np
import pytest
from pystencils import Assignment, Field
try:
from pystencils.llvm import create_kernel, make_python_function
except ModuleNotFoundError:
pytest.importorskip("llvmlite")
def test_size_check():
"""Kernel with two fixed-sized fields creating with same size but calling with wrong size"""
src = np.zeros((20, 21, 9))
dst = np.zeros_like(src)
sym_src = Field.create_from_numpy_array("src", src, index_dimensions=1)
sym_dst = Field.create_from_numpy_array("dst", dst, index_dimensions=1)
update_rule = Assignment(sym_dst(0),
sym_src[-1, 1](1) + sym_src[1, -1](2))
ast = create_kernel([update_rule])
func = make_python_function(ast)
# change size of src field
new_shape = [a - 7 for a in src.shape]
src = np.zeros(new_shape)
dst = np.zeros(new_shape)
try:
func(src=src, dst=dst)
assert False, "Expected ValueError because fields with different sized where passed"
except ValueError:
pass
def test_fixed_size_mismatch_check():
"""Create kernel with two differently sized but constant fields """
src = np.zeros((20, 21, 9))
dst = np.zeros((21, 21, 9))
sym_src = Field.create_from_numpy_array("src", src, index_dimensions=1)
sym_dst = Field.create_from_numpy_array("dst", dst, index_dimensions=1)
update_rule = Assignment(sym_dst(0),
sym_src[-1, 1](1) + sym_src[1, -1](2))
try:
create_kernel([update_rule])
assert False, "Expected ValueError because fields with different sized where passed"
except ValueError:
pass
def test_fixed_and_variable_field_check():
"""Create kernel with two variable sized fields - calling them with different sizes"""
src = np.zeros((20, 21, 9))
sym_src = Field.create_from_numpy_array("src", src, index_dimensions=1)
sym_dst = Field.create_generic("dst", spatial_dimensions=2, index_dimensions=1)
update_rule = Assignment(sym_dst(0),
sym_src[-1, 1](1) + sym_src[1, -1](2))
try:
create_kernel([update_rule])
assert False, "Expected ValueError because fields with different sized where passed"
except ValueError:
pass
def test_two_variable_shaped_fields():
src = np.zeros((20, 21, 9))
dst = np.zeros((22, 21, 9))
sym_src = Field.create_generic("src", spatial_dimensions=2, index_dimensions=1)
sym_dst = Field.create_generic("dst", spatial_dimensions=2, index_dimensions=1)
update_rule = Assignment(sym_dst(0),
sym_src[-1, 1](1) + sym_src[1, -1](2))
ast = create_kernel([update_rule])
func = make_python_function(ast)
try:
func(src=src, dst=dst)
assert False, "Expected ValueError because fields with different sized where passed"
except ValueError:
pass
...@@ -27,31 +27,3 @@ def test_sliced_iteration(): ...@@ -27,31 +27,3 @@ def test_sliced_iteration():
expected_result = np.zeros(size) expected_result = np.zeros(size)
expected_result[1:x_end_value, 1] = 1 expected_result[1:x_end_value, 1] = 1
np.testing.assert_almost_equal(expected_result, dst_arr) np.testing.assert_almost_equal(expected_result, dst_arr)
def test_sliced_iteration_llvm():
import pytest
pytest.importorskip("llvmlite")
size = (4, 4)
src_arr = np.ones(size)
dst_arr = np.zeros_like(src_arr)
src_field = Field.create_from_numpy_array('src', src_arr)
dst_field = Field.create_from_numpy_array('dst', dst_arr)
a, b = sp.symbols("a b")
update_rule = Assignment(dst_field[0, 0],
(a * src_field[0, 1] + a * src_field[0, -1] +
b * src_field[1, 0] + b * src_field[-1, 0]) / 4)
x_end = TypedSymbol("x_end", "int")
s = make_slice[1:x_end, 1]
x_end_value = size[1] - 1
import pystencils.llvm as llvm_generator
ast = llvm_generator.create_kernel(sympy_cse_on_assignment_list([update_rule]), iteration_slice=s)
kernel = llvm_generator.make_python_function(ast)
kernel(src=src_arr, dst=dst_arr, a=1.0, b=1.0, x_end=x_end_value)
expected_result = np.zeros(size)
expected_result[1:x_end_value, 1] = 1
np.testing.assert_almost_equal(expected_result, dst_arr)
...@@ -168,20 +168,6 @@ def test_pointer_arithmetic_func(): ...@@ -168,20 +168,6 @@ def test_pointer_arithmetic_func():
assert pointer_arithmetic_func(TypedSymbol("s", np.uint), 1).canonical == TypedSymbol("s", np.uint).canonical assert pointer_arithmetic_func(TypedSymbol("s", np.uint), 1).canonical == TypedSymbol("s", np.uint).canonical
def test_ctypes_from_llvm():
pytest.importorskip('llvmlite')
import llvmlite.ir as ir
ctypes_from_llvm(ir.VoidType())
assert ctypes_from_llvm(ir.IntType(8)) == ctypes.c_int8
assert ctypes_from_llvm(ir.IntType(16)) == ctypes.c_int16
assert ctypes_from_llvm(ir.IntType(32)) == ctypes.c_int32
assert ctypes_from_llvm(ir.IntType(64)) == ctypes.c_int64
assert ctypes_from_llvm(ir.FloatType()) == ctypes.c_float
assert ctypes_from_llvm(ir.DoubleType()) == ctypes.c_double
def test_division(): def test_division():
f = ps.fields('f(10): float32[2D]') f = ps.fields('f(10): float32[2D]')
m, tau = sp.symbols("m, tau") m, tau = sp.symbols("m, tau")
......
...@@ -123,8 +123,7 @@ setuptools.setup(name='pystencils', ...@@ -123,8 +123,7 @@ setuptools.setup(name='pystencils',
'doc': ['sphinx', 'sphinx_rtd_theme', 'nbsphinx', 'doc': ['sphinx', 'sphinx_rtd_theme', 'nbsphinx',
'sphinxcontrib-bibtex', 'sphinx_autodoc_typehints', 'pandoc'], 'sphinxcontrib-bibtex', 'sphinx_autodoc_typehints', 'pandoc'],
'use_cython': ['Cython'], 'use_cython': ['Cython'],
'kerncraft': ['osaca', 'kerncraft'], 'kerncraft': ['osaca', 'kerncraft']
'llvm_jit': ['llvmlite']
}, },
tests_require=['pytest', tests_require=['pytest',
'pytest-cov', 'pytest-cov',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment