Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pystencils
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pycodegen
pystencils
Commits
4a55e603
Commit
4a55e603
authored
3 years ago
by
itischler
Committed by
Markus Holzer
3 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Fvm testcase with fluctuations and reactions
parent
6f87eb5d
Branches
Branches containing commit
No related tags found
1 merge request
!292
Rebase of pystencils Type System
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pystencils_tests/test_fvm.py
+292
-0
292 additions, 0 deletions
pystencils_tests/test_fvm.py
with
292 additions
and
0 deletions
pystencils_tests/test_fvm.py
+
292
−
0
View file @
4a55e603
...
...
@@ -3,6 +3,7 @@ import pystencils as ps
import
numpy
as
np
import
pytest
from
itertools
import
product
from
pystencils.rng
import
random_symbol
def
advection_diffusion
(
dim
:
int
):
...
...
@@ -125,6 +126,297 @@ def test_advection_diffusion_3d(velocity):
advection_diffusion
.
runners
[
3
](
velocity
)
def
advection_diffusion_fluctuations
(
dim
:
int
):
# parameters
if
dim
==
2
:
L
=
(
32
,
32
)
stencil_factor
=
np
.
sqrt
(
1
/
(
1
+
np
.
sqrt
(
2
)))
elif
dim
==
3
:
L
=
(
16
,
16
,
16
)
stencil_factor
=
np
.
sqrt
(
1
/
(
1
+
2
*
np
.
sqrt
(
2
)
+
4.0
/
3.0
*
np
.
sqrt
(
3
)))
dh
=
ps
.
create_data_handling
(
domain_size
=
L
,
periodicity
=
True
,
default_target
=
ps
.
Target
.
CPU
)
n_field
=
dh
.
add_array
(
'
n
'
,
values_per_cell
=
1
)
j_field
=
dh
.
add_array
(
'
j
'
,
values_per_cell
=
3
**
dim
//
2
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
)
velocity_field
=
dh
.
add_array
(
'
v
'
,
values_per_cell
=
dim
)
D
=
0.00666
time
=
10000
def
grad
(
f
):
return
sp
.
Matrix
([
ps
.
fd
.
diff
(
f
,
i
)
for
i
in
range
(
dim
)])
flux_eq
=
-
D
*
grad
(
n_field
)
fvm_eq
=
ps
.
fd
.
FVM1stOrder
(
n_field
,
flux
=
flux_eq
)
vof_adv
=
ps
.
fd
.
VOF
(
j_field
,
velocity_field
,
n_field
)
# merge calculation of advection and diffusion terms
flux
=
[]
for
adv
,
div
in
zip
(
vof_adv
,
fvm_eq
.
discrete_flux
(
j_field
)):
assert
adv
.
lhs
==
div
.
lhs
flux
.
append
(
ps
.
Assignment
(
adv
.
lhs
,
adv
.
rhs
+
div
.
rhs
))
flux
=
ps
.
AssignmentCollection
(
flux
)
rng_symbol_gen
=
random_symbol
(
flux
.
subexpressions
,
dim
=
dh
.
dim
)
for
i
in
range
(
len
(
flux
.
main_assignments
)):
n
=
j_field
.
staggered_stencil
[
i
]
assert
flux
.
main_assignments
[
i
].
lhs
==
j_field
.
staggered_access
(
n
)
# calculate mean density
dens
=
(
n_field
.
neighbor_vector
(
n
)
+
n_field
.
center_vector
)[
0
]
/
2
# multyply by smoothed haviside function so that fluctuation will not get bigger that the density
dens
*=
sp
.
Max
(
0
,
sp
.
Min
(
1.0
,
n_field
.
neighbor_vector
(
n
)[
0
])
*
sp
.
Min
(
1.0
,
n_field
.
center_vector
[
0
]))
# lenght of the vector
length
=
sp
.
sqrt
(
len
(
j_field
.
staggered_stencil
[
i
]))
# amplitude of the random fluctuations
fluct
=
sp
.
sqrt
(
2
*
dens
*
D
)
*
sp
.
sqrt
(
1
/
length
)
*
stencil_factor
# add fluctuations
fluct
*=
2
*
(
next
(
rng_symbol_gen
)
-
0.5
)
*
sp
.
sqrt
(
3
)
flux
.
main_assignments
[
i
]
=
ps
.
Assignment
(
flux
.
main_assignments
[
i
].
lhs
,
flux
.
main_assignments
[
i
].
rhs
+
fluct
)
# Add the folding to the flux, so that the random numbers persist through the ghostlayers.
fold
=
{
ps
.
astnodes
.
LoopOverCoordinate
.
get_loop_counter_symbol
(
i
):
ps
.
astnodes
.
LoopOverCoordinate
.
get_loop_counter_symbol
(
i
)
%
L
[
i
]
for
i
in
range
(
len
(
L
))}
flux
.
subs
(
fold
)
flux_kernel
=
ps
.
create_staggered_kernel
(
flux
).
compile
()
pde_kernel
=
ps
.
create_kernel
(
fvm_eq
.
discrete_continuity
(
j_field
)).
compile
()
sync_conc
=
dh
.
synchronization_function
([
n_field
.
name
])
# analytical density distribution calculation
def
P
(
rho
,
density_init
):
res
=
[]
for
r
in
rho
:
res
.
append
(
np
.
power
(
density_init
,
r
)
*
np
.
exp
(
-
density_init
)
/
np
.
math
.
gamma
(
r
+
1
))
return
np
.
array
(
res
)
def
run
(
density_init
:
float
,
velocity
:
np
.
ndarray
,
time
:
int
):
dh
.
fill
(
n_field
.
name
,
np
.
nan
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
j_field
.
name
,
np
.
nan
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
# set initial values for velocity and density
for
i
in
range
(
dim
):
dh
.
fill
(
velocity_field
.
name
,
velocity
[
i
],
i
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
n_field
.
name
,
density_init
)
measurement_intervall
=
10
warm_up
=
1000
data
=
[]
sync_conc
()
for
i
in
range
(
warm_up
):
dh
.
run_kernel
(
flux_kernel
,
seed
=
42
,
time_step
=
i
)
dh
.
run_kernel
(
pde_kernel
)
sync_conc
()
for
i
in
range
(
time
):
dh
.
run_kernel
(
flux_kernel
,
seed
=
42
,
time_step
=
i
+
warm_up
)
dh
.
run_kernel
(
pde_kernel
)
sync_conc
()
if
(
i
%
measurement_intervall
==
0
):
data
=
np
.
append
(
data
,
dh
.
gather_array
(
n_field
.
name
).
ravel
(),
0
)
# test mass conservation
np
.
testing
.
assert_almost_equal
(
dh
.
gather_array
(
n_field
.
name
).
mean
(),
density_init
)
n_bins
=
50
density_value
,
bins
=
np
.
histogram
(
data
,
density
=
True
,
bins
=
n_bins
)
bins_mean
=
bins
[:
-
1
]
+
(
bins
[
1
:]
-
bins
[:
-
1
])
/
2
analytical_value
=
P
(
bins_mean
,
density_init
)
print
(
density_value
-
analytical_value
)
np
.
testing
.
assert_allclose
(
density_value
,
analytical_value
,
atol
=
2e-3
)
return
lambda
density_init
,
v
:
run
(
density_init
,
np
.
array
(
v
),
time
)
advection_diffusion_fluctuations
.
runners
=
{}
@pytest.mark.parametrize
(
"
velocity
"
,
list
(
product
([
0
,
0.00041
],
[
0
,
-
0.00031
])))
@pytest.mark.parametrize
(
"
density
"
,
[
27.0
,
56.5
])
@pytest.mark.longrun
def
test_advection_diffusion_fluctuation_2d
(
density
,
velocity
):
if
2
not
in
advection_diffusion_fluctuations
.
runners
:
advection_diffusion_fluctuations
.
runners
[
2
]
=
advection_diffusion_fluctuations
(
2
)
advection_diffusion_fluctuations
.
runners
[
2
](
density
,
velocity
)
@pytest.mark.parametrize
(
"
velocity
"
,
[(
0.0
,
0.0
,
0.0
),
(
0.00043
,
-
0.00017
,
0.00028
)])
@pytest.mark.parametrize
(
"
density
"
,
[
27.0
,
56.5
])
@pytest.mark.longrun
def
test_advection_diffusion_fluctuation_3d
(
density
,
velocity
):
if
3
not
in
advection_diffusion_fluctuations
.
runners
:
advection_diffusion_fluctuations
.
runners
[
3
]
=
advection_diffusion_fluctuations
(
3
)
advection_diffusion_fluctuations
.
runners
[
3
](
density
,
velocity
)
def
diffusion_reaction
(
fluctuations
:
bool
):
# parameters
L
=
(
32
,
32
)
stencil_factor
=
np
.
sqrt
(
1
/
(
1
+
np
.
sqrt
(
2
)))
dh
=
ps
.
create_data_handling
(
domain_size
=
L
,
periodicity
=
True
,
default_target
=
ps
.
Target
.
CPU
)
species
=
2
n_fields
=
[]
j_fields
=
[]
r_flux_fields
=
[]
for
i
in
range
(
species
):
n_fields
.
append
(
dh
.
add_array
(
f
'
n_
{
i
}
'
,
values_per_cell
=
1
))
j_fields
.
append
(
dh
.
add_array
(
f
'
j_
{
i
}
'
,
values_per_cell
=
3
**
dh
.
dim
//
2
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
))
r_flux_fields
.
append
(
dh
.
add_array
(
f
'
r_
{
i
}
'
,
values_per_cell
=
1
))
velocity_field
=
dh
.
add_array
(
'
v
'
,
values_per_cell
=
dh
.
dim
)
D
=
0.00666
time
=
1000
r_order
=
[
2.0
,
0.0
]
r_rate_const
=
0.00001
r_coefs
=
[
-
2
,
1
]
def
grad
(
f
):
return
sp
.
Matrix
([
ps
.
fd
.
diff
(
f
,
i
)
for
i
in
range
(
dh
.
dim
)])
flux_eq
=
-
D
*
grad
(
n_fields
[
0
])
fvm_eq
=
ps
.
fd
.
FVM1stOrder
(
n_fields
[
0
],
flux
=
flux_eq
)
vof_adv
=
ps
.
fd
.
VOF
(
j_fields
[
0
],
velocity_field
,
n_fields
[
0
])
continuity_assignments
=
fvm_eq
.
discrete_continuity
(
j_fields
[
0
])
# merge calculation of advection and diffusion terms
flux
=
[]
for
adv
,
div
in
zip
(
vof_adv
,
fvm_eq
.
discrete_flux
(
j_fields
[
0
])):
assert
adv
.
lhs
==
div
.
lhs
flux
.
append
(
ps
.
Assignment
(
adv
.
lhs
,
adv
.
rhs
+
div
.
rhs
))
flux
=
ps
.
AssignmentCollection
(
flux
)
if
(
fluctuations
):
rng_symbol_gen
=
random_symbol
(
flux
.
subexpressions
,
dim
=
dh
.
dim
)
for
i
in
range
(
len
(
flux
.
main_assignments
)):
n
=
j_fields
[
0
].
staggered_stencil
[
i
]
assert
flux
.
main_assignments
[
i
].
lhs
==
j_fields
[
0
].
staggered_access
(
n
)
# calculate mean density
dens
=
(
n_fields
[
0
].
neighbor_vector
(
n
)
+
n_fields
[
0
].
center_vector
)[
0
]
/
2
# multyply by smoothed haviside function so that fluctuation will not get bigger that the density
dens
*=
sp
.
Max
(
0
,
sp
.
Min
(
1.0
,
n_fields
[
0
].
neighbor_vector
(
n
)[
0
])
*
sp
.
Min
(
1.0
,
n_fields
[
0
].
center_vector
[
0
]))
# lenght of the vector
length
=
sp
.
sqrt
(
len
(
j_fields
[
0
].
staggered_stencil
[
i
]))
# amplitude of the random fluctuations
fluct
=
sp
.
sqrt
(
2
*
dens
*
D
)
*
sp
.
sqrt
(
1
/
length
)
*
stencil_factor
# add fluctuations
fluct
*=
2
*
(
next
(
rng_symbol_gen
)
-
0.5
)
*
sp
.
sqrt
(
3
)
flux
.
main_assignments
[
i
]
=
ps
.
Assignment
(
flux
.
main_assignments
[
i
].
lhs
,
flux
.
main_assignments
[
i
].
rhs
+
fluct
)
# Add the folding to the flux, so that the random numbers persist through the ghostlayers.
fold
=
{
ps
.
astnodes
.
LoopOverCoordinate
.
get_loop_counter_symbol
(
i
):
ps
.
astnodes
.
LoopOverCoordinate
.
get_loop_counter_symbol
(
i
)
%
L
[
i
]
for
i
in
range
(
len
(
L
))}
flux
.
subs
(
fold
)
r_flux
=
ps
.
AssignmentCollection
([
ps
.
Assignment
(
j_fields
[
i
].
center
,
0
)
for
i
in
range
(
species
)])
reaction
=
r_rate_const
for
i
in
range
(
species
):
reaction
*=
sp
.
Pow
(
n_fields
[
i
].
center
,
r_order
[
i
])
if
(
fluctuations
):
rng_symbol_gen
=
random_symbol
(
r_flux
.
subexpressions
,
dim
=
dh
.
dim
)
reaction_fluctuations
=
sp
.
sqrt
(
sp
.
Abs
(
reaction
))
*
2
*
(
next
(
rng_symbol_gen
)
-
0.5
)
*
sp
.
sqrt
(
3
)
reaction_fluctuations
*=
sp
.
Min
(
1
,
sp
.
Abs
(
reaction
**
2
))
else
:
reaction_fluctuations
=
0.0
for
i
in
range
(
species
):
r_flux
.
main_assignments
[
i
]
=
ps
.
Assignment
(
r_flux_fields
[
i
].
center
,
(
reaction
+
reaction_fluctuations
)
*
r_coefs
[
i
])
continuity_assignments
.
append
(
ps
.
Assignment
(
n_fields
[
0
].
center
,
n_fields
[
0
].
center
+
r_flux_fields
[
0
].
center
))
flux_kernel
=
ps
.
create_staggered_kernel
(
flux
).
compile
()
reaction_kernel
=
ps
.
create_kernel
(
r_flux
).
compile
()
pde_kernel
=
ps
.
create_kernel
(
continuity_assignments
).
compile
()
sync_conc
=
dh
.
synchronization_function
([
n_fields
[
0
].
name
,
n_fields
[
1
].
name
])
def
f
(
t
,
r
,
n0
,
fac
,
fluctuations
):
"""
Calculates the amount of product created after a certain time of a reaction with form xA -> B
Args:
t: Time of the reation
r: Reaction rate constant
n0: Initial density of the
fac: Reaction order of A (this in most cases equals the stochometric coefficient x)
fluctuations: Boolian whether fluctuations were included during the reaction.
"""
if
fluctuations
:
return
1
/
fac
*
(
n0
+
n0
/
(
n0
-
(
n0
+
1
)
*
np
.
exp
(
fac
*
r
*
t
)))
return
1
/
fac
*
(
n0
-
(
1
/
(
fac
*
r
*
t
+
(
1
/
n0
))))
def
run
(
density_init
:
float
,
velocity
:
np
.
ndarray
,
time
:
int
):
for
i
in
range
(
species
):
dh
.
fill
(
n_fields
[
i
].
name
,
np
.
nan
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
j_fields
[
i
].
name
,
0.0
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
r_flux_fields
[
i
].
name
,
0.0
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
# set initial values for velocity and density
for
i
in
range
(
dh
.
dim
):
dh
.
fill
(
velocity_field
.
name
,
velocity
[
i
],
i
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
n_fields
[
0
].
name
,
density_init
)
dh
.
fill
(
n_fields
[
1
].
name
,
0.0
)
measurement_intervall
=
10
data
=
[]
sync_conc
()
for
i
in
range
(
time
):
if
(
i
%
measurement_intervall
==
0
):
data
.
append
([
i
,
dh
.
gather_array
(
n_fields
[
1
].
name
).
mean
(),
dh
.
gather_array
(
n_fields
[
0
].
name
).
mean
()])
dh
.
run_kernel
(
reaction_kernel
,
seed
=
41
,
time_step
=
i
)
for
s_idx
in
range
(
species
):
flux_kernel
(
n_0
=
dh
.
cpu_arrays
[
n_fields
[
s_idx
].
name
],
j_0
=
dh
.
cpu_arrays
[
j_fields
[
s_idx
].
name
],
v
=
dh
.
cpu_arrays
[
velocity_field
.
name
],
seed
=
42
+
s_idx
,
time_step
=
i
)
pde_kernel
(
n_0
=
dh
.
cpu_arrays
[
n_fields
[
s_idx
].
name
],
j_0
=
dh
.
cpu_arrays
[
j_fields
[
s_idx
].
name
],
r_0
=
dh
.
cpu_arrays
[
r_flux_fields
[
s_idx
].
name
])
sync_conc
()
data
=
np
.
array
(
data
).
transpose
()
x
=
data
[
0
]
analytical_value
=
f
(
x
,
r_rate_const
,
density_init
,
abs
(
r_coefs
[
0
]),
fluctuations
)
# test mass conservation
np
.
testing
.
assert_almost_equal
(
dh
.
gather_array
(
n_fields
[
0
].
name
).
mean
()
+
2
*
dh
.
gather_array
(
n_fields
[
1
].
name
).
mean
(),
density_init
)
r_tol
=
2e-3
if
fluctuations
:
r_tol
=
3e-2
np
.
testing
.
assert_allclose
(
data
[
1
],
analytical_value
,
rtol
=
r_tol
)
return
lambda
density_init
,
v
:
run
(
density_init
,
np
.
array
(
v
),
time
)
advection_diffusion_fluctuations
.
runners
=
{}
@pytest.mark.parametrize
(
"
velocity
"
,
list
(
product
([
0
,
0.0041
],
[
0
,
-
0.0031
])))
@pytest.mark.parametrize
(
"
density
"
,
[
27.0
,
56.5
])
@pytest.mark.parametrize
(
"
fluctuations
"
,
[
False
,
True
])
@pytest.mark.longrun
def
test_diffusion_reaction
(
density
,
velocity
,
fluctuations
):
diffusion_reaction
.
runner
=
diffusion_reaction
(
fluctuations
)
diffusion_reaction
.
runner
(
density
,
velocity
)
def
VOF2
(
j
:
ps
.
field
.
Field
,
v
:
ps
.
field
.
Field
,
ρ
:
ps
.
field
.
Field
,
simplify
=
True
):
"""
Volume-of-fluid discretization of advection
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment