Skip to content
Snippets Groups Projects
Commit 0684cfe3 authored by Martin Bauer's avatar Martin Bauer
Browse files

Merge branch 'fvm' into 'master'

Minor improvements to FiniteDifferenceStaggeredStencilDerivation

See merge request !104
parents 3d9e0c6d efadec2e
Branches
Tags
1 merge request!104Minor improvements to FiniteDifferenceStaggeredStencilDerivation
Pipeline #20308 passed
......@@ -303,11 +303,12 @@ class FiniteDifferenceStaggeredStencilDerivation:
zero_counts[zero_count].append(weights)
best = zero_counts[max(zero_counts.keys())]
if len(best) > 1: # if there are multiple, pick the one that contains a nonzero center weight
center = [tuple(p + pos) for p in points].index((0, 0, 0))
center = [tuple(p + pos) for p in points].index((0, 0, 0)[:dim])
best = [b for b in best if b[center] != 0]
if len(best) > 1:
raise NotImplementedError("more than one suitable set of weights found, don't know how to proceed")
weights = best[0]
if len(best) > 1: # if there are still multiple, they are equivalent, so we average
weights = sp.Add(*[sp.Matrix(b) for b in best]) / len(best)
else:
weights = best[0]
assert weights
points_tuple = tuple([tuple(p + pos) for p in points])
......
%% Cell type:code id: tags:
``` python
from pystencils.session import *
from pystencils.fd.derivation import *
```
%% Cell type:markdown id: tags:
# 2D standard stencils
%% Cell type:code id: tags:
``` python
stencil = [(-1, 0), (1, 0), (0, -1), (0, 1), (0, 0)]
standard_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil)
f = ps.fields("f: [2D]")
standard_2d_00_res = standard_2d_00.get_stencil()
res = standard_2d_00_res.apply(f.center)
expected = f[-1, 0] - 2 * f[0, 0] + f[1, 0]
assert res == expected
```
%% Cell type:code id: tags:
``` python
assert standard_2d_00_res.accuracy == 2
assert not standard_2d_00_res.is_isotropic
standard_2d_00_res
```
%% Output
Finite difference stencil of accuracy 2, isotropic error: False
%% Cell type:code id: tags:
``` python
standard_2d_00.get_stencil().as_matrix()
```
%% Output
$$\left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$$
⎡0 0 0⎤
⎢ ⎥
⎢1 -2 1⎥
⎢ ⎥
⎣0 0 0⎦
%% Cell type:markdown id: tags:
# 2D isotropic stencils
## second x-derivative
%% Cell type:code id: tags:
``` python
stencil = [(i, j) for i in (-1, 0, 1) for j in (-1, 0, 1)]
isotropic_2d_00 = FiniteDifferenceStencilDerivation((0,0), stencil)
isotropic_2d_00_res = isotropic_2d_00.get_stencil(isotropic=True)
assert isotropic_2d_00_res.is_isotropic
assert isotropic_2d_00_res.accuracy == 2
isotropic_2d_00_res
```
%% Output
Finite difference stencil of accuracy 2, isotropic error: True
%% Cell type:code id: tags:
``` python
isotropic_2d_00_res.as_matrix()
```
%% Output
$$\left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$$
⎡1/12 -1/6 1/12⎤
⎢ ⎥
⎢5/6 -5/3 5/6 ⎥
⎢ ⎥
⎣1/12 -1/6 1/12⎦
%% Cell type:code id: tags:
``` python
plt.figure(figsize=(2,2))
isotropic_2d_00_res.visualize()
```
%% Output
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12
assert expected_result == isotropic_2d_00_res.as_matrix()
```
%% Cell type:code id: tags:
``` python
type(isotropic_2d_00_res.as_matrix())
```
%% Output
sympy.matrices.dense.MutableDenseMatrix
%% Cell type:code id: tags:
``` python
type(expected_result)
```
%% Output
sympy.matrices.dense.MutableDenseMatrix
%% Cell type:markdown id: tags:
## Isotropic laplacian
%% Cell type:code id: tags:
``` python
isotropic_2d_11 = FiniteDifferenceStencilDerivation((1,1), stencil)
isotropic_2d_11_res = isotropic_2d_11.get_stencil(isotropic=True)
iso_laplacian = isotropic_2d_00_res.as_matrix() + isotropic_2d_11_res.as_matrix()
iso_laplacian
```
%% Output
$$\left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$$
⎡1/6 2/3 1/6⎤
⎢ ⎥
⎢2/3 -10/3 2/3⎥
⎢ ⎥
⎣1/6 2/3 1/6⎦
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6
assert iso_laplacian == expected_result
```
%% Cell type:markdown id: tags:
# stencils for staggered fields
%% Cell type:code id: tags:
``` python
half = sp.Rational(1, 2)
fd_points_ex = (
(half, 0),
(-half, 0),
(half, 1),
(half, -1),
(-half, 1),
(-half, -1)
)
assert set(fd_points_ex) == set(FiniteDifferenceStaggeredStencilDerivation("E", 2).stencil)
fd_points_ey = (
(0, half),
(0, -half),
(-1,-half),
(-1, half),
(1, -half),
(1, half)
)
assert set(fd_points_ey) == set(FiniteDifferenceStaggeredStencilDerivation("N",2).stencil)
fd_points_c = (
(half, half),
(-half, -half),
(half, -half),
(-half, half)
)
assert set(fd_points_c) == set(FiniteDifferenceStaggeredStencilDerivation("NE",2).stencil)
assert len(FiniteDifferenceStaggeredStencilDerivation("E",3).points) == 10
assert len(FiniteDifferenceStaggeredStencilDerivation("NE",3).points) == 12
assert len(FiniteDifferenceStaggeredStencilDerivation("TNE",3).points) == 8
```
%% Cell type:code id: tags:
``` python
c = ps.fields("c: [2D]")
c3 = ps.fields("c3: [3D]")
assert FiniteDifferenceStaggeredStencilDerivation("E", 2, (0,)).apply(c) == c[1, 0] - c[0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("W", 2, (0,)).apply(c) == c[0, 0] - c[-1, 0]
assert FiniteDifferenceStaggeredStencilDerivation("N", 2, (1,)).apply(c) == c[0, 1] - c[0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("S", 2, (1,)).apply(c) == c[0, 0] - c[0, -1]
assert FiniteDifferenceStaggeredStencilDerivation("E", 3, (0,)).apply(c3) == c3[1, 0, 0] - c3[0, 0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("W", 3, (0,)).apply(c3) == c3[0, 0, 0] - c3[-1, 0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("N", 3, (1,)).apply(c3) == c3[0, 1, 0] - c3[0, 0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("S", 3, (1,)).apply(c3) == c3[0, 0, 0] - c3[0, -1, 0]
assert FiniteDifferenceStaggeredStencilDerivation("T", 3, (2,)).apply(c3) == c3[0, 0, 1] - c3[0, 0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("B", 3, (2,)).apply(c3) == c3[0, 0, 0] - c3[0, 0, -1]
assert FiniteDifferenceStaggeredStencilDerivation("S", 2, (0,)).apply(c) == \
(c[1, 0] + c[1, -1] - c[-1, 0] - c[-1, -1])/4
assert FiniteDifferenceStaggeredStencilDerivation("NE", 2, (0,)).apply(c) + \
FiniteDifferenceStaggeredStencilDerivation("NE", 2, (1,)).apply(c) == c[1, 1] - c[0, 0]
assert FiniteDifferenceStaggeredStencilDerivation("NE", 3, (0,)).apply(c3) + \
FiniteDifferenceStaggeredStencilDerivation("NE", 3, (1,)).apply(c3) == c3[1, 1, 0] - c3[0, 0, 0]
```
%% Cell type:code id: tags:
``` python
d = FiniteDifferenceStaggeredStencilDerivation("NE", 2, (0, 1))
assert d.apply(c) == c[0,0] + c[1,1] - c[1,0] - c[0,1]
d.visualize()
```
%% Output
%% Cell type:code id: tags:
``` python
v3 = ps.fields("v(3): [3D]")
assert FiniteDifferenceStaggeredStencilDerivation("E", 3, (0,)).apply(v3) == \
sp.Matrix([v3[1,0,0](i) - v3[0,0,0](i) for i in range(*v3.index_shape)])
```
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment