Skip to content
Snippets Groups Projects
Select Git revision
  • d45ad465851fa19cc3a87d77060ecbbea6513655
  • master default protected
  • v2.0-dev protected
  • zikeliml/Task-96-dotExporterForAST
  • zikeliml/124-rework-tutorials
  • fma
  • fhennig/v2.0-deprecations
  • holzer-master-patch-46757
  • 66-absolute-access-is-probably-not-copied-correctly-after-_eval_subs
  • gpu_bufferfield_fix
  • hyteg
  • vectorization_sqrt_fix
  • target_dh_refactoring
  • const_fix
  • improved_comm
  • gpu_liveness_opts
  • release/1.3.7 protected
  • release/1.3.6 protected
  • release/2.0.dev0 protected
  • release/1.3.5 protected
  • release/1.3.4 protected
  • release/1.3.3 protected
  • release/1.3.2 protected
  • release/1.3.1 protected
  • release/1.3 protected
  • release/1.2 protected
  • release/1.1.1 protected
  • release/1.1 protected
  • release/1.0.1 protected
  • release/1.0 protected
  • release/0.4.4 protected
  • last/Kerncraft
  • last/OpenCL
  • last/LLVM
  • release/0.4.3 protected
  • release/0.4.2 protected
36 results

test_sliced_iteration.py

Blame
  • Frederik Hennig's avatar
    Frederik Hennig authored and Markus Holzer committed
    e3622192
    History
    test_sliced_iteration.py 2.70 KiB
    import numpy as np
    import sympy as sp
    import pytest
    
    from pystencils import (
        Assignment,
        Field,
        TypedSymbol,
        create_kernel,
        make_slice,
        Target,
        create_data_handling,
    )
    from pystencils.simp import sympy_cse_on_assignment_list
    
    
    @pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
    def test_sliced_iteration(target):
        if target == Target.GPU:
            pytest.importorskip("cupy")
    
        size = (4, 4)
    
        dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
    
        src_field = dh.add_array("src", 1)
        dst_field = dh.add_array("dst", 1)
    
        dh.fill(src_field.name, 1.0, ghost_layers=True)
        dh.fill(dst_field.name, 0.0, ghost_layers=True)
    
        a, b = sp.symbols("a b")
        update_rule = Assignment(
            dst_field[0, 0],
            (
                a * src_field[0, 1]
                + a * src_field[0, -1]
                + b * src_field[1, 0]
                + b * src_field[-1, 0]
            )
            / 4,
        )
    
        s = make_slice[1:3, 1]
        kernel = create_kernel(
            sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
        ).compile()
    
        if target == Target.GPU:
            dh.all_to_gpu()
    
        dh.run_kernel(kernel, a=1.0, b=1.0)
    
        if target == Target.GPU:
            dh.all_to_cpu()
    
        expected_result = np.zeros(size)
        expected_result[1:3, 1] = 1
        np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)
    
    
    @pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
    def test_symbols_in_slice(target):
        if target == Target.GPU:
            pytest.xfail("Iteration slices including arbitrary symbols are currently broken on GPU")
    
        size = (4, 4)
    
        dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
    
        src_field = dh.add_array("src", 1)
        dst_field = dh.add_array("dst", 1)
    
        dh.fill(src_field.name, 1.0, ghost_layers=True)
        dh.fill(dst_field.name, 0.0, ghost_layers=True)
    
        a, b = sp.symbols("a b")
        update_rule = Assignment(
            dst_field[0, 0],
            (
                a * src_field[0, 1]
                + a * src_field[0, -1]
                + b * src_field[1, 0]
                + b * src_field[-1, 0]
            )
            / 4,
        )
    
        x_end = TypedSymbol("x_end", "int")
        s = make_slice[1:x_end, 1]
        x_end_value = size[1] - 1
        kernel = create_kernel(
            sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
        ).compile()
    
        if target == Target.GPU:
            dh.all_to_gpu()
    
        dh.run_kernel(kernel, a=1.0, b=1.0, x_end=x_end_value)
    
        if target == Target.GPU:
            dh.all_to_cpu()
    
        expected_result = np.zeros(size)
        expected_result[1:x_end_value, 1] = 1
        np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)