Skip to content
Snippets Groups Projects
derivation.py 14.63 KiB
import itertools
from collections import defaultdict

import numpy as np
import sympy as sp

from pystencils.field import Field
from pystencils.stencil import direction_string_to_offset
from pystencils.sympyextensions import multidimensional_sum, prod
from pystencils.utils import LinearEquationSystem, fully_contains


class FiniteDifferenceStencilDerivation:
    """Derives finite difference stencils.

    Can derive standard finite difference stencils, as well as isotropic versions
    (see Isotropic Finite Differences by A. Kumar)

    Args:
        derivative_coordinates: tuple indicating which derivative should be approximated,
                                (1, ) stands for first derivative in second direction (y),
                                (0, 1) would be a mixed second derivative in x and y
                                (0, 0, 0) would be a third derivative in x direction
        stencil: list of offset tuples, defining the stencil
        dx: spacing between grid points, one for all directions, i.e. dx=dy=dz

    Examples:
        Central differences
        >>> fd_1d = FiniteDifferenceStencilDerivation((0,), stencil=[(-1,), (0,), (1,)])
        >>> result = fd_1d.get_stencil()
        >>> result
        Finite difference stencil of accuracy 2, isotropic error: False
        >>> result.weights
        [-1/2, 0, 1/2]

        Forward differences
        >>> fd_1d = FiniteDifferenceStencilDerivation((0,), stencil=[(0,), (1,)])
        >>> result = fd_1d.get_stencil()
        >>> result
        Finite difference stencil of accuracy 1, isotropic error: False
        >>> result.weights
        [-1, 1]
    """

    def __init__(self, derivative_coordinates, stencil, dx=1):
        self.dim = len(stencil[0])
        self.field = Field.create_generic('f', spatial_dimensions=self.dim)
        self._derivative = tuple(sorted(derivative_coordinates))
        self._stencil = stencil
        self._dx = dx
        self.weights = {tuple(d): self.symbolic_weight(*d) for d in self._stencil}

    def assume_symmetric(self, dim, anti_symmetric=False):
        """Adds restriction that weight in opposite directions of a dimension are equal (symmetric) or
        the negative of each other (anti symmetric)

        For example: dim=1, assumes that w(1, 1) == w(1, -1), if anti_symmetric=False or
                                         w(1, 1) == -w(1, -1) if anti_symmetric=True
        """
        update = {}
        for direction, value in self.weights.items():
            inv_direction = tuple(-offset if i == dim else offset for i, offset in enumerate(direction))
            if direction[dim] < 0:
                inv_weight = self.weights[inv_direction]
                update[direction] = -inv_weight if anti_symmetric else inv_weight
        self.weights.update(update)

    def set_weight(self, offset, value):
        assert offset in self.weights
        self.weights[offset] = value

    def get_stencil(self, isotropic=False) -> 'FiniteDifferenceStencilDerivation.Result':
        weights = [self.weights[d] for d in self._stencil]
        system = LinearEquationSystem(sp.Matrix(weights).atoms(sp.Symbol))

        order = 0

        while True:
            new_system = system.copy()
            eq = self.error_term_equations(order)
            new_system.add_equations(eq)
            sol_structure = new_system.solution_structure()
            if sol_structure == 'single':
                system = new_system
            elif sol_structure == 'multiple':
                system = new_system
            elif sol_structure == 'none':
                break
            else:
                assert False
            order += 1

        accuracy = order - len(self._derivative)
        error_is_isotropic = False
        if isotropic:
            new_system = system.copy()
            new_system.add_equations(self.isotropy_equations(order))
            sol_structure = new_system.solution_structure()
            error_is_isotropic = sol_structure != 'none'
            if error_is_isotropic:
                system = new_system

        solve_res = system.solution()
        weight_list = [self.weights[d].subs(solve_res) for d in self._stencil]
        return self.Result(self._stencil, weight_list, accuracy, error_is_isotropic)

    @staticmethod
    def symbolic_weight(*args):
        str_args = [str(e) for e in args]
        return sp.Symbol(f"w_({','.join(str_args)})")

    def error_term_dict(self, order):
        error_terms = defaultdict(lambda: 0)
        for direction in self._stencil:
            weight = self.weights[tuple(direction)]
            x = tuple(self._dx * d_i for d_i in direction)
            for offset in multidimensional_sum(order, dim=self.field.spatial_dimensions):
                fac = sp.factorial(order)
                error_terms[tuple(sorted(offset))] += weight / fac * prod(x[off] for off in offset)
        if self._derivative in error_terms:
            error_terms[self._derivative] -= 1
        return error_terms

    def error_term_equations(self, order):
        return list(self.error_term_dict(order).values())

    def isotropy_equations(self, order):
        def cycle_int_sequence(sequence, modulus):
            result = []
            arr = np.array(sequence, dtype=int)
            while True:
                if tuple(arr) in result:
                    break
                result.append(tuple(arr))
                arr = (arr + 1) % modulus
            return tuple(set(tuple(sorted(t)) for t in result))

        error_dict = self.error_term_dict(order)
        eqs = []
        for derivative_tuple in list(error_dict.keys()):
            if fully_contains(self._derivative, derivative_tuple):
                remaining = list(derivative_tuple)
                for e in self._derivative:
                    del remaining[remaining.index(e)]
                permutations = cycle_int_sequence(remaining, self.dim)
                if len(permutations) == 1:
                    eqs.append(error_dict[derivative_tuple])
                else:
                    for i in range(1, len(permutations)):
                        new_eq = (error_dict[tuple(sorted(permutations[i] + self._derivative))]
                                  - error_dict[tuple(sorted(permutations[i - 1] + self._derivative))])
                        if new_eq:
                            eqs.append(new_eq)
            else:
                eqs.append(error_dict[derivative_tuple])
        return eqs

    class Result:
        def __init__(self, stencil, weights, accuracy, is_isotropic):
            self.stencil = stencil
            self.weights = weights
            self.accuracy = accuracy
            self.is_isotropic = is_isotropic

        def visualize(self):
            from pystencils.stencil import plot
            plot(self.stencil, data=self.weights)

        def apply(self, field_access: Field.Access):
            f = field_access
            return sum(f.get_shifted(*offset) * weight for offset, weight in zip(self.stencil, self.weights))

        def __array__(self):
            return np.array(self.as_array().tolist())

        def as_array(self):
            dim = len(self.stencil[0])
            assert (dim == 2 or dim == 3), "Only 2D or 3D matrix representations are available"
            max_offset = max(max(abs(e) for e in direction) for direction in self.stencil)
            shape_list = []
            for i in range(dim):
                shape_list.append(2 * max_offset + 1)

            number_of_elements = np.prod(shape_list)
            shape = tuple(shape_list)
            result = sp.MutableDenseNDimArray([0] * number_of_elements, shape)

            if dim == 2:
                for direction, weight in zip(self.stencil, self.weights):
                    result[max_offset - direction[1], max_offset + direction[0]] = weight
            if dim == 3:
                for direction, weight in zip(self.stencil, self.weights):
                    result[max_offset - direction[1], max_offset + direction[0], max_offset + direction[2]] = weight

            return result

        def rotate_weights_and_apply(self, field_access: Field.Access, axes):
            """derive gradient weights of other direction with already calculated weights of one direction
               via rotation and apply them to a field."""
            dim = len(self.stencil[0])
            assert (dim == 2 or dim == 3), "This function is only for 2D or 3D stencils available"
            rotated_weights = np.rot90(np.array(self.__array__()), 1, axes)

            result = []
            max_offset = max(max(abs(e) for e in direction) for direction in self.stencil)
            if dim == 2:
                for direction in self.stencil:
                    result.append(rotated_weights[max_offset - direction[1],
                                                  max_offset + direction[0]])
            if dim == 3:
                for direction in self.stencil:
                    result.append(rotated_weights[max_offset - direction[1],
                                                  max_offset + direction[0],
                                                  max_offset + direction[2]])

            f = field_access
            return sum(f.get_shifted(*offset) * weight for offset, weight in zip(self.stencil, result))

        def __repr__(self):
            return "Finite difference stencil of accuracy {}, isotropic error: {}".format(self.accuracy,
                                                                                          self.is_isotropic)


class FiniteDifferenceStaggeredStencilDerivation:
    """Derives a finite difference stencil for application at a staggered position

    Args:
        neighbor: the neighbor direction string or vector at whose staggered position to calculate the derivative
        dim: how many dimensions (2 or 3)
        derivative: a tuple of directions over which to perform derivatives
        free_weights_prefix: a string to prefix to free weight symbols. If None, do not return free weights
    """

    def __init__(self, neighbor, dim, derivative=tuple(), free_weights_prefix=None):
        if type(neighbor) is str:
            neighbor = direction_string_to_offset(neighbor)
        if dim == 2:
            assert neighbor[dim:] == 0
        assert derivative is tuple() or max(derivative) < dim
        neighbor = sp.Matrix(neighbor[:dim])
        pos = neighbor / 2

        def unitvec(i):
            """return the `i`-th unit vector in three dimensions"""
            a = np.zeros(dim, dtype=int)
            a[i] = 1
            return a

        def flipped(a, i):
            """return `a` with its `i`-th element's sign flipped"""
            a = a.copy()
            a[i] *= -1
            return a

        # determine the points to use, coordinates are relative to position
        points = []
        if np.linalg.norm(neighbor, 1) == 1:
            main_points = [neighbor / 2, neighbor / -2]
        elif np.linalg.norm(neighbor, 1) == 2:
            nonzero_indices = [i for i, v in enumerate(neighbor) if v != 0 and i < dim]
            main_points = [neighbor / 2, neighbor / -2, flipped(neighbor / 2, nonzero_indices[0]),
                           flipped(neighbor / -2, nonzero_indices[0])]
        else:
            main_points = [neighbor.multiply_elementwise(sp.Matrix(c) / 2)
                           for c in itertools.product([-1, 1], repeat=3)]
        points += main_points
        zero_indices = [i for i, v in enumerate(neighbor) if v == 0 and i < dim]
        for i in zero_indices:
            points += [point + sp.Matrix(unitvec(i)) for point in main_points]
            points += [point - sp.Matrix(unitvec(i)) for point in main_points]
        points_tuple = tuple([tuple(p) for p in points])
        self._stencil = points_tuple

        # determine the stencil weights
        if len(derivative) == 0:
            weights = None
        else:
            derivation = FiniteDifferenceStencilDerivation(derivative, points_tuple).get_stencil()
            if not derivation.accuracy:
                raise Exception('the requested derivative cannot be performed with the available neighbors')
            weights = derivation.weights

            # if the weights are underdefined, we can choose the free symbols to find the sparsest stencil
            free_weights = set(itertools.chain(*[w.free_symbols for w in weights]))
            if free_weights_prefix is not None:
                weights = [w.subs({fw: sp.Symbol(f"{free_weights_prefix}_{i}") for i, fw in enumerate(free_weights)})
                           for w in weights]
            elif len(free_weights) > 0:
                zero_counts = defaultdict(list)
                for values in itertools.product([-1, -sp.Rational(1, 2), 0, 1, sp.Rational(1, 2)],
                                                repeat=len(free_weights)):
                    subs = {free_weight: value for free_weight, value in zip(free_weights, values)}
                    weights = [w.subs(subs) for w in derivation.weights]
                    if not all(a == 0 for a in weights):
                        zero_count = sum([1 for w in weights if w == 0])
                        zero_counts[zero_count].append(weights)
                best = zero_counts[max(zero_counts.keys())]
                if len(best) > 1:  # if there are multiple, pick the one that contains a nonzero center weight
                    center = [tuple(p + pos) for p in points].index((0, 0, 0)[:dim])
                    best = [b for b in best if b[center] != 0]
                if len(best) > 1:  # if there are still multiple, they are equivalent, so we average
                    weights = [sum([b[i] for b in best]) / len(best) for i in range(len(weights))]
                else:
                    weights = best[0]
                assert weights

        points_tuple = tuple([tuple(p + pos) for p in points])
        self._points = points_tuple
        self._weights = weights

    @property
    def points(self):
        """return the points of the stencil"""
        return self._points

    @property
    def stencil(self):
        """return the points of the stencil relative to the staggered position specified by neighbor"""
        return self._stencil

    @property
    def weights(self):
        """return the weights of the stencil"""
        assert self._weights is not None
        return self._weights

    def visualize(self):
        if self._weights is None:
            ws = None
        else:
            ws = np.array([w for w in self.weights if w != 0], dtype=float)
        pts = np.array([p for i, p in enumerate(self.points) if self.weights[i] != 0], dtype=int)
        from pystencils.stencil import plot
        plot(pts, data=ws)

    def apply(self, access: Field.Access):
        return sum([access.get_shifted(*point) * weight for point, weight in zip(self.points, self.weights)])