Skip to content
Snippets Groups Projects
Select Git revision
  • a3f37cbdc9faa0d3e710c12ab7df32fcccfcc0b6
  • master default protected
  • v2.0-dev protected
  • zikeliml/Task-96-dotExporterForAST
  • zikeliml/124-rework-tutorials
  • fma
  • fhennig/v2.0-deprecations
  • holzer-master-patch-46757
  • 66-absolute-access-is-probably-not-copied-correctly-after-_eval_subs
  • gpu_bufferfield_fix
  • hyteg
  • vectorization_sqrt_fix
  • target_dh_refactoring
  • const_fix
  • improved_comm
  • gpu_liveness_opts
  • release/1.3.7 protected
  • release/1.3.6 protected
  • release/2.0.dev0 protected
  • release/1.3.5 protected
  • release/1.3.4 protected
  • release/1.3.3 protected
  • release/1.3.2 protected
  • release/1.3.1 protected
  • release/1.3 protected
  • release/1.2 protected
  • release/1.1.1 protected
  • release/1.1 protected
  • release/1.0.1 protected
  • release/1.0 protected
  • release/0.4.4 protected
  • last/Kerncraft
  • last/OpenCL
  • last/LLVM
  • release/0.4.3 protected
  • release/0.4.2 protected
36 results

test_random.py

Blame
  • test_vectorization.py 9.17 KiB
    import numpy as np
    import sympy as sp
    
    import pystencils as ps
    from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets
    from pystencils.cpu.vectorization import vectorize
    from pystencils.fast_approximation import insert_fast_sqrts, insert_fast_divisions
    from pystencils.transformations import replace_inner_stride_with_one
    
    supported_instruction_sets = get_supported_instruction_sets()
    if supported_instruction_sets:
        instruction_set = supported_instruction_sets[-1]
    else:
        instruction_set = None
    
    
    def test_vector_type_propagation(instruction_set=instruction_set):
        a, b, c, d, e = sp.symbols("a b c d e")
        arr = np.ones((2 ** 2 + 2, 2 ** 3 + 2))
        arr *= 10.0
    
        f, g = ps.fields(f=arr, g=arr)
        update_rule = [ps.Assignment(a, f[1, 0]),
                       ps.Assignment(b, a),
                       ps.Assignment(g[0, 0], b + 3 + f[0, 1])]
    
        ast = ps.create_kernel(update_rule)
        vectorize(ast, instruction_set=instruction_set)
    
        func = ast.compile()
        dst = np.zeros_like(arr)
        func(g=dst, f=arr)
        np.testing.assert_equal(dst[1:-1, 1:-1], 2 * 10.0 + 3)
    
    
    def test_aligned_and_nt_stores(instruction_set=instruction_set, openmp=False):
        domain_size = (24, 24)
        # create a datahandling object
        dh = ps.create_data_handling(domain_size, periodicity=(True, True), parallel=False, default_target='cpu')
    
        # fields
        alignment = 'cacheline' if openmp else True
        g = dh.add_array("g", values_per_cell=1, alignment=alignment)
        dh.fill("g", 1.0, ghost_layers=True)
        f = dh.add_array("f", values_per_cell=1, alignment=alignment)
        dh.fill("f", 0.0, ghost_layers=True)
        opt = {'instruction_set': instruction_set, 'assume_aligned': True, 'nontemporal': True,
               'assume_inner_stride_one': True}
        update_rule = [ps.Assignment(f.center(), 0.25 * (g[-1, 0] + g[1, 0] + g[0, -1] + g[0, 1]))]
        ast = ps.create_kernel(update_rule, target=dh.default_target, cpu_vectorize_info=opt, cpu_openmp=openmp)
        if instruction_set in ['sse'] or instruction_set.startswith('avx'):
            assert 'stream' in ast.instruction_set
            assert 'streamFence' in ast.instruction_set
        if instruction_set in ['neon', 'vsx'] or instruction_set.startswith('sve'):
            assert 'cachelineZero' in ast.instruction_set
        if instruction_set in ['vsx']:
            assert 'storeAAndFlushCacheline' in ast.instruction_set
        for instruction in ['stream', 'streamFence', 'cachelineZero', 'storeAAndFlushCacheline', 'flushCacheline']:
            if instruction in ast.instruction_set:
                assert ast.instruction_set[instruction].split('{')[0] in ps.get_code_str(ast)
        kernel = ast.compile()
    
        dh.run_kernel(kernel)
        np.testing.assert_equal(np.sum(dh.cpu_arrays['f']), np.prod(domain_size))
    
    def test_aligned_and_nt_stores_openmp(instruction_set=instruction_set):
        test_aligned_and_nt_stores(instruction_set, True)
    
    
    def test_inplace_update(instruction_set=instruction_set):
        shape = (9, 9, 3)
        arr = np.ones(shape, order='f')
    
        @ps.kernel
        def update_rule(s):
            f = ps.fields("f(3) : [2D]", f=arr)
            s.tmp0 @= f(0)
            s.tmp1 @= f(1)
            s.tmp2 @= f(2)
            f0, f1, f2 = f(0), f(1), f(2)
            f0 @= 2 * s.tmp0
            f1 @= 2 * s.tmp0
            f2 @= 2 * s.tmp0
    
        ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': instruction_set})
        kernel = ast.compile()
        kernel(f=arr)
        np.testing.assert_equal(arr, 2)
    
    
    def test_vectorization_fixed_size(instruction_set=instruction_set):
        configurations = []
        # Fixed size - multiple of four
        arr = np.ones((20 + 2, 24 + 2)) * 5.0
        f, g = ps.fields(f=arr, g=arr)
        configurations.append((arr, f, g))
        # Fixed size - no multiple of four
        arr = np.ones((21 + 2, 25 + 2)) * 5.0
        f, g = ps.fields(f=arr, g=arr)
        configurations.append((arr, f, g))
        # Fixed size - different remainder
        arr = np.ones((23 + 2, 17 + 2)) * 5.0
        f, g = ps.fields(f=arr, g=arr)
        configurations.append((arr, f, g))
    
        for arr, f, g in configurations:
            update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
    
            ast = ps.create_kernel(update_rule)
            vectorize(ast, instruction_set=instruction_set)
    
            func = ast.compile()
            dst = np.zeros_like(arr)
            func(g=dst, f=arr)
            np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)
    
    
    def test_vectorization_variable_size(instruction_set=instruction_set):
        f, g = ps.fields("f, g : double[2D]")
        update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
        ast = ps.create_kernel(update_rule)
    
        replace_inner_stride_with_one(ast)
        vectorize(ast, instruction_set=instruction_set)
        func = ast.compile()
    
        arr = np.ones((23 + 2, 17 + 2)) * 5.0
        dst = np.zeros_like(arr)
    
        func(g=dst, f=arr)
        np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)
    
    
    def test_piecewise1(instruction_set=instruction_set):
        a, b, c, d, e = sp.symbols("a b c d e")
        arr = np.ones((2 ** 3 + 2, 2 ** 4 + 2)) * 5.0
    
        f, g = ps.fields(f=arr, g=arr)
        update_rule = [ps.Assignment(a, f[1, 0]),
                       ps.Assignment(b, a),
                       ps.Assignment(c, f[0, 0] > 0.0),
                       ps.Assignment(g[0, 0], sp.Piecewise((b + 3 + f[0, 1], c), (0.0, True)))]
    
        ast = ps.create_kernel(update_rule)
        vectorize(ast, instruction_set=instruction_set)
        func = ast.compile()
        dst = np.zeros_like(arr)
        func(g=dst, f=arr)
        np.testing.assert_equal(dst[1:-1, 1:-1], 5 + 3 + 5.0)
    
    
    def test_piecewise2(instruction_set=instruction_set):
        arr = np.zeros((20, 20))
    
        @ps.kernel
        def test_kernel(s):
            f, g = ps.fields(f=arr, g=arr)
    
            s.condition @= f[0, 0] > 1
            s.result    @= 0.0 if s.condition else 1.0
            g[0, 0]     @= s.result
    
        ast = ps.create_kernel(test_kernel)
        vectorize(ast, instruction_set=instruction_set)
        func = ast.compile()
        func(f=arr, g=arr)
        np.testing.assert_equal(arr, np.ones_like(arr))
    
    
    def test_piecewise3(instruction_set=instruction_set):
        arr = np.zeros((22, 22))
    
        @ps.kernel
        def test_kernel(s):
            f, g = ps.fields(f=arr, g=arr)
            s.b     @= f[0, 1]
            g[0, 0] @= 1.0 / (s.b + s.k) if f[0, 0] > 0.0 else 1.0
    
        ast = ps.create_kernel(test_kernel)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
    
    def test_logical_operators(instruction_set=instruction_set):
        arr = np.zeros((22, 22))
    
        @ps.kernel
        def kernel_and(s):
            f, g = ps.fields(f=arr, g=arr)
            s.c @= sp.And(f[0, 1] < 0.0, f[1, 0] < 0.0)
            g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
    
        ast = ps.create_kernel(kernel_and)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        @ps.kernel
        def kernel_or(s):
            f, g = ps.fields(f=arr, g=arr)
            s.c @= sp.Or(f[0, 1] < 0.0, f[1, 0] < 0.0)
            g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
    
        ast = ps.create_kernel(kernel_or)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        @ps.kernel
        def kernel_equal(s):
            f, g = ps.fields(f=arr, g=arr)
            s.c @= sp.Eq(f[0, 1], 2.0)
            g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
    
        ast = ps.create_kernel(kernel_equal)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
    
    def test_hardware_query():
        assert set(['sse', 'neon', 'sve', 'vsx', 'rvv']).intersection(supported_instruction_sets)
    
    
    def test_vectorised_pow(instruction_set=instruction_set):
        arr = np.zeros((24, 24))
        f, g = ps.fields(f=arr, g=arr)
    
        as1 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 2))
        as2 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 0.5))
        as3 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -0.5))
        as4 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 4))
        as5 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -4))
        as6 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -1))
    
        ast = ps.create_kernel(as1)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        ast = ps.create_kernel(as2)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        ast = ps.create_kernel(as3)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        ast = ps.create_kernel(as4)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        ast = ps.create_kernel(as5)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        ast = ps.create_kernel(as6)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
    
    def test_vectorised_fast_approximations(instruction_set=instruction_set):
        arr = np.zeros((24, 24))
        f, g = ps.fields(f=arr, g=arr)
    
        expr = sp.sqrt(f[0, 0] + f[1, 0])
        assignment = ps.Assignment(g[0, 0], insert_fast_sqrts(expr))
        ast = ps.create_kernel(assignment)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        expr = f[0, 0] / f[1, 0]
        assignment = ps.Assignment(g[0, 0], insert_fast_divisions(expr))
        ast = ps.create_kernel(assignment)
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()
    
        assignment = ps.Assignment(sp.Symbol("tmp"), 3 / sp.sqrt(f[0, 0] + f[1, 0]))
        ast = ps.create_kernel(insert_fast_sqrts(assignment))
        vectorize(ast, instruction_set=instruction_set)
        ast.compile()