Skip to content
Snippets Groups Projects
Select Git revision
  • a3f37cbdc9faa0d3e710c12ab7df32fcccfcc0b6
  • master default protected
  • v2.0-dev protected
  • zikeliml/Task-96-dotExporterForAST
  • zikeliml/124-rework-tutorials
  • fma
  • fhennig/v2.0-deprecations
  • holzer-master-patch-46757
  • 66-absolute-access-is-probably-not-copied-correctly-after-_eval_subs
  • gpu_bufferfield_fix
  • hyteg
  • vectorization_sqrt_fix
  • target_dh_refactoring
  • const_fix
  • improved_comm
  • gpu_liveness_opts
  • release/1.3.7 protected
  • release/1.3.6 protected
  • release/2.0.dev0 protected
  • release/1.3.5 protected
  • release/1.3.4 protected
  • release/1.3.3 protected
  • release/1.3.2 protected
  • release/1.3.1 protected
  • release/1.3 protected
  • release/1.2 protected
  • release/1.1.1 protected
  • release/1.1 protected
  • release/1.0.1 protected
  • release/1.0 protected
  • release/0.4.4 protected
  • last/Kerncraft
  • last/OpenCL
  • last/LLVM
  • release/0.4.3 protected
  • release/0.4.2 protected
36 results

test_opencl.py

Blame
  • test_opencl.py 6.92 KiB
    import numpy as np
    import pytest
    import sympy as sp
    
    import pystencils
    from pystencils.backends.cuda_backend import CudaBackend
    from pystencils.backends.opencl_backend import OpenClBackend
    from pystencils.opencl.opencljit import get_global_cl_queue, make_python_function
    
    try:
        import pyopencl as cl
        HAS_OPENCL = True
        import pystencils.opencl.autoinit
    
    except Exception:
        HAS_OPENCL = False
    
    
    def test_print_opencl():
        z, y, x = pystencils.fields("z, y, x: [2d]")
    
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
        })
    
        print(assignments)
    
        ast = pystencils.create_kernel(assignments, target='gpu')
    
        print(ast)
    
        pystencils.show_code(ast, custom_backend=CudaBackend())
    
        opencl_code = pystencils.get_code_str(ast, custom_backend=OpenClBackend())
        print(opencl_code)
    
        assert "__global double * RESTRICT const _data_x" in str(opencl_code)
        assert "__global double * RESTRICT" in str(opencl_code)
        assert "get_local_id(0)" in str(opencl_code)
    
    
    @pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
    def test_opencl_jit_fixed_size():
        pytest.importorskip('pycuda')
    
        z, y, x = pystencils.fields("z, y, x: [20,30]")
    
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
        })
    
        print(assignments)
    
        ast = pystencils.create_kernel(assignments, target='gpu')
    
        print(ast)
    
        code = pystencils.show_code(ast, custom_backend=CudaBackend())
        print(code)
        opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
        print(opencl_code)
    
        cuda_kernel = ast.compile()
        assert cuda_kernel is not None
    
        import pycuda.gpuarray as gpuarray
    
        x_cpu = np.random.rand(20, 30)
        y_cpu = np.random.rand(20, 30)
        z_cpu = np.random.rand(20, 30)
    
        x = gpuarray.to_gpu(x_cpu)
        y = gpuarray.to_gpu(y_cpu)
        z = gpuarray.to_gpu(z_cpu)
        cuda_kernel(x=x, y=y, z=z)
    
        result_cuda = z.get()
    
        import pyopencl.array as array
        ctx = cl.create_some_context(0)
        queue = cl.CommandQueue(ctx)
    
        x = array.to_device(queue, x_cpu)
        y = array.to_device(queue, y_cpu)
        z = array.to_device(queue, z_cpu)
    
        opencl_kernel = make_python_function(ast, queue, ctx)
        assert opencl_kernel is not None
        opencl_kernel(x=x, y=y, z=z)
    
        result_opencl = z.get(queue)
    
        assert np.allclose(result_cuda, result_opencl)
    
    
    @pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
    def test_opencl_jit():
        pytest.importorskip('pycuda')
    
        z, y, x = pystencils.fields("z, y, x: [2d]")
    
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
        })
    
        print(assignments)
    
        ast = pystencils.create_kernel(assignments, target='gpu')
    
        print(ast)
    
        pystencils.show_code(ast, custom_backend=CudaBackend())
    
        pystencils.show_code(ast, custom_backend=OpenClBackend())
    
        cuda_kernel = ast.compile()
        assert cuda_kernel is not None
    
        import pycuda.gpuarray as gpuarray
    
        x_cpu = np.random.rand(20, 30)
        y_cpu = np.random.rand(20, 30)
        z_cpu = np.random.rand(20, 30)
    
        x = gpuarray.to_gpu(x_cpu)
        y = gpuarray.to_gpu(y_cpu)
        z = gpuarray.to_gpu(z_cpu)
        cuda_kernel(x=x, y=y, z=z)
    
        result_cuda = z.get()
    
        import pyopencl.array as array
        ctx = cl.create_some_context(0)
        queue = cl.CommandQueue(ctx)
    
        x = array.to_device(queue, x_cpu)
        y = array.to_device(queue, y_cpu)
        z = array.to_device(queue, z_cpu)
    
        opencl_kernel = make_python_function(ast, queue, ctx)
        assert opencl_kernel is not None
        opencl_kernel(x=x, y=y, z=z)
    
        result_opencl = z.get(queue)
    
        assert np.allclose(result_cuda, result_opencl)
    
    
    @pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
    def test_opencl_jit_with_parameter():
        pytest.importorskip('pycuda')
    
        z, y, x = pystencils.fields("z, y, x: [2d]")
    
        a = sp.Symbol('a')
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0]) + a
        })
    
        print(assignments)
    
        ast = pystencils.create_kernel(assignments, target='gpu')
    
        print(ast)
    
        code = pystencils.show_code(ast, custom_backend=CudaBackend())
        print(code)
        opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
        print(opencl_code)
    
        cuda_kernel = ast.compile()
        assert cuda_kernel is not None
    
        import pycuda.gpuarray as gpuarray
    
        x_cpu = np.random.rand(20, 30)
        y_cpu = np.random.rand(20, 30)
        z_cpu = np.random.rand(20, 30)
    
        x = gpuarray.to_gpu(x_cpu)
        y = gpuarray.to_gpu(y_cpu)
        z = gpuarray.to_gpu(z_cpu)
        cuda_kernel(x=x, y=y, z=z, a=5.)
    
        result_cuda = z.get()
    
        import pyopencl.array as array
        ctx = cl.create_some_context(0)
        queue = cl.CommandQueue(ctx)
    
        x = array.to_device(queue, x_cpu)
        y = array.to_device(queue, y_cpu)
        z = array.to_device(queue, z_cpu)
    
        opencl_kernel = make_python_function(ast, queue, ctx)
        assert opencl_kernel is not None
        opencl_kernel(x=x, y=y, z=z, a=5.)
    
        result_opencl = z.get(queue)
    
        assert np.allclose(result_cuda, result_opencl)
    
    
    @pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
    def test_without_cuda():
        z, y, x = pystencils.fields("z, y, x: [20,30]")
    
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
        })
    
        print(assignments)
    
        ast = pystencils.create_kernel(assignments, target='gpu')
    
        print(ast)
    
        opencl_code = pystencils.show_code(ast, custom_backend=OpenClBackend())
        print(opencl_code)
    
        x_cpu = np.random.rand(20, 30)
        y_cpu = np.random.rand(20, 30)
        z_cpu = np.random.rand(20, 30)
    
        import pyopencl.array as array
        ctx = cl.create_some_context(0)
        queue = cl.CommandQueue(ctx)
    
        x = array.to_device(queue, x_cpu)
        y = array.to_device(queue, y_cpu)
        z = array.to_device(queue, z_cpu)
    
        opencl_kernel = make_python_function(ast, queue, ctx)
        assert opencl_kernel is not None
        opencl_kernel(x=x, y=y, z=z)
    
    
    @pytest.mark.skipif(not HAS_OPENCL, reason="Test requires pyopencl")
    def test_kernel_creation():
        global pystencils
        z, y, x = pystencils.fields("z, y, x: [20,30]")
    
        assignments = pystencils.AssignmentCollection({
            z[0, 0]: x[0, 0] * sp.log(x[0, 0] * y[0, 0])
        })
    
        print(assignments)
    
        import pystencils.opencl.autoinit
        ast = pystencils.create_kernel(assignments, target='opencl')
    
        print(ast.backend)
    
        code = pystencils.get_code_str(ast)
        print(code)
        assert 'get_local_size' in code
    
        opencl_kernel = ast.compile()
    
        x_cpu = np.random.rand(20, 30)
        y_cpu = np.random.rand(20, 30)
        z_cpu = np.random.rand(20, 30)
    
        import pyopencl.array as array
        assert get_global_cl_queue()
        x = array.to_device(get_global_cl_queue(), x_cpu)
        y = array.to_device(get_global_cl_queue(), y_cpu)
        z = array.to_device(get_global_cl_queue(), z_cpu)
    
        assert opencl_kernel is not None
        opencl_kernel(x=x, y=y, z=z)