Select Git revision
integer_functions.py

Martin Bauer authored
integer_functions.py 2.50 KiB
import sympy as sp
from pystencils.data_types import get_type_of_expression, collate_types
from pystencils.sympyextensions import is_integer_sequence
bitwise_xor = sp.Function("bitwise_xor")
bit_shift_right = sp.Function("bit_shift_right")
bit_shift_left = sp.Function("bit_shift_left")
bitwise_and = sp.Function("bitwise_and")
bitwise_or = sp.Function("bitwise_or")
# noinspection PyPep8Naming
class modulo_floor(sp.Function):
"""Returns the next smaller integer divisible by given divisor.
Examples:
>>> modulo_floor(9, 4)
8
>>> modulo_floor(11, 4)
8
>>> modulo_floor(12, 4)
12
>>> from pystencils import TypedSymbol
>>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
>>> modulo_floor(a, b).to_c(str)
'(int64_t)((a) / (b)) * (b)'
"""
nargs = 2
def __new__(cls, integer, divisor):
if is_integer_sequence((integer, divisor)):
return (int(integer) // int(divisor)) * divisor
else:
return super().__new__(cls, integer, divisor)
def to_c(self, print_func):
dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
assert dtype.is_int()
return "({dtype})(({0}) / ({1})) * ({1})".format(print_func(self.args[0]),
print_func(self.args[1]), dtype=dtype)
# noinspection PyPep8Naming
class modulo_ceil(sp.Function):
"""Returns the next bigger integer divisible by given divisor.
Examples:
>>> modulo_ceil(9, 4)
12
>>> modulo_ceil(11, 4)
12
>>> modulo_ceil(12, 4)
12
>>> from pystencils import TypedSymbol
>>> a, b = TypedSymbol("a", "int64"), TypedSymbol("b", "int32")
>>> modulo_ceil(a, b).to_c(str)
'((a) % (b) == 0 ? a : ((int64_t)((a) / (b))+1) * (b))'
"""
nargs = 2
def __new__(cls, integer, divisor):
if is_integer_sequence((integer, divisor)):
return integer if integer % divisor == 0 else ((integer // divisor) + 1) * divisor
else:
return super().__new__(cls, integer, divisor)
def to_c(self, print_func):
dtype = collate_types((get_type_of_expression(self.args[0]), get_type_of_expression(self.args[1])))
assert dtype.is_int()
code = "(({0}) % ({1}) == 0 ? {0} : (({dtype})(({0}) / ({1}))+1) * ({1}))"
return code.format(print_func(self.args[0]), print_func(self.args[1]), dtype=dtype)