Select Git revision
test_fd_derivative.py
generate_benchmark.py 5.28 KiB
import subprocess
import warnings
import tempfile
from pathlib import Path
from jinja2 import Environment, PackageLoader, StrictUndefined
from pystencils.astnodes import PragmaBlock
from pystencils.backends.cbackend import generate_c, get_headers
from pystencils.cpu.cpujit import get_compiler_config, run_compile_step
from pystencils.data_types import get_base_type
from pystencils.include import get_pystencils_include_path
from pystencils.integer_functions import modulo_ceil
from pystencils.sympyextensions import prod
import numpy as np
def generate_benchmark(ast, likwid=False, openmp=False, timing=False):
"""Return C code of a benchmark program for the given kernel.
Args:
ast: the pystencils AST object as returned by create_kernel
likwid: if True likwid markers are added to the code
openmp: relevant only if likwid=True, to generated correct likwid initialization code
timing: add timing output to the code, prints time per iteration to stdout
Returns:
C code as string
"""
accessed_fields = {f.name: f for f in ast.fields_accessed}
constants = []
fields = []
call_parameters = []
for p in ast.get_parameters():
if not p.is_field_parameter:
constants.append((p.symbol.name, str(p.symbol.dtype)))
call_parameters.append(p.symbol.name)
else:
assert p.is_field_pointer, "Benchmark implemented only for kernels with fixed loop size"
field = accessed_fields[p.field_name]
dtype = str(get_base_type(p.symbol.dtype))
np_dtype = np.dtype(dtype)
dim0_size = field.shape[-1]
dim1_size = np.prod(field.shape[:-1])
size_data_type = np_dtype.itemsize
elements = prod(field.shape)
align = ast.instruction_set['width'] * size_data_type
padding_elements = dim0_size % ast.instruction_set['width']
padding_bytes = padding_elements * size_data_type
ghost_layers = max(max(ast.ghost_layers))
size = dim1_size * padding_bytes + np.prod(field.shape) * size_data_type
assert align % np_dtype.itemsize == 0
offset = ((dim0_size + padding_elements + ghost_layers) % ast.instruction_set['width']) * size_data_type
fields.append((p.field_name, dtype, elements, size, offset, align))
call_parameters.append(p.field_name)
header_list = get_headers(ast)
includes = "\n".join(["#include %s" % (include_file,) for include_file in header_list])
# Strip "#pragma omp parallel" from within kernel, because main function takes care of that
# when likwid and openmp are enabled
if likwid and openmp:
if len(ast.body.args) > 0 and isinstance(ast.body.args[0], PragmaBlock):
ast.body.args[0].pragma_line = ''
jinja_context = {
'likwid': likwid,
'openmp': openmp,
'kernel_code': generate_c(ast, dialect='c'),
'kernelName': ast.function_name,
'fields': fields,
'constants': constants,
'call_argument_list': ",".join(call_parameters),
'includes': includes,
'timing': timing,
}
env = Environment(loader=PackageLoader('pystencils.kerncraft_coupling'), undefined=StrictUndefined)
return env.get_template('benchmark.c').render(**jinja_context)
def run_c_benchmark(ast, inner_iterations, outer_iterations=3, path=None):
"""Runs the given kernel with outer loop in C
Args:
ast: pystencils ast which is used to compile the benchmark file
inner_iterations: timings are recorded around this many iterations
outer_iterations: number of timings recorded
path: path where the benchmark file is stored. If None a tmp folder is created
Returns:
list of times per iterations for each outer iteration
"""
import kerncraft
benchmark_code = generate_benchmark(ast, timing=True)
if path is None:
path = tempfile.mkdtemp()
if isinstance(path, str):
path = Path(path)
with open(path / 'bench.c', 'w') as f:
f.write(benchmark_code)
kerncraft_path = Path(kerncraft.__file__).parent
extra_flags = ['-I' + get_pystencils_include_path(),
'-I' + str(kerncraft_path / 'headers')]
compiler_config = get_compiler_config()
compile_cmd = [compiler_config['command']] + compiler_config['flags'].split()
compile_cmd += [*extra_flags,
str(kerncraft_path / 'headers' / 'timing.c'),
str(kerncraft_path / 'headers' / 'dummy.c'),
str(path / 'bench.c'),
'-o', str(path / 'bench'),
]
run_compile_step(compile_cmd)
time_pre_estimation_per_iteration = float(subprocess.check_output(['./' / path / 'bench', str(10)]))
benchmark_time_limit = 20
if benchmark_time_limit / time_pre_estimation_per_iteration < inner_iterations:
warn = (f"A benchmark run with {inner_iterations} inner_iterations will probably take longer than "
f"{benchmark_time_limit} seconds for this kernel")
warnings.warn(warn)
results = []
for _ in range(outer_iterations):
benchmark_time = float(subprocess.check_output(['./' / path / 'bench', str(inner_iterations)]))
results.append(benchmark_time)
return results