-
Martin Bauer authored
This restructuring allows for easier separation of modules into separate repositories later. Also, now pip install with repo url can be used. The setup.py files have also been updated to correctly reference each other. Module versions are not extracted from git state
Martin Bauer authoredThis restructuring allows for easier separation of modules into separate repositories later. Also, now pip install with repo url can be used. The setup.py files have also been updated to correctly reference each other. Module versions are not extracted from git state
test_datahandling_parallel.py 2.28 KiB
import numpy as np
from pystencils.datahandling.parallel_datahandling import ParallelDataHandling
from pystencils_tests.test_datahandling import access_and_gather, synchronization, kernel_execution_jacobi, vtk_output, \
reduction
import waLBerla as wlb
def test_access_and_gather():
block_size = (4, 7, 1)
num_blocks = (3, 2, 1)
cells = tuple(a * b for a, b in zip(block_size, num_blocks))
blocks = wlb.createUniformBlockGrid(blocks=num_blocks, cellsPerBlock=block_size, oneBlockPerProcess=False,
periodic=(1, 1, 1))
dh = ParallelDataHandling(blocks, default_ghost_layers=2)
access_and_gather(dh, cells)
synchronization(dh, test_gpu=False)
if hasattr(wlb, 'cuda'):
synchronization(dh, test_gpu=True)
def test_gpu():
if not hasattr(wlb, 'cuda'):
print("Skip GPU tests because walberla was built without CUDA")
return
block_size = (4, 7, 1)
num_blocks = (3, 2, 1)
blocks = wlb.createUniformBlockGrid(blocks=num_blocks, cellsPerBlock=block_size, oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks, default_ghost_layers=2)
dh.add_array('v', values_per_cell=3, dtype=np.int64, ghost_layers=2, gpu=True)
for b in dh.iterate():
b['v'].fill(42)
dh.all_to_gpu()
for b in dh.iterate():
b['v'].fill(0)
dh.to_cpu('v')
for b in dh.iterate():
np.testing.assert_equal(b['v'], 42)
def test_kernel():
for gpu in (True, False):
if gpu and not hasattr(wlb, 'cuda'):
print("Skipping CUDA tests because walberla was built without GPU support")
continue
# 3D
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 4), cellsPerBlock=(3, 2, 5), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks)
kernel_execution_jacobi(dh, test_gpu=gpu)
reduction(dh)
# 2D
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 1), cellsPerBlock=(3, 2, 1), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks, dim=2)
kernel_execution_jacobi(dh, test_gpu=gpu)
reduction(dh)
def test_vtk_output():
blocks = wlb.createUniformBlockGrid(blocks=(3, 2, 4), cellsPerBlock=(3, 2, 5), oneBlockPerProcess=False)
dh = ParallelDataHandling(blocks)
vtk_output(dh)