-
Frederik Hennig authoredFrederik Hennig authored
test_quicktests.py 2.72 KiB
import numpy as np
import pytest
import pystencils as ps
def test_basic_kernel():
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = ps.create_data_handling(domain_size=domain_shape, periodicity=True)
assert all(dh.periodicity)
f = dh.add_array("f", values_per_cell=1)
tmp = dh.add_array("tmp", values_per_cell=1)
stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
stencil_3d = [
(1, 0, 0),
(-1, 0, 0),
(0, 1, 0),
(0, -1, 0),
(0, 0, 1),
(0, 0, -1),
]
stencil = stencil_2d if dh.dim == 2 else stencil_3d
jacobi = ps.Assignment(tmp.center, sum(f.neighbors(stencil)) / len(stencil))
kernel = ps.create_kernel(jacobi).compile()
for b in dh.iterate(ghost_layers=1):
b["f"].fill(42)
dh.run_kernel(kernel)
for b in dh.iterate(ghost_layers=0):
np.testing.assert_equal(b["f"], 42)
float_seq = [1.0, 2.0, 3.0, 4.0]
int_seq = [1, 2, 3]
for op in ("min", "max", "sum"):
assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()
@pytest.mark.xfail(reason="Staggered kernels and blocking not implemented yet")
def test_basic_blocking_staggered():
f = ps.fields("f: double[2D]")
stag = ps.fields("stag(2): double[2D]", field_type=ps.FieldType.STAGGERED)
terms = [
f[0, 0] - f[-1, 0],
f[0, 0] - f[0, -1],
]
assignments = [
ps.Assignment(stag.staggered_access(d), terms[i])
for i, d in enumerate(stag.staggered_stencil)
]
kernel = ps.create_staggered_kernel(assignments, cpu_blocking=(3, 16)).compile()
reference_kernel = ps.create_staggered_kernel(assignments).compile()
f_arr = np.random.rand(80, 33)
stag_arr = np.zeros((80, 33, 3))
stag_ref = np.zeros((80, 33, 3))
kernel(f=f_arr, stag=stag_arr)
reference_kernel(f=f_arr, stag=stag_ref)
np.testing.assert_almost_equal(stag_arr, stag_ref)
def test_basic_vectorization():
target = ps.Target.auto_cpu()
if not target.is_vector_cpu():
pytest.skip("No vector CPU available")
f, g = ps.fields("f, g : double[2D]")
update_rule = [
ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)
]
ast = ps.create_kernel(
update_rule,
target=target,
cpu_optim=ps.CpuOptimConfig(
vectorize=ps.VectorizationConfig(assume_inner_stride_one=True)
),
)
func = ast.compile()
arr = np.ones((23 + 2, 17 + 2)) * 5.0
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)