Skip to content
Snippets Groups Projects

Thermalized LB: test 4 rel time model velocity and pressure fluctuations

Merged RudolfWeeber requested to merge RudolfWeeber/lbmpy:fluctuation_test into master
Viewing commit 9c03af2b
Next
Show latest version
2 files
+ 186
92
Preferences
Compare changes
Files
2
"""
This tests that for the thermalized LB (MRT with 15 equal relaxation times),
the correct temperature is obtained and the velocity distribution matches
the Maxwell-Boltzmann distribution
"""
"""Tests velocity and stress fluctuations for thermalized LB"""
import pystencils as ps
from lbmpy.lbstep import LatticeBoltzmannStep
from lbmpy.creationfunctions import create_lb_collision_rule
from lbmpy.relaxationrates import relaxation_rate_from_lattice_viscosity, relaxation_rate_from_magic_number
from lbmpy.creationfunctions import *
from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
import numpy as np
import pickle
import gzip
from time import time
from lbmpy.moments import is_bulk_moment, is_shear_moment, get_order
def single_component_maxwell(x1, x2, kT):
def single_component_maxwell(x1, x2, kT, mass):
"""Integrate the probability density from x1 to x2 using the trapezoidal rule"""
x = np.linspace(x1, x2, 1000)
return np.trapz(np.exp(-x**2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT)
def run_scenario(scenario, steps):
scenario.pre_run()
for t in range(scenario.time_steps_run, scenario.time_steps_run + steps):
scenario.kernel_params['time_step'] = t
scenario.time_step()
scenario.post_run()
scenario.time_steps_run += steps
def create_scenario(domain_size, temperature=None, viscosity=None, seed=2, target='cpu', openmp=4, num_rel_rates=None):
rr = [relaxation_rate_from_lattice_viscosity(viscosity)]
rr = rr*num_rel_rates
cr = create_lb_collision_rule(
stencil='D3Q19', compressible=True,
method='mrt', weighted=True, relaxation_rates=rr,
fluctuating={'temperature': temperature, 'seed': seed},
optimization={'cse_global': True, 'split': False,
'cse_pdfs': True, 'vectorization': True}
return np.trapz(np.exp(-mass * x**2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT/mass)
def rr_getter(moment_group):
"""Mapos moments to 4 relaxation rates for shear, bulk, odd, even modes"""
is_shear = [is_shear_moment(m, 3) for m in moment_group]
is_bulk = [is_bulk_moment(m, 3) for m in moment_group]
order = [get_order(m) for m in moment_group]
assert min(order) == max(order)
order = order[0]
if order < 2:
return 0
elif any(is_bulk):
assert all(is_bulk)
return sp.Symbol("omega_bulk")
elif any(is_shear):
assert all(is_shear)
return sp.Symbol("omega_shear")
elif order % 2 == 0:
assert order > 2
return sp.Symbol("omega_even")
else:
return sp.Symbol("omega_odd")
def second_order_moment_tensor_assignments(function_values, stencil, output_field):
"""Assignments for calculating the pressure tensor"""
assert len(function_values) == len(stencil)
dim = len(stencil[0])
return [ps.Assignment(output_field(i, j),
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)))
for i in range(dim) for j in range(dim)]
def add_pressure_output_to_collision_rule(collision_rule, pressure_field):
pressure_ouput = second_order_moment_tensor_assignments(collision_rule.method.pre_collision_pdf_symbols,
collision_rule.method.stencil, pressure_field)
collision_rule.main_assignments = collision_rule.main_assignments + pressure_ouput
def test():
# Parameters
stencil = get_stencil('D3Q19')
L = [60]*3
kT = 4E-4
rho_0 = 0.8
omega_shear = 0.8
omega_bulk = 0.3
omega_even = 0.5
omega_odd = 0.4
target = 'cpu'
# Setup data handling
dh = ps.create_data_handling(L, periodicity=True, default_target=target)
src = dh.add_array('src', values_per_cell=len(stencil), layout='f')
dst = dh.add_array_like('dst', 'src')
rho = dh.add_array('rho', layout='f', latex_name='\\rho')
u = dh.add_array('u', values_per_cell=dh.dim, layout='f')
pressure_field = dh.add_array('pressure', values_per_cell=(
3, 3), layout='f', gpu=target == 'gpu')
force_field = dh.add_array(
'force', values_per_cell=3, layout='f', gpu=target == 'gpu')
# Method setup
method = create_mrt_orthogonal(
stencil=get_stencil('D3Q19'),
compressible=True,
weighted=True,
relaxation_rate_getter=rr_getter,
force_model=force_model_from_string('luo', force_field.center_vector))
collision_rule = create_lb_collision_rule(
method,
fluctuating={
'temperature': kT
},
optimization={'cse_global': True}
)
return LatticeBoltzmannStep(periodicity=(True, True, True), domain_size=domain_size, compressible=True, stencil='D3Q19', collision_rule=cr, optimization={'target': target, 'openmp': openmp})
def test_fluctuating_mrt():
# Unit conversions (MD to lattice) for parameters known to work with Espresso
agrid = 1.
m = 1. # mass per node
tau = 0.01 # time step
temperature = 4. / (m * agrid**2/tau**2)
viscosity = 3. * tau / agrid**2
n = 8
sc = create_scenario((n, n, n), viscosity=viscosity, temperature=temperature,
target='cpu', openmp=4, num_rel_rates=15)
assert np.average(sc.velocity[:, :, :]) == 0.
# Warmup
run_scenario(sc, steps=500)
# sampling:
steps = 20000
v = np.zeros((steps, n, n, n, 3))
for i in range(steps):
run_scenario(sc, steps=2)
v[i, :, :, :, :] = np.copy(sc.velocity[:, :, :, :])
v = v.reshape((steps*n*n*n, 3))
np.testing.assert_allclose(np.mean(v, axis=0), [0, 0, 0], atol=6E-7)
np.testing.assert_allclose(
np.var(v, axis=0), [temperature, temperature, temperature], rtol=1E-2)
v_hist, v_bins = np.histogram(v, bins=11, range=(-.08, .08), density=True)
# Calculate expected values from single
v_expected = []
for i in range(len(v_hist)):
# Maxwell distribution
res = np.exp(-v_bins[i]**2/(2.*temperature)) / \
np.sqrt(2*np.pi*temperature)
res = 1./(v_bins[i+1]-v_bins[i]) * \
single_component_maxwell(v_bins[i], v_bins[i+1], temperature)
v_expected.append(res)
v_expected = np.array(v_expected)
# 8% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.08)
# 0.5% accuracy on the middle part
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.005)
add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(collision_rule=collision_rule,
stencil=stencil,
method=method,
compressible=True,
kernel_type='collide_only',
optimization={'symbolic_field': src})
stream = create_stream_pull_with_output_kernel(collision.method, src, dst,
{'density': rho, 'velocity': u})
opts = {'cpu_openmp': True,
'cpu_vectorize_info': None,
'target': dh.default_target}
# Compile kernels
stream_kernel = ps.create_kernel(stream, **opts).compile()
collision_kernel = ps.create_kernel(collision, **opts).compile()
sync_pdfs = dh.synchronization_function([src.name])
# Initialization
init = macroscopic_values_setter(collision.method, velocity=(0,)*dh.dim,
pdfs=src.center_vector, density=rho.center)
init_kernel = ps.create_kernel(init, ghost_layers=0).compile()
dh.fill(rho.name, rho_0)
dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(u.name, 0)
dh.run_kernel(init_kernel)
# time loop
def time_loop(start, steps):
dh.all_to_gpu()
for i in range(start, start+steps):
dh.run_kernel(collision_kernel, omega_shear=omega_shear, omega_bulk=omega_bulk,
omega_odd=omega_odd, omega_even=omega_even, seed=42, time_step=i)
sync_pdfs()
dh.run_kernel(stream_kernel)
dh.swap(src.name, dst.name)
return start+steps
# Test
t = 0
# warm up
t = time_loop(t, 10)
# Measurement
for i in range(10):
t = time_loop(t, 5)
res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
# momentum conservation
momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(momentum, [0, 0, 0], atol=1E-10)
# temperature
kinetic_energy = 1/2*np.dot(res_rho, res_u*res_u)/np.product(L)
np.testing.assert_allclose(
kinetic_energy, [kT/2]*3, atol=kT*0.01)
# velocity distribution
v_hist, v_bins = np.histogram(
res_u, bins=11, range=(-.075, .075), density=True)
# Calculate expected values from single
v_expected = []
for j in range(len(v_hist)):
# Maxwell distribution
res = 1./(v_bins[j+1]-v_bins[j]) * \
single_component_maxwell(
v_bins[j], v_bins[j+1], kT, rho_0)
v_expected.append(res)
v_expected = np.array(v_expected)
# 10% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.1)
# 1% accuracy on the middle part
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.01)
# pressure tensor against expressions from
# Duenweg, Schiller, Ladd, https://arxiv.org/abs/0707.1581
res_pressure = dh.gather_array("pressure").reshape((-1, 3, 3))
c_s = np.sqrt(1/3) # speed of sound
# average of pressure tensor
# Diagonal elements are rho c_s^22 +<u,u>. When the fluid is
# thermalized, the expectation value of <u,u> = kT due to the
# equi-partition theorem.
p_av_expected = np.diag([rho_0*c_s**2 + kT]*3)
np.testing.assert_allclose(
np.mean(res_pressure, axis=0), p_av_expected, atol=c_s**2/2000)