Skip to content
Snippets Groups Projects
Commit d0b0f1b8 authored by Helen Schottenhamml's avatar Helen Schottenhamml
Browse files

Shorten shear wave scenario for nightly tests.

parent 9645d493
No related branches found
No related tags found
1 merge request!151Shorten shear wave scenario.
Pipeline #54860 passed
...@@ -2,7 +2,11 @@ ...@@ -2,7 +2,11 @@
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation The cumulant lattice Boltzmann equation in three dimensions: Theory and validation
by Geier, Martin; Schönherr, Martin; Pasquali, Andrea; Krafczyk, Manfred (2015) by Geier, Martin; Schönherr, Martin; Pasquali, Andrea; Krafczyk, Manfred (2015)
Chapter 5.1 :cite:`geier2015` Chapter 5.1
NOTE: for integration tests, the parameter study is greatly shortened, i.e., the runs are shortened in time and
not all resolutions and viscosities are considered. Nevertheless, all values used by Geier et al. are still in
the setup, only commented, and remain ready to be used (check for comments that start with `NOTE`).
""" """
import numpy as np import numpy as np
import pytest import pytest
...@@ -124,9 +128,15 @@ def run(l, l_0, u_0, v_0, nu, y_size, lbm_config, lbm_optimisation, config): ...@@ -124,9 +128,15 @@ def run(l, l_0, u_0, v_0, nu, y_size, lbm_config, lbm_optimisation, config):
np.copyto(b[scenario.velocity_data_name], initial_vel_arr[b.global_slice]) np.copyto(b[scenario.velocity_data_name], initial_vel_arr[b.global_slice])
scenario.set_pdf_fields_from_macroscopic_values() scenario.set_pdf_fields_from_macroscopic_values()
total_time_steps = 20000 * (l // l_0) ** 2 # NOTE: use those values to limit the runtime in integration tests
initial_time_steps = 11000 * (l // l_0) ** 2 total_time_steps = 2000 * (l // l_0) ** 2
eval_interval = 1000 * (l // l_0) ** 2 initial_time_steps = 1100 * (l // l_0) ** 2
eval_interval = 100 * (l // l_0) ** 2
# NOTE: for simulating the real shear-wave scenario from Geier et al. use the following values
# total_time_steps = 20000 * (l // l_0) ** 2
# initial_time_steps = 11000 * (l // l_0) ** 2
# eval_interval = 1000 * (l // l_0) ** 2
scenario.run(initial_time_steps) scenario.run(initial_time_steps)
if np.isnan(scenario.velocity_slice()).any(): if np.isnan(scenario.velocity_slice()).any():
print(" Result", inv_result) print(" Result", inv_result)
...@@ -169,8 +179,12 @@ def create_full_parameter_study(): ...@@ -169,8 +179,12 @@ def create_full_parameter_study():
omega, omega_f = sp.symbols("omega, omega_f") omega, omega_f = sp.symbols("omega, omega_f")
ls = [32 * 2 ** i for i in range(0, 5)] # NOTE: use those values to limit the runtime in integration tests
nus = [1e-2, 1e-3, 1e-4, 1e-5] ls = [32]
nus = [1e-5]
# NOTE: for simulating the real shear-wave scenario from Geier et al. use the following values
# ls = [32 * 2 ** i for i in range(0, 5)]
# nus = [1e-2, 1e-3, 1e-4, 1e-5]
srt_and_trt_methods = [LBMConfig(method=method, srt_and_trt_methods = [LBMConfig(method=method,
stencil=LBStencil(stencil), stencil=LBStencil(stencil),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment