Skip to content
Snippets Groups Projects
Commit c7d65a7d authored by Frederik Hennig's avatar Frederik Hennig
Browse files

Merge branch 'fluct_zero_centered' into 'master'

Fix fluctuating LB with zero centered pdf storage

See merge request !186
parents f7415a0d d7e91b4c
Branches master
1 merge request!186Fix fluctuating LB with zero centered pdf storage
Pipeline #77462 passed with stages
in 10 minutes and 35 seconds
......@@ -376,8 +376,8 @@ class LBMConfig:
if not self.compressible and self.method in (Method.MONOMIAL_CUMULANT, Method.CUMULANT):
raise ValueError("Incompressible cumulant-based methods are not supported (yet).")
if self.zero_centered and (self.entropic or self.fluctuating):
raise ValueError("Entropic and fluctuating methods can only be created with `zero_centered=False`.")
if self.zero_centered and self.entropic:
raise ValueError("Entropic methods can only be created with `zero_centered=False`.")
# Check or infer delta-equilibrium
if self.delta_equilibrium is not None:
......
......@@ -19,9 +19,7 @@ def add_fluctuations_to_collision_rule(collision_rule, temperature=None, amplitu
""""""
if not (temperature and not amplitudes) or (temperature and amplitudes):
raise ValueError("Fluctuating LBM: Pass either 'temperature' or 'amplitudes'.")
if collision_rule.method.conserved_quantity_computation.zero_centered_pdfs:
raise ValueError("The fluctuating LBM is not implemented for zero-centered PDF storage.")
method = collision_rule.method
if not amplitudes:
amplitudes = fluctuation_amplitude_from_temperature(method, temperature, c_s_sq)
......@@ -44,9 +42,7 @@ def fluctuation_amplitude_from_temperature(method, temperature, c_s_sq=sp.Symbol
"""Produces amplitude equations according to (2.60) and (3.54) in Schiller08"""
normalization_factors = sp.matrix_multiply_elementwise(method.moment_matrix, method.moment_matrix) * \
sp.Matrix(method.weights)
density = method.zeroth_order_equilibrium_moment_symbol
if method.conserved_quantity_computation.zero_centered_pdfs:
density += 1
density = method._cqc.density_symbol
mu = temperature * density / c_s_sq
return [sp.sqrt(mu * norm * (1 - (1 - rr) ** 2))
for norm, rr in zip(normalization_factors, method.relaxation_rates)]
......
......@@ -5,13 +5,16 @@ import pytest
import pystencils as ps
from pystencils import get_code_str
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets, get_vector_instruction_set
from pystencils.backends.simd_instruction_sets import (
get_supported_instruction_sets,
get_vector_instruction_set,
)
from pystencils.cpu.cpujit import get_compiler_config
from pystencils.enums import Target
from pystencils.rng import PhiloxTwoDoubles
from lbmpy.creationfunctions import *
from lbmpy.forcemodels import Guo
from lbmpy.forcemodels import Guo
from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
import numpy as np
from lbmpy.enums import Stencil
......@@ -20,13 +23,18 @@ from lbmpy.stencils import LBStencil
def _skip_instruction_sets_windows(instruction_sets):
if get_compiler_config()['os'] == 'windows':
if get_compiler_config()["os"] == "windows":
# skip instruction sets supported by the CPU but not by the compiler
if 'avx' in instruction_sets and ('/arch:avx2' not in get_compiler_config()['flags'].lower()
and '/arch:avx512' not in get_compiler_config()['flags'].lower()):
instruction_sets.remove('avx')
if 'avx512' in instruction_sets and '/arch:avx512' not in get_compiler_config()['flags'].lower():
instruction_sets.remove('avx512')
if "avx" in instruction_sets and (
"/arch:avx2" not in get_compiler_config()["flags"].lower()
and "/arch:avx512" not in get_compiler_config()["flags"].lower()
):
instruction_sets.remove("avx")
if (
"avx512" in instruction_sets
and "/arch:avx512" not in get_compiler_config()["flags"].lower()
):
instruction_sets.remove("avx512")
return instruction_sets
......@@ -35,11 +43,13 @@ def single_component_maxwell(x1, x2, kT, mass):
x = np.linspace(x1, x2, 1000)
try:
trapezoid = np.trapezoid # since numpy 2.0
trapezoid = np.trapezoid # since numpy 2.0
except AttributeError:
trapezoid = np.trapz
return trapezoid(np.exp(-mass * x ** 2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT / mass)
return trapezoid(np.exp(-mass * x**2 / (2.0 * kT)), x) / np.sqrt(
2.0 * np.pi * kT / mass
)
def rr_getter(moment_group):
......@@ -71,53 +81,86 @@ def second_order_moment_tensor_assignments(function_values, stencil, output_fiel
"""Assignments for calculating the pressure tensor"""
assert len(function_values) == len(stencil)
dim = len(stencil[0])
return [ps.Assignment(output_field(i, j),
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)))
for i in range(dim) for j in range(dim)]
return [
ps.Assignment(
output_field(i, j),
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)),
)
for i in range(dim)
for j in range(dim)
]
def add_pressure_output_to_collision_rule(collision_rule, pressure_field):
pressure_ouput = second_order_moment_tensor_assignments(collision_rule.method.pre_collision_pdf_symbols,
collision_rule.method.stencil, pressure_field)
pressure_ouput = second_order_moment_tensor_assignments(
collision_rule.method.pre_collision_pdf_symbols,
collision_rule.method.stencil,
pressure_field,
)
collision_rule.main_assignments = collision_rule.main_assignments + pressure_ouput
def get_fluctuating_lb(size=None, kT=None,
omega_shear=None, omega_bulk=None, omega_odd=None, omega_even=None,
rho_0=None, target=None):
def get_fluctuating_lb(
size=None,
kT=None,
omega_shear=None,
omega_bulk=None,
omega_odd=None,
omega_even=None,
rho_0=None,
target=None,
zero_centered: bool = False,
):
# Parameters
stencil = LBStencil(Stencil.D3Q19)
# Setup data handling
dh = ps.create_data_handling((size,) * stencil.D, periodicity=True, default_target=target)
src = dh.add_array('src', values_per_cell=stencil.Q, layout='f')
dst = dh.add_array_like('dst', 'src')
rho = dh.add_array('rho', layout='f', latex_name='\\rho', values_per_cell=1)
u = dh.add_array('u', values_per_cell=dh.dim, layout='f')
pressure_field = dh.add_array('pressure', values_per_cell=(
3, 3), layout='f', gpu=target == Target.GPU)
dh = ps.create_data_handling(
(size,) * stencil.D, periodicity=True, default_target=target
)
src = dh.add_array("src", values_per_cell=stencil.Q, layout="f")
dst = dh.add_array_like("dst", "src")
rho = dh.add_array("rho", layout="f", latex_name="\\rho", values_per_cell=1)
u = dh.add_array("u", values_per_cell=dh.dim, layout="f")
pressure_field = dh.add_array(
"pressure", values_per_cell=(3, 3), layout="f", gpu=target == Target.GPU
)
force_field = dh.add_array(
'force', values_per_cell=stencil.D, layout='f', gpu=target == Target.GPU)
"force", values_per_cell=stencil.D, layout="f", gpu=target == Target.GPU
)
# Method setup
lbm_config = LBMConfig(stencil=stencil, method=Method.MRT, compressible=True,
weighted=True, zero_centered=False, relaxation_rates=rr_getter,
force_model=Guo(force=force_field.center_vector),
fluctuating={'temperature': kT},
kernel_type='collide_only')
lbm_config = LBMConfig(
stencil=stencil,
method=Method.MRT,
compressible=True,
weighted=True,
zero_centered=zero_centered,
relaxation_rates=rr_getter,
force_model=Guo(force=force_field.center_vector),
fluctuating={"temperature": kT},
kernel_type="collide_only",
)
lb_method = create_lb_method(lbm_config=lbm_config)
lbm_config.lb_method = lb_method
lbm_opt = LBMOptimisation(symbolic_field=src, cse_global=True)
collision_rule = create_lb_collision_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(collision_rule=collision_rule,
lbm_config=lbm_config, lbm_optimisation=lbm_opt)
stream = create_stream_pull_with_output_kernel(collision.method, src, dst,
{'density': rho, 'velocity': u})
lbm_opt = LBMOptimisation(symbolic_field=src, cse_global=True)
collision_rule = create_lb_collision_rule(
lbm_config=lbm_config, lbm_optimisation=lbm_opt
)
# add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(
collision_rule=collision_rule, lbm_config=lbm_config, lbm_optimisation=lbm_opt
)
stream = create_stream_pull_with_output_kernel(
collision.method,
src,
dst,
{"density": rho, "velocity": u, "moment2": pressure_field},
)
config = ps.CreateKernelConfig(cpu_openmp=False, target=dh.default_target)
......@@ -128,15 +171,18 @@ def get_fluctuating_lb(size=None, kT=None,
sync_pdfs = dh.synchronization_function([src.name])
# Initialization
init = macroscopic_values_setter(collision.method, velocity=(0,) * dh.dim,
pdfs=src.center_vector, density=rho.center)
init = macroscopic_values_setter(
collision.method,
velocity=(0,) * dh.dim,
pdfs=src.center_vector,
density=rho_0
)
init_kernel = ps.create_kernel(init, ghost_layers=0).compile()
dh.fill(rho.name, rho_0)
dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(u.name, 0)
dh.fill(force_field.name, np.nan,
ghost_layers=True, inner_ghost_layers=True)
dh.fill(force_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(force_field.name, 0)
dh.run_kernel(init_kernel)
......@@ -144,8 +190,15 @@ def get_fluctuating_lb(size=None, kT=None,
def time_loop(start, steps):
dh.all_to_gpu()
for i in range(start, start + steps):
dh.run_kernel(collision_kernel, omega_shear=omega_shear, omega_bulk=omega_bulk,
omega_odd=omega_odd, omega_even=omega_even, seed=42, time_step=i)
dh.run_kernel(
collision_kernel,
omega_shear=omega_shear,
omega_bulk=omega_bulk,
omega_odd=omega_odd,
omega_even=omega_even,
seed=42,
time_step=i,
)
sync_pdfs()
dh.run_kernel(stream_kernel)
......@@ -156,13 +209,27 @@ def get_fluctuating_lb(size=None, kT=None,
return dh, time_loop
def test_resting_fluid(target=Target.CPU):
rho_0 = 0.86
kT = 4E-4
L = [60] * 3
dh, time_loop = get_fluctuating_lb(size=L[0], target=target,
rho_0=rho_0, kT=kT,
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3)
@pytest.mark.parametrize(
"zero_centered", [False, True], ids=["regular-storage", "zero-centered"]
)
@pytest.mark.parametrize(
"domain_size", [8, 60]
)
def test_resting_fluid(zero_centered: bool, domain_size: int, target=Target.CPU):
rho_0 = 0.86
kT = 4e-4
L = [domain_size] * 3
dh, time_loop = get_fluctuating_lb(
size=L[0],
target=target,
rho_0=rho_0,
kT=kT,
omega_shear=0.8,
omega_bulk=0.5,
omega_even=0.04,
omega_odd=0.3,
zero_centered=zero_centered,
)
# Test
t = 0
......@@ -176,38 +243,43 @@ def test_resting_fluid(target=Target.CPU):
res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation
# mass conservationo
# density per cell fluctuates, but toal mass is conserved
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
# momentum conservation
momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(momentum, [0, 0, 0], atol=1E-10)
np.testing.assert_allclose(momentum, [0, 0, 0], atol=1e-10)
# temperature
# temperature (fluctuates around pre-set kT)
kinetic_energy = 1 / 2 * np.dot(res_rho, res_u * res_u) / np.prod(L)
np.testing.assert_allclose(
kinetic_energy, [kT / 2] * 3, atol=kT * 0.01)
kT_tol = 0.075 *(16/domain_size)**(3/2)
np.testing.assert_allclose(kinetic_energy, [kT / 2] * 3, rtol=kT_tol)
# velocity distribution
v_hist, v_bins = np.histogram(
res_u, bins=11, range=(-.075, .075), density=True)
res_u, bins=11, range=(-0.075, 0.075), density=True
)
# Calculate expected values from single
v_expected = []
for j in range(len(v_hist)):
# Maxwell distribution
res = 1. / (v_bins[j + 1] - v_bins[j]) * \
single_component_maxwell(
v_bins[j], v_bins[j + 1], kT, rho_0)
res = (
1.0
/ (v_bins[j + 1] - v_bins[j])
* single_component_maxwell(v_bins[j], v_bins[j + 1], kT, rho_0)
)
v_expected.append(res)
v_expected = np.array(v_expected)
# 10% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.1)
# 1% accuracy on the middle part
hist_tol_all = 0.75 *(16/domain_size)**(3/2)
np.testing.assert_allclose(v_hist, v_expected, rtol=hist_tol_all)
hist_tol_center = hist_tol_all/10
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.01)
v_hist[remove:-remove], v_expected[remove:-remove], rtol=hist_tol_center
)
# pressure tensor against expressions from
# Duenweg, Schiller, Ladd, https://arxiv.org/abs/0707.1581
......@@ -220,19 +292,35 @@ def test_resting_fluid(target=Target.CPU):
# Diagonal elements are rho c_s^22 +<u,u>. When the fluid is
# thermalized, the expectation value of <u,u> = kT due to the
# equi-partition theorem.
p_av_expected = np.diag([rho_0 * c_s ** 2 + kT] * 3)
p_av_expected = np.diag([rho_0 * c_s**2 + kT] * 3)
pressure_atol = c_s**2 / 200 *(16/domain_size)**(3/2)
np.testing.assert_allclose(
np.mean(res_pressure, axis=0), p_av_expected, atol=c_s ** 2 / 2000)
np.mean(res_pressure, axis=0), p_av_expected, atol=pressure_atol)
def test_point_force(target=Target.CPU):
@pytest.mark.parametrize(
"zero_centered", [False, True], ids=["regular-storage", "zero-centered"]
)
@pytest.mark.parametrize(
"domain_size", [8, 60]
)
def test_point_force(zero_centered: bool, domain_size: int, target=Target.CPU):
"""Test momentum balance for thermalized fluid with applied poitn forces"""
rho_0 = 0.86
kT = 4E-4
L = [8] * 3
dh, time_loop = get_fluctuating_lb(size=L[0], target=target,
rho_0=rho_0, kT=kT,
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3)
kT = 4e-4
L = [domain_size] * 3
dh, time_loop = get_fluctuating_lb(
size=L[0],
target=target,
rho_0=rho_0,
kT=kT,
omega_shear=0.8,
omega_bulk=0.5,
omega_even=0.8,
omega_odd=0.8,
zero_centered=zero_centered
)
# Test
t = 0
......@@ -241,17 +329,17 @@ def test_point_force(target=Target.CPU):
introduced_momentum = np.zeros(3)
for i in range(100):
point_force = 1E-5 * (np.random.random(3) - .5)
point_force = 1e-2/domain_size**(3/2) * (np.random.random(3) - 0.5)
introduced_momentum += point_force
# Note that ghost layers are included in the indexing
force_pos = np.random.randint(1, L[0] - 2, size=3)
dh.cpu_arrays["force"][force_pos[0],
force_pos[1], force_pos[2]] = point_force
dh.cpu_arrays["force"][force_pos[0], force_pos[1], force_pos[2]] = point_force
t = time_loop(t, 1)
res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
......@@ -259,52 +347,72 @@ def test_point_force(target=Target.CPU):
# momentum conservation
momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(
momentum, introduced_momentum + 0.5 * point_force, atol=1E-10)
dh.cpu_arrays["force"][force_pos[0],
force_pos[1], force_pos[2]] = np.zeros(3)
@pytest.mark.skipif(not get_supported_instruction_sets(), reason="No vector instruction sets supported")
@pytest.mark.parametrize('data_type', ("float32", "float64"))
@pytest.mark.parametrize('assume_aligned', (True, False))
@pytest.mark.parametrize('assume_inner_stride_one', (True, False))
@pytest.mark.parametrize('assume_sufficient_line_padding', (True, False))
def test_vectorization(data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding):
momentum, introduced_momentum + 0.5 * point_force, atol=1e-10
)
dh.cpu_arrays["force"][force_pos[0], force_pos[1], force_pos[2]] = np.zeros(3)
@pytest.mark.skipif(
not get_supported_instruction_sets(), reason="No vector instruction sets supported"
)
@pytest.mark.parametrize("data_type", ("float32", "float64"))
@pytest.mark.parametrize("assume_aligned", (True, False))
@pytest.mark.parametrize("assume_inner_stride_one", (True, False))
@pytest.mark.parametrize("assume_sufficient_line_padding", (True, False))
def test_vectorization(
data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding
):
stencil = LBStencil(Stencil.D3Q19)
pdfs, pdfs_tmp = ps.fields(f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout='fzyx')
pdfs, pdfs_tmp = ps.fields(
f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout="fzyx"
)
method = create_mrt_orthogonal(
stencil=stencil,
stencil=stencil, compressible=True, weighted=True, relaxation_rates=rr_getter
)
rng_node = (
ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
)
lbm_config = LBMConfig(
lb_method=method,
fluctuating={
"temperature": sp.Symbol("kT"),
"rng_node": rng_node,
"block_offsets": tuple([0] * stencil.D),
},
compressible=True,
weighted=True,
relaxation_rates=rr_getter)
rng_node = ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
lbm_config = LBMConfig(lb_method=method, fluctuating={'temperature': sp.Symbol("kT"),
'rng_node': rng_node,
'block_offsets': tuple([0] * stencil.D)},
compressible=True, zero_centered=False,
stencil=method.stencil, kernel_type='collide_only')
lbm_opt = LBMOptimisation(cse_global=True, symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp)
zero_centered=False,
stencil=method.stencil,
kernel_type="collide_only",
)
lbm_opt = LBMOptimisation(
cse_global=True, symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp
)
collision = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
instruction_sets = _skip_instruction_sets_windows(get_supported_instruction_sets())
instruction_set = instruction_sets[-1]
config = ps.CreateKernelConfig(target=Target.CPU,
data_type=data_type, default_number_float=data_type,
cpu_vectorize_info={'instruction_set': instruction_set,
'assume_aligned': assume_aligned,
'assume_inner_stride_one': assume_inner_stride_one,
'assume_sufficient_line_padding': assume_sufficient_line_padding,
}
)
if not assume_inner_stride_one and 'storeS' not in get_vector_instruction_set(data_type, instruction_set):
config = ps.CreateKernelConfig(
target=Target.CPU,
data_type=data_type,
default_number_float=data_type,
cpu_vectorize_info={
"instruction_set": instruction_set,
"assume_aligned": assume_aligned,
"assume_inner_stride_one": assume_inner_stride_one,
"assume_sufficient_line_padding": assume_sufficient_line_padding,
},
)
if not assume_inner_stride_one and "storeS" not in get_vector_instruction_set(
data_type, instruction_set
):
with pytest.warns(UserWarning) as pytest_warnings:
ast = ps.create_kernel(collision, config=config)
assert 'Could not vectorize loop' in pytest_warnings[0].message.args[0]
assert "Could not vectorize loop" in pytest_warnings[0].message.args[0]
else:
ast = ps.create_kernel(collision, config=config)
ast.compile()
......@@ -312,31 +420,54 @@ def test_vectorization(data_type, assume_aligned, assume_inner_stride_one, assum
print(code)
@pytest.mark.parametrize('data_type', ("float32", "float64"))
@pytest.mark.parametrize('assume_aligned', (True, False))
@pytest.mark.parametrize('assume_inner_stride_one', (True, False))
@pytest.mark.parametrize('assume_sufficient_line_padding', (True, False))
def test_fluctuating_lb_issue_188_wlb(data_type, assume_aligned,
assume_inner_stride_one, assume_sufficient_line_padding):
@pytest.mark.parametrize("data_type", ("float32", "float64"))
@pytest.mark.parametrize("assume_aligned", (True, False))
@pytest.mark.parametrize("assume_inner_stride_one", (True, False))
@pytest.mark.parametrize("assume_sufficient_line_padding", (True, False))
def test_fluctuating_lb_issue_188_wlb(
data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding
):
stencil = LBStencil(Stencil.D3Q19)
temperature = sp.symbols("temperature")
pdfs, pdfs_tmp = ps.fields(f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout='fzyx')
rng_node = ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
fluctuating = {'temperature': temperature,
'block_offsets': 'walberla',
'rng_node': rng_node}
lbm_config = LBMConfig(stencil=stencil, method=Method.MRT, compressible=True,
weighted=True, zero_centered=False, relaxation_rate=1.4,
fluctuating=fluctuating)
lbm_opt = LBMOptimisation(symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp, cse_global=True)
pdfs, pdfs_tmp = ps.fields(
f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout="fzyx"
)
rng_node = (
ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
)
fluctuating = {
"temperature": temperature,
"block_offsets": "walberla",
"rng_node": rng_node,
}
lbm_config = LBMConfig(
stencil=stencil,
method=Method.MRT,
compressible=True,
weighted=True,
zero_centered=False,
relaxation_rate=1.4,
fluctuating=fluctuating,
)
lbm_opt = LBMOptimisation(
symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp, cse_global=True
)
up = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
cpu_vectorize_info = {'instruction_set': 'avx', 'assume_inner_stride_one': True, 'assume_aligned': True}
config = ps.CreateKernelConfig(target=ps.Target.CPU, data_type=data_type, default_number_float=data_type,
cpu_vectorize_info=cpu_vectorize_info)
cpu_vectorize_info = {
"instruction_set": "avx",
"assume_inner_stride_one": True,
"assume_aligned": True,
}
config = ps.CreateKernelConfig(
target=ps.Target.CPU,
data_type=data_type,
default_number_float=data_type,
cpu_vectorize_info=cpu_vectorize_info,
)
ast = create_kernel(up, config=config)
code = ps.get_code_str(ast)
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment