Skip to content
Snippets Groups Projects
Commit adffe684 authored by Markus Holzer's avatar Markus Holzer Committed by Michael Kuron
Browse files

Enable all test cases in windows pipeline

parent a18d80af
No related branches found
No related tags found
1 merge request!64Enable all test cases in windows pipeline
...@@ -96,12 +96,15 @@ minimal-windows: ...@@ -96,12 +96,15 @@ minimal-windows:
tags: tags:
- win - win
script: script:
- export NUM_CORES=$(nproc --all)
- export MPLBACKEND=Agg
- source /cygdrive/c/Users/build/Miniconda3/Scripts/activate - source /cygdrive/c/Users/build/Miniconda3/Scripts/activate
- source activate pystencils - source activate pystencils
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils - pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- env
- pip list - pip list
- python -c "import numpy" - python -c "import numpy"
- python setup.py quicktest - py.test -v -n $NUM_CORES -m "not (notebook or longrun)"
ubuntu: ubuntu:
stage: test stage: test
......
...@@ -11,6 +11,7 @@ from lbmpy.phasefield.experiments2D import ( ...@@ -11,6 +11,7 @@ from lbmpy.phasefield.experiments2D import (
create_two_drops_between_phases, write_phase_field_picture_sequence, create_two_drops_between_phases, write_phase_field_picture_sequence,
write_phase_velocity_picture_sequence) write_phase_velocity_picture_sequence)
from lbmpy.phasefield.phasefieldstep import PhaseFieldStep from lbmpy.phasefield.phasefieldstep import PhaseFieldStep
from lbmpy.phasefield.scenarios import *
from pystencils import make_slice from pystencils import make_slice
...@@ -47,3 +48,31 @@ def test_falling_drop(): ...@@ -47,3 +48,31 @@ def test_falling_drop():
file_pattern = os.path.join(tmp_dir, "output_%d.png") file_pattern = os.path.join(tmp_dir, "output_%d.png")
write_phase_velocity_picture_sequence(sc, file_pattern, total_steps=200) write_phase_velocity_picture_sequence(sc, file_pattern, total_steps=200)
assert np.isfinite(np.max(sc.phi[:, :, :])) assert np.isfinite(np.max(sc.phi[:, :, :]))
def test_setup():
domain_size = (30, 15)
scenarios = [
create_three_phase_model(domain_size=domain_size, include_rho=True),
#create_three_phase_model(domain_size=domain_size, include_rho=False),
create_n_phase_model_penalty_term(domain_size=domain_size, num_phases=4),
]
for i, sc in enumerate(scenarios):
print("Testing scenario", i)
sc.set_concentration(make_slice[:, :0.5], [1, 0, 0])
sc.set_concentration(make_slice[:, 0.5:], [0, 1, 0])
sc.set_concentration(make_slice[0.4:0.6, 0.4:0.6], [0, 0, 1])
sc.set_pdf_fields_from_macroscopic_values()
sc.run(10)
def test_fd_cahn_hilliard():
sc = create_n_phase_model_penalty_term(domain_size=(100, 50), num_phases=3,
solve_cahn_hilliard_with_finite_differences=True)
sc.set_concentration(make_slice[:, 0.5:], [1, 0, 0])
sc.set_concentration(make_slice[:, :0.5], [0, 1, 0])
sc.set_concentration(make_slice[0.3:0.7, 0.3:0.7], [0, 0, 1])
sc.set_pdf_fields_from_macroscopic_values()
sc.run(100)
assert np.isfinite(np.max(sc.concentration[:, :]))
from lbmpy.phasefield.scenarios import *
from pystencils import make_slice
def test_setup():
domain_size = (30, 15)
scenarios = [
create_three_phase_model(domain_size=domain_size, include_rho=True),
#create_three_phase_model(domain_size=domain_size, include_rho=False),
create_n_phase_model_penalty_term(domain_size=domain_size, num_phases=4),
]
for i, sc in enumerate(scenarios):
print("Testing scenario", i)
sc.set_concentration(make_slice[:, :0.5], [1, 0, 0])
sc.set_concentration(make_slice[:, 0.5:], [0, 1, 0])
sc.set_concentration(make_slice[0.4:0.6, 0.4:0.6], [0, 0, 1])
sc.set_pdf_fields_from_macroscopic_values()
sc.run(10)
def test_fd_cahn_hilliard():
sc = create_n_phase_model_penalty_term(domain_size=(100, 50), num_phases=3,
solve_cahn_hilliard_with_finite_differences=True)
sc.set_concentration(make_slice[:, 0.5:], [1, 0, 0])
sc.set_concentration(make_slice[:, :0.5], [0, 1, 0])
sc.set_concentration(make_slice[0.3:0.7, 0.3:0.7], [0, 0, 1])
sc.set_pdf_fields_from_macroscopic_values()
sc.run(100)
assert np.isfinite(np.max(sc.concentration[:, :]))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment