Skip to content
Snippets Groups Projects
Commit 13f670d1 authored by Markus Holzer's avatar Markus Holzer
Browse files

Merge branch 'fluctuation_test' into 'master'

Thermalized LB: test 4 rel time model velocity and pressure fluctuations

See merge request !39
parents 2198c894 20bf501c
1 merge request!39Thermalized LB: test 4 rel time model velocity and pressure fluctuations
Pipeline #27382 passed with stages
in 30 minutes and 16 seconds
""" """Tests velocity and stress fluctuations for thermalized LB"""
This tests that for the thermalized LB (MRT with 15 equal relaxation times),
the correct temperature is obtained and the velocity distribution matches
the Maxwell-Boltzmann distribution
"""
import pystencils as ps import pystencils as ps
from lbmpy.lbstep import LatticeBoltzmannStep from lbmpy.creationfunctions import *
from lbmpy.creationfunctions import create_lb_collision_rule from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
from lbmpy.relaxationrates import relaxation_rate_from_lattice_viscosity, relaxation_rate_from_magic_number
import numpy as np import numpy as np
import pickle from lbmpy.moments import is_bulk_moment, is_shear_moment, get_order
import gzip
from time import time
def single_component_maxwell(x1, x2, kT): def single_component_maxwell(x1, x2, kT, mass):
"""Integrate the probability density from x1 to x2 using the trapezoidal rule""" """Integrate the probability density from x1 to x2 using the trapezoidal rule"""
x = np.linspace(x1, x2, 1000) x = np.linspace(x1, x2, 1000)
return np.trapz(np.exp(-x**2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT) return np.trapz(np.exp(-mass * x**2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT/mass)
def run_scenario(scenario, steps): def rr_getter(moment_group):
scenario.pre_run() """Maps a group of moments to a relaxation rate (shear, bulk, even, odd)
for t in range(scenario.time_steps_run, scenario.time_steps_run + steps): in the 4 relaxation time thermalized LB model
scenario.kernel_params['time_step'] = t """
scenario.time_step() is_shear = [is_shear_moment(m, 3) for m in moment_group]
scenario.post_run() is_bulk = [is_bulk_moment(m, 3) for m in moment_group]
scenario.time_steps_run += steps order = [get_order(m) for m in moment_group]
assert min(order) == max(order)
order = order[0]
def create_scenario(domain_size, temperature=None, viscosity=None, seed=2, target='cpu', openmp=4, num_rel_rates=None):
rr = [relaxation_rate_from_lattice_viscosity(viscosity)] if order < 2:
rr = rr*num_rel_rates return 0
cr = create_lb_collision_rule( elif any(is_bulk):
stencil='D3Q19', compressible=True, assert all(is_bulk)
method='mrt', weighted=True, relaxation_rates=rr, return sp.Symbol("omega_bulk")
fluctuating={'temperature': temperature, 'seed': seed}, elif any(is_shear):
optimization={'cse_global': True, 'split': False, assert all(is_shear)
'cse_pdfs': True, 'vectorization': True} return sp.Symbol("omega_shear")
elif order % 2 == 0:
assert order > 2
return sp.Symbol("omega_even")
else:
return sp.Symbol("omega_odd")
def second_order_moment_tensor_assignments(function_values, stencil, output_field):
"""Assignments for calculating the pressure tensor"""
assert len(function_values) == len(stencil)
dim = len(stencil[0])
return [ps.Assignment(output_field(i, j),
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)))
for i in range(dim) for j in range(dim)]
def add_pressure_output_to_collision_rule(collision_rule, pressure_field):
pressure_ouput = second_order_moment_tensor_assignments(collision_rule.method.pre_collision_pdf_symbols,
collision_rule.method.stencil, pressure_field)
collision_rule.main_assignments = collision_rule.main_assignments + pressure_ouput
def get_fluctuating_lb(size=None, kT=None, omega_shear=None, omega_bulk=None, omega_odd=None, omega_even=None, rho_0=None, target=None):
# Parameters
stencil = get_stencil('D3Q19')
# Setup data handling
dh = ps.create_data_handling(
[size]*3, periodicity=True, default_target=target)
src = dh.add_array('src', values_per_cell=len(stencil), layout='f')
dst = dh.add_array_like('dst', 'src')
rho = dh.add_array('rho', layout='f', latex_name='\\rho')
u = dh.add_array('u', values_per_cell=dh.dim, layout='f')
pressure_field = dh.add_array('pressure', values_per_cell=(
3, 3), layout='f', gpu=target == 'gpu')
force_field = dh.add_array(
'force', values_per_cell=3, layout='f', gpu=target == 'gpu')
# Method setup
method = create_mrt_orthogonal(
stencil=get_stencil('D3Q19'),
compressible=True,
weighted=True,
relaxation_rate_getter=rr_getter,
force_model=force_model_from_string('schiller', force_field.center_vector))
collision_rule = create_lb_collision_rule(
method,
fluctuating={
'temperature': kT
},
optimization={'cse_global': True}
) )
return LatticeBoltzmannStep(periodicity=(True, True, True), domain_size=domain_size, compressible=True, stencil='D3Q19', collision_rule=cr, optimization={'target': target, 'openmp': openmp})
def test_fluctuating_mrt():
# Unit conversions (MD to lattice) for parameters known to work with Espresso
agrid = 1.
m = 1. # mass per node
tau = 0.01 # time step
temperature = 4. / (m * agrid**2/tau**2)
viscosity = 3. * tau / agrid**2
n = 8
sc = create_scenario((n, n, n), viscosity=viscosity, temperature=temperature,
target='cpu', openmp=4, num_rel_rates=15)
assert np.average(sc.velocity[:, :, :]) == 0.
# Warmup
run_scenario(sc, steps=500)
# sampling:
steps = 20000
v = np.zeros((steps, n, n, n, 3))
for i in range(steps):
run_scenario(sc, steps=2)
v[i, :, :, :, :] = np.copy(sc.velocity[:, :, :, :])
v = v.reshape((steps*n*n*n, 3))
np.testing.assert_allclose(np.mean(v, axis=0), [0, 0, 0], atol=6E-7)
np.testing.assert_allclose(
np.var(v, axis=0), [temperature, temperature, temperature], rtol=1E-2)
v_hist, v_bins = np.histogram(v, bins=11, range=(-.08, .08), density=True)
# Calculate expected values from single
v_expected = []
for i in range(len(v_hist)):
# Maxwell distribution
res = np.exp(-v_bins[i]**2/(2.*temperature)) / \
np.sqrt(2*np.pi*temperature)
res = 1./(v_bins[i+1]-v_bins[i]) * \
single_component_maxwell(v_bins[i], v_bins[i+1], temperature)
v_expected.append(res)
v_expected = np.array(v_expected)
# 8% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.08)
# 0.5% accuracy on the middle part
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.005)
add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(collision_rule=collision_rule,
stencil=stencil,
method=method,
compressible=True,
kernel_type='collide_only',
optimization={'symbolic_field': src})
stream = create_stream_pull_with_output_kernel(collision.method, src, dst,
{'density': rho, 'velocity': u})
opts = {'cpu_openmp': True,
'cpu_vectorize_info': None,
'target': dh.default_target}
# Compile kernels
stream_kernel = ps.create_kernel(stream, **opts).compile()
collision_kernel = ps.create_kernel(collision, **opts).compile()
sync_pdfs = dh.synchronization_function([src.name])
# Initialization
init = macroscopic_values_setter(collision.method, velocity=(0,)*dh.dim,
pdfs=src.center_vector, density=rho.center)
init_kernel = ps.create_kernel(init, ghost_layers=0).compile()
dh.fill(rho.name, rho_0)
dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(u.name, 0)
dh.fill(force_field.name, np.nan,
ghost_layers=True, inner_ghost_layers=True)
dh.fill(force_field.name, 0)
dh.run_kernel(init_kernel)
# time loop
def time_loop(start, steps):
dh.all_to_gpu()
for i in range(start, start+steps):
dh.run_kernel(collision_kernel, omega_shear=omega_shear, omega_bulk=omega_bulk,
omega_odd=omega_odd, omega_even=omega_even, seed=42, time_step=i)
sync_pdfs()
dh.run_kernel(stream_kernel)
dh.swap(src.name, dst.name)
return start+steps
return dh, time_loop
def test_resting_fluid(target="cpu"):
rho_0 = 0.86
kT = 4E-4
L = [60]*3
dh, time_loop = get_fluctuating_lb(size=L[0], target=target,
rho_0=rho_0, kT=kT,
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3)
# Test
t = 0
# warm up
t = time_loop(t, 10)
# Measurement
for i in range(10):
t = time_loop(t, 5)
res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
# momentum conservation
momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(momentum, [0, 0, 0], atol=1E-10)
# temperature
kinetic_energy = 1/2*np.dot(res_rho, res_u*res_u)/np.product(L)
np.testing.assert_allclose(
kinetic_energy, [kT/2]*3, atol=kT*0.01)
# velocity distribution
v_hist, v_bins = np.histogram(
res_u, bins=11, range=(-.075, .075), density=True)
# Calculate expected values from single
v_expected = []
for j in range(len(v_hist)):
# Maxwell distribution
res = 1./(v_bins[j+1]-v_bins[j]) * \
single_component_maxwell(
v_bins[j], v_bins[j+1], kT, rho_0)
v_expected.append(res)
v_expected = np.array(v_expected)
# 10% accuracy on the entire histogram
np.testing.assert_allclose(v_hist, v_expected, rtol=0.1)
# 1% accuracy on the middle part
remove = 3
np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.01)
# pressure tensor against expressions from
# Duenweg, Schiller, Ladd, https://arxiv.org/abs/0707.1581
res_pressure = dh.gather_array("pressure").reshape((-1, 3, 3))
c_s = np.sqrt(1/3) # speed of sound
# average of pressure tensor
# Diagonal elements are rho c_s^22 +<u,u>. When the fluid is
# thermalized, the expectation value of <u,u> = kT due to the
# equi-partition theorem.
p_av_expected = np.diag([rho_0*c_s**2 + kT]*3)
np.testing.assert_allclose(
np.mean(res_pressure, axis=0), p_av_expected, atol=c_s**2/2000)
def test_point_force(target="cpu"):
"""Test momentum balance for thermalized fluid with applied poitn forces"""
rho_0 = 0.86
kT = 4E-4
L = [8]*3
dh, time_loop = get_fluctuating_lb(size=L[0], target=target,
rho_0=rho_0, kT=kT,
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3)
# Test
t = 0
# warm up
t = time_loop(t, 100)
introduced_momentum = np.zeros(3)
for i in range(100):
point_force = 1E-5*(np.random.random(3) - .5)
introduced_momentum += point_force
# Note that ghost layers are included in the indexing
force_pos = np.random.randint(1, L[0]-2, size=3)
dh.cpu_arrays["force"][force_pos[0],
force_pos[1], force_pos[2]] = point_force
t = time_loop(t, 1)
res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
# momentum conservation
momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(
momentum, introduced_momentum + 0.5 * point_force, atol=1E-10)
dh.cpu_arrays["force"][force_pos[0],
force_pos[1], force_pos[2]] = np.zeros(3)
import numpy as np
from lbmpy.scenarios import create_channel
def test_fluctuating_generation_pipeline():
ch = create_channel((10, 10), stencil='D2Q9', method='mrt', weighted=True, relaxation_rates=[1.5] * 5, force=1e-5,
force_model='luo', fluctuating={'temperature': 1e-9}, kernel_params={'time_step': 1, 'seed': 312},
optimization={'cse_global': True})
ch.run(10)
assert np.max(ch.velocity[:, :]) < 0.1
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment