Skip to content
Snippets Groups Projects
Select Git revision
  • eea91c5e67f310005708c8b8b6fc807b772ea8a1
  • master default protected
  • suffa/cumulantfourth_order_correction_with_psm
  • mr_refactor_wfb
  • Sparse
  • WallLaw
  • improved_comm
  • release/1.3.7
  • release/1.3.6
  • release/1.3.5
  • release/1.3.4
  • release/1.3.3
  • release/1.3.2
  • release/1.3.1
  • release/1.3
  • release/1.2
  • release/1.1.1
  • release/1.1
  • release/1.0.1
  • release/1.0
  • release/0.4.4
  • release/0.4.3
  • release/0.4.2
  • release/0.4.1
  • release/0.4.0
  • release/0.3.4
  • release/0.3.3
27 results

conftest.py

Blame
  • test_gpu.py 9.89 KiB
    import pytest
    
    import numpy as np
    import sympy as sp
    from scipy.ndimage import convolve
    
    from pystencils import (
        Assignment,
        Field,
        fields,
        CreateKernelConfig,
        create_kernel,
        Target,
    )
    
    from pystencils.slicing import (
        add_ghost_layers,
        make_slice,
        remove_ghost_layers,
        normalize_slice,
    )
    
    try:
        import cupy as cp
    
        device_numbers = range(cp.cuda.runtime.getDeviceCount())
    except ImportError:
        pytest.skip(reason="CuPy is not available", allow_module_level=True)
    
    
    @pytest.mark.parametrize("indexing_scheme", ["linear3d", "blockwise4d"])
    @pytest.mark.parametrize("omit_range_check", [False, True])
    @pytest.mark.parametrize("manual_grid", [False, True])
    def test_indexing_options(
        indexing_scheme: str, omit_range_check: bool, manual_grid: bool
    ):
        src, dst = fields("src, dst: [3D]")
        asm = Assignment(
            dst.center(),
            src[-1, 0, 0]
            + src[1, 0, 0]
            + src[0, -1, 0]
            + src[0, 1, 0]
            + src[0, 0, -1]
            + src[0, 0, 1],
        )
    
        cfg = CreateKernelConfig(target=Target.CUDA)
        cfg.gpu.indexing_scheme = indexing_scheme
        cfg.gpu.omit_range_check = omit_range_check
        cfg.gpu.manual_launch_grid = manual_grid
    
        ast = create_kernel(asm, cfg)
        kernel = ast.compile()
    
        src_arr = cp.ones((18, 34, 42))
        dst_arr = cp.zeros_like(src_arr)
    
        if manual_grid:
            match indexing_scheme:
                case "linear3d":
                    kernel.launch_config.block_size = (10, 8, 8)
                    kernel.launch_config.grid_size = (4, 4, 2)
                case "blockwise4d":
                    kernel.launch_config.block_size = (40, 1, 1)
                    kernel.launch_config.grid_size = (32, 16, 1)
    
        elif indexing_scheme == "linear3d":
            kernel.launch_config.block_size = (10, 8, 8)
    
        kernel(src=src_arr, dst=dst_arr)
    
        expected = cp.zeros_like(src_arr)
        expected[1:-1, 1:-1, 1:-1].fill(6.0)
    
        cp.testing.assert_allclose(dst_arr, expected)
    
    
    def test_invalid_indexing_schemes():
        src, dst = fields("src, dst: [4D]")
        asm = Assignment(src.center(0), dst.center(0))
    
        cfg = CreateKernelConfig(target=Target.CUDA)
        cfg.gpu.indexing_scheme = "linear3d"
    
        with pytest.raises(Exception):
            create_kernel(asm, cfg)
    
    
    def test_averaging_kernel():
        size = (40, 55)
        src_arr = np.random.rand(*size)
        src_arr = add_ghost_layers(src_arr)
        dst_arr = np.zeros_like(src_arr)
        src_field = Field.create_from_numpy_array("src", src_arr)
        dst_field = Field.create_from_numpy_array("dst", dst_arr)
    
        update_rule = Assignment(
            dst_field[0, 0],
            (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4,
        )
    
        config = CreateKernelConfig(target=Target.GPU)
        ast = create_kernel(update_rule, config=config)
        kernel = ast.compile()
    
        gpu_src_arr = cp.asarray(src_arr)
        gpu_dst_arr = cp.asarray(dst_arr)
        kernel(src=gpu_src_arr, dst=gpu_dst_arr)
        dst_arr = gpu_dst_arr.get()
    
        stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0
        reference = convolve(
            remove_ghost_layers(src_arr), stencil, mode="constant", cval=0.0
        )
        reference = add_ghost_layers(reference)
        np.testing.assert_almost_equal(reference, dst_arr)
    
    
    def test_variable_sized_fields():
        src_field = Field.create_generic("src", spatial_dimensions=2)
        dst_field = Field.create_generic("dst", spatial_dimensions=2)
    
        update_rule = Assignment(
            dst_field[0, 0],
            (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4,
        )
    
        config = CreateKernelConfig(target=Target.GPU)
        ast = create_kernel(update_rule, config=config)
        kernel = ast.compile()
    
        size = (3, 3)
        src_arr = np.random.rand(*size)
        src_arr = add_ghost_layers(src_arr)
        dst_arr = np.zeros_like(src_arr)
    
        gpu_src_arr = cp.asarray(src_arr)
        gpu_dst_arr = cp.asarray(dst_arr)
        kernel(src=gpu_src_arr, dst=gpu_dst_arr)
        dst_arr = gpu_dst_arr.get()
    
        stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0
        reference = convolve(
            remove_ghost_layers(src_arr), stencil, mode="constant", cval=0.0
        )
        reference = add_ghost_layers(reference)
        np.testing.assert_almost_equal(reference, dst_arr)
    
    
    def test_multiple_index_dimensions():
        """Sums along the last axis of a numpy array"""
        src_size = (7, 6, 4)
        dst_size = src_size[:2]
        src_arr = np.array(np.random.rand(*src_size))
        dst_arr = np.zeros(dst_size)
    
        src_field = Field.create_from_numpy_array("src", src_arr, index_dimensions=1)
        dst_field = Field.create_from_numpy_array("dst", dst_arr, index_dimensions=0)
    
        offset = (-2, -1)
        update_rule = Assignment(
            dst_field[0, 0],
            sum([src_field[offset[0], offset[1]](i) for i in range(src_size[-1])]),
        )
    
        config = CreateKernelConfig(target=Target.GPU)
        ast = create_kernel([update_rule], config=config)
        kernel = ast.compile()
    
        gpu_src_arr = cp.asarray(src_arr)
        gpu_dst_arr = cp.asarray(dst_arr)
        kernel(src=gpu_src_arr, dst=gpu_dst_arr)
        dst_arr = gpu_dst_arr.get()
    
        reference = np.zeros_like(dst_arr)
        gl = np.max(np.abs(np.array(offset, dtype=int)))
        for x in range(gl, src_size[0] - gl):
            for y in range(gl, src_size[1] - gl):
                reference[x, y] = sum(
                    [src_arr[x + offset[0], y + offset[1], i] for i in range(src_size[2])]
                )
    
        np.testing.assert_almost_equal(reference, dst_arr)
    
    
    def test_ghost_layer():
        size = (6, 5)
        src_arr = np.ones(size)
        dst_arr = np.zeros_like(src_arr)
        src_field = Field.create_from_numpy_array("src", src_arr, index_dimensions=0)
        dst_field = Field.create_from_numpy_array("dst", dst_arr, index_dimensions=0)
    
        update_rule = Assignment(dst_field[0, 0], src_field[0, 0])
        ghost_layers = [(1, 2), (2, 1)]
    
        config = CreateKernelConfig()
        config.target = Target.CUDA
        config.ghost_layers = ghost_layers
        config.gpu.indexing_scheme = "blockwise4d"
    
        ast = create_kernel(update_rule, config=config)
        kernel = ast.compile()
    
        gpu_src_arr = cp.asarray(src_arr)
        gpu_dst_arr = cp.asarray(dst_arr)
        kernel(src=gpu_src_arr, dst=gpu_dst_arr)
        dst_arr = gpu_dst_arr.get()
    
        reference = np.zeros_like(src_arr)
        reference[
            ghost_layers[0][0] : -ghost_layers[0][1],
            ghost_layers[1][0] : -ghost_layers[1][1],
        ] = 1
        np.testing.assert_equal(reference, dst_arr)
    
    
    def test_setting_value():
        arr_cpu = np.arange(25, dtype=np.float64).reshape(5, 5)
        arr_gpu = cp.asarray(arr_cpu)
    
        iteration_slice = make_slice[:, :]
        f = Field.create_generic("f", 2)
        update_rule = [Assignment(f(0), sp.Symbol("value"))]
    
        config = CreateKernelConfig()
        config.target = Target.CUDA
        config.iteration_slice = iteration_slice
        config.gpu.indexing_scheme = "blockwise4d"
    
        ast = create_kernel(update_rule, config=config)
        kernel = ast.compile()
    
        kernel(f=arr_gpu, value=np.float64(42.0))
        np.testing.assert_equal(arr_gpu.get(), np.ones((5, 5)) * 42.0)
    
    
    def test_periodicity():
        from pystencils.gpu.periodicity import get_periodic_boundary_functor as periodic_gpu
        from pystencils.slicing import get_periodic_boundary_functor as periodic_cpu
    
        arr_cpu = np.arange(50, dtype=np.float64).reshape(5, 5, 2)
        arr_gpu = cp.asarray(arr_cpu)
    
        periodicity_stencil = [(1, 0), (-1, 0), (1, 1)]
        periodic_gpu_kernel = periodic_gpu(periodicity_stencil, (5, 5), 1, 2)
        periodic_cpu_kernel = periodic_cpu(periodicity_stencil)
    
        cpu_result = np.copy(arr_cpu)
        periodic_cpu_kernel(cpu_result)
    
        periodic_gpu_kernel(arr_gpu)
        gpu_result = arr_gpu.get()
        np.testing.assert_equal(cpu_result, gpu_result)
    
    
    @pytest.mark.parametrize("device_number", device_numbers)
    @pytest.mark.xfail(reason="Block indexing specification is not available yet")
    def test_block_indexing(device_number):
        f = fields("f: [3D]")
        s = normalize_slice(make_slice[:, :, :], f.spatial_shape)
        bi = BlockIndexing(
            s, f.layout, block_size=(16, 8, 2), permute_block_size_dependent_on_layout=False
        )
        assert bi.call_parameters((3, 2, 32))["block"] == (3, 2, 32)
        assert bi.call_parameters((32, 2, 32))["block"] == (16, 2, 8)
    
        bi = BlockIndexing(
            s, f.layout, block_size=(32, 1, 1), permute_block_size_dependent_on_layout=False
        )
        assert bi.call_parameters((1, 16, 16))["block"] == (1, 16, 2)
    
        bi = BlockIndexing(
            s,
            f.layout,
            block_size=(16, 8, 2),
            maximum_block_size="auto",
            device_number=device_number,
        )
    
        # This function should be used if number of needed registers is known. Can be determined with func.num_regs
        registers_per_thread = 1000
        blocks = bi.limit_block_size_by_register_restriction(
            [1024, 1024, 1], registers_per_thread
        )
    
        if cp.cuda.runtime.is_hip:
            max_registers_per_block = cp.cuda.runtime.deviceGetAttribute(71, device_number)
        else:
            device = cp.cuda.Device(device_number)
            da = device.attributes
            max_registers_per_block = da.get("MaxRegistersPerBlock")
    
        assert np.prod(blocks) * registers_per_thread < max_registers_per_block
    
    
    @pytest.mark.parametrize("gpu_indexing", ("block", "line"))
    @pytest.mark.parametrize("layout", ("C", "F"))
    @pytest.mark.parametrize("shape", ((5, 5, 5, 5), (3, 17, 387, 4), (23, 44, 21, 11)))
    @pytest.mark.xfail(reason="4D kernels not available yet")
    def test_four_dimensional_kernel(gpu_indexing, layout, shape):
        n_elements = np.prod(shape)
    
        arr_cpu = np.arange(n_elements, dtype=np.float64).reshape(shape, order=layout)
        arr_gpu = cp.asarray(arr_cpu)
    
        iteration_slice = make_slice[:, :, :, :]
        f = Field.create_from_numpy_array("f", arr_cpu)
        update_rule = [Assignment(f.center, sp.Symbol("value"))]
    
        config = CreateKernelConfig(
            target=Target.GPU, gpu=gpu_indexing, iteration_slice=iteration_slice
        )
        ast = create_kernel(update_rule, config=config)
        kernel = ast.compile()
    
        kernel(f=arr_gpu, value=np.float64(42.0))
        np.testing.assert_equal(arr_gpu.get(), np.ones(shape) * 42.0)