Skip to content
Snippets Groups Projects
Commit 02e0a22d authored by Christoph Alt's avatar Christoph Alt
Browse files

Merge branch 'FixBufferResolv' into 'master'

Use common shape to resolve buffer access

See merge request !312
parents b3118294 c64132ce
Branches
Tags release/1.1.1
No related merge requests found
...@@ -5,7 +5,7 @@ import pickle ...@@ -5,7 +5,7 @@ import pickle
import re import re
from enum import Enum from enum import Enum
from itertools import chain from itertools import chain
from typing import List, Optional, Sequence, Set, Tuple from typing import List, Optional, Sequence, Set, Tuple, Union
import numpy as np import numpy as np
import sympy as sp import sympy as sp
...@@ -69,74 +69,6 @@ class FieldType(Enum): ...@@ -69,74 +69,6 @@ class FieldType(Enum):
return field.field_type == FieldType.STAGGERED_FLUX return field.field_type == FieldType.STAGGERED_FLUX
def fields(description=None, index_dimensions=0, layout=None, field_type=FieldType.GENERIC, **kwargs):
"""Creates pystencils fields from a string description.
Examples:
Create a 2D scalar and vector field:
>>> s, v = fields("s, v(2): double[2D]")
>>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
>>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
Create an integer field of shape (10, 20):
>>> f = fields("f : int32[10, 20]")
>>> f.has_fixed_shape, f.shape
(True, (10, 20))
Numpy arrays can be used as template for shape and data type of field:
>>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
>>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
>>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
>>> assert v.index_shape == (2,)
Format string can be left out, field names are taken from keyword arguments.
>>> fields(f1=arr_s, f2=arr_s)
[f1: double[20,20], f2: double[20,20]]
The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
>>> f = fields(f=arr_v, index_dimensions=1)
>>> assert f.index_dimensions == 1
>>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
>>> f.layout
(2, 1, 0)
"""
result = []
if description:
field_descriptions, dtype, shape = _parse_description(description)
layout = 'numpy' if layout is None else layout
for field_name, idx_shape in field_descriptions:
if field_name in kwargs:
arr = kwargs[field_name]
idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
assert idx_shape_of_arr == idx_shape
f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape),
field_type=field_type)
elif isinstance(shape, tuple):
f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
index_dimensions=len(idx_shape), layout=layout, field_type=field_type)
elif isinstance(shape, int):
f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
index_shape=idx_shape, layout=layout, field_type=field_type)
elif shape is None:
f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
index_shape=idx_shape, layout=layout, field_type=field_type)
else:
assert False
result.append(f)
else:
assert layout is None, "Layout can not be specified when creating Field from numpy array"
for field_name, arr in kwargs.items():
result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions,
field_type=field_type))
if len(result) == 0:
return None
elif len(result) == 1:
return result[0]
else:
return result
class Field: class Field:
""" """
With fields one can formulate stencil-like update rules on structured grids. With fields one can formulate stencil-like update rules on structured grids.
...@@ -875,6 +807,75 @@ class Field: ...@@ -875,6 +807,75 @@ class Field:
return f"{n}[{offset_str}]" return f"{n}[{offset_str}]"
def fields(description=None, index_dimensions=0, layout=None,
field_type=FieldType.GENERIC, **kwargs) -> Union[Field, List[Field]]:
"""Creates pystencils fields from a string description.
Examples:
Create a 2D scalar and vector field:
>>> s, v = fields("s, v(2): double[2D]")
>>> assert s.spatial_dimensions == 2 and s.index_dimensions == 0
>>> assert (v.spatial_dimensions, v.index_dimensions, v.index_shape) == (2, 1, (2,))
Create an integer field of shape (10, 20):
>>> f = fields("f : int32[10, 20]")
>>> f.has_fixed_shape, f.shape
(True, (10, 20))
Numpy arrays can be used as template for shape and data type of field:
>>> arr_s, arr_v = np.zeros([20, 20]), np.zeros([20, 20, 2])
>>> s, v = fields("s, v(2)", s=arr_s, v=arr_v)
>>> assert s.index_dimensions == 0 and s.dtype.numpy_dtype == arr_s.dtype
>>> assert v.index_shape == (2,)
Format string can be left out, field names are taken from keyword arguments.
>>> fields(f1=arr_s, f2=arr_s)
[f1: double[20,20], f2: double[20,20]]
The keyword names ``index_dimension`` and ``layout`` have special meaning, don't use them for field names
>>> f = fields(f=arr_v, index_dimensions=1)
>>> assert f.index_dimensions == 1
>>> f = fields("pdfs(19) : float32[3D]", layout='fzyx')
>>> f.layout
(2, 1, 0)
"""
result = []
if description:
field_descriptions, dtype, shape = _parse_description(description)
layout = 'numpy' if layout is None else layout
for field_name, idx_shape in field_descriptions:
if field_name in kwargs:
arr = kwargs[field_name]
idx_shape_of_arr = () if not len(idx_shape) else arr.shape[-len(idx_shape):]
assert idx_shape_of_arr == idx_shape
f = Field.create_from_numpy_array(field_name, kwargs[field_name], index_dimensions=len(idx_shape),
field_type=field_type)
elif isinstance(shape, tuple):
f = Field.create_fixed_size(field_name, shape + idx_shape, dtype=dtype,
index_dimensions=len(idx_shape), layout=layout, field_type=field_type)
elif isinstance(shape, int):
f = Field.create_generic(field_name, spatial_dimensions=shape, dtype=dtype,
index_shape=idx_shape, layout=layout, field_type=field_type)
elif shape is None:
f = Field.create_generic(field_name, spatial_dimensions=2, dtype=dtype,
index_shape=idx_shape, layout=layout, field_type=field_type)
else:
assert False
result.append(f)
else:
assert layout is None, "Layout can not be specified when creating Field from numpy array"
for field_name, arr in kwargs.items():
result.append(Field.create_from_numpy_array(field_name, arr, index_dimensions=index_dimensions,
field_type=field_type))
if len(result) == 0:
raise ValueError("Could not parse field description")
elif len(result) == 1:
return result[0]
else:
return result
def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None): def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None):
index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids
coordinates = list(range(len(strides))) coordinates = list(range(len(strides)))
......
...@@ -91,10 +91,8 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection], ...@@ -91,10 +91,8 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
coord_mapping = {f.name: cell_idx_symbols for f in all_fields} coord_mapping = {f.name: cell_idx_symbols for f in all_fields}
loop_strides = list(fields_without_buffers)[0].shape
if any(FieldType.is_buffer(f) for f in all_fields): if any(FieldType.is_buffer(f) for f in all_fields):
resolve_buffer_accesses(ast, get_base_buffer_index(ast, indexing.coordinates, loop_strides), read_only_fields) resolve_buffer_accesses(ast, get_base_buffer_index(ast, indexing.coordinates, common_shape), read_only_fields)
resolve_field_accesses(ast, read_only_fields, field_to_base_pointer_info=base_pointer_info, resolve_field_accesses(ast, read_only_fields, field_to_base_pointer_info=base_pointer_info,
field_to_fixed_coordinates=coord_mapping) field_to_fixed_coordinates=coord_mapping)
......
"""Tests for the (un)packing (from)to buffers on a CUDA GPU.""" """Tests for the (un)packing (from)to buffers on a CUDA GPU."""
from dataclasses import replace
import numpy as np import numpy as np
import pytest import pytest
import pystencils import pystencils
from pystencils import Assignment, Field, FieldType, CreateKernelConfig, create_kernel from pystencils import Assignment, Field, FieldType, Target, CreateKernelConfig, create_kernel, fields
from pystencils.bit_masks import flag_cond
from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple
from pystencils.slicing import ( from pystencils.slicing import (
add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer) add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer)
...@@ -240,3 +242,35 @@ def test_field_layouts(): ...@@ -240,3 +242,35 @@ def test_field_layouts():
unpack_kernel = unpack_ast.compile() unpack_kernel = unpack_ast.compile()
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr) unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
def test_buffer_indexing():
src_field, dst_field = fields(f'pdfs_src(19), pdfs_dst(19) :double[3D]')
mask_field = fields(f'mask : uint32 [3D]')
buffer = Field.create_generic('buffer', spatial_dimensions=1, field_type=FieldType.BUFFER,
dtype="float64",
index_shape=(19,))
src_field_size = src_field.spatial_shape
mask_field_size = mask_field.spatial_shape
up = Assignment(buffer(0), flag_cond(1, mask_field.center, src_field[0, 1, 0](1)))
iteration_slice = tuple(slice(None, None, 2) for _ in range(3))
config = CreateKernelConfig(target=Target.GPU)
config = replace(config, iteration_slice=iteration_slice, ghost_layers=0)
ast = create_kernel(up, config=config)
parameters = ast.get_parameters()
spatial_shape_symbols = [p.symbol for p in parameters if p.is_field_shape]
# The loop counters as well as the resolved field access should depend on one common spatial shape
if spatial_shape_symbols[0] in mask_field_size:
for s in spatial_shape_symbols:
assert s in mask_field_size
if spatial_shape_symbols[0] in src_field_size:
for s in spatial_shape_symbols:
assert s in src_field_size
assert len(spatial_shape_symbols) <= 3
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment