Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pystencils
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jayesh Badwaik (FZ Juelich)
pystencils
Commits
02e0a22d
Commit
02e0a22d
authored
2 years ago
by
Christoph Alt
Browse files
Options
Downloads
Plain Diff
Merge branch 'FixBufferResolv' into 'master'
Use common shape to resolve buffer access See merge request
!312
parents
b3118294
c64132ce
Branches
Branches containing commit
Tags
release/1.1.1
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
pystencils/field.py
+70
-69
70 additions, 69 deletions
pystencils/field.py
pystencils/gpucuda/kernelcreation.py
+1
-3
1 addition, 3 deletions
pystencils/gpucuda/kernelcreation.py
pystencils_tests/test_buffer_gpu.py
+35
-1
35 additions, 1 deletion
pystencils_tests/test_buffer_gpu.py
with
106 additions
and
73 deletions
pystencils/field.py
+
70
−
69
View file @
02e0a22d
...
@@ -5,7 +5,7 @@ import pickle
...
@@ -5,7 +5,7 @@ import pickle
import
re
import
re
from
enum
import
Enum
from
enum
import
Enum
from
itertools
import
chain
from
itertools
import
chain
from
typing
import
List
,
Optional
,
Sequence
,
Set
,
Tuple
from
typing
import
List
,
Optional
,
Sequence
,
Set
,
Tuple
,
Union
import
numpy
as
np
import
numpy
as
np
import
sympy
as
sp
import
sympy
as
sp
...
@@ -69,74 +69,6 @@ class FieldType(Enum):
...
@@ -69,74 +69,6 @@ class FieldType(Enum):
return
field
.
field_type
==
FieldType
.
STAGGERED_FLUX
return
field
.
field_type
==
FieldType
.
STAGGERED_FLUX
def
fields
(
description
=
None
,
index_dimensions
=
0
,
layout
=
None
,
field_type
=
FieldType
.
GENERIC
,
**
kwargs
):
"""
Creates pystencils fields from a string description.
Examples:
Create a 2D scalar and vector field:
>>>
s
,
v
=
fields
(
"
s, v(2): double[2D]
"
)
>>>
assert
s
.
spatial_dimensions
==
2
and
s
.
index_dimensions
==
0
>>>
assert
(
v
.
spatial_dimensions
,
v
.
index_dimensions
,
v
.
index_shape
)
==
(
2
,
1
,
(
2
,))
Create an integer field of shape (10, 20):
>>>
f
=
fields
(
"
f : int32[10, 20]
"
)
>>>
f
.
has_fixed_shape
,
f
.
shape
(
True
,
(
10
,
20
))
Numpy arrays can be used as template for shape and data type of field:
>>>
arr_s
,
arr_v
=
np
.
zeros
([
20
,
20
]),
np
.
zeros
([
20
,
20
,
2
])
>>>
s
,
v
=
fields
(
"
s, v(2)
"
,
s
=
arr_s
,
v
=
arr_v
)
>>>
assert
s
.
index_dimensions
==
0
and
s
.
dtype
.
numpy_dtype
==
arr_s
.
dtype
>>>
assert
v
.
index_shape
==
(
2
,)
Format string can be left out, field names are taken from keyword arguments.
>>>
fields
(
f1
=
arr_s
,
f2
=
arr_s
)
[
f1
:
double
[
20
,
20
],
f2
:
double
[
20
,
20
]]
The keyword names ``index_dimension`` and ``layout`` have special meaning, don
'
t use them for field names
>>>
f
=
fields
(
f
=
arr_v
,
index_dimensions
=
1
)
>>>
assert
f
.
index_dimensions
==
1
>>>
f
=
fields
(
"
pdfs(19) : float32[3D]
"
,
layout
=
'
fzyx
'
)
>>>
f
.
layout
(
2
,
1
,
0
)
"""
result
=
[]
if
description
:
field_descriptions
,
dtype
,
shape
=
_parse_description
(
description
)
layout
=
'
numpy
'
if
layout
is
None
else
layout
for
field_name
,
idx_shape
in
field_descriptions
:
if
field_name
in
kwargs
:
arr
=
kwargs
[
field_name
]
idx_shape_of_arr
=
()
if
not
len
(
idx_shape
)
else
arr
.
shape
[
-
len
(
idx_shape
):]
assert
idx_shape_of_arr
==
idx_shape
f
=
Field
.
create_from_numpy_array
(
field_name
,
kwargs
[
field_name
],
index_dimensions
=
len
(
idx_shape
),
field_type
=
field_type
)
elif
isinstance
(
shape
,
tuple
):
f
=
Field
.
create_fixed_size
(
field_name
,
shape
+
idx_shape
,
dtype
=
dtype
,
index_dimensions
=
len
(
idx_shape
),
layout
=
layout
,
field_type
=
field_type
)
elif
isinstance
(
shape
,
int
):
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
shape
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
,
field_type
=
field_type
)
elif
shape
is
None
:
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
2
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
,
field_type
=
field_type
)
else
:
assert
False
result
.
append
(
f
)
else
:
assert
layout
is
None
,
"
Layout can not be specified when creating Field from numpy array
"
for
field_name
,
arr
in
kwargs
.
items
():
result
.
append
(
Field
.
create_from_numpy_array
(
field_name
,
arr
,
index_dimensions
=
index_dimensions
,
field_type
=
field_type
))
if
len
(
result
)
==
0
:
return
None
elif
len
(
result
)
==
1
:
return
result
[
0
]
else
:
return
result
class
Field
:
class
Field
:
"""
"""
With fields one can formulate stencil-like update rules on structured grids.
With fields one can formulate stencil-like update rules on structured grids.
...
@@ -875,6 +807,75 @@ class Field:
...
@@ -875,6 +807,75 @@ class Field:
return
f
"
{
n
}
[
{
offset_str
}
]
"
return
f
"
{
n
}
[
{
offset_str
}
]
"
def
fields
(
description
=
None
,
index_dimensions
=
0
,
layout
=
None
,
field_type
=
FieldType
.
GENERIC
,
**
kwargs
)
->
Union
[
Field
,
List
[
Field
]]:
"""
Creates pystencils fields from a string description.
Examples:
Create a 2D scalar and vector field:
>>>
s
,
v
=
fields
(
"
s, v(2): double[2D]
"
)
>>>
assert
s
.
spatial_dimensions
==
2
and
s
.
index_dimensions
==
0
>>>
assert
(
v
.
spatial_dimensions
,
v
.
index_dimensions
,
v
.
index_shape
)
==
(
2
,
1
,
(
2
,))
Create an integer field of shape (10, 20):
>>>
f
=
fields
(
"
f : int32[10, 20]
"
)
>>>
f
.
has_fixed_shape
,
f
.
shape
(
True
,
(
10
,
20
))
Numpy arrays can be used as template for shape and data type of field:
>>>
arr_s
,
arr_v
=
np
.
zeros
([
20
,
20
]),
np
.
zeros
([
20
,
20
,
2
])
>>>
s
,
v
=
fields
(
"
s, v(2)
"
,
s
=
arr_s
,
v
=
arr_v
)
>>>
assert
s
.
index_dimensions
==
0
and
s
.
dtype
.
numpy_dtype
==
arr_s
.
dtype
>>>
assert
v
.
index_shape
==
(
2
,)
Format string can be left out, field names are taken from keyword arguments.
>>>
fields
(
f1
=
arr_s
,
f2
=
arr_s
)
[
f1
:
double
[
20
,
20
],
f2
:
double
[
20
,
20
]]
The keyword names ``index_dimension`` and ``layout`` have special meaning, don
'
t use them for field names
>>>
f
=
fields
(
f
=
arr_v
,
index_dimensions
=
1
)
>>>
assert
f
.
index_dimensions
==
1
>>>
f
=
fields
(
"
pdfs(19) : float32[3D]
"
,
layout
=
'
fzyx
'
)
>>>
f
.
layout
(
2
,
1
,
0
)
"""
result
=
[]
if
description
:
field_descriptions
,
dtype
,
shape
=
_parse_description
(
description
)
layout
=
'
numpy
'
if
layout
is
None
else
layout
for
field_name
,
idx_shape
in
field_descriptions
:
if
field_name
in
kwargs
:
arr
=
kwargs
[
field_name
]
idx_shape_of_arr
=
()
if
not
len
(
idx_shape
)
else
arr
.
shape
[
-
len
(
idx_shape
):]
assert
idx_shape_of_arr
==
idx_shape
f
=
Field
.
create_from_numpy_array
(
field_name
,
kwargs
[
field_name
],
index_dimensions
=
len
(
idx_shape
),
field_type
=
field_type
)
elif
isinstance
(
shape
,
tuple
):
f
=
Field
.
create_fixed_size
(
field_name
,
shape
+
idx_shape
,
dtype
=
dtype
,
index_dimensions
=
len
(
idx_shape
),
layout
=
layout
,
field_type
=
field_type
)
elif
isinstance
(
shape
,
int
):
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
shape
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
,
field_type
=
field_type
)
elif
shape
is
None
:
f
=
Field
.
create_generic
(
field_name
,
spatial_dimensions
=
2
,
dtype
=
dtype
,
index_shape
=
idx_shape
,
layout
=
layout
,
field_type
=
field_type
)
else
:
assert
False
result
.
append
(
f
)
else
:
assert
layout
is
None
,
"
Layout can not be specified when creating Field from numpy array
"
for
field_name
,
arr
in
kwargs
.
items
():
result
.
append
(
Field
.
create_from_numpy_array
(
field_name
,
arr
,
index_dimensions
=
index_dimensions
,
field_type
=
field_type
))
if
len
(
result
)
==
0
:
raise
ValueError
(
"
Could not parse field description
"
)
elif
len
(
result
)
==
1
:
return
result
[
0
]
else
:
return
result
def
get_layout_from_strides
(
strides
:
Sequence
[
int
],
index_dimension_ids
:
Optional
[
List
[
int
]]
=
None
):
def
get_layout_from_strides
(
strides
:
Sequence
[
int
],
index_dimension_ids
:
Optional
[
List
[
int
]]
=
None
):
index_dimension_ids
=
[]
if
index_dimension_ids
is
None
else
index_dimension_ids
index_dimension_ids
=
[]
if
index_dimension_ids
is
None
else
index_dimension_ids
coordinates
=
list
(
range
(
len
(
strides
)))
coordinates
=
list
(
range
(
len
(
strides
)))
...
...
This diff is collapsed.
Click to expand it.
pystencils/gpucuda/kernelcreation.py
+
1
−
3
View file @
02e0a22d
...
@@ -91,10 +91,8 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
...
@@ -91,10 +91,8 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
coord_mapping
=
{
f
.
name
:
cell_idx_symbols
for
f
in
all_fields
}
coord_mapping
=
{
f
.
name
:
cell_idx_symbols
for
f
in
all_fields
}
loop_strides
=
list
(
fields_without_buffers
)[
0
].
shape
if
any
(
FieldType
.
is_buffer
(
f
)
for
f
in
all_fields
):
if
any
(
FieldType
.
is_buffer
(
f
)
for
f
in
all_fields
):
resolve_buffer_accesses
(
ast
,
get_base_buffer_index
(
ast
,
indexing
.
coordinates
,
loop_strides
),
read_only_fields
)
resolve_buffer_accesses
(
ast
,
get_base_buffer_index
(
ast
,
indexing
.
coordinates
,
common_shape
),
read_only_fields
)
resolve_field_accesses
(
ast
,
read_only_fields
,
field_to_base_pointer_info
=
base_pointer_info
,
resolve_field_accesses
(
ast
,
read_only_fields
,
field_to_base_pointer_info
=
base_pointer_info
,
field_to_fixed_coordinates
=
coord_mapping
)
field_to_fixed_coordinates
=
coord_mapping
)
...
...
This diff is collapsed.
Click to expand it.
pystencils_tests/test_buffer_gpu.py
+
35
−
1
View file @
02e0a22d
"""
Tests for the (un)packing (from)to buffers on a CUDA GPU.
"""
"""
Tests for the (un)packing (from)to buffers on a CUDA GPU.
"""
from
dataclasses
import
replace
import
numpy
as
np
import
numpy
as
np
import
pytest
import
pytest
import
pystencils
import
pystencils
from
pystencils
import
Assignment
,
Field
,
FieldType
,
CreateKernelConfig
,
create_kernel
from
pystencils
import
Assignment
,
Field
,
FieldType
,
Target
,
CreateKernelConfig
,
create_kernel
,
fields
from
pystencils.bit_masks
import
flag_cond
from
pystencils.field
import
create_numpy_array_with_layout
,
layout_string_to_tuple
from
pystencils.field
import
create_numpy_array_with_layout
,
layout_string_to_tuple
from
pystencils.slicing
import
(
from
pystencils.slicing
import
(
add_ghost_layers
,
get_ghost_region_slice
,
get_slice_before_ghost_layer
)
add_ghost_layers
,
get_ghost_region_slice
,
get_slice_before_ghost_layer
)
...
@@ -240,3 +242,35 @@ def test_field_layouts():
...
@@ -240,3 +242,35 @@ def test_field_layouts():
unpack_kernel
=
unpack_ast
.
compile
()
unpack_kernel
=
unpack_ast
.
compile
()
unpack_kernel
(
buffer
=
gpu_buffer_arr
,
dst_field
=
gpu_dst_arr
)
unpack_kernel
(
buffer
=
gpu_buffer_arr
,
dst_field
=
gpu_dst_arr
)
def
test_buffer_indexing
():
src_field
,
dst_field
=
fields
(
f
'
pdfs_src(19), pdfs_dst(19) :double[3D]
'
)
mask_field
=
fields
(
f
'
mask : uint32 [3D]
'
)
buffer
=
Field
.
create_generic
(
'
buffer
'
,
spatial_dimensions
=
1
,
field_type
=
FieldType
.
BUFFER
,
dtype
=
"
float64
"
,
index_shape
=
(
19
,))
src_field_size
=
src_field
.
spatial_shape
mask_field_size
=
mask_field
.
spatial_shape
up
=
Assignment
(
buffer
(
0
),
flag_cond
(
1
,
mask_field
.
center
,
src_field
[
0
,
1
,
0
](
1
)))
iteration_slice
=
tuple
(
slice
(
None
,
None
,
2
)
for
_
in
range
(
3
))
config
=
CreateKernelConfig
(
target
=
Target
.
GPU
)
config
=
replace
(
config
,
iteration_slice
=
iteration_slice
,
ghost_layers
=
0
)
ast
=
create_kernel
(
up
,
config
=
config
)
parameters
=
ast
.
get_parameters
()
spatial_shape_symbols
=
[
p
.
symbol
for
p
in
parameters
if
p
.
is_field_shape
]
# The loop counters as well as the resolved field access should depend on one common spatial shape
if
spatial_shape_symbols
[
0
]
in
mask_field_size
:
for
s
in
spatial_shape_symbols
:
assert
s
in
mask_field_size
if
spatial_shape_symbols
[
0
]
in
src_field_size
:
for
s
in
spatial_shape_symbols
:
assert
s
in
src_field_size
assert
len
(
spatial_shape_symbols
)
<=
3
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment