Skip to content
Snippets Groups Projects
Forked from pycodegen / pystencils
1122 commits behind the upstream repository.
  • Martin Bauer's avatar
    1e02cdc7
    Separated modules into subfolders with own setup.py · 1e02cdc7
    Martin Bauer authored
    This restructuring allows for easier separation of modules into
    separate repositories later. Also, now pip install with repo url can be
    used.
    
    The setup.py files have also been updated to correctly reference each
    other. Module versions are not extracted from git state
    1e02cdc7
    History
    Separated modules into subfolders with own setup.py
    Martin Bauer authored
    This restructuring allows for easier separation of modules into
    separate repositories later. Also, now pip install with repo url can be
    used.
    
    The setup.py files have also been updated to correctly reference each
    other. Module versions are not extracted from git state
test_buffer.py 8.63 KiB
"""Tests  (un)packing (from)to buffers."""

import numpy as np
from pystencils import Field, FieldType, Assignment, create_kernel
from pystencils.field import layout_string_to_tuple, create_numpy_array_with_layout
from pystencils.stencils import direction_string_to_offset
from pystencils.slicing import add_ghost_layers, get_slice_before_ghost_layer, get_ghost_region_slice


FIELD_SIZES = [(32, 10), (10, 8, 6)]


def _generate_fields(dt=np.uint64, num_directions=1, layout='numpy'):
    field_sizes = FIELD_SIZES
    if num_directions > 1:
        field_sizes = [s + (num_directions,) for s in field_sizes]

    fields = []
    for size in field_sizes:
        field_layout = layout_string_to_tuple(layout, len(size))
        src_arr = create_numpy_array_with_layout(size, field_layout)

        array_data = np.reshape(np.arange(1, int(np.prod(size)+1)), size)
        # Use flat iterator to input data into the array
        src_arr.flat = add_ghost_layers(array_data, index_dimensions=1 if num_directions > 1 else 0).astype(dt).flat
        dst_arr = np.zeros(src_arr.shape, dtype=dt)
        buffer_arr = np.zeros(np.prod(src_arr.shape), dtype=dt)
        fields.append((src_arr, dst_arr, buffer_arr))
    return fields


def test_full_scalar_field():
    """Tests fully (un)packing a scalar field (from)to a buffer."""
    fields = _generate_fields()
    for (src_arr, dst_arr, buffer_arr) in fields:
        src_field = Field.create_from_numpy_array("src_field", src_arr)
        dst_field = Field.create_from_numpy_array("dst_field", dst_arr)
        buffer = Field.create_generic("buffer", spatial_dimensions=1,
                                      field_type=FieldType.BUFFER, dtype=src_arr.dtype)

        pack_eqs = [Assignment(buffer.center(), src_field.center())]
        pack_code = create_kernel(pack_eqs, data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})

        pack_kernel = pack_code.compile()
        pack_kernel(buffer=buffer_arr, src_field=src_arr)

        unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
        unpack_code = create_kernel(unpack_eqs, data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})

        unpack_kernel = unpack_code.compile()
        unpack_kernel(dst_field=dst_arr, buffer=buffer_arr)

        np.testing.assert_equal(src_arr, dst_arr)


def test_field_slice():
    """Tests (un)packing slices of a scalar field (from)to a buffer."""
    fields = _generate_fields()
    for d in ['N', 'S', 'NW', 'SW', 'TNW', 'B']:
        for (src_arr, dst_arr, bufferArr) in fields:
            # Extract slice from N direction of the field
            slice_dir = direction_string_to_offset(d, dim=len(src_arr.shape))
            pack_slice = get_slice_before_ghost_layer(slice_dir)
            unpack_slice = get_ghost_region_slice(slice_dir)

            src_field = Field.create_from_numpy_array("src_field", src_arr[pack_slice])
            dst_field = Field.create_from_numpy_array("dst_field", dst_arr[unpack_slice])
            buffer = Field.create_generic("buffer", spatial_dimensions=1,
                                          field_type=FieldType.BUFFER, dtype=src_arr.dtype)

            pack_eqs = [Assignment(buffer.center(), src_field.center())]
            pack_code = create_kernel(pack_eqs, data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})

            pack_kernel = pack_code.compile()
            pack_kernel(buffer=bufferArr, src_field=src_arr[pack_slice])

            # Unpack into ghost layer of dst_field in N direction
            unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
            unpack_code = create_kernel(unpack_eqs, data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})

            unpack_kernel = unpack_code.compile()
            unpack_kernel(buffer=bufferArr, dst_field=dst_arr[unpack_slice])

            np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])


def test_all_cell_values():
    """Tests (un)packing all cell values of the a field (from)to a buffer."""
    num_cell_values = 19
    fields = _generate_fields(num_directions=num_cell_values)
    for (src_arr, dst_arr, bufferArr) in fields:
        src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
        dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
        buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
                                      field_type=FieldType.BUFFER, dtype=src_arr.dtype)

        pack_eqs = []
        # Since we are packing all cell values for all cells, then
        # the buffer index is equivalent to the field index
        for idx in range(num_cell_values):
            eq = Assignment(buffer(idx), src_field(idx))
            pack_eqs.append(eq)

        pack_code = create_kernel(pack_eqs, data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
        pack_kernel = pack_code.compile()
        pack_kernel(buffer=bufferArr, src_field=src_arr)

        unpack_eqs = []

        for idx in range(num_cell_values):
            eq = Assignment(dst_field(idx), buffer(idx))
            unpack_eqs.append(eq)

        unpack_code = create_kernel(unpack_eqs, data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
        unpack_kernel = unpack_code.compile()
        unpack_kernel(buffer=bufferArr, dst_field=dst_arr)

        np.testing.assert_equal(src_arr, dst_arr)


def test_subset_cell_values():
    """Tests (un)packing a subset of cell values of the a field (from)to a buffer."""
    num_cell_values = 19
    # Cell indices of the field to be (un)packed (from)to the buffer
    cell_indices = [1, 5, 7, 8, 10, 12, 13]
    fields = _generate_fields(num_directions=num_cell_values)
    for (src_arr, dst_arr, bufferArr) in fields:
        src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
        dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
        buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
                                      field_type=FieldType.BUFFER, dtype=src_arr.dtype)

        pack_eqs = []
        # Since we are packing all cell values for all cells, then
        # the buffer index is equivalent to the field index
        for buffer_idx, cell_idx in enumerate(cell_indices):
            eq = Assignment(buffer(buffer_idx), src_field(cell_idx))
            pack_eqs.append(eq)

        pack_code = create_kernel(pack_eqs, data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
        pack_kernel = pack_code.compile()
        pack_kernel(buffer=bufferArr, src_field=src_arr)

        unpack_eqs = []

        for buffer_idx, cell_idx in enumerate(cell_indices):
            eq = Assignment(dst_field(cell_idx), buffer(buffer_idx))
            unpack_eqs.append(eq)

        unpack_code = create_kernel(unpack_eqs, data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
        unpack_kernel = unpack_code.compile()
        unpack_kernel(buffer=bufferArr, dst_field=dst_arr)

        mask_arr = np.ma.masked_where((src_arr - dst_arr) != 0, src_arr)
        np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))


def test_field_layouts():
    num_cell_values = 27
    for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
        fields = _generate_fields(num_directions=num_cell_values, layout=layout_str)
        for (src_arr, dst_arr, bufferArr) in fields:
            src_field = Field.create_from_numpy_array("src_field", src_arr, index_dimensions=1)
            dst_field = Field.create_from_numpy_array("dst_field", dst_arr, index_dimensions=1)
            buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
                                          field_type=FieldType.BUFFER, dtype=src_arr.dtype)

            pack_eqs = []
            # Since we are packing all cell values for all cells, then
            # the buffer index is equivalent to the field index
            for idx in range(num_cell_values):
                eq = Assignment(buffer(idx), src_field(idx))
                pack_eqs.append(eq)

            pack_code = create_kernel(pack_eqs, data_type={'src_field': src_arr.dtype, 'buffer': buffer.dtype})
            pack_kernel = pack_code.compile()
            pack_kernel(buffer=bufferArr, src_field=src_arr)

            unpack_eqs = []

            for idx in range(num_cell_values):
                eq = Assignment(dst_field(idx), buffer(idx))
                unpack_eqs.append(eq)

            unpack_code = create_kernel(unpack_eqs, data_type={'dst_field': dst_arr.dtype, 'buffer': buffer.dtype})
            unpack_kernel = unpack_code.compile()
            unpack_kernel(buffer=bufferArr, dst_field=dst_arr)