Skip to content
Snippets Groups Projects
Commit 47aee5fa authored by Martin Bauer's avatar Martin Bauer
Browse files

Merge branch 'auto-for-assignments' into 'master'

Auto for assignments

See merge request !95
parents 9f6bbd4c 05aa005a
Branches
Tags
No related merge requests found
......@@ -518,12 +518,13 @@ class LoopOverCoordinate(Node):
class SympyAssignment(Node):
def __init__(self, lhs_symbol, rhs_expr, is_const=True):
def __init__(self, lhs_symbol, rhs_expr, is_const=True, use_auto=False):
super(SympyAssignment, self).__init__(parent=None)
self._lhs_symbol = lhs_symbol
self.rhs = sp.sympify(rhs_expr)
self._is_const = is_const
self._is_declaration = self.__is_declaration()
self.use_auto = use_auto
def __is_declaration(self):
if isinstance(self._lhs_symbol, cast_func):
......
......@@ -33,9 +33,9 @@ def generate_c(ast_node: Node,
with_globals=True) -> str:
"""Prints an abstract syntax tree node as C or CUDA code.
This function does not need to distinguish between C, C++ or CUDA code, it just prints 'C-like' code as encoded
in the abstract syntax tree (AST). The AST is built differently for C or CUDA by calling different create_kernel
functions.
This function does not need to distinguish for most AST nodes between C, C++ or CUDA code, it just prints 'C-like'
code as encoded in the abstract syntax tree (AST). The AST is built differently for C or CUDA by calling different
create_kernel functions.
Args:
ast_node:
......@@ -230,11 +230,15 @@ class CBackend:
def _print_SympyAssignment(self, node):
if node.is_declaration:
if node.is_const:
prefix = 'const '
if node.use_auto:
data_type = 'auto '
else:
prefix = ''
data_type = prefix + self._print(node.lhs.dtype).replace(' const', '') + " "
if node.is_const:
prefix = 'const '
else:
prefix = ''
data_type = prefix + self._print(node.lhs.dtype).replace(' const', '') + " "
return "%s%s = %s;" % (data_type,
self.sympy_printer.doprint(node.lhs),
self.sympy_printer.doprint(node.rhs))
......
......@@ -26,7 +26,8 @@ def create_kernel(assignments,
gpu_indexing='block',
gpu_indexing_params=MappingProxyType({}),
use_textures_for_interpolation=True,
cpu_prepend_optimizations=[]):
cpu_prepend_optimizations=[],
use_auto_for_assignments=False):
"""
Creates abstract syntax tree (AST) of kernel, using a list of update equations.
......@@ -102,12 +103,10 @@ def create_kernel(assignments,
vectorize(ast, **cpu_vectorize_info)
else:
raise ValueError("Invalid value for cpu_vectorize_info")
return ast
elif target == 'llvm':
from pystencils.llvm import create_kernel
ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups,
iteration_slice=iteration_slice, ghost_layers=ghost_layers)
return ast
elif target == 'gpu':
from pystencils.gpucuda import create_cuda_kernel
ast = create_cuda_kernel(assignments, type_info=data_type,
......@@ -115,10 +114,15 @@ def create_kernel(assignments,
iteration_slice=iteration_slice, ghost_layers=ghost_layers,
skip_independence_check=skip_independence_check,
use_textures_for_interpolation=use_textures_for_interpolation)
return ast
else:
raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,))
if use_auto_for_assignments:
for a in ast.atoms(SympyAssignment):
a.use_auto = True
return ast
def create_indexed_kernel(assignments,
index_fields,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment