Skip to content
Snippets Groups Projects
Commit 41fbad6f authored by Markus Holzer's avatar Markus Holzer
Browse files

Merge branch 'oldroydb' into 'master'

Oldroyd-B

Closes walberla/walberla#158

See merge request pycodegen/lbmpy!103
parents a991402e 19b91847
No related merge requests found
Pipeline #37933 failed with stages
in 41 minutes
import pystencils as ps
import sympy as sp
import numpy as np
from pystencils.boundaries.boundaryconditions import Boundary
from pystencils.stencil import inverse_direction_string, direction_string_to_offset
class OldroydB:
def __init__(self, dim, u, tau, F, tauflux, tauface, lambda_p, eta_p, vof=True):
assert not ps.FieldType.is_staggered(u)
assert not ps.FieldType.is_staggered(tau)
assert not ps.FieldType.is_staggered(F)
assert ps.FieldType.is_staggered(tauflux)
assert ps.FieldType.is_staggered(tauface)
self.dim = dim
self.u = u
self.tau = tau
self.F = F
self.tauflux = tauflux
self.tauface_field = tauface
self.lambda_p = lambda_p
self.eta_p = eta_p
full_stencil = ["C"] + self.tauflux.staggered_stencil + \
list(map(inverse_direction_string, self.tauflux.staggered_stencil))
self.stencil = tuple(map(lambda d: tuple(ps.stencil.direction_string_to_offset(d, self.dim)), full_stencil))
full_stencil = ["C"] + self.tauface_field.staggered_stencil + \
list(map(inverse_direction_string, self.tauface_field.staggered_stencil))
self.force_stencil = tuple(map(lambda d: tuple(ps.stencil.direction_string_to_offset(d, self.dim)),
full_stencil))
self.disc = ps.fd.FVM1stOrder(self.tau, self._flux(), self._source())
if vof:
self.vof = ps.fd.VOF(self.tauflux, self.u, self.tau)
else:
self.vof = None
def _flux(self):
return [self.tau.center_vector.applyfunc(lambda t: t * self.u.center_vector[i]) for i in range(self.dim)]
def _source(self):
gradu = sp.Matrix([[ps.fd.diff(self.u.center_vector[j], i) for j in range(self.dim)] for i in range(self.dim)])
gamma = gradu + gradu.transpose()
return self.tau.center_vector * gradu + gradu.transpose() * self.tau.center_vector + \
(self.eta_p * gamma - self.tau.center_vector) / self.lambda_p
def tauface(self):
return ps.AssignmentCollection([ps.Assignment(self.tauface_field.staggered_vector_access(d),
(self.tau.center_vector + self.tau.neighbor_vector(d)) / 2)
for d in self.tauface_field.staggered_stencil])
def force(self):
full_stencil = self.tauface_field.staggered_stencil + \
list(map(inverse_direction_string, self.tauface_field.staggered_stencil))
dtau = sp.Matrix([sum([sum([
self.tauface_field.staggered_access(d, (i, j)) * direction_string_to_offset(d)[i]
for i in range(self.dim)]) / sp.Matrix(direction_string_to_offset(d)).norm()
for d in full_stencil]) for j in range(self.dim)])
A0 = sum([sp.Matrix(direction_string_to_offset(d)).norm() for d in full_stencil])
return ps.AssignmentCollection(ps.Assignment(self.F.center_vector, dtau / A0 * 2 * self.dim))
def flux(self):
if self.vof is not None:
return self.vof
else:
return self.disc.discrete_flux(self.tauflux)
def continuity(self):
cont = self.disc.discrete_continuity(self.tauflux)
tau_copy = sp.Matrix(self.dim, self.dim, lambda i, j: sp.Symbol("tau_old_%d_%d" % (i, j)))
tau_subs = {self.tau.center_vector[i, j]: tau_copy[i, j] for i in range(self.dim) for j in range(self.dim)}
return [ps.Assignment(tau_copy[i, j], self.tau.center_vector[i, j])
for i in range(self.dim) for j in range(self.dim)] + \
[ps.Assignment(a.lhs, a.rhs.subs(tau_subs)) for a in cont]
class Flux(Boundary):
inner_or_boundary = True # call the boundary condition with the fluid cell
single_link = False # needs to be called for all directional fluxes
def __init__(self, stencil, value=None):
self.stencil = stencil
self.value = value
def __call__(self, field, direction_symbol, **kwargs):
assert ps.FieldType.is_staggered(field)
assert all([s == 0 for s in self.stencil[0]])
accesses = [field.staggered_vector_access(ps.stencil.offset_to_direction_string(d))
for d in self.stencil[1:]]
conds = [sp.Equality(direction_symbol, d + 1) for d in range(len(accesses))]
if self.value is None:
val = sp.Matrix(np.zeros(accesses[0].shape, dtype=int))
else:
val = self.value
# use conditional
conditional = None
for a, c, d in zip(accesses, conds, self.stencil[1:]):
d = ps.stencil.offset_to_direction_string(d)
assignments = []
for i in range(len(a)):
fac = 1
if ps.FieldType.is_staggered_flux(field) and type(a[i]) is sp.Mul and a[i].args[0] == -1:
fac = a[i].args[0]
a[i] *= a[i].args[0]
assignments.append(ps.Assignment(a[i], fac * val[i]))
if len(assignments) > 0:
conditional = ps.astnodes.Conditional(ps.data_types.type_all_numbers(c, "int"),
ps.astnodes.Block(assignments),
conditional)
return [conditional]
def __hash__(self):
return hash((Flux, self.stencil, self.value))
def __eq__(self, other):
return type(other) == Flux and other.stencil == self.stencil and self.value == other.value
class Extrapolation(Boundary):
inner_or_boundary = True # call the boundary condition with the fluid cell
single_link = False # needs to be called for all directional fluxes
def __init__(self, stencil, src_field, order):
self.stencil = stencil
self.src = src_field
if order == 0:
self.weights = (1,)
elif order == 1:
self.weights = (sp.Rational(3, 2), - sp.Rational(1, 2))
elif order == 2:
self.weights = (sp.Rational(15, 8), - sp.Rational(10, 8), sp.Rational(3, 8))
else:
raise NotImplementedError("weights are not known for extrapolation orders > 2")
def __call__(self, field, direction_symbol, **kwargs):
assert ps.FieldType.is_staggered(field)
assert all([s == 0 for s in self.stencil[0]])
accesses = [field.staggered_vector_access(ps.stencil.offset_to_direction_string(d))
for d in self.stencil[1:]]
conds = [sp.Equality(direction_symbol, d + 1) for d in range(len(accesses))]
# use conditional
conditional = None
for a, c, o in zip(accesses, conds, self.stencil[1:]):
assignments = []
src = [self.src.neighbor_vector(tuple([-1 * n * i for i in o])) for n in range(len(self.weights))]
interp = self.weights[0] * src[0]
for i in range(1, len(self.weights)):
interp += self.weights[i] * src[i]
for i in range(len(a)):
fac = 1
if ps.FieldType.is_staggered_flux(field) and type(a[i]) is sp.Mul and a[i].args[0] == -1:
fac = a[i].args[0]
a[i] *= a[i].args[0]
assignments.append(ps.Assignment(a[i], fac * interp[i]))
if len(assignments) > 0:
conditional = ps.astnodes.Conditional(ps.data_types.type_all_numbers(c, "int"),
ps.astnodes.Block(assignments),
conditional)
return [conditional]
def __hash__(self):
return hash((Extrapolation, self.stencil, self.src, self.weights))
def __eq__(self, other):
return type(other) == Extrapolation and other.stencil == self.stencil and \
other.src == self.src and other.weights == self.weights
class ForceOnBoundary(Boundary):
inner_or_boundary = False # call the boundary condition with the boundary cell
single_link = False # needs to be called for all directional fluxes
def __init__(self, stencil, force_field):
self.stencil = stencil
self.force_field = force_field
assert not ps.FieldType.is_staggered(force_field)
def __call__(self, face_stress_field, direction_symbol, **kwargs):
assert ps.FieldType.is_staggered(face_stress_field)
assert all([s == 0 for s in self.stencil[0]])
accesses = [face_stress_field.staggered_vector_access(ps.stencil.offset_to_direction_string(d))
for d in self.stencil[1:]]
conds = [sp.Equality(direction_symbol, d + 1) for d in range(len(accesses))]
# use conditional
conditional = None
for a, c, o in zip(accesses, conds, self.stencil[1:]):
assignments = ps.Assignment(self.force_field.center_vector,
self.force_field.center_vector + 1 * a.transpose() * sp.Matrix(o))
conditional = ps.astnodes.Conditional(ps.data_types.type_all_numbers(c, "int"),
ps.astnodes.Block(assignments),
conditional)
return [conditional]
def __hash__(self):
return hash((ForceOnBoundary, self.stencil, self.force_field))
def __eq__(self, other):
return type(other) == ForceOnBoundary and other.stencil == self.stencil and \
other.force_field == self.force_field
import pystencils as ps
from lbmpy.stencils import get_stencil
from lbmpy.updatekernels import create_stream_pull_with_output_kernel
from lbmpy import create_lb_update_rule, relaxation_rate_from_lattice_viscosity, ForceModel, Method, LBStencil
from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
from pystencils.boundaries.boundaryhandling import BoundaryHandling
from pystencils.boundaries.boundaryconditions import Boundary, Neumann, Dirichlet
from lbmpy.boundaries.boundaryhandling import LatticeBoltzmannBoundaryHandling
from lbmpy.boundaries import NoSlip
from lbmpy.oldroydb import *
import pytest
# # Lattice Boltzmann with Finite-Volume Oldroyd-B
# # taken from the electronic supplement of https://doi.org/10.1140/epje/s10189-020-00005-6,
# # available at https://doi.org/10.24416/UU01-2AFZSW
pytest.importorskip('scipy.optimize')
def test_oldroydb():
import scipy.optimize
# ## Definitions
# In[2]:
L = (34, 34)
lambda_p = sp.Symbol("lambda_p")
eta_p = sp.Symbol("eta_p")
lb_stencil = LBStencil("D2Q9")
fv_stencil = LBStencil("D2Q9")
eta = 1-eta_p
omega = relaxation_rate_from_lattice_viscosity(eta)
f_pre = 0.00001
# ## Data structures
# In[3]:
dh = ps.create_data_handling(L, periodicity=(True, False), default_target=ps.Target.CPU)
opts = {'cpu_openmp': True,
'cpu_vectorize_info': None,
'target': dh.default_target}
src = dh.add_array('src', values_per_cell=len(lb_stencil), layout='c')
dst = dh.add_array_like('dst', 'src')
ρ = dh.add_array('rho', layout='c', latex_name='\\rho')
u = dh.add_array('u', values_per_cell=dh.dim, layout='c')
tauface = dh.add_array('tau_face', values_per_cell=(len(fv_stencil)//2, dh.dim, dh.dim), latex_name='\\tau_f',
field_type=ps.FieldType.STAGGERED, layout='c')
tau = dh.add_array('tau', values_per_cell=(dh.dim, dh.dim), layout='c', latex_name='\\tau')
tauflux = dh.add_array('j_tau', values_per_cell=(len(fv_stencil)//2, dh.dim, dh.dim), latex_name='j_\\tau',
field_type=ps.FieldType.STAGGERED_FLUX, layout='c')
F = dh.add_array('F', values_per_cell=dh.dim, layout='c')
fluxbh = BoundaryHandling(dh, tauflux.name, fv_stencil, name="flux_boundary_handling",
openmp=opts['cpu_openmp'], target=dh.default_target)
ubh = BoundaryHandling(dh, u.name, lb_stencil, name="velocity_boundary_handling",
openmp=opts['cpu_openmp'], target=dh.default_target)
taufacebh = BoundaryHandling(dh, tauface.name, fv_stencil, name="tauface_boundary_handling",
openmp=opts['cpu_openmp'], target=dh.default_target)
# ## Solver
# In[4]:
collision = create_lb_update_rule(stencil=lb_stencil,
method=Method.TRT,
relaxation_rate=omega,
compressible=True,
force_model=ForceModel.GUO,
force=F.center_vector+sp.Matrix([f_pre,0]),
kernel_type='collide_only',
optimization={'symbolic_field': src})
stream = create_stream_pull_with_output_kernel(collision.method, src, dst, {'density': ρ, 'velocity': u})
lbbh = LatticeBoltzmannBoundaryHandling(collision.method, dh, src.name,
openmp=opts['cpu_openmp'], target=dh.default_target)
stream_kernel = ps.create_kernel(stream, **opts).compile()
collision_kernel = ps.create_kernel(collision, **opts).compile()
# In[5]:
ob = OldroydB(dh.dim, u, tau, F, tauflux, tauface, lambda_p, eta_p)
flux_kernel = ps.create_staggered_kernel(ob.flux(), **opts).compile()
tauface_kernel = ps.create_staggered_kernel(ob.tauface(), **opts).compile()
continuity_kernel = ps.create_kernel(ob.continuity(), **opts).compile()
force_kernel = ps.create_kernel(ob.force(), **opts).compile()
# ## Set up the simulation
# In[6]:
init = macroscopic_values_setter(collision.method, velocity=(0,)*dh.dim,
pdfs=src.center_vector, density=ρ.center)
init_kernel = ps.create_kernel(init, ghost_layers=0).compile()
# no-slip for the fluid, no-flux for the stress
noslip = NoSlip()
noflux = Flux(fv_stencil)
nostressdiff = Flux(fv_stencil, tau.center_vector)
# put some good values into the boundaries so we can take derivatives
noforce = Neumann() # put the same stress into the boundary cells that is in the nearest fluid cell
noflow = Dirichlet((0,)*dh.dim) # put zero velocity into the boundary cells
lbbh.set_boundary(noslip, ps.make_slice[:, :4])
lbbh.set_boundary(noslip, ps.make_slice[:, -4:])
fluxbh.set_boundary(noflux, ps.make_slice[:, :4])
fluxbh.set_boundary(noflux, ps.make_slice[:, -4:])
ubh.set_boundary(noflow, ps.make_slice[:, :4])
ubh.set_boundary(noflow, ps.make_slice[:, -4:])
taufacebh.set_boundary(nostressdiff, ps.make_slice[:, :4])
taufacebh.set_boundary(nostressdiff, ps.make_slice[:, -4:])
for bh in lbbh, fluxbh, ubh, taufacebh:
assert len(bh._boundary_object_to_boundary_info) == 1, "Restart kernel to clear boundaries"
def init():
dh.fill(ρ.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(ρ.name, 1)
dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(u.name, 0)
dh.fill(tau.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(tau.name, 0)
dh.fill(tauflux.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(tauface.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(F.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(F.name, 0) # needed for LB initialization
sync_tau() # force calculation inside the initialization needs neighbor taus
dh.run_kernel(init_kernel)
dh.fill(F.name, np.nan)
# In[7]:
sync_pdfs = dh.synchronization_function([src.name]) # needed before stream, but after collision
sync_u = dh.synchronization_function([u.name]) # needed before continuity, but after stream
sync_tau = dh.synchronization_function([tau.name]) # needed before flux and tauface, but after continuity
def time_loop(steps, lambda_p_val, eta_p_val):
dh.all_to_gpu()
vmid = np.empty((2,steps//10+1))
sync_tau()
sync_u()
ubh()
i = -1
for i in range(steps):
dh.run_kernel(flux_kernel)
fluxbh() # zero the fluxes into/out of boundaries
dh.run_kernel(continuity_kernel, **{lambda_p.name: lambda_p_val, eta_p.name: eta_p_val})
sync_tau()
dh.run_kernel(tauface_kernel) # needed for force
taufacebh()
dh.run_kernel(force_kernel)
dh.run_kernel(collision_kernel, **{eta_p.name: eta_p_val})
sync_pdfs()
lbbh() # bounce-back populations into boundaries
dh.run_kernel(stream_kernel)
sync_u()
ubh() # need neighboring us for flux and continuity
dh.swap(src.name, dst.name)
if i % 10 == 0:
if u.name in dh.gpu_arrays:
dh.to_cpu(u.name)
uu = dh.gather_array(u.name)
uu = uu[L[0]//2-1:L[0]//2+1, L[1]//2-1:L[1]//2+1, 0].mean()
if np.isnan(uu):
raise Exception(f"NaN encountered after {i} steps")
vmid[:, i//10] = [i, uu]
sync_u()
dh.all_to_cpu()
return vmid[:,:i//10+1]
# ## Analytical solution
#
# comes from Waters and King, Unsteady flow of an elastico-viscous liquid, Rheologica Acta 9, 345–355 (1970).
# In[9]:
def N(n):
return (2*n-1)*np.pi
def Alpha_n(N, El, eta_p):
return 1+(1-eta_p)*El*N*N/4
def Beta_n(alpha_n,N, El):
return np.sqrt(np.abs(alpha_n*alpha_n - El*N*N))
def Gamma_n(N, El, eta_p):
return 1-(1+eta_p)*El*N*N/4
def G(alpha_n,beta_n,gamma_n,flag,T):
if(flag):
return ((1.0 - gamma_n/beta_n)*np.exp(-(alpha_n+beta_n)*T/2) +
(1.0 + gamma_n/beta_n)*np.exp((beta_n-alpha_n)*T/2))
else:
return 2*np.exp(-alpha_n*T/2)*(np.cos(beta_n*T/2) + (gamma_n/beta_n)*np.sin(beta_n*T/2))
def W(T, El, eta_p):
W_ = 1.5
for n in range(1,1000):
N_ = N(n)
alpha_n = Alpha_n(N_, El, eta_p)
if(alpha_n*alpha_n - El*N_*N_ < 0):
flag_ = False
else:
flag_ = True
beta_n = Beta_n(alpha_n,N_, El)
gamma_n = Gamma_n(N_, El, eta_p)
G_=G(alpha_n,beta_n,gamma_n,flag_,T)
W_ -= 24*(np.sin(N_/2)/(N_*N_*N_))*G_
return W_
# ## Run the simulation
# In[11]:
lambda_p_val = 3000
eta_p_val = 0.9
init()
vmid = time_loop(lambda_p_val*4, lambda_p_val, eta_p_val)
actual_width = sum(dh.gather_array(lbbh.flag_array_name)[L[0]//2,:] == 1)
uref = float(f_pre*actual_width**2/(8*(eta+eta_p)))
Wi = lambda_p_val*uref/(actual_width/2)
Re = uref*(actual_width/2)/(eta+eta_p)
El = float(Wi/Re)
pref = 1/W(vmid[0,-1]/lambda_p_val, El, eta_p_val)
El_measured, pref_measured = scipy.optimize.curve_fit(lambda a, b, c: W(a, b, eta_p_val)*c,
vmid[0,:]/lambda_p_val, vmid[1,:]/vmid[1,-1],
p0=(El, pref))[0]
measured_width = np.sqrt(4*lambda_p_val*float(eta+eta_p)/El_measured)
print(f"El={El}, El_measured={El_measured}")
print(f"L={actual_width}, L_measured={measured_width}")
assert abs(measured_width - actual_width) < 1, "effective channel width differs significantly from defined width"
an = W(vmid[0,:]/lambda_p_val, El, eta_p_val)*pref
an_measured = W(vmid[0,:]/lambda_p_val, El_measured, eta_p_val)*pref_measured
diff = abs(vmid[1,:]/vmid[1,-1]-an_measured)/an_measured
assert diff[lambda_p_val//5:].max() < 0.03, "maximum velocity deviation is too large"
# from pystencils import plot as plt
#
# plt.xlabel("$t$")
# plt.ylabel(r"$u_{max}/u_{max}^{Newtonian}$")
# plt.plot(vmid[0,:], vmid[1,:]/vmid[1,-1] if vmid[1,-1] != 0 else 0, label='FVM')
# plt.plot(vmid[0,:], np.ones_like(vmid[0,:]), 'k--', label='Newtonian')
#
# plt.plot(vmid[0,:], an, label="analytic")
# plt.plot(vmid[0,:], an_measured, label="analytic, fit width")
# plt.legend()
#
# if eta_p_val == 0.1:
# plt.ylim(0.9, 1.15)
# elif lambda_p_val == 9000:
# plt.ylim(0.8, 1.5)
# elif eta_p_val == 0.3:
# plt.ylim(0.8, 1.4)
# plt.show()
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment