Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pystencils
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sebastian Bindgen
pystencils
Commits
d002888a
Commit
d002888a
authored
5 years ago
by
Michael Kuron
Browse files
Options
Downloads
Patches
Plain Diff
FiniteDifferenceStaggeredStencilDerivation.apply for vector field
uses new Field.neighbor_vector
parent
2d7485a8
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
pystencils/fd/derivation.py
+7
-1
7 additions, 1 deletion
pystencils/fd/derivation.py
pystencils/field.py
+16
-0
16 additions, 0 deletions
pystencils/field.py
pystencils_tests/test_fd_derivation.ipynb
+20
-5
20 additions, 5 deletions
pystencils_tests/test_fd_derivation.ipynb
with
43 additions
and
6 deletions
pystencils/fd/derivation.py
+
7
−
1
View file @
d002888a
...
...
@@ -340,4 +340,10 @@ class FiniteDifferenceStaggeredStencilDerivation:
plot
(
pts
,
data
=
ws
)
def
apply
(
self
,
field
):
return
sum
([
field
.
__getitem__
(
point
)
*
weight
for
point
,
weight
in
zip
(
self
.
points
,
self
.
weights
)])
if
field
.
index_dimensions
==
0
:
return
sum
([
field
.
__getitem__
(
point
)
*
weight
for
point
,
weight
in
zip
(
self
.
points
,
self
.
weights
)])
else
:
total
=
field
.
neighbor_vector
(
self
.
points
[
0
])
*
self
.
weights
[
0
]
for
point
,
weight
in
zip
(
self
.
points
[
1
:],
self
.
weights
[
1
:]):
total
+=
field
.
neighbor_vector
(
point
)
*
weight
return
total
This diff is collapsed.
Click to expand it.
pystencils/field.py
+
16
−
0
View file @
d002888a
...
...
@@ -441,6 +441,22 @@ class Field(AbstractField):
center
=
tuple
([
0
]
*
self
.
spatial_dimensions
)
return
Field
.
Access
(
self
,
center
)
def
neighbor_vector
(
self
,
offset
):
"""
Like neighbor, but returns the entire vector/tensor stored at offset.
"""
if
self
.
spatial_dimensions
==
2
and
len
(
offset
)
==
3
:
assert
offset
[
2
]
==
0
offset
=
offset
[:
2
]
if
self
.
index_dimensions
==
0
:
return
sp
.
Matrix
([
self
.
__getitem__
(
offset
)])
elif
self
.
index_dimensions
==
1
:
return
sp
.
Matrix
([
self
.
__getitem__
(
offset
)(
i
)
for
i
in
range
(
self
.
index_shape
[
0
])])
elif
self
.
index_dimensions
==
2
:
return
sp
.
Matrix
([[
self
.
__getitem__
(
offset
)(
i
,
k
)
for
k
in
range
(
self
.
index_shape
[
1
])]
for
i
in
range
(
self
.
index_shape
[
0
])])
else
:
raise
NotImplementedError
(
"
neighbor_vector is not implemented for more than 2 index dimensions
"
)
def
__getitem__
(
self
,
offset
):
if
type
(
offset
)
is
np
.
ndarray
:
offset
=
tuple
(
offset
)
...
...
This diff is collapsed.
Click to expand it.
pystencils_tests/test_fd_derivation.ipynb
+
20
−
5
View file @
d002888a
...
...
@@ -153,7 +153,7 @@
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKQAAACaCAYAAAAnxeOcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAE+FJREFUeJztnXtwXNV5wH9nd7UPrWTJ8soWsh6uATPBIQ/KKzEloSngdcOAE9M0E6cUApmUuJPAJI1pnLSJA2RqbEKGkjKEAs0wDiUYOoAX8iyEDEljYGyS1ji2gm1JfuhaWkkrrR6rPf1jtbZkr/Z1X+de3d+MZ6x9nPt9+n66j71nvyOklHh4qILP7gA8PGYSsGpDIqHVARcBUUBU8FYJpIBdMh4bMSM2IxAJbQHwp0AtleVXiCxwBNgt47Gs3tjMQiS0ZcB5QE2Fb53iVH6zDtHCikO2SGg3AF8HgjqGGQe+IeOxp42JyjhEQvs08BUqL0wpeoCbZTz2jsHj6kIktBBwP3ClzqEOAjfJeKwn/4Dph2yR0JqBb6JPRoAQsFkktJj+qIxDJLR2YBPGywiwFNhswrh6+TT6ZQToBP5p5gNWnEP+mYHb8QOrDBrLKK4wefyLREKrNXkblfIhA8daJRKaP/+DFUI2GDxeo8Hj6cXo/E7HB9SbvI1KMTLnALnrCsAaIfWe4Js9nhNQLWfT4rH/Y5/hAR+f/3AHazvOZf9uveeZzsKtuevIy34hw9Esm5/s4ZKrh+0OxXLcmruOvOwXsiYITUum7A7DFtyau4687BfSw2MGnpAeSuEJ6aEUlt3LLsrGtUs5uDdMb1eQa9Yn+ejNQ3aHZBluzb3KvNQQ8tvP9JR+kUtxa+5V5uUdsj2UQo09pBu5Y3U7e1+PFHzu3Peluf8nhy2OyBHYI+Sa5hUVvX5n3z6TIjGPbS+WFq7Y78FpORtUU3uEfHLffjaubaO3K8SW5w5yznsn2PNqmIe/vphAjWThkgx3fv8INe65m1aQnX372PWzCD/ctohsVnDtLQNc+fGU3WFVhUE1teccstCtpZZlk2x5/jD3vXSYJR2TvPJsnS2xWcl4WrDjwSbu3tHNtsRhx8oIhtXUHiEL3Vpa3DZFuDY3fd3vlwgXXm9JCb1dZ5Psy00y3vNqhGA4y6Yb2vjaJ1rRev0lRlAXg2qqXtW7D9Tw5stRLr82xehwHccOdTIyVIcbvh2ZTkWR0sfIcCNSQv9xP8cOBfnWU92sXj/IY3cpNRu+JJmMn6S2iKOHOslOze3SzJqWQK2r7FTSx723tfDlB48QDEF2KsPkRIhk31kMapJowwDjo/XgrLqdJDXYhJQCgSSdqqOuIct5F6YJhuDiq0Z56oEmu0Msi6TWSGailfF0FCkFPn8G4Sv8ZbTTa1oCdfaQmUm46+az+NSXTrDs/EkAQpEx/IFJpBRksz5SySae2HKfEMLsWdrGk5kMMDkeBkBKH6nkQlZemqb7QBCZhbffCNHSMWlzlCURQnyefW+sYmy0LvfHJST1jf2IAnN2C9W0BPbtIU+/teTzw4E9YbZvXcT2rYuI35jkqk8OU7/wBIPaEqQUSCloWvJbwHnzB1ODDUh5qmoT4xGaWnxctjrF7fF2fALueOCojRGWywvAd5k5azy6YBAov6ZFsE/IQreW1tx45v3O2vphBrXFCAFSCk4cvcyK8Aynti4FUpAabEIISbShH38gw7oNSdZtSNodXgUsRspTR9ZI3RA+f+4Ev9yaFkGdQ/Zc+HySBU0akbpBWjq6ph+dEsJhl+HB8DiNzRoA4egwjbETBQ9zCiOEuAT4Df7ABC0dXQTDo9Qv7DdyG1YUNa17hPqFSZqWHCcQzHD95zZMP6qKlGMWbEP/71AnJ2UEjYs+8l8EghkWt3VTEzTivHc8/x8rCrrL0NGWr3yR3BfMQQ0pXzd5/P0yHhs0eRtFmSmjlLIZY3N+S8Zj1gkp47E/ADsMGu5pGY8dkFIeQhEpZTy2G0iYNHwG2GrS2GVRQEaAHwC9Bgw/Adw3a3sW9fbxAR+c/ldHdc2mfgW8NrP5khCig1x/GAC/lNKWxkzTnRcuBz5AqWZT27duonnpbv7ir58rMuQUcBR4ScZjfzQy1kqYQ8bccwmtAVhN9c2meoEXZTx2aNa4Tu8PqYqU5SKEkMBjUsqb7I6lGMVkNBO7z790o9Lh2y3YJSO4QEjwpDQSO2UElwgJnpRGYLeM4CIhwZNSDyrICC4TEjwpq0EVGcGFQoInZSWoJCO4VEjwpCwH1WQEFwsJnpTFUFFGcLmQ4ElZCFVlhHkgJHhSzkRlGWGeCAmelKC+jDCPhIT5LaUTZIR5JiTMTymdIiPMQyFhfknpJBlhngoJ80NKp8kI81hIcLeUTpQR5rmQ4E4pnSojeEIC7pLSyTKCJ+RJ3CCl02UET8hZOFlKN8gInpBn4EQp3SIjeEIWxElSuklG8IScEydI6TYZwROyKCpL6UYZwROyJCpK6VYZwROyLFSS0s0ygidk2aggpdtlBBs76E43aCrWpGhSxmNVrUpvFlLKQ0KITnK9hKaEELN6CYmEJoAgxZpN1YTAH/CLhBYusqmsjMcmZj7gBBlFQgsy905OAhMyHivaTMryZlMioV0L3Equa1Yp3gYelvFYsU5hlnN6gyt29q0A/gG4lFJ/5N37VxCpG2JRS6l+4v3A88C/sKb5/Sgq4/Qf1kYgDjSWePkE8Cpwt4zHCi69Z+lhRyS0VcAWypOR6ddtEQntA+ZFVTmzDt/h6BRSPg6swtgjThPwNxzc+z0UlXGazcAnKS0j5I4efw48Pn2EPAOrz4Ouo7LekEy//joTYtHFSSnf80HoOXCJKQs7jafDTE58Br9fSRlFQosA11Tx1qXARYWesFrI9irf12ZoFAYhpTzErZv/EYCeAysMlXI8Haavp4PauimeO3q+cQMbSjNQejWkwhSsqdVCVrs9tVYcm8nSswdp6cytDmGUlHkZfb4pWpcfAFRdA1GPPwVzsr/QPV0Bbr+mk7azc1eVmx7vPWMRR9UJ1GRo6ezi6MHl9BxYwdKz95W15Eeh3KMLak6T0VnorKf9QgK866I039huRBN1+6hWypm5n7lndCY66qnGB+P73ozwxavbeeirMdRuEV6cvJRQ/uE7n/v37mzheLfzZQRd9bRfyObWKR7Z1cV9Lx5mUPPzi6edvXB7JVLmc//2M30MHFvAmy9nHS+jznraL2QwLKmtyy3uveqjKbreqvaqTR3KlTIYlvj9IbQjHVx4ZZbjhwYsjNIcdNbTfiFTyVMxvPVahNblyi/RWxblSNl/LHLynPGd/0u6Ined9bT/ouaN/46wfWuMUCTL4rZJbvmGZndIhlHoQifPeDrMazvbee4RCNdOsLgt4IrcddbTfiGvuH6EK64fmfN5KaH3j21CNP+K3L33D1oXnAGcLiVAdspPX08H7//QFH95k+POGYUQFwA/5ewLfsrWRJBg6NREkFL1LIH9Qs7F5EQNqcFGRocb6PrdcnKxjkzPtlGHh3/dxJL20r/HWOshtN4OAMbTUXy+LIvbDpKZKP3ex+9pE2seUOnc+kIgSir5V/R1+/EHJqhrHKCuoaK1sQuhrpADx1qYGI8AkJ3Kn5dEgXfsCqkgzz4E1332zMfvvQ32vVn4PWe/B77ykI+jh5aXtY2f/+dvdURoHpLcESwzGSLZ1+IOIdc0r5jzuSf/cIxUsgmfT5C7ABuUUjZZFlsZiIR2G/CFM574zo9n/5z/0Hsmny0yiWln36nzzSd+/yEZj5WarmYZQoirgWcRQiBEiGBkhPrG3CcExeo5M6c5sF/InX372PWzCD/ctohsVnDtLQNc+fHUyefrGwcJRd4htzpqrV1h6mLmHZhs1k+4dpix0XrufQH+7c4x/AGJzy/Z+PARmpc64bZpF7CXWGuCls5P4A+cirlUPUtgv5DjacGOB5u4e0c3wTlOk5qWDEgpb7Q2MIM4/XZg9/4VCJ+kpbOL7NRyvvS9MO3n7uOFRxfwwqMN/O2mfrtDLoWUcj9woUhoy4B1s54sp55FsP9zyD2vRgiGs2y6oY2vfaIVrVfVmS2VU+zedKAmQ+vyLny+3OeUo8M+Ot81McdIzkFnPe0Xsv+4n2OHgnzrqW5Wrx/ksbtidodkCOVMlAjUZBjq7+buz0DiPxaz4v1jFkdpPDrrab+QdQ1ZzrswTTAEF181Svf+oN0h6aaSWTvnXzLKd3/axXW3wg/uWW7KzHMr0VlP+4VceWma7gNBZBbefiNES4ezb59VIuPEWG5+WqAmQ3PbEYJh42eeW43Oetp/UdPYnOWy1Sluj7fjE3DHA8p8vFExlc5n3LsrxL9vbsbng5pQltvvP0hmsrOi+ZSqobOe9gsJsG5DknUbknaHoYtqJte+5/IxvvPS7K+DZiYrn+SrGjrqaf8h2w0YOdO7mkm+LsJqITNVvk/d88rfvdZu+NcOTpcyqan6YbmeuAq6YLWQXVW+T8kZMUKIS9i+daMpXzvIS5lKwvqVx1XoulaAY0C1M3sKumB1kj+i8r3dJPC0CbHo4mSvnd//WqN1+cumbCRQk6Gx+Ztks6BIK8CZTPcfqqY2/wvsLvSEpRc1Mh7bLRLaLcCNwEpKNJsCfg88KuOxt6yIr1xmNX4aH2sWCa0V+DvgA+Tut899JTI8ADBOrnfPXGSBI8ALtHQ+BjzCHA2uFOAe4Di53j5LKN5sahj4JfCvczWdsrzZlNPR24VMCCGBx6SUN1X4vlkNrhST0jCUOgSojp0t8VToT2kFrkzKDFTozzgfpHRdQmaggox53C6lq5IxA5VkzONmKV2TiBmoKGMet0rpiiTMQGUZ87hRSscnYAZOkDGP26R0dPBm4CQZ87hJSscGbgZOlDGPW6R0ZNBm4GQZ87hBSscFbAZukDGP06V0VLBm4CYZ8zhZSscEagZulDGPU6V0RJBm4GYZ8zhRSuUDNIP5IGMep0mpdHBmMJ9kzOMkKZUNzAzmo4x5nCKlkkGZwXyWMY8TpFQuIDPwZDyF6lIqFYwZeDKeicpSKhOIGXgyzo2qUioRhBl4MpZGRSltD8AMPBnLRzUpXSekJ2PlqCSlq4T0ZKweVaR0jZCejPpRQUpXCOnJaBx2S+l4IT0ZjcdOKS1pNiUSWgi4DlgFVLTC/DQp4FfAs9Mt4HLjKiKjSGgR4Hpy3c+iRV/80hM3s6jlD1z0kV8WeZUEeoEXZDz2G8MCrZBiDa5EQusEPgacR/EudoXIAj3A8zIe2zVrmxYJ+QhwuQFDvSLjsVtBKRn9wOPAxWW9oXv/CiJ1QyxqKbcZ/FdlPPajauPTSyEpRUI7B9gOLNA5vAS+LOOx5/IPmL4rFgntvRgjI8AVIqG9WxUZp7mYcmWsjttMHLskcxy+16NfRsj10fzczAesODe4wNDRXv/5WtSREeDdJo+/VCQ0W1fAPV1KpDSypudMn/IA1gipf2WuZF+Mvp42xkYjvPzMN1FHRjAiPzW2UZRZUv7Pjz/GeDrEkXf+hIkxIxaWP3kOqv5VdnbKx8jQQibGImi97fj9owrJWD7pkVr6eltz/08t4MSRs8hmHbUIzSwp+3o6mcrUMDRg6N7bfiGHB3x8/sMdrO04l/27z9wTpIZy5ypS5ooXqT8shDDir9JaJsdDjI+e+oQhPVLPUH+gaO5q0oQQp9pJj4/WMZWZveJrqZoWwX4hw9Esm5/s4ZKrh894TkpIJZtOyiiEJJ1qQ5UVyCohumCIXH/xHKHICNEFk3Pmri4rAWblkhpsmPWKYjUtgf1C1gShaUnhBXjGRqJkpwIIIQnUTNDYfJTP3f0FKWW1a6PYhz8wRTA8CuSKWdc4UDR3RZFSPsEFq35OdMEAQmSRwMhg06wVx3TkpfaeRogs4doU9Qv7CUXya0k7qoCzqG/sZzwdRfiyhGtH7Q6naiLRMSJRjQWLTjA6XM/YSB1Sill7zSpRW8hwNE04mrY7DMMI1abxBzLU1icduajm6fh8krqGIeoahowaUm0h3YYQcNayapfXmxeoIeTGtUs5uDdMb1eQa9Yn+ejNhv3FKY9bc68yLzWE/PYzPXaHYBtuzb3KvOy/yvbwmIEae0g3csfqdva+Hin43LnvS3P/Tw5bHJEjsEfINc0rKnr9zr59JkViHtteLC1csd+D03I2qKb2CPnkvv1sXNtGb1eILc8d5Jz3TrDn1TAPf30xgRrJwiUZ7vz+EWqccjetSnb27WPXzyL8cNsislnBtbcMcOXHU3aHVRUG1dSec8hCt5Zalk2y5fnD3PfSYZZ0TPLKs9XMLHcW42nBjgebuHtHN9sShx0rIxhWU3v2kIVuLS1uO/Wz3y+xv4mC+ex5NUIwnGXTDW2EIlm+cN8xYq3OvBNlUE3Vq3r3gRrefDnK5dc6d29RLv3H/Rw7FORbT3Wzev0gj90VszskU6igpmoJmUr6uPe2Fr784BGCzpthVjF1DVnOuzBNMAQXXzVK9373nTRXWFN1hMxMwl03n8WnvnSCZedP2h2OJay8NE33gSAyC2+/EaKlw115V1FT+z6HPP3Wks8PB/aE2b51Edu3LiJ+Y5KrPumkeYKV09ic5bLVKW6Pt+MTcMcD5X4TUU0MqKl9Qha6tbTmRnfcx62EdRuSrNuQtDsMQzCgplYcsrOlX2LreHox/4vt6uVsdDwnf4dWCHlC8fH0YnY8GUC1I4eROaeBk5OVrRDyZWDcoLHGgWItSOzgF5g7i/0VGY+NlX6ZpfzEwLF+IeOxk78/04WU8dgQ8PfAcZ1DHQM2TI+nDDIe6wO+CGgmDL8L2GTCuHp5EngCmCj1wiJI4DXgn2c+aElvHwCR0ARwDtU3m9ov4zFrgq0CkdB85PIr3myqPLLAURmPHTNgLNMQCa0OWEZ1zaZ6p/+YZ49plZAeHuWgzgfjHh54Qnoohiekh1J4Qnooxf8DQobOZydRBWoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0
5740f2470
>"
"<matplotlib.figure.Figure at 0x7f0
6c885ccf8
>"
]
},
"metadata": {},
...
...
@@ -332,8 +332,10 @@
"assert FiniteDifferenceStaggeredStencilDerivation(\"T\", 3, (2,)).apply(c3) == c3[0, 0, 1] - c3[0, 0, 0]\n",
"assert FiniteDifferenceStaggeredStencilDerivation(\"B\", 3, (2,)).apply(c3) == c3[0, 0, 0] - c3[0, 0, -1]\n",
"\n",
"assert FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (0,)).apply(c) + FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (1,)).apply(c) == c[1, 1] - c[0, 0]\n",
"assert FiniteDifferenceStaggeredStencilDerivation(\"NE\", 3, (0,)).apply(c3) + FiniteDifferenceStaggeredStencilDerivation(\"NE\", 3, (1,)).apply(c3) == c3[1, 1, 0] - c3[0, 0, 0]"
"assert FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (0,)).apply(c) + \\\n",
" FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (1,)).apply(c) == c[1, 1] - c[0, 0]\n",
"assert FiniteDifferenceStaggeredStencilDerivation(\"NE\", 3, (0,)).apply(c3) + \\\n",
" FiniteDifferenceStaggeredStencilDerivation(\"NE\", 3, (1,)).apply(c3) == c3[1, 1, 0] - c3[0, 0, 0]"
]
},
{
...
...
@@ -345,7 +347,7 @@
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAF3CAYAAABkPHbIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAE2dJREFUeJzt3X2MXeVh5/HfGYxtbPwCHrc2YIwDdhpapSnbJW22QF7YiCEJgsACWgkFpaVSQjc02apItbRRt6RpKrZJitIq2hKaRU2ysO1mlSqTVmmzZNWlf5SqadolNIaYGmgSxobBxuMZZubsH3f8Pi93Hs/c189HsvDcOWee548zfH2ec+65VV3XAYASA+2eAADda0W7JwCdoBoeWZHkp5JsTFIt0zDTSb6f5B/roUFLACypanhkIMkbkwxm6U4QJpPsqYcG/3nOcS1n0e+q4ZGfTfLpJBtaNOSzSe6qhwafbdF49LhqeOT1ST6bZOsyDfHNJB+qhwbHTv2G5Sz62swZSCsDkiTbk/xmC8ej992f5QtIklyd5Bdn+4aI0O9+Kq0NyFFXVMMj69owLj2mGh7ZmmRXC4Z662wvigj9bmObxh1Isr5NY9NbWnUMzzqOiNDvlusieqePTe9o1XE06zgiAgvZ862V+dUbLsqtl12a6zcvvGzw1BOr8oGrtufGi3bmA1dtz1NPrGrBLOFkjz6wMR+8entuuGBnPv4LW+bd9ku/c15uf/2lufmSy/Jbd23JxJGmwyQisJAVZ9f5ufcczN2//YMFt50YT+6788Jcc9MreWTPnrztltHcd+eFmRhvwUThBJu2TubWe/bnmve+Mu92j391Tb782fNz36P78rknnskP952dB399U7PDiAgs5JLLX8sNd41mx48vXIK//cs1mZpKbvvll7JydZ1b73k5dZ38zdfXtGCmcNzbbzmUt958KOvOm5p3u69/aUPedstoLnvjRDZsms7tH9mfx/6k6ZtNRASW0t4nV2XbrvFUJ/xqbds1nr1PWtKiMz23Z2Ve9xPH/4G0803jeeXAWXn5xab6ICKwlMZeHciaddMnvbZm3XTGDvldozMdOTyQteuPn62cu7Hx91cPiggU+drD63LTxTtz08U7c++NFy5q33PWnh6MsUMDOefc6Tn2gPZavWY6rx4869jXr442jt+165o6Zj07C0513R0Hc90dB4v2veQN4/nKg+elns6xJa19/7Qq737/S0s4Q1g6F102kWf+YVWSxjH/3b9bnfXnT2Xj5qYi4kwEFlJPJ+NjVV6baNz2OD5WzXkL5BVvP5yBgeSR392YiSNVHn2g8Qatn772cMvmC0ky+VrjWJ2eSqanGn+ffO307d5x22i+8eiGPP3tlRndP5AvffL8XPPe0WaHcSYCC3lh74rc9ebXHfv6pot3ZtPWyTz8988kSe698cJcfuVY3vdrB7JyVbL7oefz6Q9vyRfu35wLdkxk90PPZ6Xr6rTY5z+2KX/8meO36v7Vn67PzXfvz/V3juaDV+/I733ze9l6yWTe8q7DefY7B7L7lm2ZOFLlynceys9/dH+zw3iKL32tGh55Z5IH2jT8O+qhwefaNDY9ohoeuTzJ/2zBUP9SDw2+9dQXLWcBUExE6HeTfTo2vaNVx9Gs44gI/W5Pm8YdTfJim8amt+xLcqQF43x3thdFhL4287Gf32zD0F+shwbnfxwFNGHm0waX+5rIdJIvzPYNd2dB8qE0PrXtmiTnLeM4dRqfsf7VJH+0jOPQf34jjTOSdybZnKV7PPxkGmfrX6yHBv/PbBu4OwuAYpazACgmIlCgqqq1VVWNVVX1/9o9F2gnEYEytyaZSrK9qqo3tXsy0C4iAmV+JcnaJKvSuDAPfUlEYJGqqvrJJJfMfHlWkturqlrbvhnRT6qq2lpV1VC753GUiMDi/Yc0zkCOmkpye5vmQh+oGn6mqqovp3Er7yNVVZ3d7nklbvGFRZk54/hhklM/M/3Juq4vb8OU6GFVVa1K8u+S7E6yLY3jbjLJZ+q6/nA753aUNxvC4tyaxrt3T7W9qqo31XX9d62eEL2nqqqtSX5p5s9AknNP+PZUkk+1Y16zsZwFi/Mfc/Iv9FEusHNGTlmy+l4ax9r6nHy81Ukeq+v62XbMcTaWs6BJVVW9McnjOX0p66ixJJvrun61dbOi282xZDXXY0sOJXlPXdf/uzWzW5gzEWjeh3LyBfVTucBO06qq2lBV1cfSuMb2+0l+LI3bxud77tWLSR5rwfSa5kwEmjDPBfVTucBOU6qqui6Nh3E2+7DEQ0k+Utf1f12+WS2eMxFozlwX1E/lHew068+S3J/k8CL26binP4sINGeuC+qncoGdptSNZaB7k3wmC4dkIskf1HW9mOC0hOUsWMDMBfW/TnJOk7uMJfmRuq4PLd+s6BVVVVVJPpHk7sy9XHokyY910l1ZRzkTgYVdnMZ7qiZP+XPUbK//aCsnSPeaOSPZnbkD0nG39Z7ImQgUqqqqTvKtuq5dA6HYzONLJma+/IMk/z4nB6Xjbus9kXesA7TJKQHZkeTZJC/l5KWtjrut90QiAtAGpwakruu9M6/fO/Pa3TP//XjdwUtGIgLQYnMFJGlcIzkhJO9LB97WeyLXRKCQayKUmC8gp2xXJccuvHcsZyIALdJsQJLOj8dRbvEFaIHFBKSbiAjAMuvVgCQiArCsejkgiYgALJteD0giIgDLoh8CkogIwJLrl4AkIgKwpPopIImIACyZfgtIIiIAS6IfA5KICMAZ69eAJCICcEb6OSCJiAAU6/eAJCICUERAGkQEYJEE5DgRAVgEATmZiAA0SUBOJyIATRCQ2YkIwAIEZG4iAjAPAZmfiADMQUAWJiIAsxCQ5ogIwCkEpHkiAnACAVkcEQGYISCLJyIAEZBSIgL0PQEpJyJAXxOQMyMiQN8SkDMnIkBfEpClISJA3xGQpSMiQF8RkKUlIkDfEJClJyJAXxCQ5SEiQM8TkOUjIkBPE5DlJSJAzxKQ5SciQE8SkNYQEaDnCEjriAjQUwSktUQE6BkC0noiAvQEAWkPEQG6noC0j4gAXU1A2ktEgK4lIO0nIkBXEpDOICJA1xGQziEiQFcRkM4iIkDXEJDOIyJAVxCQziQiQMcTkM4lIkBHE5DOJiJAxxKQziciQEcSkO4gIkDHEZDuISJARxGQ7iIiQMcQkO4jIkBHEJDuJCJA2wlI9xIRoK0EpLuJCNA2AtL9RARoCwHpDSICtJyA9A4RAVpKQHqLiAAtIyC9R0SAlhCQ3iQiwLITkN4lIsCyEpDeJiLAshGQ3iciwLIQkP4gIsCSE5D+ISLAkhKQ/iIiwJIRkP4jIsCSEJD+JCLAGROQ/iUiwBkRkP4mIkAxAUFEgCICQiIiQAEB4SgRARZFQDiRiABNExBOJSJAUwSE2YgIsCABYS4iAsxLQJiPiABzEhAWIiLArASEZogIcBoBoVkiApxEQFgMEQGOERAWS0SAJAJCGREBBIRiIgJ9TkA4EyICfUxAOFMiAn1KQFgKIgJ9SEBYKiICfUZAWEoiAn1EQFhqIgJ9QkBYDiICfUBAWC4iAj1OQFhOIgI9TEBYbiICPUpAaAURgR4kILSKiECPERBaSUSghwgIrSYi0CMEhHYQEegBAkK7iAh0OQGhnUQEupiA0G4iAl1KQOgEIgJdSEDoFCICXUZA6CQiAl1EQOg0IgJdQkDoRCICXUBA6FQiAh1OQOhkIgIdTEDodCICHUpA6AYiAh1IQOgWIgIdRkDoJiICHURA6DYiAh1CQOhGIgIdQEDoViICbSYgdDMRgTYSELqdiECbCAi9QESgDQSEXiEi0GICQi8REWghAaHXiAi0iIDQi0QEWkBA6FUiAstMQOhlK9o9Aegk1fDIiiT/OsmWLPSPrH/z7mT12g3V8MjNc25z5PBZ+Znr/nt+sC95bs+OeuLI3qWcL1TDI+uSvDnJ+iTVMg0zleSFJE/UQ4NTJ41f1/UyjQndpRoeeX2SzyUZbGqH5/bsyoqV49ly8bOzfr+uk+ef3pUk2XLxM1mx8ttJ3l8PDR5YmhnT76rhkfck+XiSs1s05AtJ7qyHBo8d85az4LjfSLMBWcjpAZlM8oYk9yzJz6fvzZyBtDIgSXJBkv904gsiAkmq4ZENSX5ySX7Y7AE56uolGQMaS1itDMhRPzuz7JtEROCodUvyU+YPyNKNQ8+pqmpbVVUPVFX15qqqmrm2sX7ZJzW7s5KsOfqFiEDDmV+QXDggSzMOveotSX4xyV8kebqqqrurqtowz/btPJaOjS0iMJ9HH9iYD169PTdcsDMf/4Utc25X18kf3rcrv/Ku5J5rp3P/3YOZOCIYLNZ4krVJdiT5RJLvV1X1hUWcnZxsz7dW5ldvuCi3XnZprt+8a8Htn3piVT5w1fbceNHOfOCq7XnqiVUL7SIiMJ9NWydz6z37c817X5lzm7pO/vyPduVrDyf/+Yv78rknnskP952dB399UwtnSu9Zm2R1ktvS/NnJyVacXefn3nMwd//2DxbcdmI8ue/OC3PNTa/kkT178rZbRnPfnRdmYnze3UQE5vP2Ww7lrTcfyrrzpubc5vmnd+XxryZvu/nl7LpiLBs2Tef2j+zPY3/S/C87zG0gs5yd5PHhnVnoLRqXXP5abrhrNDt+fP4SJMnf/uWaTE0lt/3yS1m5us6t97ycuk7+5utr5ttNROBMTE40Tvdf2DuRS984duz1nW8azysHzsrLL/odYykdPzv5xv/4aL7/7I4cfGljpqfO/Djb++SqbNs1nuqEH7Vt13j2PjnvkpZ3rEOpqqpT14116iOHV2Zqcmue27M1STI5c01973cuy+Do8X3GXk11/bXe4ctcmj02BlJPr87UZDK6/0cyemBzLrr0u2c08tirA1mzbvqk19asm87YoXkDJSJQavOF/5yxV9emquqsPue8TE8dzvrzG8sGrxyokgxmcOtI1p9//H8Ma84dT/Jf2jNhOtzVSf5tknOb3L5OVSXVwFTO3fBSkuRrD6/LZ3c3bgDZdcXhfOLLzzc9+jlrTw/G2KGBnHPu9Bx7JBERKLdy9XhWrm5EY9vO1dm3ZzLrz2/8Mj/1xJqsP38qF1126iNODtV1/akWz5QuUFXVvyS5tolNx5IMZMOmb2fTlh/NqjVjOXrj1nV3HMx1dxwsmsAlbxjPVx48L/V0ji1p7funVXn3+1+abzfrtTCfydeS8bEq01PJ9FTj75Ovnb7dO24bzTce3ZCnv70yo/sH8qVPnp9r3jt6+oZQpE5yKI1nV300ybb80v2/ldVrjwdk1r2mG8fsaxONjcbHqjlvPb/i7YczMJA88rsbM3GkyqMPbEyS/PS1h+ebmDMRmM/nP7Ypf/yZ47fq/tWfrs/Nd+/P9XeO5oNX78jvffN72XrJZN7yrsN59jsHsvuWbZk4UuXKdx7Kz390fxtnTm9onHUkf57kd5I8Vs88NbcaHll47xf2rshdb37dsa9vunhnNm2dzMN//0yS5N4bL8zlV47lfb92ICtXJbsfej6f/vCWfOH+zblgx0R2P/R8Vs7/VhFP8YUk1fDItiRfb8FQh+qhwX/VgnHoMlVV3ZbkwTQeKfJqkleSfCrJH9Z1/eJp2zc+guA3WzrJ466shxp3jDgTAegMI0lWJvlKkk/mhLOOTiYi0DDbc66WwywXVCCp6/ovqqpaV9f1wm8MbGjnsXRsbBfWoeGHSVrxYVFPtWAMutQiApK071jaVw8NHrvYLiKQZOYjP//bMg8zneTzyzwGfaIeGnwqyf9tw9APnfiFC+twgmp45IYk70ozn7HevMkk30vyaD00+PgS/UxINTxyTpI7klyVZEOW/zPW/1c9NPhnJ81BRAAoZTkLgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMVEBIBiIgJAMREBoJiIAFBMRAAoJiIAFBMRAIqJCADFRASAYiICQDERAaCYiABQTEQAKCYiABQTEQCKiQgAxUQEgGIiAkAxEQGgmIgAUExEACgmIgAUExEAiokIAMX+P2nvVhY2t2ylAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0
571eccd6
8>"
"<matplotlib.figure.Figure at 0x7f0
6c669c89
8>"
]
},
"metadata": {},
...
...
@@ -353,7 +355,20 @@
}
],
"source": [
"FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (0, 1)).visualize()"
"d = FiniteDifferenceStaggeredStencilDerivation(\"NE\", 2, (0, 1))\n",
"assert d.apply(c) == c[0,0] + c[1,1] - c[1,0] - c[0,1]\n",
"d.visualize()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"v3 = ps.fields(\"v(3): [3D]\")\n",
"assert FiniteDifferenceStaggeredStencilDerivation(\"E\", 3, (0,)).apply(v3) == \\\n",
" sp.Matrix([v3[1,0,0](i) - v3[0,0,0](i) for i in range(*v3.index_shape)])"
]
},
{
...
...
%% Cell type:code id: tags:
```
python
from
pystencils.session
import
*
from
pystencils.fd.derivation
import
*
```
%% Cell type:markdown id: tags:
# 2D standard stencils
%% Cell type:code id: tags:
```
python
stencil
=
[(
-
1
,
0
),
(
1
,
0
),
(
0
,
-
1
),
(
0
,
1
),
(
0
,
0
)]
standard_2d_00
=
FiniteDifferenceStencilDerivation
((
0
,
0
),
stencil
)
f
=
ps
.
fields
(
"
f: [2D]
"
)
standard_2d_00_res
=
standard_2d_00
.
get_stencil
()
res
=
standard_2d_00_res
.
apply
(
f
.
center
)
expected
=
f
[
-
1
,
0
]
-
2
*
f
[
0
,
0
]
+
f
[
1
,
0
]
assert
res
==
expected
```
%% Cell type:code id: tags:
```
python
assert
standard_2d_00_res
.
accuracy
==
2
assert
not
standard_2d_00_res
.
is_isotropic
standard_2d_00_res
```
%% Output
Finite difference stencil of accuracy 2, isotropic error: False
%% Cell type:code id: tags:
```
python
standard_2d_00
.
get_stencil
().
as_matrix
()
```
%% Output
$$\left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$$
⎡0 0 0⎤
⎢ ⎥
⎢1 -2 1⎥
⎢ ⎥
⎣0 0 0⎦
%% Cell type:markdown id: tags:
# 2D isotropic stencils
## second x-derivative
%% Cell type:code id: tags:
```
python
stencil
=
[(
i
,
j
)
for
i
in
(
-
1
,
0
,
1
)
for
j
in
(
-
1
,
0
,
1
)]
isotropic_2d_00
=
FiniteDifferenceStencilDerivation
((
0
,
0
),
stencil
)
isotropic_2d_00_res
=
isotropic_2d_00
.
get_stencil
(
isotropic
=
True
)
assert
isotropic_2d_00_res
.
is_isotropic
assert
isotropic_2d_00_res
.
accuracy
==
2
isotropic_2d_00_res
```
%% Output
Finite difference stencil of accuracy 2, isotropic error: True
%% Cell type:code id: tags:
```
python
isotropic_2d_00_res
.
as_matrix
()
```
%% Output
$$\left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$$
⎡1/12 -1/6 1/12⎤
⎢ ⎥
⎢5/6 -5/3 5/6 ⎥
⎢ ⎥
⎣1/12 -1/6 1/12⎦
%% Cell type:code id: tags:
```
python
plt
.
figure
(
figsize
=
(
2
,
2
))
isotropic_2d_00_res
.
visualize
()
```
%% Output
%% Cell type:code id: tags:
```
python
expected_result
=
sp
.
Matrix
([[
1
,
-
2
,
1
],
[
10
,
-
20
,
10
],
[
1
,
-
2
,
1
]])
/
12
assert
expected_result
==
isotropic_2d_00_res
.
as_matrix
()
```
%% Cell type:code id: tags:
```
python
type
(
isotropic_2d_00_res
.
as_matrix
())
```
%% Output
sympy.matrices.dense.MutableDenseMatrix
%% Cell type:code id: tags:
```
python
type
(
expected_result
)
```
%% Output
sympy.matrices.dense.MutableDenseMatrix
%% Cell type:markdown id: tags:
## Isotropic laplacian
%% Cell type:code id: tags:
```
python
isotropic_2d_11
=
FiniteDifferenceStencilDerivation
((
1
,
1
),
stencil
)
isotropic_2d_11_res
=
isotropic_2d_11
.
get_stencil
(
isotropic
=
True
)
iso_laplacian
=
isotropic_2d_00_res
.
as_matrix
()
+
isotropic_2d_11_res
.
as_matrix
()
iso_laplacian
```
%% Output
$$\left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$$
⎡1/6 2/3 1/6⎤
⎢ ⎥
⎢2/3 -10/3 2/3⎥
⎢ ⎥
⎣1/6 2/3 1/6⎦
%% Cell type:code id: tags:
```
python
expected_result
=
sp
.
Matrix
([[
1
,
4
,
1
],
[
4
,
-
20
,
4
],
[
1
,
4
,
1
]])
/
6
assert
iso_laplacian
==
expected_result
```
%% Cell type:markdown id: tags:
# stencils for staggered fields
%% Cell type:code id: tags:
```
python
half
=
sp
.
Rational
(
1
,
2
)
fd_points_ex
=
(
(
half
,
0
),
(
-
half
,
0
),
(
half
,
1
),
(
half
,
-
1
),
(
-
half
,
1
),
(
-
half
,
-
1
)
)
assert
set
(
fd_points_ex
)
==
set
(
FiniteDifferenceStaggeredStencilDerivation
(
"
E
"
,
2
).
stencil
)
fd_points_ey
=
(
(
0
,
half
),
(
0
,
-
half
),
(
-
1
,
-
half
),
(
-
1
,
half
),
(
1
,
-
half
),
(
1
,
half
)
)
assert
set
(
fd_points_ey
)
==
set
(
FiniteDifferenceStaggeredStencilDerivation
(
"
N
"
,
2
).
stencil
)
fd_points_c
=
(
(
half
,
half
),
(
-
half
,
-
half
),
(
half
,
-
half
),
(
-
half
,
half
)
)
assert
set
(
fd_points_c
)
==
set
(
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
).
stencil
)
assert
len
(
FiniteDifferenceStaggeredStencilDerivation
(
"
E
"
,
3
).
points
)
==
10
assert
len
(
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
3
).
points
)
==
12
assert
len
(
FiniteDifferenceStaggeredStencilDerivation
(
"
TNE
"
,
3
).
points
)
==
8
```
%% Cell type:code id: tags:
```
python
c
=
ps
.
fields
(
"
c: [2D]
"
)
c3
=
ps
.
fields
(
"
c3: [3D]
"
)
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
E
"
,
2
,
(
0
,)).
apply
(
c
)
==
c
[
1
,
0
]
-
c
[
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
W
"
,
2
,
(
0
,)).
apply
(
c
)
==
c
[
0
,
0
]
-
c
[
-
1
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
N
"
,
2
,
(
1
,)).
apply
(
c
)
==
c
[
0
,
1
]
-
c
[
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
S
"
,
2
,
(
1
,)).
apply
(
c
)
==
c
[
0
,
0
]
-
c
[
0
,
-
1
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
E
"
,
3
,
(
0
,)).
apply
(
c3
)
==
c3
[
1
,
0
,
0
]
-
c3
[
0
,
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
W
"
,
3
,
(
0
,)).
apply
(
c3
)
==
c3
[
0
,
0
,
0
]
-
c3
[
-
1
,
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
N
"
,
3
,
(
1
,)).
apply
(
c3
)
==
c3
[
0
,
1
,
0
]
-
c3
[
0
,
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
S
"
,
3
,
(
1
,)).
apply
(
c3
)
==
c3
[
0
,
0
,
0
]
-
c3
[
0
,
-
1
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
T
"
,
3
,
(
2
,)).
apply
(
c3
)
==
c3
[
0
,
0
,
1
]
-
c3
[
0
,
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
B
"
,
3
,
(
2
,)).
apply
(
c3
)
==
c3
[
0
,
0
,
0
]
-
c3
[
0
,
0
,
-
1
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
0
,)).
apply
(
c
)
+
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
1
,)).
apply
(
c
)
==
c
[
1
,
1
]
-
c
[
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
3
,
(
0
,)).
apply
(
c3
)
+
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
3
,
(
1
,)).
apply
(
c3
)
==
c3
[
1
,
1
,
0
]
-
c3
[
0
,
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
0
,)).
apply
(
c
)
+
\
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
1
,)).
apply
(
c
)
==
c
[
1
,
1
]
-
c
[
0
,
0
]
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
3
,
(
0
,)).
apply
(
c3
)
+
\
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
3
,
(
1
,)).
apply
(
c3
)
==
c3
[
1
,
1
,
0
]
-
c3
[
0
,
0
,
0
]
```
%% Cell type:code id: tags:
```
python
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
0
,
1
)).
visualize
()
d
=
FiniteDifferenceStaggeredStencilDerivation
(
"
NE
"
,
2
,
(
0
,
1
))
assert
d
.
apply
(
c
)
==
c
[
0
,
0
]
+
c
[
1
,
1
]
-
c
[
1
,
0
]
-
c
[
0
,
1
]
d
.
visualize
()
```
%% Output
%% Cell type:code id: tags:
```
python
v3
=
ps
.
fields
(
"
v(3): [3D]
"
)
assert
FiniteDifferenceStaggeredStencilDerivation
(
"
E
"
,
3
,
(
0
,)).
apply
(
v3
)
==
\
sp
.
Matrix
([
v3
[
1
,
0
,
0
](
i
)
-
v3
[
0
,
0
,
0
](
i
)
for
i
in
range
(
*
v3
.
index_shape
)])
```
%% Cell type:code id: tags:
```
python
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment