Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pystencils
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sebastian Bindgen
pystencils
Commits
1b309654
Commit
1b309654
authored
4 years ago
by
Michael Kuron
Browse files
Options
Downloads
Patches
Plain Diff
FVM: don’t scale the fluxes in the continuity equation, better test
parent
35af7c14
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pystencils/fd/finitevolumes.py
+8
-10
8 additions, 10 deletions
pystencils/fd/finitevolumes.py
pystencils_tests/test_fvm.py
+60
-38
60 additions, 38 deletions
pystencils_tests/test_fvm.py
with
68 additions
and
48 deletions
pystencils/fd/finitevolumes.py
+
8
−
10
View file @
1b309654
...
...
@@ -78,6 +78,9 @@ class FVM1stOrder:
fluxes
=
[
sp
.
Matrix
(
fluxes
.
tolist
()[
i
])
if
flux_field
.
index_dimensions
>
1
else
fluxes
.
tolist
()[
i
]
for
i
in
range
(
self
.
dim
)]
A0
=
sum
([
sp
.
Matrix
(
ps
.
stencil
.
direction_string_to_offset
(
d
)).
norm
()
for
d
in
flux_field
.
staggered_stencil
])
/
self
.
dim
discrete_fluxes
=
[]
for
neighbor
in
flux_field
.
staggered_stencil
:
neighbor
=
ps
.
stencil
.
direction_string_to_offset
(
neighbor
)
...
...
@@ -85,14 +88,14 @@ class FVM1stOrder:
for
i
in
range
(
1
,
self
.
dim
):
directional_flux
+=
fluxes
[
i
]
*
int
(
neighbor
[
i
])
discrete_flux
=
discretize
(
directional_flux
,
neighbor
)
discrete_fluxes
.
append
(
discrete_flux
)
discrete_fluxes
.
append
(
discrete_flux
/
sp
.
Matrix
(
neighbor
).
norm
()
)
if
flux_field
.
index_dimensions
>
1
:
return
[
ps
.
Assignment
(
lhs
,
rhs
)
return
[
ps
.
Assignment
(
lhs
,
rhs
/
A0
)
for
i
,
d
in
enumerate
(
flux_field
.
staggered_stencil
)
if
discrete_fluxes
[
i
]
for
lhs
,
rhs
in
zip
(
flux_field
.
staggered_vector_access
(
d
),
sp
.
simplify
(
discrete_fluxes
[
i
]))]
else
:
return
[
ps
.
Assignment
(
flux_field
.
staggered_access
(
d
),
sp
.
simplify
(
discrete_fluxes
[
i
]))
return
[
ps
.
Assignment
(
flux_field
.
staggered_access
(
d
),
sp
.
simplify
(
discrete_fluxes
[
i
])
/
A0
)
for
i
,
d
in
enumerate
(
flux_field
.
staggered_stencil
)]
def
discrete_source
(
self
):
...
...
@@ -184,14 +187,9 @@ class FVM1stOrder:
neighbors
=
flux_field
.
staggered_stencil
+
[
ps
.
stencil
.
inverse_direction_string
(
d
)
for
d
in
flux_field
.
staggered_stencil
]
divergence
=
flux_field
.
staggered_vector_access
(
neighbors
[
0
])
/
\
sp
.
Matrix
(
ps
.
stencil
.
direction_string_to_offset
(
neighbors
[
0
])).
norm
()
divergence
=
flux_field
.
staggered_vector_access
(
neighbors
[
0
])
for
d
in
neighbors
[
1
:]:
divergence
+=
flux_field
.
staggered_vector_access
(
d
)
/
\
sp
.
Matrix
(
ps
.
stencil
.
direction_string_to_offset
(
d
)).
norm
()
A0
=
sum
([
sp
.
Matrix
(
ps
.
stencil
.
direction_string_to_offset
(
d
)).
norm
()
for
d
in
flux_field
.
staggered_stencil
])
/
self
.
dim
divergence
/=
A0
divergence
+=
flux_field
.
staggered_vector_access
(
d
)
source
=
self
.
discrete_source
()
source
=
{
s
.
lhs
:
s
.
rhs
for
s
in
source
}
...
...
This diff is collapsed.
Click to expand it.
pystencils_tests/test_fvm.py
+
60
−
38
View file @
1b309654
...
...
@@ -3,28 +3,25 @@ import pystencils as ps
import
numpy
as
np
import
pytest
from
itertools
import
product
from
scipy.optimize
import
curve_fit
@pytest.mark.parametrize
(
"
dim
"
,
[
2
,
3
])
def
test_advection_diffusion
(
dim
:
int
):
# parameters
if
dim
==
2
:
domain_size
=
(
32
,
32
)
flux_neighbors
=
4
L
=
(
32
,
32
)
elif
dim
==
3
:
domain_size
=
(
16
,
16
,
16
)
flux_neighbors
=
13
L
=
(
16
,
16
,
16
)
dh
=
ps
.
create_data_handling
(
domain_size
=
domain_size
,
periodicity
=
True
,
default_target
=
'
cpu
'
)
dh
=
ps
.
create_data_handling
(
domain_size
=
L
,
periodicity
=
True
,
default_target
=
'
cpu
'
)
n_field
=
dh
.
add_array
(
'
n
'
,
values_per_cell
=
1
)
j_field
=
dh
.
add_array
(
'
j
'
,
values_per_cell
=
flux_neighbors
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
)
j_field
=
dh
.
add_array
(
'
j
'
,
values_per_cell
=
3
**
dim
//
2
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
)
velocity_field
=
dh
.
add_array
(
'
v
'
,
values_per_cell
=
dim
)
D
=
0.0666
time
=
2
00
time
=
1
00
def
grad
(
f
):
return
sp
.
Matrix
([
ps
.
fd
.
diff
(
f
,
i
)
for
i
in
range
(
dim
)])
...
...
@@ -42,28 +39,27 @@ def test_advection_diffusion(dim: int):
flux_kernel
=
ps
.
create_staggered_kernel
(
flux
).
compile
()
pde_kernel
=
ps
.
create_kernel
(
fvm_eq
.
discrete_continuity
(
j_field
)).
compile
()
pde_kernel
=
ps
.
create_kernel
(
fvm_eq
.
discrete_continuity
(
j_field
)).
compile
()
sync_conc
=
dh
.
synchronization_function
([
n_field
.
name
])
# analytical density calculation
def
density
(
pos
:
np
.
ndarray
,
time
:
int
):
return
(
4
*
np
.
pi
*
D
*
time
)
**
(
-
1.5
)
*
\
np
.
exp
(
-
np
.
sum
(
np
.
square
(
pos
),
axis
=
dim
)
/
(
4
*
D
*
time
))
def
density
(
pos
:
np
.
ndarray
,
time
:
int
,
D
:
float
):
return
(
4
*
np
.
pi
*
D
*
time
)
**
(
-
dim
/
2
)
*
\
np
.
exp
(
-
np
.
sum
(
np
.
square
(
pos
),
axis
=
-
1
)
/
(
4
*
D
*
time
))
pos
=
np
.
zeros
((
*
domain_size
,
dim
))
xpos
=
np
.
arange
(
-
domain_size
[
0
]
//
2
,
domain_size
[
0
]
//
2
)
ypos
=
np
.
arange
(
-
domain_size
[
1
]
//
2
,
domain_size
[
1
]
//
2
)
pos
=
np
.
zeros
((
*
L
,
dim
))
xpos
=
np
.
arange
(
-
L
[
0
]
//
2
,
L
[
0
]
//
2
)
ypos
=
np
.
arange
(
-
L
[
1
]
//
2
,
L
[
1
]
//
2
)
if
dim
==
2
:
pos
[...,
1
],
pos
[...,
0
]
=
np
.
meshgrid
(
xpos
,
ypos
)
elif
dim
==
3
:
zpos
=
np
.
arange
(
-
domain_size
[
2
]
//
2
,
domain_size
[
2
]
//
2
)
zpos
=
np
.
arange
(
-
L
[
2
]
//
2
,
L
[
2
]
//
2
)
pos
[...,
2
],
pos
[...,
1
],
pos
[...,
0
]
=
np
.
meshgrid
(
xpos
,
ypos
,
zpos
)
pos
+=
0.5
def
run
(
velocity
:
np
.
ndarray
,
time
:
int
):
print
(
f
"
{
velocity
}
,
{
time
}
"
)
dh
.
fill
(
n_field
.
name
,
np
.
nan
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
j_field
.
name
,
np
.
nan
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
...
...
@@ -71,8 +67,12 @@ def test_advection_diffusion(dim: int):
for
i
in
range
(
dim
):
dh
.
fill
(
velocity_field
.
name
,
velocity
[
i
],
i
,
ghost_layers
=
True
,
inner_ghost_layers
=
True
)
dh
.
fill
(
n_field
.
name
,
0
)
dh
.
fill
(
n_field
.
name
,
1
,
slice_obj
=
ps
.
make_slice
[[
dom
//
2
for
dom
in
domain_size
]])
if
dim
==
2
:
start
=
ps
.
make_slice
[
L
[
0
]
//
2
-
1
:
L
[
0
]
//
2
+
1
,
L
[
1
]
//
2
-
1
:
L
[
1
]
//
2
+
1
]
else
:
start
=
ps
.
make_slice
[
L
[
0
]
//
2
-
1
:
L
[
0
]
//
2
+
1
,
L
[
1
]
//
2
-
1
:
L
[
1
]
//
2
+
1
,
L
[
2
]
//
2
-
1
:
L
[
2
]
//
2
+
1
]
dh
.
fill
(
n_field
.
name
,
2
**-
dim
,
slice_obj
=
start
)
sync_conc
()
for
i
in
range
(
time
):
...
...
@@ -80,12 +80,31 @@ def test_advection_diffusion(dim: int):
dh
.
run_kernel
(
pde_kernel
)
sync_conc
()
calc_density
=
density
(
pos
-
velocity
*
time
,
time
)
np
.
testing
.
assert_allclose
(
dh
.
gather_array
(
n_field
.
name
),
calc_density
,
atol
=
1e-2
,
rtol
=
0
)
for
vel
in
product
(
*
[[
0
,
-
0.07
,
0.05
],
[
0
,
-
0.03
,
0.02
],
[
0
,
-
0.11
,
0.13
]][:
dim
]):
sim_density
=
dh
.
gather_array
(
n_field
.
name
)
# check that mass was conserved
assert
np
.
isclose
(
sim_density
.
sum
(),
1
)
assert
np
.
all
(
sim_density
>
0
)
# check that the maximum is in the right place
peak
=
np
.
unravel_index
(
np
.
argmax
(
sim_density
,
axis
=
None
),
sim_density
.
shape
)
assert
np
.
allclose
(
peak
,
np
.
array
(
L
)
//
2
-
0.5
+
velocity
*
time
,
atol
=
0.5
)
# check the concentration profile
if
np
.
linalg
.
norm
(
velocity
)
==
0
:
calc_density
=
density
(
pos
-
velocity
*
time
,
time
,
D
)
target
=
[
time
,
D
]
popt
,
_
=
curve_fit
(
lambda
x
,
t
,
D
:
density
(
x
-
velocity
*
time
,
t
,
D
),
pos
.
reshape
(
-
1
,
dim
),
sim_density
.
reshape
(
-
1
),
p0
=
target
)
assert
np
.
isclose
(
popt
[
0
],
time
,
rtol
=
0.05
)
assert
np
.
isclose
(
popt
[
1
],
D
,
rtol
=
0.05
)
assert
np
.
allclose
(
calc_density
,
sim_density
,
atol
=
1e-4
)
for
vel
in
product
(
*
[[
0
,
-
0.047
,
0.041
],
[
0
,
-
0.031
,
0.023
],
[
0
,
-
0.017
,
0.011
]][:
dim
]):
run
(
np
.
array
(
vel
),
time
)
...
...
@@ -189,7 +208,8 @@ def test_advection(dim):
assert
np
.
allclose
(
j1
,
j2
)
def
test_ek
():
@pytest.mark.parametrize
(
"
stencil
"
,
[
"
D2Q5
"
,
"
D2Q9
"
])
def
test_ek
(
stencil
):
# parameters
...
...
@@ -201,7 +221,7 @@ def test_ek():
dh
=
ps
.
create_data_handling
(
L
,
periodicity
=
True
,
default_target
=
'
cpu
'
)
c
=
dh
.
add_array
(
'
c
'
,
values_per_cell
=
1
)
j
=
dh
.
add_array
(
'
j
'
,
values_per_cell
=
dh
.
dim
*
2
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
)
j
=
dh
.
add_array
(
'
j
'
,
values_per_cell
=
int
(
stencil
[
-
1
])
//
2
,
field_type
=
ps
.
FieldType
.
STAGGERED_FLUX
)
Phi
=
dh
.
add_array
(
'
Φ
'
,
values_per_cell
=
1
)
# perform automatic discretization
...
...
@@ -219,20 +239,22 @@ def test_ek():
x_staggered
=
-
c
[
-
1
,
0
]
+
c
[
0
,
0
]
+
z
*
(
c
[
-
1
,
0
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
-
1
,
0
]
-
Phi
[
0
,
0
])
y_staggered
=
-
c
[
0
,
-
1
]
+
c
[
0
,
0
]
+
z
*
(
c
[
0
,
-
1
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
0
,
-
1
]
-
Phi
[
0
,
0
])
xy_staggered
=
-
c
[
-
1
,
-
1
]
+
c
[
0
,
0
]
+
z
*
(
c
[
-
1
,
-
1
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
-
1
,
-
1
]
-
Phi
[
0
,
0
])
xY_staggered
=
-
c
[
-
1
,
1
]
+
c
[
0
,
0
]
+
z
*
(
c
[
-
1
,
1
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
-
1
,
1
]
-
Phi
[
0
,
0
])
xy_staggered
=
(
-
c
[
-
1
,
-
1
]
+
c
[
0
,
0
])
/
sp
.
sqrt
(
2
)
+
\
z
*
(
c
[
-
1
,
-
1
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
-
1
,
-
1
]
-
Phi
[
0
,
0
])
/
sp
.
sqrt
(
2
)
xY_staggered
=
(
-
c
[
-
1
,
1
]
+
c
[
0
,
0
])
/
sp
.
sqrt
(
2
)
+
\
z
*
(
c
[
-
1
,
1
]
+
c
[
0
,
0
])
/
2
*
(
Phi
[
-
1
,
1
]
-
Phi
[
0
,
0
])
/
sp
.
sqrt
(
2
)
A0
=
(
1
+
sp
.
sqrt
(
2
)
if
j
.
index_shape
[
0
]
==
4
else
1
)
jj
=
j
.
staggered_access
divergence
=
-
1
/
(
1
+
sp
.
sqrt
(
2
)
if
j
.
index_shape
[
0
]
==
4
else
1
)
*
\
sum
([
jj
(
d
)
/
sp
.
Matrix
(
ps
.
stencil
.
direction_string_to_offset
(
d
)).
norm
()
for
d
in
j
.
staggered_stencil
+
[
ps
.
stencil
.
inverse_direction_string
(
d
)
for
d
in
j
.
staggered_stencil
]])
divergence
=
-
1
*
sum
([
jj
(
d
)
for
d
in
j
.
staggered_stencil
+
[
ps
.
stencil
.
inverse_direction_string
(
d
)
for
d
in
j
.
staggered_stencil
]])
update
=
[
ps
.
Assignment
(
c
.
center
,
c
.
center
+
divergence
)]
flux
=
[
ps
.
Assignment
(
j
.
staggered_access
(
"
W
"
),
D
*
x_staggered
),
ps
.
Assignment
(
j
.
staggered_access
(
"
S
"
),
D
*
y_staggered
)]
flux
=
[
ps
.
Assignment
(
j
.
staggered_access
(
"
W
"
),
D
*
x_staggered
/
A0
),
ps
.
Assignment
(
j
.
staggered_access
(
"
S
"
),
D
*
y_staggered
/
A0
)]
if
j
.
index_shape
[
0
]
==
4
:
flux
+=
[
ps
.
Assignment
(
j
.
staggered_access
(
"
SW
"
),
D
*
xy_staggered
),
ps
.
Assignment
(
j
.
staggered_access
(
"
NW
"
),
D
*
xY_staggered
)]
flux
+=
[
ps
.
Assignment
(
j
.
staggered_access
(
"
SW
"
),
D
*
xy_staggered
/
A0
),
ps
.
Assignment
(
j
.
staggered_access
(
"
NW
"
),
D
*
xY_staggered
/
A0
)]
# compare
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment