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Abstra
t

The eÆ
ient exe
ution of numeri
ally intensive 
odes often su�ers from high memory a

ess times.

There is no doubt about the fa
t that moving data nowadays is mu
h more expensive than pro
ess-

ing data. Thus today's 
omputer ar
hite
tures employ hierar
hi
al memory stru
tures with usually

several levels of 
a
he memories, whi
h 
an provide data to the CPU mu
h faster than main memory


omponents. However, eÆ
ient exe
ution 
an only be expe
ted if the 
ode respe
ts the memory

design of the underlying ar
hite
ture. Unfortunately, even modern 
ompilers are not very su

essful

in performing data lo
ality optimizations to enhan
e the performan
e of the 
odes, so that most of

this e�ort is left to the programmer.

DiMEPACK is a C++ library 
ontaining 
a
he{optimized multigrid routines for the numeri
al

solution of partial di�erential equations. DiMEPACK 
an handle 
onstant{
oeÆ
ient problems on

re
tangular domains. It implements a set of highly tuned red{bla
k Gauss{Seidel smoothers as well

as 
a
he{aware intergrid transfer operators. In order to redu
e the number of 
a
he 
on
i
t misses,

whi
h espe
ially arise as soon as 
a
he blo
king te
hniques are applied, we have introdu
ed various

array padding heuristi
s. Furthermore, we redu
e the total number of arithmeti
 operations by

providing dedi
ated routines for spe
ial 
ases, like e.g. homogeneous problems.

The DiMEPACK interfa
e is written in C++ whereas the 
omputationally expensive parts of the


ode are implemented in Fortran 77 for the sake of eÆ
ien
y.
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1 Introdu
tion

1.1 Motivation

DiMEPACK is a C++ library of 
a
he{optimized multigrid routines for the solution of two{dimensional

ellipti
 partial di�erential equations (PDEs). So far, DiMEPACK 
an handle 
onstant{
oeÆ
ient prob-

lems on stru
tured grids. DiMEPACK was developed within the DiME (Data{lo
al iterative methods)

resear
h proje
t. The DiME resear
h proje
t is a joint proje
t of the Te
hnis
he Universit�at M�un
hen

and the Universit�at Erlangen{N�urnberg. Our work is presently being funded in part by the Deuts
he

Fors
hungsgemeins
haft (DFG), grants Ru 422/7-1,2,3.

In the following we will motivate our resear
h on the design of 
a
he{aware multigrid algorithms.

Then, we will des
ribe the fun
tionality of the DiMEPACK library in Se
tion 1.2. In Se
tion 1.3 we will

explain how we treat Neumann boundary 
onditions. We will 
on
lude this 
hapter with a brief overview

of the DiMEPACK library.

The resear
h on 
a
he{aware numeri
al methods and the development of the DiMEPACK library

have been motivated by two independent observations.

� Computer Ar
hite
ture:

There is no doubt about the fa
t that the speed of 
omputer pro
essors has been in
reasing and

will even 
ontinue to in
rease mu
h faster than the speed of memory 
omponents. As a general


onsequen
e, 
urrent memory 
hips based on DRAM te
hnology 
annot provide the data to the

CPUs as fast as ne
essary. This memory bottlene
k often results in signi�
ant idle periods of

the pro
essors and thus in very poor 
ode performan
e 
ompared to the theoreti
ally available

peak performan
es of the ma
hines under 
onsideration. To mitigate this e�e
t modern 
omputer

ar
hite
tures use 
a
he memories whi
h keep data that is frequently used by the CPU. Ca
hes are

usually based on SRAM 
hips whi
h on the one hand are mu
h faster than DRAM 
omponents, but

on the other hand have 
omparatively small 
apa
ities, for both te
hni
al and e
onomi
al reasons.

Most of today's RISC{based workstations even use several levels of 
a
hes (one to three levels are


ommon). EÆ
ient exe
ution 
an therefore be a
hieved only if the hierar
hi
al stru
ture of the

memory subsystem (in
luding main memory, 
a
hes and the pro
essor registers) is respe
ted by the


ode, espe
ially by the order of memory a

esses.

� Numeri
al Mathemati
s:

It has been demonstrated that | at least from a theoreti
al point of view | multigrid methods

are among the most eÆ
ient algorithms for the solution of large systems of linear equations arising

e.g. in the 
ontext of the numeri
al solution of PDEs [Bra84, Ha
85, TOS01℄. Multigrid te
hniques

belong to the 
lass of iterative methods, whi
h means that the underlying data set, whi
h in general

is very large, is repeatedly pro
essed several times.

It is our prin
ipal goal to investigate in how far multigrid methods 
an be restru
tured in order to

respe
t the hierar
hi
al memory design of modern 
omputer ar
hite
tures and thus signi�
antly speed

up their exe
ution.

We have investigated the data a

ess optimization te
hniques loop fusion as well as one{ and two{

dimensional loop blo
king. Furthermore, we use sophisti
ated implementations 
ombining smoothing

steps and intergrid transfer operations, i.e. residual restri
tion and error prolongation.

In order to avoid the o

urren
e of severe 
a
he 
on
i
t misses, DiMEPACK also implements array

padding heuristi
s [RT98a, RT98b℄. In 
ontrast to loop fusion and loop blo
king, array padding is a data

layout optimization te
hnique.

Our results and optimization te
hniques are des
ribed in detail in [R�ud97, SR97, SRWH97, R�ud98,

DHK

+

00a, WKKR99, WHSR00, DRHB00, KRWK00, DHK

+

00b, DHI

+

00℄. A more popular des
ription

of our work has re
ently been presented in [DHH

+

00a, DHH

+

00b℄. Please feel free to 
onta
t the authors

of this report if you have any further questions. We further re
ommend that you visit our proje
t home

page:

http://wwwbode.in.tum.de/Par/ar
h/
a
he



4 1 INTRODUCTION

1.2 Fun
tionality of DiMEPACK

In the following we name and brie
y explain the relevant features of the DiMEPACK library. Detailed

des
riptions of the mathemati
al 
omponents are out of the s
ope of this report and 
an be found in

[BHM00, TOS01℄, for example.

� Multigrid 
orre
tion s
heme:

DiMEPACK implements a standard multigrid 
orre
tion s
heme, where on ea
h 
oarser level 
or-

re
tions for the 
orresponding �ner level are 
omputed. FAS multigrid is not supported.

� 5{point and 9{point sten
ils:

DiMEPACK 
an handle both 5{point sten
ils and 9{point sten
ils.

� Standard grid 
oarsening:

The mesh widths h




x

and h




y

of a 
oarser grid are twi
e as large as the mesh widths h

f

x

and h

f

y

of

the next �ner grid: h




x

= 2h

f

x

; h




y

= 2h

f

y

. Semi{
oarsening is not implemented.

� V{
y
les and full multigrid:

DiMEPACK implements both standard multigrid V{
y
les and full multigrid (FMG, nested itera-

tion). These two methods 
orrespond to two di�erent library fun
tions, whi
h will be des
ribed in

Se
tion 3.2.

� Constant{
oeÆ
ient problems:

So far, DiMEPACK 
an only handle 
onstant{
oeÆ
ient problems. The user spe
i�es either the

�ve or the nine entries of a matrix row 
orresponding to an interior grid node.

� Re
tangular domains:

DiMEPACK 
an only handle problems on re
tangular domains. Di�erent mesh widths in dire
tions

x and y are supported. However, the user is responsible to make sure that the standard multigrid


omponents provided by DiMEPACK are appli
able to the spe
i�ed problem.

� Boundary 
onditions:

Ea
h of the four boundary 
onditions 
an be of Diri
hlet or Neumann type. Again, it is up to the

user to provide a reasonable problem spe
i�
ation. See Se
tion 1.3 for further details.

� Problems involving singular matri
es:

In order to handle problems whi
h yield singular matri
es the user must set a 
ag whi
h guarantees

that the solution of the problem on the 
oarsest grid is �xed in the south{west 
orner of the

re
tangular domain, see Se
tion 3.2. Otherwise, the dire
t solver will fail for the problem on the


oarsest grid.

One important example is Poisson's equation ��u = f with Neumann boundary 
onditions along

ea
h of the four sides of the re
tangular domain. If this di�erential operator is dis
retized e.g. using

the standard 5{point sten
il

1

h

2

2

4

: �1 :

�1 4 �1

: �1 :

3

5

on an equidistant grid with mesh width h, the resulting matrix is singular. This 
an easily be

seen sin
e the sum of the entries of ea
h matrix row is 0, and thus (1; : : : ; 1)

T

is an eigenve
tor


orresponding to the eigenvalue 0. This problem 
an be handled by setting the fixSolution 
ag

to true. See [BP94℄ for mathemati
al details on iterative s
hemes applied to singular systems.
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� Pre{ and post{smoothing iterations:

The numbers of pre{smoothing iterations and post{smoothing iterations must be spe
i�ed by the

user. DiMEPACK provides a Gauss{Seidel/SOR smoother based on a red{bla
k ordering of the

unknowns. The use of suitable relaxation parameters 
an help to obtain good smoothing properties

even in the 
ase of moderately anisotropi
 problems, see Se
tion 3.3 and [Yav96℄.

� Number of grid levels:

The user 
an spe
ify the number of grid levels. The amount of levels must be equal or greater

than 2. However, DiMEPACK is also able to automati
ally 
hose the number of grid levels. In this


ase, the maximum number of grid levels is used.

� Restri
tion operators:

DiMEPACK implements both half{weighting and full{weighting.

� Prolongation operator:

The prolongation of the errors from 
oarser to �ner grids is done by linear interpolation.

� Dire
t solution of the 
oarsest problems:

The problems on the 
oarsest grid are solved dire
tly. In the beginning the matrix 
orresponding to

the 
oarsest problem is split into two triangular fa
tors. This is either done by a LU de
omposition

or | in the 
ase of a symmetri
 and positive de�nite matrix | by a Cholesky de
omposition. In the


ourse of the iterative pro
ess, the 
oarse{grid problems are solved by forward{ba
kward solution

steps.

Both the de
omposition and the forward{ba
kward solution are performed using appropriate rou-

tines from the LAPACK library [ABB

+

99℄. It is therefore inevitable that both LAPACK and BLAS

are installed on the underlying ma
hine.

� Stopping 
riteria:

In the 
ase of standard multigrid V{
y
les the 
omputation stops

{ as soon as a the norm of the 
urrent residual rea
hes a given toleran
e, or

{ as soon as a given number of multigrid iterations has been performed.

In the FMG 
ase additional V{
y
les on the �nest level are performed

{ until the residual rea
hes a given toleran
e, or

{ a maximum number of additional V{
y
les has been performed.

The toleran
e 
an be measured in the dis
rete L2 norm or in the maximum norm. See Se
tion 3.2

for an explanation how the residual norms are spe
i�ed. The 
omputation of the norm after ea
h

iteration, however, is 
omputational intensive. Therefore, DiMEPACK allows this feature to be

disabled by the 
ompiler option DIME_COMPUTE_NORM. See Se
tion 2.2.3 for further information.

� Pre
ision of 
oating{point arithmeti
:

DiMEPACK works with either single pre
ision or double pre
ision 
oating{point numbers. By

properly setting the 
orresponding environment variable DIME_REAL the user determines the type

of 
oating{point representation before 
ompiling the DiMEPACK library, see Se
tion 2.3.

� Gnuplot interfa
e:

DiMEPACK 
an produ
e a lot of debugging information, in
luding intermediate solutions and

right{hand sides on all grid levels, see Se
tion 2.2.1.
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1.3 Neumann Boundary Conditions

This se
tion explains how we treat Neumann boundary 
onditions in the DiMEPACK library. Some

hints how to treat Neumann boundaries 
an be found in [BJL

+

92, BHM00℄. Note that our treatment

of Neumann boundaries is based on a �nite di�eren
e approa
h and yields boundary sten
ils that are

di�erent from those obtained for �nite element dis
retization using re
tangular elements and bilinear

basis fun
tions.

1.3.1 Equations for Neumann Boundary Nodes

We use se
ond{order 
entral di�eren
es in order to approximate the external normal derivatives at

grid nodes along Neumann boundaries. This yields 4{ or 6{point sten
ils, respe
tively, for inner (i.e.

non{
orner) Neumann boundary points, depending on whether a 5{point or 9{point sten
il dis
retiza-

tion of the di�erential operator at inner grid points is used. In the following examples, the values

sw; so; se; we; 
e; ea; nw; no; ne denote the 
onstant entries in the bands of the matrix.

Example: Neumann 
ondition along the west boundary:

� 5{point dis
retization:

2

4

: no :

: 
e ea+ we

: so :

3

5

� 9{point dis
retization:

2

4

: no ne+ nw

: 
e ea+ we

: so se+ sw

3

5

The other boundaries of the re
tangular domain are treated analogously.

In a 
orner of the re
tangular domain where two Neumann boundaries meet, we obtain 3{ or 4{point

sten
ils, respe
tively. This is due to the fa
t that in these 
orner points two external normal derivatives

are approximated using 
entral di�eren
es.

Example: Neumann 
ondition in the south{west 
orner:

� 5{point dis
retization:

2

4

: no+ so :

: 
e ea+ we

: : :

3

5

� 9{point dis
retization:

2

4

: no+ so ne+ nw + se+ sw

: 
e ea+ we

: : :

3

5

The other 
orners of the re
tangular domain are treated analogously.

Inhomogeneous Neumann boundaries and homogeneous Neumann boundaries are treated equally,

ex
ept that the right{hand sides of the 
orresponding boundary nodes are adapted to the given non{zero

derivatives. If possible, equations for Neumann boundary points on the 
oarsest grid are s
aled properly

in order to maintain the symmetry of the matrix.

1.3.2 Intergrid Transfer Operators Along Neumann Boundaries

In the previous se
tion we have des
ribed how we obtain the equations for the grid nodes along the

Neumann boundaries of the domain. Now, we explain how the restri
tion operators I

H

h


ompute the

right{hand sides for 
oarse{grid points on Neumann boundaries and how the 
orre
tions for solutions on

�ner grids are 
omputed by the interpolation operators I

h

H

.
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Restri
tion. DiMEPACK implements two di�erent restri
tion operators: half weighting and full weight-

ing. A more detailed analysis of these operators 
an e.g. be found in [ST86℄. Using the 
ommon sten
il

notation for intergrid operators, these restri
tion operators for inner grid nodes look as follows:

� Full weighting:

1

16

2

4

1 2 1

2 4 2

1 2 1

3

5

� Half weighting:

1

8

2

4

: 1 :

1 4 1

: 1 :

3

5

A

ording to [BJL

+

92℄, we use the following operators for non{
orner Neumann boundary points

along the west boundary of the domain:

� Full weighting:

1

16

2

4

: 2 2

: 4 4

: 2 2

3

5

� Half weighting:

1

8

2

4

: 1 :

: 4 2

: 1 :

3

5

It is obvious that the other three boundaries 
an be treated analogously.

Corner nodes (where two Neumann boundaries meet) are treated analogously as well. E.g. for the

north{west 
orner we obtain the following restri
tion operators:

� Full weighting:

1

16

2

4

: : :

: 4 4

: 4 4

3

5

� Half weighting:

1

8

2

4

: : :

: 4 2

: 2 :

3

5

Note that if both

1. a red{bla
k Gauss{Seidel smoother is used, i.e. the user 
hooses the relaxation parameter ! = 1,

and

2. a 5{point sten
il is used for dis
retizing the PDE,

the residuals vanish at the bla
k grid points after every smoothing step, and therefore ea
h of the two

restri
tion operators 
an be implemented more eÆ
iently by avoiding the 
omputation of the residuals


orresponding to bla
k nodes. In parti
ular, this means that the half weighting operator degenerates to

the half inje
tion operator

1

8

2

4

: : :

: 4 :

: : :

3

5

;

if the user 
hooses the relaxation parameter ! = 1.
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Note that this simpli�
ation is not 
orre
t as soon as ! 6= 1 is required or a 9{point operator is

used. In ea
h of these 
ases, the residuals at the bla
k nodes generally do not vanish after a red{bla
k

Gauss{Seidel sweep.

Furthermore, we multiply the restri
ted residuals with an additional fa
tor 4 in order that we 
an

use the �ne{grid 
oeÆ
ients for the 
oarser system as well. This is possible sin
e DiMEPACK merely

implements standard 
oarsening, whi
h means that the mesh widths in both dire
tions x and y are

doubled when re
ursively setting up the 
oarse{grid systems from the 
orresponding �ne{grid systems.

Keep in mind that DiMEPACK 
an only handle problems with 
onstant 
oeÆ
ients.

Interpolation. DiMEPACK implements bilinear interpolation operators in order to prolongate the


oarse{grid 
orre
tions to the �ner grids. This is done in a straightforward manner and thus needs no

further explanation.

However, it should be noted that the treatment of Neumann boundaries, whi
h we have previously

explained, violates the requirement

I

H

h

= 
 �

�

I

h

H

�

T

; 
 2 R;

whi
h often o

urs in the 
ontext of multigrid algorithms in order to maintain any potential symmetry

of the whole multigrid iteration matrix [ST86℄.

1.4 Library Overview

The DiMEPACK pa
kage 
onsists of a main dire
tory and a number of subdire
tories:

� padding

� smoother

� restri
tion

� interpolation

� post{
oarse{grid{ops

� pre{
oarse{grid{ops

The main dire
tory 
ontains the sour
e 
ode and header �les for the C++ user interfa
e. The subdi-

re
tory padding 
ontains C++ sour
e and header �les for a array padding library used by DiMEPACK

to avoid 
on
i
t misses. The other subdire
tories 
ontain Fortran 77 sour
e 
ode for standard and opti-

mized smoothing, standard intergrid transfer operators, and optimized intergrid transfer operators. The


omputationally intensive parts are implemented in Fortran 77 for the sake of eÆ
ien
y. The highly

optimized Fortran 77 
odes are generated using the UNIX prepro
essing tool m4.

After DiMEPACK has su

essfully been built, the library �le libdimepa
k.a 
ontaining the C++


ode for the multigrid s
heme and all Fortran subroutines 
an be found in the main dire
tory of the

pa
kage. Furthermore, the libpadding.a library �le for padding heuristi
s used by DiMEPACK 
an

be found in the padding subdire
tory. Every program using DiMEPACK has to link both libraries.

Interfa
e de�nitions for both libraries are provided in the dimepa
k.h in
lude �le whi
h is also lo
ated

in the main dire
tory.

Presently, DiMEPACK has been ported to the following platforms:

� LINUX PCs

� Alpha{based Digital/Compaq workstations running Digital UNIX or Compaq Tru64 UNIX

2 Installing and Compiling

In order to build and use the DiMEPACK library the following 
omponents must be installed:

� GNU gmake (see e.g. http://www.fsf.org)
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� An ANSI C++ 
ompiler and the Standard C++ Template Library (STL)

� A Fortran 77 
ompiler

� The LAPACK and BLAS library (see e.g. http://www.netlib.org). These libraries are ne
essary

be
ause we use LAPACK routines in order to solve the linear systems on the 
oarsest grids dire
tly.

� The UNIX m4 prepro
essor (see e.g. http://www.fsf.org). We need m4 be
ause the Fortran 77


odes whi
h implement the Gauss{Seidel smoother, the residual restri
tion, the error prolongation

and the interpolation are generated from ma
ros in the 
ourse of the 
ompilation pro
ess.

� The Korn shell ksh. It is only used to simplify the generation of the DiMEPACK library using the

shell s
ript build, see Se
tion 2.1.

2.1 Make and Build

The library is build by a standard gmake me
hanism. To simplify library building for di�erent ar
hite
-

tures we furthermore provide a ksh s
ript 
alled build.

To start the installation, the user may have to modify the �le make.in
l.<os_type> a

ording to

the 
on�guration of the ma
hine under 
onsideration. General build options are 
hanged by modifying

make.in
l.general. These options are explained in more detail in Se
tion 2.2. Finally, the user may

wish to set or alter the values of the environment variables DIME_OPTIMIZED and DIME_REAL (see Se
tion

2.3) before starting 
ompilation.

The 
ompilation of the DiMEPACK library is performed by exe
uting the build 
ommand in the

DiMEPACK main dire
tory. The build 
ommand requires the operating system type as a parameter.

Currently supported operating system types are linux and tru64.

Example:

% ./build linux

2.2 Compilation Options

The 
ompilation of DiMEPACK is a�e
ted by several 
ompilation options. The following 
ompilation

options 
an be de�ned or unde�ned by the user by modifying the �le make.in
l.generalwhi
h is lo
ated

in the main dire
tory:

2.2.1 Debug Options

� DIME_NDEBUG:

If this 
ag is not set, a lot of intermediate results | su
h as right{hand side ve
tors, 
orre
tions,

et
. | are written to appropriately named �les. Be 
areful, sin
e this 
an result in enormous disk

spa
e usage and dramati
ally redu
ed exe
ution speed.

� DIME_DEBUG_CACHE_PROPERTIES:

If this 
ag is set, the 
a
he 
hara
teristi
s whi
h are used by DiMEPACK are printed to stdout.

� DIME_DEBUG_DIRECTSOLVE:

If this 
ag is set, debug messages 
on
erning the dire
t solution of the 
oarsest systems are printed

to stdout.

� DIME_DEBUG_FMGRHS:

If this 
ag is set, the right{hand sides of ea
h grid level o

urring in the 
ourse of the setup phase

of an FMG method are written to �les named f-fmg.lvl<level>.dat.

� DIME_DEBUG_NUMLEVELS:

If this 
ag is set, the total number of grid levels in the multigrid hierar
hy is printed to stdout.
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� DIME_DEBUG_PADDING:

If this 
ag is set, debug messages 
on
erning the appli
ation of the array padding heuristi
s are

printed to stdout.

2.2.2 Code Optimization Options

� DIME_USE_MELTED_OPS:

If this 
ag is set, highly optimized routines for 
ombined smooth{restri
t and interpolate{smooth

operations are used. If DIME_USE_MELTED_OPS is set, optimized smoothers are impli
itly used, no

matter what the value of DIME_USE_OPTIMIZED_SMOOTHER is.

� DIME_USE_OPTIMIZED_SMOOTHER:

If this 
ag is set, the 
a
he{optimized smoothing routines are used.

� DIME_DISABLE_PADDING:

If this 
ag is set, array padding is disabled. It is highly re
ommended not to set this 
ag in order

to a
hieve high runtime eÆ
ien
y.

2.2.3 Mis
ellaneous Options

� DIME_DUMP_RESULT:

If this 
ag is set, the result of the 
omputation is written to the �le u-exit.dat.

� DIME_TIMING_ENABLED:

If this 
ag is set, the runtimes of the DiMEPACK routines are determined and written to stdout.

� DIME_COMPUTE_NORM:

If this 
ag is set, the dis
rete L2 norm or the maximum norm of the residual ve
tor is 
omputed

before the 
omputation starts and after ea
h 
y
le. The norm type must be spe
i�ed as an argument

to ea
h of the DiMEPACK interfa
es, see Se
tion 3.2.

If this 
ag is not set, residual norms will not be 
omputed and the 
orresponding fun
tion arguments

will be ignored. Of 
ourse, dispensing with the residual 
omputation saves exe
ution time. This

is highly re
ommended if the user knows in advan
e the number of multigrid iterations to be

performed.

2.3 Environment Variables

In addition to the 
ompilation options, the following environment variables a�e
t the generation and

exe
ution of the DiMEPACK library. Explanations on how to set or modify shell environment variables


an be found in appropriate shell manuals.

� DIME_OPTIMIZED:

If this variable is set to true, 
ompiler optimizations are enabled and 
ompiler debugging swit
hes

are turned o�. It is highly re
ommended to set DIME_OPTIMIZED to true in order to obtain eÆ
ient


odes.

� DIME_REAL:

If this variable is set to float, DiMEPACK uses single pre
ision 
oating{point numbers. Otherwise,

DiMEPACK uses double pre
ision 
oating{point arithmeti
. Single pre
ision arithmeti
 is often

faster but loss of a

ura
y might be involved with it.
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� DIME_CACHE_SIZE:

Use this variable to spe
ify the size of the pro
essor 
a
he in bytes. This value is needed to determine

appropriate array paddings. If this variable is not set, DiMEPACK issues a warning message and

uses a 
a
he size of 8 Kbyte by default, 
orresponding to the size of the L1 
a
he of a Digital Alpha

21164 CPU. If the underlying ar
hite
ture has several levels of 
a
hes, it is up to the user to de
ide

whi
h 
a
he level DiMEPACK shall be tailored for. This de
ision may require various performan
e

tests.

� DIME_CACHE_LINE_SIZE:

Use this variable to spe
ify the 
orresponding 
a
he line size in bytes. Like DIME_CACHE_SIZE

it is used by DiMEPACK to determine appropriate array paddings. If the variable is not set,

DiMEPACK issues a warning message and assumes a 
a
he line length of 32 bytes by default.

This 
orresponds to the L1 
a
he line size of the Alpha 21164 pro
essor. Again, if the underlying

ar
hite
ture has several levels of 
a
hes, this variable should be 
hosen a

ording to the 
a
he level

whi
h is spe
i�ed by the environment variable DIME_CACHE_SIZE (see above).

3 Running DiMEPACK

On
e you have su

essfully installed and 
ompiled DiMEPACK you are able to use the C++ fun
tions of

the DiMEPACK interfa
e. To use DiMEPACK within your proje
ts you have to in
lude the dimepa
k.h

header �le and link libdimepa
k.a and libpadding.a. You might as well have to link the LAPACK

and BLAS library.

The �rst step when writing programs using DiMEPACK is to give an appropriate problem spe
i�-


ation. This in
ludes the spe
i�
ation of the matrix 
oeÆ
ients, boundary types, boundary values, the

right hand side of the equation, the solution ve
tor (whi
h may be initialized), and the types of the

residual norm and the restri
tion operator to be used. DiMEPACK provides several data types to sup-

port the programmer in this pro
ess. Furthermore, several utility fun
tions are implemented for problem

spe
i�
ation and debugging purposes.

After the problem has been spe
i�ed, one of two multigrid fun
tions 
an be 
alled. The fun
tion

dpV
y
leConst implements a standard multigrid V{
y
le, whereas the fun
tion dpFMGV
y
leConst im-

plements a full multigrid s
heme (nested iteration).

Finally, before running the program, the shell environment variables DIME_CACHE_LINE_SIZE and

DIME_CACHE_SIZE should be set to appropriate values.

In the following we will introdu
e the data stru
tures, the multigrid fun
tions, and the utility fun
tions.

After that we give a short example demonstrating how to 
all a DiMEPACK multigrid solver. Whenever

the data type DIME_REAL is mentioned it either stands for float or double. The a
tual type will

be determined during the DiMEPACK generation phase a

ording to the 
ontents of the environment

variable DIME_REAL (see Se
tion 2.3 for details).

3.1 Data Types

3.1.1 Two{dimensional Grid Fun
tion

DiMEPACK introdu
es the obje
t type dpGrid2d whi
h basi
ally represents a two{dimensional grid

fun
tion. The C++ 
lass interfa
e is as follows:


lass dpGrid2d f

publi
:

dpGrid2d(int xDim, int yDim, DIME REAL hx, DIME REAL hy);

~dpGrid2d();

dpGrid2d& operator=(
onst dpGrid2d& rhs);
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inline int getdimx() 
onst; // return number of grid points in x dire
tion

inline int getdimy() 
onst; // return number of grid points in y dire
tion

inline DIME REAL gethx() 
onst; // return grid spa
ing in x dire
tion

inline DIME REAL gethy() 
onst; // return grid spa
ing in y dire
tion

inline int getpad() 
onst; // return padding size

inline DIME REAL* getmem(); // return C like data stru
ture

inline void initzero(); // return init grid to zero

inline DIME REAL& setval(int x,int y); // set grid value

inline DIME REAL getval(int x,int y) 
onst // get grid value;

private:

. . .

g

This data type hides array padding te
hniques. Array padding is determined and introdu
ed whenever

the 
onstru
tor of this 
lass is 
alled. The 
onstru
tor of dpGrid2d takes four parameters:

� xDim: the number of grid nodes in dire
tion x, in
luding the boundaries,

� yDim: the number of grid nodes in dire
tion y, in
luding the boundaries,

� hx: the mesh width in dire
tion x, and

� hy: the mesh width in dire
tion y.

The grid dimensions nxp and nyp have to be 
hosen su
h that the required number of grid levels


an be allo
ated, see Se
tion 3.2. Otherwise, DiMEPACK issues an error message. The following publi


methods are important for the DiMEPACK user. They are used to read and modify the values stored in

the grid.

� void initzero(): initialize all values to 0.

Example:

dpGrid2d u(65,65,1.0/64,1.0/64);

u.initzero();

� DIME_REAL& setval(int x,int y): set the value at position x,y.

Example:


onst int nxp=65, nyp=65;

DIME_REAL hx= 1.0/(DIME_REAL) nxp, hy= 1.0/(DIME_REAL) nyp;

dpGrid2d f(nxp, nyp, hx, hy);

for (int y=0; y<nyp; y++)

for (int x=0; x<nxp; x++)

f.setval(x,y)= sin(2.0*M_PI*x*hx)*sin(2.0*M_PI*y*hy);

and

� DIME_REAL getval(int x,int y): return the value at position x,y.

Example:

DIME_REAL s=f.getval(42,42);
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3.1.2 Boundary Spe
i�
ation

The type of ea
h side of the re
tangular domain is spe
i�ed by the enumeration type tBoundary. Possible

values are DIRICHLET for a Diri
hlet boundary and NEUMANN for a Neumann boundary. Ea
h side 
an

either be of Diri
hlet or Neumann type. The boundary types are passed to the multigrid solver in an

array of tBoundary values. The boundary type of ea
h of the four sides 
an be a

essed using the ma
ros

dpNorth, dpEAST, dpSOUTH, and dpWEST.

Example:

tBoundary bTypes[4℄;

bType[dpNorth℄= DIRICHLET;

bType[dpEast ℄= DIRICHLET;

bType[dpSouth℄= DIRICHLET;

bType[dpWest ℄= NEUMANN;

// bType is passed to the multigrid fun
tion ...

The boundary values for ea
h of the four sides of the re
tangular domain are spe
i�ed separately in

an array of type DIME_REAL. These values are either interpreted as �xed boundary values in the 
ase of

Diri
hlet boundaries or as external normal derivatives in the 
ase of Neumann boundaries. The address

of ea
h boundary value array is pla
ed into an array of pointers whi
h is then passed to the multigrid

solver.

Example:

DIME_REAL *bVals[4℄;

bVals[dpNORTH℄=new DIME_REAL[nxp℄;

bVals[dpSOUTH℄=new DIME_REAL[nxp℄;

bVals[dpEAST ℄=new DIME_REAL[nyp℄;

bVals[dpWEST ℄=new DIME_REAL[nyp℄;

for(int i=0; i<nxp; i++){

bVals[dpNORTH℄[i℄=0.0;

bVals[dpSOUTH℄[i℄=0.0;

}

for(int i=0; i<nyp; i++){

bVals[dpEAST℄[i℄=0.0;

bVals[dpWEST℄[i℄=0.0;

}

// bVals is passed to the multigrid fun
tion ...

delete[℄ bVals[dpNORTH℄;

delete[℄ bVals[dpSOUTH℄;

delete[℄ bVals[dpEAST℄;

delete[℄ bVals[dpWEST℄;

3.1.3 Norm and Restri
tion Types

DiMEPACK allows to stop iterative solving when the residual falls short of a 
ertain toleran
e value

if the 
ompiler option DIME_COMPUTE_NORM was set during library building (see Se
tion 2.2.3 for more

information). For that purpose DiMEPACK implements two types of ve
tor norms:
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� dis
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The stopping 
riterion to be used is spe
i�ed by the enumeration type tNorm. Possible values of that

type are L2 for the dis
rete L2 norm and MAX for the maximum norm.

DiMEPACK implements half{weighting and full{weighting. The restri
tion operator to be used in

your program must be spe
i�ed by the enumeration type tRestri
t. Possible values of that type are HW

for half{weighting and FW for full{weighting.

3.2 Multigrid Fun
tions

DiMEPACK provides two interfa
e fun
tions whi
h 
an be 
alled from outside. The prototypes of these

fun
tions and the de�nitions of the new data types 
an be found in the header �le dimepa
k.h, whi
h is

also lo
ated in the main dire
tory. Depending on whether the user wants standard multigrid V{
y
les or

full multigrid 
y
les to be performed, the following fun
tions have to be invoked:

� Standard multigrid V{
y
les:

void dpV
y
leConst(int nLevels, tNorm nType, DIME_REAL epsilon, int maxIt,

dpGrid2d *u, bool isInitialized, dpGrid2d *fIn, int nu1,

int nu2, int nCoeff, DIME_REAL *matrixCoeff, tBoundary *bTypes,

DIME_REAL **bVals, tRestri
t rType, DIME_REAL omega,


onst bool fixSolution=false)

� Full multigrid (FMG, nested iteration):

void dpFMGV
y
leConst(int nLevels, tNorm nType, DIME_REAL epsilon,

int maxAddIt, dpGrid2d *u, dpGrid2d *fIn, int nu1,

int nu2, int gamma, int nCoeff, DIME_REAL *matrixCoeff,

tBoundary *bTypes, DIME_REAL **bVals, tRestri
t rType,

DIME_REAL omega, 
onst bool fixSolution=false)

We will explain the meaning of the parameters of the two fun
tions in the following:

� nLevels: (input)

The total number of grid levels to be used. If this value is too large, DiMEPACK automati
ally

uses the maximum number of levels. If this value is 0, the maximum number of grid levels is used,

too. There have to be at least two grid levels.

� nType: (input)

Spe
i�es the type of the norm to be used for the stopping 
riterion. Legal values are L2 (dis
rete

L2 norm) and MAX (maximum norm), see Se
tion 3.1.3. For this purpose, DiMEPACK provides the

enumeration data type tNorm.

� epsilon: (input)

Spe
i�es the toleran
e for the algebrai
 error. If the 
ompiler ma
ro DIME_COMPUTE_NORM is enabled,

the multigrid iteration will be performed until the norm of the residual be
omes less than the value

of this parameter. If DIME_COMPUTE_NORM is disabled, the value of this parameter is ignored, see

again Se
tion 2.2.3.
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� maxIt: (input)

The maximum number of multigrid V{
y
les to be performed (only for standard multigrid V{
y
les).

� u: (input/output)

Pointer to the grid fun
tion obje
t, where the solution shall be written to. In the 
ase of the V{
y
le

s
heme this grid fun
tion obje
t may provide an initial guess. Set the isInitialized parameter

to true to indi
ate this.

� isInitialized: (input)

Indi
ates if the grid fun
tion obje
t where the solution shall be stored is already initialized. If the

value of this parameter is false, the initial guess will be the 
onstant 0.

� fIn: (input)

Pointer to the grid fun
tion obje
t storing the right{hand side of the equation. Pass the NULL pointer

to indi
ate that the algebrai
 problem is homogeneous. This will save 
oating{point operations.

� nu1: (input)

The number of pre{smoothing red{bla
k Gauss{Seidel iterations to be performed. The number

must be equal or greater than 1.

� nu2: (input)

The number of post{smoothing red{bla
k Gauss{Seidel iterations to be performed. The number

must be equal or greater than 0.

� nCoeff: (input)

The number of 
oeÆ
ients in the sten
il (for an inner grid point). Legal values for this parameter

are 5 and 9.

� matrixCoeff: (input)

The entries of a matrix row 
orresponding to a inner grid point, i.e. to a grid point with the

maximum number (nCoeff) of unknown neighboring values. The order of the 
oeÆ
ients is south,

west, 
enter, east, north in the 
ase of a 5{point sten
il and south{west, south, south{east, west,


enter, east, north{west, north, north{east for a 9{point sten
il.

� bTypes: (input)

Spe
i�es the types of the four boundaries of the re
tangular domain. The order is north boundary,

east boundary, south boundary, west boundary. Supported boundary types are DIRICHLET and

NEUMANN. For this purpose, DiMEPACK provides the enumeration data type tBoundary. Boundary

types may be mixed from side to side.

� bVals: (input)

Spe
i�es the boundary values for ea
h of the four boundaries of the re
tangular domain. These

values are either interpreted as �xed boundary values in the 
ase of Diri
hlet boundaries or as

external normal derivatives in the 
ase of Neumann boundaries.

� rType: (input)

Denotes the type of operator used to restri
t the residuals from a �ner grid level to the next 
oarser

grid level. Supported values are HW (half weighting) and FW (full weighting). For this purpose,

DiMEPACK provides the enumeration data type tRestri
t.

� omega: (input)

Spe
i�es the relaxation parameter ! for the red{bla
k SOR smoother. Good smoothing properties

in the 
ase of moderately anisotropi
 di�erential operators 
an be a
hieved by 
hoosing suitable

relaxation parameters [Yav96℄. DiMEPACK provides the utility fun
tion dpCal
Omega to determine
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a good relaxation parameter !, see Se
tion 3.3. If ! = 1:0 is spe
i�ed, a standard red{bla
k Gauss{

Seidel smoother is invoked.

� fixSolution: (input)

Spe
i�es if the solution on the 
oarsest grid is to be �xed. There are 
ases where the user wants to

solve singular problems, e.g. Poisson's equation with four Neumann boundaries. In order to obtain

a regular system on the 
oarsest grid, this 
ag must be used. Otherwise, LAPACK will not be able

to fa
torize the 
orresponding matrix. If this 
ag is set to true, the solution in the south{west


orner of the 
oarsest grid will be set to 0. Note that this is an arbitrary 
hoi
e.

� gamma: (input)

Spe
i�es the 
y
ling parameter in the 
ase of FMG. I.e. the number of V{
y
les to be performed

after interpolating the approximation of the solution to a �ner level of the grid hierar
hy.

3.3 Utility Fun
tions

DiMEPACK provides several utility fun
tions, two of whi
h may be of interest to the user. Thus, they

will be explained in the following.

� DIME_REAL dpCal
Omega(DIME_REAL hx, DIME_REAL hy)

This fun
tion 
omputes a suitable relaxation parameter ! for the Lapla
ian operator on a moder-

ately anisotropi
 grid. This is equivalent to a moderately anisotropi
 behavior of the di�erential

operator itself. The parameters hx and hy denote the mesh widths in dire
tions x and y, respe
tively.

The return value of this fun
tion is the re
ommended relaxation parameter !. The 
al
ulation of

suitable relaxation parameters is based on [Yav96℄.

� void dpPrintGrid(ostream& os,dpGrid2d& grid)

This fun
tion 
an be used to write grid data to an ostream obje
t. The se
ond parameter grid

spe
i�es the grid obje
t to be printed.

3.4 Example

In this se
tion we give an example showing how the DiMEPACK fun
tion dpV
y
leConst is 
alled. We

solve Poisson's equation on the unit square using a moderately anisotropi
 grid with hx = hy=2. We

apply the utility fun
tion dpCal
Omega to determine a suitable relaxation parameter ! for the red{bla
k

SOR smoother. We further assume homogeneous Diri
hlet boundary 
onditions. The ma
ro DIME_REAL

either stands for float or double. This depends on whether the DiMEPACK library has been built in

order to handle single pre
ision or double pre
ision numbers.

// In
lude the header file 
ontaining the fun
tion prototypes

// and the data type definitions:

#in
lude "dimepa
k.h"

void runDiMEPACK(void)

{

// Initialize parameters:


onst int nxp=513; // Number of grid nodes in dire
tion x


onst int nyp=257; // Number of grid nodes in dire
tion y


onst int nLevels=0; // Use as many levels as possible


onst tNorm nType=L2; // Use L2 norm


onst DIME_REAL epsilon=1e-16; // Required a

ura
y


onst int maxIt=5; // Max. number of multigrid V 
y
les


onst int nu1=2; // Number of pre-smoothing iterations


onst int nu2=2; // Number of post-smoothing iterations
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onst tRestri
t rType=FW; // Full weighting


onst bool fixSol=false; // Don't fix the solution on the 
oarsest grid

DIME_REAL omega=dpCal
Omega(hx,hy); // Get suitable relaxation parameter


onst int nCoeff=5; // Number of matrix 
oeffi
ients per row

// Mesh width in dire
tion x:


onst DIME_REAL hx=1.0/(DIME_REAL) (nxp-1);

// Mesh width in dire
tion y:


onst DIME_REAL hy=1.0/(DIME_REAL) (nyp-1);

// Create the solution obje
t and initialize it:

dpGrid2d u(nxp,nyp,hx,hy);


onst bool isInitialized=false;

// Create right-hand side obje
t and initialize it:

dpGrid2d f(nxp,nyp,hx,hy);

for (int y=0; y<nyp; y++)

for (int x=0; x<nxp; x++)

f.setval(x,y)= sin(M_PI*x*hx)*sin(M_PI*y*hy);

// Allo
ate memory for the matrix entries and define them:

DIME_REAL matrixCoeff[nCoeff℄;

matrixCoeff[0℄=-1.0/(hy*hy);

matrixCoeff[1℄=-1.0/(hx*hx);

matrixCoeff[2℄=2.0/(hx*hx)+2.0/(hy*hy);

matrixCoeff[3℄=-1.0/(hx*hx);

matrixCoeff[4℄=-1.0/(hy*hy);

// Spe
ify boundary types and boundary values:

tBoundary bTypes[4℄;

for(i=0; i<4; i++)

bTypes[i℄=DIRICHLET;

DIME_REAL * bVals[4℄;

bVals[dpNORTH℄=new DIME_REAL[nxp℄;

bVals[dpSOUTH℄=new DIME_REAL[nxp℄;

bVals[dpEAST℄ =new DIME_REAL[nyp℄;

bVals[dpWEST℄ =new DIME_REAL[nyp℄;

for(i=0; i<nxp; i++) {

bVals[dpNORTH℄[i℄=0.0;

bVals[dpSOUTH℄[i℄=0.0;

}

for(i=0; i<nyp; i++) {

bVals[dpEAST℄[i℄=0.0;

bVals[dpWEST℄[i℄=0.0;

}

// Call the DiMEPACK library fun
tion:

dpV
y
leConst(nLevels,nType,epsilon,maxIt,(&u),isInitialized,(&f),nu1,nu2,nCoeff,

matrixCoeff,bTypes,bVals,rType,omega,fixSol);

// Clean up:

delete[℄ bVals[dpNORTH℄;

delete[℄ bVals[dpEAST℄;

delete[℄ bVals[dpSOUTH℄;



18 REFERENCES

delete[℄ bVals[dpWEST℄;

// Pro
ess results:

// ...

return;

}

See the in
luded �les testdp.C and ben
hdp.C for further examples involving non{homogeneous

problems, Neumann boundary 
onditions, di�erent di�erential operators, et
.

4 Known Bugs

4.1 Marginal Di�eren
es in Floating Point Operation Results

Instru
tion reordering 
auses slightly di�erent results when 
a
he{optimized intergrid transfer operations

are used. This is due to the fa
t that addition and multipli
ation, in general, are not asso
iative operations

in �nite{pre
ision arithmeti
.

As soon as the user de�nes the 
ompiler ma
ro DIME_USE_MELTED_OPS (see Se
tion 2.2) the results of

the 
omputation may not be bitwise identi
al to the results obtained without the use of this 
ag although

no data dependen
ies are violated by the optimization te
hniques. The reason for this is that de�ning

the 
ag DIME_USE_MELTED_OPS implies di�erent exe
ution orders for the arithmeti
 operations.

Similar e�e
ts o

ur as soon as the environment variable DIME_OPTIMIZED is set to true. A

ording to

Se
tion 2.3 this means that full 
ompiler optimization is enabled, whi
h again implies di�erent exe
ution

orders for the arithmeti
 operations.

This is not really a bug, but the 
onsequen
e of the fa
t that basi
 algebrai
 laws do not hold for

ma
hine 
omputations.
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