DiMEPACK:
A Cache-Aware Multigrid Library
User Manual

Version 1.0

Wolfgang Karlf, Markus Kowarschik'", Ulrich Riideff, Christian Weif}f

I Lehrstuhl fiir Rechnertechnik und Rechnerorganisation (LRR-TUM)
Technische Universitat Miinchen, Germany
{weissc,karlw } @Qcs.tum.edu

i Lehrstuhl fiir Informatik 10 (Systemsimulation)
Universitat Erlangen—Niirnberg, Germany
{kowarschik,ruede}Qcs.fau.de

November 9, 2001

Abstract

The efficient execution of numerically intensive codes often suffers from high memory access times.
There is no doubt about the fact that moving data nowadays is much more expensive than process-
ing data. Thus today’s computer architectures employ hierarchical memory structures with usually
several levels of cache memories, which can provide data to the CPU much faster than main memory
components. However, efficient execution can only be expected if the code respects the memory
design of the underlying architecture. Unfortunately, even modern compilers are not very successful
in performing data locality optimizations to enhance the performance of the codes, so that most of
this effort is left to the programmer.

DiMEPACK is a C++ library containing cache—optimized multigrid routines for the numerical
solution of partial differential equations. DiMEPACK can handle constant—coefficient problems on
rectangular domains. It implements a set of highly tuned red-black Gauss—Seidel smoothers as well
as cache—aware intergrid transfer operators. In order to reduce the number of cache conflict misses,
which especially arise as soon as cache blocking techniques are applied, we have introduced various
array padding heuristics. Furthermore, we reduce the total number of arithmetic operations by
providing dedicated routines for special cases, like e.g. homogeneous problems.

The DiMEPACK interface is written in C++ whereas the computationally expensive parts of the
code are implemented in Fortran 77 for the sake of efficiency.

Contents

1 Introduction
1.1 Motivation
1.2

1.3

14

2 Installing and Compiling
Make and Build
Compilation Options

2.2.1 Debug Options
2.2.2 Code Optimization Options
2.2.3 Miscellaneous Options
Environment Variables

2.1
2.2

2.3
3

3.1

3.2

3.3

34
4

Functionality of DiMEPACK
Neumann Boundary Conditions
1.3.1 Equations for Neumann Boundary Nodes
1.3.2 Intergrid Transfer Operators Along Neumann Boundaries
Library Overview

Running DiMEPACK

Data Types

3.1.1 Two—dimensional Grid Function
3.1.2 Boundary Specification
3.1.3 Norm and Restriction Types
Multigrid Functions
Utility Functions
Example

Known Bugs
4.1 Marginal Differences in Floating Point Operation Results

CONTENTS

1 Introduction

1.1 Motivation

DiMEPACK is a C++ library of cache-optimized multigrid routines for the solution of two—dimensional
elliptic partial differential equations (PDEs). So far, DiMEPACK can handle constant—coefficient prob-
lems on structured grids. DiMEPACK was developed within the DiME (Data-local iterative methods)
research project. The DiME research project is a joint project of the Technische Universitit Miinchen
and the Universitdt Erlangen—Niirnberg. Our work is presently being funded in part by the Deutsche
Forschungsgemeinschaft (DFG), grants Ru 422/7-1,2,3.

In the following we will motivate our research on the design of cache—aware multigrid algorithms.
Then, we will describe the functionality of the DiMEPACK library in Section 1.2. In Section 1.3 we will
explain how we treat Neumann boundary conditions. We will conclude this chapter with a brief overview
of the DIMEPACK library.

The research on cache—aware numerical methods and the development of the DiMEPACK library
have been motivated by two independent observations.

e Computer Architecture:

There is no doubt about the fact that the speed of computer processors has been increasing and
will even continue to increase much faster than the speed of memory components. As a general
consequence, current memory chips based on DRAM technology cannot provide the data to the
CPUs as fast as necessary. This memory bottleneck often results in significant idle periods of
the processors and thus in very poor code performance compared to the theoretically available
peak performances of the machines under consideration. To mitigate this effect modern computer
architectures use cache memories which keep data that is frequently used by the CPU. Caches are
usually based on SRAM chips which on the one hand are much faster than DRAM components, but
on the other hand have comparatively small capacities, for both technical and economical reasons.
Most of today’s RISC-based workstations even use several levels of caches (one to three levels are
common). Efficient execution can therefore be achieved only if the hierarchical structure of the
memory subsystem (including main memory, caches and the processor registers) is respected by the
code, especially by the order of memory accesses.

e Numerical Mathematics:

It has been demonstrated that — at least from a theoretical point of view — multigrid methods
are among the most efficient algorithms for the solution of large systems of linear equations arising
e.g. in the context of the numerical solution of PDEs [Bra84, Hac85, TOS01]. Multigrid techniques
belong to the class of iterative methods, which means that the underlying data set, which in general
is very large, is repeatedly processed several times.

It is our principal goal to investigate in how far multigrid methods can be restructured in order to
respect the hierarchical memory design of modern computer architectures and thus significantly speed
up their execution.

We have investigated the data access optimization techniques loop fusion as well as one— and two—
dimensional loop blocking. Furthermore, we use sophisticated implementations combining smoothing
steps and intergrid transfer operations, i.e. residual restriction and error prolongation.

In order to avoid the occurrence of severe cache conflict misses, DiMEPACK also implements array
padding heuristics [RT98a, RT98b]. In contrast to loop fusion and loop blocking, array padding is a data
layout optimization technique.

Our results and optimization techniques are described in detail in [Riid97, SR97, SRWH97, Riid98,
DHK*00a, WKKR99, WHSR00, DRHB00, KRWK00, DHK*00b, DHI*00]. A more popular description
of our work has recently been presented in [DHH'00a, DHH*00b]. Please feel free to contact the authors
of this report if you have any further questions. We further recommend that you visit our project home

page:
http://wwwbode.in.tum.de/Par/arch/cache

4 1 INTRODUCTION

1.2 Functionality of DiMEPACK

In the following we name and briefly explain the relevant features of the DiMEPACK library. Detailed
descriptions of the mathematical components are out of the scope of this report and can be found in
[BHMO0O, TOS01], for example.

e Multigrid correction scheme:

DiMEPACK implements a standard multigrid correction scheme, where on each coarser level cor-
rections for the corresponding finer level are computed. FAS multigrid is not supported.

e 5—point and 9—point stencils:

DiMEPACK can handle both 5—point stencils and 9—point stencils.

e Standard grid coarsening:

The mesh widths hg and hj of a coarser grid are twice as large as the mesh widths h{ and hgj of
the next finer grid: hS = 2h1, hy = th; . Semi-coarsening is not implemented.

e V—cycles and full multigrid:

DiMEPACK implements both standard multigrid V-cycles and full multigrid (FMG, nested itera-
tion). These two methods correspond to two different library functions, which will be described in
Section 3.2.

e Constant—coefficient problems:

So far, DiMEPACK can only handle constant—coefficient problems. The user specifies either the
five or the nine entries of a matrix row corresponding to an interior grid node.

e Rectangular domains:

DiMEPACK can only handle problems on rectangular domains. Different mesh widths in directions
z and y are supported. However, the user is responsible to make sure that the standard multigrid
components provided by DiMEPACK are applicable to the specified problem.

¢ Boundary conditions:

Each of the four boundary conditions can be of Dirichlet or Neumann type. Again, it is up to the
user to provide a reasonable problem specification. See Section 1.3 for further details.

e Problems involving singular matrices:

In order to handle problems which yield singular matrices the user must set a flag which guarantees
that the solution of the problem on the coarsest grid is fixed in the south—west corner of the
rectangular domain, see Section 3.2. Otherwise, the direct solver will fail for the problem on the
coarsest grid.

One important example is Poisson’s equation —Awu = f with Neumann boundary conditions along
each of the four sides of the rectangular domain. If this differential operator is discretized e.g. using
the standard 5-point stencil

G
N

on an equidistant grid with mesh width h, the resulting matrix is singular. This can easily be
seen since the sum of the entries of each matrix row is 0, and thus (1,...,1)7 is an eigenvector
corresponding to the eigenvalue 0. This problem can be handled by setting the fixSolution flag
to true. See [BP94] for mathematical details on iterative schemes applied to singular systems.

1.2 Functionality of DIMEPACK)

Pre— and post—smoothing iterations:

The numbers of pre—smoothing iterations and post—smoothing iterations must be specified by the
user. DiMEPACK provides a Gauss—Seidel/SOR smoother based on a red-black ordering of the
unknowns. The use of suitable relaxation parameters can help to obtain good smoothing properties
even in the case of moderately anisotropic problems, see Section 3.3 and [Yav96].

Number of grid levels:

The user can specify the number of grid levels. The amount of levels must be equal or greater
than 2. However, DiMEPACK is also able to automatically chose the number of grid levels. In this
case, the maximum number of grid levels is used.

Restriction operators:

DiMEPACK implements both half-weighting and full-weighting.

Prolongation operator:

The prolongation of the errors from coarser to finer grids is done by linear interpolation.

Direct solution of the coarsest problems:

The problems on the coarsest grid are solved directly. In the beginning the matrix corresponding to
the coarsest problem is split into two triangular factors. This is either done by a LU decomposition
or — in the case of a symmetric and positive definite matrix — by a Cholesky decomposition. In the
course of the iterative process, the coarse—grid problems are solved by forward—backward solution
steps.

Both the decomposition and the forward—backward solution are performed using appropriate rou-
tines from the LAPACK library [ABB*99]. It is therefore inevitable that both LAPACK and BLAS
are installed on the underlying machine.

Stopping criteria:

In the case of standard multigrid V—cycles the computation stops

— as soon as a the norm of the current residual reaches a given tolerance, or

— as soon as a given number of multigrid iterations has been performed.
In the FMG case additional V—cycles on the finest level are performed

— until the residual reaches a given tolerance, or

— a maximum number of additional V—cycles has been performed.
The tolerance can be measured in the discrete L2 norm or in the maximum norm. See Section 3.2
for an explanation how the residual norms are specified. The computation of the norm after each
iteration, however, is computational intensive. Therefore, DiMEPACK allows this feature to be
disabled by the compiler option DIME_COMPUTE_NORM. See Section 2.2.3 for further information.
Precision of floating—point arithmetic:

DiMEPACK works with either single precision or double precision floating—point numbers. By
properly setting the corresponding environment variable DIME_REAL the user determines the type
of floating—point representation before compiling the DiMEPACK library, see Section 2.3.

Gnuplot interface:

DiMEPACK can produce a lot of debugging information, including intermediate solutions and
right—hand sides on all grid levels, see Section 2.2.1.

6 1 INTRODUCTION

1.3 Neumann Boundary Conditions

This section explains how we treat Neumann boundary conditions in the DiMEPACK library. Some
hints how to treat Neumann boundaries can be found in [BJLT92, BHMO00]. Note that our treatment
of Neumann boundaries is based on a finite difference approach and yields boundary stencils that are
different from those obtained for finite element discretization using rectangular elements and bilinear
basis functions.

1.3.1 Equations for Neumann Boundary Nodes

We use second—order central differences in order to approximate the external normal derivatives at
grid nodes along Neumann boundaries. This yields 4- or 6—point stencils, respectively, for inner (i.e.
non—corner) Neumann boundary points, depending on whether a 5—point or 9-point stencil discretiza-
tion of the differential operator at inner grid points is used. In the following examples, the values
sw, so, se, we, ce, ea, nw, no,ne denote the constant entries in the bands of the matrix.

Example: Neumann condition along the west boundary:
e 5—point discretization:

ce ea—+ we

e 9—point discretization:
no ne -+ nw
ce ea+ we
so se+ sw

The other boundaries of the rectangular domain are treated analogously.

In a corner of the rectangular domain where two Neumann boundaries meet, we obtain 3— or 4—point
stencils, respectively. This is due to the fact that in these corner points two external normal derivatives
are approximated using central differences.

Example: Neumann condition in the south—west, corner:

e 5-—point discretization:
no + so
ce ea + we

e 9—point discretization:
no+ so ne+ nw + se + sw
ce ea + we

The other corners of the rectangular domain are treated analogously.

Inhomogeneous Neumann boundaries and homogeneous Neumann boundaries are treated equally,
except that the right—hand sides of the corresponding boundary nodes are adapted to the given non—zero
derivatives. If possible, equations for Neumann boundary points on the coarsest grid are scaled properly
in order to maintain the symmetry of the matrix.

1.3.2 Intergrid Transfer Operators Along Neumann Boundaries

In the previous section we have described how we obtain the equations for the grid nodes along the
Neumann boundaries of the domain. Now, we explain how the restriction operators I ,’;{ compute the
right—hand sides for coarse—grid points on Neumann boundaries and how the corrections for solutions on
finer grids are computed by the interpolation operators I%.

1.3 Neumann Boundary Conditions

Restriction. DiMEPACK implements two different restriction operators: half weighting and full weight-
ing. A more detailed analysis of these operators can e.g. be found in [ST86]. Using the common stencil
notation for intergrid operators, these restriction operators for inner grid nodes look as follows:

e Full weighting:

1 21
1_16 2 4 2
1 21
e Half weighting:
1
1

-1 4 1

8 1

According to [BJL192], we use the following operators for non—corner Neumann boundary points

along the west boundary of the domain:

e Full weighting:

2 2
1
— 4 4
16 9 9
e Half weighting:
1 .
1
— 4 2
8 1

It is obvious that the other three boundaries can be treated analogously.
Corner nodes (where two Neumann boundaries meet) are treated analogously as well. E.g. for the

north—west corner we obtain the following restriction operators:

|' .

1
6

e Full weighting:

~
N—

e Half weighting:

| —
—
[\

Note that if both

1. a red—black Gauss—Seidel smoother is used, i.e. the user chooses the relaxation parameter w = 1,
and
2. a 5—point stencil is used for discretizing the PDE,

the residuals vanish at the black grid points after every smoothing step, and therefore each of the two
restriction operators can be implemented more efficiently by avoiding the computation of the residuals
corresponding to black nodes. In particular, this means that the half weighting operator degenerates to

the half injection operator

| =

if the user chooses the relaxation parameter w = 1.

8 2 INSTALLING AND COMPILING

Note that this simplification is not correct as soon as w # 1 is required or a 9—point operator is
used. In each of these cases, the residuals at the black nodes generally do not vanish after a red—black
Gauss—Seidel sweep.

Furthermore, we multiply the restricted residuals with an additional factor 4 in order that we can
use the fine—grid coefficients for the coarser system as well. This is possible since DiMEPACK merely
implements standard coarsening, which means that the mesh widths in both directions x and y are
doubled when recursively setting up the coarse—grid systems from the corresponding fine—grid systems.
Keep in mind that DiMEPACK can only handle problems with constant coefficients.

Interpolation. DiMEPACK implements bilinear interpolation operators in order to prolongate the
coarse—grid corrections to the finer grids. This is done in a straightforward manner and thus needs no
further explanation.

However, it should be noted that the treatment of Neumann boundaries, which we have previously
explained, violates the requirement

I =c ()", ceR,

which often occurs in the context of multigrid algorithms in order to maintain any potential symmetry
of the whole multigrid iteration matrix [ST86].

1.4 Library Overview

The DiMEPACK package consists of a main directory and a number of subdirectories:

e padding

e smoother

e restriction

e interpolation

e post—coarse—grid—ops

e pre—coarse—grid—ops

The main directory contains the source code and header files for the C++ user interface. The subdi-
rectory padding contains C++ source and header files for a array padding library used by DiMEPACK
to avoid conflict misses. The other subdirectories contain Fortran 77 source code for standard and opti-
mized smoothing, standard intergrid transfer operators, and optimized intergrid transfer operators. The
computationally intensive parts are implemented in Fortran 77 for the sake of efficiency. The highly
optimized Fortran 77 codes are generated using the UNIX preprocessing tool m4.

After DiMEPACK has successfully been built, the library file 1ibdimepack.a containing the C++
code for the multigrid scheme and all Fortran subroutines can be found in the main directory of the
package. Furthermore, the 1libpadding.a library file for padding heuristics used by DiMEPACK can
be found in the padding subdirectory. Every program using DiMEPACK has to link both libraries.
Interface definitions for both libraries are provided in the dimepack.h include file which is also located

in the main directory.
Presently, DiMEPACK has been ported to the following platforms:

e LINUX PCs
e Alpha-based Digital/Compaq workstations running Digital UNIX or Compaq Tru64 UNIX

2 Installing and Compiling
In order to build and use the DiMEPACK library the following components must be installed:

e GNU gmake (see e.g. http://www.fsf.org)

2.1 Make and Build 9

An ANSI C++ compiler and the Standard C++ Template Library (STL)

A Fortran 77 compiler

The LAPACK and BLAS library (see e.g. http://www.netlib.org). These libraries are necessary
because we use LAPACK routines in order to solve the linear systems on the coarsest grids directly.

The UNIX m4 preprocessor (see e.g. http://www.fsf.org). We need m4 because the Fortran 77
codes which implement the Gauss—Seidel smoother, the residual restriction, the error prolongation
and the interpolation are generated from macros in the course of the compilation process.

e The Korn shell ksh. It is only used to simplify the generation of the DiMEPACK library using the
shell script build, see Section 2.1.

2.1 Make and Build

The library is build by a standard gmake mechanism. To simplify library building for different architec-
tures we furthermore provide a ksh script called build.

To start the installation, the user may have to modify the file make.incl.<os_type> according to
the configuration of the machine under consideration. General build options are changed by modifying
make.incl.general. These options are explained in more detail in Section 2.2. Finally, the user may
wish to set or alter the values of the environment variables DIME_OPTIMIZED and DIME_REAL (see Section
2.3) before starting compilation.

The compilation of the DiMEPACK library is performed by executing the build command in the
DiMEPACK main directory. The build command requires the operating system type as a parameter.
Currently supported operating system types are linux and tru64.

Example:

% ./build linux

2.2 Compilation Options

The compilation of DiMEPACK is affected by several compilation options. The following compilation
options can be defined or undefined by the user by modifying the file make.incl.general which is located
in the main directory:

2.2.1 Debug Options
e DIME_NDEBUG:

If this flag is not set, a lot of intermediate results — such as right—hand side vectors, corrections,
etc. — are written to appropriately named files. Be careful, since this can result in enormous disk
space usage and dramatically reduced execution speed.

e DIME_DEBUG_CACHE_PROPERTIES
If this flag is set, the cache characteristics which are used by DiMEPACK are printed to stdout.
e DIME_DEBUG_DIRECTSOLVE:

If this flag is set, debug messages concerning the direct solution of the coarsest systems are printed
to stdout.

e DIME_DEBUG_FMGRHS:

If this flag is set, the right—hand sides of each grid level occurring in the course of the setup phase
of an FMG method are written to files named f-fmg.lvl<level>.dat.

e DIME_DEBUG_NUMLEVELS:
If this flag is set, the total number of grid levels in the multigrid hierarchy is printed to stdout.

10 2 INSTALLING AND COMPILING

e DIME_DEBUG_PADDING:

If this flag is set, debug messages concerning the application of the array padding heuristics are
printed to stdout.

2.2.2 Code Optimization Options

e DIME_USE_MELTED_OPS:

If this flag is set, highly optimized routines for combined smooth—restrict and interpolate—smooth
operations are used. If DIME_USE_MELTED_OPS is set, optimized smoothers are implicitly used, no
matter what the value of DIME_USE_OPTIMIZED_SMOOTHER is.

e DIME_USE_QPTIMIZED_SMOOTHER:

If this flag is set, the cache—optimized smoothing routines are used.

e DIME_DISABLE_PADDING:

If this flag is set, array padding is disabled. It is highly recommended not to set this flag in order
to achieve high runtime efficiency.

2.2.3 Miscellaneous Options

e DIME_DUMP_RESULT:

If this flag is set, the result of the computation is written to the file u-exit.dat.

e DIME_TIMING_ENABLED:
If this flag is set, the runtimes of the DiMEPACK routines are determined and written to stdout.

e DIME_COMPUTE_NORM:

If this flag is set, the discrete L2 norm or the maximum norm of the residual vector is computed
before the computation starts and after each cycle. The norm type must be specified as an argument
to each of the DiMEPACK interfaces, see Section 3.2.

If this flag is not set, residual norms will not be computed and the corresponding function arguments
will be ignored. Of course, dispensing with the residual computation saves execution time. This
is highly recommended if the user knows in advance the number of multigrid iterations to be
performed.

2.3 Environment Variables

In addition to the compilation options, the following environment variables affect the generation and
execution of the DiMEPACK library. Explanations on how to set or modify shell environment variables
can be found in appropriate shell manuals.

e DIME_OPTIMIZED:

If this variable is set to true, compiler optimizations are enabled and compiler debugging switches
are turned off. It is highly recommended to set DIME_OPTIMIZED to true in order to obtain efficient
codes.

e DIME_REAL:

If this variable is set to float, DiMEPACK uses single precision floating—point numbers. Otherwise,
DiMEPACK uses double precision floating—point arithmetic. Single precision arithmetic is often
faster but loss of accuracy might be involved with it.

11

e DIME_CACHE_SIZE:

Use this variable to specify the size of the processor cache in bytes. This value is needed to determine
appropriate array paddings. If this variable is not set, DiMEPACK issues a warning message and
uses a cache size of 8 Kbyte by default, corresponding to the size of the L1 cache of a Digital Alpha
21164 CPU. If the underlying architecture has several levels of caches, it is up to the user to decide
which cache level DiMEPACK shall be tailored for. This decision may require various performance
tests.

e DIME_CACHE_LINE_SIZE:

Use this variable to specify the corresponding cache line size in bytes. Like DIME_CACHE_SIZE
it is used by DiMEPACK to determine appropriate array paddings. If the variable is not set,
DiMEPACK issues a warning message and assumes a cache line length of 32 bytes by default.
This corresponds to the L1 cache line size of the Alpha 21164 processor. Again, if the underlying
architecture has several levels of caches, this variable should be chosen according to the cache level
which is specified by the environment variable DIME_CACHE_SIZE (see above).

3 Running DiMEPACK

Once you have successfully installed and compiled DiMEPACK you are able to use the C++ functions of
the DiMEPACK interface. To use DiMEPACK within your projects you have to include the dimepack.h
header file and link 1ibdimepack.a and libpadding.a. You might as well have to link the LAPACK
and BLAS library.

The first step when writing programs using DiMEPACK is to give an appropriate problem specifi-
cation. This includes the specification of the matrix coefficients, boundary types, boundary values, the
right hand side of the equation, the solution vector (which may be initialized), and the types of the
residual norm and the restriction operator to be used. DiMEPACK provides several data types to sup-
port the programmer in this process. Furthermore, several utility functions are implemented for problem
specification and debugging purposes.

After the problem has been specified, one of two multigrid functions can be called. The function
dpVcycleConst implements a standard multigrid V—cycle, whereas the function dpFMGVcycleConst im-
plements a full multigrid scheme (nested iteration).

Finally, before running the program, the shell environment variables DIME_CACHE_LINE_SIZE and
DIME_CACHE_SIZE should be set to appropriate values.

In the following we will introduce the data structures, the multigrid functions, and the utility functions.
After that we give a short example demonstrating how to call a DiMEPACK multigrid solver. Whenever
the data type DIME_REAL is mentioned it either stands for float or double. The actual type will
be determined during the DiMEPACK generation phase according to the contents of the environment
variable DIME_REAL (see Section 2.3 for details).

3.1 Data Types
3.1.1 Two—dimensional Grid Function

DiMEPACK introduces the object type dpGrid2d which basically represents a two—dimensional grid
function. The C++ class interface is as follows:

class dpGrid2d {
public:
dpGrid2d(int xDim, int yDim, DIME_REAL hx, DIME_REAL hy);
“dpGrid2d();

dpGrid2d& operator=_const dpGrid2d& rhs);

12 3 RUNNING DIMEPACK

inline int getdimx() const; // return number of grid points in x direction
inline int getdimy() const; // return number of grid points in y direction
inline DIME_REAL gethx() const; // return grid spacing in x direction
inline DIME_REAL gethy() const; // return grid spacing in y direction
inline int getpad() const; // return padding size

inline DIME_REAL* getmemy(); // return C like data structure

inline void initzero(); // return init grid to zero

inline DIME_REAL& setval(int x,int y); // set grid value

inline DIME_REAL getval(int x,int y) const // get grid value,

private:

}

This data type hides array padding techniques. Array padding is determined and introduced whenever
the constructor of this class is called. The constructor of dpGrid2d takes four parameters:

e xDim: the number of grid nodes in direction x, including the boundaries,

e yDim: the number of grid nodes in direction y, including the boundaries,

e hx: the mesh width in direction z, and

e hy: the mesh width in direction y.

The grid dimensions nxp and nyp have to be chosen such that the required number of grid levels
can be allocated, see Section 3.2. Otherwise, DiMEPACK issues an error message. The following public
methods are important for the DiMEPACK user. They are used to read and modify the values stored in
the grid.

e void initzero(): initialize all values to 0.

Example:
dpGrid2d u(65,65,1.0/64,1.0/64);
u.initzero();
e DIME_REAL& setval(int x,int y): set the value at position x,y.
Example:
const int nxp=65, nyp=65;
DIME_REAL hx= 1.0/(DIME_REAL) nxp, hy= 1.0/(DIME_REAL) nyp;
dpGrid2d f(nxp, nyp, hx, hy);
for (int y=0; y<nyp; y++)

for (int x=0; x<nxp; x++)
f.setval(x,y)= sin(2.0*M_PI*xxhx)*sin(2.0%M_PI*yxhy);

and

e DIME_REAL getval(int x,int y): return the value at position x,y.

Example:

DIME_REAL s=f.getval(42,42);

3.1 Data Types 13

3.1.2 Boundary Specification

The type of each side of the rectangular domain is specified by the enumeration type tBoundary. Possible
values are DIRICHLET for a Dirichlet boundary and NEUMANN for a Neumann boundary. Each side can
either be of Dirichlet or Neumann type. The boundary types are passed to the multigrid solver in an
array of tBoundary values. The boundary type of each of the four sides can be accessed using the macros
dpNorth, dpEAST, dpSOUTH, and dpWEST.

Example:

tBoundary bTypes[4];

bType [dpNorth]l= DIRICHLET;
bType [dpEast]= DIRICHLET;
bType [dpSouth]= DIRICHLET;
bType [dpWest 1= NEUMANN;

// bType is passed to the multigrid function ...

The boundary values for each of the four sides of the rectangular domain are specified separately in
an array of type DIME_REAL. These values are either interpreted as fixed boundary values in the case of
Dirichlet boundaries or as external normal derivatives in the case of Neumann boundaries. The address
of each boundary value array is placed into an array of pointers which is then passed to the multigrid
solver.

Example:
DIME_REAL *bVals[4];

bVals [dpNORTH]=new DIME_REAL[nxp];
bVals[dpSOUTH]=new DIME_REAL[nxp];
bVals [dpEAST]=new DIME_REAL[nyp];
bVals[dpWEST]=new DIME_REAL [nyp];

for(int i=0; i<nxp; i++){
bVals [dpNORTH] [1]=0.0;
bVals [dpSOUTH] [1]=0.0;
}

for(int i=0; i<nyp; i++){
bVals [dpEAST] [1]1=0.0;
bVals [dpWEST] [1]1=0.0;

}

// bVals is passed to the multigrid function

delete[] bVals[dpNORTH];
delete[] bVals[dpSOUTH];
delete[] bVals[dpEAST];
delete[] bVals[dpWEST];

3.1.3 Norm and Restriction Types

DiMEPACK allows to stop iterative solving when the residual falls short of a certain tolerance value
if the compiler option DIME_COMPUTE_NORM was set during library building (see Section 2.2.3 for more
information). For that purpose DiMEPACK implements two types of vector norms:

14

3 RUNNING DIMEPACK

discrete L2 norm:
Irllz. = | [hahy >ori
i

o = ma ||

maximum norm:

The stopping criterion to be used is specified by the enumeration type tNorm. Possible values of that
type are L2 for the discrete L2 norm and MAX for the maximum norm.

DiMEPACK implements half-weighting and full-weighting. The restriction operator to be used in
your program must be specified by the enumeration type tRestrict. Possible values of that type are HW
for half-weighting and FW for full-weighting.

3.2

Multigrid Functions

DiMEPACK provides two interface functions which can be called from outside. The prototypes of these
functions and the definitions of the new data types can be found in the header file dimepack.h, which is
also located in the main directory. Depending on whether the user wants standard multigrid V—cycles or
full multigrid cycles to be performed, the following functions have to be invoked:

Standard multigrid V—cycles:

void dpVcycleConst (int nlLevels, tNorm nType, DIME_REAL epsilon, int maxIt,
dpGrid2d *u, bool isInitialized, dpGrid2d *fIn, int nul,
int nu2, int nCoeff, DIME_REAL *matrixCoeff, tBoundary *bTypes,
DIME_REAL *xbVals, tRestrict rType, DIME_REAL omega,
const bool fixSolution=false)

Full multigrid (FMG, nested iteration):

void dpFMGVcycleConst(int nLevels, tNorm nType, DIME_REAL epsilon,
int maxAddIt, dpGrid2d *u, dpGrid2d *fIn, int nul,
int nu2, int gamma, int nCoeff, DIME_REAL *matrixCoeff,
tBoundary *bTypes, DIME_REAL *xbVals, tRestrict rType,
DIME_REAL omega, const bool fixSolution=false)

We will explain the meaning of the parameters of the two functions in the following:

nlevels: (input)

The total number of grid levels to be used. If this value is too large, DiMEPACK automatically
uses the maximum number of levels. If this value is 0, the maximum number of grid levels is used,
too. There have to be at least two grid levels.

nType: (input)

Specifies the type of the norm to be used for the stopping criterion. Legal values are L2 (discrete
L2 norm) and MAX (maximum norm), see Section 3.1.3. For this purpose, DiMEPACK provides the
enumeration data type tNorm.

epsilon: (input)
Specifies the tolerance for the algebraic error. If the compiler macro DIME_COMPUTE_NORM is enabled,
the multigrid iteration will be performed until the norm of the residual becomes less than the value

of this parameter. If DIME_COMPUTE_NORM is disabled, the value of this parameter is ignored, see
again Section 2.2.3.

3.2

Multigrid Functions 15

maxIt: (input)

The maximum number of multigrid V-cycles to be performed (only for standard multigrid V—cycles).

w: (input/output)

Pointer to the grid function object, where the solution shall be written to. In the case of the V—cycle
scheme this grid function object may provide an initial guess. Set the isInitialized parameter
to true to indicate this.

isInitialized: (input)

Indicates if the grid function object where the solution shall be stored is already initialized. If the
value of this parameter is false, the initial guess will be the constant 0.

fIn: (input)

Pointer to the grid function object storing the right—hand side of the equation. Pass the NULL pointer
to indicate that the algebraic problem is homogeneous. This will save floating—point operations.
nul: (input)

The number of pre—smoothing red—black Gauss—Seidel iterations to be performed. The number
must be equal or greater than 1.

nu2: (input)

The number of post—smoothing red—black Gauss—Seidel iterations to be performed. The number
must be equal or greater than 0.

nCoeff: (input)

The number of coefficients in the stencil (for an inner grid point). Legal values for this parameter
are 5 and 9.

matrixCoeff: (input)

The entries of a matrix row corresponding to a inner grid point, i.e. to a grid point with the
maximum number (nCoeff) of unknown neighboring values. The order of the coefficients is south,
west, center, east, north in the case of a 5—point stencil and south—west, south, south—east, west,
center, east, north—west, north, north—east for a 9-point stencil.

bTypes: (input)

Specifies the types of the four boundaries of the rectangular domain. The order is north boundary,
east boundary, south boundary, west boundary. Supported boundary types are DIRICHLET and
NEUMANN. For this purpose, DiMEPACK provides the enumeration data type tBoundary. Boundary
types may be mixed from side to side.

bVals: (input)

Specifies the boundary values for each of the four boundaries of the rectangular domain. These
values are either interpreted as fixed boundary values in the case of Dirichlet boundaries or as
external normal derivatives in the case of Neumann boundaries.

rType: (input)

Denotes the type of operator used to restrict the residuals from a finer grid level to the next coarser
grid level. Supported values are HW (half weighting) and FW (full weighting). For this purpose,
DiMEPACK provides the enumeration data type tRestrict.

omega: (input)

Specifies the relaxation parameter w for the red—black SOR smoother. Good smoothing properties
in the case of moderately anisotropic differential operators can be achieved by choosing suitable
relaxation parameters [Yav96]. DiMEPACK provides the utility function dpCalcOmega to determine

16

3 RUNNING DIMEPACK

a good relaxation parameter w, see Section 3.3. If w = 1.0 is specified, a standard red—black Gauss—
Seidel smoother is invoked.

fixSolution: (input)

Specifies if the solution on the coarsest grid is to be fixed. There are cases where the user wants to
solve singular problems, e.g. Poisson’s equation with four Neumann boundaries. In order to obtain
a regular system on the coarsest grid, this flag must be used. Otherwise, LAPACK will not be able
to factorize the corresponding matrix. If this flag is set to true, the solution in the south—west
corner of the coarsest grid will be set to 0. Note that this is an arbitrary choice.

gamma: (input)

Specifies the cycling parameter in the case of FMG. I.e. the number of V—cycles to be performed
after interpolating the approximation of the solution to a finer level of the grid hierarchy.

3.3 Utility Functions

DiMEPACK provides several utility functions, two of which may be of interest to the user. Thus, they
will be explained in the following.

e DIME_REAL dpCalcOmega (DIME_REAL hx, DIME_REAL hy)

This function computes a suitable relaxation parameter w for the Laplacian operator on a moder-
ately anisotropic grid. This is equivalent to a moderately anisotropic behavior of the differential
operator itself. The parameters hx and hy denote the mesh widths in directions = and y, respectively.
The return value of this function is the recommended relaxation parameter w. The calculation of
suitable relaxation parameters is based on [Yav96].

void dpPrintGrid (ostream& os,dpGrid2d& grid)

This function can be used to write grid data to an ostream object. The second parameter grid
specifies the grid object to be printed.

3.4 Example

In this section we give an example showing how the DiMEPACK function dpVcycleConst is called. We
solve Poisson’s equation on the unit square using a moderately anisotropic grid with hz = hy/2. We
apply the utility function dpCalcOmega to determine a suitable relaxation parameter w for the red—black
SOR smoother. We further assume homogeneous Dirichlet boundary conditions. The macro DIME_REAL
either stands for float or double. This depends on whether the DiMEPACK library has been built in
order to handle single precision or double precision numbers.

// Include the header file containing the function prototypes
// and the data type definitions:
#include "dimepack.h"

void runDiMEPACK (void)

{

// Initialize parameters:

const
const
const
const
const
const
const
const

int nxp=513;

int nyp=257;

int nLevels=0;

tNorm nType=L2;
DIME_REAL epsilon=le-16;
int maxIt=5;

int nul=2;

int nu2=2;

// Number of grid nodes in direction x
// Number of grid nodes in direction y
// Use as many levels as possible

// Use L2 norm

// Required accuracy

// Max. number of multigrid V cycles
// Number of pre-smoothing iterations
// Number of post-smoothing iterations

3.4 Example

const tRestrict rType=FW; // Full weighting

const bool fixSol=false; // Don’t fix the solution on the coarsest grid
DIME_REAL omega=dpCalcOmega(hx,hy); // Get suitable relaxation parameter

const int nCoeff=5; // Number of matrix coefficients per row

// Mesh width in direction x:
const DIME_REAL hx=1.0/(DIME_REAL) (nxp-1);
// Mesh width in direction y:
const DIME_REAL hy=1.0/(DIME_REAL) (nyp-1);

// Create the solution object and initialize it:
dpGrid2d u(nxp,nyp,hx,hy);
const bool isInitialized=false;

// Create right-hand side object and initialize it:
dpGrid2d f (nxp,nyp,hx,hy);
for (int y=0; y<nyp; y++)
for (int x=0; x<nxp; x++)
f.setval(x,y)= sin(M_PI*x*hx)*sin(M_PIx*y*hy);

// Allocate memory for the matrix entries and define them:
DIME_REAL matrixCoeff[nCoeff];

matrixCoeff [0]=-1.0/ (hy*hy) ;

matrixCoeff[1]=-1.0/(hx*hx) ;

matrixCoeff[2]=2.0/ (hx*hx)+2.0/ (hy*hy) ;
matrixCoeff[3]=-1.0/(hx*hx);

matrixCoeff [4]=-1.0/(hy*hy) ;

// Specify boundary types and boundary values:
tBoundary bTypes[4];
for(i=0; i<4; i++)

bTypes [1]=DIRICHLET;
DIME_REAL * bVals[4];
bVals[dpNORTH]=new DIME_REAL [nxp] ;
bVals[dpSOUTH]=new DIME_REAL [nxp] ;
bVals [dpEAST] =new DIME_REAL[nyp];
bVals [dpWEST] =new DIME_REAL[nyp];
for(i=0; i<nxp; i++) {

bVals [dpNORTH] [i]=0.0;

bVals [dpSOUTH] [i]1=0.0;
}
for(i=0; i<nyp; i++) {

bVals [dpEAST] [1]1=0.0;

bVals [dpWEST] [1]=0.0;
}

// Call the DiMEPACK library function:
dpVcycleConst (nLevels,nType,epsilon,maxIt, (&u) ,isInitialized, (&f) ,nul,nu2,nCoeff,
matrixCoeff ,bTypes,bVals,rType,omega,fixSol);

// Clean up:

delete[] bVals[dpNORTH];
delete[] bVals[dpEAST];
delete[] bVals[dpSOUTH];

17

18 REFERENCES

delete[] bVals[dpWEST];

// Process results:

/...

return;

}

See the included files testdp.C and benchdp.C for further examples involving non-homogeneous
problems, Neumann boundary conditions, different differential operators, etc.

4 Known Bugs

4.1 Marginal Differences in Floating Point Operation Results

Instruction reordering causes slightly different results when cache—optimized intergrid transfer operations
are used. This is due to the fact that addition and multiplication, in general, are not associative operations
in finite—precision arithmetic.

As soon as the user defines the compiler macro DIME_USE_MELTED_OPS (see Section 2.2) the results of
the computation may not be bitwise identical to the results obtained without the use of this flag although
no data dependencies are violated by the optimization techniques. The reason for this is that defining
the flag DIME_USE_MELTED_OPS implies different execution orders for the arithmetic operations.

Similar effects occur as soon as the environment variable DIME_OPTIMIZEDis set to true. According to
Section 2.3 this means that full compiler optimization is enabled, which again implies different execution
orders for the arithmetic operations.

This is not really a bug, but the consequence of the fact that basic algebraic laws do not hold for
machine computations.

References

[ABB'99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA PACK Users’ Guide. STAM,
3rd edition, 1999. http://www.netlib.org/lapack/lug/lapack lug.html.

[BHMO00] W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. STAM, 2nd edition,
2000.

[BJLT92] A. Brandt, W. Joppich, J. Linden, G. Lonsdale, A. Schiiller, B. Steckel, and K. Stiiben.
Multigrid Course. Technical Report 690, GMD, Oct. 1992.

[BP94] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. STAM,
1994.

[Brag&4] A. Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. GMD
Studien, 85, 1984.

[DHHT00a] C.C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Riide, and C. Weiff. Portable Memory
Hierarchy Techniques For PDE Solvers: Part I. Siam News, 33(5), June 2000.

[DHHT00b] C.C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Riide, and C. Weiff. Portable Memory
Hierarchy Techniques For PDE Solvers: Part II. Siam News, 33(6), July 2000.

[DHIT00] C.C. Douglas, J. Hu, M. Iskandarani, M. Kowarschik, U. Riide, and C. Wei}. Maximizing
Cache Memory Usage for Multigrid Algorithms. In Z. Chen, R.E. Ewing, and Z.-C. Shi,
editors, Numerical Treatment of Multiphase Flows in Porous Media. Proceedings of the In-
ternational Workshop held at Beijing, China, 2—6 August, 1999, Lecture Notes in Physics.
Springer, August 2000.

REFERENCES 19

[DHK*00a]

[DHK*00b]

[DRHBOO]

[Hac85)
[KRWKOO]

[RT98a]

[RT98b]

[Riid97]

[Riid98]

[SR97]

[SRWHO7]

[ST86)

[TOS01]
[WHSROO]

[WKKR99]

C.C. Douglas, J. Hu, W. Karl, M. Kowarschik, U. Riide, and C. Weif}. Fixed and Adaptive
Cache Aware Algorithms for Multigrid Methods. In E. Dick, K. Riemslagh, and J. Vieren-
deels, editors, Multigrid Methods VI. Proceedings of the Sixth European Multigrid Conference
held in Gent, Belgium, September 27-30, 1999, volume 14 of Lecture Notes in Computer Sci-
ence and Engineering. Springer, July 2000.

C.C. Douglas, J. Hu, M. Kowarschik, U. Riide, and C. Weif}. Cache Optimization for Struc-
tured and Unstructured Grid Multigrid. Electronic Transactions on Numerical Analysis,
10:21-40, February 2000.

C.C. Douglas, U. Riide, J. Hu, and M.L. Bittencourt. A Guide to Designing Cache Aware
Multigrid Algorithms. In W. Hackbusch and G. Wittum, editors, Concepts of Numerical
Software, Notes on Numerical Fluid Mechanics. Vieweg-Verlag, 2000. To appear.

W. Hackbusch. Multigrid Methods and Applications. Springer, Berlin, 1985.

M. Kowarschik, U. Riide, C. Weif}, and W. Karl. Cache-Aware Multigrid Methods for
Solving Poisson’s Equation in Two Dimensions. Computing, 64(4):381-399, 2000.

G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’98),
Montreal, Canada, June 1998.

G. Rivera and C.-W. Tseng. Eliminating Conflict Misses for High Performance Architec-
tures. In Proceedings of the 1998 International Conference on Supercomputing (ICS’98),
Melbourne, Australia, July 1998.

U. Riide. Iterative Algorithms on High Performance Architectures. In Proceedings of the
EuroPar97 Conference, Lecture Notes in Computer Science, pages 26-29. Springer, August
1997.

U. Riide. Technological Trends and their Impact on the Future of Supercomputing. In H.-J.
Bungartz, F. Durst, and C. Zenger, editors, High Performance Scientific and Engineering
Computing, Proceedings of the International FORTWIHR Conference on HPSEC, volume 8
of Lecture Notes in Computer Science and FEngineering, pages 459-471. Springer, March
1998.

L. Stals and U. Riide. Techniques for Improving The Data Locality of Iterative Methods.
Technical Report MRR97-038, School of Mathematical Science, Australian National Uni-
versity, October 1997.

L. Stals, U. Ride, C. Weif}, and H. Hellwagner. Data Local Iterative Methods for the Efficient
Solution of Partial Differential Equations. In J. Noye, M. Teubner, and A. Gill, editors,
Proceedings of the Eighth Biennial Conference Computational Techniques and Applications:
CTAC97, pages 655—662, Adelaide, Australia, September 1997.

K. Stiiben and U. Trottenberg. Multigrid Methods: Fundamental Algorithms, Model Prob-
lem Analysis and Applications. In Multigrid Methods, volume 960 of Lecture Notes in Math-
ematics. Springer, 1986.

U. Trottenberg, C. Oosterlee, and A. Schiiller. Multigrid. Academic Press, 2001.

C. Weif}, H. Hellwagner, L. Stals, and U. Riide. Data Locality Optimizations to Improve
The Efficiency of Multigrid Methods. In W. Hackbusch and G. Wittum, editors, Concepts of
Numerical Software, Notes on Numerical Fluid Mechanics. Vieweg-Verlag, 2000. To appear.

C. Weif}, W. Karl, M. Kowarschik, and U. Riide. Memory Characteristics of Iterative Meth-
ods. In Proceedings of the ACM/IEEE SC99 Conference, Portland, Oregon, November 1999.

20 REFERENCES

[Yav96] I. Yavneh. On Red-Black SOR Smoothing in Multigrid. STAM J. Sci. Comp., 17(1):180-192,
January 1996.

