diff --git a/examples/modular/force_reduction.cpp b/examples/modular/force_reduction.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b34a3451184aa1ab68ba3c613b38e9c065ac25df
--- /dev/null
+++ b/examples/modular/force_reduction.cpp
@@ -0,0 +1,124 @@
+#include <iostream>
+//---
+#include "force_reduction.hpp"
+
+int main(int argc, char **argv) {
+
+    auto pairs_sim = std::make_shared<PairsSimulation>();    
+    pairs_sim->initialize();
+    auto ac = std::make_shared<PairsAccessor>(pairs_sim.get());
+    
+    // Set domain
+    pairs_sim->set_domain(argc, argv, 0, 0, 0, 0.1, 0.1, 0.1);
+
+    // Create bodies
+    pairs::id_t pUid = pairs_sim->create_sphere(0.0499,   0.0499,   0.07,   0.5, 0.5, 0 ,   1000, 0.0045, 0, 0);
+    
+    // setup_sim after creating all bodies
+    pairs_sim->setup_sim();
+
+    // Track particle
+    //-------------------------------------------------------------------------------------------
+    if (pUid != ac->getInvalidUid()){
+        std::cout<< "Particle " << pUid << " is created in rank " << pairs_sim->rank() << std::endl;
+    }
+
+    MPI_Allreduce(MPI_IN_PLACE, &pUid, 1, MPI_LONG_LONG_INT, MPI_SUM, MPI_COMM_WORLD);
+
+    if (pUid != ac->getInvalidUid()){
+        std::cout<< "Particle " << pUid << " will be tracked by rank " << pairs_sim->rank() << std::endl;
+    }
+
+    // Communicate particles (exchange/ghost)
+    //-------------------------------------------------------------------------------------------
+    pairs_sim->communicate();
+    ac->update();
+        
+    // Helper lambdas for demo
+    //-------------------------------------------------------------------------------------------
+    auto pIsLocalInMyRank = [&](pairs::id_t uid){return ac->uidToIdxLocal(uid) != ac->getInvalidIdx();};
+    auto pIsGhostInMyRank = [&](pairs::id_t uid){return ac->uidToIdxGhost(uid) != ac->getInvalidIdx();};
+
+    // Check which rank owns the particle, and which ranks have it as a ghost
+    //-------------------------------------------------------------------------------------------
+    ac->syncUid(PairsAccessor::Host);
+    if (pIsLocalInMyRank(pUid)){
+        std::cout<< "Particle " << pUid << " is local in rank " << pairs_sim->rank() << std::endl;
+    }
+    if (pIsGhostInMyRank(pUid)){
+        std::cout<< "Particle " << pUid << " is ghost in rank " << pairs_sim->rank() << std::endl;
+    }
+
+    // Start timestep loop
+    //-------------------------------------------------------------------------------------------
+    int num_timesteps = 1;
+    for (int t=0; t<num_timesteps; ++t){
+        ac->syncUid(PairsAccessor::Host);
+
+        // Add local contribution
+        //-------------------------------------------------------------------------------------------
+        if (pIsLocalInMyRank(pUid)){
+            int idx = ac->uidToIdxLocal(pUid);
+            pairs::Vector3<double> local_force(0.1, 0.1, 0.1);
+            pairs::Vector3<double> local_torque(0.2, 0.2, 0.2);
+
+            std::cout << "Force on particle " << pUid << " from local rank [" << pairs_sim->rank() << "] : (" 
+                        << local_force[0] << ", " << local_force[1] << ", " << local_force[2] << ")" <<  std::endl;
+
+            ac->setHydrodynamicForce(idx, local_force);
+            ac->setHydrodynamicTorque(idx, local_torque);
+            ac->syncHydrodynamicForce(PairsAccessor::Host, true);
+            ac->syncHydrodynamicTorque(PairsAccessor::Host, true);
+        }
+
+        // Add neighbor contributions
+        //-------------------------------------------------------------------------------------------
+        if (pIsGhostInMyRank(pUid)){
+            int idx = ac->uidToIdxGhost(pUid);
+            pairs::Vector3<double> ghost_force(pairs_sim->rank()*10, 1, 1);
+            pairs::Vector3<double> ghost_torque(pairs_sim->rank()*20, 2, 2);
+
+            std::cout << "Force on particle " << pUid << " from neighbor rank [" << pairs_sim->rank() << "] : (" 
+                        << ghost_force[0] << ", " << ghost_force[1] << ", " << ghost_force[2] << ")" <<  std::endl;
+
+            ac->setHydrodynamicForce(idx, ghost_force);
+            ac->setHydrodynamicTorque(idx, ghost_torque);
+            ac->syncHydrodynamicForce(PairsAccessor::Host, true);
+            ac->syncHydrodynamicTorque(PairsAccessor::Host, true);
+        }
+        
+        // Do computations
+        //-------------------------------------------------------------------------------------------
+        pairs_sim->update_cells(); 
+        pairs_sim->gravity(); 
+        pairs_sim->spring_dashpot();
+        pairs_sim->euler(5e-5); 
+        pairs_sim->reset_volatiles();         
+        //-------------------------------------------------------------------------------------------
+
+        std::cout << "---- reverse_comm and reduce ----" << std::endl;
+        // reverse_comm() communicates data from ghost particles back to their owner ranks using
+        // information from the previous time that communicate() was called 
+        pairs_sim->reverse_comm();  
+
+        // Get the reduced force on the owner rank
+        //-------------------------------------------------------------------------------------------
+        if (pIsLocalInMyRank(pUid)){
+            int idx = ac->uidToIdxLocal(pUid);
+            ac->syncHydrodynamicForce(PairsAccessor::Host);
+            ac->syncHydrodynamicTorque(PairsAccessor::Host);
+            auto force_sum = ac->getHydrodynamicForce(idx);
+            auto torque_sum = ac->getHydrodynamicTorque(idx);
+
+            std::cout << "Reduced force on particle " << pUid << " in local rank [" << pairs_sim->rank() << "] : (" 
+                        << force_sum[0] << ", " << force_sum[1] << ", " << force_sum[2] << ")" <<  std::endl;
+        }
+        
+        // Usual communication 
+        //-------------------------------------------------------------------------------------------
+        pairs_sim->communicate(t);
+        ac->update();
+    }
+
+    pairs_sim->end();
+}
diff --git a/examples/modular/force_reduction.py b/examples/modular/force_reduction.py
new file mode 100644
index 0000000000000000000000000000000000000000..50846cd0795bb7dc77b021528ebc1d62bdebf17d
--- /dev/null
+++ b/examples/modular/force_reduction.py
@@ -0,0 +1,111 @@
+import math
+import pairs
+import sys
+import os
+
+def update_mass_and_inertia(i):
+    rotation_matrix[i] = diagonal_matrix(1.0)
+    rotation[i] = default_quaternion()
+
+    if is_sphere(i):
+        inv_inertia[i] = inversed(diagonal_matrix(0.4 * mass[i] * radius[i] * radius[i]))
+
+    else:
+        mass[i] = infinity
+        inv_inertia[i] = 0.0
+
+def spring_dashpot(i, j):
+    delta_ij = -penetration_depth(i, j)
+    skip_when(delta_ij < 0.0)
+    
+    velocity_wf_i = linear_velocity[i] + cross(angular_velocity[i], contact_point(i, j) - position[i])
+    velocity_wf_j = linear_velocity[j] + cross(angular_velocity[j], contact_point(i, j) - position[j])
+    
+    rel_vel = -(velocity_wf_i - velocity_wf_j)
+    rel_vel_n = dot(rel_vel, contact_normal(i, j))
+    rel_vel_t = rel_vel - rel_vel_n * contact_normal(i, j)
+
+    fNabs = stiffness[i,j] * delta_ij + damping_norm[i,j] * rel_vel_n
+    fN = fNabs * contact_normal(i, j)
+
+    fTabs = min(damping_tan[i,j] * length(rel_vel_t), friction[i, j] * fNabs)
+    fT = fTabs * normalized(rel_vel_t)
+
+    partial_force = fN + fT
+    apply(force, partial_force)
+    apply(torque, cross(contact_point(i, j) - position, partial_force))
+
+def euler(i):
+    inv_mass = 1.0 / mass[i]
+    position[i] +=  0.5 * inv_mass * force[i] * dt * dt + linear_velocity[i] * dt
+    linear_velocity[i] += inv_mass * force[i] * dt
+    wdot = rotation_matrix[i] * (inv_inertia[i] * torque[i]) * transposed(rotation_matrix[i])
+    phi = angular_velocity[i] * dt + 0.5 * wdot * dt * dt
+    rotation[i] = quaternion(phi, length(phi)) * rotation[i]
+    rotation_matrix[i] = quaternion_to_rotation_matrix(rotation[i])
+    angular_velocity[i] += wdot * dt
+
+def gravity(i):
+    force[i][2] -= force[i][2] - mass[i] * gravity_SI
+
+
+file_name = os.path.basename(__file__)
+file_name_without_extension = os.path.splitext(file_name)[0]
+
+psim = pairs.simulation(
+    file_name_without_extension,
+    [pairs.sphere(), pairs.halfspace()],
+    double_prec=True,
+    particle_capacity=1000000,
+    neighbor_capacity=20,
+    debug=True, 
+    generate_whole_program=False)
+
+
+target = sys.argv[1] if len(sys.argv[1]) > 1 else "none"
+
+if target == 'gpu':
+    psim.target(pairs.target_gpu())
+elif target == 'cpu':
+    psim.target(pairs.target_cpu())
+else:
+    print(f"Invalid target, use {sys.argv[0]} <cpu/gpu>")
+
+gravity_SI = 9.81
+diameter = 100      # required for linkedCellWidth. TODO: set linkedCellWidth at runtime
+linkedCellWidth = 1.01 * diameter
+ntypes = 2
+
+psim.add_position('position')
+psim.add_property('mass', pairs.real())
+psim.add_property('linear_velocity', pairs.vector())
+psim.add_property('angular_velocity', pairs.vector())
+psim.add_property('force', pairs.vector(), volatile=True)
+psim.add_property('torque', pairs.vector(), volatile=True)
+psim.add_property('radius', pairs.real())
+psim.add_property('normal', pairs.vector())
+psim.add_property('inv_inertia', pairs.matrix())
+psim.add_property('rotation_matrix', pairs.matrix())
+psim.add_property('rotation', pairs.quaternion())
+
+# Properties that get reduced during reverse communication
+psim.add_property('hydrodynamic_force', pairs.vector(), reduce=True)
+psim.add_property('hydrodynamic_torque', pairs.vector(), reduce=True)
+
+psim.add_feature('type', ntypes)
+psim.add_feature_property('type', 'stiffness', pairs.real(), [3000 for i in range(ntypes * ntypes)])
+psim.add_feature_property('type', 'damping_norm', pairs.real(), [10.0 for i in range(ntypes * ntypes)])
+psim.add_feature_property('type', 'damping_tan', pairs.real())
+psim.add_feature_property('type', 'friction', pairs.real())
+
+psim.set_domain_partitioner(pairs.block_forest())
+psim.pbc([False, False, False])
+psim.build_cell_lists(linkedCellWidth)
+
+psim.setup(update_mass_and_inertia, symbols={'infinity': math.inf })
+psim.compute(spring_dashpot, linkedCellWidth)
+psim.compute(gravity, symbols={'gravity_SI': gravity_SI })
+psim.compute(euler, parameters={'dt': pairs.real()})
+
+psim.generate()
+