import numpy as np import pytest import pystencils as ps def test_basic_kernel(): for domain_shape in [(4, 5), (3, 4, 5)]: dh = ps.create_data_handling(domain_size=domain_shape, periodicity=True) assert all(dh.periodicity) f = dh.add_array("f", values_per_cell=1) tmp = dh.add_array("tmp", values_per_cell=1) stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)] stencil_3d = [ (1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1), ] stencil = stencil_2d if dh.dim == 2 else stencil_3d jacobi = ps.Assignment(tmp.center, sum(f.neighbors(stencil)) / len(stencil)) kernel = ps.create_kernel(jacobi).compile() for b in dh.iterate(ghost_layers=1): b["f"].fill(42) dh.run_kernel(kernel) for b in dh.iterate(ghost_layers=0): np.testing.assert_equal(b["f"], 42) float_seq = [1.0, 2.0, 3.0, 4.0] int_seq = [1, 2, 3] for op in ("min", "max", "sum"): assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all() assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all() @pytest.mark.xfail(reason="Staggered kernels and blocking not implemented yet") def test_basic_blocking_staggered(): f = ps.fields("f: double[2D]") stag = ps.fields("stag(2): double[2D]", field_type=ps.FieldType.STAGGERED) terms = [ f[0, 0] - f[-1, 0], f[0, 0] - f[0, -1], ] assignments = [ ps.Assignment(stag.staggered_access(d), terms[i]) for i, d in enumerate(stag.staggered_stencil) ] kernel = ps.create_staggered_kernel(assignments, cpu_blocking=(3, 16)).compile() reference_kernel = ps.create_staggered_kernel(assignments).compile() f_arr = np.random.rand(80, 33) stag_arr = np.zeros((80, 33, 3)) stag_ref = np.zeros((80, 33, 3)) kernel(f=f_arr, stag=stag_arr) reference_kernel(f=f_arr, stag=stag_ref) np.testing.assert_almost_equal(stag_arr, stag_ref) def test_basic_vectorization(): target = ps.Target.auto_cpu() if not target.is_vector_cpu(): pytest.skip("No vector CPU available") f, g = ps.fields("f, g : double[2D]") update_rule = [ ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0) ] cfg = ps.CreateKernelConfig(target=target) cfg.cpu.vectorize.enable = True cfg.cpu.vectorize.assume_inner_stride_one = True ast = ps.create_kernel(update_rule, cfg) func = ast.compile() arr = np.ones((23 + 2, 17 + 2)) * 5.0 dst = np.zeros_like(arr) func(g=dst, f=arr) np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)