Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • 66-absolute-access-is-probably-not-copied-correctly-after-_eval_subs
  • const_fix
  • fhennig/macos-and-arm
  • fhennig/random-numbers
  • fhennig/v2.0-deprecations
  • fma
  • gpu_bufferfield_fix
  • gpu_liveness_opts
  • holzer-master-patch-46757
  • hyteg
  • improved_comm
  • master
  • target_dh_refactoring
  • v2.0-dev
  • vectorization_sqrt_fix
  • zikeliml/124-rework-tutorials
  • zikeliml/Task-96-dotExporterForAST
  • last/Kerncraft
  • last/LLVM
  • last/OpenCL
  • release/0.2.1
  • release/0.2.10
  • release/0.2.11
  • release/0.2.12
  • release/0.2.13
  • release/0.2.14
  • release/0.2.15
  • release/0.2.2
  • release/0.2.3
  • release/0.2.4
  • release/0.2.6
  • release/0.2.7
  • release/0.2.8
  • release/0.2.9
  • release/0.3.0
  • release/0.3.1
  • release/0.3.2
  • release/0.3.3
  • release/0.3.4
  • release/0.4.0
  • release/0.4.1
  • release/0.4.2
  • release/0.4.3
  • release/0.4.4
  • release/1.0
  • release/1.0.1
  • release/1.1
  • release/1.1.1
  • release/1.2
  • release/1.3
  • release/1.3.1
  • release/1.3.2
  • release/1.3.3
  • release/1.3.4
  • release/1.3.5
  • release/1.3.6
  • release/1.3.7
  • release/2.0.dev0
58 results

Target

Select target project
  • anirudh.jonnalagadda/pystencils
  • hyteg/pystencils
  • jbadwaik/pystencils
  • jngrad/pystencils
  • itischler/pystencils
  • ob28imeq/pystencils
  • hoenig/pystencils
  • Bindgen/pystencils
  • hammer/pystencils
  • da15siwa/pystencils
  • holzer/pystencils
  • alexander.reinauer/pystencils
  • ec93ujoh/pystencils
  • Harke/pystencils
  • seitz/pystencils
  • pycodegen/pystencils
16 results
Select Git revision
  • VoF
  • abs
  • compare_fix
  • const_fix
  • gpu_liveness_opts
  • hyteg
  • improved_comm
  • jan_test
  • master
  • noFlux
  • philox-simd
  • target_dh_refactoring
  • test_martin
  • test_martin2
  • last/Kerncraft
  • last/LLVM
  • last/OpenCL
  • release/0.2.1
  • release/0.2.10
  • release/0.2.11
  • release/0.2.12
  • release/0.2.13
  • release/0.2.14
  • release/0.2.15
  • release/0.2.2
  • release/0.2.3
  • release/0.2.4
  • release/0.2.6
  • release/0.2.7
  • release/0.2.8
  • release/0.2.9
  • release/0.3.0
  • release/0.3.1
  • release/0.3.2
  • release/0.3.3
  • release/0.3.4
  • release/0.4.0
  • release/0.4.1
  • release/0.4.2
  • release/0.4.3
  • release/0.4.4
  • release/1.0
  • release/1.0.1
  • release/1.1
  • release/1.1.1
  • release/1.2
  • release/1.3
  • release/1.3.1
  • release/1.3.2
  • release/1.3.3
50 results
Show changes
Showing
with 389 additions and 130 deletions
File moved
......@@ -256,9 +256,7 @@ class Field:
self.shape = shape
self.strides = strides
self.latex_name: Optional[str] = None
self.coordinate_origin: tuple[float, sp.Symbol] = sp.Matrix(tuple(
0 for _ in range(self.spatial_dimensions)
))
self.coordinate_origin = sp.Matrix([0] * self.spatial_dimensions)
self.coordinate_transform = sp.eye(self.spatial_dimensions)
if field_type == FieldType.STAGGERED:
assert self.staggered_stencil
......@@ -267,8 +265,7 @@ class Field:
if self.has_fixed_shape:
return Field(new_name, self.field_type, self._dtype, self._layout, self.shape, self.strides)
else:
return Field.create_generic(new_name, self.spatial_dimensions, self.dtype.numpy_dtype,
self.index_dimensions, self._layout, self.index_shape, self.field_type)
return Field(new_name, self.field_type, self.dtype, self.layout, self.shape, self.strides)
@property
def spatial_dimensions(self) -> int:
......@@ -951,24 +948,35 @@ def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0
def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]:
if layout_str in ('fzyx', 'zyxf'):
assert dim <= 3
return tuple(reversed(range(dim)))
if dim <= 0:
raise ValueError("Dimensionality must be positive")
layout_str = layout_str.lower()
if layout_str in ('fzyx', 'f', 'reverse_numpy', 'SoA'):
if layout_str in ('fzyx', 'zyxf', 'soa', 'aos'):
if dim > 3:
raise ValueError(f"Invalid spatial dimensionality for layout descriptor {layout_str}: May be at most 3.")
return tuple(reversed(range(dim)))
if layout_str in ('f', 'reverse_numpy'):
return tuple(reversed(range(dim)))
elif layout_str in ('c', 'numpy', 'AoS'):
elif layout_str in ('c', 'numpy'):
return tuple(range(dim))
raise ValueError("Unknown layout descriptor " + layout_str)
def layout_string_to_tuple(layout_str, dim):
if dim <= 0:
raise ValueError("Dimensionality must be positive")
layout_str = layout_str.lower()
if layout_str == 'fzyx' or layout_str == 'soa':
assert dim <= 4
if dim > 4:
raise ValueError(f"Invalid total dimensionality for layout descriptor {layout_str}: May be at most 4.")
return tuple(reversed(range(dim)))
elif layout_str == 'zyxf' or layout_str == 'aos':
assert dim <= 4
if dim > 4:
raise ValueError(f"Invalid total dimensionality for layout descriptor {layout_str}: May be at most 4.")
return tuple(reversed(range(dim - 1))) + (dim - 1,)
elif layout_str == 'f' or layout_str == 'reverse_numpy':
return tuple(reversed(range(dim)))
......
File moved
File moved
import abc
from functools import partial
import math
from typing import List, Tuple
import sympy as sp
from sympy.core.cache import cacheit
from pystencils.astnodes import Block, Conditional
from pystencils.astnodes import Block, Conditional, SympyAssignment
from pystencils.typing import TypedSymbol, create_type
from pystencils.integer_functions import div_ceil, div_floor
from pystencils.slicing import normalize_slice
from pystencils.sympyextensions import is_integer_sequence, prod
......@@ -33,12 +33,37 @@ GRID_DIM = [ThreadIndexingSymbol("gridDim." + coord, create_type("int32")) for c
class AbstractIndexing(abc.ABC):
"""
Abstract base class for all Indexing classes. An Indexing class defines how a multidimensional
field is mapped to GPU's block and grid system. It calculates indices based on GPU's thread and block indices
and computes the number of blocks and threads a kernel is started with. The Indexing class is created with
a pystencils field, a slice to iterate over, and further optional parameters that must have default values.
Abstract base class for all Indexing classes. An Indexing class defines how an iteration space is mapped
to GPU's block and grid system. It calculates indices based on GPU's thread and block indices
and computes the number of blocks and threads a kernel is started with.
The Indexing class is created with an iteration space that is given as list of slices to determine start, stop
and the step size for each coordinate. Further the data_layout is given as tuple to determine the fast and slow
coordinates. This is important to get an optimal mapping of coordinates to GPU threads.
"""
def __init__(self, iteration_space: Tuple[slice], data_layout: Tuple):
for iter_space in iteration_space:
assert isinstance(iter_space, slice), f"iteration_space must be of type Tuple[slice], " \
f"not tuple of type {type(iter_space)}"
self._iteration_space = iteration_space
self._data_layout = data_layout
self._dim = len(iteration_space)
@property
def iteration_space(self):
"""Iteration space to loop over"""
return self._iteration_space
@property
def data_layout(self):
"""Data layout of the kernels arrays"""
return self._data_layout
@property
def dim(self):
"""Number of spatial dimensions"""
return self._dim
@property
@abc.abstractmethod
def coordinates(self):
......@@ -50,6 +75,16 @@ class AbstractIndexing(abc.ABC):
"""Sympy symbols for GPU's block and thread indices, and block and grid dimensions. """
return BLOCK_IDX + THREAD_IDX + BLOCK_DIM + GRID_DIM
@abc.abstractmethod
def get_loop_ctr_assignments(self, loop_counter_symbols) -> List[SympyAssignment]:
"""Adds assignments for the loop counter symbols depending on the gpu threads.
Args:
loop_counter_symbols: typed symbols representing the loop counters
Returns:
assignments for the loop counters
"""
@abc.abstractmethod
def call_parameters(self, arr_shape):
"""Determine grid and block size for kernel call.
......@@ -92,8 +127,9 @@ class BlockIndexing(AbstractIndexing):
"""Generic indexing scheme that maps sub-blocks of an array to GPU blocks.
Args:
field: pystencils field (common to all Indexing classes)
iteration_slice: slice that defines rectangular subarea which is iterated over
iteration_space: list of slices to determine start, stop and the step size for each coordinate
data_layout: tuple specifying loop order with innermost loop last.
This is the same format as returned by `Field.layout`.
permute_block_size_dependent_on_layout: if True the block_size is permuted such that the fastest coordinate
gets the largest amount of threads
compile_time_block_size: compile in concrete block size, otherwise the gpu variable 'blockDim' is used
......@@ -102,14 +138,16 @@ class BlockIndexing(AbstractIndexing):
device_number: device number of the used GPU. By default, the zeroth device is used.
"""
def __init__(self, field, iteration_slice,
block_size=(16, 16, 1), permute_block_size_dependent_on_layout=True, compile_time_block_size=False,
def __init__(self, iteration_space: Tuple[slice], data_layout: Tuple[int],
block_size=(128, 2, 1), permute_block_size_dependent_on_layout=True, compile_time_block_size=False,
maximum_block_size=(1024, 1024, 64), device_number=None):
if field.spatial_dimensions > 3:
raise NotImplementedError("This indexing scheme supports at most 3 spatial dimensions")
super(BlockIndexing, self).__init__(iteration_space, data_layout)
if self._dim > 4:
raise NotImplementedError("This indexing scheme supports at most 4 spatial dimensions")
if permute_block_size_dependent_on_layout:
block_size = self.permute_block_size_according_to_layout(block_size, field.layout)
if permute_block_size_dependent_on_layout and self._dim < 4:
block_size = self.permute_block_size_according_to_layout(block_size, data_layout)
self._block_size = block_size
if maximum_block_size == 'auto':
......@@ -124,9 +162,6 @@ class BlockIndexing(AbstractIndexing):
maximum_block_size = tuple(da[f"MaxBlockDim{c}"] for c in ["X", "Y", "Z"])
self._maximum_block_size = maximum_block_size
self._iterationSlice = normalize_slice(iteration_slice, field.spatial_shape)
self._dim = field.spatial_dimensions
self._symbolic_shape = [e if isinstance(e, sp.Basic) else None for e in field.spatial_shape]
self._compile_time_block_size = compile_time_block_size
self._device_number = device_number
......@@ -140,17 +175,28 @@ class BlockIndexing(AbstractIndexing):
@property
def coordinates(self):
offsets = _get_start_from_slice(self._iterationSlice)
coordinates = [c + off for c, off in zip(self.cuda_indices, offsets)]
if self._dim < 4:
coordinates = [c + iter_slice.start for c, iter_slice in zip(self.cuda_indices, self._iteration_space)]
return coordinates[:self._dim]
else:
coordinates = list()
width = self._iteration_space[1].stop - self.iteration_space[1].start
coordinates.append(div_floor(self.cuda_indices[0], width))
coordinates.append(sp.Mod(self.cuda_indices[0], width))
coordinates.append(self.cuda_indices[1] + self.iteration_space[2].start)
coordinates.append(self.cuda_indices[2] + self.iteration_space[3].start)
return coordinates
return coordinates[:self._dim]
def get_loop_ctr_assignments(self, loop_counter_symbols):
return _loop_ctr_assignments(loop_counter_symbols, self.coordinates, self._iteration_space)
def call_parameters(self, arr_shape):
substitution_dict = {sym: value for sym, value in zip(self._symbolic_shape, arr_shape) if sym is not None}
numeric_iteration_slice = _get_numeric_iteration_slice(self._iteration_space, arr_shape)
widths = _get_widths(numeric_iteration_slice)
if len(widths) > 3:
widths = [widths[0] * widths[1], widths[2], widths[3]]
widths = [end - start for start, end in zip(_get_start_from_slice(self._iterationSlice),
_get_end_from_slice(self._iterationSlice, arr_shape))]
widths = sp.Matrix(widths).subs(substitution_dict)
extend_bs = (1,) * (3 - len(self._block_size))
block_size = self._block_size + extend_bs
if not self._compile_time_block_size:
......@@ -171,20 +217,30 @@ class BlockIndexing(AbstractIndexing):
def guard(self, kernel_content, arr_shape):
arr_shape = arr_shape[:self._dim]
end = _get_end_from_slice(self._iterationSlice, arr_shape)
conditions = [c < e for c, e in zip(self.coordinates, end)]
for cuda_index, iter_slice in zip(self.cuda_indices, self._iterationSlice):
if isinstance(iter_slice, slice) and iter_slice.step > 1:
conditions.append(sp.Eq(sp.Mod(cuda_index, iter_slice.step), 0))
if len(self._iteration_space) - 1 == len(arr_shape):
numeric_iteration_slice = _get_numeric_iteration_slice(self._iteration_space[1:], arr_shape)
numeric_iteration_slice = [self.iteration_space[0]] + numeric_iteration_slice
else:
assert len(self._iteration_space) == len(arr_shape), "Iteration space must be equal to the array shape"
numeric_iteration_slice = _get_numeric_iteration_slice(self._iteration_space, arr_shape)
end = [s.stop if s.stop != 0 else 1 for s in numeric_iteration_slice]
for i, s in enumerate(numeric_iteration_slice):
if s.step and s.step != 1:
end[i] = div_ceil(s.stop - s.start, s.step) + s.start
if self._dim < 4:
conditions = [c < e for c, e in zip(self.coordinates, end)]
else:
end = [end[0] * end[1], end[2], end[3]]
coordinates = [c + iter_slice.start for c, iter_slice in zip(self.cuda_indices, self._iteration_space[1:])]
conditions = [c < e for c, e in zip(coordinates, end)]
condition = conditions[0]
for c in conditions[1:]:
condition = sp.And(condition, c)
return Block([Conditional(condition, kernel_content)])
def iteration_space(self, arr_shape):
return _iteration_space(self._iterationSlice, arr_shape)
def numeric_iteration_space(self, arr_shape):
return _get_numeric_iteration_slice(self._iteration_space, arr_shape)
def limit_block_size_by_register_restriction(self, block_size, required_registers_per_thread):
"""Shrinks the block_size if there are too many registers used per block.
......@@ -246,38 +302,44 @@ class LineIndexing(AbstractIndexing):
The fastest coordinate is indexed with thread_idx.x, the remaining coordinates are mapped to block_idx.{x,y,z}
This indexing scheme supports up to 4 spatial dimensions, where the innermost dimensions is not larger than the
maximum amount of threads allowed in a GPU block (which depends on device).
Args:
iteration_space: list of slices to determine start, stop and the step size for each coordinate
data_layout: tuple to determine the fast and slow coordinates.
"""
def __init__(self, field, iteration_slice):
available_indices = [THREAD_IDX[0]] + BLOCK_IDX
if field.spatial_dimensions > 4:
def __init__(self, iteration_space: Tuple[slice], data_layout: Tuple):
super(LineIndexing, self).__init__(iteration_space, data_layout)
if len(iteration_space) > 4:
raise NotImplementedError("This indexing scheme supports at most 4 spatial dimensions")
coordinates = available_indices[:field.spatial_dimensions]
@property
def cuda_indices(self):
available_indices = [THREAD_IDX[0]] + BLOCK_IDX
coordinates = available_indices[:self.dim]
fastest_coordinate = field.layout[-1]
fastest_coordinate = self.data_layout[-1]
coordinates[0], coordinates[fastest_coordinate] = coordinates[fastest_coordinate], coordinates[0]
self._coordinates = coordinates
self._iterationSlice = normalize_slice(iteration_slice, field.spatial_shape)
self._symbolicShape = [e if isinstance(e, sp.Basic) else None for e in field.spatial_shape]
return coordinates
@property
def coordinates(self):
return [i + offset for i, offset in zip(self._coordinates, _get_start_from_slice(self._iterationSlice))]
return [i + o.start for i, o in zip(self.cuda_indices, self._iteration_space)]
def call_parameters(self, arr_shape):
substitution_dict = {sym: value for sym, value in zip(self._symbolicShape, arr_shape) if sym is not None}
def get_loop_ctr_assignments(self, loop_counter_symbols):
return _loop_ctr_assignments(loop_counter_symbols, self.coordinates, self._iteration_space)
widths = [end - start for start, end in zip(_get_start_from_slice(self._iterationSlice),
_get_end_from_slice(self._iterationSlice, arr_shape))]
widths = sp.Matrix(widths).subs(substitution_dict)
def call_parameters(self, arr_shape):
numeric_iteration_slice = _get_numeric_iteration_slice(self._iteration_space, arr_shape)
widths = _get_widths(numeric_iteration_slice)
def get_shape_of_cuda_idx(cuda_idx):
if cuda_idx not in self._coordinates:
if cuda_idx not in self.cuda_indices:
return 1
else:
idx = self._coordinates.index(cuda_idx)
idx = self.cuda_indices.index(cuda_idx)
return widths[idx]
return {'block': tuple([get_shape_of_cuda_idx(idx) for idx in THREAD_IDX]),
......@@ -292,50 +354,66 @@ class LineIndexing(AbstractIndexing):
def symbolic_parameters(self):
return set()
def iteration_space(self, arr_shape):
return _iteration_space(self._iterationSlice, arr_shape)
def numeric_iteration_space(self, arr_shape):
return _get_numeric_iteration_slice(self._iteration_space, arr_shape)
# -------------------------------------- Helper functions --------------------------------------------------------------
def _get_start_from_slice(iteration_slice):
def _get_numeric_iteration_slice(iteration_slice, arr_shape):
res = []
for slice_component in iteration_slice:
if type(slice_component) is slice:
res.append(slice_component.start if slice_component.start is not None else 0)
else:
assert isinstance(slice_component, int)
res.append(slice_component)
for slice_component, shape in zip(iteration_slice, arr_shape):
result_slice = slice_component
if not isinstance(result_slice.start, int):
start = result_slice.start
assert len(start.free_symbols) == 1
start = start.subs({symbol: shape for symbol in start.free_symbols})
result_slice = slice(start, result_slice.stop, result_slice.step)
if not isinstance(result_slice.stop, int):
stop = result_slice.stop
assert len(stop.free_symbols) == 1
stop = stop.subs({symbol: shape for symbol in stop.free_symbols})
result_slice = slice(result_slice.start, stop, result_slice.step)
assert isinstance(result_slice.step, int)
res.append(result_slice)
return res
def _get_end_from_slice(iteration_slice, arr_shape):
iter_slice = normalize_slice(iteration_slice, arr_shape)
res = []
for slice_component in iter_slice:
if type(slice_component) is slice:
res.append(slice_component.stop)
def _get_widths(iteration_slice):
widths = []
for iter_slice in iteration_slice:
step = iter_slice.step
assert isinstance(step, int), f"Step can only be of type int not of type {type(step)}"
start = iter_slice.start
stop = iter_slice.stop
if step == 1:
if stop - start == 0:
widths.append(1)
else:
widths.append(stop - start)
else:
assert isinstance(slice_component, int)
res.append(slice_component + 1)
return res
def _get_steps_from_slice(iteration_slice):
res = []
for slice_component in iteration_slice:
if type(slice_component) is slice:
res.append(slice_component.step)
width = (stop - start) / step
if isinstance(width, int):
widths.append(width)
elif isinstance(width, float):
widths.append(math.ceil(width))
else:
widths.append(div_ceil(stop - start, step))
return widths
def _loop_ctr_assignments(loop_counter_symbols, coordinates, iteration_space):
loop_ctr_assignments = []
for loop_counter, coordinate, iter_slice in zip(loop_counter_symbols, coordinates, iteration_space):
if isinstance(iter_slice, slice) and iter_slice.step > 1:
offset = (iter_slice.step * iter_slice.start) - iter_slice.start
loop_ctr_assignments.append(SympyAssignment(loop_counter, coordinate * iter_slice.step - offset))
elif iter_slice.start == iter_slice.stop:
loop_ctr_assignments.append(SympyAssignment(loop_counter, 0))
else:
res.append(1)
return res
loop_ctr_assignments.append(SympyAssignment(loop_counter, coordinate))
def _iteration_space(iteration_slice, arr_shape):
starts = _get_start_from_slice(iteration_slice)
ends = _get_end_from_slice(iteration_slice, arr_shape)
steps = _get_steps_from_slice(iteration_slice)
return [slice(start, end, step) for start, end, step in zip(starts, ends, steps)]
return loop_ctr_assignments
def indexing_creator_from_params(gpu_indexing, gpu_indexing_params):
......
from typing import Union
import numpy as np
import sympy as sp
from pystencils.astnodes import Block, KernelFunction, LoopOverCoordinate, SympyAssignment
from pystencils.config import CreateKernelConfig
......@@ -11,14 +9,13 @@ from pystencils.enums import Target, Backend
from pystencils.gpu.gpujit import make_python_function
from pystencils.node_collection import NodeCollection
from pystencils.gpu.indexing import indexing_creator_from_params
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils.slicing import normalize_slice
from pystencils.transformations import (
get_base_buffer_index, get_common_field, parse_base_pointer_info,
get_base_buffer_index, get_common_field, get_common_indexed_element, parse_base_pointer_info,
resolve_buffer_accesses, resolve_field_accesses, unify_shape_symbols)
def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
config: CreateKernelConfig):
def create_cuda_kernel(assignments: NodeCollection, config: CreateKernelConfig):
function_name = config.function_name
indexing_creator = indexing_creator_from_params(config.gpu_indexing, config.gpu_indexing_params)
......@@ -39,7 +36,9 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
field_accesses = set()
num_buffer_accesses = 0
indexed_elements = set()
for eq in assignments:
indexed_elements.update(eq.atoms(sp.Indexed))
field_accesses.update(eq.atoms(Field.Access))
field_accesses = {e for e in field_accesses if not e.is_absolute_access}
num_buffer_accesses += sum(1 for access in eq.atoms(Field.Access) if FieldType.is_buffer(access.field))
......@@ -64,17 +63,28 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
iteration_slice.append(slice(ghost_layers[i][0],
-ghost_layers[i][1] if ghost_layers[i][1] > 0 else None))
indexing = indexing_creator(field=common_field, iteration_slice=iteration_slice)
coord_mapping = indexing.coordinates
cell_idx_assignments = [SympyAssignment(LoopOverCoordinate.get_loop_counter_symbol(i), value)
for i, value in enumerate(coord_mapping)]
cell_idx_symbols = [LoopOverCoordinate.get_loop_counter_symbol(i) for i, _ in enumerate(coord_mapping)]
assignments = cell_idx_assignments + assignments
iteration_space = normalize_slice(iteration_slice, common_shape)
else:
iteration_space = normalize_slice(iteration_slice, common_shape)
iteration_space = tuple([s if isinstance(s, slice) else slice(s, s + 1, 1) for s in iteration_space])
loop_counter_symbols = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(len(iteration_space))]
if len(indexed_elements) > 0:
common_indexed_element = get_common_indexed_element(indexed_elements)
index = common_indexed_element.indices[0].atoms(TypedSymbol)
assert len(index) == 1, "index expressions must only contain one symbol representing the index"
indexing = indexing_creator(iteration_space=(slice(0, common_indexed_element.shape[0], 1), *iteration_space),
data_layout=common_field.layout)
extended_ctrs = [index.pop(), *loop_counter_symbols]
loop_counter_assignments = indexing.get_loop_ctr_assignments(extended_ctrs)
else:
indexing = indexing_creator(iteration_space=iteration_space, data_layout=common_field.layout)
loop_counter_assignments = indexing.get_loop_ctr_assignments(loop_counter_symbols)
assignments = loop_counter_assignments + assignments
block = indexing.guard(Block(assignments), common_shape)
block = Block(assignments)
block = indexing.guard(block, common_shape)
unify_shape_symbols(block, common_shape=common_shape, fields=fields_without_buffers)
ast = KernelFunction(block,
......@@ -86,16 +96,18 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
assignments=assignments)
ast.global_variables.update(indexing.index_variables)
base_pointer_spec = [['spatialInner0']]
base_pointer_spec = config.base_pointer_specification
if base_pointer_spec is None:
base_pointer_spec = []
base_pointer_info = {f.name: parse_base_pointer_info(base_pointer_spec, [2, 1, 0],
f.spatial_dimensions, f.index_dimensions)
for f in all_fields}
coord_mapping = {f.name: cell_idx_symbols for f in all_fields}
coord_mapping = {f.name: loop_counter_symbols for f in all_fields}
if any(FieldType.is_buffer(f) for f in all_fields):
iteration_space = indexing.iteration_space(common_shape)
resolve_buffer_accesses(ast, get_base_buffer_index(ast, cell_idx_symbols, iteration_space), read_only_fields)
base_buffer_index = get_base_buffer_index(ast, loop_counter_symbols, iteration_space)
resolve_buffer_accesses(ast, base_buffer_index, read_only_fields)
resolve_field_accesses(ast, read_only_fields, field_to_base_pointer_info=base_pointer_info,
field_to_fixed_coordinates=coord_mapping)
......@@ -114,40 +126,41 @@ def create_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
return ast
def created_indexed_cuda_kernel(assignments: Union[AssignmentCollection, NodeCollection],
config: CreateKernelConfig):
def created_indexed_cuda_kernel(assignments: NodeCollection, config: CreateKernelConfig):
index_fields = config.index_fields
function_name = config.function_name
coordinate_names = config.coordinate_names
indexing_creator = indexing_creator_from_params(config.gpu_indexing, config.gpu_indexing_params)
fields_written = assignments.bound_fields
fields_read = assignments.rhs_fields
assignments = assignments.all_assignments
assignments = add_types(assignments, config)
all_fields = fields_read.union(fields_written)
read_only_fields = set([f.name for f in fields_read - fields_written])
# extract the index fields based on the name. The original index field might have been modified
index_fields = [idx_field for idx_field in index_fields if idx_field.name in [f.name for f in all_fields]]
non_index_fields = [f for f in all_fields if f not in index_fields]
spatial_coordinates = {f.spatial_dimensions for f in non_index_fields}
assert len(spatial_coordinates) == 1, f"Non-index fields do not have the same number of spatial coordinates " \
f"Non index fields are {non_index_fields}, spatial coordinates are " \
f"{spatial_coordinates}"
spatial_coordinates = list(spatial_coordinates)[0]
assignments = assignments.all_assignments
assignments = add_types(assignments, config)
for index_field in index_fields:
index_field.field_type = FieldType.INDEXED
assert FieldType.is_indexed(index_field)
assert index_field.spatial_dimensions == 1, "Index fields have to be 1D"
non_index_fields = [f for f in all_fields if f not in index_fields]
spatial_coordinates = {f.spatial_dimensions for f in non_index_fields}
assert len(spatial_coordinates) == 1, "Non-index fields do not have the same number of spatial coordinates"
spatial_coordinates = list(spatial_coordinates)[0]
def get_coordinate_symbol_assignment(name):
for ind_f in index_fields:
assert isinstance(ind_f.dtype, StructType), "Index fields have to have a struct data type"
data_type = ind_f.dtype
if data_type.has_element(name):
rhs = ind_f[0](name)
lhs = TypedSymbol(name, np.int64)
lhs = TypedSymbol(name, data_type.get_element_type(name))
return SympyAssignment(lhs, rhs)
raise ValueError(f"Index {name} not found in any of the passed index fields")
......@@ -156,8 +169,12 @@ def created_indexed_cuda_kernel(assignments: Union[AssignmentCollection, NodeCol
coordinate_typed_symbols = [eq.lhs for eq in coordinate_symbol_assignments]
idx_field = list(index_fields)[0]
indexing = indexing_creator(field=idx_field,
iteration_slice=[slice(None, None, None)] * len(idx_field.spatial_shape))
iteration_space = normalize_slice(tuple([slice(None, None, None)]) * len(idx_field.spatial_shape),
idx_field.spatial_shape)
indexing = indexing_creator(iteration_space=iteration_space,
data_layout=idx_field.layout)
function_body = Block(coordinate_symbol_assignments + assignments)
function_body = indexing.guard(function_body, get_common_field(index_fields).spatial_shape)
......
/*
Copyright 2010-2011, D. E. Shaw Research. All rights reserved.
Copyright 2019-2023, Michael Kuron.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <emmintrin.h> // SSE2
#include <wmmintrin.h> // AES
#ifdef __AVX__
......@@ -551,7 +583,7 @@ QUALIFIERS void aesni_double2(uint32 ctr0, __m256i ctr1, uint32 ctr2, uint32 ctr
#endif
#ifdef __AVX512F__
#if defined(__AVX512F__) || defined(__AVX10_512BIT__)
QUALIFIERS const std::array<__m512i,11> & aesni_roundkeys(const __m512i & k512) {
alignas(64) std::array<uint32,16> a;
_mm512_store_si512((__m512i*) a.data(), k512);
......
/*
Copyright 2021-2023, Michael Kuron.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(_MSC_VER)
#define __ARM_NEON
#endif
......
/*
Copyright 2023, Markus Holzer.
Copyright 2023, Michael Kuron.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#define POS_INFINITY __int_as_float(0x7f800000)
#define INFINITY POS_INFINITY
#define NEG_INFINITY __int_as_float(0xff800000)
#ifdef __HIPCC_RTC__
typedef __hip_uint8_t uint8_t;
typedef __hip_int8_t int8_t;
typedef __hip_uint16_t uint16_t;
typedef __hip_int16_t int16_t;
#endif
/*
Copyright 2023, Markus Holzer.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/// Half precision support. Experimental. Use carefully.
///
/// This feature is experimental, since it strictly depends on the underlying architecture and compiler support.
......