diff --git a/conftest.py b/conftest.py
index 131167994d7cc31ae919ee7fb51bb5897fcdc995..3c140f19efdea93fcd5f6b94c7f706b7a1c77ef2 100644
--- a/conftest.py
+++ b/conftest.py
@@ -82,10 +82,6 @@ try:
 except ImportError:
     collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/datahandling/vtk.py")]
 
-# TODO: Remove if Ubuntu 18.04 is no longer supported
-if pytest_version < 50403:
-    collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils_tests/test_jupyter_extensions.ipynb")]
-
 collect_ignore += [os.path.join(SCRIPT_FOLDER, 'setup.py')]
 
 for root, sub_dirs, files in os.walk('.'):
diff --git a/pystencils/cpu/vectorization.py b/pystencils/cpu/vectorization.py
index 6d59be9b0c35692d364e971ff190f32590b923d1..9f8e381c3f3f16627cdfecd6caa4e46e648f7efc 100644
--- a/pystencils/cpu/vectorization.py
+++ b/pystencils/cpu/vectorization.py
@@ -77,6 +77,8 @@ class CachelineSize(ast.Node):
 def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'best',
               assume_aligned: bool = False, nontemporal: Union[bool, Container[Union[str, Field]]] = False,
               assume_inner_stride_one: bool = False, assume_sufficient_line_padding: bool = True):
+    # TODO we first introduce the remainder loop and then check if we can even vectorise. Maybe first copy the ast
+    # and return the copied version on failure
     """Explicit vectorization using SIMD vectorization via intrinsics.
 
     Args:
diff --git a/pystencils_tests/test_vectorization_specific.py b/pystencils_tests/test_vectorization_specific.py
index 44274156eff8e1bbf07be0eeffad5919492bfb83..9b9d34694ccd63a4ab3a5aa4ce4f7df23b10f897 100644
--- a/pystencils_tests/test_vectorization_specific.py
+++ b/pystencils_tests/test_vectorization_specific.py
@@ -61,33 +61,46 @@ def test_vectorized_abs(instruction_set, dtype):
 @pytest.mark.parametrize('dtype', ('float', 'double'))
 @pytest.mark.parametrize('instruction_set', supported_instruction_sets)
 def test_strided(instruction_set, dtype):
-    npdtype = np.float64 if dtype == 'double' else np.float32
+    type_string = "float64" if dtype == 'double' else "float32"
 
-    f, g = ps.fields(f"f, g : float{64 if dtype=='double' else 32}[2D]")
+    f, g = ps.fields(f"f, g : {type_string}[2D]")
     update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
     if 'storeS' not in get_vector_instruction_set(dtype, instruction_set) and instruction_set not in ['avx512', 'rvv'] and not instruction_set.startswith('sve'):
         with pytest.warns(UserWarning) as warn:
             config = pystencils.config.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set},
-                                                          default_number_float=npdtype)
+                                                          default_number_float=type_string)
             ast = ps.create_kernel(update_rule, config=config)
             assert 'Could not vectorize loop' in warn[0].message.args[0]
     else:
         with pytest.warns(None) as warn:
             config = pystencils.config.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set},
-                                                          default_number_float=npdtype)
+                                                          default_number_float=type_string)
             ast = ps.create_kernel(update_rule, config=config)
             assert len(warn) == 0
-    # ps.show_code(ast)
+            
+    ps.show_code(ast)
     func = ast.compile()
-    ref_func = ps.create_kernel(update_rule).compile()
+    ref_config = pystencils.config.CreateKernelConfig(default_number_float=type_string)
+    ref_func = ps.create_kernel(update_rule, config=ref_config).compile()
 
-    arr = np.random.random((23 + 2, 17 + 2)).astype(npdtype)
-    dst = np.zeros_like(arr, dtype=npdtype)
-    ref = np.zeros_like(arr, dtype=npdtype)
+    # For some reason other array creations fail on the emulated ppc pipeline
+    size = (25, 19)
+    arr = np.zeros(size).astype(type_string)
+    for i in range(size[0]):
+        for j in range(size[1]):
+            arr[i, j] = i * j
+
+
+    dst = np.zeros_like(arr, dtype=type_string)
+    ref = np.zeros_like(arr, dtype=type_string)
 
     func(g=dst, f=arr)
     ref_func(g=ref, f=arr)
-    np.testing.assert_almost_equal(dst, ref, 13 if dtype == 'double' else 5)
+
+    print("dst: ", dst)
+    print("np array: ", arr)
+
+    np.testing.assert_almost_equal(dst[1:-1, 1:-1], ref[1:-1, 1:-1], 13 if dtype == 'double' else 5)
 
 
 @pytest.mark.parametrize('dtype', ('float', 'double'))