Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • ravi.k.ayyala/lbmpy
  • brendan-waters/lbmpy
  • anirudh.jonnalagadda/lbmpy
  • jbadwaik/lbmpy
  • alexander.reinauer/lbmpy
  • itischler/lbmpy
  • he66coqe/lbmpy
  • ev81oxyl/lbmpy
  • Bindgen/lbmpy
  • da15siwa/lbmpy
  • holzer/lbmpy
  • RudolfWeeber/lbmpy
  • pycodegen/lbmpy
13 results
Select Git revision
Show changes
Showing
with 643 additions and 240 deletions
......@@ -157,7 +157,7 @@ class MuskerLaw(ImplicitWallFunctionModel):
def law(u_p, y_p):
arctan = sp.Float(5.424) * sp.atan(sp.Float(0.119760479041916168) * y_p - sp.Float(0.488023952095808383))
logarithm = (sp.Float(0.434) * sp.log((y_p + sp.Float(10.6)) ** sp.Float(9.6)
/ (y_p ** 2 - sp.Float(8.15) * y_p + sp.Float(86)) ** 2, 10))
/ (y_p ** 2 - sp.Float(8.15) * y_p + sp.Float(86)) ** 2))
return (arctan + logarithm - sp.Float(3.50727901936264842)) - u_p
u_plus = velocity_symbol / self.u_tau[0]
......
......@@ -58,16 +58,16 @@ from dataclasses import dataclass, field, replace
from typing import Union, List, Tuple, Any, Type, Iterable
from warnings import warn, filterwarnings
import lbmpy.moment_transforms
import pystencils.astnodes
from ._compat import IS_PYSTENCILS_2
import sympy as sp
import sympy.core.numbers
from lbmpy.enums import Stencil, Method, ForceModel, CollisionSpace, SubgridScaleModel
import lbmpy.forcemodels as forcemodels
from lbmpy.fieldaccess import CollideOnlyInplaceAccessor, PdfFieldAccessor, PeriodicTwoFieldsAccessor
from lbmpy.fluctuatinglb import add_fluctuations_to_collision_rule
from lbmpy.partially_saturated_cells import add_psm_to_collision_rule, PSMConfig
from lbmpy.partially_saturated_cells import (replace_by_psm_collision_rule, PSMConfig,
add_psm_solid_collision_to_collision_rule)
from lbmpy.non_newtonian_models import add_cassons_model, CassonsParameters
from lbmpy.methods import (create_mrt_orthogonal, create_mrt_raw, create_central_moment,
create_srt, create_trt, create_trt_kbc)
......@@ -81,17 +81,22 @@ from lbmpy.stencils import LBStencil
from lbmpy.turbulence_models import add_sgs_model
from lbmpy.updatekernels import create_lbm_kernel, create_stream_pull_with_output_kernel
from lbmpy.advanced_streaming.utility import Timestep, get_accessor
from .forcemodels import AbstractForceModel
import pystencils
from pystencils import CreateKernelConfig, create_kernel
from pystencils.astnodes import Conditional, Block
from pystencils.cache import disk_cache_no_fallback
from pystencils.node_collection import NodeCollection
from pystencils.typing import collate_types
from pystencils.field import Field
from pystencils.simp import sympy_cse, SimplificationStrategy
# needed for the docstring
from lbmpy.methods.abstractlbmethod import LbmCollisionRule, AbstractLbMethod
from lbmpy.methods.cumulantbased import CumulantBasedLbMethod
if IS_PYSTENCILS_2:
from pystencils import Kernel as KernelFunction
else:
from pystencils.astnodes import KernelFunction
# Filter out JobLib warnings. They are not useful for use:
# https://github.com/joblib/joblib/issues/683
filterwarnings("ignore", message="Persisting input arguments took")
......@@ -102,7 +107,7 @@ class LBMConfig:
"""
**Below all parameters for the LBMConfig are explained**
"""
stencil: lbmpy.stencils.LBStencil = LBStencil(Stencil.D2Q9)
stencil: LBStencil = LBStencil(Stencil.D2Q9)
"""
All stencils are defined in :class:`lbmpy.enums.Stencil`. From that :class:`lbmpy.stencils.LBStencil`
class will be created
......@@ -161,7 +166,7 @@ class LBMConfig:
truncated. Order 2 is sufficient to approximate Navier-Stokes. This parameter has no effect on cumulant-based
methods, whose equilibrium terms have no contributions above order one.
"""
c_s_sq: sympy.Rational = sp.Rational(1, 3)
c_s_sq: sp.Expr = sp.Rational(1, 3)
"""
The squared lattice speed of sound used to derive the LB method. It is very uncommon to use a value different
to 1 / 3.
......@@ -178,7 +183,7 @@ class LBMConfig:
If this argument is not provided, Gram-Schmidt orthogonalisation of the default modes is performed.
"""
force_model: Union[lbmpy.forcemodels.AbstractForceModel, ForceModel] = None
force_model: Union[AbstractForceModel, ForceModel] = None
"""
Force model to determine how forcing terms enter the collision rule.
Possibilities are defined in :class: `lbmpy.enums.ForceModel`
......@@ -338,9 +343,9 @@ class LBMConfig:
Instance of :class:`lbmpy.methods.LbmCollisionRule`. If this parameter is `None`,
the update rule is derived via *create_lb_update_rule*.
"""
ast: pystencils.astnodes.KernelFunction = None
ast: KernelFunction = None
"""
Instance of *pystencils.astnodes.KernelFunction*. If this parameter is `None`,
Instance of *pystencils.KernelFunction*. If this parameter is `None`,
the ast is derived via `create_lb_ast`.
"""
......@@ -376,8 +381,8 @@ class LBMConfig:
if not self.compressible and self.method in (Method.MONOMIAL_CUMULANT, Method.CUMULANT):
raise ValueError("Incompressible cumulant-based methods are not supported (yet).")
if self.zero_centered and (self.entropic or self.fluctuating):
raise ValueError("Entropic and fluctuating methods can only be created with `zero_centered=False`.")
if self.zero_centered and self.entropic:
raise ValueError("Entropic methods can only be created with `zero_centered=False`.")
# Check or infer delta-equilibrium
if self.delta_equilibrium is not None:
......@@ -468,7 +473,7 @@ class LBMConfig:
}
if self.psm_config is not None and self.psm_config.fraction_field is not None:
self.force = [(1.0 - self.psm_config.fraction_field.center) * f for f in self.force]
self.force = [(1.0 - self.psm_config.fraction_field_symbol) * f for f in self.force]
if isinstance(self.force_model, str):
new_force_model = ForceModel[self.force_model.upper()]
......@@ -555,7 +560,6 @@ def create_lb_function(ast=None, lbm_config=None, lbm_optimisation=None, config=
res.method = ast.method
res.update_rule = ast.update_rule
res.ast = ast
return res
......@@ -571,9 +575,7 @@ def create_lb_ast(update_rule=None, lbm_config=None, lbm_optimisation=None, conf
update_rule = create_lb_update_rule(lbm_config.collision_rule, lbm_config=lbm_config,
lbm_optimisation=lbm_optimisation, config=config)
field_types = set(fa.field.dtype for fa in update_rule.defined_symbols if isinstance(fa, Field.Access))
config = replace(config, data_type=collate_types(field_types), ghost_layers=1)
config = replace(config, ghost_layers=1)
ast = create_kernel(update_rule, config=config)
ast.method = update_rule.method
......@@ -599,7 +601,11 @@ def create_lb_update_rule(collision_rule=None, lbm_config=None, lbm_optimisation
lb_method = collision_rule.method
field_data_type = config.data_type[lbm_config.field_name].numpy_dtype
if IS_PYSTENCILS_2:
fallback_field_data_type = config.get_option("default_dtype")
else:
fallback_field_data_type = config.data_type[lbm_config.field_name].numpy_dtype
q = collision_rule.method.stencil.Q
if lbm_optimisation.symbolic_field is not None:
......@@ -607,16 +613,17 @@ def create_lb_update_rule(collision_rule=None, lbm_config=None, lbm_optimisation
elif lbm_optimisation.field_size:
field_size = tuple([s + 2 for s in lbm_optimisation.field_size] + [q])
src_field = Field.create_fixed_size(lbm_config.field_name, field_size, index_dimensions=1,
layout=lbm_optimisation.field_layout, dtype=field_data_type)
layout=lbm_optimisation.field_layout, dtype=fallback_field_data_type)
else:
src_field = Field.create_generic(lbm_config.field_name, spatial_dimensions=collision_rule.method.dim,
index_shape=(q,), layout=lbm_optimisation.field_layout, dtype=field_data_type)
index_shape=(q,), layout=lbm_optimisation.field_layout,
dtype=fallback_field_data_type)
if lbm_optimisation.symbolic_temporary_field is not None:
dst_field = lbm_optimisation.symbolic_temporary_field
else:
dst_field = src_field.new_field_with_different_name(lbm_config.temporary_field_name)
kernel_type = lbm_config.kernel_type
if kernel_type == 'stream_pull_only':
update_rule = create_stream_pull_with_output_kernel(lb_method, src_field, dst_field, lbm_config.output)
......@@ -684,11 +691,6 @@ def create_lb_collision_rule(lb_method=None, lbm_config=None, lbm_optimisation=N
else:
collision_rule = lb_method.get_collision_rule(pre_simplification=pre_simplification)
if lbm_config.psm_config is not None:
if lbm_config.psm_config.fraction_field is None or lbm_config.psm_config.object_velocity_field is None:
raise ValueError("Specify a fraction and object velocity field in the PSM Config")
collision_rule = add_psm_to_collision_rule(collision_rule, lbm_config.psm_config)
if lbm_config.galilean_correction:
from lbmpy.methods.cumulantbased import add_galilean_correction
collision_rule = add_galilean_correction(collision_rule)
......@@ -706,6 +708,11 @@ def create_lb_collision_rule(lb_method=None, lbm_config=None, lbm_optimisation=N
bulk_relaxation_rate=lbm_config.relaxation_rates[1],
limiter=cumulant_limiter)
if lbm_config.psm_config is not None:
if lbm_config.psm_config.fraction_field is None or lbm_config.psm_config.object_velocity_field is None:
raise ValueError("Specify a fraction and object velocity field in the PSM Config")
collision_rule = replace_by_psm_collision_rule(collision_rule, lbm_config.psm_config)
if lbm_config.entropic:
if lbm_config.subgrid_scale_model or lbm_config.cassons:
raise ValueError("Choose either entropic, subgrid-scale or cassons")
......@@ -783,7 +790,7 @@ def create_lb_method(lbm_config=None, **params):
if lbm_config.psm_config is None:
fraction_field = None
else:
fraction_field = lbm_config.psm_config.fraction_field
fraction_field = lbm_config.psm_config.fraction_field_symbol
common_params = {
'compressible': lbm_config.compressible,
......@@ -869,49 +876,45 @@ def create_lb_method(lbm_config=None, **params):
def create_psm_update_rule(lbm_config, lbm_optimisation):
node_collection = []
if IS_PYSTENCILS_2:
raise NotImplementedError(
"`create_psm_update_rule` is not yet available when using pystencils 2.0. "
"To instead derive a (potentially less efficient) PSM kernel without branches, "
"use `create_lb_update_rule` with a `PsmConfig` object instead."
)
from pystencils.astnodes import Conditional, Block
from pystencils.node_collection import NodeCollection
if lbm_config.psm_config is None:
raise ValueError("Specify a PSM Config in the LBM Config, when creating a psm update rule")
config_without_particles = copy.deepcopy(lbm_config)
config_without_particles.psm_config.max_particles_per_cell = 0
# Use regular lb update rule for no overlapping particles
config_without_psm = copy.deepcopy(lbm_config)
config_without_psm.psm_config = None
# TODO: the force is still multiplied by (1.0 - self.psm_config.fraction_field.center)
# (should not harm if memory bound since self.psm_config.fraction_field.center should always be 0.0)
lb_update_rule = create_lb_update_rule(
lbm_config=config_without_psm, lbm_optimisation=lbm_optimisation
)
node_collection.append(
Conditional(
lbm_config.psm_config.fraction_field.center(0) <= 0.0,
Block(lb_update_rule.all_assignments),
)
)
lbm_config=config_without_particles, lbm_optimisation=lbm_optimisation)
node_collection = lb_update_rule.all_assignments
# Only one particle, i.e., no individual_fraction_field is provided
if lbm_config.psm_config.individual_fraction_field is None:
assert lbm_config.psm_config.MaxParticlesPerCell == 1
assert lbm_config.psm_config.max_particles_per_cell == 1
fraction_field = lbm_config.psm_config.fraction_field
else:
fraction_field = lbm_config.psm_config.individual_fraction_field
for p in range(lbm_config.psm_config.max_particles_per_cell):
psm_solid_collision = add_psm_solid_collision_to_collision_rule(lb_update_rule, lbm_config, p)
psm_update_rule = create_lb_update_rule(
lbm_config=lbm_config, lbm_optimisation=lbm_optimisation
)
collision_rule=psm_solid_collision, lbm_config=lbm_config, lbm_optimisation=lbm_optimisation)
node_collection.append(
Conditional(
lbm_config.psm_config.fraction_field.center(0) > 0.0,
fraction_field.center(p) > 0.0,
Block(psm_update_rule.all_assignments),
)
)
else:
for p in range(lbm_config.psm_config.MaxParticlesPerCell):
# Add psm update rule for p overlapping particles
config_with_p_particles = copy.deepcopy(lbm_config)
config_with_p_particles.psm_config.MaxParticlesPerCell = p + 1
psm_update_rule = create_lb_update_rule(
lbm_config=config_with_p_particles, lbm_optimisation=lbm_optimisation
)
node_collection.append(
Conditional(
lbm_config.psm_config.individual_fraction_field.center(p) > 0.0,
Block(psm_update_rule.all_assignments),
)
)
return NodeCollection(node_collection)
......
import numpy as np
import sympy as sp
from ._compat import IS_PYSTENCILS_2
if IS_PYSTENCILS_2:
raise ImportError("`lbmpy.custom_code_nodes` is only available when running with pystencils 1.x")
from pystencils.typing import TypedSymbol, create_type
from pystencils.backends.cbackend import CustomCodeNode
......@@ -44,14 +49,14 @@ class MirroredStencilDirections(CustomCodeNode):
return tuple(direction)
@staticmethod
def _mirrored_symbol(mirror_axis):
def _mirrored_symbol(mirror_axis, _stencil):
axis = ['x', 'y', 'z']
return TypedSymbol(f"{axis[mirror_axis]}_axis_mirrored_stencil_dir", create_type('int32'))
def __init__(self, stencil, mirror_axis, dtype=np.int32):
offsets_dtype = create_type(dtype)
mirrored_stencil_symbol = MirroredStencilDirections._mirrored_symbol(mirror_axis)
mirrored_stencil_symbol = MirroredStencilDirections._mirrored_symbol(mirror_axis, stencil)
mirrored_directions = [stencil.index(MirroredStencilDirections.mirror_stencil(direction, mirror_axis))
for direction in stencil]
code = "\n"
......@@ -68,7 +73,7 @@ class LbmWeightInfo(CustomCodeNode):
weights = [f"(({self.weights_symbol.dtype.c_name})({str(w.evalf(17))}))" for w in lb_method.weights]
weights = ", ".join(weights)
w_sym = self.weights_symbol
code = f"const {self.weights_symbol.dtype.c_name} {w_sym.name} [] = {{{ weights }}};\n"
code = f"const {self.weights_symbol.dtype.c_name} {w_sym.name} [] = {{{weights}}};\n"
super(LbmWeightInfo, self).__init__(code, symbols_read=set(), symbols_defined={w_sym})
def weight_of_direction(self, dir_idx, lb_method=None):
......
......@@ -4,11 +4,12 @@ import sympy as sp
from pystencils import Field
# ------------------------------------------------ Interface -----------------------------------------------------------
from pystencils.astnodes import LoopOverCoordinate
from pystencils.stencil import inverse_direction
from lbmpy.enums import Stencil
from lbmpy.stencils import LBStencil
from ._compat import get_loop_counter_symbol
__all__ = ['PdfFieldAccessor', 'CollideOnlyInplaceAccessor', 'StreamPullTwoFieldsAccessor',
'AAEvenTimeStepAccessor', 'AAOddTimeStepAccessor',
......@@ -114,7 +115,7 @@ class PeriodicTwoFieldsAccessor(PdfFieldAccessor):
lower_limit = self._ghostLayers
upper_limit = field.spatial_shape[coord_id] - 1 - self._ghostLayers
limit_diff = upper_limit - lower_limit
loop_counter = LoopOverCoordinate.get_loop_counter_symbol(coord_id)
loop_counter = get_loop_counter_symbol(coord_id)
if dir_element == 0:
periodic_pull_direction.append(0)
elif dir_element == 1:
......
......@@ -4,17 +4,18 @@ import pystencils as ps
from pystencils.field import Field
def welford_assignments(field, mean_field, sum_of_products_field=None):
def welford_assignments(field, mean_field, sum_of_squares_field=None, sum_of_cubes_field=None):
r"""
Creates the assignments for the kernel creation of Welford's algorithm
(https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm).
This algorithm is an online algorithm for the mean and variance calculation of sample data, here implemented for
the execution on vector fields, e.g., velocity.
The calculation of the variance is optional and only performed if a field for the sum of products is given.
the execution on scalar or vector fields, e.g., velocity.
The calculation of the variance / the third-order central moments is optional and only performed if a field for
the sum of squares / sum of cubes is given.
The mean value is directly updated in the mean vector field.
The variance must be retrieved in a post-processing step. Let :math `M_{2,n}` denote the value of the sum of
products after the first :math `n` samples. According to Welford the biased sample variance
The variance / covariance must be retrieved in a post-processing step. Let :math `M_{2,n}` denote the value of the
sum of squares after the first :math `n` samples. According to Welford the biased sample variance
:math `\sigma_n^2` and the unbiased sample variance :math `s_n^2` are given by
.. math ::
......@@ -22,6 +23,9 @@ def welford_assignments(field, mean_field, sum_of_products_field=None):
s_n^2 = \frac{M_{2,n}}{n-1},
respectively.
Liekwise, to the 3rd-order central moment(s) of the (vector) field, the sum of cubes field must be divided
by :math `n` in a post-processing step.
"""
if isinstance(field, Field):
......@@ -40,22 +44,41 @@ def welford_assignments(field, mean_field, sum_of_products_field=None):
else:
raise ValueError("Mean vector field has to be a pystencils Field or Field.Access")
if sum_of_products_field is None:
# sum of products will not be calculated, i.e., the variance is not retrievable
welford_sum_of_products_field = None
if sum_of_squares_field is None:
# sum of products will not be calculated, i.e., the covariance matrix is not retrievable
welford_sum_of_squares_field = None
else:
if isinstance(sum_of_squares_field, Field):
welford_sum_of_squares_field = sum_of_squares_field.center
elif isinstance(sum_of_squares_field, Field.Access):
welford_sum_of_squares_field = sum_of_squares_field
else:
raise ValueError("Sum of squares field has to be a pystencils Field or Field.Access")
assert welford_sum_of_squares_field.field.values_per_cell() == dim ** 2, \
(f"Sum of squares field does not have the right layout. "
f"Index dimension: {welford_sum_of_squares_field.field.values_per_cell()}, expected: {dim ** 2}")
if sum_of_cubes_field is None:
# sum of cubes will not be calculated, i.e., the 3rd-order central moments are not retrievable
welford_sum_of_cubes_field = None
else:
if isinstance(sum_of_products_field, Field):
welford_sum_of_products_field = sum_of_products_field.center
assert sum_of_products_field.values_per_cell() == dim**2, \
(f"Sum of products field does not have the right layout. "
f"Index dimension: {sum_of_products_field.values_per_cell()}, expected: {dim**2}")
elif isinstance(sum_of_products_field, Field.Access):
welford_sum_of_products_field = sum_of_products_field
assert sum_of_products_field.field.values_per_cell() == dim**2, \
(f"Sum of products field does not have the right layout. "
f"Index dimension: {sum_of_products_field.field.values_per_cell()}, expected: {dim**2}")
if isinstance(sum_of_cubes_field, Field):
welford_sum_of_cubes_field = sum_of_cubes_field.center
elif isinstance(sum_of_cubes_field, Field.Access):
welford_sum_of_cubes_field = sum_of_cubes_field
else:
raise ValueError("Variance vector field has to be a pystencils Field or Field.Access")
raise ValueError("Sum of cubes field has to be a pystencils Field or Field.Access")
assert welford_sum_of_cubes_field.field.values_per_cell() == dim ** 3, \
(f"Sum of cubes field does not have the right layout. "
f"Index dimension: {welford_sum_of_cubes_field.field.values_per_cell()}, expected: {dim ** 3}")
# for the calculation of the thrid-order moments, the variance must also be calculated
if welford_sum_of_cubes_field is not None:
assert welford_sum_of_squares_field is not None
# actual assignments
counter = sp.Symbol('counter')
delta = sp.symbols(f"delta_:{dim}")
......@@ -67,7 +90,7 @@ def welford_assignments(field, mean_field, sum_of_products_field=None):
main_assignments.append(ps.Assignment(welford_mean_field.at_index(i),
welford_mean_field.at_index(i) + delta[i] / counter))
if sum_of_products_field is not None:
if sum_of_squares_field is not None:
delta2 = sp.symbols(f"delta2_:{dim}")
for i in range(dim):
main_assignments.append(
......@@ -76,7 +99,21 @@ def welford_assignments(field, mean_field, sum_of_products_field=None):
for j in range(dim):
idx = i * dim + j
main_assignments.append(ps.Assignment(
welford_sum_of_products_field.at_index(idx),
welford_sum_of_products_field.at_index(idx) + delta[i] * delta2[j]))
welford_sum_of_squares_field.at_index(idx),
welford_sum_of_squares_field.at_index(idx) + delta[i] * delta2[j]))
if sum_of_cubes_field is not None:
for i in range(dim):
for j in range(dim):
for k in range(dim):
idx = (i * dim + j) * dim + k
main_assignments.append(ps.Assignment(
welford_sum_of_cubes_field.at_index(idx),
welford_sum_of_cubes_field.at_index(idx)
- delta[k] / counter * welford_sum_of_squares_field(i * dim + j)
- delta[j] / counter * welford_sum_of_squares_field(k * dim + i)
- delta[i] / counter * welford_sum_of_squares_field(j * dim + k)
+ delta2[i] * (2 * delta[j] - delta2[j]) * delta[k]
))
return main_assignments
......@@ -3,36 +3,84 @@
to generate a fluctuating LBM the equilibrium moment values have to be scaled and an additive (random)
correction term is added to the collision rule
"""
from typing import overload
from ._compat import IS_PYSTENCILS_2
import numpy as np
import sympy as sp
from lbmpy.moments import MOMENT_SYMBOLS, is_shear_moment, get_order
from lbmpy.equilibrium import ContinuousHydrodynamicMaxwellian
from pystencils import Assignment, TypedSymbol
from pystencils.rng import PhiloxFourFloats, random_symbol
from pystencils.simp.assignment_collection import SymbolGen
if IS_PYSTENCILS_2:
from pystencils.sympyextensions.random import RngBase, Philox
from pystencils.sympyextensions import tcast
else:
from pystencils.rng import PhiloxFourFloats, random_symbol
@overload
def add_fluctuations_to_collision_rule(collision_rule, temperature=None, amplitudes=(),
*,
block_offsets, seed, rng_node, c_s_sq):
"""Fluctuating LB implementation for pystencils 1.3"""
@overload
def add_fluctuations_to_collision_rule(collision_rule, temperature=None, amplitudes=(),
block_offsets=(0, 0, 0), seed=TypedSymbol("seed", np.uint32),
rng_node=PhiloxFourFloats, c_s_sq=sp.Rational(1, 3)):
""""""
*,
rng: 'RngBase | None' = None, c_s_sq):
"""Fluctuating LB implementation for pystencils 2.0
Args:
collision_rule: The base collision rule
temperature: Expression representing the fluid temperature
amplitudes: If ``temperature`` was not specified, expression representing the fluctuation amplitude
rng: Random number generator instance used to compute the fluctuations.
If `None`, the float32 Philox RNG will be used.
"""
def add_fluctuations_to_collision_rule(collision_rule, temperature=None, amplitudes=(),
c_s_sq=sp.Rational(1, 3), **kwargs):
if not (temperature and not amplitudes) or (temperature and amplitudes):
raise ValueError("Fluctuating LBM: Pass either 'temperature' or 'amplitudes'.")
if collision_rule.method.conserved_quantity_computation.zero_centered_pdfs:
raise ValueError("The fluctuating LBM is not implemented for zero-centered PDF storage.")
method = collision_rule.method
if not amplitudes:
amplitudes = fluctuation_amplitude_from_temperature(method, temperature, c_s_sq)
if block_offsets == 'walberla':
block_offsets = tuple(TypedSymbol("block_offset_{}".format(i), np.uint32) for i in range(3))
if not method.is_weighted_orthogonal:
raise ValueError("Fluctuations can only be added to weighted-orthogonal methods")
rng_symbol_gen = random_symbol(collision_rule.subexpressions, seed=seed,
rng_node=rng_node, dim=method.dim, offsets=block_offsets)
if IS_PYSTENCILS_2:
rng: RngBase = kwargs.get("rng", Philox("fluctuation_rng", np.float32, TypedSymbol("seed", np.uint32)))
ts = TypedSymbol("time_step", np.uint32)
def _rng_symbol_gen():
while True:
rx, rasm = rng.get_random_vector(ts)
collision_rule.subexpressions.insert(0, rasm)
for i in range(rng.vector_size):
yield tcast.as_numeric(rx[i])
rng_symbol_gen = _rng_symbol_gen()
else:
block_offsets = kwargs.get("block_offsets", (0, 0, 0))
rng_node = kwargs.get("rng_node", PhiloxFourFloats)
seed = kwargs.get("seed", TypedSymbol("seed", np.uint32))
if block_offsets == 'walberla':
block_offsets = tuple(TypedSymbol("block_offset_{}".format(i), np.uint32) for i in range(3))
rng_symbol_gen = random_symbol(
collision_rule.subexpressions, seed=seed,
rng_node=rng_node, dim=method.dim, offsets=block_offsets
)
correction = fluctuation_correction(method, rng_symbol_gen, amplitudes)
for i, corr in enumerate(correction):
......@@ -44,9 +92,7 @@ def fluctuation_amplitude_from_temperature(method, temperature, c_s_sq=sp.Symbol
"""Produces amplitude equations according to (2.60) and (3.54) in Schiller08"""
normalization_factors = sp.matrix_multiply_elementwise(method.moment_matrix, method.moment_matrix) * \
sp.Matrix(method.weights)
density = method.zeroth_order_equilibrium_moment_symbol
if method.conserved_quantity_computation.zero_centered_pdfs:
density += 1
density = method._cqc.density_symbol
mu = temperature * density / c_s_sq
return [sp.sqrt(mu * norm * (1 - (1 - rr) ** 2))
for norm, rr in zip(normalization_factors, method.relaxation_rates)]
......
......@@ -10,11 +10,18 @@ from lbmpy.macroscopic_value_kernels import (
create_advanced_velocity_setter_collision_rule, pdf_initialization_assignments)
from lbmpy.simplificationfactory import create_simplification_strategy
from lbmpy.stencils import LBStencil
from pystencils import create_data_handling, create_kernel, make_slice, Target, Backend
from pystencils import CreateKernelConfig
from pystencils import create_data_handling, create_kernel, make_slice, Target
from pystencils.slicing import SlicedGetter
from pystencils.timeloop import TimeLoop
from ._compat import IS_PYSTENCILS_2
if not IS_PYSTENCILS_2:
from pystencils import Backend
class LatticeBoltzmannStep:
def __init__(self, domain_size=None, lbm_kernel=None, periodicity=False,
......@@ -24,7 +31,9 @@ class LatticeBoltzmannStep:
velocity_input_array_name=None, time_step_order='stream_collide', flag_interface=None,
alignment_if_vectorized=64, fixed_loop_sizes=True,
timeloop_creation_function=TimeLoop,
lbm_config=None, lbm_optimisation=None, config=None, **method_parameters):
lbm_config=None, lbm_optimisation=None,
config: CreateKernelConfig | None = None,
**method_parameters):
if optimization is None:
optimization = {}
......@@ -36,7 +45,10 @@ class LatticeBoltzmannStep:
raise ValueError("When passing a data_handling, the domain_size parameter can not be specified")
if config is not None:
target = config.target
if IS_PYSTENCILS_2:
target = config.get_target()
else:
target = config.target
else:
target = optimization.get('target', Target.CPU)
......@@ -60,7 +72,11 @@ class LatticeBoltzmannStep:
lbm_config, lbm_optimisation, config)
# the parallel datahandling understands only numpy datatypes. Strings lead to an errors
field_dtype = config.data_type.default_factory().numpy_dtype
if IS_PYSTENCILS_2:
from pystencils import create_type
field_dtype = create_type(config.get_option("default_dtype")).numpy_dtype
else:
field_dtype = config.data_type.default_factory().numpy_dtype
if lbm_kernel:
q = lbm_kernel.method.stencil.Q
......@@ -75,12 +91,21 @@ class LatticeBoltzmannStep:
self.density_data_name = name + "_density" if density_data_name is None else density_data_name
self.density_data_index = density_data_index
self._gpu = target == Target.GPU
if IS_PYSTENCILS_2:
self._gpu = target.is_gpu()
else:
self._gpu = target == Target.GPU
layout = lbm_optimisation.field_layout
alignment = False
if config.backend == Backend.C and config.cpu_vectorize_info:
alignment = alignment_if_vectorized
if IS_PYSTENCILS_2:
if config.get_target().is_vector_cpu() and config.cpu.vectorize.enable:
alignment = alignment_if_vectorized
else:
if config.backend == Backend.C and config.cpu_vectorize_info:
alignment = alignment_if_vectorized
self._data_handling.add_array(self._pdf_arr_name, values_per_cell=q, gpu=self._gpu, layout=layout,
latex_name='src', dtype=field_dtype, alignment=alignment)
......@@ -150,10 +175,14 @@ class LatticeBoltzmannStep:
self._sync_tmp = data_handling.synchronization_function([self._tmp_arr_name], stencil_name, target,
stencil_restricted=True)
self._boundary_handling = LatticeBoltzmannBoundaryHandling(self.method, self._data_handling, self._pdf_arr_name,
name=name + "_boundary_handling",
flag_interface=flag_interface,
target=target, openmp=config.cpu_openmp)
self._boundary_handling = LatticeBoltzmannBoundaryHandling(
self.method, self._data_handling, self._pdf_arr_name,
name=name + "_boundary_handling",
flag_interface=flag_interface,
target=target,
openmp=config.cpu_openmp,
**({"default_dtype": field_dtype} if IS_PYSTENCILS_2 else dict())
)
self._lbm_config = lbm_config
self._lbm_optimisation = lbm_optimisation
......@@ -223,7 +252,7 @@ class LatticeBoltzmannStep:
@property
def config(self):
"""Configutation of pystencils parameters"""
return self.config
return self._config
def _get_slice(self, data_name, slice_obj, masked):
if slice_obj is None:
......@@ -439,12 +468,19 @@ class LatticeBoltzmannStep:
rho_field = rho_field.center if self.density_data_index is None else rho_field(self.density_data_index)
vel_field = self._data_handling.fields[self.velocity_data_name]
if IS_PYSTENCILS_2:
gen_config = CreateKernelConfig(target=Target.CPU)
gen_config.cpu.openmp.enable = self._config.cpu.openmp.get_option("enable")
gen_config.default_dtype = self._config.get_option("default_dtype")
else:
gen_config = CreateKernelConfig(target=Target.CPU, cpu_openmp=self._config.cpu_openmp)
getter_eqs = cqc.output_equations_from_pdfs(pdf_field.center_vector,
{'density': rho_field, 'velocity': vel_field})
getter_kernel = create_kernel(getter_eqs, target=Target.CPU, cpu_openmp=self._config.cpu_openmp).compile()
getter_kernel = create_kernel(getter_eqs, config=gen_config).compile()
setter_eqs = pdf_initialization_assignments(lb_method, rho_field,
vel_field.center_vector, pdf_field.center_vector)
setter_eqs = create_simplification_strategy(lb_method)(setter_eqs)
setter_kernel = create_kernel(setter_eqs, target=Target.CPU, cpu_openmp=self._config.cpu_openmp).compile()
setter_kernel = create_kernel(setter_eqs, config=gen_config).compile()
return getter_kernel, setter_kernel
from typing import Sequence, Any
from abc import ABC, abstractmethod
import numpy as np
import sympy as sp
from ._compat import IS_PYSTENCILS_2
if not IS_PYSTENCILS_2:
raise ImportError("`lbmpy.lookup_tables` is only available when running with pystencils 2.x")
from pystencils import Assignment
from pystencils.sympyextensions import TypedSymbol
from pystencils.types.quick import Arr
from pystencils.types import UserTypeSpec, create_type
class LookupTables(ABC):
@abstractmethod
def get_array_declarations(self) -> list[Assignment]:
pass
class NeighbourOffsetArrays(LookupTables):
@staticmethod
def neighbour_offset(dir_idx, stencil):
if isinstance(sp.sympify(dir_idx), sp.Integer):
return stencil[dir_idx]
else:
return tuple(
[
sp.IndexedBase(symbol, shape=(1,))[dir_idx]
for symbol in NeighbourOffsetArrays._offset_symbols(stencil)
]
)
@staticmethod
def _offset_symbols(stencil):
q = len(stencil)
dim = len(stencil[0])
return [
TypedSymbol(f"neighbour_offset_{d}", Arr(create_type("int32"), q))
for d in ["x", "y", "z"][:dim]
]
def __init__(self, stencil, offsets_dtype: UserTypeSpec = np.int32):
self._offsets_dtype = create_type(
offsets_dtype
) # TODO: Currently, this has no effect
self._stencil = stencil
self._dim = len(stencil[0])
def get_array_declarations(self) -> list[Assignment]:
array_symbols = NeighbourOffsetArrays._offset_symbols(self._stencil)
return [
Assignment(arrsymb, tuple((d[i] for d in self._stencil)))
for i, arrsymb in enumerate(array_symbols)
]
class MirroredStencilDirections(LookupTables):
@staticmethod
def mirror_stencil(direction, mirror_axis):
assert mirror_axis <= len(
direction
), f"only {len(direction)} axis available for mirage"
direction = list(direction)
direction[mirror_axis] = -direction[mirror_axis]
return tuple(direction)
@staticmethod
def _mirrored_symbol(mirror_axis, stencil):
axis = ["x", "y", "z"]
q = len(stencil)
return TypedSymbol(
f"{axis[mirror_axis]}_axis_mirrored_stencil_dir", Arr(create_type("int32"), q)
)
def __init__(self, stencil, mirror_axis, dtype=np.int32):
self._offsets_dtype = create_type(dtype) # TODO: Currently, this has no effect
self._mirrored_stencil_symbol = MirroredStencilDirections._mirrored_symbol(
mirror_axis, stencil
)
self._mirrored_directions = tuple(
stencil.index(
MirroredStencilDirections.mirror_stencil(direction, mirror_axis)
)
for direction in stencil
)
def get_array_declarations(self) -> list[Assignment]:
return [Assignment(self._mirrored_stencil_symbol, self._mirrored_directions)]
class LbmWeightInfo(LookupTables):
def __init__(self, lb_method, data_type="double"):
self._weights = lb_method.weights
self._weights_array = TypedSymbol("weights", Arr(create_type(data_type), len(self._weights)))
def weight_of_direction(self, dir_idx, lb_method=None):
if isinstance(sp.sympify(dir_idx), sp.Integer):
assert lb_method is not None
return lb_method.weights[dir_idx].evalf(17)
else:
return sp.IndexedBase(self._weights_array, shape=(1,))[dir_idx]
def get_array_declarations(self) -> list[Assignment]:
return [Assignment(self._weights_array, tuple(self._weights))]
class TranslationArraysNode(LookupTables):
def __init__(self, array_content: Sequence[tuple[TypedSymbol, Sequence[Any]]]):
self._decls = [
Assignment(symb, tuple(content)) for symb, content in array_content
]
def __str__(self):
return "Variable PDF Access Translation Arrays"
def __repr__(self):
return "Variable PDF Access Translation Arrays"
def get_array_declarations(self) -> list[Assignment]:
return self._decls
import functools
import sympy as sp
from copy import deepcopy
from lbmpy.simplificationfactory import create_simplification_strategy
from pystencils import create_kernel, CreateKernelConfig
from pystencils import create_kernel, CreateKernelConfig, Assignment
from pystencils.field import Field, get_layout_of_array
from pystencils.enums import Target
from pystencils import Target
from lbmpy.advanced_streaming.utility import get_accessor, Timestep
from lbmpy.relaxationrates import get_shear_relaxation_rate
from lbmpy.utils import second_order_moment_tensor
def pdf_initialization_assignments(lb_method, density, velocity, pdfs,
streaming_pattern='pull', previous_timestep=Timestep.BOTH,
set_pre_collision_pdfs=False):
"""Assignments to initialize the pdf field with equilibrium"""
def get_field_accesses(lb_method, pdfs, streaming_pattern, previous_timestep, pre_collision_pdfs):
if isinstance(pdfs, Field):
accessor = get_accessor(streaming_pattern, previous_timestep)
if set_pre_collision_pdfs:
if pre_collision_pdfs:
field_accesses = accessor.read(pdfs, lb_method.stencil)
else:
field_accesses = accessor.write(pdfs, lb_method.stencil)
elif streaming_pattern == 'pull' and not set_pre_collision_pdfs:
elif streaming_pattern == 'pull' and not pre_collision_pdfs:
field_accesses = pdfs
else:
raise ValueError("Invalid value of pdfs: A PDF field reference is required to derive "
+ f"initialization assignments for streaming pattern {streaming_pattern}.")
return field_accesses
def get_individual_or_common_fraction_field(psm_config):
if psm_config.individual_fraction_field is not None:
return psm_config.individual_fraction_field
else:
return psm_config.fraction_field
def pdf_initialization_assignments(lb_method, density, velocity, pdfs, psm_config=None,
streaming_pattern='pull', previous_timestep=Timestep.BOTH,
set_pre_collision_pdfs=False):
"""Assignments to initialize the pdf field with equilibrium"""
field_accesses = get_field_accesses(lb_method, pdfs, streaming_pattern, previous_timestep, set_pre_collision_pdfs)
if isinstance(density, Field):
density = density.center
if isinstance(velocity, Field):
velocity = velocity.center_vector
......@@ -35,23 +49,40 @@ def pdf_initialization_assignments(lb_method, density, velocity, pdfs,
setter_eqs = lb_method.get_equilibrium(conserved_quantity_equations=inp_eqs)
setter_eqs = setter_eqs.new_with_substitutions({sym: field_accesses[i]
for i, sym in enumerate(lb_method.post_collision_pdf_symbols)})
if lb_method.fraction_field is not None:
if psm_config is None:
raise ValueError("If setting up LBM with PSM, please specify a PSM config in the macroscopic setter")
else:
for equ in setter_eqs:
if equ.lhs in lb_method.first_order_equilibrium_moment_symbols:
pos = lb_method.first_order_equilibrium_moment_symbols.index(equ.lhs)
new_rhs = 0
if isinstance(equ.rhs, sp.core.Add):
for summand in equ.rhs.args:
if summand in velocity:
new_rhs += (1.0 - psm_config.fraction_field.center) * summand
else:
new_rhs += summand.subs(lb_method.fraction_field, psm_config.fraction_field.center)
else:
new_rhs += (1.0 - psm_config.fraction_field.center) * equ.rhs
fraction_field = get_individual_or_common_fraction_field(psm_config)
for p in range(psm_config.max_particles_per_cell):
new_rhs += psm_config.object_velocity_field(p * lb_method.dim + pos) * fraction_field.center(p)
setter_eqs.subexpressions.remove(equ)
setter_eqs.subexpressions.append(Assignment(equ.lhs, new_rhs))
return setter_eqs
def macroscopic_values_getter(lb_method, density, velocity, pdfs,
def macroscopic_values_getter(lb_method, density, velocity, pdfs, psm_config=None,
streaming_pattern='pull', previous_timestep=Timestep.BOTH,
use_pre_collision_pdfs=False):
if isinstance(pdfs, Field):
accessor = get_accessor(streaming_pattern, previous_timestep)
if use_pre_collision_pdfs:
field_accesses = accessor.read(pdfs, lb_method.stencil)
else:
field_accesses = accessor.write(pdfs, lb_method.stencil)
elif streaming_pattern == 'pull' and not use_pre_collision_pdfs:
field_accesses = pdfs
else:
raise ValueError("Invalid value of pdfs: A PDF field reference is required to derive "
+ f"getter assignments for streaming pattern {streaming_pattern}.")
field_accesses = get_field_accesses(lb_method, pdfs, streaming_pattern, previous_timestep, use_pre_collision_pdfs)
cqc = lb_method.conserved_quantity_computation
assert not (velocity is None and density is None)
output_spec = {}
......@@ -59,12 +90,54 @@ def macroscopic_values_getter(lb_method, density, velocity, pdfs,
output_spec['velocity'] = velocity
if density is not None:
output_spec['density'] = density
return cqc.output_equations_from_pdfs(field_accesses, output_spec)
getter_equ = cqc.output_equations_from_pdfs(field_accesses, output_spec)
if lb_method.fraction_field is not None:
if psm_config.fraction_field is None:
raise ValueError("If setting up LBM with PSM, please specify a PSM config in the macroscopic getter")
else:
if lb_method.force_model is not None:
for equ in getter_equ:
if equ.lhs in lb_method.force_model.symbolic_force_vector:
new_rhs = equ.rhs.subs(lb_method.fraction_field, psm_config.fraction_field.center)
getter_equ.subexpressions.remove(equ)
getter_equ.subexpressions.append(Assignment(equ.lhs, new_rhs))
for i, equ in enumerate(getter_equ.main_assignments[-lb_method.dim:]):
new_rhs = (1.0 - psm_config.fraction_field.center) * equ.rhs
fraction_field = get_individual_or_common_fraction_field(psm_config)
for p in range(psm_config.max_particles_per_cell):
new_rhs += psm_config.object_velocity_field(p * lb_method.dim + i) * fraction_field.center(p)
getter_equ.main_assignments.remove(equ)
getter_equ.main_assignments.append(Assignment(equ.lhs, new_rhs))
getter_equ.topological_sort()
return getter_equ
macroscopic_values_setter = pdf_initialization_assignments
def strain_rate_tensor_getter(lb_method, strain_rate_tensor, pdfs, streaming_pattern='pull',
previous_timestep=Timestep.BOTH, use_pre_collision_pdfs=False):
field_accesses = get_field_accesses(lb_method, pdfs, streaming_pattern, previous_timestep, use_pre_collision_pdfs)
if isinstance(strain_rate_tensor, Field):
strain_rate_tensor = strain_rate_tensor.center_vector
omega_s = get_shear_relaxation_rate(lb_method)
equilibrium = lb_method.equilibrium_distribution
rho = equilibrium.density if equilibrium.compressible else equilibrium.background_density
f_neq = sp.Matrix([field_accesses[i] for i in range(lb_method.stencil.Q)]) - lb_method.get_equilibrium_terms()
pi = second_order_moment_tensor(f_neq, lb_method.stencil)
strain_rate_tensor_equ = - 1.5 * (omega_s / rho) * pi
assignments = [Assignment(strain_rate_tensor[i * lb_method.stencil.D + j], strain_rate_tensor_equ[i, j])
for i in range(lb_method.stencil.D) for j in range(lb_method.stencil.D)]
return assignments
def compile_macroscopic_values_getter(lb_method, output_quantities, pdf_arr=None,
ghost_layers=1, iteration_slice=None,
field_layout='numpy', target=Target.CPU,
......
......@@ -105,22 +105,27 @@ class AbstractLbMethod(abc.ABC):
the subexpressions, that assign the number to the newly introduced symbol
"""
rr = relaxation_rates if relaxation_rates is not None else self.relaxation_rates
unique_relaxation_rates = set()
subexpressions = {}
symbolic_relaxation_rates = list()
for relaxation_rate in rr:
relaxation_rate = sp.sympify(relaxation_rate)
if relaxation_rate not in unique_relaxation_rates:
# special treatment for zero, sp.Zero would be an integer ..
if isinstance(relaxation_rate, sp.Symbol):
symbolic_relaxation_rate = relaxation_rate
else:
if isinstance(relaxation_rate, Zero):
relaxation_rate = 0.0
if not isinstance(relaxation_rate, sp.Symbol):
rt_symbol = sp.Symbol(f"rr_{len(subexpressions)}")
subexpressions[relaxation_rate] = rt_symbol
unique_relaxation_rates.add(relaxation_rate)
if relaxation_rate in subexpressions:
symbolic_relaxation_rate = subexpressions[relaxation_rate]
else:
symbolic_relaxation_rate = sp.Symbol(f"rr_{len(subexpressions)}")
subexpressions[relaxation_rate] = symbolic_relaxation_rate
symbolic_relaxation_rates.append(symbolic_relaxation_rate)
new_rr = [subexpressions[sp.sympify(e)] if sp.sympify(e) in subexpressions else e for e in rr]
substitutions = [Assignment(e[1], e[0]) for e in subexpressions.items()]
if relaxation_rates_modifier is not None:
new_rr = [r * relaxation_rates_modifier for r in new_rr]
symbolic_relaxation_rates = [r * relaxation_rates_modifier for r in symbolic_relaxation_rates]
else:
for srr in symbolic_relaxation_rates:
assert isinstance(srr, sp.Symbol)
return substitutions, sp.diag(*new_rr)
return substitutions, sp.diag(*symbolic_relaxation_rates)
......@@ -201,19 +201,23 @@ def create_from_equilibrium(stencil, equilibrium, conserved_quantity_computation
if cspace.collision_space == CollisionSpace.POPULATIONS:
return MomentBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc,
force_model=force_model, zero_centered=zero_centered, fraction_field=fraction_field,
force_model=force_model, zero_centered=zero_centered,
fraction_field=fraction_field,
moment_transform_class=None)
elif cspace.collision_space == CollisionSpace.RAW_MOMENTS:
return MomentBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc,
force_model=force_model, zero_centered=zero_centered, fraction_field=fraction_field,
force_model=force_model, zero_centered=zero_centered,
fraction_field=fraction_field,
moment_transform_class=cspace.raw_moment_transform_class)
elif cspace.collision_space == CollisionSpace.CENTRAL_MOMENTS:
return CentralMomentBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc,
force_model=force_model, zero_centered=zero_centered,
fraction_field=fraction_field,
central_moment_transform_class=cspace.central_moment_transform_class)
elif cspace.collision_space == CollisionSpace.CUMULANTS:
return CumulantBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc,
force_model=force_model, zero_centered=zero_centered,
fraction_field=fraction_field,
central_moment_transform_class=cspace.central_moment_transform_class,
cumulant_transform_class=cspace.cumulant_transform_class)
......@@ -334,7 +338,7 @@ def create_mrt_raw(stencil, relaxation_rates, continuous_equilibrium=True, conse
def create_central_moment(stencil, relaxation_rates, nested_moments=None,
continuous_equilibrium=True, conserved_moments=True, fraction_field=None, **kwargs):
continuous_equilibrium=True, conserved_moments=True, **kwargs):
r"""
Creates moment based LB method where the collision takes place in the central moment space.
......@@ -348,7 +352,6 @@ def create_central_moment(stencil, relaxation_rates, nested_moments=None,
continuous_equilibrium: determines if the discrete or continuous maxwellian equilibrium is
used to compute the equilibrium moments.
conserved_moments: If lower order moments are conserved or not.
fraction_field: fraction field for the PSM method
Returns:
:class:`lbmpy.methods.momentbased.CentralMomentBasedLbMethod` instance
"""
......@@ -371,8 +374,8 @@ def create_central_moment(stencil, relaxation_rates, nested_moments=None,
nested_moments = cascaded_moment_sets_literature(stencil)
rr_dict = _get_relaxation_info_dict(relaxation_rates, nested_moments, stencil.D, conserved_moments)
if fraction_field is not None:
relaxation_rates_modifier = (1.0 - fraction_field.center)
if 'fraction_field' in kwargs and kwargs['fraction_field'] is not None:
relaxation_rates_modifier = (1.0 - kwargs['fraction_field'])
rr_dict = _get_relaxation_info_dict(relaxation_rates, nested_moments, stencil.D,
relaxation_rates_modifier=relaxation_rates_modifier)
......@@ -527,7 +530,7 @@ def create_mrt_orthogonal(stencil, relaxation_rates, continuous_equilibrium=True
# ----------------------------------------- Cumulant method creators ---------------------------------------------------
def create_cumulant(stencil, relaxation_rates, cumulant_groups, conserved_moments=True, fraction_field=None, **kwargs):
def create_cumulant(stencil, relaxation_rates, cumulant_groups, conserved_moments=True, **kwargs):
r"""Creates a cumulant-based lattice Boltzmann method.
Args:
......@@ -547,8 +550,8 @@ def create_cumulant(stencil, relaxation_rates, cumulant_groups, conserved_moment
"""
cumulant_to_rr_dict = _get_relaxation_info_dict(relaxation_rates, cumulant_groups, stencil.D, conserved_moments)
if fraction_field is not None:
relaxation_rates_modifier = (1.0 - fraction_field.center)
if 'fraction_field' in kwargs and kwargs['fraction_field'] is not None:
relaxation_rates_modifier = (1.0 - kwargs['fraction_field'])
cumulant_to_rr_dict = _get_relaxation_info_dict(relaxation_rates, cumulant_groups, stencil.D,
relaxation_rates_modifier=relaxation_rates_modifier)
......
......@@ -47,7 +47,7 @@ class CumulantBasedLbMethod(AbstractLbMethod):
def __init__(self, stencil, equilibrium, relaxation_dict,
conserved_quantity_computation=None,
force_model=None, zero_centered=False,
force_model=None, zero_centered=False, fraction_field=None,
central_moment_transform_class=BinomialChimeraTransform,
cumulant_transform_class=CentralMomentsToCumulantsByGeneratingFunc):
assert isinstance(conserved_quantity_computation,
......@@ -63,6 +63,7 @@ class CumulantBasedLbMethod(AbstractLbMethod):
self._cqc = conserved_quantity_computation
self._force_model = force_model
self._zero_centered = zero_centered
self._fraction_field = fraction_field
self._weights = None
self._cumulant_transform_class = cumulant_transform_class
self._central_moment_transform_class = central_moment_transform_class
......@@ -72,6 +73,10 @@ class CumulantBasedLbMethod(AbstractLbMethod):
"""Force model employed by this method."""
return self._force_model
@property
def fraction_field(self):
return self._fraction_field
@property
def relaxation_info_dict(self):
"""Dictionary mapping this method's cumulants to their relaxation rates and equilibrium values.
......
......@@ -3,8 +3,7 @@ import sympy as sp
from lbmpy.moment_transforms import PRE_COLLISION_MONOMIAL_CUMULANT, POST_COLLISION_CUMULANT
from lbmpy.moments import MOMENT_SYMBOLS, statistical_quantity_symbol
from lbmpy.stencils import Stencil, LBStencil
from pystencils import Assignment
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils import Assignment, AssignmentCollection
from .cumulantbasedmethod import CumulantBasedLbMethod
X, Y, Z = MOMENT_SYMBOLS
......
import sympy as sp
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils import Assignment
from pystencils import Assignment, AssignmentCollection
from lbmpy.stencils import Stencil, LBStencil
from lbmpy.moments import MOMENT_SYMBOLS, statistical_quantity_symbol
......
......@@ -55,7 +55,7 @@ class CentralMomentBasedLbMethod(AbstractLbMethod):
def __init__(self, stencil, equilibrium, relaxation_dict,
conserved_quantity_computation=None,
force_model=None, zero_centered=False,
force_model=None, zero_centered=False, fraction_field=None,
central_moment_transform_class=BinomialChimeraTransform):
assert isinstance(conserved_quantity_computation, AbstractConservedQuantityComputation)
super(CentralMomentBasedLbMethod, self).__init__(stencil)
......@@ -65,6 +65,7 @@ class CentralMomentBasedLbMethod(AbstractLbMethod):
self._cqc = conserved_quantity_computation
self._force_model = force_model
self._zero_centered = zero_centered
self._fraction_field = fraction_field
self._weights = None
self._central_moment_transform_class = central_moment_transform_class
......@@ -73,6 +74,10 @@ class CentralMomentBasedLbMethod(AbstractLbMethod):
"""Force model employed by this method."""
return self._force_model
@property
def fraction_field(self):
return self._fraction_field
@property
def relaxation_info_dict(self):
"""Dictionary mapping this method's moments to their relaxation rates and equilibrium values.
......
......@@ -48,7 +48,7 @@ class MomentBasedLbMethod(AbstractLbMethod):
self._cqc = conserved_quantity_computation
self._force_model = force_model
self._zero_centered = zero_centered
self.fraction_field = fraction_field
self._fraction_field = fraction_field
self._weights = None
self._moment_transform_class = moment_transform_class
......@@ -57,6 +57,10 @@ class MomentBasedLbMethod(AbstractLbMethod):
"""Force model employed by this method."""
return self._force_model
@property
def fraction_field(self):
return self._fraction_field
@property
def relaxation_info_dict(self):
"""Dictionary mapping this method's moments to their relaxation rates and equilibrium values.
......@@ -176,8 +180,8 @@ class MomentBasedLbMethod(AbstractLbMethod):
def get_collision_rule(self, conserved_quantity_equations: AssignmentCollection = None,
pre_simplification: bool = True) -> LbmCollisionRule:
if self.fraction_field is not None:
relaxation_rates_modifier = (1.0 - self.fraction_field.center)
if self._fraction_field is not None:
relaxation_rates_modifier = (1.0 - self._fraction_field)
rr_sub_expressions, d = self._generate_symbolic_relaxation_matrix(
relaxation_rates_modifier=relaxation_rates_modifier)
else:
......
from abc import abstractmethod
import sympy as sp
from pystencils.simp import (SimplificationStrategy, sympy_cse)
from pystencils.simp import SimplificationStrategy, sympy_cse
from lbmpy.moments import (
exponents_to_polynomial_representations, extract_monomials, exponent_tuple_sort_key)
......
......@@ -172,7 +172,7 @@ class PdfsToMomentsByMatrixTransform(AbstractRawMomentTransform):
# ----------------------------- Private Members -----------------------------
@ property
@property
def _default_simplification(self):
forward_simp = SimplificationStrategy()
# forward_simp.add(substitute_moments_in_conserved_quantity_equations)
......@@ -218,7 +218,7 @@ class PdfsToMomentsByChimeraTransform(AbstractRawMomentTransform):
self.moment_polynomials)
self.poly_to_mono_matrix = self.mono_to_poly_matrix.inv()
@ property
@property
def absorbs_conserved_quantity_equations(self):
return True
......@@ -414,7 +414,7 @@ class PdfsToMomentsByChimeraTransform(AbstractRawMomentTransform):
# ----------------------------- Private Members -----------------------------
@ property
@property
def _default_simplification(self):
from lbmpy.methods.momentbased.momentbasedsimplifications import (
substitute_moments_in_conserved_quantity_equations,
......
import sympy as sp
from dataclasses import dataclass
from lbmpy.enums import Method
from lbmpy.methods.abstractlbmethod import LbmCollisionRule
from pystencils import Assignment, AssignmentCollection
from pystencils.field import Field
......@@ -13,103 +14,156 @@ class PSMConfig:
Fraction field for PSM
"""
fraction_field_symbol = sp.Symbol('B')
"""
Fraction field symbol used for simplification
"""
object_velocity_field: Field = None
"""
Object velocity field for PSM
"""
SC: int = 1
solid_collision: int = 1
"""
Solid collision option for PSM
"""
MaxParticlesPerCell: int = 1
max_particles_per_cell: int = 1
"""
Maximum number of particles overlapping with a cell
"""
individual_fraction_field: Field = None
"""
Fraction field for each overlapping particle in PSM
Fraction field for each overlapping object / particle in PSM
"""
particle_force_field: Field = None
object_force_field: Field = None
"""
Force field for each overlapping particle in PSM
Force field for each overlapping object / particle in PSM
"""
def add_psm_to_collision_rule(collision_rule, psm_config):
def get_psm_solid_collision_term(collision_rule, psm_config, particle_per_cell_counter):
if psm_config.individual_fraction_field is None:
psm_config.individual_fraction_field = psm_config.fraction_field
fraction_field = psm_config.fraction_field
else:
fraction_field = psm_config.individual_fraction_field
method = collision_rule.method
pre_collision_pdf_symbols = method.pre_collision_pdf_symbols
stencil = method.stencil
# Get equilibrium from object velocity for solid collision
forces_rhs = [0] * psm_config.MaxParticlesPerCell * stencil.D
solid_collisions = [0] * stencil.Q
for p in range(psm_config.MaxParticlesPerCell):
equilibrium_fluid = method.get_equilibrium_terms()
equilibrium_solid = []
for eq in equilibrium_fluid:
eq_sol = eq
for i in range(stencil.D):
eq_sol = eq_sol.subs(sp.Symbol("u_" + str(i)),
psm_config.object_velocity_field.center(p * stencil.D + i), )
equilibrium_solid.append(eq_sol)
# Build solid collision
for i, (eqFluid, eqSolid, f, offset) in enumerate(
zip(equilibrium_fluid, equilibrium_solid, pre_collision_pdf_symbols, stencil)):
inverse_direction_index = stencil.stencil_entries.index(stencil.inverse_stencil_entries[i])
if psm_config.SC == 1:
solid_collision = psm_config.individual_fraction_field.center(p) * (
(
pre_collision_pdf_symbols[inverse_direction_index]
- equilibrium_fluid[inverse_direction_index]
)
- (f - eqSolid)
)
elif psm_config.SC == 2:
# TODO get relaxation rate vector from method and use the right relaxation rate [i]
solid_collision = psm_config.individual_fraction_field.center(p) * (
(eqSolid - f) + (1.0 - method.relaxation_rates[0]) * (f - eqFluid)
)
elif psm_config.SC == 3:
solid_collision = psm_config.individual_fraction_field.center(p) * (
(
pre_collision_pdf_symbols[inverse_direction_index]
- equilibrium_solid[inverse_direction_index]
)
- (f - eqSolid)
)
else:
raise ValueError("Only SC=1, SC=2 and SC=3 are supported.")
solid_collisions[i] += solid_collision
for j in range(stencil.D):
forces_rhs[p * stencil.D + j] -= solid_collision * int(offset[j])
# Add solid collision to main assignments of collision rule
equilibrium_fluid = method.get_equilibrium_terms()
equilibrium_solid = []
# get equilibrium form object velocity
for eq in equilibrium_fluid:
eq_sol = eq
for i in range(stencil.D):
eq_sol = eq_sol.subs(sp.Symbol("u_" + str(i)),
psm_config.object_velocity_field.center(particle_per_cell_counter * stencil.D + i), )
equilibrium_solid.append(eq_sol)
# Build solid collision
for i, (eqFluid, eqSolid, f, offset) in enumerate(
zip(equilibrium_fluid, equilibrium_solid, pre_collision_pdf_symbols, stencil)):
inverse_direction_index = stencil.stencil_entries.index(stencil.inverse_stencil_entries[i])
if psm_config.solid_collision == 1:
solid_collision = (fraction_field.center(particle_per_cell_counter)
* ((pre_collision_pdf_symbols[inverse_direction_index]
- equilibrium_fluid[inverse_direction_index]) - (f - eqSolid)))
elif psm_config.solid_collision == 2:
# TODO get relaxation rate vector from method and use the right relaxation rate [i]
solid_collision = (fraction_field.center(particle_per_cell_counter)
* ((eqSolid - f) + (1.0 - method.relaxation_rates[0]) * (f - eqFluid)))
elif psm_config.solid_collision == 3:
solid_collision = (fraction_field.center(particle_per_cell_counter)
* ((pre_collision_pdf_symbols[inverse_direction_index]
- equilibrium_solid[inverse_direction_index]) - (f - eqSolid)))
else:
raise ValueError("Only sc=1, sc=2 and sc=3 are supported.")
solid_collisions[i] += solid_collision
return solid_collisions
def get_psm_force_from_solid_collision(solid_collisions, stencil, object_force_field, particle_per_cell_counter):
force_assignments = []
for d in range(stencil.D):
forces_rhs = 0
for sc, offset in zip(solid_collisions, stencil):
forces_rhs -= sc * int(offset[d])
force_assignments.append(Assignment(
object_force_field.center(particle_per_cell_counter * stencil.D + d), forces_rhs
))
return AssignmentCollection(force_assignments)
def replace_fraction_symbol_with_field(assignments, fraction_field_symbol, fraction_field_access):
new_assignments = []
for ass in assignments:
rhs = ass.rhs.subs(fraction_field_symbol, fraction_field_access.center(0))
new_assignments.append(Assignment(ass.lhs, rhs))
return new_assignments
def add_psm_solid_collision_to_collision_rule(collision_rule, lbm_config, particle_per_cell_counter):
method = collision_rule.method
solid_collisions = get_psm_solid_collision_term(collision_rule, lbm_config.psm_config, particle_per_cell_counter)
post_collision_pdf_symbols = method.post_collision_pdf_symbols
assignments = []
for sc, post in zip(solid_collisions, post_collision_pdf_symbols):
assignments.append(Assignment(post, post + sc))
if lbm_config.psm_config.object_force_field is not None:
assignments += get_psm_force_from_solid_collision(solid_collisions, method.stencil,
lbm_config.psm_config.object_force_field,
particle_per_cell_counter)
# exchanging rho with zeroth order moment symbol
if lbm_config.method in (Method.CENTRAL_MOMENT, Method.MONOMIAL_CUMULANT, Method.CUMULANT):
new_assignments = []
zeroth_moment_symbol = 'm_00' if lbm_config.stencil.D == 2 else 'm_000'
for ass in assignments:
new_assignments.append(ass.subs(sp.Symbol('rho'), sp.Symbol(zeroth_moment_symbol)))
assignments = new_assignments
collision_assignments = AssignmentCollection(assignments)
ac = LbmCollisionRule(method, collision_assignments, [],
collision_rule.simplification_hints)
return ac
def replace_by_psm_collision_rule(collision_rule, psm_config):
method = collision_rule.method
collision_assignments = []
for main, sc in zip(collision_rule.main_assignments, solid_collisions):
collision_assignments.append(Assignment(main.lhs, main.rhs + sc))
# Add hydrodynamic force calculations to collision assignments if two-way coupling is used
# (i.e., force field is not None)
if psm_config.particle_force_field is not None:
for p in range(psm_config.MaxParticlesPerCell):
for i in range(stencil.D):
collision_assignments.append(
Assignment(
psm_config.particle_force_field.center(p * stencil.D + i),
forces_rhs[p * stencil.D + i],
)
)
solid_collisions = [0] * psm_config.max_particles_per_cell
for p in range(psm_config.max_particles_per_cell):
solid_collisions[p] = get_psm_solid_collision_term(collision_rule, psm_config, p)
if psm_config.object_force_field is not None:
collision_assignments += get_psm_force_from_solid_collision(solid_collisions[p], method.stencil,
psm_config.object_force_field, p)
for i, main in enumerate(collision_rule.main_assignments):
rhs = main.rhs
for p in range(psm_config.max_particles_per_cell):
rhs += solid_collisions[p][i]
collision_assignments.append(Assignment(main.lhs, rhs))
collision_assignments = AssignmentCollection(collision_assignments)
ac = LbmCollisionRule(method, collision_assignments, collision_rule.subexpressions,
ac = LbmCollisionRule(method, replace_fraction_symbol_with_field(collision_assignments,
psm_config.fraction_field_symbol, psm_config.fraction_field),
replace_fraction_symbol_with_field(collision_rule.subexpressions,
psm_config.fraction_field_symbol, psm_config.fraction_field),
collision_rule.simplification_hints)
ac.topological_sort()
return ac
......@@ -39,8 +39,8 @@ def circle_intersections(midpoint0, midpoint1, radius0, radius1):
def interface_region(concentration_arr, phase0, phase1, area=3):
import scipy.ndimage as sc_image
area_phase0 = sc_image.morphology.binary_dilation(concentration_arr[..., phase0] > 0.5, iterations=area)
area_phase1 = sc_image.morphology.binary_dilation(concentration_arr[..., phase1] > 0.5, iterations=area)
area_phase0 = sc_image.binary_dilation(concentration_arr[..., phase0] > 0.5, iterations=area)
area_phase1 = sc_image.binary_dilation(concentration_arr[..., phase1] > 0.5, iterations=area)
return np.logical_and(area_phase0, area_phase1)
......