Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • Sparse
  • WallLaw
  • fhennig/pystencils2.0-compat
  • improved_comm
  • master
  • suffa/psm_optimization
  • release/0.2.1
  • release/0.2.10
  • release/0.2.11
  • release/0.2.12
  • release/0.2.13
  • release/0.2.14
  • release/0.2.15
  • release/0.2.2
  • release/0.2.3
  • release/0.2.4
  • release/0.2.5
  • release/0.2.6
  • release/0.2.7
  • release/0.2.8
  • release/0.2.9
  • release/0.3.0
  • release/0.3.1
  • release/0.3.2
  • release/0.3.3
  • release/0.3.4
  • release/0.4.0
  • release/0.4.1
  • release/0.4.2
  • release/0.4.3
  • release/0.4.4
  • release/1.0
  • release/1.0.1
  • release/1.1
  • release/1.1.1
  • release/1.2
  • release/1.3
  • release/1.3.1
  • release/1.3.2
  • release/1.3.3
  • release/1.3.4
  • release/1.3.5
  • release/1.3.6
  • release/1.3.7
44 results

Target

Select target project
  • ravi.k.ayyala/lbmpy
  • brendan-waters/lbmpy
  • anirudh.jonnalagadda/lbmpy
  • jbadwaik/lbmpy
  • alexander.reinauer/lbmpy
  • itischler/lbmpy
  • he66coqe/lbmpy
  • ev81oxyl/lbmpy
  • Bindgen/lbmpy
  • da15siwa/lbmpy
  • holzer/lbmpy
  • RudolfWeeber/lbmpy
  • pycodegen/lbmpy
13 results
Select Git revision
  • GetterSetterAPI
  • HRR
  • HydroPressure
  • InplaceConfig
  • Outflow
  • PhaseField
  • Sparse
  • UBBVelocity
  • UpdateAPISparse
  • WallLaw
  • WetNodeBoundaries
  • csebug
  • feature/sparse
  • feature/try
  • improved_comm
  • install_requires
  • master
  • phaseField
  • relaxationrates
  • test_martin
  • release/0.2.1
  • release/0.2.10
  • release/0.2.11
  • release/0.2.12
  • release/0.2.13
  • release/0.2.14
  • release/0.2.15
  • release/0.2.2
  • release/0.2.3
  • release/0.2.4
  • release/0.2.5
  • release/0.2.6
  • release/0.2.7
  • release/0.2.8
  • release/0.2.9
  • release/0.3.0
  • release/0.3.1
  • release/0.3.2
  • release/0.3.3
  • release/0.3.4
  • release/0.4.0
  • release/0.4.1
  • release/0.4.2
  • release/0.4.3
  • release/0.4.4
  • release/1.0
  • release/1.0.1
  • release/1.1
  • release/1.1.1
  • release/1.2
  • release/1.3
  • release/1.3.1
  • release/1.3.2
  • release/1.3.3
  • release/1.3.4
  • release/1.3.5
  • release/1.3.6
57 results
Show changes
Showing
with 508 additions and 19 deletions
...@@ -5,8 +5,9 @@ import pytest ...@@ -5,8 +5,9 @@ import pytest
from pystencils import Backend, Target, CreateKernelConfig from pystencils import Backend, Target, CreateKernelConfig
from lbmpy.creationfunctions import LBMConfig, LBMOptimisation from lbmpy.creationfunctions import LBMConfig, LBMOptimisation
from lbmpy.enums import Method, Stencil
from lbmpy.scenarios import create_channel from lbmpy.scenarios import create_channel
from lbmpy.enums import Method from lbmpy.stencils import LBStencil
def run_equivalence_test(domain_size, lbm_config, lbm_opt, config, time_steps=13): def run_equivalence_test(domain_size, lbm_config, lbm_opt, config, time_steps=13):
...@@ -31,14 +32,16 @@ def run_equivalence_test(domain_size, lbm_config, lbm_opt, config, time_steps=13 ...@@ -31,14 +32,16 @@ def run_equivalence_test(domain_size, lbm_config, lbm_opt, config, time_steps=13
((18, 20), Method.MRT, True, (4, 2), 'zyxf'), ((18, 20), Method.MRT, True, (4, 2), 'zyxf'),
((7, 11, 18), Method.TRT, False, False, 'numpy')]) ((7, 11, 18), Method.TRT, False, False, 'numpy')])
def test_force_driven_channel_short(scenario): def test_force_driven_channel_short(scenario):
pytest.importorskip("pycuda") pytest.importorskip("cupy")
ds = scenario[0] ds = scenario[0]
stencil = LBStencil(Stencil.D2Q9) if len(ds) == 2 else LBStencil(Stencil.D3Q27)
method = scenario[1] method = scenario[1]
compressible = scenario[2] compressible = scenario[2]
block_size = scenario[3] block_size = scenario[3]
field_layout = scenario[4] field_layout = scenario[4]
lbm_config = LBMConfig(method=method, compressible=compressible, relaxation_rates=[1.95, 1.9, 1.92, 1.92]) lbm_config = LBMConfig(stencil=stencil, method=method,
compressible=compressible, relaxation_rates=[1.95, 1.9, 1.92, 1.92])
lbm_opt = LBMOptimisation(field_layout=field_layout) lbm_opt = LBMOptimisation(field_layout=field_layout)
# Different methods # Different methods
......
...@@ -6,11 +6,12 @@ from pystencils import AssignmentCollection ...@@ -6,11 +6,12 @@ from pystencils import AssignmentCollection
from lbmpy.moment_transforms import ( from lbmpy.moment_transforms import (
CentralMomentsToCumulantsByGeneratingFunc, PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, CentralMomentsToCumulantsByGeneratingFunc, PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT,
PRE_COLLISION_CUMULANT, PRE_COLLISION_MONOMIAL_CUMULANT PRE_COLLISION_CUMULANT
) )
from lbmpy.methods import cascaded_moment_sets_literature from lbmpy.methods import cascaded_moment_sets_literature
from lbmpy.stencils import Stencil, LBStencil from lbmpy.stencils import Stencil, LBStencil
@pytest.mark.parametrize("stencil", [Stencil.D2Q9, Stencil.D3Q19]) @pytest.mark.parametrize("stencil", [Stencil.D2Q9, Stencil.D3Q19])
def test_identity(stencil): def test_identity(stencil):
stencil = LBStencil(stencil) stencil = LBStencil(stencil)
...@@ -18,7 +19,7 @@ def test_identity(stencil): ...@@ -18,7 +19,7 @@ def test_identity(stencil):
rho = sp.Symbol('rho') rho = sp.Symbol('rho')
u = sp.symbols('u_:2') u = sp.symbols('u_:2')
transform = CentralMomentsToCumulantsByGeneratingFunc(stencil, polys, rho, u, transform = CentralMomentsToCumulantsByGeneratingFunc(stencil, polys, rho, u,
post_collision_symbol_base=PRE_COLLISION_CUMULANT) post_collision_symbol_base=PRE_COLLISION_CUMULANT)
forward_eqs = transform.forward_transform() forward_eqs = transform.forward_transform()
backward_eqs = transform.backward_transform(central_moment_base=PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT) backward_eqs = transform.backward_transform(central_moment_base=PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT)
......
File moved
...@@ -77,7 +77,7 @@ def test_diffusion(): ...@@ -77,7 +77,7 @@ def test_diffusion():
The hydrodynamic field is not simulated, instead a constant velocity is assumed. The hydrodynamic field is not simulated, instead a constant velocity is assumed.
""" """
pytest.importorskip("pycuda") pytest.importorskip("cupy")
# Parameters # Parameters
domain_size = (1600, 160) domain_size = (1600, 160)
omega = 1.38 omega = 1.38
......
File moved
...@@ -3,8 +3,9 @@ import pytest ...@@ -3,8 +3,9 @@ import pytest
import pystencils as ps import pystencils as ps
from lbmpy.creationfunctions import create_lb_function, LBMConfig from lbmpy.creationfunctions import create_lb_function, LBMConfig
from lbmpy.enums import Method from lbmpy.enums import Method, Stencil
from lbmpy.scenarios import create_lid_driven_cavity from lbmpy.scenarios import create_lid_driven_cavity
from lbmpy.stencils import LBStencil
@pytest.mark.parametrize('double_precision', [False, True]) @pytest.mark.parametrize('double_precision', [False, True])
...@@ -28,7 +29,8 @@ def test_creation(double_precision, method_enum): ...@@ -28,7 +29,8 @@ def test_creation(double_precision, method_enum):
@pytest.mark.parametrize('double_precision', [False, True]) @pytest.mark.parametrize('double_precision', [False, True])
@pytest.mark.parametrize('method_enum', [Method.SRT, Method.CENTRAL_MOMENT, Method.CUMULANT]) @pytest.mark.parametrize('method_enum', [Method.SRT, Method.CENTRAL_MOMENT, Method.CUMULANT])
def test_scenario(method_enum, double_precision): def test_scenario(method_enum, double_precision):
lbm_config = LBMConfig(method=method_enum, relaxation_rate=1.45, compressible=True) lbm_config = LBMConfig(stencil=LBStencil(Stencil.D3Q27), method=method_enum,
relaxation_rate=1.45, compressible=True)
config = ps.CreateKernelConfig(data_type="float64" if double_precision else "float32", config = ps.CreateKernelConfig(data_type="float64" if double_precision else "float32",
default_number_float="float64" if double_precision else "float32") default_number_float="float64" if double_precision else "float32")
sc = create_lid_driven_cavity((16, 16, 8), lbm_config=lbm_config, config=config) sc = create_lid_driven_cavity((16, 16, 8), lbm_config=lbm_config, config=config)
......
"""Tests velocity and stress fluctuations for thermalized LB""" """Tests velocity and stress fluctuations for thermalized LB"""
import warnings
import pytest
import pystencils as ps import pystencils as ps
from pystencils import get_code_str
from pystencils.backends.simd_instruction_sets import (
get_supported_instruction_sets,
get_vector_instruction_set,
)
from pystencils.cpu.cpujit import get_compiler_config
from pystencils.enums import Target
from pystencils.rng import PhiloxTwoDoubles
from lbmpy.creationfunctions import * from lbmpy.creationfunctions import *
from lbmpy.forcemodels import Guo from lbmpy.forcemodels import Guo
from lbmpy.macroscopic_value_kernels import macroscopic_values_setter from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
import numpy as np import numpy as np
from lbmpy.enums import Stencil from lbmpy.enums import Stencil
from lbmpy.moments import is_bulk_moment, is_shear_moment, get_order from lbmpy.moments import is_bulk_moment, is_shear_moment, get_order
from lbmpy.stencils import LBStencil from lbmpy.stencils import LBStencil
from pystencils.rng import PhiloxTwoDoubles
import pytest
from pystencils import get_code_str
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets, get_vector_instruction_set
from pystencils.cpu.cpujit import get_compiler_config
from pystencils.enums import Target
def _skip_instruction_sets_windows(instruction_sets): def _skip_instruction_sets_windows(instruction_sets):
if get_compiler_config()['os'] == 'windows': if get_compiler_config()["os"] == "windows":
# skip instruction sets supported by the CPU but not by the compiler # skip instruction sets supported by the CPU but not by the compiler
if 'avx' in instruction_sets and ('/arch:avx2' not in get_compiler_config()['flags'].lower() if "avx" in instruction_sets and (
and '/arch:avx512' not in get_compiler_config()['flags'].lower()): "/arch:avx2" not in get_compiler_config()["flags"].lower()
instruction_sets.remove('avx') and "/arch:avx512" not in get_compiler_config()["flags"].lower()
if 'avx512' in instruction_sets and '/arch:avx512' not in get_compiler_config()['flags'].lower(): ):
instruction_sets.remove('avx512') instruction_sets.remove("avx")
if (
"avx512" in instruction_sets
and "/arch:avx512" not in get_compiler_config()["flags"].lower()
):
instruction_sets.remove("avx512")
return instruction_sets return instruction_sets
def single_component_maxwell(x1, x2, kT, mass): def single_component_maxwell(x1, x2, kT, mass):
"""Integrate the probability density from x1 to x2 using the trapezoidal rule""" """Integrate the probability density from x1 to x2 using the trapezoidal rule"""
x = np.linspace(x1, x2, 1000) x = np.linspace(x1, x2, 1000)
return np.trapz(np.exp(-mass * x ** 2 / (2. * kT)), x) / np.sqrt(2. * np.pi * kT / mass)
try:
trapezoid = np.trapezoid # since numpy 2.0
except AttributeError:
trapezoid = np.trapz
return trapezoid(np.exp(-mass * x**2 / (2.0 * kT)), x) / np.sqrt(
2.0 * np.pi * kT / mass
)
def rr_getter(moment_group): def rr_getter(moment_group):
...@@ -63,53 +81,86 @@ def second_order_moment_tensor_assignments(function_values, stencil, output_fiel ...@@ -63,53 +81,86 @@ def second_order_moment_tensor_assignments(function_values, stencil, output_fiel
"""Assignments for calculating the pressure tensor""" """Assignments for calculating the pressure tensor"""
assert len(function_values) == len(stencil) assert len(function_values) == len(stencil)
dim = len(stencil[0]) dim = len(stencil[0])
return [ps.Assignment(output_field(i, j), return [
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil))) ps.Assignment(
for i in range(dim) for j in range(dim)] output_field(i, j),
sum(c[i] * c[j] * f for f, c in zip(function_values, stencil)),
)
for i in range(dim)
for j in range(dim)
]
def add_pressure_output_to_collision_rule(collision_rule, pressure_field): def add_pressure_output_to_collision_rule(collision_rule, pressure_field):
pressure_ouput = second_order_moment_tensor_assignments(collision_rule.method.pre_collision_pdf_symbols, pressure_ouput = second_order_moment_tensor_assignments(
collision_rule.method.stencil, pressure_field) collision_rule.method.pre_collision_pdf_symbols,
collision_rule.method.stencil,
pressure_field,
)
collision_rule.main_assignments = collision_rule.main_assignments + pressure_ouput collision_rule.main_assignments = collision_rule.main_assignments + pressure_ouput
def get_fluctuating_lb(size=None, kT=None, def get_fluctuating_lb(
omega_shear=None, omega_bulk=None, omega_odd=None, omega_even=None, size=None,
rho_0=None, target=None): kT=None,
omega_shear=None,
omega_bulk=None,
omega_odd=None,
omega_even=None,
rho_0=None,
target=None,
zero_centered: bool = False,
):
# Parameters # Parameters
stencil = LBStencil(Stencil.D3Q19) stencil = LBStencil(Stencil.D3Q19)
# Setup data handling # Setup data handling
dh = ps.create_data_handling((size,) * stencil.D, periodicity=True, default_target=target) dh = ps.create_data_handling(
src = dh.add_array('src', values_per_cell=stencil.Q, layout='f') (size,) * stencil.D, periodicity=True, default_target=target
dst = dh.add_array_like('dst', 'src') )
rho = dh.add_array('rho', layout='f', latex_name='\\rho', values_per_cell=1) src = dh.add_array("src", values_per_cell=stencil.Q, layout="f")
u = dh.add_array('u', values_per_cell=dh.dim, layout='f') dst = dh.add_array_like("dst", "src")
pressure_field = dh.add_array('pressure', values_per_cell=( rho = dh.add_array("rho", layout="f", latex_name="\\rho", values_per_cell=1)
3, 3), layout='f', gpu=target == Target.GPU) u = dh.add_array("u", values_per_cell=dh.dim, layout="f")
pressure_field = dh.add_array(
"pressure", values_per_cell=(3, 3), layout="f", gpu=target == Target.GPU
)
force_field = dh.add_array( force_field = dh.add_array(
'force', values_per_cell=stencil.D, layout='f', gpu=target == Target.GPU) "force", values_per_cell=stencil.D, layout="f", gpu=target == Target.GPU
)
# Method setup # Method setup
lbm_config = LBMConfig(stencil=stencil, method=Method.MRT, compressible=True, lbm_config = LBMConfig(
weighted=True, zero_centered=False, relaxation_rates=rr_getter, stencil=stencil,
force_model=Guo(force=force_field.center_vector), method=Method.MRT,
fluctuating={'temperature': kT}, compressible=True,
kernel_type='collide_only') weighted=True,
zero_centered=zero_centered,
relaxation_rates=rr_getter,
force_model=Guo(force=force_field.center_vector),
fluctuating={"temperature": kT},
kernel_type="collide_only",
)
lb_method = create_lb_method(lbm_config=lbm_config) lb_method = create_lb_method(lbm_config=lbm_config)
lbm_config.lb_method = lb_method lbm_config.lb_method = lb_method
lbm_opt = LBMOptimisation(symbolic_field=src, cse_global=True)
collision_rule = create_lb_collision_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(collision_rule=collision_rule, lbm_opt = LBMOptimisation(symbolic_field=src, cse_global=True)
lbm_config=lbm_config, lbm_optimisation=lbm_opt) collision_rule = create_lb_collision_rule(
stream = create_stream_pull_with_output_kernel(collision.method, src, dst, lbm_config=lbm_config, lbm_optimisation=lbm_opt
{'density': rho, 'velocity': u}) )
# add_pressure_output_to_collision_rule(collision_rule, pressure_field)
collision = create_lb_update_rule(
collision_rule=collision_rule, lbm_config=lbm_config, lbm_optimisation=lbm_opt
)
stream = create_stream_pull_with_output_kernel(
collision.method,
src,
dst,
{"density": rho, "velocity": u, "moment2": pressure_field},
)
config = ps.CreateKernelConfig(cpu_openmp=False, target=dh.default_target) config = ps.CreateKernelConfig(cpu_openmp=False, target=dh.default_target)
...@@ -120,15 +171,18 @@ def get_fluctuating_lb(size=None, kT=None, ...@@ -120,15 +171,18 @@ def get_fluctuating_lb(size=None, kT=None,
sync_pdfs = dh.synchronization_function([src.name]) sync_pdfs = dh.synchronization_function([src.name])
# Initialization # Initialization
init = macroscopic_values_setter(collision.method, velocity=(0,) * dh.dim, init = macroscopic_values_setter(
pdfs=src.center_vector, density=rho.center) collision.method,
velocity=(0,) * dh.dim,
pdfs=src.center_vector,
density=rho_0
)
init_kernel = ps.create_kernel(init, ghost_layers=0).compile() init_kernel = ps.create_kernel(init, ghost_layers=0).compile()
dh.fill(rho.name, rho_0) dh.fill(rho.name, rho_0)
dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True) dh.fill(u.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(u.name, 0) dh.fill(u.name, 0)
dh.fill(force_field.name, np.nan, dh.fill(force_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
ghost_layers=True, inner_ghost_layers=True)
dh.fill(force_field.name, 0) dh.fill(force_field.name, 0)
dh.run_kernel(init_kernel) dh.run_kernel(init_kernel)
...@@ -136,8 +190,15 @@ def get_fluctuating_lb(size=None, kT=None, ...@@ -136,8 +190,15 @@ def get_fluctuating_lb(size=None, kT=None,
def time_loop(start, steps): def time_loop(start, steps):
dh.all_to_gpu() dh.all_to_gpu()
for i in range(start, start + steps): for i in range(start, start + steps):
dh.run_kernel(collision_kernel, omega_shear=omega_shear, omega_bulk=omega_bulk, dh.run_kernel(
omega_odd=omega_odd, omega_even=omega_even, seed=42, time_step=i) collision_kernel,
omega_shear=omega_shear,
omega_bulk=omega_bulk,
omega_odd=omega_odd,
omega_even=omega_even,
seed=42,
time_step=i,
)
sync_pdfs() sync_pdfs()
dh.run_kernel(stream_kernel) dh.run_kernel(stream_kernel)
...@@ -148,13 +209,27 @@ def get_fluctuating_lb(size=None, kT=None, ...@@ -148,13 +209,27 @@ def get_fluctuating_lb(size=None, kT=None,
return dh, time_loop return dh, time_loop
def test_resting_fluid(target=Target.CPU): @pytest.mark.parametrize(
rho_0 = 0.86 "zero_centered", [False, True], ids=["regular-storage", "zero-centered"]
kT = 4E-4 )
L = [60] * 3 @pytest.mark.parametrize(
dh, time_loop = get_fluctuating_lb(size=L[0], target=target, "domain_size", [8, 60]
rho_0=rho_0, kT=kT, )
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3) def test_resting_fluid(zero_centered: bool, domain_size: int, target=Target.CPU):
rho_0 = 0.86
kT = 4e-4
L = [domain_size] * 3
dh, time_loop = get_fluctuating_lb(
size=L[0],
target=target,
rho_0=rho_0,
kT=kT,
omega_shear=0.8,
omega_bulk=0.5,
omega_even=0.04,
omega_odd=0.3,
zero_centered=zero_centered,
)
# Test # Test
t = 0 t = 0
...@@ -168,38 +243,43 @@ def test_resting_fluid(target=Target.CPU): ...@@ -168,38 +243,43 @@ def test_resting_fluid(target=Target.CPU):
res_u = dh.gather_array("u").reshape((-1, 3)) res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,)) res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation # mass conservationo
# density per cell fluctuates, but toal mass is conserved
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12) np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
# momentum conservation # momentum conservation
momentum = np.dot(res_rho, res_u) momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose(momentum, [0, 0, 0], atol=1E-10) np.testing.assert_allclose(momentum, [0, 0, 0], atol=1e-10)
# temperature # temperature (fluctuates around pre-set kT)
kinetic_energy = 1 / 2 * np.dot(res_rho, res_u * res_u) / np.product(L) kinetic_energy = 1 / 2 * np.dot(res_rho, res_u * res_u) / np.prod(L)
np.testing.assert_allclose( kT_tol = 0.075 *(16/domain_size)**(3/2)
kinetic_energy, [kT / 2] * 3, atol=kT * 0.01) np.testing.assert_allclose(kinetic_energy, [kT / 2] * 3, rtol=kT_tol)
# velocity distribution # velocity distribution
v_hist, v_bins = np.histogram( v_hist, v_bins = np.histogram(
res_u, bins=11, range=(-.075, .075), density=True) res_u, bins=11, range=(-0.075, 0.075), density=True
)
# Calculate expected values from single # Calculate expected values from single
v_expected = [] v_expected = []
for j in range(len(v_hist)): for j in range(len(v_hist)):
# Maxwell distribution # Maxwell distribution
res = 1. / (v_bins[j + 1] - v_bins[j]) * \ res = (
single_component_maxwell( 1.0
v_bins[j], v_bins[j + 1], kT, rho_0) / (v_bins[j + 1] - v_bins[j])
* single_component_maxwell(v_bins[j], v_bins[j + 1], kT, rho_0)
)
v_expected.append(res) v_expected.append(res)
v_expected = np.array(v_expected) v_expected = np.array(v_expected)
# 10% accuracy on the entire histogram hist_tol_all = 0.75 *(16/domain_size)**(3/2)
np.testing.assert_allclose(v_hist, v_expected, rtol=0.1) np.testing.assert_allclose(v_hist, v_expected, rtol=hist_tol_all)
# 1% accuracy on the middle part hist_tol_center = hist_tol_all/10
remove = 3 remove = 3
np.testing.assert_allclose( np.testing.assert_allclose(
v_hist[remove:-remove], v_expected[remove:-remove], rtol=0.01) v_hist[remove:-remove], v_expected[remove:-remove], rtol=hist_tol_center
)
# pressure tensor against expressions from # pressure tensor against expressions from
# Duenweg, Schiller, Ladd, https://arxiv.org/abs/0707.1581 # Duenweg, Schiller, Ladd, https://arxiv.org/abs/0707.1581
...@@ -212,19 +292,35 @@ def test_resting_fluid(target=Target.CPU): ...@@ -212,19 +292,35 @@ def test_resting_fluid(target=Target.CPU):
# Diagonal elements are rho c_s^22 +<u,u>. When the fluid is # Diagonal elements are rho c_s^22 +<u,u>. When the fluid is
# thermalized, the expectation value of <u,u> = kT due to the # thermalized, the expectation value of <u,u> = kT due to the
# equi-partition theorem. # equi-partition theorem.
p_av_expected = np.diag([rho_0 * c_s ** 2 + kT] * 3) p_av_expected = np.diag([rho_0 * c_s**2 + kT] * 3)
pressure_atol = c_s**2 / 200 *(16/domain_size)**(3/2)
np.testing.assert_allclose( np.testing.assert_allclose(
np.mean(res_pressure, axis=0), p_av_expected, atol=c_s ** 2 / 2000) np.mean(res_pressure, axis=0), p_av_expected, atol=pressure_atol)
def test_point_force(target=Target.CPU): @pytest.mark.parametrize(
"zero_centered", [False, True], ids=["regular-storage", "zero-centered"]
)
@pytest.mark.parametrize(
"domain_size", [8, 60]
)
def test_point_force(zero_centered: bool, domain_size: int, target=Target.CPU):
"""Test momentum balance for thermalized fluid with applied poitn forces""" """Test momentum balance for thermalized fluid with applied poitn forces"""
rho_0 = 0.86 rho_0 = 0.86
kT = 4E-4 kT = 4e-4
L = [8] * 3 L = [domain_size] * 3
dh, time_loop = get_fluctuating_lb(size=L[0], target=target, dh, time_loop = get_fluctuating_lb(
rho_0=rho_0, kT=kT, size=L[0],
omega_shear=0.8, omega_bulk=0.5, omega_even=.04, omega_odd=0.3) target=target,
rho_0=rho_0,
kT=kT,
omega_shear=0.8,
omega_bulk=0.5,
omega_even=0.8,
omega_odd=0.8,
zero_centered=zero_centered
)
# Test # Test
t = 0 t = 0
...@@ -233,17 +329,17 @@ def test_point_force(target=Target.CPU): ...@@ -233,17 +329,17 @@ def test_point_force(target=Target.CPU):
introduced_momentum = np.zeros(3) introduced_momentum = np.zeros(3)
for i in range(100): for i in range(100):
point_force = 1E-5 * (np.random.random(3) - .5) point_force = 1e-2/domain_size**(3/2) * (np.random.random(3) - 0.5)
introduced_momentum += point_force introduced_momentum += point_force
# Note that ghost layers are included in the indexing # Note that ghost layers are included in the indexing
force_pos = np.random.randint(1, L[0] - 2, size=3) force_pos = np.random.randint(1, L[0] - 2, size=3)
dh.cpu_arrays["force"][force_pos[0], dh.cpu_arrays["force"][force_pos[0], force_pos[1], force_pos[2]] = point_force
force_pos[1], force_pos[2]] = point_force
t = time_loop(t, 1) t = time_loop(t, 1)
res_u = dh.gather_array("u").reshape((-1, 3)) res_u = dh.gather_array("u").reshape((-1, 3))
res_rho = dh.gather_array("rho").reshape((-1,)) res_rho = dh.gather_array("rho").reshape((-1,))
# mass conservation # mass conservation
np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12) np.testing.assert_allclose(np.mean(res_rho), rho_0, atol=3E-12)
...@@ -251,86 +347,127 @@ def test_point_force(target=Target.CPU): ...@@ -251,86 +347,127 @@ def test_point_force(target=Target.CPU):
# momentum conservation # momentum conservation
momentum = np.dot(res_rho, res_u) momentum = np.dot(res_rho, res_u)
np.testing.assert_allclose( np.testing.assert_allclose(
momentum, introduced_momentum + 0.5 * point_force, atol=1E-10) momentum, introduced_momentum + 0.5 * point_force, atol=1e-10
dh.cpu_arrays["force"][force_pos[0], )
force_pos[1], force_pos[2]] = np.zeros(3) dh.cpu_arrays["force"][force_pos[0], force_pos[1], force_pos[2]] = np.zeros(3)
@pytest.mark.skipif(not get_supported_instruction_sets(), reason="No vector instruction sets supported") @pytest.mark.skipif(
@pytest.mark.parametrize('data_type', ("float32", "float64")) not get_supported_instruction_sets(), reason="No vector instruction sets supported"
@pytest.mark.parametrize('assume_aligned', (True, False)) )
@pytest.mark.parametrize('assume_inner_stride_one', (True, False)) @pytest.mark.parametrize("data_type", ("float32", "float64"))
@pytest.mark.parametrize('assume_sufficient_line_padding', (True, False)) @pytest.mark.parametrize("assume_aligned", (True, False))
def test_vectorization(data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding): @pytest.mark.parametrize("assume_inner_stride_one", (True, False))
@pytest.mark.parametrize("assume_sufficient_line_padding", (True, False))
def test_vectorization(
data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding
):
stencil = LBStencil(Stencil.D3Q19) stencil = LBStencil(Stencil.D3Q19)
pdfs, pdfs_tmp = ps.fields(f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout='fzyx') pdfs, pdfs_tmp = ps.fields(
f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout="fzyx"
)
method = create_mrt_orthogonal( method = create_mrt_orthogonal(
stencil=stencil, stencil=stencil, compressible=True, weighted=True, relaxation_rates=rr_getter
)
rng_node = (
ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
)
lbm_config = LBMConfig(
lb_method=method,
fluctuating={
"temperature": sp.Symbol("kT"),
"rng_node": rng_node,
"block_offsets": tuple([0] * stencil.D),
},
compressible=True, compressible=True,
weighted=True, zero_centered=False,
relaxation_rates=rr_getter) stencil=method.stencil,
kernel_type="collide_only",
rng_node = ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats )
lbm_config = LBMConfig(lb_method=method, fluctuating={'temperature': sp.Symbol("kT"), lbm_opt = LBMOptimisation(
'rng_node': rng_node, cse_global=True, symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp
'block_offsets': tuple([0] * stencil.D)}, )
compressible=True, zero_centered=False,
stencil=method.stencil, kernel_type='collide_only')
lbm_opt = LBMOptimisation(cse_global=True, symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp)
collision = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt) collision = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
instruction_sets = _skip_instruction_sets_windows(get_supported_instruction_sets()) instruction_sets = _skip_instruction_sets_windows(get_supported_instruction_sets())
instruction_set = instruction_sets[-1] instruction_set = instruction_sets[-1]
config = ps.CreateKernelConfig(target=Target.CPU, config = ps.CreateKernelConfig(
data_type=data_type, default_number_float=data_type, target=Target.CPU,
cpu_vectorize_info={'instruction_set': instruction_set, data_type=data_type,
'assume_aligned': assume_aligned, default_number_float=data_type,
'assume_inner_stride_one': assume_inner_stride_one, cpu_vectorize_info={
'assume_sufficient_line_padding': assume_sufficient_line_padding, "instruction_set": instruction_set,
} "assume_aligned": assume_aligned,
) "assume_inner_stride_one": assume_inner_stride_one,
"assume_sufficient_line_padding": assume_sufficient_line_padding,
if not assume_inner_stride_one and 'storeS' not in get_vector_instruction_set(data_type, instruction_set): },
with pytest.warns(UserWarning) as warn: )
if not assume_inner_stride_one and "storeS" not in get_vector_instruction_set(
data_type, instruction_set
):
with pytest.warns(UserWarning) as pytest_warnings:
ast = ps.create_kernel(collision, config=config) ast = ps.create_kernel(collision, config=config)
assert 'Could not vectorize loop' in warn[0].message.args[0] assert "Could not vectorize loop" in pytest_warnings[0].message.args[0]
else: else:
with pytest.warns(None) as warn: ast = ps.create_kernel(collision, config=config)
ast = ps.create_kernel(collision, config=config)
assert len(warn) == 0
ast.compile() ast.compile()
code = get_code_str(ast) code = get_code_str(ast)
print(code) print(code)
@pytest.mark.parametrize('data_type', ("float32", "float64")) @pytest.mark.parametrize("data_type", ("float32", "float64"))
@pytest.mark.parametrize('assume_aligned', (True, False)) @pytest.mark.parametrize("assume_aligned", (True, False))
@pytest.mark.parametrize('assume_inner_stride_one', (True, False)) @pytest.mark.parametrize("assume_inner_stride_one", (True, False))
@pytest.mark.parametrize('assume_sufficient_line_padding', (True, False)) @pytest.mark.parametrize("assume_sufficient_line_padding", (True, False))
def test_fluctuating_lb_issue_188_wlb(data_type, assume_aligned, def test_fluctuating_lb_issue_188_wlb(
assume_inner_stride_one, assume_sufficient_line_padding): data_type, assume_aligned, assume_inner_stride_one, assume_sufficient_line_padding
):
stencil = LBStencil(Stencil.D3Q19) stencil = LBStencil(Stencil.D3Q19)
temperature = sp.symbols("temperature") temperature = sp.symbols("temperature")
pdfs, pdfs_tmp = ps.fields(f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout='fzyx') pdfs, pdfs_tmp = ps.fields(
f"pdfs({stencil.Q}), pdfs_tmp({stencil.Q}): {data_type}[3D]", layout="fzyx"
rng_node = ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats )
fluctuating = {'temperature': temperature,
'block_offsets': 'walberla', rng_node = (
'rng_node': rng_node} ps.rng.PhiloxTwoDoubles if data_type == "float64" else ps.rng.PhiloxFourFloats
)
lbm_config = LBMConfig(stencil=stencil, method=Method.MRT, compressible=True, fluctuating = {
weighted=True, zero_centered=False, relaxation_rate=1.4, "temperature": temperature,
fluctuating=fluctuating) "block_offsets": "walberla",
lbm_opt = LBMOptimisation(symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp, cse_global=True) "rng_node": rng_node,
}
lbm_config = LBMConfig(
stencil=stencil,
method=Method.MRT,
compressible=True,
weighted=True,
zero_centered=False,
relaxation_rate=1.4,
fluctuating=fluctuating,
)
lbm_opt = LBMOptimisation(
symbolic_field=pdfs, symbolic_temporary_field=pdfs_tmp, cse_global=True
)
up = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt) up = create_lb_update_rule(lbm_config=lbm_config, lbm_optimisation=lbm_opt)
cpu_vectorize_info = {'instruction_set': 'avx', 'assume_inner_stride_one': True, 'assume_aligned': True} cpu_vectorize_info = {
config = ps.CreateKernelConfig(target=ps.Target.CPU, data_type=data_type, default_number_float=data_type, "instruction_set": "avx",
cpu_vectorize_info=cpu_vectorize_info) "assume_inner_stride_one": True,
"assume_aligned": True,
}
config = ps.CreateKernelConfig(
target=ps.Target.CPU,
data_type=data_type,
default_number_float=data_type,
cpu_vectorize_info=cpu_vectorize_info,
)
ast = create_kernel(up, config=config) ast = create_kernel(up, config=config)
code = ps.get_code_str(ast) code = ps.get_code_str(ast)
......
...@@ -12,10 +12,9 @@ from lbmpy.macroscopic_value_kernels import macroscopic_values_setter, macroscop ...@@ -12,10 +12,9 @@ from lbmpy.macroscopic_value_kernels import macroscopic_values_setter, macroscop
from lbmpy.moments import (is_bulk_moment, moments_up_to_component_order, from lbmpy.moments import (is_bulk_moment, moments_up_to_component_order,
exponents_to_polynomial_representations, exponent_tuple_sort_key) exponents_to_polynomial_representations, exponent_tuple_sort_key)
from lbmpy.stencils import LBStencil from lbmpy.stencils import LBStencil
from lbmpy.updatekernels import create_stream_pull_with_output_kernel
# all force models available are defined in the ForceModel enum, but Cumulant is not a "real" force model # all force models available are defined in the ForceModel enum, but Cumulant is not a "real" force model
force_models = [f for f in ForceModel] force_models = [f for f in ForceModel if f is not ForceModel.CENTRALMOMENT]
@pytest.mark.parametrize("method_enum", [Method.SRT, Method.TRT, Method.MRT, Method.CUMULANT]) @pytest.mark.parametrize("method_enum", [Method.SRT, Method.TRT, Method.MRT, Method.CUMULANT])
...@@ -25,7 +24,7 @@ force_models = [f for f in ForceModel] ...@@ -25,7 +24,7 @@ force_models = [f for f in ForceModel]
def test_total_momentum(method_enum, zero_centered, force_model, omega): def test_total_momentum(method_enum, zero_centered, force_model, omega):
if method_enum == Method.CUMULANT and \ if method_enum == Method.CUMULANT and \
force_model not in (ForceModel.SIMPLE, ForceModel.LUO, ForceModel.GUO, ForceModel.HE): force_model not in (ForceModel.SIMPLE, ForceModel.LUO, ForceModel.GUO, ForceModel.HE):
return True return
L = (16, 16) L = (16, 16)
stencil = LBStencil(Stencil.D2Q9) stencil = LBStencil(Stencil.D2Q9)
...@@ -198,7 +197,7 @@ def test_literature(force_model, stencil, method): ...@@ -198,7 +197,7 @@ def test_literature(force_model, stencil, method):
assert len(omega_momentum) == 1 assert len(omega_momentum) == 1
omega_momentum = omega_momentum[0] omega_momentum = omega_momentum[0]
subs_dict = lb_method.subs_dict_relxation_rate subs_dict = lb_method.subs_dict_relaxation_rate
force_term = sp.simplify(lb_method.force_model(lb_method).subs(subs_dict)) force_term = sp.simplify(lb_method.force_model(lb_method).subs(subs_dict))
u = sp.Matrix(lb_method.first_order_equilibrium_moment_symbols) u = sp.Matrix(lb_method.first_order_equilibrium_moment_symbols)
rho = lb_method.conserved_quantity_computation.density_symbol rho = lb_method.conserved_quantity_computation.density_symbol
...@@ -283,7 +282,7 @@ def test_modes_central_moment(force_model, compressible): ...@@ -283,7 +282,7 @@ def test_modes_central_moment(force_model, compressible):
compressible=compressible, force_model=force_model, force=tuple(F)) compressible=compressible, force_model=force_model, force=tuple(F))
method = create_lb_method(lbm_config=lbm_config) method = create_lb_method(lbm_config=lbm_config)
subs_dict = method.subs_dict_relxation_rate subs_dict = method.subs_dict_relaxation_rate
force_moments = method.force_model.central_moment_space_forcing(method) force_moments = method.force_model.central_moment_space_forcing(method)
force_moments = force_moments.subs(subs_dict) force_moments = force_moments.subs(subs_dict)
...@@ -309,9 +308,9 @@ def test_symmetric_forcing_equivalence(force_model, compressible): ...@@ -309,9 +308,9 @@ def test_symmetric_forcing_equivalence(force_model, compressible):
nested_moments=moment_polys, compressible=True, force_model=force_model, force=tuple(F)) nested_moments=moment_polys, compressible=True, force_model=force_model, force=tuple(F))
method = create_lb_method(lbm_config=lbm_config) method = create_lb_method(lbm_config=lbm_config)
if not method.force_model.has_symmetric_central_moment_forcing: if not method.force_model.has_symmetric_central_moment_forcing:
return True return
subs_dict = method.subs_dict_relxation_rate subs_dict = method.subs_dict_relaxation_rate
force_moments = method.force_model.central_moment_space_forcing(method) force_moments = method.force_model.central_moment_space_forcing(method)
force_moments = force_moments.subs(subs_dict) force_moments = force_moments.subs(subs_dict)
...@@ -336,7 +335,7 @@ def test_modes_central_moment_longrun(stencil, force_model, compressible): ...@@ -336,7 +335,7 @@ def test_modes_central_moment_longrun(stencil, force_model, compressible):
compressible=compressible, force_model=force_model, force=tuple(F)) compressible=compressible, force_model=force_model, force=tuple(F))
method = create_lb_method(lbm_config=lbm_config) method = create_lb_method(lbm_config=lbm_config)
subs_dict = method.subs_dict_relxation_rate subs_dict = method.subs_dict_relaxation_rate
force_moments = method.force_model.moment_space_forcing(method) force_moments = method.force_model.moment_space_forcing(method)
force_moments = force_moments.subs(subs_dict) force_moments = force_moments.subs(subs_dict)
...@@ -360,7 +359,7 @@ def _check_modes(stencil, force_model, compressible): ...@@ -360,7 +359,7 @@ def _check_modes(stencil, force_model, compressible):
compressible=compressible, force_model=force_model, force=tuple(F)) compressible=compressible, force_model=force_model, force=tuple(F))
method = create_lb_method(lbm_config=lbm_config) method = create_lb_method(lbm_config=lbm_config)
subs_dict = method.subs_dict_relxation_rate subs_dict = method.subs_dict_relaxation_rate
force_moments = method.force_model.moment_space_forcing(method) force_moments = method.force_model.moment_space_forcing(method)
force_moments = force_moments.subs(subs_dict) force_moments = force_moments.subs(subs_dict)
......
File moved
...@@ -6,7 +6,7 @@ from pystencils import Target, CreateKernelConfig ...@@ -6,7 +6,7 @@ from pystencils import Target, CreateKernelConfig
def test_gpu_block_size_limiting(): def test_gpu_block_size_limiting():
pytest.importorskip("pycuda") pytest.importorskip("cupy")
too_large = 2048*2048 too_large = 2048*2048
lbm_config = LBMConfig(method=Method.CUMULANT, stencil=LBStencil(Stencil.D3Q19), lbm_config = LBMConfig(method=Method.CUMULANT, stencil=LBStencil(Stencil.D3Q19),
relaxation_rate=1.8, compressible=True) relaxation_rate=1.8, compressible=True)
...@@ -17,5 +17,5 @@ def test_gpu_block_size_limiting(): ...@@ -17,5 +17,5 @@ def test_gpu_block_size_limiting():
kernel = ast.compile() kernel = ast.compile()
assert all(b < too_large for b in limited_block_size['block']) assert all(b < too_large for b in limited_block_size['block'])
bs = [too_large, too_large, too_large] bs = [too_large, too_large, too_large]
ast.indexing.limit_block_size_by_register_restriction(bs, kernel.num_regs) bs = ast.indexing.limit_block_size_by_register_restriction(bs, kernel.num_regs)
assert all(b < too_large for b in bs) assert all(b < too_large for b in bs)