diff --git a/binder/environment.yml b/binder/environment.yml
index 2df28e8726bb78e60584279bb376bd579a16a0d0..b4acd2e2a083295c272c4082c80ed7f46d2ca498 100644
--- a/binder/environment.yml
+++ b/binder/environment.yml
@@ -7,7 +7,8 @@
 #     conda env create -f conda_environment_user.yml
 #     . activate pystencils
 #
-# If you have CUDA installed and want to use your GPU, uncomment the last line to install pycuda
+# If you have CUDA or ROCm installed and want to use your GPU, uncomment the last line to install cupy
+# Be careful to install the correct cupy version depending on your CUDA or ROCm version ...
 #
 # ----------------------------------------------------------------------------------------------------------------------
 
@@ -33,4 +34,4 @@ dependencies:
       - pyevtk # VTK output for serial simulations
       - blitzdb # file-based No-SQL database to store simulation results
       - pystencils
-      #- pycuda # add this if you have CUDA installed
+      #- cupy # add this if you have CUDA or ROCm installed
diff --git a/conftest.py b/conftest.py
index 9f9eac6300f08d0854bb9e5bb67c068cb0dabd96..e71dff56416d4fa2a5c01eab39e1853b90fe1969 100644
--- a/conftest.py
+++ b/conftest.py
@@ -46,7 +46,7 @@ add_path_to_ignore('pystencils_tests/benchmark')
 add_path_to_ignore('_local_tmp')
 
 try:
-    import pycuda
+    import cupy
 except ImportError:
     collect_ignore += [os.path.join(SCRIPT_FOLDER, "lbmpy_tests/test_cpu_gpu_equivalence.py")]
 
diff --git a/doc/notebooks/00_tutorial_lbmpy_walberla_overview.ipynb b/doc/notebooks/00_tutorial_lbmpy_walberla_overview.ipynb
index 2ce352c1aa47351d04d9ad426caa183392c543e4..d1181427c738344f5f937bcaecdd693c66525fc4 100644
--- a/doc/notebooks/00_tutorial_lbmpy_walberla_overview.ipynb
+++ b/doc/notebooks/00_tutorial_lbmpy_walberla_overview.ipynb
@@ -17,14 +17,14 @@
    "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    gpu = False\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    gpu = True\n",
     "    target = ps.Target.GPU"
    ]
@@ -136,7 +136,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Note that this code has the relaxation rate and array sizes inserted as numeric constants. This additional information helps the C compiler to generate faster code. Also, having the code in symbolic form makes it easy to generate code for different platforms as well: C(++) for CPUs, optionally with platform specific SIMD instrinsics or CUDA for Nvidia GPUs. To run the lid driven cavity on GPUs all it takes are the following changes:"
+    "Note that this code has the relaxation rate and array sizes inserted as numeric constants. This additional information helps the C compiler to generate faster code. Also, having the code in symbolic form makes it easy to generate code for different platforms as well: C(++) for CPUs, optionally with platform specific SIMD instrinsics or GPUs with CUDA. To run the lid driven cavity on GPUs all it takes are the following changes:"
    ]
   },
   {
@@ -603,7 +603,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.2"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/doc/notebooks/01_tutorial_predefinedScenarios.ipynb b/doc/notebooks/01_tutorial_predefinedScenarios.ipynb
index 40483f9cd720e6d35df6828890651f5b19dbd8e7..c7f0f93981506ee952e2345766b496294e9466b4 100644
--- a/doc/notebooks/01_tutorial_predefinedScenarios.ipynb
+++ b/doc/notebooks/01_tutorial_predefinedScenarios.ipynb
@@ -8,7 +8,7 @@
     {
      "data": {
       "text/plain": [
-       "<module 'pycuda' from '/home/markus/miniconda3/envs/pystencils/lib/python3.8/site-packages/pycuda/__init__.py'>"
+       "<module 'cupy' from '/home/markus/.local/lib/python3.11/site-packages/cupy/__init__.py'>"
       ]
      },
      "execution_count": 1,
@@ -18,7 +18,7 @@
    ],
    "source": [
     "import pytest\n",
-    "pytest.importorskip('pycuda')"
+    "pytest.importorskip('cupy')"
    ]
   },
   {
@@ -660,7 +660,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -674,7 +674,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.2"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb b/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb
index 236ee1b9f3cf6c3cb4ac391289ea008693308b86..ded1b3321281441b8573c78e911c536b9ceaeef4 100644
--- a/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb
+++ b/doc/notebooks/10_tutorial_conservative_allen_cahn_two_phase.ipynb
@@ -30,32 +30,24 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "If `pycuda` is installed the simulation automatically runs on GPU"
+    "If `cupy` is installed the simulation automatically runs on GPU"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 2,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No pycuda installed\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    gpu = False\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    gpu = True\n",
     "    target = ps.Target.GPU"
    ]
@@ -925,7 +917,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy/advanced_streaming/communication.py b/lbmpy/advanced_streaming/communication.py
index 786c60092d85ffbf28d5dfa9880f6d005ca8da4c..9c7dc4ca16af5ddb71dc0e147015af3c9bbde411 100644
--- a/lbmpy/advanced_streaming/communication.py
+++ b/lbmpy/advanced_streaming/communication.py
@@ -12,15 +12,15 @@ class LBMPeriodicityHandling:
 
     def __init__(self, stencil, data_handling, pdf_field_name,
                  streaming_pattern='pull', ghost_layers=1,
-                 pycuda_direct_copy=True):
+                 cupy_direct_copy=True):
         """
             Periodicity Handling for Lattice Boltzmann Streaming.
 
             **On the usage with cuda:**
-            - pycuda allows the copying of sliced arrays within device memory using the numpy syntax,
+            - cupy allows the copying of sliced arrays within device memory using the numpy syntax,
             e.g. `dst[:,0] = src[:,-1]`. In this implementation, this is the default for periodicity
-            handling. Alternatively, if you set `pycuda_direct_copy=False`, GPU kernels are generated and
-            compiled. The compiled kernels are almost twice as fast in execution as pycuda array copying,
+            handling. Alternatively, if you set `cupy_direct_copy=False`, GPU kernels are generated and
+            compiled. The compiled kernels are almost twice as fast in execution as cupy array copying,
             but especially for large stencils like D3Q27, their compilation can take up to 20 seconds.
             Choose your weapon depending on your use case.
         """
@@ -40,7 +40,7 @@ class LBMPeriodicityHandling:
         self.inplace_pattern = is_inplace(streaming_pattern)
 
         self.cpu = self.target == Target.CPU
-        self.pycuda_direct_copy = self.target == Target.GPU and pycuda_direct_copy
+        self.cupy_direct_copy = self.target == Target.GPU and cupy_direct_copy
 
         def is_copy_direction(direction):
             s = 0
@@ -63,7 +63,7 @@ class LBMPeriodicityHandling:
                                                            ghost_layers=ghost_layers)
             self.comm_slices.append(list(chain.from_iterable(v for k, v in slices_per_comm_dir.items())))
 
-        if self.target == Target.GPU and not pycuda_direct_copy:
+        if self.target == Target.GPU and not cupy_direct_copy:
             self.device_copy_kernels = list()
             for timestep in timesteps:
                 self.device_copy_kernels.append(self._compile_copy_kernels(timestep))
@@ -90,7 +90,7 @@ class LBMPeriodicityHandling:
 
     def _periodicity_handling_gpu(self, prev_timestep):
         arr = self.dh.gpu_arrays[self.pdf_field_name]
-        if self.pycuda_direct_copy:
+        if self.cupy_direct_copy:
             for src, dst in self.comm_slices[prev_timestep.idx]:
                 arr[dst] = arr[src]
         else:
diff --git a/lbmpy/max_domain_size_info.py b/lbmpy/max_domain_size_info.py
index 65fa50f97a7401dd37e2d38c037871817e796f56..fcd2ed0984cdcb54600bc63c1d29651a28f3357c 100644
--- a/lbmpy/max_domain_size_info.py
+++ b/lbmpy/max_domain_size_info.py
@@ -26,16 +26,19 @@ Examples:
 import warnings
 
 import numpy as np
+import pystencils
 
-# Optional packages cpuinfo, pycuda and psutil for hardware queries
+# Optional packages cpuinfo, cupy and psutil for hardware queries
 try:
     from cpuinfo import get_cpu_info
 except ImportError:
     get_cpu_info = None
 
 try:
-    from pycuda.autoinit import device
+    import cupy
+    device = cupy.cuda.Device(pystencils.GPU_DEVICE)
 except ImportError:
+    cupy = None
     device = None
 
 try:
@@ -114,7 +117,7 @@ def memory_sizes_of_current_machine():
             result['L3'] = cpu_info['l3_cache_size']
 
     if device:
-        size = device.total_memory() / (1024 * 1024)
+        size = device.mem_info[1] / (1024 * 1024)
         result['GPU'] = "{0:.0f} MB".format(size)
 
     if virtual_memory:
@@ -124,7 +127,7 @@ def memory_sizes_of_current_machine():
 
     if not result:
         warnings.warn("Couldn't query for any local memory size."
-                      "Install py-cpuinfo to get cache sizes, psutil for RAM size and pycuda for GPU memory size.")
+                      "Install py-cpuinfo to get cache sizes, psutil for RAM size and cupy for GPU memory size.")
 
     return result
 
diff --git a/lbmpy_tests/advanced_streaming/test_fully_periodic_flow.py b/lbmpy_tests/advanced_streaming/test_fully_periodic_flow.py
index 0c37cfc37c52506d1a373815fa9d1d849bf03cd5..413aaa07320391093bd7c202cc023251aa2f9b67 100644
--- a/lbmpy_tests/advanced_streaming/test_fully_periodic_flow.py
+++ b/lbmpy_tests/advanced_streaming/test_fully_periodic_flow.py
@@ -20,7 +20,7 @@ all_results = dict()
 targets = [Target.CPU]
 
 try:
-    import pycuda.autoinit
+    import cupy
     targets += [Target.GPU]
 except Exception:
     pass
diff --git a/lbmpy_tests/advanced_streaming/test_periodic_pipe_with_force.py b/lbmpy_tests/advanced_streaming/test_periodic_pipe_with_force.py
index 42b6671a35f61167e63cba0171b12e08dd022b7b..2dc18be870be2a38843b9d673e8e32da4957f5c2 100644
--- a/lbmpy_tests/advanced_streaming/test_periodic_pipe_with_force.py
+++ b/lbmpy_tests/advanced_streaming/test_periodic_pipe_with_force.py
@@ -21,7 +21,7 @@ all_results = dict()
 targets = [Target.CPU]
 
 try:
-    import pycuda.autoinit
+    import cupy
     targets += [Target.GPU]
 except Exception:
     pass
diff --git a/lbmpy_tests/cumulantmethod/test_flow_around_sphere.py b/lbmpy_tests/cumulantmethod/test_flow_around_sphere.py
index 9be652aa70386ad68030ce34fec43d92d5fafb43..6db3fa9fbd3c91127b305cfda4864464763b2d64 100644
--- a/lbmpy_tests/cumulantmethod/test_flow_around_sphere.py
+++ b/lbmpy_tests/cumulantmethod/test_flow_around_sphere.py
@@ -136,7 +136,7 @@ def flow_around_sphere(stencil, galilean_correction, L_LU, total_steps):
 @pytest.mark.parametrize('stencil', [Stencil.D2Q9, Stencil.D3Q19, Stencil.D3Q27])
 @pytest.mark.parametrize('galilean_correction', [False, True])
 def test_flow_around_sphere_short(stencil, galilean_correction):
-    pytest.importorskip('pycuda')
+    pytest.importorskip('cupy')
     flow_around_sphere(LBStencil(stencil), galilean_correction, 5, 200)
 
 
@@ -144,5 +144,5 @@ def test_flow_around_sphere_short(stencil, galilean_correction):
 @pytest.mark.parametrize('galilean_correction', [False, True])
 @pytest.mark.longrun
 def test_flow_around_sphere_long(stencil, galilean_correction):
-    pytest.importorskip('pycuda')
+    pytest.importorskip('cupy')
     flow_around_sphere(LBStencil(stencil), galilean_correction, 20, 3000)
diff --git a/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb b/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb
index b984e24d80049db2d4357c23bc9d2e4974120972..501abf4ceeb695021beea82452c46ed571183f77 100644
--- a/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb
+++ b/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb
@@ -33,25 +33,16 @@
    "cell_type": "code",
    "execution_count": 3,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No pycuda installed\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
-    "    import pycuda.gpuarray as gpuarray\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    target = ps.Target.GPU"
    ]
   },
@@ -238,7 +229,28 @@
    "cell_type": "code",
    "execution_count": 6,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "ename": "AttributeError",
+     "evalue": "'tuple' object has no attribute 'items'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[6], line 4\u001b[0m\n\u001b[1;32m      1\u001b[0m srt_config \u001b[38;5;241m=\u001b[39m LBMConfig(stencil\u001b[38;5;241m=\u001b[39mstencil, method\u001b[38;5;241m=\u001b[39mMethod\u001b[38;5;241m.\u001b[39mSRT, relaxation_rate\u001b[38;5;241m=\u001b[39mviscous_rr,\n\u001b[1;32m      2\u001b[0m                        force_model\u001b[38;5;241m=\u001b[39mForceModel\u001b[38;5;241m.\u001b[39mSIMPLE, force\u001b[38;5;241m=\u001b[39mforce, streaming_pattern\u001b[38;5;241m=\u001b[39mstreaming_pattern)\n\u001b[0;32m----> 4\u001b[0m srt_flow \u001b[38;5;241m=\u001b[39m \u001b[43mPeriodicPipeFlow\u001b[49m\u001b[43m(\u001b[49m\u001b[43msrt_config\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mLBMOptimisation\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      5\u001b[0m srt_flow\u001b[38;5;241m.\u001b[39minit()\n\u001b[1;32m      6\u001b[0m srt_flow\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;241m400\u001b[39m)\n",
+      "Cell \u001b[0;32mIn[4], line 47\u001b[0m, in \u001b[0;36mPeriodicPipeFlow.__init__\u001b[0;34m(self, lbm_config, lbm_optimisation, config)\u001b[0m\n\u001b[1;32m     45\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtimesteps:\n\u001b[1;32m     46\u001b[0m     lbm_config \u001b[38;5;241m=\u001b[39m replace(lbm_config, timestep\u001b[38;5;241m=\u001b[39mt, collision_rule\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlb_collision)\n\u001b[0;32m---> 47\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlb_kernels\u001b[38;5;241m.\u001b[39mappend(\u001b[43mcreate_lb_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     48\u001b[0m \u001b[43m                                              \u001b[49m\u001b[43mlbm_optimisation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_optimisation\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     49\u001b[0m \u001b[43m                                              \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m     51\u001b[0m \u001b[38;5;66;03m#   Macroscopic Values\u001b[39;00m\n\u001b[1;32m     52\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdensity \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1.0\u001b[39m\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/creationfunctions.py:505\u001b[0m, in \u001b[0;36mcreate_lb_function\u001b[0;34m(ast, lbm_config, lbm_optimisation, config, optimization, **kwargs)\u001b[0m\n\u001b[1;32m    502\u001b[0m     ast \u001b[38;5;241m=\u001b[39m lbm_config\u001b[38;5;241m.\u001b[39mast\n\u001b[1;32m    504\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ast \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 505\u001b[0m     ast \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_lb_ast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate_rule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    506\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mlbm_optimisation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_optimisation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    508\u001b[0m res \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mcompile()\n\u001b[1;32m    510\u001b[0m res\u001b[38;5;241m.\u001b[39mmethod \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mmethod\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/creationfunctions.py:530\u001b[0m, in \u001b[0;36mcreate_lb_ast\u001b[0;34m(update_rule, lbm_config, lbm_optimisation, config, optimization, **kwargs)\u001b[0m\n\u001b[1;32m    525\u001b[0m     update_rule \u001b[38;5;241m=\u001b[39m create_lb_update_rule(lbm_config\u001b[38;5;241m.\u001b[39mcollision_rule, lbm_config\u001b[38;5;241m=\u001b[39mlbm_config,\n\u001b[1;32m    526\u001b[0m                                         lbm_optimisation\u001b[38;5;241m=\u001b[39mlbm_optimisation, config\u001b[38;5;241m=\u001b[39mconfig)\n\u001b[1;32m    528\u001b[0m field_types \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m(fa\u001b[38;5;241m.\u001b[39mfield\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;28;01mfor\u001b[39;00m fa \u001b[38;5;129;01min\u001b[39;00m update_rule\u001b[38;5;241m.\u001b[39mdefined_symbols \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fa, Field\u001b[38;5;241m.\u001b[39mAccess))\n\u001b[0;32m--> 530\u001b[0m config \u001b[38;5;241m=\u001b[39m \u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcollate_types\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfield_types\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mghost_layers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m    531\u001b[0m ast \u001b[38;5;241m=\u001b[39m create_kernel(update_rule, config\u001b[38;5;241m=\u001b[39mconfig)\n\u001b[1;32m    533\u001b[0m ast\u001b[38;5;241m.\u001b[39mmethod \u001b[38;5;241m=\u001b[39m update_rule\u001b[38;5;241m.\u001b[39mmethod\n",
+      "File \u001b[0;32m/usr/lib/python3.11/dataclasses.py:1492\u001b[0m, in \u001b[0;36mreplace\u001b[0;34m(obj, **changes)\u001b[0m\n\u001b[1;32m   1485\u001b[0m         changes[f\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(obj, f\u001b[38;5;241m.\u001b[39mname)\n\u001b[1;32m   1487\u001b[0m \u001b[38;5;66;03m# Create the new object, which calls __init__() and\u001b[39;00m\n\u001b[1;32m   1488\u001b[0m \u001b[38;5;66;03m# __post_init__() (if defined), using all of the init fields we've\u001b[39;00m\n\u001b[1;32m   1489\u001b[0m \u001b[38;5;66;03m# added and/or left in 'changes'.  If there are values supplied in\u001b[39;00m\n\u001b[1;32m   1490\u001b[0m \u001b[38;5;66;03m# changes that aren't fields, this will correctly raise a\u001b[39;00m\n\u001b[1;32m   1491\u001b[0m \u001b[38;5;66;03m# TypeError.\u001b[39;00m\n\u001b[0;32m-> 1492\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__class__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mchanges\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m<string>:24\u001b[0m, in \u001b[0;36m__init__\u001b[0;34m(self, target, backend, function_name, data_type, default_number_float, default_number_int, iteration_slice, ghost_layers, cpu_openmp, cpu_vectorize_info, cpu_blocking, omp_single_loop, gpu_indexing, gpu_indexing_params, default_assignment_simplifications, cpu_prepend_optimizations, use_auto_for_assignments, index_fields, coordinate_names, allow_double_writes, skip_independence_check)\u001b[0m\n",
+      "File \u001b[0;32m~/pystencils/pystencils/pystencils/config.py:177\u001b[0m, in \u001b[0;36mCreateKernelConfig.__post_init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    174\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_type(dtype)\n\u001b[1;32m    176\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, \u001b[38;5;28mdict\u001b[39m):\n\u001b[0;32m--> 177\u001b[0m     dt \u001b[38;5;241m=\u001b[39m \u001b[43mcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_type\u001b[49m\u001b[43m)\u001b[49m  \u001b[38;5;66;03m# The copy is necessary because BasicType has sympy shinanigans\u001b[39;00m\n\u001b[1;32m    178\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type \u001b[38;5;241m=\u001b[39m defaultdict(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mDataTypeFactory(dt))\n\u001b[1;32m    180\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, defaultdict):\n",
+      "File \u001b[0;32m/usr/lib/python3.11/copy.py:102\u001b[0m, in \u001b[0;36mcopy\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m    100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(rv, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m    101\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m--> 102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_reconstruct\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mrv\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/usr/lib/python3.11/copy.py:273\u001b[0m, in \u001b[0;36m_reconstruct\u001b[0;34m(x, memo, func, args, state, listiter, dictiter, deepcopy)\u001b[0m\n\u001b[1;32m    271\u001b[0m     state \u001b[38;5;241m=\u001b[39m deepcopy(state, memo)\n\u001b[1;32m    272\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(y, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__setstate__\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m--> 273\u001b[0m     \u001b[43my\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__setstate__\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    274\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    275\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(state, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(state) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n",
+      "File \u001b[0;32m~/.local/lib/python3.11/site-packages/sympy/core/basic.py:144\u001b[0m, in \u001b[0;36mBasic.__setstate__\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m    143\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__setstate__\u001b[39m(\u001b[38;5;28mself\u001b[39m, state):\n\u001b[0;32m--> 144\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m name, value \u001b[38;5;129;01min\u001b[39;00m \u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m():\n\u001b[1;32m    145\u001b[0m         \u001b[38;5;28msetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, name, value)\n",
+      "\u001b[0;31mAttributeError\u001b[0m: 'tuple' object has no attribute 'items'"
+     ]
+    }
+   ],
    "source": [
     "srt_config = LBMConfig(stencil=stencil, method=Method.SRT, relaxation_rate=viscous_rr,\n",
     "                       force_model=ForceModel.SIMPLE, force=force, streaming_pattern=streaming_pattern)\n",
@@ -250,32 +262,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.colorbar.Colorbar at 0x127d43bb0>"
-      ]
-     },
-     "execution_count": 7,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqrklEQVR4nO3db4xc133e8efZ2dk/3KVMUqIkhpIrJWaKKEEju4QswH3hxJFDqUFpFxAgxbVVxyglRAJswEWhOC/s1ChgBLGduFAlyDFhCVUtSLBdEwYbmVUduAZqR5SryFIY1ayqWLRokRJFkUtyd2dnfn2xl85kvTvzu3d3ljOc7wcYcObOc++enTtzh789557riBAAAAAAYHkjF7oBAAAAANDPKJoAAAAAoAOKJgAAAADogKIJAAAAADqgaAIAAACADiiaAAAAAKADiiYAAAAAfcn2Ltsv2D5s+95lnrftLxTPP2v7HcXyCdt/ZfuvbT9v+4/a1tli+4DtHxX/bu7WDoomAAAAAH3Hdk3SfZJulnSdpNttX7ckdrOkHcVtj6T7i+Vzkn4zIn5d0vWSdtm+sXjuXklPRsQOSU8WjzuiaAIAAADQj26QdDgiXoyIeUmPStq9JLNb0sOx6HuSNtneVjyeKTL14hZt6zxU3H9I0vu6NWR0db9HOZdddllcc8016/kjAWBd/Z+nX0xnPdKjv1u5B9uM7pFKm2210tlf/qe/2JtGAEAfePrpp1+LiK0Xuh1l/PZvTMXrJ5qV13/62bnnJc22LXowIh5se7xd0sttj49IeueSzSyX2S7paNFT9bSkt0m6LyK+X2SuiIijkhQRR21f3q2t61o0XXPNNTp48OB6/kgAWFc3jdyazo5MbshvuFZLR+21r5oiSlRNzfwXaOvs2XT2wMHH820AgAFj++8udBvKeu1EU99/4qrK69e3/d/ZiNjZIbLcF9rSL6QVMxHRlHS97U2Svm771yLiuSptXdeiCQAAAMDFItSM/IiBCo5Iurrt8VWSXimbiYiTtv9S0i5Jz0l6tRjCd9T2NknHujWEc5oAAAAAlBaSWorKt4SnJO2wfa3tMUm3Sdq3JLNP0oeKWfRulPRmUQxtLXqYZHtS0m9J+tu2de4o7t8h6RvdGkJPEwAAAIC+ExELtu+R9ISkmqS9EfG87buK5x+QtF/SLZIOSzor6cPF6tskPVSc1zQi6bGI+Gbx3GckPWb7I5J+LKnr2HqKJgAAAACVtNTT4XmKiP1aLIzalz3Qdj8k3b3Mes9KevsK23xd0nvKtIOiCQAAAEBpoVCzzERBA4yiCQAAAEAlyXOTBh4TQQAAAABAB/Q0AQAAACgtJDWHpKeJognARaPUhWWnptJZb8hfhLZ23S+ns83p8XS2NZa/uK1qa39xWzXzX4oj8/mL29Zm5tLZXVf8fjobJS6a2zpzJp090OICuwDQbliG51E0AQAAACgtJCaCAAAAAIBOejvheP9gIggAAAAA6ICeJgAAAAClhYKJIAAAAABgRVFqnqCBRtEEAAAAoLTQ8JzTRNEEAAAAoAKrqR5c5qIPMREEAAAAAHRATxMAAACA0kJSi3OaAAAAAGBlwzI8j6IJQF977/gH0tnajl9MZ5uXTqezjel6Prsxf1hdmMx/0TTr+WzU0tE0N/PZWiP/Z8fRcxvS2fovbMxnZxrpbO31mXS2zPvxW3OPpLMAMIhCw1M0cU4TAAAAAHRATxMAAACASloxHD1NFE0AAAAAShum4XkUTQAAAABKC1nNITnbh6IJAAAAQCXDMjxvOEpDAAAAAKiIniYAAAAApXFOEwAAAAB0ZDVjOAauUTQBAAAAKC0ktYbkbB+KJgAAAACVMDwPAEq4aeTWdLZ26ZZ01r/6tnT23JVT6ezs5lo625jOfyE0pvLZ5ng6qlaJo3Xkf7U0N/PZkYX8a1Cby2+3fib/18z6TD2dndiU3xETUxPp7K6td6azzddPpHIHWo+ntwkAWDsUTQAAAABKi+CcJgAAAADoqMXwPAAAAABY3uKU48PR0zQcvyUAAAAAVERPEwAAAIAKOKcJAAAAAFbEdZoAAAAAoItmMBEEAAAAACwrZCaCAAAAAADQ0wQAAACgohYTQQCA9N6x21O52tuuTW+zsW1TOnvu8rF0dnZL/sA995b8GOyF6XRUCxORzrZKZKNeIjuSz2a5lX+93MhnR2bz2dEy2Zl8tjFdIju1MZ2d3DieztaPviWVy34eJelb819JZwGgimG6ThNFEwAAAIDSQh6aiSC6loa2r7b9bduHbD9v+6PF8k/Z/ontZ4rbLb1vLgAAAACsr0xP04Kkj0fED2xvlPS07QPFc5+PiD/pXfMAAAAA9Cuu01SIiKOSjhb3T9s+JGl7rxsGAAAAoH9FSM0hmQii1G9p+xpJb5f0/WLRPbaftb3X9ua1bhwAAACAfmW1VnEbJOmiyfa0pK9K+lhEnJJ0v6RfknS9FnuiPrvCentsH7R98Pjx46tvMQAAAIALLrTY01T1NkhSrbVd12LB9EhEfE2SIuLViGhGREvSFyXdsNy6EfFgROyMiJ1bt25dq3YDAAAAwLroek6TbUv6kqRDEfG5tuXbivOdJOn9kp7rTRMBAAAA9COu0/T33iXpg5J+aPuZYtknJN1u+3ot9sy9JOnOHrQPAAAAQB8KWa0huU5TZva870rLnqm1f+2bAwAAAGBQ0NME4KJ108it6WztbdemcnNv3ZLe5tkr6+nsuUvzB+P5Temo5i+JdLY53cxveCKfrY3ns/XRfHZkJP+7ZbVa+b8kLizU8tm5EtnZfLY2lc82J0v8bhMltjs+ns5uqOc+P/ktlvucH2g9XmLLALAoJLV6PKGD7V2S/kxSTdKfR8Rnljzv4vlbJJ2V9K+L68teLelhSVdKakl6MCL+rFjnU5L+jaTzs9R9IiI6dghRNAEAAADoO7Zrku6TdJOkI5Kesr0vIv6mLXazpB3F7Z1anOH7nZIWJH28KKA2Snra9oG2dT8fEX+SbQtFEwAAAIAKrGZvr7d0g6TDEfGiJNl+VNJuSe1F025JD0dESPqe7U1tE9YdlaSIOG37kKTtS9ZNG45BiAAAAADW1PnheVVvki47fz3X4rZnyY/YLunltsdHimWlMravkfR2Sd9vW3yP7Wdt77W9udvvSk8TAAAAgEpW2dP0WkTs7PD8chtfeuJux4ztaS1eb/ZjEXGqWHy/pE8XuU9L+qyk3+vUUHqaAAAAAPSjI5Kubnt8laRXshnbdS0WTI9ExNfOByLi1YhoRkRL0he1OAywI4omAAAAAKVFeLXD87p5StIO29faHpN0m6R9SzL7JH3Ii26U9GZEHC1m1fuSpEMR8bn2FWxva3v4fknPdWsIw/MAAAAAVNLs4ZTjEbFg+x5JT2hxyvG9EfG87buK5x/Q4rVjb5F0WItTjn+4WP1dkj4o6Ye2nymWnZ9a/I9tX6/F4XkvSbqzW1somgAAAACUFpJavZ09T0WRs3/Jsgfa7oeku5dZ77ta/nwnRcQHy7aDogkAAABABe5pT1M/oWgChlDt0i3pbGPbplTu7JX19DbPXp4/wM5tWTpJzsrmN7XS2di4kM6OT82nsxsmSmTHGunsZD2frTn/OmSV+VI81yjxXpgvkZ0dS2fnJvLZ2fH8V2Grnn8dolbmPxK512GksSm/xTfyn3MAQGcUTQAAAABKW7xOU2+H5/ULiiYAAAAAlTSHZDJuiiYAAAAApYVMTxMAAAAAdNIakp6m4fgtAQAAAKAiepoAAAAAlBYhNRmeBwAAAAAr45wmAAAAAFjB4kQQw3G2z3D8lgAAAABQET1NAAAAACppiuF5AAbIe8c/kM76V9+Wzp67fCyXuzTfcT23JdLZ+S2tdNab5tPZjdOz6ezmDefS2U3j+ewlY/nsZK2Rztadf82yGiWGX5xr1tPZU/OT6ezJiXz2jbF8dqY+kc7Oj+Q+D4vyr5mbuWxtLv/zR09fmc6WOX58a+6RdBbAxS3EOU0AAAAA0MHwnNNE0QQAAACgktaQDM8bjtIQAAAAACqipwkAAABAaVzcFgAAAAC64JwmAAAAAFjB4sVt6WkCAAAAgBUxEQQAAAAAgJ4mAAAAAOVxcVsAAAAA6IKJIABccDeN3JrO1nb8Yjp77sqpdHZ2S+5gOL8pvUnNb2qls940n86+5ZKz6ezl0zP57OTpdHbrWH67l4zOprMbanPpbN3NdDarEbV09mxzPJ09NTaRzh4fm05nJ0Y3prPHRvLvxzfTSWm+NZbOjjRyr+/sbP4/J/Uz+c/55Jmr0tkyx6UDrcfTWQADKIZnIojhKA0BAAAAoCJ6mgAAAACUFhqe2fMomgAAAABUMizD8yiaAAAAAJTG7HkAAAAA0MWwFE1MBAEAAAAAHdDTBAAAAKC00PBMOU7RBAAAAKASZs8DAAAAgJXE8JzTRNEEAAAAoDRmzwPQF0amptLZ5qXT6ezs5lo6O/eW3MFw/pJIbzM2LqSzG6dn09nLp2fS2e0b3kxnt03ks5fVT6ezW2r59k6NzKezdedf36xG5L8uzrTG0tkTo/n37WStkc7W3Upny2i28vMnnWrks/NzuWztXP4/J/WZ/Od8rMTxY+SV/HEJAC4WFE0AAAAAKqGnCQAAAABWMEyz53UdD2D7atvftn3I9vO2P1os32L7gO0fFf9u7n1zAQAAAPSLCFe+DZLMIOoFSR+PiF+RdKOku21fJ+leSU9GxA5JTxaPAQAAAOCi0rVoioijEfGD4v5pSYckbZe0W9JDRewhSe/rURsBAAAA9KGWXPk2SEqd02T7Gklvl/R9SVdExFFpsbCyffkK6+yRtEeS3vrWt66qsQAAAAD6QwzRdZrS86Hanpb0VUkfi4hT2fUi4sGI2BkRO7du3VqljQAAAAD60LCc05TqabJd12LB9EhEfK1Y/KrtbUUv0zZJx3rVSAAAAAD9htnzfsa2JX1J0qGI+FzbU/sk3VHcv0PSN9a+eQAAAABwYWV6mt4l6YOSfmj7mWLZJyR9RtJjtj8i6ceSbu1JCwEAAAD0pUEbZldV16IpIr4rrTi9xXvWtjkA2nnDhnS2MV0vkc0f4Bamc7nmdDO9zfGp+XR284Zz6ezlk6fT2W0Tb6azV42dSGe3jubbsKl2Jp2dcv41qzu/L7IaUUtnz8RYOjs1kv+9JtxIZ8toRPr0Xs0u5D9nc/P5uZbmZnOv78KZ/DbLfM7LHD8mShyXAFzcQsMzEUSp2fMAAAAAQJIUizPoDYP8n9cAAAAAoE2vr9Nke5ftF2wftn3vMs/b9heK55+1/Y5i+dW2v237kO3nbX+0bZ0ttg/Y/lHx7+Zu7aBoAgAAANB3bNck3SfpZknXSbrd9nVLYjdL2lHc9ki6v1i+IOnjEfErkm6UdHfbuvdKejIidkh6snjcEUUTAAAAgNJCPb9O0w2SDkfEixExL+lRSbuXZHZLejgWfU/SpvOXRYqIH0hSRJyWdEjS9rZ1HiruPyTpfd0awjlNAAAAACpY9XWaLrN9sO3xgxHxYNvj7ZJebnt8RNI7l2xjucx2SUd/1kr7Gklvl/T9YtEVEXFUkoprzl7eraEUTQAAAAAqWeVEEK9FxM4Ozy9XkS39iR0ztqclfVXSxyLiVPkmLmJ4HgAAAIB+dETS1W2Pr5L0SjZju67FgumRiPhaW+ZV29uKzDZJx7o1hKIJAAAAQCU9PqfpKUk7bF9re0zSbZL2Lcnsk/ShYha9GyW9WQy5s6QvSToUEZ9bZp07ivt3SPpGt4YwPA8AAABAaRHKFj8Vtx8Ltu+R9ISkmqS9EfG87buK5x+QtF/SLZIOSzor6cPF6u+S9EFJP7T9TLHsExGxX9JnJD1m+yOSfizp1m5toWgCAAAAUMkqJ4Loqihy9i9Z9kDb/ZB09zLrfVfLn++kiHhd0nvKtIOiCVhnN410/WPGz9Su++V0trEx/3FuTOUPcAsTyTM8J5rpbW6YmE9nN42fS2e3js2ks5fVT+e3O1ommz/HdNPIbDq70QvpbL0H31+NEif6no5GOlt3/n1TxmzU09lzzXz21PhkPjsxns7OTYylcgsTtfQ2y3zOyxw/JrZ2vQbkz5Q53h1oPZ7OAugfq5wIYmBwThMAAAAAdEBPEwAAAIBKenlOUz+haAIAAABQWig9C97Ao2gCAAAAUMmQnNJE0QQAAACggh5POd5PmAgCAAAAADqgpwkAAABANUMyPo+iCQAAAEAlwzI8j6IJAAAAQCVc3BYAAAAAQE8TsN5GNmxIZ5vT4+nswmS+e7yZ36xaE7k/IdXGm+ltbhhrpLOXjJ3LZ0dn09kttZl0dlPtTD47UqINIwvp7JTzf+Oql8hmNaKV//mR/72k/OvVqNXS2TOtsXT2zdH8Z7LM+3HD2FQ6eyr5+cl+HiWpOZ4/JpQ6fpQ4LpU53gEYPCGG5wEAAADAykISRRMAAAAArGxYzmmiaAIAAABQzZAUTUwEAQAAAAAd0NMEAAAAoAIzEQQAAAAAdDQkw/MomgAAAACUF8Mz5TjnNAEAAABAB/Q0AQAAAKiG4XkAAAAA0MlwDM+jaALWW62WjrbG8tlmPX/QapX45Ec99yek+mgzvc3JeiOfreWzG2pz6ezUyHw+63x2oxdKbDc/QnrDSD2dHVX+fZNVd37/qpXfZ40Sr9fZEvuhzP4t874p834s8z4fTX5+5pOfR6nc57zU8aPEcWmkxPEOwICipwkAAAAAOhiSoomJIAAAAACgA3qaAAAAAJQXkoZkynGKJgAAAACVxJAMz6NoAgAAAFANRRMAAAAAdDAkw/OYCAIAAAAAOqCnCQAAAEAlZngeAAAAAKwgxDlNAAAAALAyD805TRRNwDqzSxxcavls1PKbLZUdyf0JaSSZk6SaW+lsvVS2WSK70KPtpqOqO39a6ajyO61WYrtpJf6SWO71GrT9m29vmfd59vOT/TxKvTsmlDkulTreAUAfo2gCAAAAUM2QDM/r+udI23ttH7P9XNuyT9n+ie1nitstvW0mAAAAgL4Tq7gNkMwYji9L2rXM8s9HxPXFbf/aNgsAAABA3xuSoqnr8LyI+I7ta9ahLQAAAAAGRWhoJoJYzdnC99h+thi+t3mlkO09tg/aPnj8+PFV/DgAAAAAWH9Vi6b7Jf2SpOslHZX02ZWCEfFgROyMiJ1bt26t+OMAAAAA9BtH9dsgqVQ0RcSrEdGMiJakL0q6YW2bBQAAAKDvDck5TZWKJtvb2h6+X9JzK2UBAAAAYJB1nQjC9lckvVvSZbaPSPqkpHfbvl6LNeJLku7sXRMBAAAA9KNBG2ZXVWb2vNuXWfylHrQFAAAAAPpO16IJAAAAAJY1JFOOUzQBAAAAKG8AJ3SoiqIJAAAAQDVDUjSt5uK2AAAAAHDRo2gCAAAAUEmvL25re5ftF2wftn3vMs/b9heK55+1/Y625/baPmb7uSXrfMr2T2w/U9xu6dYOiiYAAAAA1fTw4ra2a5Luk3SzpOsk3W77uiWxmyXtKG57JN3f9tyXJe1aYfOfj4jri9v+bm2haAIAAABQTQ+LJkk3SDocES9GxLykRyXtXpLZLenhWPQ9SZtsb5OkiPiOpBOr+fXOo2gCAAAAUNpqhuYVw/Mus32w7bZnyY/YLunltsdHimVlM8u5pxjOt9f25m5hiiYAAAAAF8JrEbGz7fbgkueXuwjU0j6qTGap+yX9kqTrJR2V9NluDWXKcQAAAADV9PbitkckXd32+CpJr1TI/AMR8er5+7a/KOmb3RpC0QSss4gSFzRo5rNu5jdbKtvKHQxbyZwkNSPfyd0ola2VyOYPf+W2m46qEa10tl5mp/XgmhkLyv/8Mr9XuderH/Zv/v1Y5n2e/fxkP49S744JZY5LpY53AAZTbz/mT0naYftaST+RdJuk312S2afFoXaPSnqnpDcj4minjdre1pZ5v6TnOuUliiYAAAAAFWWnDq8iIhZs3yPpCUk1SXsj4nnbdxXPPyBpv6RbJB2WdFbSh3/WNvsrkt6txXOnjkj6ZER8SdIf275eiyXfS5Lu7NYWiiYAAAAA1fS4Q7mYDnz/kmUPtN0PSXevsO7tKyz/YNl2MBEEAAAAAHRATxMAAACA8qK3w/P6CUUTAAAAgGoomgAAAACggyEpmjinCQAAAAA6oKcJAAAAQCXDck4TPU0AAAAA0AE9TQAAAACqGZKeJoomYL01m+noyHw+W2vkj1ojC05n3chlFxZq6W2ea9Tz2WY+e7Y5ns6eaY3ls5HPno5GOluPhXRWrRLbdf59k9WIVjp7pkT2dOS/hsrshzL7t8z7psz7scz7PPv5yX4eJWmkxNur1PGjxHGpzPEOwAAaoinHGZ4HAAAAAB3Q0wQAAACgmiHpaaJoAgAAAFANRRMAAAAALM8annOaKJoAAAAAVDMkRRMTQQAAAABAB/Q0AQAAAChviKYcp2gCAAAAUA1FEwAAAAB0MCRFE+c0AQAAAEAH9DQB66x19mw6W5uZS2dHz23Ibze/WY3MOpVbmKult3l2vp7OnpqfzGfHJtLZE6PT6ezUyHw6W3cznZVm08mGF0q0oVWiDcmfX+Iviacj/9VyspXfZyebU+nsiWZ+/55ayLehzPuxzPu8mfz8jCY/j1K5z/noufwOLnNcapY43gEYTJzTBAAAAACdUDQBAAAAwApCFE0AAAAA0MmwDM9jIggAAAAA6ICeJgAAAADVDElPE0UTAAAAgEqGZXgeRRMAAACAaiiaAAAAAGAFQzR7HhNBAAAAAEAH9DQBAAAAKM3FbRhQNAHr7EDr8XR21xW/n87Wf2FjPnsm38k8Ops7HC7M1tLbPDs7ls6enJhMZ4+PTaezk7VGOjvhfLaMRq3Ea+b5dLbuZpXmdNSIfFvPRIn925xKZ48v5N/jrzXy2ePz+ffNybn8+7HM+1zJz0/28yhJ9TP5MTP10wvprI6/kY6WOd4BGFBDMjyPogkAAABAJcMyex7nNAEAAABAB12LJtt7bR+z/Vzbsi22D9j+UfHv5t42EwAAAEDfiVXcBkimp+nLknYtWXavpCcjYoekJ4vHAAAAAIYJRdOiiPiOpBNLFu+W9FBx/yFJ71vbZgEAAADoa7F4TlPV2yCpek7TFRFxVJKKfy9fKWh7j+2Dtg8eP3684o8DAAAA0HfoaVobEfFgROyMiJ1bt27t9Y8DAAAAgDVVtWh61fY2SSr+PbZ2TQIAAAAwCBie19k+SXcU9++Q9I21aQ4AAACAgTEkw/O6XtzW9lckvVvSZbaPSPqkpM9Iesz2RyT9WNKtvWwkAAAAgP4zaD1GVXUtmiLi9hWees8atwXAEnH2bDpbn2mUyNbT2dEZp3K1qVp6m3MTY+nsG2OT6ezE6MZ0tu5WOlvGbORf2zOt/OswNTKfzta9kM5mNaLr18XPlPm9TjSn09nXGvn9e3T2LenssXP57b5xNv9+nDuTfx1qM7nPz+hMepOqz+T/J1Pm+FHmuAQAF4v8tyAAAAAAnDeAw+yqomgCAAAAUA1FEwAAAAAsz+KcJgAAAADobEiKpp5f3BYAAAAABhlFEwAAAIBKHFH5ltq+vcv2C7YP2753medt+wvF88/afkfbc3ttH7P93JJ1ttg+YPtHxb+bu7WDogkAAABAeau5sG2iZrJdk3SfpJslXSfpdtvXLYndLGlHcdsj6f62574sadcym75X0pMRsUPSk8XjjiiaAAAAAFTiqH5LuEHS4Yh4MSLmJT0qafeSzG5JD8ei70naZHubJEXEdySdWGa7uyU9VNx/SNL7ujWEogkAAABANavrabrM9sG2254lW98u6eW2x0eKZWUzS10REUclqfj38m6/JrPnAQAAALgQXouInR2e9zLLlvZRZTKrRtEE9LHWmTPpbO31mXR2YtN4OtuYXu5Y9POak7mcJM2O5w89M/WJdPbYSCudLaMR+U75c816Ovvm6IZ0dkNtLp2tu5nOZjWils6ebebfX6cW8vv3+Px0Onvs3MZ8dia/3ZmZfHt9Ov8+HzuV+/yMv5n/f8DEG/n3QZnjR7PEcQnAxa/H12k6IunqtsdXSXqlQmapV21vi4ijxVC+Y90awvA8AAAAANX0cCIISU9J2mH7Wttjkm6TtG9JZp+kDxWz6N0o6c3zQ+862CfpjuL+HZK+0a0hFE0AAAAAylvFJBCZHqqIWJB0j6QnJB2S9FhEPG/7Ltt3FbH9kl6UdFjSFyX9/vn1bX9F0v+S9I9tH7H9keKpz0i6yfaPJN1UPO6I4XkAAAAA+lJE7NdiYdS+7IG2+yHp7hXWvX2F5a9Lek+ZdlA0AQAAAKimt+c09Q2KJgAAAAClWT2fCKJvUDQBAAAAqCaGo2qiaAIAAABQybD0NDF7HgAAAAB0QE8TAAAAgPLy11saeBRNAAAAACpx60K3YH1QNAF97EDr8XT2veMfSGcnpibS2cbUxlRuYaKW3marnh8ZPD8yls6+mU5KzVa+DbML9XT21PhkOnvJ2Ll0drLWSGfrPfgGa0T+9TrXLPF6zedfr5Nz+ewbZ/PZmZn85yFO5t+PYyfzr9nYyVxu4kR+30789Ew623rpSDpb5rgEYAjQ0wQAAAAAK2MiCAAAAAAAPU0AAAAAKghxnSYAAAAA6GRYhudRNAEAAACoZkiKJs5pAgAAAIAO6GkCAAAAUJrF8DwAAAAAWFkEE0EAAAAAQCf0NAEAAABAJxRNAAbJt+YeSWd3bb0znZ3cOJ7KNcdzOUmKWpk5aPLZ+dZYOnuqkd/u3Hz+UHlqIv86bBibSmcn6410tuZWOpvVjPzrda5RT2fPzpfIzub379yZfNan8/t37GT+dRg/4XR28vXcPps8Np/epl/+aTr7RInjBwAMI4omAAAAAJUwPA8AAAAAVhKSWsNRNVE0AQAAAKhmOGomiiYAAAAA1QzL8LwyZ2MDAAAAwNChpwkAAABANVzcFgAAAABWNizD8yiaAAAAAJQXGpqJIDinCQAAAAA6oKcJAAAAQGmWZM5pAnCxar5+Ip2tH31LKrehvqVEC+rppJv5DvGRRi2dnZ/Lb3duNr/duYmxdPbUeDOdHR3NZ0dG1v4LrNVyOruwkH+9mnP5rErsh9pMPjt2Kv+7jZ1MRzX5eiud3fDTRipXP5pvQJnPOQBUlj/UDTSKJgAAAACV0NOUYPslSaclNSUtRMTOtWgUAAAAgD43RBNBrEVP029ExGtrsB0AAAAA6DsMzwMAAABQQQzNxW1XO+V4SPqW7adt71kuYHuP7YO2Dx4/fnyVPw4AAABAv3BUvw2S1fY0vSsiXrF9uaQDtv82Ir7THoiIByU9KEk7d+4csJcHAAAAwIroaeouIl4p/j0m6euSbliLRgEAAADocyG5Vf02SCoXTbanbG88f1/SeyU9t1YNAwAAAIB+sJrheVdI+rrt89v5LxHxF2vSKgAAAAD9b0iG51UumiLiRUm/voZtAQAAADBIhqNmYspxYBgdaD2ezr537PZUbrzEzx9pbEpna3Nj6ezsbH7Ece2c09mFM/lD5cJELZ1tTeS/aebr+WyMrP03mFv518uNfHZ0tkfZmXRU42/mX6+JE/lB+JPH5tPZ+tGTqVzrpZfT2yzzOQeAqjwkPU2rnXIcAAAAAC5q9DQBAAAAqGZIepoomgAAAACUF5IGbOrwqiiaAAAAAJRmxdCc00TRBAAAAKCaISmamAgCAAAAADqgpwkAAABANfQ0AQAAAMAKzk8EUfWWYHuX7RdsH7Z97zLP2/YXiueftf2Obuva/pTtn9h+prjd0q0d9DQBAAAAqKSXE0HYrkm6T9JNko5Iesr2voj4m7bYzZJ2FLd3Srpf0jsT634+Iv4k2xaKJgAdfWv+K6ncTSO3prdZf2NLOjt6+sr8ds9M5bMztXS2Me18diqfbY7ns60SR+vI/2ppbuazIwv5bG0un62fyX8x12fy2Yk38r/cxE/PpLN++afpbPP1E6ncgdbj6W0CwLro7fC8GyQdjogXJcn2o5J2S2ovmnZLejgiQtL3bG+yvU3SNYl10xieBwAAAOBCuMz2wbbbniXPb5f0ctvjI8WyTKbbuvcUw/n22t7craH0NAEAAACoIFbb0/RaROzs8PxyQzKW/sCVMp3WvV/Sp4vHn5b0WUm/16mhFE0AAAAAygv1enjeEUlXtz2+StIryczYSutGxKvnF9r+oqRvdmsIw/MAAAAAVNPb2fOekrTD9rW2xyTdJmnfksw+SR8qZtG7UdKbEXG007rFOU/nvV/Sc90aQk8TAAAAgL4TEQu275H0hKSapL0R8bztu4rnH5C0X9Itkg5LOivpw53WLTb9x7av12Jf2UuS7uzWFoomAAAAAJX0cspxSYqI/VosjNqXPdB2PyTdnV23WP7Bsu2gaAIAAABQTY+Lpn5B0QQAAACgvJDUomgCAAAAgBWsesrxgcHseQAAAADQAT1NANbEgdbjPdnue8c/kM5OnrkqnR27dDqdbUzX89mN+cPqwuRy191bXrOez0YtHU1zM5+tNfJ/dRw9l8/WTy/kszONdLb2+kw623rpSDr7xNwj6SwADKwh6WmiaAIAAABQDUUTAAAAAKyAiSAAAAAAoJOQonWhG7EumAgCAAAAADqgpwkAAABANZzTBAAAAAAr4JwmAAAAAOhiSHqaOKcJAAAAADqgpwkAAABANUPS00TRBAAAAKCCoGgCgH7wrblH0tmbRm5NZ0demUpnJzZsyGe3bk5nm9Pj6WxrrJbOquZ8NquZ/1IcmW+ms7WZuXwbjr+RjsbZs+ls88yZdPZA6/F0FgAueiGpNRzXaaJoAgAAAFDNkPQ0MREEAAAAAHRATxMAAACAaoakp4miCQAAAEAFwcVtAQAAAGBFIUUMx0QQnNMEAAAAAB3Q0wQAAACgGobnAQAAAEAHTAQBAAAAACuI4OK2AAAAANARPU0AMFgOtB6/0E3QTSO3prMjGzbks7VaOms7nc2KMl+KzWY+evZsOtsP+xcAMJwomgAAAABUEkMyPG9VU47b3mX7BduHbd+7Vo0CAAAA0O9icXhe1dsAqdzTZLsm6T5JN0k6Iukp2/si4m/WqnEAAAAA+lSIKccTbpB0OCJelCTbj0raLYmiCQAAABgGwfC8brZLernt8ZFi2T9ge4/tg7YPHj9+fBU/DgAAAADW32qKpuWmZ/q5/rmIeDAidkbEzq1bt67ixwEAAADoFyEpWlH5NkhWMzzviKSr2x5fJemV1TUHAAAAwECIGJrheaspmp6StMP2tZJ+Iuk2Sb+7Jq0CAAAA0PcGrceoqspFU0Qs2L5H0hOSapL2RsTza9YyAAAAAOgDq7q4bUTsl7R/jdoCAAAAYJAMyfA8xzpeWMr2cUl/t24/cLhdJum1C90IpLG/Bg/7bPCwzwYP+2ywsL9W5x9FxEDNmmb7L7S436t6LSJ2rVV7emldiyasH9sHI2LnhW4Hcthfg4d9NnjYZ4OHfTZY2F+4mK1mynEAAAAAuOhRNAEAAABABxRNF68HL3QDUAr7a/CwzwYP+2zwsM8GC/sLFy3OaQIAAACADuhpAgAAAIAOKJoAAAAAoAOKpouI7VttP2+7ZXvnkuf+wPZh2y/Y/u0L1Ub8PNu7iv1y2Pa9F7o9+Hm299o+Zvu5tmVbbB+w/aPi380Xso34e7avtv1t24eKY+JHi+Xssz5le8L2X9n+62Kf/VGxnH3Wx2zXbP9v298sHrO/cNGiaLq4PCfpX0r6TvtC29dJuk3Sr0raJek/2a6tf/OwVLEf7pN0s6TrJN1e7C/0ly9r8bPT7l5JT0bEDklPFo/RHxYkfTwifkXSjZLuLj5X7LP+NSfpNyPi1yVdL2mX7RvFPut3H5V0qO0x+wsXLYqmi0hEHIqIF5Z5arekRyNiLiL+n6TDkm5Y39ZhBTdIOhwRL0bEvKRHtbi/0Eci4juSTixZvFvSQ8X9hyS9bz3bhJVFxNGI+EFx/7QW/1O3XeyzvhWLZoqH9eIWYp/1LdtXSfrnkv68bTH7CxctiqbhsF3Sy22PjxTLcOGxbwbXFRFxVFr8T7qkyy9we7AM29dIeruk74t91teKoV7PSDom6UBEsM/6259K+neSWm3L2F+4aI1e6AagHNv/XdKVyzz1hxHxjZVWW2YZc833B/YN0CO2pyV9VdLHIuKUvdzHDf0iIpqSrre9SdLXbf/aBW4SVmD7dyQdi4inbb/7AjcHWBcUTQMmIn6rwmpHJF3d9vgqSa+sTYuwSuybwfWq7W0RcdT2Ni3+dRx9wnZdiwXTIxHxtWIx+2wARMRJ23+pxfMI2Wf96V2S/oXtWyRNSLrE9n8W+wsXMYbnDYd9km6zPW77Wkk7JP3VBW4TFj0laYfta22PaXHCjn0XuE3I2SfpjuL+HZJW6unFOvNil9KXJB2KiM+1PcU+61O2txY9TLI9Kem3JP2t2Gd9KSL+ICKuiohrtPi99T8i4l+J/YWLmCMYCXSxsP1+Sf9R0lZJJyU9ExG/XTz3h5J+T4uzSn0sIv7bhWon/qHiL3V/KqkmaW9E/IcL2yIsZfsrkt4t6TJJr0r6pKT/KukxSW+V9GNJt0bE0skicAHY/meS/qekH+rvz7f4hBbPa2Kf9SHb/0SLEwfUtPgH3cci4t/bvlTss75WDM/7txHxO+wvXMwomgAAAACgA4bnAQAAAEAHFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAAAAdPD/AUle7uPMpBiuAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1152x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "srt_u = srt_flow.get_trimmed_velocity_array()\n",
     "ps.plot.vector_field_magnitude(srt_u[30,:,:,:])\n",
@@ -291,7 +280,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -306,7 +295,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -317,7 +306,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -327,32 +316,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.colorbar.Colorbar at 0x127d1df10>"
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq0ElEQVR4nO3df4wc533f8c/n9vZ+8I4ySYmSGEqu5IQJogSN7BKyAPcPJ44cSg1Ku4AAKa6tOkZpIxJgAy4KxfkjTo0CRhDbiQtVAl0TllDVggXbNWGwkVnVgWsgdkS5iiyFUcUqikWLJilREnkk725v99s/buhsznd735n7wV3O+wUsuDv7mbnndnZn+b3nmWccEQIAAAAALG7oYjcAAAAAAPoZRRMAAAAA9EDRBAAAAAA9UDQBAAAAQA8UTQAAAADQA0UTAAAAAPRA0QQAAACgL9neZfs520ds37vI87b9+eL5p22/rVg+ZvuvbP+17Wdt/1HXOltsH7T9fPHv5uXaQdEEAAAAoO/Ybki6T9Ktkm6QdKftGxbEbpW0o7jtkXR/sXxG0m9ExK9JulHSLts3F8/dK+nxiNgh6fHicU8UTQAAAAD60U2SjkTECxExK+kRSbsXZHZLeijmfU/SJtvbisdTRaZZ3KJrnQeL+w9Kes9yDRle2e9RzhVXXBHXXXfdev5IAFhX//fJF9JZD63R3628BtuM5SOVNtvppLO/+M/esjaNAIA+8OSTT74SEVsvdjvK+K1fn4hXT7Urr//k0zPPSpruWrQ3IvZ2Pd4u6aWux0clvX3BZhbLbJd0rOipelLSL0i6LyK+X2SuiohjkhQRx2xfuVxb17Vouu6663To0KH1/JEAsK5uGbo9nR0a35DfcKORjtqrXzVFlKia2vkv0M65c+nswUOP5tsAAAPG9t9f7DaU9cqptr7/2DWV129u+3/TEbGzR2SxL7SFX0hLZiKiLelG25skfd32r0bEM1Xauq5FEwAAAIBLRagd+REDFRyVdG3X42skvVw2ExGv2/4LSbskPSPpeDGE75jtbZJOLNcQzmkCAAAAUFpI6igq3xKekLTD9vW2RyTdIWn/gsx+SR8oZtG7WdIbRTG0tehhku1xSb8p6W+71rmruH+XpG8s1xB6mgAAAAD0nYiYs32PpMckNSTti4hnbX+keP4BSQck3SbpiKRzkj5YrL5N0oPFeU1Dkr4SEd8snvu0pK/Y/pCkH0ladmw9RRMAAACASjpa0+F5iogDmi+Mupc90HU/JN29yHpPS3rrEtt8VdK7yrSDogkAAABAaaFQu8xEQQOMogkAAABAJclzkwYeE0EAAAAAQA/0NAEAAAAoLSS1a9LTRNEE4JJR6sKyExPprDfkL0LbuOEX09n25Gg62xnJX9xWjdW/uK3a+S/Fodn8xW0bUzPp7K6rfi+djRIXze2cPZvOHuxwgV0A6FaX4XkUTQAAAABKC4mJIAAAAACgl7WdcLx/MBEEAAAAAPRATxMAAACA0kLBRBAAAAAAsKQoNU/QQKNoAgAAAFBaqD7nNFE0AQAAAKjAamsNLnPRh5gIAgAAAAB6oKcJAAAAQGkhqcM5TQAAAACwtLoMz6NoAtDX3j36vnS2seMt6Wz78sl0tjXZzGc35g+rc+P5L5p2M5+NRjqa5nY+22jl/+w4fH5DOtv8uY357FQrnW28OpXOlnk/fmvm4XQWAAZRqD5FE+c0AQAAAEAP9DQBAAAAqKQT9ehpomgCAAAAUFqdhudRNAEAAAAoLWS1a3K2D0UTAAAAgErqMjyvHqUhAAAAAFRETxMAAACA0jinCQAAAAB6stpRj4FrFE0AAAAASgtJnZqc7UPRBAAAAKAShucBQAm3DN2ezjYu35LO+ld+IZ09f/VEOju9uZHOtibzXwitiXy2PZqOqtPMZ9dipIQ7+exQK/8aNGby222ezf9izan8Cza2Kb8jxibG0tldWz+czrZfPZXKHew8mt4mAGD1UDQBAAAAKC2Cc5oAAAAAoKcOw/MAAAAAYHHzU47Xo6epHr8lAAAAAFRETxMAAACACjinCQAAAACWxHWaAAAAAGAZ7WAiCAAAAABYVMhMBAEAAAAAoKcJAAAAQEUdJoIAAOndI3emco0db0lvs3XVZens+atG09npLfkD98yb8mOw5ybTUc2NRzrbGc1no1kiO5TPZrmTf73cymeHZvLZ4fMlslP5bGuyRHZiYzo7PjmSzjaPb0rlsp9HSfrW7JfTWQCook7XaaJoAgAAAFBayLWZCGLZ0tD2tba/bfuw7Wdtf7RY/knbP7b9VHG7be2bCwAAAADrK9PTNCfp4xHxA9sbJT1p+2Dx3Oci4k/WrnkAAAAA+hXXaSpExDFJx4r7Z2wflrR9rRsGAAAAoH9FSO2aTARR6re0fZ2kt0r6frHoHttP295ne/NqNw4AAABAv7I6K7gNknTRZHtS0lclfSwiTku6X9LPS7pR8z1Rn1livT22D9k+dPLkyZW3GAAAAMBFF5rvaap6GySp1tpuar5gejgiviZJEXE8ItoR0ZH0BUk3LbZuROyNiJ0RsXPr1q2r1W4AAAAAWBfLntNk25K+KOlwRHy2a/m24nwnSXqvpGfWpokAAAAA+hHXafoH75D0fkk/tP1UsewTku60faPme+ZelPThNWgfAAAAgD4Usjo1uU5TZva870qLnql1YPWbAwAAAGBQ0NME4JJ1y9Dt6Wxjx1tSuZlr8xNonru6mc6evzx/MJ7dlI5q9rJIZ9uT7fyGx/LZxmg+2xzOZ4eG8r9bVqeT/0vi3Fwjn50pkZ3OZxsT+Wx7vMTvNlZiu6Nj6eyGkdx2R9NbLPc5P9h5tMSWAWBeSOqs8YQOtndJ+jNJDUn/JSI+veB5F8/fJumcpH9TXF/2WkkPSbpaUkfS3oj4s2KdT0r6t5IuzFL3iYjo2SFE0QQAAACg79huSLpP0i2Sjkp6wvb+iPibrtitknYUt7drfobvt0uak/TxooDaKOlJ2we71v1cRPxJti0UTQAAAAAqsNpre72lmyQdiYgXJMn2I5J2S+oumnZLeigiQtL3bG/qmrDumCRFxBnbhyVtX7BuWj0GIQIAAABYVReG51W9SbriwvVci9ueBT9iu6SXuh4fLZaVyti+TtJbJX2/a/E9tp+2vc/2sucY0NMEAAAAoJIV9jS9EhE7ezy/2MYXnrjbM2N7UvPXm/1YRJwuFt8v6VNF7lOSPiPpd3s1lJ4mAAAAAP3oqKRrux5fI+nlbMZ2U/MF08MR8bULgYg4HhHtiOhI+oLmhwH2RNEEAAAAoLQIr3R43nKekLTD9vW2RyTdIWn/gsx+SR/wvJslvRERx4pZ9b4o6XBEfLZ7Bdvbuh6+V9IzyzWE4XkAAAAAKmmv4ZTjETFn+x5Jj2l+yvF9EfGs7Y8Uzz+g+WvH3ibpiOanHP9gsfo7JL1f0g9tP1UsuzC1+B/bvlHzw/NelPTh5dpC0QQAAACgtJDUWdvZ81QUOQcWLHug635IunuR9b6rxc93UkS8v2w7KJoAAAAAVOA17WnqJxRNQA01Lt+SzrauuiyVO3d1M73Nc1fmD7AzWxZOkrO02U2ddDY2zqWzoxOz6eyGsRLZkVY6O97MZxvOvw5ZZb4Uz7dKvBdmS2SnR9LZmbF8dno0/1XYaeZfh2iU+Y9E7nUYms19HiWpeSr/OQcA9EbRBAAAAKC0+es0re3wvH5B0QQAAACgknZNJuOmaAIAAABQWsj0NAEAAABAL52a9DTV47cEAAAAgIroaQIAAABQWoTUZngeAAAAACyNc5oAAAAAYAnzE0HU42yfevyWAAAAAFARPU0AAAAAKmmL4XkABsi7R9+XzvpXfiGdPX/VaC53eb7jemZLpLOzWzrprDfNprMbJ6fT2c0bzqezm0bz2ctG8tnxRiudbTr/mmW1Sgy/ON9uprOnZ8fT2dfH8tnXRvLZqeZYOjs7NJLOlhnM4XYu25jJfR4laXjq6nS2zPHjWzMPp7MALm0hzmkCAAAAgB7qc04TRRMAAACASjo1GZ5Xj9IQAAAAACqipwkAAABAaVzcFgAAAACWwTlNAAAAALCE+Yvb0tMEAAAAAEtiIggAAAAAAD1NAAAAAMrj4rYAAAAAsAwmggBw0d0ydHs629jxlnT2/NUT6ez0ltzBcHZTepOa3dRJZ71pNp1902Xn0tkrJ6fy2fEz6ezWkfx2LxueTmc3NGbS2THPpbNZ05H/ujjXHk1nT4+MpbMnRybT2bHhjensiaH8+/GNdFKa7Yyks0OtRio3PZ3/z0nzbP5zPn72mnS2zHHpYOfRdBbAAIr6TARRj9IQAAAAACqipwkAAABAaaH6zJ5H0QQAAACgkroMz6NoAgAAAFAas+cBAAAAwDLqUjQxEQQAAAAA9EBPEwAAAIDSQvWZcpyiCQAAAEAlzJ4HAAAAAEuJ+pzTRNEEAAAAoDRmzwPQF4YmJtLZ9uWT6ez05kY6O/Om3MFw9rJIbzM2zqWzGyen09krJ6fS2e0b3khnt43ls1c0z6SzWxr59k4MzaazTedf36xW5L8uznZG0tlTw/n37Xijlc423Ulny2h38vMnnW7ls7MzuWzjfP4/J82p/Od8pMTxY+jl/HEJAC4VFE0AAAAAKqGnCQAAAACWUKfZ85YdD2D7Wtvftn3Y9rO2P1os32L7oO3ni383r31zAQAAAPSLCFe+DZLMIOo5SR+PiF+WdLOku23fIOleSY9HxA5JjxePAQAAAOCSsmzRFBHHIuIHxf0zkg5L2i5pt6QHi9iDkt6zRm0EAAAA0Ic6cuXbICl1TpPt6yS9VdL3JV0VEcek+cLK9pVLrLNH0h5JevOb37yixgIAAADoD1Gj6zSl50O1PSnpq5I+FhGns+tFxN6I2BkRO7du3VqljQAAAAD6UF3OaUr1NNluar5gejgivlYsPm57W9HLtE3SibVqJAAAAIB+w+x5P2Xbkr4o6XBEfLbrqf2S7iru3yXpG6vfPAAAAAC4uDI9Te+Q9H5JP7T9VLHsE5I+Lekrtj8k6UeSbl+TFgIAAADoS4M2zK6qZYumiPiutOT0Fu9a3eYA6OYNG9LZ1mSzRDZ/gJubzOXak+30NkcnZtPZzRvOp7NXjp9JZ7eNvZHOXjNyKp3dOpxvw6bG2XR2wvnXrOn8vshqRSOdPRsj6ezEUP73GnMrnS2jFenTezU9l/+czczm51qamc69vnNn89ss8zkvc/wYK3FcAnBpC9VnIohSs+cBAAAAgCQp5mfQq4P8n9cAAAAAoMtaX6fJ9i7bz9k+YvveRZ637c8Xzz9t+23F8mttf9v2YdvP2v5o1zpbbB+0/Xzx7+bl2kHRBAAAAKDv2G5Iuk/SrZJukHSn7RsWxG6VtKO47ZF0f7F8TtLHI+KXJd0s6e6ude+V9HhE7JD0ePG4J4omAAAAAKWF1vw6TTdJOhIRL0TErKRHJO1ekNkt6aGY9z1Jmy5cFikifiBJEXFG0mFJ27vWebC4/6Ck9yzXEM5pAgAAAFDBiq/TdIXtQ12P90bE3q7H2yW91PX4qKS3L9jGYpntko79tJX2dZLeKun7xaKrIuKYJBXXnL1yuYZSNAEAAACoZIUTQbwSETt7PL9YRbbwJ/bM2J6U9FVJH4uI0+WbOI/heQAAAAD60VFJ13Y9vkbSy9mM7abmC6aHI+JrXZnjtrcVmW2STizXEIomAAAAAJWs8TlNT0jaYft62yOS7pC0f0Fmv6QPFLPo3SzpjWLInSV9UdLhiPjsIuvcVdy/S9I3lmsIw/MAAAAAlBahbPFTcfsxZ/seSY9JakjaFxHP2v5I8fwDkg5Iuk3SEUnnJH2wWP0dkt4v6Ye2nyqWfSIiDkj6tKSv2P6QpB9Jun25tlA0AQAAAKhkhRNBLKsocg4sWPZA1/2QdPci631Xi5/vpIh4VdK7yrSDoglYZ7cMLfvHjJ9q3PCL6WxrY/7j3JrIH+DmxpNneI6109vcMDabzm4aPZ/Obh2ZSmevaJ7Jb3e4TDZ/jummoel0dqPn0tnmGnx/tUqc6HsmWuls0/n3TRnT0Uxnz7fz2dOj4/ns2Gg6OzM2ksrNjTfS2yzzOS9z/Bjbuuw1IH+qzPHuYOfRdBZA/1jhRBADg3OaAAAAAKAHepoAAAAAVLKW5zT1E4omAAAAAKWF0rPgDTyKJgAAAACV1OSUJoomAAAAABWs8ZTj/YSJIAAAAACgB3qaAAAAAFRTk/F5FE0AAAAAKqnL8DyKJgAAAACVcHFbAAAAAAA9TcB6G9qwIZ1tT46ms3Pj+e7xdn6z6ozm/oTUGG2nt7lhpJXOXjZyPp8dnk5ntzSm0tlNjbP57FCJNgzNpbMTzv+Nq1kim9WKTv7nR/73kvKvV6vRSGfPdkbS2TeG85/JMu/HDSMT6ezp5Ocn+3mUpPZo/phQ6vhR4rhU5ngHYPCEGJ4HAAAAAEsLSRRNAAAAALC0upzTRNEEAAAAoJqaFE1MBAEAAAAAPdDTBAAAAKACMxEEAAAAAPRUk+F5FE0AAAAAyov6TDnOOU0AAAAA0AM9TQAAAACqYXgeAAAAAPRSj+F5FE3Aems00tHOSD7bbuYPWp1mOqpo5v6E1Bxup7c53mzls418dkNjJp2dGJrNZ53PbvRcie3mR0hvGMrvtGHl3zdZTef3rzr5fdYq8XqdK7EfyuzfMu+bMu/HMu/z4eTnZzb5eZTKfc5LHT9KHJeGShzvAAwoepoAAAAAoIeaFE1MBAEAAAAAPdDTBAAAAKC8kFSTKccpmgAAAABUEjUZnkfRBAAAAKAaiiYAAAAA6KEmw/OYCAIAAAAAeqCnCQAAAEAlZngeAAAAACwhxDlNAAAAALA01+acJoomYJ3ZJQ4ujXw2GvnNRomzGWMo9yekoWROkhrupLPNEtkxz5XYbplsu0Q2HVXT+R0xrPwObpTYblqJvySWe73KvBfKbDe/f8u9b/LtLfM+z35+sp/H+Ww6Wur4Uea4VOp4BwB9jKIJAAAAQDU1GZ637N+hbO+zfcL2M13LPmn7x7afKm63rW0zAQAAAPSdWMFtgGQ6778kadciyz8XETcWtwOr2ywAAAAAfa8mRdOyw/Mi4ju2r1uHtgAAAAAYFKHaTASxkrOF77H9dDF8b/NSIdt7bB+yfejkyZMr+HEAAAAAsP6qFk33S/p5STdKOibpM0sFI2JvROyMiJ1bt26t+OMAAAAA9BtH9dsgqVQ0RcTxiGhHREfSFyTdtLrNAgAAAND3anJOU6Wiyfa2rofvlfTMUlkAAAAAGGTLTgRh+8uS3inpCttHJf2hpHfavlHzNeKLkj68dk0EAAAA0I8GbZhdVZnZ8+5cZPEX16AtAAAAANB3li2aAAAAAGBRNZlynKIJAAAAQHkDOKFDVRRNAAAAAKqpSdG0kovbAgAAAMAlj6IJAAAAQCVrfXFb27tsP2f7iO17F3netj9fPP+07bd1PbfP9gnbzyxY55O2f2z7qeJ223LtoGgCAAAAUM0aXtzWdkPSfZJulXSDpDtt37AgdqukHcVtj6T7u577kqRdS2z+cxFxY3E7sFxbKJoAAAAAVLOGRZOkmyQdiYgXImJW0iOSdi/I7Jb0UMz7nqRNtrdJUkR8R9Kplfx6F1A0AQAAAChtJUPziuF5V9g+1HXbs+BHbJf0Utfjo8WyspnF3FMM59tne/NyYYomAAAAABfDKxGxs+u2d8Hzi10EamEfVSaz0P2Sfl7SjZKOSfrMcg1lynEAAAAA1aztxW2PSrq26/E1kl6ukPlHIuL4hfu2vyDpm8s1hKIJWGcRJS5o0M5n3c5v1p0y2dzBsJPMSVI78p3crRLZ6cgf0lqlso0S2XRUrcjviGaZHbwG18yYU/7nl/m9yr1eZfZDfv+We9/k349l3ufZz0/28zifTUdLHT/KHJdKHe8ADKa1/Zg/IWmH7esl/VjSHZJ+Z0Fmv+aH2j0i6e2S3oiIY702antbV+a9kp7plZcomgAAAABUlJ06vIqImLN9j6THJDUk7YuIZ21/pHj+AUkHJN0m6Yikc5I++NO22V+W9E7Nnzt1VNIfRsQXJf2x7Rs1X/K9KOnDy7WFogkAAABANWvcoVxMB35gwbIHuu6HpLuXWPfOJZa/v2w7mAgCAAAAAHqgpwkAAABAebG2w/P6CUUTAAAAgGoomgAAAACgh5oUTZzTBAAAAAA90NMEAAAAoJK6nNNETxMAAAAA9EBPEwAAAIBqatLTRNEErLd2Ox0dms1nG638UWuo5XTWyezcXCO9zfOtZj7bzmfPtUfT2bOdkXw28tkz0UpnmzGXzqpTYrvOv2+yWtFJZ8+WyJ6J/NdQmf1QZv+Wed+UeT+WeZ9nPz/Zz6MkDeXfMuWOHyWOS2WOdwAGUI2mHGd4HgAAAAD0QE8TAAAAgGpq0tNE0QQAAACgGoomAAAAAFicVZ9zmiiaAAAAAFRTk6KJiSAAAAAAoAd6mgAAAACUV6MpxymaAAAAAFRD0QQAAAAAPdSkaOKcJgAAAADogZ4mYJ11zp1LZxtTM+ns8PkN+e3mN6uhGadyczON9DbPzTbT2dOz4/nsyFg6e2p4Mp2dGJpNZ5tup7PSdDrZ8lyJNnRKtCH580v8JfFM5L9aXu/k99nr7Yl09lQ7v39Pz+XbUOb9WOZ93k5+foaTn0ep3Od8+Hx+B5c5LrVLHO8ADCbOaQIAAACAXiiaAAAAAGAJIYomAAAAAOilLsPzmAgCAAAAAHqgpwkAAABANTXpaaJoAgAAAFBJXYbnUTQBAAAAqIaiCQAAAACWUKPZ85gIAgAAAAB6oKcJAAAAQGkubnVA0QSss4OdR9PZXVf9Xjrb/LmN+ezZfCfz8Pnc4XBuupHe5rnpkXT29bHxdPbkyGQ6O95opbNjzmfLaDVKvGaeTWebbldpTk+tyLf1bJTYv+2JdPbkXP49/kornz05m3/fvD6Tfz+WeZ8r+fnJfh4lqXk2P2ameWYundXJ19LRMsc7AAOqJsPzKJoAAAAAVFKX2fOW/XOz7X22T9h+pmvZFtsHbT9f/Lt5bZsJAAAAABdHZozOlyTtWrDsXkmPR8QOSY8XjwEAAADUSazgNkCWLZoi4juSTi1YvFvSg8X9ByW9Z3WbBQAAAKDv1aRoqnpO01URcUySIuKY7StXsU0AAAAA+l1wTtOqsb3H9iHbh06ePLnWPw4AAADAeqlJT1PVoum47W2SVPx7YqlgROyNiJ0RsXPr1q0VfxwAAAAAXBxVi6b9ku4q7t8l6Rur0xwAAAAAg8JR/TZIMlOOf1nSX0r6JdtHbX9I0qcl3WL7eUm3FI8BAAAA1ElNhuctOxFERNy5xFPvWuW2AAAAABggg9ZjVFXV2fMArIM4dy6dbU61SmSb6ezwlFO5xkQjvc2ZsZF09rWR8XR2bHhjOtt0J50tYzryr+3ZTv51mBiaTWebnktns1qR/7oo83udak+ms6+08vv32PSb0tkT5/Pbfe1c/v04czb/OjSmcp+f4an0JtWcyv9Ppszxo8xxCQAuFRRNAAAAAMobwGF2VVE0AQAAAKiGogkAAAAAFmdxThMAAAAA9FaToqnqdZoAAAAAoBYomgAAAABU4ojKt9T27V22n7N9xPa9izxv258vnn/a9tu6nttn+4TtZxass8X2QdvPF/9uXq4dFE0AAAAAylvJhW0TNZPthqT7JN0q6QZJd9q+YUHsVkk7itseSfd3PfclSbsW2fS9kh6PiB2SHi8e90TRBAAAAKASR/Vbwk2SjkTECxExK+kRSbsXZHZLeijmfU/SJtvbJCkiviPp1CLb3S3pweL+g5Les1xDKJoAAAAAVLOGPU2Stkt6qevx0WJZ2cxCV0XEMUkq/r1yuYYwex4AAACAi+EK24e6Hu+NiL1dj73IOgvLrUxmxSiagD7WOXs2nW28OpXOjm0aTWdbk4sdi35WezyXk6Tp0fyhZ6o5ls6eGOqks2W0It8pf77dTGffGN6Qzm5ozKSzY55LZ7OmI7/PzrXz76/Tc/n9e3J2Mp09cX5jPjuV3+7UVL69PpN/zUZO5z4/o2/k/x8w9lo7nS1z/GiXOC4BuPSt8DpNr0TEzh7PH5V0bdfjayS9XCGz0HHb2yLiWDGU78RyDWV4HgAAAIBq1nZ43hOSdti+3vaIpDsk7V+Q2S/pA8UsejdLeuPC0Lse9ku6q7h/l6RvLNcQiiYAAAAA5a1gEohMD1VEzEm6R9Jjkg5L+kpEPGv7I7Y/UsQOSHpB0hFJX5D0exfWt/1lSX8p6ZdsH7X9oeKpT0u6xfbzkm4pHvfE8DwAAAAAfSkiDmi+MOpe9kDX/ZB09xLr3rnE8lclvatMOyiaAAAAAFSz6lMu9CeKJgAAAAClWSueCGJgUDQBAAAAqCbqUTVRNAEAAACopC49TcyeBwAAAAA90NMEAAAAoLz89ZYGHkUTAAAAgErcudgtWB8UTUAfO9h5NJ199+j70tmxibF0tjWxMZWbG2ukt9lp5kcGzw6NpLNvpJNSu5Nvw/RcM509PTqezl42cj6dHW+00tnmGnyDtSL/ep1vl3i9ZvOv1+sz+exr5/LZqan85yFez78fR17Pv2Yjr+dyY6fy+3bsJ2fT2c6LR9PZMsclADVATxMAAAAALI2JIAAAAAAA9DQBAAAAqCDEdZoAAAAAoJe6DM+jaAIAAABQTU2KJs5pAgAAAIAe6GkCAAAAUJrF8DwAAAAAWFoEE0EAAAAAQC/0NAEAAABALxRNAAbJt2YeTmd3bf1wOjs+OZLKtUfH0tuMRpk5aPLZ2U6urZJ0upXf7sxs/lB5emw0nd0wMpHOjjdb6WzDnXQ2qx351+t8q5nOnpstkZ3O79+Zs/msz+T378jr+ddh9JTT2fFXc/ts/PhMept+6Sfp7GMljh8AUEcUTQAAAAAqYXgeAAAAACwlJHXqUTVRNAEAAACoph41E0UTAAAAgGrqMjyvzNnYAAAAAFA79DQBAAAAqIaL2wIAAADA0uoyPI+iCQAAAEB5odpMBME5TQAAAADQAz1NAAAAAEqzJHNOE4BLVfvVU+ls8/imVG7DSKNEC5rppNv5DvGhVr4NszP57c5M57c7MzaSzp4ebaezw8P57NDQ6n+BdTpOZ+fm8q9Xe6bE+6bEfmhM5bMjp/O/28jr6ajGX+2ksxt+0krlmsdPp7dZ5nMOAJXlD3UDjaIJAAAAQCX0NCXYflHSGUltSXMRsXM1GgUAAACgz9VoIojV6Gn69Yh4ZRW2AwAAAAB9h+F5AAAAACqI2lzcdqVTjoekb9l+0vaexQK299g+ZPvQyZMnV/jjAAAAAPQLR/XbIFlpT9M7IuJl21dKOmj7byPiO92BiNgraa8k7dy5c8BeHgAAAABLoqdpeRHxcvHvCUlfl3TTajQKAAAAQJ8LyZ3qt0FSuWiyPWF744X7kt4t6ZnVahgAAAAA9IOVDM+7StLXbV/Yzn+LiD9flVYBAAAA6H81GZ5XuWiKiBck/doqtgUAAADAIKlHzcSU40AdHew8ms6+e+TOVG60xM8fmr0snW3M5Lc8PZ0fcdw473R27mz+UDk33khnO6P5b5rZZj4bQ6v/DeZO/vVyK58dnimRLbHPhqfSUY2+kX+9xk7lB+GPH59JZ5vHT6dynb/7UXqbZT7nAFCVa9LTtNIpxwEAAADgkkZPEwAAAIBqatLTRNEEAAAAoLyQNGBTh1dF0QQAAACgNCtqc04TRRMAAACAampSNDERBAAAAAD0QE8TAAAAgGroaQIAAACAJVyYCKLqLcH2LtvP2T5i+95FnrftzxfPP237bcuta/uTtn9s+6nidtty7aCnCQAAAEAlazkRhO2GpPsk3SLpqKQnbO+PiL/pit0qaUdxe7uk+yW9PbHu5yLiT7JtoWgC0NO3Zr+cyt0ydHt6m81TW9LZ4amr89s9O5HPTjXS2dak89mJfLY9ms92mumoYg3GELjElLJDrXy2MZPPNs/mv5ibU/ns2GvtfPYnZ9NZv/STdLb96qlU7mDn0fQ2AWBdrO3wvJskHYmIFyTJ9iOSdkvqLpp2S3ooIkLS92xvsr1N0nWJddMYngcAAADgYrjC9qGu254Fz2+X9FLX46PFskxmuXXvKYbz7bO9ebmG0tMEAAAAoIJYaU/TKxGxs8fziw3JWPgDl8r0Wvd+SZ8qHn9K0mck/W6vhlI0AQAAACgvtNbD845Kurbr8TWSXk5mRpZaNyKOX1ho+wuSvrlcQxieBwAAAKCatZ097wlJO2xfb3tE0h2S9i/I7Jf0gWIWvZslvRERx3qtW5zzdMF7JT2zXEPoaQIAAADQdyJizvY9kh6T1JC0LyKetf2R4vkHJB2QdJukI5LOSfpgr3WLTf+x7Rs131f2oqQPL9cWiiYAAAAAlazllOOSFBEHNF8YdS97oOt+SLo7u26x/P1l20HRBAAAAKCaNS6a+gVFEwAAAIDyQlKHogkAAAAAlrDiKccHBrPnAQAAAEAP9DQBWBUHO4+uyXbfPfq+dHb87DXp7Mjlk+lsa7KZz27MH1bnxhe77t7i2s18NhrpaJrb+Wyjlf+r4/D5fLZ5Zi6fnWqls41Xp9LZzotH09nHZh5OZwFgYNWkp4miCQAAAEA1FE0AAAAAsAQmggAAAACAXkKKzsVuxLpgIggAAAAA6IGeJgAAAADVcE4TAAAAACyBc5oAAAAAYBk16WninCYAAAAA6IGeJgAAAADV1KSniaIJAAAAQAVB0QQA/eBbMw+ns7cM3Z7ODr08kc6ObdiQz27dnM62J0fT2c5II51Vw/lsVjv/pTg0205nG1Mz+TacfC0djXPn0tn22bPp7MHOo+ksAFzyQlKnHtdpomgCAAAAUE1NepqYCAIAAAAAeqCnCQAAAEA1NelpomgCAAAAUEFwcVsAAAAAWFJIEfWYCIJzmgAAAACgB3qaAAAAAFTD8DwAAAAA6IGJIAAAAABgCRFc3BYAAAAAeqKnCQAGy8HOoxe7Cbpl6PZ0dmjDhny20UhnbaezWVHmS7HdzkfPnUtn+2H/AgDqiaIJAAAAQCVRk+F5K5py3PYu28/ZPmL73tVqFAAAAIB+F/PD86reBkjlnibbDUn3SbpF0lFJT9jeHxF/s1qNAwAAANCnQkw5nnCTpCMR8YIk2X5E0m5JFE0AAABAHQTD85azXdJLXY+PFsv+Edt7bB+yfejkyZMr+HEAAAAAsP5WUjQtNj3Tz/TPRcTeiNgZETu3bt26gh8HAAAAoF+EpOhE5dsgWcnwvKOSru16fI2kl1fWHAAAAAADIaI2w/NWUjQ9IWmH7esl/VjSHZJ+Z1VaBQAAAKDvDVqPUVWVi6aImLN9j6THJDUk7YuIZ1etZQAAAADQB1Z0cduIOCDpwCq1BQAAAMAgqcnwPMc6XljK9klJf79uP7DerpD0ysVuBNLYX4OHfTZ42GeDh302WNhfK/NPImKgZk2z/eea3+9VvRIRu1arPWtpXYsmrB/bhyJi58VuB3LYX4OHfTZ42GeDh302WNhfuJStZMpxAAAAALjkUTQBAAAAQA8UTZeuvRe7ASiF/TV42GeDh302eNhng4X9hUsW5zQBAAAAQA/0NAEAAABADxRNAAAAANADRdMlxPbttp+13bG9c8Fzv2/7iO3nbP/WxWojfpbtXcV+OWL73ovdHvws2/tsn7D9TNeyLbYP2n6++HfzxWwj/oHta21/2/bh4pj40WI5+6xP2R6z/Ve2/7rYZ39ULGef9THbDdv/x/Y3i8fsL1yyKJouLc9I+leSvtO90PYNku6Q9CuSdkn6z7Yb6988LFTsh/sk3SrpBkl3FvsL/eVLmv/sdLtX0uMRsUPS48Vj9Ic5SR+PiF+WdLOku4vPFfusf81I+o2I+DVJN0raZftmsc/63UclHe56zP7CJYui6RISEYcj4rlFntot6ZGImImIv5N0RNJN69s6LOEmSUci4oWImJX0iOb3F/pIRHxH0qkFi3dLerC4/6Ck96xnm7C0iDgWET8o7p/R/H/qtot91rdi3lTxsFncQuyzvmX7Gkn/QtJ/6VrM/sIli6KpHrZLeqnr8dFiGS4+9s3guioijknz/0mXdOVFbg8WYfs6SW+V9H2xz/paMdTrKUknJB2MCPZZf/tTSf9eUqdrGfsLl6zhi90AlGP7f0q6epGn/iAivrHUaossY675/sC+AdaI7UlJX5X0sYg4bS/2cUO/iIi2pBttb5L0ddu/epGbhCXY/m1JJyLiSdvvvMjNAdYFRdOAiYjfrLDaUUnXdj2+RtLLq9MirBD7ZnAdt70tIo7Z3qb5v46jT9huar5gejgivlYsZp8NgIh43fZfaP48QvZZf3qHpH9p+zZJY5Ius/1fxf7CJYzhefWwX9IdtkdtXy9ph6S/ushtwrwnJO2wfb3tEc1P2LH/IrcJOfsl3VXcv0vSUj29WGee71L6oqTDEfHZrqfYZ33K9taih0m2xyX9pqS/FfusL0XE70fENRFxnea/t/5XRPxrsb9wCXMEI4EuFbbfK+k/Sdoq6XVJT0XEbxXP/YGk39X8rFIfi4j/cbHaiX+s+Evdn0pqSNoXEf/x4rYIC9n+sqR3SrpC0nFJfyjpv0v6iqQ3S/qRpNsjYuFkEbgIbP9zSf9b0g/1D+dbfELz5zWxz/qQ7X+q+YkDGpr/g+5XIuI/2L5c7LO+VgzP+3cR8dvsL1zKKJoAAAAAoAeG5wEAAABADxRNAAAAANADRRMAAAAA9EDRBAAAAAA9UDQBAAAAQA8UTQAAAADQA0UTAAAAAPTw/wHZg+MgaL11+gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1152x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "cm_impl_f_u = cm_impl_f_flow.get_trimmed_velocity_array()\n",
     "ps.plot.vector_field_magnitude(cm_impl_f_u[30,:,:,:])\n",
@@ -361,7 +327,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -377,7 +343,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -394,7 +360,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -405,7 +371,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -415,32 +381,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.colorbar.Colorbar at 0x1272c5760>"
-      ]
-     },
-     "execution_count": 16,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq0ElEQVR4nO3df4wc533f8c/n9vZ+8I4ySYmSGEqu5IQJogSN7BKyAPcPJ44cSg1Ku4AAKa6tOkZpIxJgAy4KxfkjTo0CRhDbiQtVAl0TllDVggXbNWGwkVnVgWsgdkS5iiyFUcUqikWLJilREnkk725v99s/buhsznd735n7wV3O+wUsuDv7mbnndnZn+b3nmWccEQIAAAAALG7oYjcAAAAAAPoZRRMAAAAA9EDRBAAAAAA9UDQBAAAAQA8UTQAAAADQA0UTAAAAAPRA0QQAAACgL9neZfs520ds37vI87b9+eL5p22/rVg+ZvuvbP+17Wdt/1HXOltsH7T9fPHv5uXaQdEEAAAAoO/Ybki6T9Ktkm6QdKftGxbEbpW0o7jtkXR/sXxG0m9ExK9JulHSLts3F8/dK+nxiNgh6fHicU8UTQAAAAD60U2SjkTECxExK+kRSbsXZHZLeijmfU/SJtvbisdTRaZZ3KJrnQeL+w9Kes9yDRle2e9RzhVXXBHXXXfdev5IAFhX//fJF9JZD63R3628BtuM5SOVNtvppLO/+M/esjaNAIA+8OSTT74SEVsvdjvK+K1fn4hXT7Urr//k0zPPSpruWrQ3IvZ2Pd4u6aWux0clvX3BZhbLbJd0rOipelLSL0i6LyK+X2SuiohjkhQRx2xfuVxb17Vouu6663To0KH1/JEAsK5uGbo9nR0a35DfcKORjtqrXzVFlKia2vkv0M65c+nswUOP5tsAAAPG9t9f7DaU9cqptr7/2DWV129u+3/TEbGzR2SxL7SFX0hLZiKiLelG25skfd32r0bEM1Xauq5FEwAAAIBLRagd+REDFRyVdG3X42skvVw2ExGv2/4LSbskPSPpeDGE75jtbZJOLNcQzmkCAAAAUFpI6igq3xKekLTD9vW2RyTdIWn/gsx+SR8oZtG7WdIbRTG0tehhku1xSb8p6W+71rmruH+XpG8s1xB6mgAAAAD0nYiYs32PpMckNSTti4hnbX+keP4BSQck3SbpiKRzkj5YrL5N0oPFeU1Dkr4SEd8snvu0pK/Y/pCkH0ladmw9RRMAAACASjpa0+F5iogDmi+Mupc90HU/JN29yHpPS3rrEtt8VdK7yrSDogkAAABAaaFQu8xEQQOMogkAAABAJclzkwYeE0EAAAAAQA/0NAEAAAAoLSS1a9LTRNEE4JJR6sKyExPprDfkL0LbuOEX09n25Gg62xnJX9xWjdW/uK3a+S/Fodn8xW0bUzPp7K6rfi+djRIXze2cPZvOHuxwgV0A6FaX4XkUTQAAAABKC4mJIAAAAACgl7WdcLx/MBEEAAAAAPRATxMAAACA0kLBRBAAAAAAsKQoNU/QQKNoAgAAAFBaqD7nNFE0AQAAAKjAamsNLnPRh5gIAgAAAAB6oKcJAAAAQGkhqcM5TQAAAACwtLoMz6NoAtDX3j36vnS2seMt6Wz78sl0tjXZzGc35g+rc+P5L5p2M5+NRjqa5nY+22jl/+w4fH5DOtv8uY357FQrnW28OpXOlnk/fmvm4XQWAAZRqD5FE+c0AQAAAEAP9DQBAAAAqKQT9ehpomgCAAAAUFqdhudRNAEAAAAoLWS1a3K2D0UTAAAAgErqMjyvHqUhAAAAAFRETxMAAACA0jinCQAAAAB6stpRj4FrFE0AAAAASgtJnZqc7UPRBAAAAKAShucBQAm3DN2ezjYu35LO+ld+IZ09f/VEOju9uZHOtibzXwitiXy2PZqOqtPMZ9dipIQ7+exQK/8aNGby222ezf9izan8Cza2Kb8jxibG0tldWz+czrZfPZXKHew8mt4mAGD1UDQBAAAAKC2Cc5oAAAAAoKcOw/MAAAAAYHHzU47Xo6epHr8lAAAAAFRETxMAAACACjinCQAAAACWxHWaAAAAAGAZ7WAiCAAAAABYVMhMBAEAAAAAoKcJAAAAQEUdJoIAAOndI3emco0db0lvs3XVZens+atG09npLfkD98yb8mOw5ybTUc2NRzrbGc1no1kiO5TPZrmTf73cymeHZvLZ4fMlslP5bGuyRHZiYzo7PjmSzjaPb0rlsp9HSfrW7JfTWQCook7XaaJoAgAAAFBayLWZCGLZ0tD2tba/bfuw7Wdtf7RY/knbP7b9VHG7be2bCwAAAADrK9PTNCfp4xHxA9sbJT1p+2Dx3Oci4k/WrnkAAAAA+hXXaSpExDFJx4r7Z2wflrR9rRsGAAAAoH9FSO2aTARR6re0fZ2kt0r6frHoHttP295ne/NqNw4AAABAv7I6K7gNknTRZHtS0lclfSwiTku6X9LPS7pR8z1Rn1livT22D9k+dPLkyZW3GAAAAMBFF5rvaap6GySp1tpuar5gejgiviZJEXE8ItoR0ZH0BUk3LbZuROyNiJ0RsXPr1q2r1W4AAAAAWBfLntNk25K+KOlwRHy2a/m24nwnSXqvpGfWpokAAAAA+hHXafoH75D0fkk/tP1UsewTku60faPme+ZelPThNWgfAAAAgD4Usjo1uU5TZva870qLnql1YPWbAwAAAGBQ0NME4JJ1y9Dt6Wxjx1tSuZlr8xNonru6mc6evzx/MJ7dlI5q9rJIZ9uT7fyGx/LZxmg+2xzOZ4eG8r9bVqeT/0vi3Fwjn50pkZ3OZxsT+Wx7vMTvNlZiu6Nj6eyGkdx2R9NbLPc5P9h5tMSWAWBeSOqs8YQOtndJ+jNJDUn/JSI+veB5F8/fJumcpH9TXF/2WkkPSbpaUkfS3oj4s2KdT0r6t5IuzFL3iYjo2SFE0QQAAACg79huSLpP0i2Sjkp6wvb+iPibrtitknYUt7drfobvt0uak/TxooDaKOlJ2we71v1cRPxJti0UTQAAAAAqsNpre72lmyQdiYgXJMn2I5J2S+oumnZLeigiQtL3bG/qmrDumCRFxBnbhyVtX7BuWj0GIQIAAABYVReG51W9SbriwvVci9ueBT9iu6SXuh4fLZaVyti+TtJbJX2/a/E9tp+2vc/2sucY0NMEAAAAoJIV9jS9EhE7ezy/2MYXnrjbM2N7UvPXm/1YRJwuFt8v6VNF7lOSPiPpd3s1lJ4mAAAAAP3oqKRrux5fI+nlbMZ2U/MF08MR8bULgYg4HhHtiOhI+oLmhwH2RNEEAAAAoLQIr3R43nKekLTD9vW2RyTdIWn/gsx+SR/wvJslvRERx4pZ9b4o6XBEfLZ7Bdvbuh6+V9IzyzWE4XkAAAAAKmmv4ZTjETFn+x5Jj2l+yvF9EfGs7Y8Uzz+g+WvH3ibpiOanHP9gsfo7JL1f0g9tP1UsuzC1+B/bvlHzw/NelPTh5dpC0QQAAACgtJDUWdvZ81QUOQcWLHug635IunuR9b6rxc93UkS8v2w7KJoAAAAAVOA17WnqJxRNQA01Lt+SzrauuiyVO3d1M73Nc1fmD7AzWxZOkrO02U2ddDY2zqWzoxOz6eyGsRLZkVY6O97MZxvOvw5ZZb4Uz7dKvBdmS2SnR9LZmbF8dno0/1XYaeZfh2iU+Y9E7nUYms19HiWpeSr/OQcA9EbRBAAAAKC0+es0re3wvH5B0QQAAACgknZNJuOmaAIAAABQWsj0NAEAAABAL52a9DTV47cEAAAAgIroaQIAAABQWoTUZngeAAAAACyNc5oAAAAAYAnzE0HU42yfevyWAAAAAFARPU0AAAAAKmmL4XkABsi7R9+XzvpXfiGdPX/VaC53eb7jemZLpLOzWzrprDfNprMbJ6fT2c0bzqezm0bz2ctG8tnxRiudbTr/mmW1Sgy/ON9uprOnZ8fT2dfH8tnXRvLZqeZYOjs7NJLOlhnM4XYu25jJfR4laXjq6nS2zPHjWzMPp7MALm0hzmkCAAAAgB7qc04TRRMAAACASjo1GZ5Xj9IQAAAAACqipwkAAABAaVzcFgAAAACWwTlNAAAAALCE+Yvb0tMEAAAAAEtiIggAAAAAAD1NAAAAAMrj4rYAAAAAsAwmggBw0d0ydHs629jxlnT2/NUT6ez0ltzBcHZTepOa3dRJZ71pNp1902Xn0tkrJ6fy2fEz6ezWkfx2LxueTmc3NGbS2THPpbNZ05H/ujjXHk1nT4+MpbMnRybT2bHhjensiaH8+/GNdFKa7Yyks0OtRio3PZ3/z0nzbP5zPn72mnS2zHHpYOfRdBbAAIr6TARRj9IQAAAAACqipwkAAABAaaH6zJ5H0QQAAACgkroMz6NoAgAAAFAas+cBAAAAwDLqUjQxEQQAAAAA9EBPEwAAAIDSQvWZcpyiCQAAAEAlzJ4HAAAAAEuJ+pzTRNEEAAAAoDRmzwPQF4YmJtLZ9uWT6ez05kY6O/Om3MFw9rJIbzM2zqWzGyen09krJ6fS2e0b3khnt43ls1c0z6SzWxr59k4MzaazTedf36xW5L8uznZG0tlTw/n37Xijlc423Ulny2h38vMnnW7ls7MzuWzjfP4/J82p/Od8pMTxY+jl/HEJAC4VFE0AAAAAKqGnCQAAAACWUKfZ85YdD2D7Wtvftn3Y9rO2P1os32L7oO3ni383r31zAQAAAPSLCFe+DZLMIOo5SR+PiF+WdLOku23fIOleSY9HxA5JjxePAQAAAOCSsmzRFBHHIuIHxf0zkg5L2i5pt6QHi9iDkt6zRm0EAAAA0Ic6cuXbICl1TpPt6yS9VdL3JV0VEcek+cLK9pVLrLNH0h5JevOb37yixgIAAADoD1Gj6zSl50O1PSnpq5I+FhGns+tFxN6I2BkRO7du3VqljQAAAAD6UF3OaUr1NNluar5gejgivlYsPm57W9HLtE3SibVqJAAAAIB+w+x5P2Xbkr4o6XBEfLbrqf2S7iru3yXpG6vfPAAAAAC4uDI9Te+Q9H5JP7T9VLHsE5I+Lekrtj8k6UeSbl+TFgIAAADoS4M2zK6qZYumiPiutOT0Fu9a3eYA6OYNG9LZ1mSzRDZ/gJubzOXak+30NkcnZtPZzRvOp7NXjp9JZ7eNvZHOXjNyKp3dOpxvw6bG2XR2wvnXrOn8vshqRSOdPRsj6ezEUP73GnMrnS2jFenTezU9l/+czczm51qamc69vnNn89ss8zkvc/wYK3FcAnBpC9VnIohSs+cBAAAAgCQp5mfQq4P8n9cAAAAAoMtaX6fJ9i7bz9k+YvveRZ637c8Xzz9t+23F8mttf9v2YdvP2v5o1zpbbB+0/Xzx7+bl2kHRBAAAAKDv2G5Iuk/SrZJukHSn7RsWxG6VtKO47ZF0f7F8TtLHI+KXJd0s6e6ude+V9HhE7JD0ePG4J4omAAAAAKWF1vw6TTdJOhIRL0TErKRHJO1ekNkt6aGY9z1Jmy5cFikifiBJEXFG0mFJ27vWebC4/6Ck9yzXEM5pAgAAAFDBiq/TdIXtQ12P90bE3q7H2yW91PX4qKS3L9jGYpntko79tJX2dZLeKun7xaKrIuKYJBXXnL1yuYZSNAEAAACoZIUTQbwSETt7PL9YRbbwJ/bM2J6U9FVJH4uI0+WbOI/heQAAAAD60VFJ13Y9vkbSy9mM7abmC6aHI+JrXZnjtrcVmW2STizXEIomAAAAAJWs8TlNT0jaYft62yOS7pC0f0Fmv6QPFLPo3SzpjWLInSV9UdLhiPjsIuvcVdy/S9I3lmsIw/MAAAAAlBahbPFTcfsxZ/seSY9JakjaFxHP2v5I8fwDkg5Iuk3SEUnnJH2wWP0dkt4v6Ye2nyqWfSIiDkj6tKSv2P6QpB9Jun25tlA0AQAAAKhkhRNBLKsocg4sWPZA1/2QdPci631Xi5/vpIh4VdK7yrSDoglYZ7cMLfvHjJ9q3PCL6WxrY/7j3JrIH+DmxpNneI6109vcMDabzm4aPZ/Obh2ZSmevaJ7Jb3e4TDZ/jummoel0dqPn0tnmGnx/tUqc6HsmWuls0/n3TRnT0Uxnz7fz2dOj4/ns2Gg6OzM2ksrNjTfS2yzzOS9z/Bjbuuw1IH+qzPHuYOfRdBZA/1jhRBADg3OaAAAAAKAHepoAAAAAVLKW5zT1E4omAAAAAKWF0rPgDTyKJgAAAACV1OSUJoomAAAAABWs8ZTj/YSJIAAAAACgB3qaAAAAAFRTk/F5FE0AAAAAKqnL8DyKJgAAAACVcHFbAAAAAAA9TcB6G9qwIZ1tT46ms3Pj+e7xdn6z6ozm/oTUGG2nt7lhpJXOXjZyPp8dnk5ntzSm0tlNjbP57FCJNgzNpbMTzv+Nq1kim9WKTv7nR/73kvKvV6vRSGfPdkbS2TeG85/JMu/HDSMT6ezp5Ocn+3mUpPZo/phQ6vhR4rhU5ngHYPCEGJ4HAAAAAEsLSRRNAAAAALC0upzTRNEEAAAAoJqaFE1MBAEAAAAAPdDTBAAAAKACMxEEAAAAAPRUk+F5FE0AAAAAyov6TDnOOU0AAAAA0AM9TQAAAACqYXgeAAAAAPRSj+F5FE3Aems00tHOSD7bbuYPWp1mOqpo5v6E1Bxup7c53mzls418dkNjJp2dGJrNZ53PbvRcie3mR0hvGMrvtGHl3zdZTef3rzr5fdYq8XqdK7EfyuzfMu+bMu/HMu/z4eTnZzb5eZTKfc5LHT9KHJeGShzvAAwoepoAAAAAoIeaFE1MBAEAAAAAPdDTBAAAAKC8kFSTKccpmgAAAABUEjUZnkfRBAAAAKAaiiYAAAAA6KEmw/OYCAIAAAAAeqCnCQAAAEAlZngeAAAAACwhxDlNAAAAALA01+acJoomYJ3ZJQ4ujXw2GvnNRomzGWMo9yekoWROkhrupLPNEtkxz5XYbplsu0Q2HVXT+R0xrPwObpTYblqJvySWe73KvBfKbDe/f8u9b/LtLfM+z35+sp/H+Ww6Wur4Uea4VOp4BwB9jKIJAAAAQDU1GZ637N+hbO+zfcL2M13LPmn7x7afKm63rW0zAQAAAPSdWMFtgGQ6778kadciyz8XETcWtwOr2ywAAAAAfa8mRdOyw/Mi4ju2r1uHtgAAAAAYFKHaTASxkrOF77H9dDF8b/NSIdt7bB+yfejkyZMr+HEAAAAAsP6qFk33S/p5STdKOibpM0sFI2JvROyMiJ1bt26t+OMAAAAA9BtH9dsgqVQ0RcTxiGhHREfSFyTdtLrNAgAAAND3anJOU6Wiyfa2rofvlfTMUlkAAAAAGGTLTgRh+8uS3inpCttHJf2hpHfavlHzNeKLkj68dk0EAAAA0I8GbZhdVZnZ8+5cZPEX16AtAAAAANB3li2aAAAAAGBRNZlynKIJAAAAQHkDOKFDVRRNAAAAAKqpSdG0kovbAgAAAMAlj6IJAAAAQCVrfXFb27tsP2f7iO17F3netj9fPP+07bd1PbfP9gnbzyxY55O2f2z7qeJ223LtoGgCAAAAUM0aXtzWdkPSfZJulXSDpDtt37AgdqukHcVtj6T7u577kqRdS2z+cxFxY3E7sFxbKJoAAAAAVLOGRZOkmyQdiYgXImJW0iOSdi/I7Jb0UMz7nqRNtrdJUkR8R9Kplfx6F1A0AQAAAChtJUPziuF5V9g+1HXbs+BHbJf0Utfjo8WyspnF3FMM59tne/NyYYomAAAAABfDKxGxs+u2d8Hzi10EamEfVSaz0P2Sfl7SjZKOSfrMcg1lynEAAAAA1aztxW2PSrq26/E1kl6ukPlHIuL4hfu2vyDpm8s1hKIJWGcRJS5o0M5n3c5v1p0y2dzBsJPMSVI78p3crRLZ6cgf0lqlso0S2XRUrcjviGaZHbwG18yYU/7nl/m9yr1eZfZDfv+We9/k349l3ufZz0/28zifTUdLHT/KHJdKHe8ADKa1/Zg/IWmH7esl/VjSHZJ+Z0Fmv+aH2j0i6e2S3oiIY702antbV+a9kp7plZcomgAAAABUlJ06vIqImLN9j6THJDUk7YuIZ21/pHj+AUkHJN0m6Yikc5I++NO22V+W9E7Nnzt1VNIfRsQXJf2x7Rs1X/K9KOnDy7WFogkAAABANWvcoVxMB35gwbIHuu6HpLuXWPfOJZa/v2w7mAgCAAAAAHqgpwkAAABAebG2w/P6CUUTAAAAgGoomgAAAACgh5oUTZzTBAAAAAA90NMEAAAAoJK6nNNETxMAAAAA9EBPEwAAAIBqatLTRNEErLd2Ox0dms1nG638UWuo5XTWyezcXCO9zfOtZj7bzmfPtUfT2bOdkXw28tkz0UpnmzGXzqpTYrvOv2+yWtFJZ8+WyJ6J/NdQmf1QZv+Wed+UeT+WeZ9nPz/Zz6MkDeXfMuWOHyWOS2WOdwAGUI2mHGd4HgAAAAD0QE8TAAAAgGpq0tNE0QQAAACgGoomAAAAAFicVZ9zmiiaAAAAAFRTk6KJiSAAAAAAoAd6mgAAAACUV6MpxymaAAAAAFRD0QQAAAAAPdSkaOKcJgAAAADogZ4mYJ11zp1LZxtTM+ns8PkN+e3mN6uhGadyczON9DbPzTbT2dOz4/nsyFg6e2p4Mp2dGJpNZ5tup7PSdDrZ8lyJNnRKtCH580v8JfFM5L9aXu/k99nr7Yl09lQ7v39Pz+XbUOb9WOZ93k5+foaTn0ep3Od8+Hx+B5c5LrVLHO8ADCbOaQIAAACAXiiaAAAAAGAJIYomAAAAAOilLsPzmAgCAAAAAHqgpwkAAABANTXpaaJoAgAAAFBJXYbnUTQBAAAAqIaiCQAAAACWUKPZ85gIAgAAAAB6oKcJAAAAQGkubnVA0QSss4OdR9PZXVf9Xjrb/LmN+ezZfCfz8Pnc4XBuupHe5rnpkXT29bHxdPbkyGQ6O95opbNjzmfLaDVKvGaeTWebbldpTk+tyLf1bJTYv+2JdPbkXP49/kornz05m3/fvD6Tfz+WeZ8r+fnJfh4lqXk2P2ameWYundXJ19LRMsc7AAOqJsPzKJoAAAAAVFKX2fOW/XOz7X22T9h+pmvZFtsHbT9f/Lt5bZsJAAAAABdHZozOlyTtWrDsXkmPR8QOSY8XjwEAAADUSazgNkCWLZoi4juSTi1YvFvSg8X9ByW9Z3WbBQAAAKDv1aRoqnpO01URcUySIuKY7StXsU0AAAAA+l1wTtOqsb3H9iHbh06ePLnWPw4AAADAeqlJT1PVoum47W2SVPx7YqlgROyNiJ0RsXPr1q0VfxwAAAAAXBxVi6b9ku4q7t8l6Rur0xwAAAAAg8JR/TZIMlOOf1nSX0r6JdtHbX9I0qcl3WL7eUm3FI8BAAAA1ElNhuctOxFERNy5xFPvWuW2AAAAABggg9ZjVFXV2fMArIM4dy6dbU61SmSb6ezwlFO5xkQjvc2ZsZF09rWR8XR2bHhjOtt0J50tYzryr+3ZTv51mBiaTWebnktns1qR/7oo83udak+ms6+08vv32PSb0tkT5/Pbfe1c/v04czb/OjSmcp+f4an0JtWcyv9Ppszxo8xxCQAuFRRNAAAAAMobwGF2VVE0AQAAAKiGogkAAAAAFmdxThMAAAAA9FaToqnqdZoAAAAAoBYomgAAAABU4ojKt9T27V22n7N9xPa9izxv258vnn/a9tu6nttn+4TtZxass8X2QdvPF/9uXq4dFE0AAAAAylvJhW0TNZPthqT7JN0q6QZJd9q+YUHsVkk7itseSfd3PfclSbsW2fS9kh6PiB2SHi8e90TRBAAAAKASR/Vbwk2SjkTECxExK+kRSbsXZHZLeijmfU/SJtvbJCkiviPp1CLb3S3pweL+g5Les1xDKJoAAAAAVLOGPU2Stkt6qevx0WJZ2cxCV0XEMUkq/r1yuYYwex4AAACAi+EK24e6Hu+NiL1dj73IOgvLrUxmxSiagD7WOXs2nW28OpXOjm0aTWdbk4sdi35WezyXk6Tp0fyhZ6o5ls6eGOqks2W0It8pf77dTGffGN6Qzm5ozKSzY55LZ7OmI7/PzrXz76/Tc/n9e3J2Mp09cX5jPjuV3+7UVL69PpN/zUZO5z4/o2/k/x8w9lo7nS1z/GiXOC4BuPSt8DpNr0TEzh7PH5V0bdfjayS9XCGz0HHb2yLiWDGU78RyDWV4HgAAAIBq1nZ43hOSdti+3vaIpDsk7V+Q2S/pA8UsejdLeuPC0Lse9ku6q7h/l6RvLNcQiiYAAAAA5a1gEohMD1VEzEm6R9Jjkg5L+kpEPGv7I7Y/UsQOSHpB0hFJX5D0exfWt/1lSX8p6ZdsH7X9oeKpT0u6xfbzkm4pHvfE8DwAAAAAfSkiDmi+MOpe9kDX/ZB09xLr3rnE8lclvatMOyiaAAAAAFSz6lMu9CeKJgAAAAClWSueCGJgUDQBAAAAqCbqUTVRNAEAAACopC49TcyeBwAAAAA90NMEAAAAoLz89ZYGHkUTAAAAgErcudgtWB8UTUAfO9h5NJ199+j70tmxibF0tjWxMZWbG2ukt9lp5kcGzw6NpLNvpJNSu5Nvw/RcM509PTqezl42cj6dHW+00tnmGnyDtSL/ep1vl3i9ZvOv1+sz+exr5/LZqan85yFez78fR17Pv2Yjr+dyY6fy+3bsJ2fT2c6LR9PZMsclADVATxMAAAAALI2JIAAAAAAA9DQBAAAAqCDEdZoAAAAAoJe6DM+jaAIAAABQTU2KJs5pAgAAAIAe6GkCAAAAUJrF8DwAAAAAWFoEE0EAAAAAQC/0NAEAAABALxRNAAbJt2YeTmd3bf1wOjs+OZLKtUfH0tuMRpk5aPLZ2U6urZJ0upXf7sxs/lB5emw0nd0wMpHOjjdb6WzDnXQ2qx351+t8q5nOnpstkZ3O79+Zs/msz+T378jr+ddh9JTT2fFXc/ts/PhMept+6Sfp7GMljh8AUEcUTQAAAAAqYXgeAAAAACwlJHXqUTVRNAEAAACoph41E0UTAAAAgGrqMjyvzNnYAAAAAFA79DQBAAAAqIaL2wIAAADA0uoyPI+iCQAAAEB5odpMBME5TQAAAADQAz1NAAAAAEqzJHNOE4BLVfvVU+ls8/imVG7DSKNEC5rppNv5DvGhVr4NszP57c5M57c7MzaSzp4ebaezw8P57NDQ6n+BdTpOZ+fm8q9Xe6bE+6bEfmhM5bMjp/O/28jr6ajGX+2ksxt+0krlmsdPp7dZ5nMOAJXlD3UDjaIJAAAAQCX0NCXYflHSGUltSXMRsXM1GgUAAACgz9VoIojV6Gn69Yh4ZRW2AwAAAAB9h+F5AAAAACqI2lzcdqVTjoekb9l+0vaexQK299g+ZPvQyZMnV/jjAAAAAPQLR/XbIFlpT9M7IuJl21dKOmj7byPiO92BiNgraa8k7dy5c8BeHgAAAABLoqdpeRHxcvHvCUlfl3TTajQKAAAAQJ8LyZ3qt0FSuWiyPWF744X7kt4t6ZnVahgAAAAA9IOVDM+7StLXbV/Yzn+LiD9flVYBAAAA6H81GZ5XuWiKiBck/doqtgUAAADAIKlHzcSU40AdHew8ms6+e+TOVG60xM8fmr0snW3M5Lc8PZ0fcdw473R27mz+UDk33khnO6P5b5rZZj4bQ6v/DeZO/vVyK58dnimRLbHPhqfSUY2+kX+9xk7lB+GPH59JZ5vHT6dynb/7UXqbZT7nAFCVa9LTtNIpxwEAAADgkkZPEwAAAIBqatLTRNEEAAAAoLyQNGBTh1dF0QQAAACgNCtqc04TRRMAAACAampSNDERBAAAAAD0QE8TAAAAgGroaQIAAACAJVyYCKLqLcH2LtvP2T5i+95FnrftzxfPP237bcuta/uTtn9s+6nidtty7aCnCQAAAEAlazkRhO2GpPsk3SLpqKQnbO+PiL/pit0qaUdxe7uk+yW9PbHu5yLiT7JtoWgC0NO3Zr+cyt0ydHt6m81TW9LZ4amr89s9O5HPTjXS2dak89mJfLY9ms92mumoYg3GELjElLJDrXy2MZPPNs/mv5ibU/ns2GvtfPYnZ9NZv/STdLb96qlU7mDn0fQ2AWBdrO3wvJskHYmIFyTJ9iOSdkvqLpp2S3ooIkLS92xvsr1N0nWJddMYngcAAADgYrjC9qGu254Fz2+X9FLX46PFskxmuXXvKYbz7bO9ebmG0tMEAAAAoIJYaU/TKxGxs8fziw3JWPgDl8r0Wvd+SZ8qHn9K0mck/W6vhlI0AQAAACgvtNbD845Kurbr8TWSXk5mRpZaNyKOX1ho+wuSvrlcQxieBwAAAKCatZ097wlJO2xfb3tE0h2S9i/I7Jf0gWIWvZslvRERx3qtW5zzdMF7JT2zXEPoaQIAAADQdyJizvY9kh6T1JC0LyKetf2R4vkHJB2QdJukI5LOSfpgr3WLTf+x7Rs131f2oqQPL9cWiiYAAAAAlazllOOSFBEHNF8YdS97oOt+SLo7u26x/P1l20HRBAAAAKCaNS6a+gVFEwAAAIDyQlKHogkAAAAAlrDiKccHBrPnAQAAAEAP9DQBWBUHO4+uyXbfPfq+dHb87DXp7Mjlk+lsa7KZz27MH1bnxhe77t7i2s18NhrpaJrb+Wyjlf+r4/D5fLZ5Zi6fnWqls41Xp9LZzotH09nHZh5OZwFgYNWkp4miCQAAAEA1FE0AAAAAsAQmggAAAACAXkKKzsVuxLpgIggAAAAA6IGeJgAAAADVcE4TAAAAACyBc5oAAAAAYBk16WninCYAAAAA6IGeJgAAAADV1KSniaIJAAAAQAVB0QQA/eBbMw+ns7cM3Z7ODr08kc6ObdiQz27dnM62J0fT2c5II51Vw/lsVjv/pTg0205nG1Mz+TacfC0djXPn0tn22bPp7MHOo+ksAFzyQlKnHtdpomgCAAAAUE1NepqYCAIAAAAAeqCnCQAAAEA1NelpomgCAAAAUEFwcVsAAAAAWFJIEfWYCIJzmgAAAACgB3qaAAAAAFTD8DwAAAAA6IGJIAAAAABgCRFc3BYAAAAAeqKnCQAGy8HOoxe7Cbpl6PZ0dmjDhny20UhnbaezWVHmS7HdzkfPnUtn+2H/AgDqiaIJAAAAQCVRk+F5K5py3PYu28/ZPmL73tVqFAAAAIB+F/PD86reBkjlnibbDUn3SbpF0lFJT9jeHxF/s1qNAwAAANCnQkw5nnCTpCMR8YIk2X5E0m5JFE0AAABAHQTD85azXdJLXY+PFsv+Edt7bB+yfejkyZMr+HEAAAAAsP5WUjQtNj3Tz/TPRcTeiNgZETu3bt26gh8HAAAAoF+EpOhE5dsgWcnwvKOSru16fI2kl1fWHAAAAAADIaI2w/NWUjQ9IWmH7esl/VjSHZJ+Z1VaBQAAAKDvDVqPUVWVi6aImLN9j6THJDUk7YuIZ1etZQAAAADQB1Z0cduIOCDpwCq1BQAAAMAgqcnwPMc6XljK9klJf79uP7DerpD0ysVuBNLYX4OHfTZ42GeDh302WNhfK/NPImKgZk2z/eea3+9VvRIRu1arPWtpXYsmrB/bhyJi58VuB3LYX4OHfTZ42GeDh302WNhfuJStZMpxAAAAALjkUTQBAAAAQA8UTZeuvRe7ASiF/TV42GeDh302eNhng4X9hUsW5zQBAAAAQA/0NAEAAABADxRNAAAAANADRdMlxPbttp+13bG9c8Fzv2/7iO3nbP/WxWojfpbtXcV+OWL73ovdHvws2/tsn7D9TNeyLbYP2n6++HfzxWwj/oHta21/2/bh4pj40WI5+6xP2R6z/Ve2/7rYZ39ULGef9THbDdv/x/Y3i8fsL1yyKJouLc9I+leSvtO90PYNku6Q9CuSdkn6z7Yb6988LFTsh/sk3SrpBkl3FvsL/eVLmv/sdLtX0uMRsUPS48Vj9Ic5SR+PiF+WdLOku4vPFfusf81I+o2I+DVJN0raZftmsc/63UclHe56zP7CJYui6RISEYcj4rlFntot6ZGImImIv5N0RNJN69s6LOEmSUci4oWImJX0iOb3F/pIRHxH0qkFi3dLerC4/6Ck96xnm7C0iDgWET8o7p/R/H/qtot91rdi3lTxsFncQuyzvmX7Gkn/QtJ/6VrM/sIli6KpHrZLeqnr8dFiGS4+9s3guioijknz/0mXdOVFbg8WYfs6SW+V9H2xz/paMdTrKUknJB2MCPZZf/tTSf9eUqdrGfsLl6zhi90AlGP7f0q6epGn/iAivrHUaossY675/sC+AdaI7UlJX5X0sYg4bS/2cUO/iIi2pBttb5L0ddu/epGbhCXY/m1JJyLiSdvvvMjNAdYFRdOAiYjfrLDaUUnXdj2+RtLLq9MirBD7ZnAdt70tIo7Z3qb5v46jT9huar5gejgivlYsZp8NgIh43fZfaP48QvZZf3qHpH9p+zZJY5Ius/1fxf7CJYzhefWwX9IdtkdtXy9ph6S/ushtwrwnJO2wfb3tEc1P2LH/IrcJOfsl3VXcv0vSUj29WGee71L6oqTDEfHZrqfYZ33K9taih0m2xyX9pqS/FfusL0XE70fENRFxnea/t/5XRPxrsb9wCXMEI4EuFbbfK+k/Sdoq6XVJT0XEbxXP/YGk39X8rFIfi4j/cbHaiX+s+Evdn0pqSNoXEf/x4rYIC9n+sqR3SrpC0nFJfyjpv0v6iqQ3S/qRpNsjYuFkEbgIbP9zSf9b0g/1D+dbfELz5zWxz/qQ7X+q+YkDGpr/g+5XIuI/2L5c7LO+VgzP+3cR8dvsL1zKKJoAAAAAoAeG5wEAAABADxRNAAAAANADRRMAAAAA9EDRBAAAAAA9UDQBAAAAQA8UTQAAAADQA0UTAAAAAPTw/wHZg+MgaL11+gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 1152x432 with 2 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "cm_expl_f_u = cm_expl_f_flow.get_trimmed_velocity_array()\n",
     "ps.plot.vector_field_magnitude(cm_expl_f_u[30,:,:,:])\n",
@@ -449,7 +392,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -474,7 +417,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   },
   "vscode": {
    "interpreter": {
diff --git a/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-capillary-wave.ipynb b/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-capillary-wave.ipynb
index e8339d83477a4f7b2a953d945bcb89c24b0700e7..bbfa78d9843a65ca964b61614a820f66f16bf39a 100644
--- a/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-capillary-wave.ipynb
+++ b/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-capillary-wave.ipynb
@@ -33,32 +33,24 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "If `pycuda` is installed the simulation automatically runs on GPU"
+    "If `cupy` is installed the simulation automatically runs on GPU"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 2,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No pycuda installed\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    gpu = False\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    gpu = True\n",
     "    target = ps.Target.GPU"
    ]
@@ -1123,7 +1115,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-gravity-wave.ipynb b/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-gravity-wave.ipynb
index 451c8872115a524fa05f3df49a0025267c3aea76..c7fa30260906c06776a6fbcea8846a4489d3cf01 100644
--- a/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-gravity-wave.ipynb
+++ b/lbmpy_tests/full_scenarios/phasefield_allen_cahn/phasefield-gravity-wave.ipynb
@@ -32,32 +32,24 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "If `pycuda` is installed the simulation automatically runs on GPU"
+    "If `cupy` is installed the simulation automatically runs on GPU"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 2,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No pycuda installed\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    gpu = False\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    gpu = True\n",
     "    target = ps.Target.GPU"
    ]
@@ -1208,7 +1200,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy_tests/full_scenarios/shear_wave/scenario_shear_wave.py b/lbmpy_tests/full_scenarios/shear_wave/scenario_shear_wave.py
index 9005e9687e9e6bf57d88f91557597812ad105036..cd5e73b7953216c3dd22c79490ecf29c178dc944 100644
--- a/lbmpy_tests/full_scenarios/shear_wave/scenario_shear_wave.py
+++ b/lbmpy_tests/full_scenarios/shear_wave/scenario_shear_wave.py
@@ -215,7 +215,7 @@ def create_full_parameter_study():
 
 
 def test_shear_wave():
-    pytest.importorskip('pycuda')
+    pytest.importorskip('cupy')
     params = {
         'l_0': 32,
         'u_0': 0.096,
diff --git a/lbmpy_tests/phasefield/test_n_phase_boyer_analytical.ipynb b/lbmpy_tests/phasefield/test_n_phase_boyer_analytical.ipynb
index bfb151700a55e22373bf0e1088eed44d46c628d9..36b2e7dfd24afdcdcb97ba1d50cbd2a9d5a77ed4 100644
--- a/lbmpy_tests/phasefield/test_n_phase_boyer_analytical.ipynb
+++ b/lbmpy_tests/phasefield/test_n_phase_boyer_analytical.ipynb
@@ -415,7 +415,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -429,7 +429,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.2"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy_tests/phasefield/test_n_phase_boyer_noncoupled.ipynb b/lbmpy_tests/phasefield/test_n_phase_boyer_noncoupled.ipynb
index 6958e868e7fc0dfae36db8d5cc67a58a19cb98fb..4cb099e864b12e962d1badd898e25e38c32390ae 100644
--- a/lbmpy_tests/phasefield/test_n_phase_boyer_noncoupled.ipynb
+++ b/lbmpy_tests/phasefield/test_n_phase_boyer_noncoupled.ipynb
@@ -6,21 +6,19 @@
    "metadata": {},
    "outputs": [
     {
-     "ename": "Skipped",
-     "evalue": "could not import 'pycuda': No module named 'pycuda'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mSkipped\u001b[0m                                   Traceback (most recent call last)",
-      "\u001b[0;32m/var/folders/07/0d7kq8fd0sx24cs53zz90_qc0000gp/T/ipykernel_16968/622163826.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpytest\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpytest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimportorskip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'pycuda'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[0;32m/opt/local/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/_pytest/outcomes.py\u001b[0m in \u001b[0;36mimportorskip\u001b[0;34m(modname, minversion, reason)\u001b[0m\n\u001b[1;32m    210\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mreason\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    211\u001b[0m                 \u001b[0mreason\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf\"could not import {modname!r}: {exc}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m             \u001b[0;32mraise\u001b[0m \u001b[0mSkipped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreason\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mallow_module_level\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    213\u001b[0m     \u001b[0mmod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmodname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    214\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mminversion\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mSkipped\u001b[0m: could not import 'pycuda': No module named 'pycuda'"
-     ]
+     "data": {
+      "text/plain": [
+       "<module 'cupy' from '/home/markus/.local/lib/python3.11/site-packages/cupy/__init__.py'>"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
     "import pytest\n",
-    "pytest.importorskip('pycuda')"
+    "pytest.importorskip('cupy')"
    ]
   },
   {
@@ -315,7 +313,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy_tests/phasefield/test_numerical_1D_nphase_model.ipynb b/lbmpy_tests/phasefield/test_numerical_1D_nphase_model.ipynb
index 695b4e8414d1c367e410678fe0e213cc59bf3d62..3f46dd27315ceaef81da34e8a6442abf4c573d6b 100644
--- a/lbmpy_tests/phasefield/test_numerical_1D_nphase_model.ipynb
+++ b/lbmpy_tests/phasefield/test_numerical_1D_nphase_model.ipynb
@@ -8,7 +8,7 @@
     {
      "data": {
       "text/plain": [
-       "<module 'pycuda' from '/home/markus/miniconda3/envs/pystencils/lib/python3.8/site-packages/pycuda/__init__.py'>"
+       "<module 'cupy' from '/home/markus/.local/lib/python3.11/site-packages/cupy/__init__.py'>"
       ]
      },
      "execution_count": 1,
@@ -18,7 +18,7 @@
    ],
    "source": [
     "import pytest\n",
-    "pytest.importorskip('pycuda')"
+    "pytest.importorskip('cupy')"
    ]
   },
   {
@@ -435,7 +435,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -449,7 +449,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.2"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/lbmpy_tests/test_boundary_handling.py b/lbmpy_tests/test_boundary_handling.py
index 23900e0c645b9b72cc906975ee224009ca491fe8..e174adf54745b5f9d170a0d92840011ae88309ca 100644
--- a/lbmpy_tests/test_boundary_handling.py
+++ b/lbmpy_tests/test_boundary_handling.py
@@ -26,7 +26,7 @@ def mirror_stencil(direction, mirror_axis):
 def test_simple(target):
     if target == Target.GPU:
         import pytest
-        pytest.importorskip('pycuda')
+        pytest.importorskip('cupy')
 
     dh = create_data_handling((4, 4), parallel=False, default_target=target)
     dh.add_array('pdfs', values_per_cell=9, cpu=True, gpu=target != Target.CPU)
diff --git a/lbmpy_tests/test_cpu_gpu_equivalence.py b/lbmpy_tests/test_cpu_gpu_equivalence.py
index 7683153ba871c804c68385e187884ad473614d56..f519d3f5746582da49e2406eb9ff31848d05be8c 100644
--- a/lbmpy_tests/test_cpu_gpu_equivalence.py
+++ b/lbmpy_tests/test_cpu_gpu_equivalence.py
@@ -31,7 +31,7 @@ def run_equivalence_test(domain_size, lbm_config, lbm_opt, config, time_steps=13
                                       ((18, 20), Method.MRT, True, (4, 2), 'zyxf'),
                                       ((7, 11, 18), Method.TRT, False, False, 'numpy')])
 def test_force_driven_channel_short(scenario):
-    pytest.importorskip("pycuda")
+    pytest.importorskip("cupy")
     ds = scenario[0]
     method = scenario[1]
     compressible = scenario[2]
diff --git a/lbmpy_tests/test_diffusion.py b/lbmpy_tests/test_diffusion.py
index 646531241f1fbece7274b552dda3917ced6e518f..4fce37d1ae79c7becb63827c91868497d962f4b3 100644
--- a/lbmpy_tests/test_diffusion.py
+++ b/lbmpy_tests/test_diffusion.py
@@ -77,7 +77,7 @@ def test_diffusion():
 
       The hydrodynamic field is not simulated, instead a constant velocity is assumed.
     """
-    pytest.importorskip("pycuda")
+    pytest.importorskip("cupy")
     # Parameters
     domain_size = (1600, 160)
     omega = 1.38
diff --git a/lbmpy_tests/test_gpu_block_size_limiting.py b/lbmpy_tests/test_gpu_block_size_limiting.py
index e619b53b8b0bcfd2c8f6ce49183c5be7f64da7d9..f3bfc805e65cdb3f3df0ea34aff7aaaa4a86c3b6 100644
--- a/lbmpy_tests/test_gpu_block_size_limiting.py
+++ b/lbmpy_tests/test_gpu_block_size_limiting.py
@@ -6,7 +6,7 @@ from pystencils import Target, CreateKernelConfig
 
 
 def test_gpu_block_size_limiting():
-    pytest.importorskip("pycuda")
+    pytest.importorskip("cupy")
     too_large = 2048*2048
     lbm_config = LBMConfig(method=Method.CUMULANT, stencil=LBStencil(Stencil.D3Q19),
                            relaxation_rate=1.8, compressible=True)
diff --git a/lbmpy_tests/test_lbstep.py b/lbmpy_tests/test_lbstep.py
index f5184b37a64f039bd75d278e967d4d6e7c63ece8..629d106e3379a9c0996374f47bf46d5d817d569e 100644
--- a/lbmpy_tests/test_lbstep.py
+++ b/lbmpy_tests/test_lbstep.py
@@ -6,7 +6,7 @@ from pystencils import Target, CreateKernelConfig
 from lbmpy.scenarios import create_fully_periodic_flow, create_lid_driven_cavity
 
 try:
-    import pycuda.driver
+    import cupy
     gpu_available = True
 except ImportError:
     gpu_available = False
diff --git a/lbmpy_tests/test_poisuille_channel.py b/lbmpy_tests/test_poisuille_channel.py
index e0dec156bad1aafb8158ccb84f14846ed31cba44..264d75ff2d0af94f3326fd7636fff75732dc491d 100644
--- a/lbmpy_tests/test_poisuille_channel.py
+++ b/lbmpy_tests/test_poisuille_channel.py
@@ -18,7 +18,7 @@ def test_poiseuille_channel(target, stencil_name, zero_centered, moment_space_co
     # Cuda
     if target == ps.Target.GPU:
         import pytest
-        pytest.importorskip("pycuda")
+        pytest.importorskip("cupy")
 
     cspace_info = CollisionSpace.RAW_MOMENTS if moment_space_collision else CollisionSpace.POPULATIONS
     poiseuille_channel(target=target, stencil_name=stencil_name, zero_centered=zero_centered, collision_space_info=cspace_info)
diff --git a/lbmpy_tests/test_shear_flow.py b/lbmpy_tests/test_shear_flow.py
index 1ab7ca2137893aadd2eac5c4732d4cb80da2d890..9b22d0a5b0a8cd36ce53b0e32c649428959ecf9a 100644
--- a/lbmpy_tests/test_shear_flow.py
+++ b/lbmpy_tests/test_shear_flow.py
@@ -67,7 +67,7 @@ def test_shear_flow(target, stencil_name, zero_centered):
 
     # Cuda
     if target == ps.Target.GPU:
-        pytest.importorskip("pycuda")
+        pytest.importorskip("cupy")
 
     # LB parameters
     stencil = LBStencil(stencil_name)
diff --git a/lbmpy_tests/test_simple_equilibrium_conservation.py b/lbmpy_tests/test_simple_equilibrium_conservation.py
index 0c39825cd195810aab5b10bb8df8ea770926576e..d5692e7d06b42e4173edc6c3c3231be06182f960 100644
--- a/lbmpy_tests/test_simple_equilibrium_conservation.py
+++ b/lbmpy_tests/test_simple_equilibrium_conservation.py
@@ -13,7 +13,7 @@ import pytest
 @pytest.mark.parametrize('delta_equilibrium', [False, True])
 def test_simple_equilibrium_conservation(setup, method, compressible, delta_equilibrium):
     if setup[0] == Target.GPU:
-        pytest.importorskip("pycuda")
+        pytest.importorskip("cupy")
 
     if method == Method.SRT and not delta_equilibrium:
         pytest.skip()
@@ -30,11 +30,11 @@ def test_simple_equilibrium_conservation(setup, method, compressible, delta_equi
     func = create_lb_function(lbm_config=lbm_config, config=config)
 
     if setup[0] == Target.GPU:
-        import pycuda.gpuarray as gpuarray
-        gpu_src, gpu_dst = gpuarray.to_gpu(src), gpuarray.to_gpu(dst)
+        import cupy
+        gpu_src, gpu_dst = cupy.asarray(src), cupy.asarray(dst)
         func(src=gpu_src, dst=gpu_dst)
-        gpu_src.get(src)
-        gpu_dst.get(dst)
+        src[:] = gpu_src.get()
+        dst[:] = gpu_dst.get()
     else:
         func(src=src, dst=dst)
 
diff --git a/lbmpy_tests/test_sparse_lbm.ipynb b/lbmpy_tests/test_sparse_lbm.ipynb
index da2914ba88f9cd90e70a22f47885c3ebbb7283f4..00af223b14b729e99c9eebd6b6f3d794f2428f22 100644
--- a/lbmpy_tests/test_sparse_lbm.ipynb
+++ b/lbmpy_tests/test_sparse_lbm.ipynb
@@ -17,25 +17,16 @@
    "cell_type": "code",
    "execution_count": 2,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No pycuda installed\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "try:\n",
-    "    import pycuda\n",
-    "    import pycuda.gpuarray as gpuarray\n",
+    "    import cupy\n",
     "except ImportError:\n",
-    "    pycuda = None\n",
+    "    cupy = None\n",
     "    target = ps.Target.CPU\n",
-    "    print('No pycuda installed')\n",
+    "    print('No cupy installed')\n",
     "\n",
-    "if pycuda:\n",
+    "if cupy:\n",
     "    target = ps.Target.GPU"
    ]
   },
@@ -79,14 +70,12 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1AAAAFpCAYAAACS8cl9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj4UlEQVR4nO3df6xn5X0f+PcnY2i3DqqTMGAM2NDuyAqxDPGOJo7IbqCJnQE5JamSFho5XtcRddZIcZWtliSS3W21UqSoaTeFmE7tEbZkQ6y1sdF2bKBWdrGb2GFA2AZjksmElMmwnsGOf9Vp6Mx89o/7nfTL5XvvPXO/93Dv/c7rJR3dc57nOec83+honA/P83ye6u4AAACwtu/a7A4AAABsFwIoAACAgQRQAAAAAwmgAAAABhJAAQAADCSAAgAAGEgABQAAbFtVdWlV/W5VPVFVj1fVL81oU1X1W1V1qKq+UFWvm6rbW1VPTupuXet9AigAAGA7O5Hkl7v7+5O8Psk7quqKZW2uS7Jrctyc5D1JUlU7ktw+qb8iyU0z7n0eARQAALBtdfcz3f3I5PxbSZ5IcvGyZjck+UAv+WySl1XVRUn2JDnU3Ye7+7kkd0/arkgABQAALISquizJDyb53LKqi5M8PXV9ZFK2UvmKXjJ3L0dw/vnn92WXXbbZ3YDN9V8f2+weAGw957xms3sAm+rhhx9+trt3bnY/hvqJa1/aX/3aybme8fAX/vLxJP9lqmhfd+9b3q6qvjvJR5K8s7u/ubx6xqN7lfIVbckA6rLLLsvBgwc3uxuwqU79f7s2uwsAW853vdz/f8DZrar+dLP7cCae/drJfO6+S+Z6xjkX/fF/6e7dq7WpqnOyFDx9sLs/OqPJkSSXTl1fkuRoknNXKF+RKXwAAMBIOif71FzHWqqqkrwvyRPd/ZsrNLs3yc9PsvG9Psk3uvuZJA8l2VVVl1fVuUlunLRd0ZYcgQIAALa/TnJq9RlxG+HqJG9O8sWqenRS9qtJXpkk3X1HkgNJrk9yKMl3krx1Uneiqm5Jcl+SHUn2d/fjq71MAAUAAGxb3f2ZzF7LNN2mk7xjhboDWQqwBhFAAQAAozmVtafhbScCKAAAYBSdzskefQrfi0oABQAAjOZFWAP1opKFDwAAYCAjUAAAwCg6yckFG4ESQAEAAKNZtCl8AigAAGAUnUgiAQAAMNRiJTGXRAIAAGAwI1CwRf3EK65a972H/tXrN64jABvsv/8nn133vQ8s2n/KhgXXaUkkAAAABunk5GLFTwIoAABgHJ3FWwMlgAIAAEZSOZna7E5sqDWTSFTVpVX1u1X1RFU9XlW/NCn/3qp6oKr+aPL3e1a4f29VPVlVh6rq1o3+AQAAAC+WIVn4TiT55e7+/iSvT/KOqroiya1JPtXdu5J8anL9PFW1I8ntSa5LckWSmyb3AgAAC66TnOr5jq1mzQCqu5/p7kcm599K8kSSi5PckOT9k2bvT/JTM27fk+RQdx/u7ueS3D25DwAAOAucnEzjW++x1ZzRGqiquizJDyb5XJILu/uZZCnIqqoLZtxycZKnp66PJPmh9XUVAADYTjrZkkHQPAZvpFtV353kI0ne2d3fHHrbjLKZA3FVdXNVHayqg8ePHx/aLQAAgBfNoACqqs7JUvD0we7+6KT4K1V10aT+oiTHZtx6JMmlU9eXJDk66x3dva+7d3f37p07dw7tPwAAsIWd6prr2GqGZOGrJO9L8kR3/+ZU1b1J3jI5f0uSj8+4/aEku6rq8qo6N8mNk/sAAIAFd3oK39m2BurqJG9O8sWqenRS9qtJfj3Jh6vqbUn+U5KfTZKqekWS93b39d19oqpuSXJfkh1J9nf34xv8GwAAgC2oUzk5fNXQtrBmANXdn8nstUxJ8mMz2h9Ncv3U9YEkB9bbQQAAYPvaitPw5rFY4SAAAMCIziiNOQAAwFCLmMZcAAUAAIykcrIXa9KbAAoAABhFJzm1YKuGBFAAAMBoFm0K32KFgwAAACMyAgUAAIyi2xooAACAwU4t2BQ+ARQAADCKpTTmizUCtVi/BgAAYERGoAAAgJGMvwaqqvYneVOSY939mhn1/zTJz00uX5Lk+5Ps7O6vVdVTSb6V5GSSE929e633GYECAABGcXofqHmOAe5MsnfFPnT/Rndf1d1XJfmVJP9vd39tqsm1k/o1g6fECBQAADCikz1uEonufrCqLhvY/KYkd83zPgEUAAAwik5tRBKJ86vq4NT1vu7ed6YPqaq/kaWRqlue18Xk/qrqJP92yHMFUAAAwFb27NDpdWv4yST/cdn0vau7+2hVXZDkgar6cnc/uNpDBFAAAMBoTm2djXRvzLLpe919dPL3WFXdk2RPklUDqC3zawAAgMVyeh+oeY6NUFV/M8mPJvn4VNlLq+q80+dJ3pjksbWeZQQKAAAYRadGTyJRVXcluSZLa6WOJHl3knOSpLvvmDT76ST3d/d/nrr1wiT3VFWyFBd9qLs/udb7BFAAAMC21d03DWhzZ5bSnU+XHU5y5Zm+TwAFAACMZuBeTtuGAAoAABhFd3Jy6ySR2BACKAAAYCSVUxl3DdSLTQAFAACMorN4I1CL9WsAAABGZAQKAAAYzUbt5bRVCKAAAIBRdCqnRt4H6sUmgAIAAEZjBAoAAGCATnJKEgkAAICz05ojUFW1P8mbkhzr7tdMyn4nyasnTV6W5OvdfdWMe59K8q0kJ5Oc6O7dG9JrAABgG6icPAv3gbozyW1JPnC6oLv/wenzqvqXSb6xyv3Xdvez6+0gAACwPS3iFL41A6jufrCqLptVV1WV5O8n+Tsb3C8AAGABLNoI1Lzh4P+Y5Cvd/Ucr1HeS+6vq4aq6ebUHVdXNVXWwqg4eP358zm4BAABsvHmz8N2U5K5V6q/u7qNVdUGSB6rqy9394KyG3b0vyb4k2b17d8/ZLwAAYJN119k3hW8lVfWSJH8vyf+wUpvuPjr5e6yq7kmyJ8nMAAoAAFg8JxcsgJrn1/x4ki9395FZlVX10qo67/R5kjcmeWyO9wEAANtIJzmVmuvYatYMoKrqriS/n+TVVXWkqt42qboxy6bvVdUrqurA5PLCJJ+pqs8n+YMk/767P7lxXQcAALa2ysn+rrmOrWZIFr6bVij/n2eUHU1y/eT8cJIr5+wfAADAljFvEgkAAICZlvaB2nrT8OYhgAIAAEZzcu6dk7YWARQAADCKThmBAgAAGOrUgo1ALdavAQAAGJERKAAAYBTdyUlT+AAAAIaxBgoAAGCApSQSi7VqaLF+DQAAwIiMQAEAAKM5GVP4AAAA1tSxBgoAAGCgxVsDJYACAABGc2rBpvAtVjgIAACcVapqf1Udq6rHVqi/pqq+UVWPTo53TdXtraonq+pQVd065H1GoAAAgFG8SBvp3pnktiQfWKXNp7v7TdMFVbUjye1J3pDkSJKHqure7v7Sai8TQAEAAKMZew1Udz9YVZet49Y9SQ519+Ekqaq7k9yQZNUAyhQ+AABgFEsb6c53JDm/qg5OHTevoys/XFWfr6pPVNUPTMouTvL0VJsjk7JVGYECAABGswFJJJ7t7t1z3P9Ikld197er6vokH0uyK5nZsV7rYUagAACAhdXd3+zub0/ODyQ5p6rOz9KI06VTTS9JcnSt5xmBAgAARrEVNtKtqpcn+Up3d1XtydIg0leTfD3Jrqq6PMmfJbkxyT9c63kCKAAAYDRjJ5GoqruSXJOltVJHkrw7yTlJ0t13JPmZJL9YVSeS/EWSG7u7k5yoqluS3JdkR5L93f34Wu8TQAEAAOP4b4kgxntF901r1N+WpTTns+oOJDlwJu+zBgoAAGAgI1AAAMAoOhuShW9LEUABAACj2ewkEhtNAAUAAIxiK2Th22gCKAAAYDSLFkBJIgEAADDQmgFUVe2vqmNV9dhU2T+rqj+rqkcnx/Ur3Lu3qp6sqkNVdetGdhwAANjaOktpzOc5tpohI1B3Jtk7o/xfdfdVk+MFudOrakeS25Ncl+SKJDdV1RXzdBYAANheTqXmOraaNddAdfeDVXXZOp69J8mh7j6cJFV1d5IbknxpHc8CAAC2m7YGatotVfWFyRS/75lRf3GSp6euj0zKZqqqm6vqYFUdPH78+BzdAgAAtoLTWfjOtil8s7wnyd9OclWSZ5L8yxltZv3aXumB3b2vu3d39+6dO3eus1sAAADjWVca8+7+yunzqvp3Sf7vGc2OJLl06vqSJEfX8z4AAGB72oqjSPNYVwBVVRd19zOTy59O8tiMZg8l2VVVlyf5syQ3JvmH6+olAACw7ZzOwrdI1gygququJNckOb+qjiR5d5JrquqqLE3JeyrJP560fUWS93b39d19oqpuSXJfkh1J9nf342P8CAAAYGvqsy2A6u6bZhS/b4W2R5NcP3V9IMkLUpwDAABsR+uawgcAADDEVtzLaR4CKAAAYBS9gPtACaAAAIDRnHVroAAAANZn8bLwrXcjXQAAgLOOESgAAGA0pvABAAAM0JFEAgAAYJheysS3SARQAADAaBZtHyhJJAAAAAYyAgUAAIyiI4kEAADAQIu3D5QACgAAGM2iJZGwBgoAAGAgI1AAAMBorIECAAAYoFsABQAAMNiiJZGwBgoAABjN0ijU+o+1VNX+qjpWVY+tUP9zVfWFyfF7VXXlVN1TVfXFqnq0qg4O+T0CKAAAYDu7M8neVer/JMmPdvdrk/yLJPuW1V/b3Vd19+4hLzOFDwAAGM3Ya6C6+8GqumyV+t+buvxskkvmeZ8RKAAAYBSdSvd8R5Lzq+rg1HHzHF16W5JPPK+Lyf1V9fDQ5xqBAgAARrMB++g+O3R63Wqq6tosBVA/MlV8dXcfraoLkjxQVV/u7gdXe44RKAAAYByTNOZzjkDNrapem+S9SW7o7q/+Vfe6j07+HktyT5I9az1LAAUAACysqnplko8meXN3/+FU+Uur6rzT50nemGRmJr9ppvABAADj2YA5fKupqruSXJOltVJHkrw7yTlJ0t13JHlXku9L8ttVlSQnJlMCL0xyz6TsJUk+1N2fXOt9AigAAGA0L0IWvpvWqP+FJL8wo/xwkitfeMfqBFAAAMBohmyGu51YAwUAADDQmiNQVbU/yZuSHOvu10zKfiPJTyZ5LskfJ3lrd399xr1PJflWkpP5b3MNAQCAs0Bn/Cl8L7YhI1B3Jtm7rOyBJK/p7tcm+cMkv7LK/dd291WCJwAAOMt0kq75ji1mzQBqspHU15aV3d/dJyaXn01yyQh9AwAAtrnu+Y6tZiPWQP2jJJ9Yoa6T3F9VD1fVzas9pKpurqqDVXXw+PHjG9AtAABg0/WcxxYzVwBVVb+W5ESSD67Q5Orufl2S65K8o6r+p5We1d37unt3d+/euXPnPN0CAAAYxbrTmFfVW7KUXOLHumcPrnX30cnfY1V1T5I9SR5c7zsBAIDtpM7KJBIvUFV7k/xvSf5ud39nhTYvrarzTp8neWOSx9bbUQAAYBs626bwVdVdSX4/yaur6khVvS3JbUnOS/JAVT1aVXdM2r6iqg5Mbr0wyWeq6vNJ/iDJv+/uT47yKwAAgK2nl9KYz3NsNWtO4evum2YUv2+FtkeTXD85P5zkyrl6BwAAsIWsew0UAADAmrbgNLx5CKAAAIARbb1pePMQQAEAAOMxAgUAADDQggVQc22kCwAAcDYxAgUAAIyjk2zBVOTzEEABAACj6QWbwieAAgAAxiOAAgAAGGjBpvBJIgEAADCQESgAAGA0ZQofAADAAB1roAAAAIYpa6AAAADOVkagAACA8ZjCBwAAMJAACgAAYCABFAAAwAAdSSQAAADOVkagAACA0SzaRrpGoAAAgPH0nMcaqmp/VR2rqsdWqK+q+q2qOlRVX6iq103V7a2qJyd1tw75OQIoAABgO7szyd5V6q9Lsmty3JzkPUlSVTuS3D6pvyLJTVV1xVovE0ABAACjqZ7vWEt3P5jka6s0uSHJB3rJZ5O8rKouSrInyaHuPtzdzyW5e9J2VQIoAABgkV2c5Omp6yOTspXKVyWJBAAAMJ7505ifX1UHp673dfe+M7h/Vgd6lfJVCaAAAIBxDEwEsYZnu3v3HPcfSXLp1PUlSY4mOXeF8lWZwgcAAIxn5Cx8A9yb5Ocn2fhen+Qb3f1MkoeS7Kqqy6vq3CQ3TtquyggUAACwbVXVXUmuydJUvyNJ3p3knCTp7juSHEhyfZJDSb6T5K2TuhNVdUuS+5LsSLK/ux9f631rBlBVtT/Jm5Ic6+7XTMq+N8nvJLksyVNJ/n53//mMe/cm+T8nHXpvd//6Wu8DAAAWx9gb6Xb3TWvUd5J3rFB3IEsB1mBDpvDdmRfmVb81yae6e1eST02un2e9edUBAIAFsvlT+DbUmgHUCnnVb0jy/sn5+5P81Ixb15VXHQAAWCBnWwC1ggsnC68y+XvBjDZnlFe9qm6uqoNVdfD48ePr7BYAALBVzLuJ7tjT/9ZjzCx8Z5RXvbv3dffu7t69c+fOEbsFAACwPuvNwveVqrqou5+pqouSHJvRZqV86wAAwNli/o10t5T1jkDdm+Qtk/O3JPn4jDbryqsOAAAskLNtDdQkr/rvJ3l1VR2pqrcl+fUkb6iqP0ryhsl1quoVVXUgWcqrnuR0XvUnknx4SF51AABgcSzaGqg1p/Ctklf9x2a0PZqlTapOX59xXnUAAGCBbMEgaB5jJpEAAABYKOtNIgEAALC6LToNbx4CKAAAYDwCKAAAgIEWLICyBgoAAGAgI1AAAMBoFm0NlBEoAACAgYxAAQAA41mwESgBFAAAMI4FTGNuCh8AAMBARqAAAIDxLNgIlAAKAAAYjwAKAABgbZXFWwMlgAIAAMazYAGUJBIAAAADGYECAADGsYBpzAVQAADAeARQAAAAAy1YAGUNFAAAwEBGoAAAgNFYAwUAADCUAAoAAGCAjgAKAABgqEWbwieJBAAAwEACKAAAYDw957GGqtpbVU9W1aGqunVG/T+tqkcnx2NVdbKqvndS91RVfXFSd3DIzzGFDwAAGM2YU/iqakeS25O8IcmRJA9V1b3d/aXTbbr7N5L8xqT9Tyb5J939tanHXNvdzw59pxEoAABgPOOOQO1Jcqi7D3f3c0nuTnLDKu1vSnLXOn9JEgEUAAAwlnmDp6UA6vyqOjh13Dz1houTPD11fWRS9gJV9TeS7E3ykWU9vL+qHl723BWtewpfVb06ye9MFf2tJO/q7n891eaaJB9P8ieToo929z9f7zsBAICzzrPdvXuFuppRttK41U8m+Y/Lpu9d3d1Hq+qCJA9U1Ze7+8HVOrPuAKq7n0xyVfJXcw//LMk9M5p+urvftN73AAAA21NldoSzgY4kuXTq+pIkR1doe2OWTd/r7qOTv8eq6p4sTQlcNYDaqCl8P5bkj7v7TzfoeQAAwCIYdw3UQ0l2VdXlVXVuloKke5c3qqq/meRHszQ77nTZS6vqvNPnSd6Y5LG1XrhRWfheEM1N+eGq+nyWIsH/tbsfn9VoMufw5iR55StfuUHdAgAANtOYWfi6+0RV3ZLkviQ7kuzv7ser6u2T+jsmTX86yf3d/Z+nbr8wyT1VlSzFRR/q7k+u9c65A6hJpPd3k/zKjOpHkryqu79dVdcn+ViSXbOe0937kuxLkt27dy/YfsUAAMAYuvtAkgPLyu5Ydn1nkjuXlR1OcuWZvm8jpvBdl+SR7v7K8oru/mZ3f3tyfiDJOVV1/ga8EwAA2A5G3kj3xbYRAdSKudSr6uU1GROrqj2T9311A94JAABsBwsWQM01hW+SS/0NSf7xVNn0fMOfSfKLVXUiyV8kubG7t+D/GQAAgA3X466B2gxzBVDd/Z0k37es7I6p89uS3DbPOwAAgG1swQKojUpjDgAAsPA2Ko05AADAC5jCBwAAMJQACgAAYJhFG4GyBgoAAGAgI1AAAMA4tuheTvMQQAEAAOMRQAEAAKytsnhroARQAADAeBYsgJJEAgAAYCAjUAAAwGiqF2sISgAFAACMQxY+AACA4SSRAAAAGGrBAihJJAAAAAYyAgUAAIzGFD4AAIChBFAAAAAD9OKNQFkDBQAAMJARKAAAYDwLNgIlgAIAAEZRWbwpfAIoAABgPL1YEZQACgAAGM2ijUBJIgEAADCQESgAAGAcHUkkAAAAhqpTm92DjSWAAgAAxmMECgAAYBhJJKZU1VNV9cWqerSqDs6or6r6rao6VFVfqKrXzfM+AACAaVW1t6qenMQct86ov6aqvjGJWR6tqncNvXeWjRiBura7n12h7rokuybHDyV5z+QvAACw6Dqj7gNVVTuS3J7kDUmOJHmoqu7t7i8ta/rp7n7TOu99nrHTmN+Q5AO95LNJXlZVF438TgAAYIuonu9Yw54kh7r7cHc/l+TuLMUgQ6zr3nkDqE5yf1U9XFU3z6i/OMnTU9dHJmUvUFU3V9XBqjp4/PjxObsFAABsCT3nkZx/Ok6YHNNxx9B444er6vNV9Ymq+oEzvPd55p3Cd3V3H62qC5I8UFVf7u4Hp+prxj0z48ju3pdkX5Ls3r17wZaaAQAA6/Rsd+9eoW5IvPFIkld197er6vokH8vSEqPBscq0uUaguvvo5O+xJPdkaRhs2pEkl05dX5Lk6DzvBAAAtofK6FP41ow3uvub3f3tyfmBJOdU1flD7p1l3QFUVb20qs47fZ7kjUkeW9bs3iQ/P8nG9/ok3+juZ9b7TgAAYBvpnv9Y3UNJdlXV5VV1bpIbsxSD/JWqenlV1eR8T5ZioK8OuXeWeabwXZjknklfXpLkQ939yap6e5J09x1JDiS5PsmhJN9J8tY53gcAAGwzY+4D1d0nquqWJPcl2ZFkf3c/viwm+Zkkv1hVJ5L8RZIbu7uTzLx3rXeuO4Dq7sNJrpxRfsfUeSd5x3rfAQAAbHMjZzeYTMs7sKxsOia5LcltQ+9dy9hpzAEAABbGRmykCwAAMNOYU/g2gwAKAAAYRyc5tVgRlAAKAAAYz2LFTwIoAABgPIs2hU8SCQAAgIGMQAEAAONZezPcbUUABQAAjGbRpvAJoAAAgHF0Fi6JhDVQAAAAAxmBAgAARlFJyhooAACAgU5tdgc2lgAKAAAYjREoAACAISSRAAAAOHsZgQIAAEbSNtIFAAAYyka6AAAAQxmBAgAAGKCTWrA05pJIAAAADGQECgAAGI8pfAAAAAMtVvwkgAIAAMZTCzYCZQ0UAADAQEagAACA8SzYCJQACgAAGEcnWbA05gIoAABgFJVeuDVQAigAAGA8CxZArTuJRFVdWlW/W1VPVNXjVfVLM9pcU1XfqKpHJ8e75usuAADA5plnBOpEkl/u7keq6rwkD1fVA939pWXtPt3db5rjPQAAwHa1YCNQ6w6guvuZJM9Mzr9VVU8kuTjJ8gAKAAA4Gy1gEokN2Qeqqi5L8oNJPjej+oer6vNV9Ymq+oFVnnFzVR2sqoPHjx/fiG4BAACbrLrnOraauQOoqvruJB9J8s7u/uay6keSvKq7r0zyb5J8bKXndPe+7t7d3bt37tw5b7cAAICtoHu+Yw1VtbeqnqyqQ1V164z6n6uqL0yO36uqK6fqnqqqL07yNRwc8nPmCqCq6pwsBU8f7O6PLq/v7m9297cn5weSnFNV58/zTgAAgCSpqh1Jbk9yXZIrktxUVVcsa/YnSX60u1+b5F8k2bes/truvqq7dw955zxZ+CrJ+5I80d2/uUKbl0/apar2TN731fW+EwAA2E7mHH1aewRqT5JD3X24u59LcneSG57Xg+7f6+4/n1x+Nskl8/yiebLwXZ3kzUm+WFWPTsp+Nckrk6S770jyM0l+sapOJPmLJDd2b8GJjAAAwMbrbEQWvvOXTa/b192nR5EuTvL0VN2RJD+0yrPeluQTy3p4f1V1kn879dwVzZOF7zNJao02tyW5bb3vAAAAtrn5s/A9u8r0ulnxyMyIraquzVIA9SNTxVd399GquiDJA1X15e5+cLXObEgWPgAAgE1wJMmlU9eXJDm6vFFVvTbJe5Pc0N1/taSou49O/h5Lck+WpgSuSgAFAACMZuQ05g8l2VVVl1fVuUluTHLv895f9cokH03y5u7+w6nyl1bVeafPk7wxyWNrvXCeNVAAAACrGzEFQnefqKpbktyXZEeS/d39eFW9fVJ/R5J3Jfm+JL89yW93YjIl8MIk90zKXpLkQ939ybXeKYACAADG0UlOjZtDbrJd0oFlZXdMnf9Ckl+Ycd/hJFcuL1+LAAoAABjJsM1wtxNroAAAAAYyAgUAAIxnwUagBFAAAMB4BFAAAAADvAhJJF5sAigAAGAknfSpze7EhpJEAgAAYCAjUAAAwHisgQIAABjAGigAAIAzsGAjUNZAAQAADGQECgAAGM+CjUAJoAAAgJG0AAoAAGCQTnJqsfaBEkABAADjWbARKEkkAAAABjICBQAAjGfBRqAEUAAAwEjaRroAAACDdNK9WEkkrIECAAAYyAgUbFH3HX10jrvnuRdgZP9gszsAvKhM4QMAABhIEgkAAIABum2kCwAAMNiCjUDNlUSiqvZW1ZNVdaiqbp1RX1X1W5P6L1TV6+Z5HwAAwGZa9whUVe1IcnuSNyQ5kuShqrq3u7801ey6JLsmxw8lec/kLwAAcBboBZvCN88I1J4kh7r7cHc/l+TuJDcsa3NDkg/0ks8meVlVXTTHOwEAgG2jl6bwzXNsMfMEUBcneXrq+sik7EzbJEmq6uaqOlhVB48fPz5HtwAAgC2hs5TGfJ5ji5kngKoZZct/4ZA2S4Xd+7p7d3fv3rlz5xzdAgAAtow+Nd+xxcwTQB1JcunU9SVJjq6jDQAAwLYwTwD1UJJdVXV5VZ2b5MYk9y5rc2+Sn59k43t9km909zNzvBMAANgmOkmf6rmOrWbdAVR3n0hyS5L7kjyR5MPd/XhVvb2q3j5pdiDJ4SSHkvy7JP/LnP0FAAC2i+7Rp/DNs7XSWvfOMtdGut19IEtB0nTZHVPnneQd87wDAADYvsYcRZpna6WB977AXBvpAgAAbKJ5tlYacu8LCKAAAIDxjDuFb56tlQZvuTRtril8Y3n44Yefrao/3ex+bLDzkzy72Z1gYfie2Ei+JzbaiN/UrB1SWHD+jXq+V212B87Et/Ln9/2H/r/On/Mxf72qDk5d7+vufZPzebZWGrzl0rQtGUB198JtBFVVB7t792b3g8Xge2Ij+Z7YaL4pNpLvaXvr7r0jv2KerZXOHXDvC5jCBwAAbFfzbK005N4X2JIjUAAAAGvp7hNVdXprpR1J9p/eWmlSf0eWsoZfn6Wtlb6T5K2r3bvWOwVQL559azeBwXxPbCTfExvNN8VG8j2xqnm2Vpp171pq6XkAAACsxRooAACAgQRQI6qqn62qx6vqVFXtXlb3K1V1qKqerKqf2Kw+sr1U1d7JN3Ooqm7d7P6w/VTV/qo6VlWPTZV9b1U9UFV/NPn7PZvZR7aPqrq0qn63qp6Y/O/dL03KfVOcsar661X1B1X1+cn39L9Pyn1PbCkCqHE9luTvJXlwurCqrshSlo8fSLI3yW9X1Y4Xv3tsJ5Nv5PYk1yW5IslNk28JzsSdWfp3Z9qtST7V3buSfGpyDUOcSPLL3f39SV6f5B2Tf5d8U6zHXyb5O919ZZKrkuydZEzzPbGlCKBG1N1PdPeTM6puSHJ3d/9ld/9JljKC7Hlxe8c2tCfJoe4+3N3PJbk7S98SDNbdDyb52rLiG5K8f3L+/iQ/9WL2ie2ru5/p7kcm599K8kSSi+ObYh16ybcnl+dMjo7viS1GALU5Lk7y9NT1kUkZrMZ3w1gunOyHkcnfCza5P2xDVXVZkh9M8rn4plinqtpRVY8mOZbkge72PbHlSGM+p6r6D0lePqPq17r74yvdNqNMOkTW4rsBtqSq+u4kH0nyzu7+ZtWsf65gbd19MslVVfWyJPdU1Ws2uUvwAgKoOXX3j6/jtiNJLp26viTJ0Y3pEQvMd8NYvlJVF3X3M1V1UZb+yy8MUlXnZCl4+mB3f3RS7JtiLt399ar6f7K0ZtP3xJZiCt/muDfJjVX116rq8iS7kvzBJveJre+hJLuq6vKqOjdLiUju3eQ+sRjuTfKWyflbkqw0eg7PU0tDTe9L8kR3/+ZUlW+KM1ZVOycjT6mq/y7Jjyf5cnxPbDE20h1RVf10kn+TZGeSryd5tLt/YlL3a0n+UZYyGL2zuz+xWf1k+6iq65P86yQ7kuzv7v9jc3vEdlNVdyW5Jsn5Sb6S5N1JPpbkw0lemeQ/JfnZ7l6eaAJeoKp+JMmnk3wxyalJ8a9maR2Ub4ozUlWvzVKSiB1Z+o/8H+7uf15V3xffE1uIAAoAAGAgU/gAAAAGEkABAAAMJIACAAAYSAAFAAAwkAAKAABgIAEUAADAQAIoAACAgQRQAAAAA/3/qt5ka4dOUs8AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAH/CAYAAAAfaLfIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLxUlEQVR4nO3dfZBV9Zkn8O8FQ7cvdCsRaDqiYjQSXwAHY4sxEceOLeW6krdRKjMi40utA6mYjjEhpWDUXTJm4ltJZJJR0c0Y1JoEN8aQMSTouiIOGGpidrSEQcFIt+IGWnoGcLrv/mHsyQ0vfVvvTWP7+VT9Kpxzfue5v9OVK/bj83tOoVgsFgMAAAAA79Cg/l4AAAAAAAODRBMAAAAAFSHRBAAAAEBFSDQBAAAAUBESTQAAAABUhEQTAAAAABUh0QQAAABARUg0AQAAAFAREk0AAAAAVIREEwAAAAAVIdEEAAAA8C4xb968fOQjH8nQoUMzYsSITJ06Nc8991yv9z3wwAMZO3Zsamtrc/zxx+fhhx8uuV4sFjNnzpyMGjUq++67b5qbm/P888/3eX0STQAAAADvEo8++mhmzpyZJ598Mo888kjeeOONnHnmmens7NztPU888USmTZuWiy66KL/85S8zderUTJ06Nc8880zPnBtuuCG33nprFixYkBUrVmT//fdPS0tLtm3b1qf1FYrFYvFtPx0AAAAA/ebVV1/NiBEj8uijj+bjH//4Luecd9556ezszEMPPdRz7uSTT86ECROyYMGCFIvFNDY25ktf+lKuuOKKJMmWLVsycuTILFy4MOeff37Z69nnnT3O3qG7uzsvv/xyhg4dmkKh0N/LAQAAgAGpWCzm9ddfT2NjYwYNem9tktq2bVt27NhRtfjFYnGnnEZNTU1qamr2eN+WLVuSJMOGDdvtnOXLl6e1tbXkXEtLSxYvXpwkWbduXdra2tLc3Nxzvb6+Pk1NTVm+fPl7L9H08ssvZ/To0f29DAAAAHhP2LBhQw455JD+XsYfzbZt2zLmsAPS9kpX1T7jgAMOyNatW0vOzZ07N9dcc81u7+nu7s7ll1+ej370oznuuON2O6+trS0jR44sOTdy5Mi0tbX1XH/r3O7mlGtAJJqGDh2a5M3/o9fV1fXzaoC9UXf7Cf29BAB41xg08pf9vQRgL9XR0ZHRo0f3/B7+XrFjx460vdKVF1cdnrqhla/k6ni9O4dNfGGnvEZv1UwzZ87MM888k8cff7zia3q7BkSi6a3Ssrq6OokmYJe6/+29VdYLAO/EIP9ODfTivdq25oChhRwwtPLP3p2+5zVmzZqVhx56KI899liv1WUNDQ1pb28vOdfe3p6Ghoae62+dGzVqVMmcCRMmlPsYSbx1DgAAAOBdo1gsZtasWfnhD3+Yn//85xkzZkyv90yaNClLly4tOffII49k0qRJSZIxY8akoaGhZE5HR0dWrFjRM6dcA6KiCQAAAKDauord6SpWJ265Zs6cmXvvvTcPPvhghg4d2tNDqb6+Pvvuu2+S5IILLsgHPvCBzJs3L0nyhS98Iaeddlq+9a1v5eyzz86iRYuycuXKfOc730nyZoXa5Zdfnuuvvz5HHXVUxowZk6uvvjqNjY2ZOnVqn55FogkAAADgXeL2229PkkyePLnk/F133ZULL7wwSbJ+/fqStwKecsopuffee3PVVVfla1/7Wo466qgsXry4pIH4lVdemc7Ozlx66aXZvHlzTj311CxZsiS1tbV9Wl+hWCxWIRf3x9XR0ZH6+vps2bJFjyZgl7rbjurvJQDAu8aghuf7ewnAXuq9+vv3W8/d9tyhVWsG3nD0+gHxc1XRBAAAAFCG7nSn/E1ufYs7UGgGDgAAAEBFqGgCAAAAKENXsZiuKnQgqkbM/qKiCQAAAICKUNEEAAAAUIbuFNOdylcfVSNmf1HRBAAAAEBFqGgCAAAAKEN3iulS0bRHKpoAAAAAqAgVTQAAAABl0KOpdyqaAAAAAKgIFU0AAAAAZegqFtNVrHz1UTVi9heJJgAAAIAydP9uVCPuQGHrHAAAAAAVoaIJAAAAoAxdKaarCo27qxGzv0g0Ae8JLY0TKh5zzU0nVzwmAPTVkV98suIxHxlIezgA+KOSaAIAAAAoQ1fxzVGNuAOFHk0AAAAAVISKJgAAAIAyeOtc71Q0AQAAAFARKpoAAAAAytCdQrpSqErcgaJPFU3z5s3LRz7ykQwdOjQjRozI1KlT89xzz5XM2bZtW2bOnJn3v//9OeCAA/LpT3867e3te4xbLBYzZ86cjBo1Kvvuu2+am5vz/PPP9/1pAAAAAKqku1i9MVD0KdH06KOPZubMmXnyySfzyCOP5I033siZZ56Zzs7Onjlf/OIX86Mf/SgPPPBAHn300bz88sv51Kc+tce4N9xwQ2699dYsWLAgK1asyP7775+WlpZs27bt7T0VAAAAAH90fdo6t2TJkpLjhQsXZsSIEVm1alU+/vGPZ8uWLbnjjjty77335k//9E+TJHfddVc+/OEP58knn8zJJ5+8U8xisZibb745V111Vc4999wkyT333JORI0dm8eLFOf/889/uswEAAABUTFeVts5VI2Z/eUfNwLds2ZIkGTZsWJJk1apVeeONN9Lc3NwzZ+zYsTn00EOzfPnyXcZYt25d2traSu6pr69PU1PTbu8BAAAAYO/ztpuBd3d35/LLL89HP/rRHHfccUmStra2DBkyJAceeGDJ3JEjR6atrW2Xcd46P3LkyLLv2b59e7Zv395z3NHR8XYfAwAAAKAsKpp697YrmmbOnJlnnnkmixYtquR6yjJv3rzU19f3jNGjR//R1wAAAABAqbeVaJo1a1Yeeuih/OIXv8ghhxzSc76hoSE7duzI5s2bS+a3t7enoaFhl7HeOv+Hb6bb0z2zZ8/Oli1besaGDRvezmMAAAAAlK27WKjaGCj6lGgqFouZNWtWfvjDH+bnP/95xowZU3J94sSJed/73pelS5f2nHvuueeyfv36TJo0aZcxx4wZk4aGhpJ7Ojo6smLFit3eU1NTk7q6upIBAAAAQP/qU4+mmTNn5t57782DDz6YoUOH9vRQqq+vz7777pv6+vpcdNFFaW1tzbBhw1JXV5fPf/7zmTRpUskb58aOHZt58+blk5/8ZAqFQi6//PJcf/31OeqoozJmzJhcffXVaWxszNSpUyv6sAAAAABvlx5NvetToun2229PkkyePLnk/F133ZULL7wwSXLTTTdl0KBB+fSnP53t27enpaUl3/72t0vmP/fccz1vrEuSK6+8Mp2dnbn00kuzefPmnHrqqVmyZElqa2vfxiMBAAAAVF5XBqXr7be73kPcgaNPiaZisdjrnNra2syfPz/z588vO06hUMi1116ba6+9ti/LAQAAAGAv0qdEEwAAAMB7VbFKjbuL79Vm4AAAAACwOyqaAAAAAMqgGXjvVDQBAAAAUBEqmgAAAADK0FUclK5iFd461/u71941VDQBAAAAUBEqmgAAAADK0J1CuqtQs9OdgVPSJNEEAAAAUAbNwHtn6xwAAAAAFaGiCQAAAKAM1WsGPnC2zqloAgAAAKAiVDQBAAAAlOHNZuCV76dUjZj9RUUTAAAAABWhogkAAACgDN0ZlK4q1Ox0R48mAAAAACihogkAAACgDN461zsVTQAAAABl6M6gqo2+eOyxx3LOOeeksbExhUIhixcv3uP8Cy+8MIVCYadx7LHH9sy55pprdro+duzYPv+MJJoAAAAA3kU6Ozszfvz4zJ8/v6z5t9xySzZu3NgzNmzYkGHDhuWzn/1sybxjjz22ZN7jjz/e57XZOgcAAABQhq5iIV3FQlXi9sWUKVMyZcqUsufX19envr6+53jx4sX57W9/mxkzZpTM22effdLQ0NCntfwhFU0AAAAAe4GOjo6SsX379qp8zh133JHm5uYcdthhJeeff/75NDY25ogjjsjnPve5rF+/vs+xJZoAAAAAytCVQVUbSTJ69Oie6qP6+vrMmzev4s/w8ssv5yc/+UkuvvjikvNNTU1ZuHBhlixZkttvvz3r1q3Lxz72sbz++ut9im/rHAAAAMBeYMOGDamrq+s5rqmpqfhn3H333TnwwAMzderUkvO/vxVv3LhxaWpqymGHHZb7778/F110UdnxJZoAAAAAytBdHJTuYuU3h3UXi0mSurq6kkRTpRWLxdx55535i7/4iwwZMmSPcw888MB86EMfypo1a/r0GbbOAQAAALwHPProo1mzZk1ZFUpbt27N2rVrM2rUqD59hoomAAAAgDL8fj+lysYt9mn+1q1bSyqN1q1bl9WrV2fYsGE59NBDM3v27PzmN7/JPffcU3LfHXfckaamphx33HE7xbziiityzjnn5LDDDsvLL7+cuXPnZvDgwZk2bVqf1ibRBAAAAFCG7iRdxUJV4vbFypUrc/rpp/cct7a2JkmmT5+ehQsXZuPGjTu9MW7Lli35h3/4h9xyyy27jPnSSy9l2rRpee211zJ8+PCceuqpefLJJzN8+PA+rU2iCQAAAOBdZPLkySkWd18FtXDhwp3O1dfX59/+7d92e8+iRYsqsTSJJgAAAIBydGdQuquwda4aMfvLwHkSAAAAAPqViiYAAACAMnQVB6WrWIVm4FWI2V8GzpMAAAAA0K9UNAEAAACUoTuFdKcab52rfMz+oqIJAAAAgIpQ0QQAAABQBj2aeifRBAAAAFCGrgxKVxU2h1UjZn8ZOE8CAAAAQL9S0QQAAABQhu5iId3FKjQDr0LM/qKiCQAAAICKUNEEAAAAUIbuKvVo6h5AdUAD50kAAAAA6FcqmgAAAADK0F0clO5iFSqaqhCzvwycJwEAAACgX/U50fTYY4/lnHPOSWNjYwqFQhYvXlxyvVAo7HJ885vf3G3Ma665Zqf5Y8eO7fPDAAAAAFRLVwpVGwNFn7fOdXZ2Zvz48fnLv/zLfOpTn9rp+saNG0uOf/KTn+Siiy7Kpz/96T3GPfbYY/Ozn/3sPxe2j119AAAAwN7D1rne9TmbM2XKlEyZMmW31xsaGkqOH3zwwZx++uk54ogj9ryQffbZ6V4AAAAA3j2qWjbU3t6eH//4x7n77rt7nfv888+nsbExtbW1mTRpUubNm5dDDz10l3O3b9+e7du39xx3dHRUbM0AAAAAu9KVVGWbW1fFI/afqtZm3X333Rk6dOgut9j9vqampixcuDBLlizJ7bffnnXr1uVjH/tYXn/99V3OnzdvXurr63vG6NGjq7F8AAAAAPqgqhVNd955Zz73uc+ltrZ2j/N+fyveuHHj0tTUlMMOOyz3339/Lrroop3mz549O62trT3HHR0dkk0AAABAVenR1LuqJZr+9//+33nuuedy33339fneAw88MB/60IeyZs2aXV6vqalJTU3NO10iAAAAABVUtZTZHXfckYkTJ2b8+PF9vnfr1q1Zu3ZtRo0aVYWVAQAAAPRdV3FQ1cZA0ecn2bp1a1avXp3Vq1cnSdatW5fVq1dn/fr1PXM6OjrywAMP5OKLL95ljDPOOCO33XZbz/EVV1yRRx99NC+88EKeeOKJfPKTn8zgwYMzbdq0vi4PAAAAgH7S561zK1euzOmnn95z/FavpOnTp2fhwoVJkkWLFqVYLO42UbR27dps2rSp5/ill17KtGnT8tprr2X48OE59dRT8+STT2b48OF9XR4AAABAVRRTSHcV3jpXrELM/tLnRNPkyZNTLBb3OOfSSy/NpZdeutvrL7zwQsnxokWL+roMAAAAAPYyVX3rHAAAAMBAUa1+SgOpR5NEEwAAAEAZuouFdBcrv82tGjH7y8BJmQEAAADQr1Q0AQAAAJShK4PSVYWanWrE7C8D50kAAAAA6FcqmgAAAADKoEdT71Q0AQAAAFARKpoAAAAAytCdQemuQs1ONWL2l4HzJAAAAAD0KxVNAAAAAGXoKhbSVYV+StWI2V8kmgAAAADKoBl472ydAwAAAKAiVDQBAAAAlKFYHJTuYuVrdopViNlfBs6TAAAAANCvVDQBAAAAlKErhXSlCs3AqxCzv6hoAgAAAKAiVDQBAAAAlKG7WJ03xHUXKx6y36hoAgAAAKAiVDQBAAAAlKG7Sm+dq0bM/iLRBAAAAFCG7hTSXYXG3dWI2V8GTsoMAAAA4D3gscceyznnnJPGxsYUCoUsXrx4j/OXLVuWQqGw02hrayuZN3/+/Bx++OGpra1NU1NTnnrqqT6vTaIJAAAAoAxdxULVRl90dnZm/PjxmT9/fp/ue+6557Jx48aeMWLEiJ5r9913X1pbWzN37tw8/fTTGT9+fFpaWvLKK6/06TNsnQMAAAB4F5kyZUqmTJnS5/tGjBiRAw88cJfXbrzxxlxyySWZMWNGkmTBggX58Y9/nDvvvDNf/epXy/4MFU0AAAAAZXirGXg1xh/DhAkTMmrUqHziE5/I//k//6fn/I4dO7Jq1ao0Nzf3nBs0aFCam5uzfPnyPn2GRBMAAADAXqCjo6NkbN++vSJxR40alQULFuQf/uEf8g//8A8ZPXp0Jk+enKeffjpJsmnTpnR1dWXkyJEl940cOXKnPk69sXUOAAAAoAzdKaS7j/2Uyo2bJKNHjy45P3fu3FxzzTXvOP7RRx+do48+uuf4lFNOydq1a3PTTTflf/7P//mO4/8+iSYAAACAvcCGDRtSV1fXc1xTU1O1zzrppJPy+OOPJ0kOPvjgDB48OO3t7SVz2tvb09DQ0Ke4ts4BAAAAlKGYwptVTRUexd9VNNXV1ZWMaiaaVq9enVGjRiVJhgwZkokTJ2bp0qU917u7u7N06dJMmjSpT3FVNAEAAACUobtYpa1zfYy5devWrFmzpud43bp1Wb16dYYNG5ZDDz00s2fPzm9+85vcc889SZKbb745Y8aMybHHHptt27bl7/7u7/Lzn/88//iP/9gTo7W1NdOnT8+JJ56Yk046KTfffHM6Ozt73kJXLokmAAAAgHeRlStX5vTTT+85bm1tTZJMnz49CxcuzMaNG7N+/fqe6zt27MiXvvSl/OY3v8l+++2XcePG5Wc/+1lJjPPOOy+vvvpq5syZk7a2tkyYMCFLlizZqUF4bwrFYrH4Dp+v33V0dKS+vj5btmwp2csI8JZPDPpsxWOuuenkiscEgL468otPVjzmI90PVDwmMDC8V3//fuu5P/nIjLxv/yEVj/9G54788BN3DYifqx5NAAAAAFSErXMAAAAAZdhbejTtzVQ0AQAAAFARKpoAAAAAytCdQrpThYqmKsTsLyqaAAAAAKgIFU0AAAAAZdCjqXcSTQAAAABlkGjqna1zAAAAAFSEiiYAAACAMqho6p2KJgAAAAAqos+JpsceeyznnHNOGhsbUygUsnjx4pLrF154YQqFQsk466yzeo07f/78HH744amtrU1TU1Oeeuqpvi4NAAAAoGreqmiqxhgo+pxo6uzszPjx4zN//vzdzjnrrLOycePGnvH9739/jzHvu+++tLa2Zu7cuXn66aczfvz4tLS05JVXXunr8gAAAADoJ33u0TRlypRMmTJlj3NqamrS0NBQdswbb7wxl1xySWbMmJEkWbBgQX784x/nzjvvzFe/+tW+LhEAAACg4opJulP56qNixSP2n6r0aFq2bFlGjBiRo48+Opdddllee+213c7dsWNHVq1alebm5v9c1KBBaW5uzvLly6uxPAAAAACqoOJvnTvrrLPyqU99KmPGjMnatWvzta99LVOmTMny5cszePDgneZv2rQpXV1dGTlyZMn5kSNH5tlnn93lZ2zfvj3bt2/vOe7o6KjsQwAAAAD8AW+d613FE03nn39+z5+PP/74jBs3Lh/84AezbNmynHHGGRX5jHnz5uXrX/96RWIBAAAAlEOiqXdV2Tr3+4444ogcfPDBWbNmzS6vH3zwwRk8eHDa29tLzre3t++2z9Ps2bOzZcuWnrFhw4aKrxsAAACAvql6oumll17Ka6+9llGjRu3y+pAhQzJx4sQsXbq051x3d3eWLl2aSZMm7fKempqa1NXVlQwAAACAanqroqkaY6Doc6Jp69atWb16dVavXp0kWbduXVavXp3169dn69at+fKXv5wnn3wyL7zwQpYuXZpzzz03Rx55ZFpaWnpinHHGGbntttt6jltbW/Pd7343d999d/7lX/4ll112WTo7O3veQgcAAADA3q/PPZpWrlyZ008/vee4tbU1STJ9+vTcfvvt+ed//ufcfffd2bx5cxobG3PmmWfmuuuuS01NTc89a9euzaZNm3qOzzvvvLz66quZM2dO2traMmHChCxZsmSnBuEAAAAA/UWPpt71OdE0efLkFIvF3V7/6U9/2muMF154Yadzs2bNyqxZs/q6HAAAAAD2EhV/6xwAAADAQFQsFlKsQvVRNWL2l6o3AwcAAADgvUFFEwAAAEAZulNId6rQo6kKMfuLRBMAAABAGTQD752tcwAAAABUhIomAAAAgDJoBt47FU0AAAAAVISKJgAAAIAy6NHUOxVNAAAAAFSEiiYAAACAMujR1DsVTQAAAABUhIomAAAAgDIUq9SjaSBVNEk0AQAAAJShmKRYrE7cgcLWOQAAAAAqQkUTAAAAQBm6U0ghld/m1l2FmP1FRRMAAAAAFaGiCQAAAKAMxWKhKo27B1IzcBVNAAAAAFSEiiYAAACAMnQXCylUofqoW0UTAAAAAJRS0QQAAABQhmLxzVGNuAOFiiYAAAAAKkJFEwAAAEAZvHWudxJNAAAAAGWQaOqdrXMAAAAAVISKJgAAAIAydBcLKVSh+qhbRRMAAAAA/eGxxx7LOeeck8bGxhQKhSxevHiP83/wgx/kE5/4RIYPH566urpMmjQpP/3pT0vmXHPNNSkUCiVj7NixfV6bRBMAAABAGYrF6o2+6OzszPjx4zN//vyy5j/22GP5xCc+kYcffjirVq3K6aefnnPOOSe//OUvS+Yde+yx2bhxY894/PHH+7aw2DoHAAAA8K4yZcqUTJkypez5N998c8nx//gf/yMPPvhgfvSjH+WEE07oOb/PPvukoaHhHa1NRRMAAABAGd6sPipUYfxxn6O7uzuvv/56hg0bVnL++eefT2NjY4444oh87nOfy/r16/scW0UTAAAAwF6go6Oj5LimpiY1NTUV/5y/+Zu/ydatW/Nnf/ZnPeeampqycOHCHH300dm4cWO+/vWv52Mf+1ieeeaZDB06tOzYKpoAAAAAylCdaqY3R5KMHj069fX1PWPevHkVf4Z77703X//613P//fdnxIgRPeenTJmSz372sxk3blxaWlry8MMPZ/Pmzbn//vv7FF9FEwAAAEAZir8b1YibJBs2bEhdXV3P+UpXMy1atCgXX3xxHnjggTQ3N+9x7oEHHpgPfehDWbNmTZ8+Q0UTAAAAwF6grq6uZFQy0fT9738/M2bMyPe///2cffbZvc7funVr1q5dm1GjRvXpc1Q0AQAAAJTh97e5VTpuX2zdurWk0mjdunVZvXp1hg0blkMPPTSzZ8/Ob37zm9xzzz1J3twuN3369Nxyyy1pampKW1tbkmTfffdNfX19kuSKK67IOeeck8MOOywvv/xy5s6dm8GDB2fatGl9WpuKJgAAAIB3kZUrV+aEE07ICSeckCRpbW3NCSeckDlz5iRJNm7cWPLGuO985zv5j//4j8ycOTOjRo3qGV/4whd65rz00kuZNm1ajj766PzZn/1Z3v/+9+fJJ5/M8OHD+7Q2FU0AAAAA5ah2k6YyTZ48OcXi7m9auHBhyfGyZct6jblo0aK+LWI3VDQBAAAAUBEqmgAAAADKUaUeTalGzH6iogkAAACAilDRBAAAAFCGYvHNUY24A4VEEwAAAEAZilXaOleV7Xj9pM9b5x577LGcc845aWxsTKFQyOLFi3uuvfHGG/nKV76S448/Pvvvv38aGxtzwQUX5OWXX95jzGuuuSaFQqFkjB07ts8PAwAAAED/6XOiqbOzM+PHj8/8+fN3uvZv//Zvefrpp3P11Vfn6aefzg9+8IM899xz+a//9b/2GvfYY4/Nxo0be8bjjz/e16UBAAAAVE+xUL0xQPR569yUKVMyZcqUXV6rr6/PI488UnLutttuy0knnZT169fn0EMP3f1C9tknDQ0NfV0OAAAAAHuJqr91bsuWLSkUCjnwwAP3OO/5559PY2NjjjjiiHzuc5/L+vXrdzt3+/bt6ejoKBkAAAAA1fRWM/BqjIGiqommbdu25Stf+UqmTZuWurq63c5ramrKwoULs2TJktx+++1Zt25dPvaxj+X111/f5fx58+alvr6+Z4wePbpajwAAAABAmaqWaHrjjTfyZ3/2ZykWi7n99tv3OHfKlCn57Gc/m3HjxqWlpSUPP/xwNm/enPvvv3+X82fPnp0tW7b0jA0bNlTjEQAAAAD+U7GKY4Doc4+mcryVZHrxxRfz85//fI/VTLty4IEH5kMf+lDWrFmzy+s1NTWpqampxFIBAAAAqJCKVzS9lWR6/vnn87Of/Szvf//7+xxj69atWbt2bUaNGlXp5QEAAAC8LcVioWpjoOhzomnr1q1ZvXp1Vq9enSRZt25dVq9enfXr1+eNN97IZz7zmaxcuTJ///d/n66urrS1taWtrS07duzoiXHGGWfktttu6zm+4oor8uijj+aFF17IE088kU9+8pMZPHhwpk2b9s6fEAAAAKBSbJvboz5vnVu5cmVOP/30nuPW1tYkyfTp03PNNdfkf/2v/5UkmTBhQsl9v/jFLzJ58uQkydq1a7Np06aeay+99FKmTZuW1157LcOHD8+pp56aJ598MsOHD+/r8gAAAADoJ31ONE2ePDnFPbx3b0/X3vLCCy+UHC9atKivywAAAAD4o6rWNrf39NY5AAAAANiVqrx1DgAAAGDAqVZPpQHUp0lFEwAAAAAVoaIJAAAAoCyF341qxB0YVDQBAAAAUBEqmgAAAADKoUdTrySaAAAAAMoh0dQrW+cAAAAAqAgVTQAAAADlKBbeHNWIO0CoaAIAAACgIlQ0AQAAAJShWHxzVCPuQKGiCQAAAICKUNEEAAAAUA5vneuViiYAAAAAKkJFEwAAAEA5vHWuVxJNAAAAAGUoFN8c1Yg7UNg6BwAAAEBFqGgCAAAAKIdm4L1S0QQAAABARahoAgAAACiHZuC9UtEEAAAAQEWoaAIAAAAohx5NvVLRBAAAAEBFqGgCAAAAKIeKpl5JNAEAAACUQ6KpV7bOAQAAAFARKpoAAAAAylEsvDmqEXeAUNEEAAAAQEWoaAIAAAAoQ6H45qhG3IFCRRMAAAAAFaGiCQAAAKAc3jrXKxVNAAAAAO8ijz32WM4555w0NjamUChk8eLFvd6zbNmy/Mmf/Elqampy5JFHZuHChTvNmT9/fg4//PDU1tamqakpTz31VJ/XJtEEAAAA8C7S2dmZ8ePHZ/78+WXNX7duXc4+++ycfvrpWb16dS6//PJcfPHF+elPf9oz57777ktra2vmzp2bp59+OuPHj09LS0teeeWVPq3N1jkAAACAMhRSpWbgfZw/ZcqUTJkypez5CxYsyJgxY/Ktb30rSfLhD384jz/+eG666aa0tLQkSW688cZccsklmTFjRs89P/7xj3PnnXfmq1/9atmfpaIJAAAAYC/Q0dFRMrZv316RuMuXL09zc3PJuZaWlixfvjxJsmPHjqxatapkzqBBg9Lc3Nwzp1wSTQAAAADlKBaqN5KMHj069fX1PWPevHkVWXZbW1tGjhxZcm7kyJHp6OjIv//7v2fTpk3p6ura5Zy2trY+fZatcwAAAAB7gQ0bNqSurq7nuKamph9X8/ZINAEAAACUo/i7UY24Serq6koSTZXS0NCQ9vb2knPt7e2pq6vLvvvum8GDB2fw4MG7nNPQ0NCnz7J1DgAAAGAAmzRpUpYuXVpy7pFHHsmkSZOSJEOGDMnEiRNL5nR3d2fp0qU9c8ol0QQAAABQjmIVRx9s3bo1q1evzurVq5Mk69aty+rVq7N+/fokyezZs3PBBRf0zP9v/+2/5V//9V9z5ZVX5tlnn823v/3t3H///fniF7/YM6e1tTXf/e53c/fdd+df/uVfctlll6Wzs7PnLXTlsnUOAAAA4F1k5cqVOf3003uOW1tbkyTTp0/PwoULs3Hjxp6kU5KMGTMmP/7xj/PFL34xt9xySw455JD83d/9XVpaWnrmnHfeeXn11VczZ86ctLW1ZcKECVmyZMlODcJ70+eKpsceeyznnHNOGhsbUygUsnjx4pLrxWIxc+bMyahRo7Lvvvumubk5zz//fK9x58+fn8MPPzy1tbVpamrKU0891delAQAAAFRNoVi90ReTJ09OsVjcaSxcuDBJsnDhwixbtmyne375y19m+/btWbt2bS688MKd4s6aNSsvvvhitm/fnhUrVqSpqanPP6M+J5o6Ozszfvz4zJ8/f5fXb7jhhtx6661ZsGBBVqxYkf333z8tLS3Ztm3bbmPed999aW1tzdy5c/P0009n/PjxaWlpySuvvNLX5QEAAABUx16ydW5v1udE05QpU3L99dfnk5/85E7XisVibr755lx11VU599xzM27cuNxzzz15+eWXd6p8+n033nhjLrnkksyYMSPHHHNMFixYkP322y933nlnX5cHAAAAQD+paDPwdevWpa2tLc3NzT3n6uvr09TUlOXLl+/ynh07dmTVqlUl9wwaNCjNzc27vQcAAADgj05FU68q2gy8ra0tSXZqFDVy5Miea39o06ZN6erq2uU9zz777C7v2b59e7Zv395z3NHR8U6WDQAAAEAFVLSi6Y9l3rx5qa+v7xmjR4/u7yUBAAAAA9ze0gx8b1bRRFNDQ0OSpL29veR8e3t7z7U/dPDBB2fw4MF9umf27NnZsmVLz9iwYUMFVg8AAADAO1HRRNOYMWPS0NCQpUuX9pzr6OjIihUrMmnSpF3eM2TIkEycOLHknu7u7ixdunS399TU1KSurq5kAAAAAFRVsVC9MUD0uUfT1q1bs2bNmp7jdevWZfXq1Rk2bFgOPfTQXH755bn++utz1FFHZcyYMbn66qvT2NiYqVOn9txzxhln5JOf/GRmzZqVJGltbc306dNz4okn5qSTTsrNN9+czs7OzJgx450/IQAAAAB/FH1ONK1cuTKnn356z3Fra2uSZPr06Vm4cGGuvPLKdHZ25tJLL83mzZtz6qmnZsmSJamtre25Z+3atdm0aVPP8XnnnZdXX301c+bMSVtbWyZMmJAlS5bs1CAcAAAAoN9U6w1xA6hHU58TTZMnT06xuPufQKFQyLXXXptrr712t3NeeOGFnc7NmjWrp8IJAAAAgHefPieaAAAAAN6LqvWGuIH01jmJJgAAAIBy2DrXq4q+dQ4AAACA9y4VTQAAAADlqNLWORVNAAAAAPAHVDQBAAAAlEOPpl6paAIAAACgIlQ0AQAAAJRDRVOvVDQBAAAAUBEqmgAAAADKUKjSW+eq8ia7fqKiCQAAAICKkGgCAAAAoCJsnQMAAAAoh2bgvVLRBAAAAEBFqGgCAAAAKINm4L1T0QQAAABARahoAgAAACjXAKo+qgYVTQAAAABUhIomAAAAgHJ461yvJJoAAAAAyqAZeO9snQMAAACgIlQ0AQAAAJTD1rleqWgCAAAAoCJUNAEAAACUQY+m3qloAgAAAKAiVDQBAAAAlEOPpl6paAIAAACgIlQ0AQAAAJRDRVOvJJoAAAAAyqAZeO9snQMAAACgIlQ0AQAAAJTD1rleqWgCAAAAoCJUNAEAAACUQ0VTr1Q0AQAAAFARKpoAAAAAyuCtc71T0QQAAABARahoAgAAACiHHk29UtEEAAAAUIa3ts5VY/TV/Pnzc/jhh6e2tjZNTU156qmndjt38uTJKRQKO42zzz67Z86FF1640/Wzzjqrz+tS0QQAAADwLnLfffeltbU1CxYsSFNTU26++ea0tLTkueeey4gRI3aa/4Mf/CA7duzoOX7ttdcyfvz4fPazny2Zd9ZZZ+Wuu+7qOa6pqenz2lQ0AQAAAJSjWMXRBzfeeGMuueSSzJgxI8ccc0wWLFiQ/fbbL3feeecu5w8bNiwNDQ0945FHHsl+++23U6KppqamZN5BBx3Ut4VFogkAAABgr9DR0VEytm/fvtOcHTt2ZNWqVWlubu45N2jQoDQ3N2f58uVlfc4dd9yR888/P/vvv3/J+WXLlmXEiBE5+uijc9lll+W1117r8zNINAEAAACUo8oVTaNHj059fX3PmDdv3k5L2LRpU7q6ujJy5MiS8yNHjkxbW1uvj/DUU0/lmWeeycUXX1xy/qyzzso999yTpUuX5q//+q/z6KOPZsqUKenq6irnJ9Oj4j2aDj/88Lz44os7nf+rv/qrzJ8/f6fzCxcuzIwZM0rO1dTUZNu2bZVeGgAAAMBea8OGDamrq+s5fjs9knpzxx135Pjjj89JJ51Ucv7888/v+fPxxx+fcePG5YMf/GCWLVuWM844o+z4FU80/dM//VNJtuuZZ57JJz7xiZ32/f2+urq6PPfccz3HhUKh0ssCAAAAeEcKvxvViJu8mR/5/UTTrhx88MEZPHhw2tvbS863t7enoaFhj/d2dnZm0aJFufbaa3td0xFHHJGDDz44a9as6VOiqeJb54YPH17SOOqhhx7KBz/4wZx22mm7vadQKJTc84flXwAAAAAkQ4YMycSJE7N06dKec93d3Vm6dGkmTZq0x3sfeOCBbN++PX/+53/e6+e89NJLee211zJq1Kg+ra+qPZp27NiR733ve/nLv/zLPVYpbd26NYcddlhGjx6dc889N7/+9a/3GHf79u07NcgCAAAAqKq95K1zra2t+e53v5u77747//Iv/5LLLrssnZ2dPa2JLrjggsyePXun++64445MnTo173//+0vOb926NV/+8pfz5JNP5oUXXsjSpUtz7rnn5sgjj0xLS0uf1lbxrXO/b/Hixdm8eXMuvPDC3c45+uijc+edd2bcuHHZsmVL/uZv/iannHJKfv3rX+eQQw7Z5T3z5s3L17/+9SqtGgAAAGBnheKboxpx++K8887Lq6++mjlz5qStrS0TJkzIkiVLenaIrV+/PoMGldYWPffcc3n88cfzj//4jzvFGzx4cP75n/85d999dzZv3pzGxsaceeaZue666/rcJ6pQLBar8CN6U0tLS4YMGZIf/ehHZd/zxhtv5MMf/nCmTZuW6667bpdztm/fXvKKv46OjowePTpbtmzpdS8j8N70iUG77xP3dq256eSKxwSAvjryi09WPOYj3Q9UPCYwMHR0dKS+vv499/v3W8997H/7HxlcU1vx+F3bt+XXC742IH6uVatoevHFF/Ozn/0sP/jBD/p03/ve976ccMIJWbNmzW7n1NTUVKXzOgAAAMBuvY1tbmXHHSCq1qPprrvuyogRI3L22Wf36b6urq786le/6nOzKQAAAAD6V1Uqmrq7u3PXXXdl+vTp2Wef0o+44IIL8oEPfCDz5s1Lklx77bU5+eSTc+SRR2bz5s355je/mRdffDEXX3xxNZYGAAAA8PYNoOqjaqhKoulnP/tZ1q9fn7/8y7/c6dofNqT67W9/m0suuSRtbW056KCDMnHixDzxxBM55phjqrE0AAAAAKqkKommM888M7vrMb5s2bKS45tuuik33XRTNZYBAAAAUDF7y1vn9mZV69EEAAAAwHtL1d46BwAAADCgeOtcrySaAAAAAMpg61zvbJ0DAAAAoCJUNAEAAACUw9a5XqloAgAAAKAiVDQBAAAAlEGPpt6paAIAAACgIlQ0AQAAAJRDj6ZeqWgCAAAAoCJUNAEAAACUQ0VTrySaAAAAAMqgGXjvbJ0DAAAAoCJUNAEAAACUw9a5XqloAgAAAKAiVDQBAAAAlKFQLKZQrHz5UTVi9hcVTQAAAABUhIomAAAAgHLo0dQrFU0AAAAAVISKJgAAAIAyFIpvjmrEHShUNAEAAABQESqaAAAAAMqhR1OvJJoAAAAAymDrXO9snQMAAACgIlQ0AQAAAJTD1rleqWgCAAAAoCJUNAEAAACUQY+m3qloAgAAAKAiVDQBAAAAlEOPpl6paAIAAACgIlQ0AQAAAJRpIPVTqgaJJgAAAIByFItvjmrEHSBsnQMAAACgIlQ0AQAAAJShUKzO1rmBtB1PRRMAAAAAFaGiCQAAAKAcxd+NasQdIFQ0AQAAAFARKpoAAAAAylDofnNUI+5AoaIJAAAAgIpQ0QQAAABQDj2aeiXRBAAAAFCGQvHNUY24A0XFt85dc801KRQKJWPs2LF7vOeBBx7I2LFjU1tbm+OPPz4PP/xwpZcFAAAAMGDMnz8/hx9+eGpra9PU1JSnnnpqt3MXLly4U66mtra2ZE6xWMycOXMyatSo7Lvvvmlubs7zzz/f53VVpUfTsccem40bN/aMxx9/fLdzn3jiiUybNi0XXXRRfvnLX2bq1KmZOnVqnnnmmWosDQAAAODtKRarN/rgvvvuS2tra+bOnZunn34648ePT0tLS1555ZXd3lNXV1eSq3nxxRdLrt9www259dZbs2DBgqxYsSL7779/Wlpasm3btj6trSqJpn322ScNDQ094+CDD97t3FtuuSVnnXVWvvzlL+fDH/5wrrvuuvzJn/xJbrvttmosDQAAAOBd7cYbb8wll1ySGTNm5JhjjsmCBQuy33775c4779ztPYVCoSRXM3LkyJ5rxWIxN998c6666qqce+65GTduXO655568/PLLWbx4cZ/WVpVE0/PPP5/GxsYcccQR+dznPpf169fvdu7y5cvT3Nxccq6lpSXLly+vxtIAAAAA3pa3ejRVY5Rrx44dWbVqVUkuZdCgQWlubt5jLmXr1q057LDDMnr06Jx77rn59a9/3XNt3bp1aWtrK4lZX1+fpqamPudnKp5oampqysKFC7NkyZLcfvvtWbduXT72sY/l9ddf3+X8tra2kixakowcOTJtbW27/Yzt27eno6OjZAAAAAC8m/1hrmP79u07zdm0aVO6urr6lEs5+uijc+edd+bBBx/M9773vXR3d+eUU07JSy+9lCQ99/U1P7MrFU80TZkyJZ/97Gczbty4tLS05OGHH87mzZtz//33V+wz5s2bl/r6+p4xevToisUGAAAA2KViFUeS0aNHl+Q75s2bV5FlT5o0KRdccEEmTJiQ0047LT/4wQ8yfPjw/O3f/m1F4v++fSoe8Q8ceOCB+dCHPpQ1a9bs8npDQ0Pa29tLzrW3t6ehoWG3MWfPnp3W1tae446ODskmAAAA4F1tw4YNqaur6zmuqanZac7BBx+cwYMH9zmX8vve97735YQTTujJ1bx1X3t7e0aNGlUSc8KECX16hqr0aPp9W7duzdq1a0sW+vsmTZqUpUuXlpx75JFHMmnSpN3GrKmpSV1dXckAAAAAqKZq92j6w1zHrhJNQ4YMycSJE0tyKd3d3Vm6dOkecym/r6urK7/61a96cjVjxoxJQ0NDScyOjo6sWLGi7JhvqXhF0xVXXJFzzjknhx12WF5++eXMnTs3gwcPzrRp05IkF1xwQT7wgQ/0lH994QtfyGmnnZZvfetbOfvss7No0aKsXLky3/nOdyq9NAAAAIC3r1h8c1Qjbh+0trZm+vTpOfHEE3PSSSfl5ptvTmdnZ2bMmJFk59zLtddem5NPPjlHHnlkNm/enG9+85t58cUXc/HFFyd58410l19+ea6//vocddRRGTNmTK6++uo0NjZm6tSpfVpbxRNNL730UqZNm5bXXnstw4cPz6mnnponn3wyw4cPT5KsX78+gwb9ZyHVKaecknvvvTdXXXVVvva1r+Woo47K4sWLc9xxx1V6aQAAAADveuedd15effXVzJkzJ21tbZkwYUKWLFnS08z7D3Mvv/3tb3PJJZekra0tBx10UCZOnJgnnngixxxzTM+cK6+8Mp2dnbn00kuzefPmnHrqqVmyZElqa2v7tLZCsViNVNwfV0dHR+rr67Nlyxbb6IBd+sSgz1Y85pqbTq54TADoqyO/+GTFYz7S/UDFYwIDw3v19++3nnvSlGuzz/v6lngpx3+8sS3LfzJnQPxcq96jCQAAAID3hqq/dQ4AAABgQCj+blQj7gChogkAAACAilDRBAAAAFCGQvHNUY24A4WKJgAAAAAqQkUTAAAAQDm6i2+OasQdICSaAAAAAMqhGXivbJ0DAAAAoCJUNAEAAACUoZAqNQOvfMh+o6IJAAAAgIpQ0QQAAABQjmLxzVGNuAOEiiYAAAAAKkJFEwAAAEAZCsUq9WgaOAVNKpoAAAAAqAwVTQAAAADlKP5uVCPuACHRBAAAAFCGQrGYQhUad1cjZn+xdQ4AAACAilDRBAAAAFCO7t+NasQdIFQ0AQAAAFARKpoAAAAAyqBHU+9UNAEAAABQESqaAAAAAMpR/N2oRtwBQkUTAAAAABWhogkAAACgHMXim6MacQcIiSYAAACAMhSKb45qxB0obJ0DAAAAoCJUNAEAAACUw9a5XqloAgAAAKAiVDQBAAAAlKHQ/eaoRtyBQkUTAAAAABWhogkAAACgHHo09UpFEwAAAAAVoaIJAAAAoBzF341qxB0gJJoAAAAAylAoFlOowja3asTsL7bOAQAAAFARKpoAAAAAyqEZeK9UNAEAAABQESqaAAAAAMpRTNJdpbgDhIomAAAAACpCRRMAAABAGbx1rncqmgAAAACoCBVNAAAAAOUopkpvnat8yP5S8YqmefPm5SMf+UiGDh2aESNGZOrUqXnuuef2eM/ChQtTKBRKRm1tbaWXBgAAAEAVVTzR9Oijj2bmzJl58skn88gjj+SNN97ImWeemc7Ozj3eV1dXl40bN/aMF198sdJLAwAAAHj7isXqjQGi4lvnlixZUnK8cOHCjBgxIqtWrcrHP/7x3d5XKBTS0NBQ6eUAAAAAVEZ3kkKV4g4QVW8GvmXLliTJsGHD9jhv69atOeywwzJ69Oice+65+fWvf73budu3b09HR0fJAAAAAKB/VTXR1N3dncsvvzwf/ehHc9xxx+123tFHH50777wzDz74YL73ve+lu7s7p5xySl566aVdzp83b17q6+t7xujRo6v1CAAAAABJkkKxWLUxUFQ10TRz5sw888wzWbRo0R7nTZo0KRdccEEmTJiQ0047LT/4wQ8yfPjw/O3f/u0u58+ePTtbtmzpGRs2bKjG8gEAAAD2SvPnz8/hhx+e2traNDU15amnntrt3O9+97v52Mc+loMOOigHHXRQmpubd5p/4YUX7vSitrPOOqvP66paomnWrFl56KGH8otf/CKHHHJIn+593/velxNOOCFr1qzZ5fWamprU1dWVDAAAAICq2kuagd93331pbW3N3Llz8/TTT2f8+PFpaWnJK6+8ssv5y5Yty7Rp0/KLX/wiy5cvz+jRo3PmmWfmN7/5Tcm8s846q+RFbd///vf7/COqeKKpWCxm1qxZ+eEPf5if//znGTNmTJ9jdHV15Ve/+lVGjRpV6eUBAAAAvKvdeOONueSSSzJjxowcc8wxWbBgQfbbb7/ceeedu5z/93//9/mrv/qrTJgwIWPHjs3f/d3fpbu7O0uXLi2ZV1NTk4aGhp5x0EEH9XltFU80zZw5M9/73vdy7733ZujQoWlra0tbW1v+/d//vWfOBRdckNmzZ/ccX3vttfnHf/zH/Ou//muefvrp/Pmf/3lefPHFXHzxxZVeHgAAAMDbsxdUNO3YsSOrVq1Kc3Nzz7lBgwalubk5y5cvLyvGv/3bv+WNN97Y6cVty5Yty4gRI3L00Ufnsssuy2uvvVb2ut6yT5/v6MXtt9+eJJk8eXLJ+bvuuisXXnhhkmT9+vUZNOg/c1y//e1vc8kll6StrS0HHXRQJk6cmCeeeCLHHHNMpZcHAAAAsFfq6OgoOa6pqUlNTU3JuU2bNqWrqysjR44sOT9y5Mg8++yzZX3OV77ylTQ2NpYkq84666x86lOfypgxY7J27dp87Wtfy5QpU7J8+fIMHjy47GeoeKKpWEYWbtmyZSXHN910U2666aZKLwUAAACgct5GP6Wy4yYZPXp0yem5c+fmmmuuqehHfeMb38iiRYuybNmy1NbW9pw///zze/58/PHHZ9y4cfngBz+YZcuW5Ywzzig7fsUTTQAAAAADUneSQpXiJtmwYUPJC8/+sJopSQ4++OAMHjw47e3tJefb29vT0NCwx4/5m7/5m3zjG9/Iz372s4wbN26Pc4844ogcfPDBWbNmTZ8STVV76xwAAAAA5aurqysZu0o0DRkyJBMnTixp5P1WY+9JkybtNvYNN9yQ6667LkuWLMmJJ57Y61peeumlvPbaa31+UZuKJgAAAIAyFIrFFKqwda6vMVtbWzN9+vSceOKJOemkk3LzzTens7MzM2bMSPLmS9g+8IEPZN68eUmSv/7rv86cOXNy77335vDDD09bW1uS5IADDsgBBxyQrVu35utf/3o+/elPp6GhIWvXrs2VV16ZI488Mi0tLX1am0QTAAAAwLvIeeedl1dffTVz5sxJW1tbJkyYkCVLlvQ0CP/Dl7Ddfvvt2bFjRz7zmc+UxHmrB9TgwYPzz//8z7n77ruzefPmNDY25swzz8x11123y6qqPZFoAgAAAChHlZuB98WsWbMya9asXV77w5ewvfDCC3uMte++++anP/1pn9ewK3o0AQAAAFARKpoAAAAAytFdTApVqGjqrkLMfqKiCQAAAICKUNEEAAAAUI69qEfT3kqiCQAAAKAsVUo0ZeAkmmydAwAAAKAiVDQBAAAAlMPWuV6paAIAAACgIlQ0AQAAAJSju5iq9FPqVtEEAAAAACVUNAEAAACUo9j95qhG3AFCRRMAAAAAFaGiCQAAAKAc3jrXK4kmAAAAgHJoBt4rW+cAAAAAqAgVTQAAAADlsHWuVyqaAAAAAKgIFU0AAAAA5SimShVNlQ/ZX1Q0AQAAAFARKpoAAAAAyqFHU69UNAEAAABQESqaAAAAAMrR3Z2ku0pxBwaJJgAAAIBy2DrXK1vnAAAAAKgIFU0AAAAA5VDR1CsVTQAAAABUhIomAAAAgHJ0F5NUofqoW0UTAAAAAJRQ0QQAAABQhmKxO8Vid1XiDhQqmgAAAACoCBVNwHvCT19eXYWo1YgJAH10Xn8vAOA9pFisTj+lAfTWOYkmAAAAgHIUq9QMfAAlmmydAwAAAKAiVDQBAAAAlKO7OylUoXG3ZuAAAAAAUEpFEwAAAEA59GjqVdUqmubPn5/DDz88tbW1aWpqylNPPbXH+Q888EDGjh2b2traHH/88Xn44YertTQAAAAAqqAqiab77rsvra2tmTt3bp5++umMHz8+LS0teeWVV3Y5/4knnsi0adNy0UUX5Ze//GWmTp2aqVOn5plnnqnG8gAAAAD6rNjdXbUxUFQl0XTjjTfmkksuyYwZM3LMMcdkwYIF2W+//XLnnXfucv4tt9ySs846K1/+8pfz4Q9/ONddd13+5E/+JLfddls1lgcAAABAFVQ80bRjx46sWrUqzc3N//khgwalubk5y5cv3+U9y5cvL5mfJC0tLbudDwAAAPBHVyxWbwwQFW8GvmnTpnR1dWXkyJEl50eOHJlnn312l/e0tbXtcn5bW9su52/fvj3bt2/vOe7o6HiHqwYAAADoRXcxKWgGvidVawZeTfPmzUt9fX3PGD16dH8vCQAAAOA9r+KJpoMPPjiDBw9Oe3t7yfn29vY0NDTs8p6GhoY+zZ89e3a2bNnSMzZs2FCZxQMAAADsTrGYFLurMFQ07daQIUMyceLELF26tOdcd3d3li5dmkmTJu3ynkmTJpXMT5JHHnlkt/NrampSV1dXMgAAAADoXxXv0ZQkra2tmT59ek488cScdNJJufnmm9PZ2ZkZM2YkSS644IJ84AMfyLx585IkX/jCF3LaaaflW9/6Vs4+++wsWrQoK1euzHe+851qLA8AAACgz4rdxRSr0KOpOIAqmqqSaDrvvPPy6quvZs6cOWlra8uECROyZMmSnobf69evz6BB/1lMdcopp+Tee+/NVVddla997Ws56qijsnjx4hx33HHVWB4AAAAAVVAoDoC0WUdHR+rr67Nlyxbb6IBd6m47qr+XAADvGoManu/vJQB7qffq799vPffpgz+VfQrvq3j8/yi+kV90/WBA/FzflW+dAwAAAHgvmz9/fg4//PDU1tamqakpTz311B7nP/DAAxk7dmxqa2tz/PHH5+GHHy65XiwWM2fOnIwaNSr77rtvmpub8/zzff8PDxJNAAAAAGUodherNvrivvvuS2tra+bOnZunn34648ePT0tLS1555ZVdzn/iiScybdq0XHTRRfnlL3+ZqVOnZurUqXnmmWd65txwww259dZbs2DBgqxYsSL7779/Wlpasm3btj6tzdY54D3B1jkAKJ+tc8DuvFd//37ruSfn3KptnVuWB8v+uTY1NeUjH/lIbrvttiRJd3d3Ro8enc9//vP56le/utP88847L52dnXnooYd6zp188smZMGFCFixYkGKxmMbGxnzpS1/KFVdckSTZsmVLRo4cmYULF+b8888v+1mq0gz8j+2tXFlHR0c/rwTYW3W/3t3fSwCAd41B+/n3amDX3vq9ewDUrLwt/5E3kio8+n/kjSQ75zVqampSU1NTcm7Hjh1ZtWpVZs+e3XNu0KBBaW5uzvLly3cZf/ny5WltbS0519LSksWLFydJ1q1bl7a2tjQ3N/dcr6+vT1NTU5YvX/7eSzS9/vrrSZLRo0f380oAAGAgqO/vBQB7uddffz319e+df1YMGTIkDQ0Nebzt4d4nv00HHHDATnmNuXPn5pprrik5t2nTpnR1dWXkyJEl50eOHJlnn312l7Hb2tp2Ob+tra3n+lvndjenXAMi0dTY2JgNGzZk6NChKRQK/b2cftPR0ZHRo0dnw4YN76kSRqgk3yN453yP4J3zPYJ3zveoOorFYl5//fU0Njb291L+qGpra7Nu3brs2LGjap9RLBZ3ymn8YTXTu8GASDQNGjQohxxySH8vY69RV1fnH6TwDvkewTvnewTvnO8RvHO+R5X3Xqpk+n21tbWpra3t72Xk4IMPzuDBg9Pe3l5yvr29PQ0NDbu8p6GhYY/z3/rf9vb2jBo1qmTOhAkT+rQ+b50DAAAAeJcYMmRIJk6cmKVLl/ac6+7uztKlSzNp0qRd3jNp0qSS+UnyyCOP9MwfM2ZMGhoaSuZ0dHRkxYoVu425OwOiogkAAADgvaK1tTXTp0/PiSeemJNOOik333xzOjs7M2PGjCTJBRdckA984AOZN29ekuQLX/hCTjvttHzrW9/K2WefnUWLFmXlypX5zne+kyQpFAq5/PLLc/311+eoo47KmDFjcvXVV6exsTFTp07t09okmgaQmpqazJ079125hxP2Fr5H8M75HsE753sE75zvEQPZeeedl1dffTVz5sxJW1tbJkyYkCVLlvQ0816/fn0GDfrPTWynnHJK7r333lx11VX52te+lqOOOiqLFy/Occcd1zPnyiuvTGdnZy699NJs3rw5p556apYsWdLn7YKF4nv1nYQAAAAAVJQeTQAAAABUhEQTAAAAABUh0QQAAABARUg0AQAAAFAREk0DxH//7/89p5xySvbbb78ceOCBu5yzfv36nH322dlvv/0yYsSIfPnLX85//Md//HEXCnux+fPn5/DDD09tbW2ampry1FNP9feSYK/22GOP5ZxzzkljY2MKhUIWL15ccr1YLGbOnDkZNWpU9t133zQ3N+f555/vn8XCXmjevHn5yEc+kqFDh2bEiBGZOnVqnnvuuZI527Zty8yZM/P+978/BxxwQD796U+nvb29n1YMe5/bb78948aNS11dXerq6jJp0qT85Cc/6bnuOwR/fBJNA8SOHTvy2c9+Npdddtkur3d1deXss8/Ojh078sQTT+Tuu+/OwoULM2fOnD/ySmHvdN9996W1tTVz587N008/nfHjx6elpSWvvPJKfy8N9lqdnZ0ZP3585s+fv8vrN9xwQ2699dYsWLAgK1asyP7775+WlpZs27btj7xS2Ds9+uijmTlzZp588sk88sgjeeONN3LmmWems7OzZ84Xv/jF/OhHP8oDDzyQRx99NC+//HI+9alP9eOqYe9yyCGH5Bvf+EZWrVqVlStX5k//9E9z7rnn5te//nUS3yHoD4VisVjs70VQOQsXLszll1+ezZs3l5z/yU9+kv/yX/5LXn755YwcOTJJsmDBgnzlK1/Jq6++miFDhvTDamHv0dTUlI985CO57bbbkiTd3d0ZPXp0Pv/5z+erX/1qP68O9n6FQiE//OEPM3Xq1CRvVjM1NjbmS1/6Uq644ookyZYtWzJy5MgsXLgw559/fj+uFvZOr776akaMGJFHH300H//4x7Nly5YMHz489957bz7zmc8kSZ599tl8+MMfzvLly3PyySf384ph7zRs2LB885vfzGc+8xnfIegHKpreI5YvX57jjz++J8mUJC0tLeno6OjJ9sN71Y4dO7Jq1ao0Nzf3nBs0aFCam5uzfPnyflwZvHutW7cubW1tJd+r+vr6NDU1+V7BbmzZsiXJm78kJ8mqVavyxhtvlHyPxo4dm0MPPdT3CHahq6srixYtSmdnZyZNmuQ7BP1kn/5eAH8cbW1tJUmmJD3HbW1t/bEk2Gts2rQpXV1du/yOPPvss/20Knh3e+vvll19r/y9Azvr7u7O5Zdfno9+9KM57rjjkrz5PRoyZMhO/Td9j6DUr371q0yaNCnbtm3LAQcckB/+8Ic55phjsnr1at8h6AcqmvZiX/3qV1MoFPY4/BIMAPDuN3PmzDzzzDNZtGhRfy8F3nWOPvrorF69OitWrMhll12W6dOn5//+3//b38uC9ywVTXuxL33pS7nwwgv3OOeII44oK1ZDQ8NOb9B6620LDQ0Nb2t9MFAcfPDBGTx48E5vIGlvb/f9gLfpre9Oe3t7Ro0a1XO+vb09EyZM6KdVwd5p1qxZeeihh/LYY4/lkEMO6Tnf0NCQHTt2ZPPmzSUVGf5+glJDhgzJkUcemSSZOHFi/umf/im33HJLzjvvPN8h6AcqmvZiw4cPz9ixY/c4ym3iPWnSpPzqV78qeYPWI488krq6uhxzzDHVegR4VxgyZEgmTpyYpUuX9pzr7u7O0qVLM2nSpH5cGbx7jRkzJg0NDSXfq46OjqxYscL3Cn6nWCxm1qxZ+eEPf5if//znGTNmTMn1iRMn5n3ve1/J9+i5557L+vXrfY9gD7q7u7N9+3bfIegnKpoGiPXr1+f//b//l/Xr16erqyurV69Okhx55JE54IADcuaZZ+aYY47JX/zFX+SGG25IW1tbrrrqqsycOTM1NTX9u3jYC7S2tmb69Ok58cQTc9JJJ+Xmm29OZ2dnZsyY0d9Lg73W1q1bs2bNmp7jdevWZfXq1Rk2bFgOPfTQXH755bn++utz1FFHZcyYMbn66qvT2NjY82Y6eK+bOXNm7r333jz44IMZOnRoT8+Y+vr67Lvvvqmvr89FF12U1tbWDBs2LHV1dfn85z+fSZMmeVsW/M7s2bMzZcqUHHrooXn99ddz7733ZtmyZfnpT3/qOwT9pFAsFov9vQjeuQsvvDB33333Tud/8YtfZPLkyUmSF198MZdddlmWLVuW/fffP9OnT883vvGN7LOPfCMkyW233ZZvfvObaWtry4QJE3Lrrbemqampv5cFe61ly5bl9NNP3+n89OnTs3DhwhSLxcydOzff+c53snnz5px66qn59re/nQ996EP9sFrY+xQKhV2ev+uuu3raJ2zbti1f+tKX8v3vfz/bt29PS0tLvv3tb9v2A79z0UUXZenSpdm4cWPq6+szbty4fOUrX8knPvGJJL5D0B8kmgAAAACoCD2aAAAAAKgIiSYAAAAAKkKiCQAAAICKkGgCAAAAoCIkmgAAAACoCIkmAAAAACpCogkAAACAipBoAgAAAKAiJJoAAAAAqAiJJgAAAAAqQqIJAAAAgIqQaAIAAACgIv4/3sZ9nJPS4c4AAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 1152x432 with 2 Axes>"
+       "<Figure size 1600x600 with 2 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -168,16 +157,7 @@
    "cell_type": "code",
    "execution_count": 7,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n",
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "cqc = method.conserved_quantity_computation\n",
     "inp_eqs = cqc.equilibrium_input_equations_from_init_values(force_substitution=False)\n",
@@ -221,13 +201,13 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABfgAAAAmCAYAAACYsvoWAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d/dXktNnGn92zBRCo4A0d8FEBpAPYVADpYDn8l/84SQcJFSTQQUIFATpIUgFkO9j3+vmxvLJGtqUZS+N55tI5HlmyPi5dtz5vy5pnb968eVgyf/zjH1/p2R90fa77n5fC2d8MmAEzYAbMgBkwA2bADJgBM2AGzIAZMANmwAyYATNgBsyAGdiHAenjv1RKX+n6k+7/upTqs5yCXxF+qwj/0PVaF8r9/ywlYH8zYAbMgBkwA2bADJgBM2AGzIAZMANmwAyYATNgBsyAGTADZmBfBqSX/1Qp/kUXevpP5MaemRMF/6jc/0mh/qn7z2eh7TADZsAMmAEzYAbMgBkwA2bADJgBM2AGzIAZMANmwAyYATNgBrowIB39O8oIff2D7t9PM32eesj9J11E+iLzzF5mwAyYATNgBsyAGTADZsAMmAEzYAbMgBkwA2bADJgBM2AGzEAHBqTUZ9c+x+j/Vvcc2zMzOQX/Bwrx8xhxFtgOM2AGzIAZMANmwAw8FQY01+FIQhszYAbMgBkwA2bADJgBM2AGzIAZMAOHZkDr138KIIr+D1OgL1IPud/V9eT/UFek8KUC5hdd78nNHxbYJAyIF77meKnrD7o/qUBJ8Lt0jhx9PRY+KIu+kD+NzkYMiAt44cywX3Vx/7Gub+T/5PsalfNsI35+0uV2lzA41ifeXPNfMRjq1K/y/35w+WdiQJww1jHOYV7LvfinPI9B7u73q7E+cZ7h7P+G5O/+KaoO4oNdIswJ3htt/uRpxlkU/G5vxYnnl4XSN1eFRDUMZhk0JLciacuhgqyGQS2HhuRWJG05VJDVMKjl0JDciqQthwqyGgU9sAzQ3c/M85nrThwSEIvUX2SzsP+z7v8hOyiK7oSF7WKKE77mCAt6FvU2eQZQclCXuPjfCpTYw7lY+eB36YvC433x870u2ty/dP1wl0wUFlo8vVJQ2qDNKQMo9Omb6LdRzA51S7ZNxIDqEP3Q38Y2x5t+uLKZM0Bd4uXjd7rgK1y8QLIZGRj7I/6b6c+62BDB5fqU1BBx4/llwsmS01wtMdPP3zLox/VaTpbDGjv9nlkO/bhey8lyWGOn3zPLoR/XazlZDmvs9Hl2azK4SwW/qgLKRpQdg5HQuP9UNgt9m5EB8cFRTShjvUNvvVZ8KZ5QEAVD/eJMLCtnAyPara/bv711DjtAeRFik2FgrE9udxluIi/+Of6ZLpT7/gIrIoZbcUI/9KPsYRf6aP8uCWanxjdxQz2aLpHyV7mt4J/XDurONEcSP3yhdrJrZB7lLl2eX5aL3VyVc9UqpGXQitm6dC2HOr5ahbYcWjFbl67lUMdXq9CWQytm69K1HOr4ahH6pmSQO6KnBSmHSVOLUhao7EZPlWcsVlHIpv7ysjEDqwygCPpxNcSdP1S7S4+6+EyU0FnaJAyIK/on+iIfpZJwkzrFFS/W4IudxfThNm8ZYCfx5+KFMY/6BEfTi+23we7+btYPiSPcfmF0Wi34WoavHYcd/LKpX97BH/EkTjy/jPhYuzVXa+z0eWYZ9OF5KxfLYYuhPs8thz48b+ViOWwx1Oe55dCH561cLIcthto/v0UZPG9Py+FyQBmUM+wm9m60HDP2W2VADZ/dnrFyEYU/u0JTpfZqOvfwUJy80sURGH+RbQV2Xuh8EcKXMzbrDHytx7yQRWn9rTjjpZGNGBAXjHNc7LrGhiOOEkMpaxMxIE6ml/q6pw6hxI778yj0/d6KE/okXnzQh7+RzZcz7sPnVYK2ljOeX56yYq5OOentYxn0Zjyfn+WQ56W3r+XQm/F8fpZDnpfevpZDb8bz+VkOeV56+t6cDHbdwa/FHrsEv9XFLqa/y331T9xTTMK1tOMM5f6SAPVoP5NiOiJP18Z0RI6oAVu4xucoibr8MeoWnv1qbXlKa5j0jN2fKIW+k/2Auzzl80Mqn8P3TcLIH1lTd67yR7FH5AiJ53DJD4X1tBtd7m/k5sXRM11NTQ5P0wwLEk8xKUrYlf5vPRteNMpGOfs/2ezkn5TaBclXB1H6h2tvFGINl54x/tMGux1jtIanmvQdI+RwjX78OTpjGy/XUPS/o6vLPE/5MHd7rQvDH7SH+0efK/ymmFYg9JxfHp6nDdl142pFXhc/SuvGRpkvzq8kgRTTSpwnIQPKl5bZcliResNHlkNDciuSthwqyGoY9GhyqMTzJMaHyjI3rA1vk67EZDm8pW7Xu1QOK4kfVga77uAXIZzZzuKPhfIh/rQ2g2lpUQjmpkqPUEEymMKjq9lHw3Q0PEEwa7j0jBdbKNY+1P1SPQtJ7WKv4dklgzMS2cI0coOykR3FH5yRRXWULUzVCe4QIcUkN/XnXdld+qG0CCme9Pm13Dlc8kt36w+cyZ8je5qaHJ6mGRYknmKSO9Sh6egw+YU+6S45gsaUp4Tal3J3/epqA08Cr59zARdfyXDkE/M8/kyeFyEvdd+8D1cejKtMpP+mi69Qmtdh5bFqFjCFNpbG7TK/XMCUYunqXsF0Va5akrBS5pbZrqa9gOnJygAyFsq8ylPrhwuYLIfWxCfpWw4eR5Mq0c25UPe65Z9mtILnyfZLK2VO6enmXsFkOXSTwuK84eZksKuCH/5VQcPCa9pd2VEu2axiTLpH8YGgUKalptviPsaUgriW+2iYjoYnyCWHS37Up69k/07Xa9yjX4jWzFY+R29z7PJk53CsCAqd5UfNiEkSPjpPgvuOLo694MUHCi2uh9GdKrR5tLtRXoerSxQyg4svQOL6hPIPExTbj65Gvxk8jXIqTzaDCS4CL3FCd8sRJGR4CtywE/3fwdHLXsHTC0I2nxiX7hnfOGZmMvJjjsfXWLm51BRupxuU+ij3qc+8tDrC/PIEkzi59vzyBJO4urbJYjoAVy15yZa5ZYYFaZ9geuIygJKTMhfw1DrICSbLoTXl2fQtB4+j2YrRwfOk7nXIcy2LLJ4n3i9ly7xGUodnWUyWQwfm51mcyOEWZfBiXqZdXOzq4vzxoMDbJdELE0kxcZwDiqxwdAH3348CvDCr4ugppuKIDQMeDdPR8ATqZ7hUb1Bw8Fk8Cv6gdERZ1OuPGmd4Asgr2zNM4gXlUKxYpM3RR/y9I84Zpo75rmUVY6I/GvokIoz1ioGm53EUMR5gHMWkuFAsxvVpONpInMV+LbGneFrmVZp2iokXROy0HpSh4oa+ibG5l3I0xVNajtbhlnCFvrt1/mn6S3jScL3dMS5eWvN1ES9r47kdYx/zqWZG+TFW8PIz/JF2r/q7WKYNTFeZX25gWixLywcFmK7C1ZXL3DL7bNobcnhyMoCEjTJneWrtuYHJcmgtgDF9y2EYwz2OdqpvcTYbdS8O2uW+AM+T65cKytyF+ziTAkyWQ0xYo/sNOdyUDF5kOGIhdYlhMXb1gSMpwAyTBMg54GGX7C8K+76uL5I4rZ0zTK0zK0x/hkkcsXj/gy782ZGOwugX+JPdw8zw9MiwMI8UF2d/026wJyOe4K6HSfH0yHMrjxQTisavxQntDTOc5Sx3rCx6fNLuN8XULqfylLOYxAuKfRRsGPoq/vizx9n8WTyPMK76m+Li5VmoT++BTPxQx3qZFE+vfNfymWESH/z5N+ekD/22IjLOdflvkBHkDM8a8M7PlnDxcmg60qgjpiU8HSFks0px0b7oi8JXDrQ7Xmq37sPjFw1ZoFfwXMQkPq41v1zEdAV+QparmK7IVcDXwl4tc4sMC9JcxPREZQAli2Uu4KtVkEVMlkMryrPpWg5ZWrp7Wg7dKT/JcFEGhHyi/dJqmU8Y6uOxisly6CME5bIohwPLgA20J19SP3vz5s3EmsCzgw0lJX80xw7JVaMwJIjygIUxijsU+8TnnNZdlFFKh8UkO7eKlKU9MAlPlWmNqZYjwLfGVEVQJzzmqUwqtTwdrS5RytaYajnqgalMum9DteZoLHNV/22ebnOcc116267W7szTGjvzZ+IqvOTkRQMTWL5u+lX+RXPBeWpzl9Ko7pdIoSWmOcJyV2tM53DVGlM5O/1Cti6z5VAmy5ZyOEcGoG6JqYyV/qFaltlyKJen5VDOVcuQR5NDSzwtebwk7dZlVvrV88rWmC7hq1Xc1mW+NzmovOjhX+n6je6nDVcvEgF+Kzd/oFai3GfR9Z0u/lB0OBZBdvhj3V128Cs9dkXzEqHonG6Fb45JWKpMa0y1HAG+NaYqgjrhMU9lUqnl6Wh1iVK2xlTLUQ9MZdJ9G6o1R2OZq/pv83Sb41xpXVI4vgI76wglxXNdett8F++eAk+hcCoL81C+QmEXCseU7fLl4DkctcYU0j/HbsUTWM7lqiWmczjqEadlmS2Hcgm2ksO5MgB5K0zlrPQP2arMlkOdLC2HOr5ahT6aHFrhacXfHumulVnPzl6fgE3xq9coY7wm89w9+GqVxpocLs3zHuWgMvMlNccUo5PnC4TBDAr+kRAeYD55tJZ/o/AkGi/YuecFwes4tty8XcCwy/89uYvOJicdXbM3EkMqmR+Fo3FRhiJMmSR296rFNIZ/KSB8QVF0lILCFXNEAcc8DsNTDZ4x7NejoMLnKF/If1bfxuczizC6iuoSERX2UPWpBo/Cwg0vu8JnOxyHg4KEHZCrRmGKearBtJrpjg8vwaS4P+nabHcKU8wRRVP4W69L7JgNL2+pW+yi3fxC6554Qs4YlTkch4OTelLysry4Pim9m61L4oOxmfrD/5XE84YH+a/2TXpezJHSJr1b5gn87F6nDByDg83RODPO5HdiFOameUoLpPKEcf5k04ieNZ9Xpnhwr2HKhe/ht4ZJz6g/VfPKgFlxq+pTiIe9hikO95Tul8osf2Rw1twVfhTfcqioKCty6DI3zkFdwpQL+1T8SsuscEVzb3hR2LPbwhh/cUx5Kryn5ViSw+jfZX5fiikN95TcS3IIZdTzpuuHkE+wt/CEcK1s5c+4yH878d9g032r/EhX+Sy1/7PXJ2O6Z/dLK5haUnHVtNfKrGdnrX/uXA7orn4Qd+hqOEXn9Qv9oAhkwf0X3ZfukKITekfhU+UFac0UPwqDoKZz28lPF+dJT28Z9HzRKNzrxYfzB8WY5tGauooxqZwcjwR/GDq6YlPBEWkWYyoGcFnAGjwoOabP83VPveVIKM6W3jT3xJPIYMAc2qdsPt35QddvNklSgAqeamRXkvUeYc7CNHJU/CebFRxRprMw7UHGQho1eJgM0YdTh1Aw8mfkab8v77y5I54eVFb6Il448pI7HHdXxJXC3+o4V1uXGOPCOBcqDRxN/XrwTO0KjohagyvNqoW7GI/KSVujnQ0KfdnMB2Y7M9YA3jhPadGGPlllmr0AkrvXvDLFgzuLKRewo18Wk3jCP7S3qnllwF5Zn0I07CymOEDLe+Fm7GJXE+2I+6lN6b6VWSrzRXNXwN6qHEbs8M98fVh44tfYLMpB+faYG+eKt4QpF3Z3P9Uf+gH6AGTBmuk7+Z28OJX/nmazzMLAeDeEK834grZAFpuYSnGcE07YyT+cSoBSBt3LbHw7J92NOEtlpi70mt+nEJcwpeGausX9pBBrmtFj4otlFo4e64e0iIt40oCN3C+VLvWf5OmLevyP2lKZaQv0kWG+pNvBFK1PCKlylK7jHlN++7uE6W2IxnfCzlyJzaAcM0RZitauhD3TZMusfC9a/4BFadykHISbdR7zpB9ryzCG50Qd+vP/yf7whW6Y/ELG+/JAaV9CDI1yNjEgrvxoIGGnp24Hw8J2+ipA4ThPHwX/RZ/DjGnHVg2mB+UPLkzVVwWPUYp/izEJDwM8iiEaWUtTjAkQHXiqwfOl8MSTUmSI3we69p4g1eB6UP6t61MNnm+SCsQu0F8Tvz2cNZh6cESZqjARQbJjQB+UabgbmCpMB6tL0PGJMO3dvnI03yxPo8wYlAeesHUVvcTOEbHid7McqUwoVp7FZZObyf2mcj+OU3h/yzxRb6hHQcHPzqB3C8tdG+xoPKX4WXDk+uZe88oUD+4lTA+SU+t5QA7PIibhoR71mFfmcC3ylAvcwI/FEmPXsKaRjQIFhVpLs1TmnnPXtHxLmNJwTdzinYU8a0OuXmapzL3mxrlyLmHKhW3hx9pp2OQjm/X6/3TNxuMGma6WWThaz71zRVrFlIuwsx9jBLuFQ7/8rdzX6pcoWq/5PXnF5tpyeJAMUIZdvV8SDupEj/VDzD/3R5BB6z6otMw91yelmNJwTdxjO0AHTL/E2MDcqbWCf6nu9Vz/pHwuYUrDtXIzVxp06JJDyKP4P20VB/0xJ+QM48sLebB4QutPB/Nf2audvZ4jfK5Ukc9C8UHPJ8W/7uk4CZsu0F7Lj4Kk/vKqNzWYSF3hL9r9VYKwFlNJmpeGqcXUmqdaPCo/iqAfL+VhK34trqPxJDypMpZGHxQPW8Uven40jgBdiymKQ1/UZDCrxaTwTfumWjxwhFE8FmL05bygpf/e1dTiUvij8QQeBmLGPOoTPE1j4R5kPQGOZn2QyoO76Li+Gv6eAE/MrdgE8WddTNSoW+zq2NUcjaeFwtGWZuOZcHeZVy7gwfsEE56jnM7+WpU0LjBZTBekt0fULCbxhD9fFFK3s+Ou/Blr/qsLm/9hqHoJOMZnE1E8VuEu3cSkbM8y2TIrpS5z1wXEWUziorkcwKN8wkumWf+/gHUv76Uyz/oSZbb73HilAEuYushBuGIlMn1o3DZWYF/0KFtmUlS9oG3zPNsHEKaRyWISnl5yGL5iUX7I4Pe6dh/bM7xlyxzCCUvT+X3IJ7GzmHrJQfnQ9pmj7z4HTcoZO7NlVoDm64cYRHSfxdNLBuBQXvQDH+lCwb6LTpB0V0y2zAo/G5+Epcn6ZAFXFpMw4N90rjTioazogYcXrrJbbE5Li54tswJ1Wf+kYEZ3FlNHOUwn6Yx5MmednYqzgPtB4ZAh/cikw38eAushnRydHZWpxKQNMbx1IaPPdIVFWC6tX+X5bu7BhX4lmMgCIibli7By/+mImeeDkZuO51JTiunSfGril2LqxVMRHsmDhV48KWXRxKCQTtpruFgLW4RLCRyKp1Ag8fJKF7vW6DRaTaKPxhHFL8VE2C/FTenRZIQ/15RiOmJd+lqFBj/95Lfii4lxK3NzPIkPxgkuxkBseOJIBgbbFubmOIIE8THh1j11CCV23J/vzdWU35hwbo7Co0O1OXFCf8R8jP6bP5hlZ02r/lvJF/eXvXgCUzAs/P4VHKNNG8uZVvPKNK8cJsIU8RMSk0yXyhGC1NhLmGrS2DvsEib8KfviIlLc0C/ECslabKwvqA+xwc26ZGZ6yIH2O5Yp5N167hrywb6mHGIcq/c95BAAKK8ec+OQXbCvKgeVOR4P6as+D8Biu6Mces294+Jxf2058EUe/RDKNPqk7Ka1jnLoOb9XcSdzNTmIWxR5yCFuExOw+Ka1HMb0w3iI3Xr9EBfvajIYQVD/0b1RZvSG2TVTaxmARXlMdUH3n8mr9fqEbIO5mhxGbql3nISBHLCzLx3HsAHzpXa2zMqj9/onLkcWkwLgH9poHH66F+7XclwyZ30Yy449jA+yS5X7jCWvdPHy+OcA6nm4GW0WlexwIWDW6BmFoBIAYDDy+0w3dJhhoPqd/KbG8hhq9svkG7JWjdIAyxtdKCkXjZ4XY1JYcJN3io80KMNgFI4wnGO0mvcY/MSqwXQSucIDnLo2OSLJGkwK25ynGjwpJYqLrKh3RQ1K4e+OJ5WZjpLjsWiPi21azydTypPC3XybUxmoP0Ud6ESQbko5Io7CHoqnGjwjfnaiM2jwIo2yfKOLz/c2jcLfS5tjPMP8W2Xms2t4Yizlxdo0ThIgZ0p5GtMtGnvHfN9Rfs3GuRo8cbkpr9z8kTxlKTLE0XUX45zKydjGp6KMbfRPKKOyE249m5lb5mlWEDlUljAHmSasaZjETTukbq2aGo7ShJYwRf6r7S2kBwbdnz2/DOlgR3mX8hRHX70Hp66idhcntIZJz3hZxZwkq2CM0mHxf64hbuiXQxq4XwcHtjB0l4PypH0Xz10DTsW7RTkAf9P0loPyazY3zhVW+S32ZXrWoz1MsJQfYwlfz5yMv/Lr0h6Uz1lzbwoBRl3VbWGMe3U5CPtwPLFs5M6LFv5gGN4nM7qbjw/Kp8v8firYeKN8ryaHkduPKHuKK3WPYVvLIYxTTdcPmbJdTQYRFupfWIPTHk7muZ1kMEEa86tanxCZeLqq+yXFOYIcwD/IYbRfjrhSXlq3BXAwPzpr/fMU5DASznF6zFFKDfoGdDSzPu15HFsPWZwwAYbcNcPE/GOFZ+HJAEU8duPwb9goEkMjJa2cYTBLF0In4ZQW8Qn348nDU49STOSdM7MFQZQ3jXYpTi6d2K8UUxyn6j7CWcIRaZdiWirz3jyV4pl4UZnpEKl3fFJEHdk098gTpIzlpvGzo5iOc9VU8lQqu151ibIVYVI5qUP0V5v9UEpYJUfFmBSwF09FHAFcZWUhFpuBL/nzxnjV3AtPKmeoQ1MfPJYdfvbmqVR2h6tLUWV5qfufI/fm7b3UpZEIvpIZdmJgy4+5FRPuvftvsjtafQJTMEN5Ve7ZpFUPl8Z86nxoiyGNE1vpEZ9wU3s9CbTssYSpqL2FZCMMl8wvQ3JLmMLzs+0IZy1Xi5iUJn/ixu642YtiuVlPoOziGRtrmONNRn7s8EMJwiKa88MHM/qx8OTZIAfZQcYhGPbJEQBRuC5yUH7Vc1eARzhvSg5gLzFR+brIAUxjnq3mxmmxr9oeAhiVmTY1nM+r+5NNPyMn9I3N5KA8zp57U44IY21bIPpV5SDs9E/0f8Fkx42ojM3kAADl03N+H8qMfU05vKv84ZXxhjZAffxa99gzI78wjjSTg/IIc5apPo/5gmXv9UNcvmvKIODgGL7YwPfM9JDBLMPH//GrWp8QP8I5yTFJd8l5VTmMuNmYlvZF6PomE5WvWVsYMzt7/UP8COdNySEQLfzUh1QW4fGS/ZEehH5kCvNiuqu4GQlkYZiamZ/ChV2fdJxpg0ndaVqDW2m8n32QeJZiSqLFzqHTjz3IW1c6AMZBVu93wLSafngIznC/Ze+AaVeeavEoPHWJCerweffofpB9UrlTLhTmyfOkMtIxMGhO53DpPgyadAKb7a6UJ4Uj3VmblxuT83t8Mv/dtS6RdAUmeKJ9ByUCbuLj/pfs73EvGT1/8nVpLDtvknmRFuoNMsNstjcC3RFP8BG4oejB7MqT+DxUmzsTD8dThE0AgadN+x7qksrI+PZrTIb82OXE7qbcPCoOOtzfMk9JYRjjT/phla/bvDLBgzOLKRMueJ2MceEBctJ19vwypCO7FlMUdfu2pj5Fqa1h4suUSUFPHOWBsh8uprFGfrPP9eWmLnwvmzNaP5WN8iP0u7wQS18E4YcCZwqj+xOjMF3koHzOnrsCGpwn4Lc9ri4H4f5AMJEVbQFFWnZ+Rfl0NWsPSps5Xpe5sfJJzRHkwEszZIFiE3y0i5Ndgq3loDwvmnsDHIzYZ5irykG4X+tidzB9Gzx8rIuvmZjXzYz8mraHMbNu8/tZ4dbHrNbjA1zz/0bwPxtjEoyDs5McwhiVQsB/04BxM9BpgKu2hRHOF8JOn8/YQBk+Gf1nVicZhDzPWp8Q+YblgM6GTaC8fEQOzJ2690nK8+L1j7A/KJ1bbQ/Apy0EfQvus81ZCv7K3DjSgcndAFjEc88kvajjqsyrJPhJpR0j0dnnMH0srCeLzJKMbjzM4XiSHGj84fNSJqoYOmN24VzLHIonccQEEgVRXJdpc+D8+5VIOhRHcCCO6I+mTlRu6haTvW90v4RXj5uapXzfUa6xPAOIHn0TisU4byZj1+y/KfsReeLFEJOkQcmkOkT/dPLJnPx6mSNyFMoe+u7gvqZ9KJ5Ub6gzfFnELpkYG/0Tc6lrmRhLjOEdOeL+ITw7q29Smelffi+btvSRrqUyd5tXFmKq5acXTyGf5nYhTw8KxxxlwqN76jZyZxfZNCbL/eMUKLpRGBRiw1cA8qbuoSRIlfsP8uPZiQIzSiq+bVpfhaXb3FV5FbUhheslhzDXKpFFMzmM5f1VQo/7q2Zz4wPKoeg407FRtJRDqA9DVuKp6dz7gHJgTl1qmslhBNBtfn9AOTBm0yddtV8a5dBl/XBAGdTo1lq3hVEUw0vQcN/EPqAcGBPRpZWYZnIQL13XP0eTA+QLE3PZk/lsgWBO1iAvCiJdFERgeVPKmyE6sF908Wbli4sSvSCycBTv/lJYFq9gbm6UF5McGhgTTs7oG/iSXTL47I5P+R6RJ3agIBPsyQhracc0xdnr5qA8oRxhp1Soux/LXXyc0V7chHQOylGA9yB8KPbZzYChr+KIgJqJx2PMC3+V5xHbHC/PQl16jyIKJ/XrauaIPAkTf6LIzrh4nKtZUO/K5xE5igrIZDKrvIvCdLk9KE+0r7CbBh5od3y1djKB42EP05En2g/9IOP8g+xsPyz/nvPKTUzCU9x3B3kpziXzy01MI38955VFmEL5IxuMGJSvpYbxGiU/u53OWQxN+fSQgzLrOXe1HBb6Dcmh59zYcliWw9D+1PZ6zL0th2U59JzfWw4LclA76LV+sAwWZDBNCB5fALden1gOy3Louf65STlEdXX1trmCn9zVeV1zh3WOgNLdX18KexcFu/JB6WGectIa/cTRb1YeX/PRoeqTeJrtkLkmMVHeh+IowvUgvtjFUrOrJo6+9/2heBI3KBWP1i/B+aF4ApC46jJWkFehORxH4BZP53w+WVjks4IdiifxU7Ob5qwCnxmpB09MuFF8Y6++SBRPvfqlUkyl/AT6L5lfFmEa69LReArlDzb1HRMU/Y+u9V++5OTlD7vVf9B1ycvUHnLoOXctqhviLDX3IIeec2PLIa1hiVv9U4+5t+WQ8B6c4r/n/N5yCMRnbMmix/rBMshwH3tJDj3WJ5ZDTHp0LxuFmWYAAAPPSURBVP57rn9uVQ4RY8u3z968eTN7KnI5G3P4Z/XZgyfmUDkRLIZdzjToq+6QA8gRjXkqk4p52ubJHG1zRAjzZJ7KGNgO5bq0zREhzJN5KmNgPZTr0To/4al4YuHBUW/DSxzZ4Qx+zp0eFM2yUeKzw3cKR/wxLPbnuvjilTP5WbOEr/AIxnNeGPACgPS4v/bRcoJwLCOOLIcDiMRyOIAQBMFyuA85SM4eGzZE7bawQVCnx5ZDJ6I3sjmyHIQtq7e/WwX/hiz92AyYATNgBsyAGTADZsAMmIGdGNBihONq+B8Odo/ynzfDzkXZbLpBYR+O6kExj4IfQxiO5OFrBJQzbMgJf5QY/rCX8PgPxzrJJp9PZJPPA25dl+z0J5knY+BDhbEcrixRy+HKAhiztxzuRw6jrD02LIjcbWGBmM7elkNnwheyO7ochM8K/gXZ2dsMmAEzYAbMgBkwA2bADJiBG2dACx6Oefqv7OlonHER9H+yB4X/jRfxJuBbDscQk+VgORyDgeujcFu4vgxAYDlYDsdg4BgoLmkPiptV8D8/RtGMwgyYATNgBsyAGTADZsAMmAEzcBED/Plu+BIgJISb3f82/RiwHPpxvZaT5bDGTr9nlkM/rpdysgyWmOnrbzn05XspN8thiZm+/rvLIafgZxLM7hcbM2AGzIAZMANmwAyYATNgBszArTDAOoYFU2xwe/d+zEj7e8uhPcclOVgOJSy1D2M5tOd4KwfLYIuhPs8thz48b+ViOWwx1Of57nLIKfiZAKcT4z7Fcy5mwAyYATNgBsyAGTADZsAMmIEzGNAny6xjhj/rjaL/R/6pX/TYt3szYDnszeh56VkO5/G2dyzLYW9G69OzDOo5axHDcmjBan2alkM9Zy1inCsHxWNDPhcvCGbmxcz16PinrFeK9FtdngxnCLKXGTADZsAMmAEzYAbMgBkwA4dk4HOtYV4JGesYNi19fkiUTx+U5XAMGVsOlsMxGLg+CreF68sABJaD5XAMBo6B4pz28PUI/U9pEZ69efNm5je+Dfhp9PxQbnbC2JgBM2AGzIAZMANmwAyYATNgBsyAGTADZsAMmAEzYAbMgBkwAx0ZGDewoNjnxcD3adYnCn4CKCDb/b/T9ZGur+T+q2wbM2AGzIAZMANmwAyYATNgBsyAGTADZsAMmAEzYAbMgBkwA2agMQPSyX+gLNDRY1Du//x4O//NKvhDEEX6TPe/1/XNUgIhrG0zYAbMgBkwA2bADJgBM2AGzIAZMANmwAyYATNgBsyAGTADZuByBkYF/7uyOVJ/0fw/0Z+X3H99hH4AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABa8AAAAfCAYAAADgDzFCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABJ0AAASdAHeZh94AAAbuUlEQVR4nO2de9hlY93HP4PKW8rowKAiVw4pOXRC0vBSUa9DKZ3wSBKa0kGS9JtvCr1NvHMV9aK3GXRFiEyN8iqJRHiNw0RHIiYkyqQwY94/futhz5691t5r73Wvde+97891PdfzPOv0+z7fZ+21fute9/27pyxbtoxEIpFIJBKJRCKRSCQSiUQikUgkYmKlpgUkEolEIpFIJBKJRCKRSCQSiUQi0c4qRSslbQ68xcy+UJOeRCKRSCQSiUQikXgCSYcAhwNrAwuBw8zs8mZVDT/J1zAkX8OQfA1D8jUMydcwJF/D0ISvkqaYWc+lQKbklQ2R9B7gPcD7zOzPFemLjnTyl0PS9sAngFcA6wD7m9mcRkVFjqQjgbcCGwOPAFcBR5rZzY0KixhJhwIHAetnixYCnzezHzQmaojIzrljgZPM7ENN64kVSTMBa1t8j5lNa0DO0CBpbeB4YFfgmcAfgIPN7LJGhUWKpNuB9Tqsmm9mb65ZzlAgaWVgJvBePD9bBHwLmGlmSxqUVjspTwVJewNnAocAV2Tf9wc2NbM7mtQ2zCRfw5B8DUPyNQzJ1zAkX8OQfA1DU75KeglwIt5mMa/b9h3LhkiaBnwJeO+IN1zvDczGG3m2BK4ELpL0wkaFxc1qwM3AR4B/NqxlWJgOnAxsC+wILAEukfTsJkVFzp+AI4CtgFcCPwEukPTyRlUNAZK2Bj4A3Ni0liHh13ij0OTXZs3KiRtJU4GfA1OANwMvAWYA9zYoK3ZexfLn2FbAMuA7TYqKnCOAQ4EPA5vgOcehwJFNiqqblKc+wceAOWZ2qpndYmYz8BcaBzesa9hJvoYh+RqG5GsYkq9hSL6GIfkahkZ8NbNbgD2BD0navdv2eWVD9gMuNrO/VikuQp74J2W/z5D0JvyfNFYPSL1iZvOB+QCS5jSrZjgwsze2/i5pH+BvwGuBrm+YxhEz+17boqMkHQxsQ2qUzUXS6njvxPexYo/iRGeWjPJL2gB8ElhkZvu2LLutKTHDgJnd1/q7pAOAv5Mar4vYFpjX0gvjdkkXAq9pUFMTjH2eKump+Gi/WW2rLsbPk0QfJF/DkHwNQ/I1DMnXMCRfw5B8DUPTvprZP7NRhpdImmdmj+dtm9d4/Vrg+n4FSHoBcAdwvpm9td/jVEm7pqb/Sd301R2/EzFqaiVGfT1qeiY+6uGB2oRlDKNn2fDxt+O9/q+sWd6weXYKcK6ZXSqpscbrIfNsA0l34yV9rgY+bWZ/iEhfY+Ro2gP4oaSzgR2Au4HT8OFePdcsC6ivUXq4nk0BDgDONLNGRi/F5luOniuAQyRtYma3StoUH7l0XGAtzwI+D+yGl0Z7Cl7m6/iQcQtiL6XmPDVCD44CVgbuadv8HmCn0JqqIvkahuRrGJKvYUi+hiH5GobkaxiSrytiZr+X9Ex8tOrVedvlNV6vD/zfAPFfkX0f5BhV067pucR18g+DZ7ERo75eNM0GFgC/CK5mRYbGM0mb4R6tCiwG9jSzm2rWBkPimaQDgRfjNWKbZig8w2+OE8CtwJrAZ4ArJb3UzO6vV97QeLYBXgftRLzu9RbAV7J1X61NmTMsnrWyM/Ai4NSc9XUQm2+d9HwRf9H7K0lL8Xz1C2Z2cmAt3wLego8wOxMv83Vh4Jh5sdcEDqT+PDUmD5YAP60pdmiSr2FIvoYh+RqG5GsYkq9hSL6GIfnamcXA5vTReL3agIG3yr5fN+BxqiRGTa3EqC9GTa3EqK9Qk6QTgO2A7cxsaW2qnmSYPPs13jC2OrAXMFfS9AYmuozeM0kb4zVRtzOzxxpT9STRewZgZhe1biDpKnzywf2AE+qTBgyJZ/iokWvNbLJkwfWSNsTrEdfdeD0snrVyIHCNmd1Qk55OxOZbJz17A/sC78YnKdwCmC3pNjP7RggRkjbBE/of1T2RZqfYktbBz5dGdTQdOxspuRRYq22XtYChKPmUfA1D8jUMydcwJF/DkHwNQ/I1DMnXrjyvaGXHCRsLlvdKbL16YEVNfyGefxIMh2exEaO+XE2STgTeBezYRFmCjKHxzMweNbPfmdl1WUPZAuCjdYtjODzbBh9NslDSEklLgNfjw+6XSHpaw/pioKsmM1uMN5RtWIui5RkWzxYBv2rb7hagiQnkhsUzACStCexOs72uIT7fOun5EjDLzM4ys5vM7Az8hVLIOs87Zt/PCxijTOwm8tTYPMDMHsVfbOzctv3ONFBKrE+Sr2FIvoYh+RqG5GsYkq9hSL6GIflazKpFK/N6XndF0ip4T6sDgI3wYYwnA/+J96K528zahzoGpYwmM3tU0uQ/6ZyWw+xMoJNp2D1rghj19aNJ0my8J9kOZnZrbPpCU5GmlYAgjbAj4NkFwLVth/gm8Fu8R/ajDeurhUE1SVoV2AS4NEZ9kWj6ObBx22E2Av4Yib7gDKBpAq+t/u2INcai5+l4w20rSxm8c0UnbW8Dzm1ZdIqkU7KfNzWfCT0I3WLz5MNE0Dw1Zg+y2CcAZ0j6JX4N+iBeq/HroXRVQfI1DMnXMCRfw5B8DUPyNQzJ1zAkX3tmStHKosbrf+WtyLqWfx9PoBfg9S6fA8zEa65OA+bl7N4zkubgw7f3N7M5XbbtR1Nt/6RR8UzSatk68IfIF0raAvirmd0xqP5B9fUZZw5hPTsJ2Aef6OwBSdOyVYuznp6VMUKeHQ/8ALgTr3v6bmA6UPnwmlHwzMweBB5sO8Y/8M9l5WVWRsGzbJ9Z2bI78PqyRwPPAOYOqr0KfX3GmUPY++aJeF3wo4CzgS2BDwOfHlR7Rfr6jTWHHnzrV5N8osb3A2dVfd2vSmMfceYQzrN5wKck3YaPhtgS+Bhw+qC6O7AIEF7LfQ3gC9nyZcBv+jlgic9ht9h15amVewA9+9A1tpmdLek5+LwEawM3A7uaWZCXZhWSfA1D8jUMydcwJF/DkHwNQ/I1DDHnmrH4uqzbBnmN1/8G3F2w30n4Q8hngc+b2TJ4wsDLsm3qHo5aWlPN/6SR8Ax4Jcv3SlT2NRfvVda0vtD0o+mQ7PuP25YLf3hvWl9o+tE0DZ9EYBrwN+BGYBcz+1Ek+kITo6ZWYtTXj6bn471gnwvcB1wFbJ3uAYX3zWsk7YH36D8ab/g/Gu9F27i+GuhX03S8HE0dE6rG5ls/emYAx+Dn1Zp44n0q8LmqxZnZlZKuBj4J3GJmM6uOMUDsWvLUyD2Y3O5kwlxngpF8DUPyNQzJ1zAkX8OQfA1D8jUMydeeeLDbBis0XktaA3+Q7zhsWtKr8d5D3zezY1rXmdnPJN0CvIRqJgI6Ejgef2jJZRBNdfyTRskzM/spXbrzV8GIeRbcr0H09UlozyYq0NiVUfKsHTObPpDawPp6JPR59s4KNHZllDzL1v8AHxkRjJo9gx58G9CzSxnDe+cAn82HgMOyrzrYFO+4UVWjfk+fw15i1/gwUbUH0LsPIWJ3RdJbgC/jIwm/aGanBQgzjr6ej7+w+7GZ7RUozFj5KukFwBn4y7wlwDFmdk7xXn0xbr5OBS7B20RWAWabWYh5KcbK10kkPR2fF+UcM/tEgBBj56uk24G/A48DD5jZDgHCjKOvLwL+B59XZCnemekfFYeJNtcMgaSN8VG6k2wMvMvMLsjZ5Xf4PS6XTj2v9wHONLM7c/aZkX3/Qs76+7Pvyxkj6RDgcLznyELgMDO7vEicmS2it39GX5pqpLQ+SdsDn8AnMlqHHoaAw9h7diTwVvyD8Qjei/JI61I2Ycw9OxQ4CFg/W7QQ7xlX2DA1zp61kp1zxwInmdmHigKNs2eSZgLWtt09ZjaNAsbZMwBJa+NJya54+Zw/AAeb2WXkMM6eZQn9eh22nW9dZvTu0bfYPYOSGiWtjI8Aei+eny0CvgXMNLMlRYFGyDPwutvQeaLNkPlrYeya6aij33wUSvlQuwfyOuwnADvgI7yuk3S+md1fvGdp8nztK2eFuH3NmI03AuwXMEaer33ltRC9r0vwa88CefnB6yTND9C40vVvK5P7QvS+PgRsb2YPS3oGcLOk79Z4HZhJH/kxRO/rJEfh17ZQFN27S+fQMDS+bmthS9Dlna+3EzbPzo1dA3OAz5jZ5ZKejd+XqybP175y8dhzTTP7NbAFPFF6+Hbgfwt2+TY+0jCXJya+kbSSpLcCWwMHF+zzBvxh4+qc9RsA95rZXS3H3htPZI7F6xZeCVwk6YVF4kpQWlPN9KNvNXx46EeAf0aiqU760Tcd7520LT6b6hLgkuwC1JSmOulH35+AI/AL2iuBnwAXSHp5g5rqpG99krYGPoCXNIlCU030q+/X+A158muzCDTVRT/3zal4jdspeK33l+ANgfc2palm+tH3KpY/x7bC66d9p0FNdVNW4xH4RIofxicr/Uj2+5EN6WmKyaT++taFNeSvubEbIE9H6Hy0KHZIXg0sNLO7skaAi/DztWry/rbphM1Zi2IHJRul+VDgMHl/W+i8tih2MMxskZktyH7+M/AXoMpzZZLCvy1g7ts1dgjMbKmZPZz9+jQ85woxSqrobwuZH3eLHQxJG+J5xUUBw+Tdu6cSNofOjT0i5P1tofPsotjBkPRS4LHJjglm9tduHTj6JO9vC52LF8Wui93w0VhFL1zPB+6Q9Pa8DVp7Xq8B7A/8V8tFfDkkrYp35b7espqFbeu3wntltF+kPgbMaRmGM0PSm/BG8oH+KQNoqoV+9ZnZfGB+ts2cGDTVxQCevbFtu33w3jSvZcDJqUbYs++1bXqUpIOBbRgwMR1Vz7J1q+NvRN/Hij0mGtFUBwPqW5I9cMWkKTgD6PsksMjM9m1ZdlvDmmphgOvZfW3bHYAPrRw4qY7ds0xDPxq3BeaZ2eQ98nZJFwKvaUhPU0w+gC1oWx4sf+0hdt101BEyH+0Wu6WX11wrKCemJyct+qOZrd9jzHWA1pcmdwHr9rhvGfJ8DZazdosd2Ne6yPM1WF7bLXZdvkp6BbCy5Y+SHoTc61Go3Ldb7NC+Zg2dl+HzUhxuZn8ppbo3iq7zQfLjbrFrOF9n4aOWti0jtiR5vgbLobvFrsHXZcBlkh7H2+2+VUZ0j+RdX4Pl2d1iB/Z1Q2CxpHl4HnCumR1bUncv5J2vwXLxbrFrzAfeQZdJ181smaR3AMdL2sjMVhi1uUrLxvdL2h04T9JqHW7+4PVflpJfi+So7HvrMN6n4kMNZ7VtezHVXMxKa2rRVnooaJ36AjIunj0TH13wQJOahsWzbMjK2/FeVlc2qWkIPDsFv7FdKqnKBH6UPdtA0t34MKyrgU+b2R+a1BS5Z3sAP5R0Nj6s/W7gNHyYbtfZmANpit2zJ5A0BTgAL4NWRW/R2D3rV+MVwCGSNjGzWyVtivcCPa4hPUCtnk2eK5sDvzWvtT25PHT+mhu7ZX0tPnTTEZIusa8H/gz8vk5NVVHS1ypz1uQrQfLaxn3NeuafDhwY4NjdfA2V+zbqq5k9CGwuaS3gu5LONbN7qjp+D76Gyo8b8zVrU/qNmf1GUpDG6y5/2x6Ey6Gbvg5sZ2Z3ycuiXCLpJjOrbCREietr1Xl2k76uArwOL3FxL37uXGNmRSUuStHlbwuZizd9viLpWXje3MtcU1vhLxC+0mnlSq2/mNnj+Gzwp0l6SvvGZvYY8FtgXUn/0SbqCLx2Gyw/8c5zgZWB9pvAPUBhPSdJa0vaJHvT25E+NZUaCippjqRlkiaK9Fapr19i8Szbvi/fKvRsNv526RdFG427Z5I2k7QYT5q+DuxpZjcVxRtnzyQdCLyYLjWZOugcW8/wZHwCeBP+wDUNuFLSc4rijblnGwCH4DX63phpPR4fRpbLmHvWys7Ai4CeJl7q5lvsng2g8Yv4JGC/kvQY3kA613ySwEJGwbOMjfCGw/ahlEHz1y6x6/YhV8cg9OhDbmwz29PMtra2yT4r4m6W72m9brZsOWr0taecNdMUs69dCfiZnTx+6bw22y9qXyU9DbgAON7MVmiMD+lrv7lvtm/UvrbEuQe4AW/EeoLA52tf+XGmK2ZftwbeKe/VOQs4UNJnWzcI7GtfOXSmK2ZfsazMmnm94/k8WQ4CCH99baHSPLtb7MC+3gVca2Z3mtkjuK9btG4Q2Ne+cvEqcs2arq+7Axeb2b+KNpK/QPw28BEz6zhSotOEjQuBZwA70Xko53HAXLyH9ll4S/10vD7TncALqK4X8XF49/T98SLqRduV1VRmKOhkI3+/tW/G0TMYzLeBPJN0ArAd/nZyaQ+xxtmzyWL6qwN7AXMlTbfiSYPG0jP5rLnH4ufVY33EGjvPAMxsuXuJpKvwhHI/fMKsolhj6VkW71ozm9Ryvbx+4KHAV7vEGlfPWjkQuMbMbigRr5tvsXvWj8a9gX2Bd+P53xbAbEm3mdk3eog1Cp5NPvhVOQKu189hUew6fQjhAfTmQ25sdRjOmj2kfQ2vn7gYOIm2GrWSdgMmR5DubGaXSHo9cGm27Tvw2oovk7QuXq5jF6DTw1twX0vmrBCxr2Z2Tg/6Q39m+8lrIWJfgXMzTT8xszNytAXxdcDcF+L29WfAw2b2UHbM7bPjthLsfB0gP4aIfc1y1yOz7SeAl5nZ59okhLwO9JtDQ8S+4o2qK2Xn62p479z2kh115UQh8uwm84E1Ja2B5wPbA//dJiGkr/3m4gPnmjXlA+/AR+5040DgRisoo7RS+4Ks9/W9+NvVFTCz04HD8Akx3oUbdideo20ZcL+Z/bFll7/gw0bXajvUWvhDzMCU1aQnh4Je3HaovKGgm+ETj3SdqboKfXVQg2cwgG+DeCbpxGyfHa2iYVf9aBoWz8zsUTP7nZldl93kFwAfLRu/Ck1D4Nk2eG+8hZKWSFoCvB4f6rMk6xUzECPoWadjLMZvzhuWjV+FpiHxbBHwq7ZltwCVTBQ3op5Nal0Tf8vfU2+QUJrq9qwfjcCXgFlmdpaZ3ZQ1ipxARfWch8Ez8pP64PlrXuwGfAjVeB0i9qn4ufQMvNbmx4G3tW5gZhfy5IPnqZKmAd/EH6jmmNk55pMxfRx/0FoAfNnM7u8QL6ivoXLWXmK3UYmvAJIuAc4BdpX0J0nbtMUK9Zmd1Bksr+0WuwNV+fpavIFjD0kLsq/N2mKF8jV47lsQO4+qfF0PuFzSDcDlwFdsxV76Qc/XNs2V5sdlYmdUdh3ogZC+Bs2hu8TuRFW+rgVckZ2vVwGnm9k1bbGCn6+h8uxeYrdRZT7wafxl1o14eY3vt8UK6WvQXLxL7E5UmQ+sjk+Q/aMe4v47PmIzl049ryd5dt4KM5uND79oZ70O2z4q6Tp8aEHrxWxn4LwicVnr/0TRNv1oongo6E6tC+STOLwcT2of6EVLBfr6JgbPoBrf+vFM0mw8udvBzG7tMc4EY+xZB1bCZ9wuijPBeHp2AXBt27Jv4hfaY4FHC+JMMJ6erYB8IrdN8EaDojgTjK9nPwc2blu2EdDtxcAE4+vZJBP4cPFvl4g1QQ++xe5ZHxqfjjfQtrKUDp0bOsSZYAQ8M7PD8brS7cuD5695sanZhwIdA9GLD2ViS9oAr2EMPlHVR7OH6Fvwh6xWPob38t8Yb7xcC6/pOKMl9oXAhQXxphLQ135y1uy4E8Tt6wrnaEusqQT6zBbQNa/NjjtBpL6a2RUUXJcD+3oBfea+2XEniNfXX9JWHqAt1lRqPF97zY+z404Qqa9tGuZ0iDWVsL72lUNnx50gUl+zF5ybF8SaSj3n6wQB8uyG71sXkTOBeA2+9pWLV5BrrkAAX//Gip1A8lgH/+zmUtR4PaVgXVlOAM6Q9MtM0AdxcV+vMEYoXgc8RvehO5WSDQWZ7P2+EvBCSVsAfzWzO+rU0ie1+ybpJGAffJKGB7I3QACLszfZsdOEZ8fjbxDvxGshvRu/CL25Lg0DUqtn5pO6PNi6TNI/8M9lt+GosdDEeTYLmAfcgU/edjR+A5xbl4YBaeI+cCJe9/Ao4Gy85u2H8Z4Bw0BT984pwPuBs4bkut9KE57NAz4l6Ta8t9eWeDJ6eo0aBiG0Z8OSvwbzIbJ89GUtP38HwMzulfRTnqyhTrb8YUnvwWvKrgU8Dryn5HUhpK8x5ax1+hr0MxtZXjsSvkaY+46ErxBdfjwyvhJXDj1KvsaUZ4+SrzHl4nXnWa10fcmc13i9rM+AHTGzs+UTD3wGnzH9ZmBXq7lURgs9DwU1s3nAqjXpauWVLP/WVdnXXHrsVVcxpYbPNuTbIdn3H7ctFzCzXinAcHg2DTgz+/43fKjMLmbWy9COEAyDZ7ExDJ49H387/1zgPnyo29bDcA+AZjwzs2sk7YH3ajoaf7A5Gug6kV4govcsYzo+3Pa9DcRuZxg8m4HX+T0Zf3BehA8XbK9NWRdRedZg/hqTD7Hlo2V4Pt6DHbzh/UX4QxYAkt4CfDlb90UzO61158C+xpazlqFvX2u4zsWW15YhZl+HmZh9jS0/LkO0vkaYQ5chWl8zphNPnl2GmH2NLRcvw0B5VlnyGq8fGeSgnTCfLTOKC8YgQ0Hrwsx+SrW93wdiSDyLxi8YGs8mmtbQyjB41o6ZTW84fvSemdk7m9bQyjB4BmBmP6D/2mqVMkSeTU4U0jjD4JmZPYTXpD6sWSVOjJ41kb/G5ENk+ejClp/fDvxC0vPwh+nlyHoyTz4kXY/3ZPqapJ+b2Z2SVsF7Ue2AN3JeJ+l861z3unIiy1lHydeJOuL0yMj42k7Due/I+BpZfjwyvkJUOfSo+RpLnj0yvkaWizfta+Gk1XmN1/cV7TQiDMtQ0JhInpUneVae5Fl5kmflSZ6VJ3lWnuRZeZJnTvKhDTP7vaTz8ImDPirpzXhv9OV6RGXDmufgvRmvwYf8Xga8BpgraSd8AqGFZnZXts9FwBsoUcNzVEi+hiH5GobkaxiSr2FIvoYh+RqGCHwtLDmSVwT8BlYsyD1SmNnZ+NuNz+AFxrej2VIm0ZM8K0/yrDzJs/Ikz8qTPCtP8qw8ybPyJM+c5EMu7wfOAh7GJ5f/GlldxhZmAG/ER5LuZ2aPAPtm++wAfBx/EXBXyz53AesGVR43ydcwJF/DkHwNQ/I1DMnXMCRfw9CUr1OA24uETVm2bMXy1pK2Bz5vZtsX7ZxIJBKJRCKRSCQSw4SkvYDpZvah7PfDgWVmNqtZZcNN8jUMydcwJF/DkHwNQ/I1DMnXMJTxVdJTgYeA9c1sUd4xO/a8NrOfAX+WdFAlyhOJRCKRSCQSiUQiDu5m+R5A62bLEoORfA1D8jUMydcwJF/DkHwNQ/I1DGV83ReYX9RwDfk1r8FnED1G0ulmtm8pmYlEIpFIJBKJRCIRJ78EXiZpXXwioV2AY5qVNBIkX8OQfA1D8jUMydcwJF/DkHwNQ1dfs9rZrwcOAnbrdsC8mteY2aNmdgSw3yCKE4lEIpFIJBKJRCIWzGwJXpPxUrym+JfN7P5GRY0AydcwJF/DkHwNQ/I1DMnXMCRfw9CjrxsDWwI7det1DfD/R5g5d6SU0UIAAAAASUVORK5CYII=",
       "text/latex": [
        "$\\displaystyle \\left\\{ d_{0} : {d}_{0}^{0}, \\  d_{1} : {d}_{0}^{1}, \\  d_{2} : {d}_{0}^{2}, \\  d_{3} : {d}_{0}^{3}, \\  d_{4} : {d}_{0}^{4}, \\  d_{5} : {d}_{0}^{5}, \\  d_{6} : {d}_{0}^{6}, \\  d_{7} : {d}_{0}^{7}, \\  d_{8} : {d}_{0}^{8}, \\  f_{0} : {f}_{0}^{0}, \\  f_{1} : {f}_{\\mathbf{idx}_{0}^{0}}^{0}, \\  f_{2} : {f}_{\\mathbf{idx}_{0}^{1}}^{0}, \\  f_{3} : {f}_{\\mathbf{idx}_{0}^{2}}^{0}, \\  f_{4} : {f}_{\\mathbf{idx}_{0}^{3}}^{0}, \\  f_{5} : {f}_{\\mathbf{idx}_{0}^{4}}^{0}, \\  f_{6} : {f}_{\\mathbf{idx}_{0}^{5}}^{0}, \\  f_{7} : {f}_{\\mathbf{idx}_{0}^{6}}^{0}, \\  f_{8} : {f}_{\\mathbf{idx}_{0}^{7}}^{0}\\right\\}$"
       ],
       "text/plain": [
-       "{d₀: d_C__0, d₁: d_C__1, d₂: d_C__2, d₃: d_C__3, d₄: d_C__4, d₅: d_C__5, d₆: d_C__6, d₇: d_C__7, d₈: d_C__8, f₀: f_C__0, f₁: f_26b74c363b15, f₂: f_e111196926c6, f₃: f_e3f72afe7d66, f₄: f_0b929cb3f1da, f₅: f_3f75acc2de6d, \n",
-       "f₆: f_3e20adce708c, f₇: f_3a33f411da6b, f₈: f_68da5b60e7d8}"
+       "{d₀: d_C__0, d₁: d_C__1, d₂: d_C__2, d₃: d_C__3, d₄: d_C__4, d₅: d_C__5, d₆: d_C__6, d₇: d_C__7, d₈: d_C__8, f₀: f_C__0, f₁: f_9d0b5fd58d5c, f₂: f_c7175adc2ede, f₃: f_f2d66aa0a9c\n",
+       "3, f₄: f_de2a090a38e9, f₅: f_4eafba53d499, f₆: f_92d378c6bf21, f₇: f_bc4af68ef6a9, f₈: f_13012fb559c4}"
       ]
      },
      "execution_count": 8,
@@ -255,15 +235,7 @@
    "cell_type": "code",
    "execution_count": 9,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "collision_rule = method.get_collision_rule()\n",
     "update_rule = collision_rule.new_with_substitutions(symbol_subs)\n",
@@ -320,17 +292,17 @@
     "    global pdf_arr, pdf_arr_tmp, index_arr\n",
     "    handle_ubb()\n",
     "    if target == ps.Target.GPU:\n",
-    "        gpu_pdf_arr = gpuarray.to_gpu(pdf_arr)\n",
-    "        gpu_pdf_arr_tmp = gpuarray.to_gpu(pdf_arr_tmp)\n",
-    "        gpu_index_arr = gpuarray.to_gpu(index_arr)\n",
+    "        gpu_pdf_arr = cupy.asarray(pdf_arr)\n",
+    "        gpu_pdf_arr_tmp = cupy.asarray(pdf_arr_tmp)\n",
+    "        gpu_index_arr = cupy.asarray(index_arr)\n",
     "        \n",
     "        kernel_stream_collide(f=gpu_pdf_arr[:mapping.num_fluid_cells], \n",
     "                          d=gpu_pdf_arr_tmp[:mapping.num_fluid_cells], \n",
     "                          idx=gpu_index_arr)\n",
     "    \n",
-    "        pdf_arr = gpu_pdf_arr.get()\n",
-    "        pdf_arr_tmp = gpu_pdf_arr_tmp.get()\n",
-    "        index_arr = gpu_index_arr.get()\n",
+    "        pdf_arr[:] = gpu_pdf_arr.get()\n",
+    "        pdf_arr_tmp[:] = gpu_pdf_arr_tmp.get()\n",
+    "        index_arr[:] = gpu_index_arr.get()\n",
     "    else:\n",
     "        kernel_stream_collide(f=pdf_arr[:mapping.num_fluid_cells], \n",
     "                              d=pdf_arr_tmp[:mapping.num_fluid_cells], \n",
@@ -359,14 +331,12 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAFlCAYAAADmqMVrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADsi0lEQVR4nOzdd3hUVdc28Ptk0nvvAUIIIQUISYCEUEJNHRVBQaUJgoooIohUaVIEpEgR6dJ7L6H3akJvoYQAIUAIJKSQOrO+P5TzMc6ZFlR4fNfvunK9j3vmZp0sjO/sOXtWBCICY4wxxhhjjDH2uhm97gtgjDHGGGOMMcYA3qAyxhhjjDHGGHtD8AaVMcYYY4wxxtgbgTeojDHGGGOMMcbeCLxBZYwxxhhjjDH2RuANKmOMMcYYY4yxN4Lx674AKc7OzlStWrXXfRmMMcYYY4wxxv5mqampOUTkIvXYG7lBrVatGlJSUl73ZTDGGGOMMcYY+5sJgnBH02N8xJcxxhhjjDHG2BuBN6iMMcYYY4wxxt4IvEFljDHGGGOMMfZG4A0qY4wxxhhjjLE3Am9QGWOMMcYYY4y9EXiDyhhjjDHGGGPsjcAbVMYYY4wxxhhjbwTeoDLGGGOMMcYYeyPwBpUxxhhjjDHG2BuBN6iMMWag8vJyENEr5StLqVS+Uv5Vsq+af519I6L/2b5VVFRAqVS+ltpEhLKystdS+1Xzr7Nvr5p/nT8rjDH2uvEGlTHGDFRSUoKwsDD07t0bO3fuRElJiUH51atXIzo6GhMmTMDly5cNeiEqCALatWuHDz/8ECtWrEBubq5Bta9fv47atWtj0KBBOHbsGBQKhUH5kSNHIj4+HrNnz8bdu3cNypaXl6N+/fr47LPPsG3bNhQXFxuU37RpE6KiojBu3DhcvHjR4L598MEH6NixI5YtW4YnT54YVDsjIwO1a9fGwIEDceTIEVRUVBiUHzduHGJjYzFz5kzcuXPHoGxFRQUiIyPRq1cvbNmyBc+fPzcov3PnTjRs2BA//PADzp8/b3DfunXrhvfeew9LlixBTk6OQbWzsrJQu3ZtDBgwAAcPHjS4bz/99BNat26Nn3/+Gbdv3zYoS0Ro3LgxevTogU2bNqGoqMig/P79+1G/fn2MHj0aZ86cMXjD2LNnT7Rr1w6LFy9Gdna2Qdns7GzUqVMH/fr1w/79+w3ecM6YMQMtW7bEtGnTcPPmTYOyjDH22hHRG/cVHh5OjDH2prp79y41b96cABAAsrS0pLfffpvmz59PDx480JnfuXMnmZubi3lfX1/68ssvaffu3VRaWqo1W1JSQt27dxezMpmMmjVrRpMnT6a0tDSdtc+dO0f+/v5i3snJiTp37kxr1qyhZ8+e6cxPnz5dzAKgunXr0rBhw+jkyZOkUCi0Zu/fv0+tW7cWsxYWFiSXy2nu3LmUlZWls/aePXvI0tJSzFetWpW++OILSk5OppKSEq3Z8vJy6tWrl5g1MjKiJk2a0MSJE+nKlSukVCq15i9evEiBgYFi3tHRkT766CNatWoV5eXl6bz2OXPmqPStdu3aNHjwYDp+/DhVVFRozT58+JASEhLErLm5OSUmJtKcOXMoMzNTZ+0DBw6Qra2tmPfx8aHPP/+cduzYQcXFxVqzCoWCvvjiC5W+RUdH04QJE+jSpUs6+3b58mWqU6eOmLe3t6cPPviAVqxYQU+fPtV57YsWLVLpW1BQEH333Xd09OhRnX17/PgxvfXWW2LWzMyM4uPjafbs2XT37l2dtY8cOUKOjo5i3svLiz799FPatm0bPX/+XGe+X79+YlYQBIqMjKSxY8fShQsXdPYtLS2NwsLCxLydnR116NCBli5dSjk5OTprL1++nARBEPO1atWib7/9lg4fPkzl5eU684wx9k8DkEIa9oKvfTMq9cUbVMbYm2znzp0qL5pf/rKwsKCRI0dqfQHbrl07jfnAwEDau3evxuzTp081ZgVBoK5du9LDhw815n/88UeNeRcXF5o/f77WjWaNGjU05mNiYujixYsaswcOHNCYNTMzo6FDh1JRUZHG/IcffqgxX7NmTUpOTtaYLSoq0pgFQB999JHWTfK0adM0Zp2cnGjOnDlaN0zBwcEa802aNKFz585pzB4/flxj1tTUlL777jsqKCjQmP/444815v38/Gjbtm0asxUVFVr71qFDB7p3757G/C+//KIxa29vTzNmzNC6YXp5k/bXr8jISEpJSdGYTU1N1Zg1MTGh/v37a31T5vPPP9eYr1atGm3cuFHrRtPY2Fhjvl27dnTnzh2N2b9uzF/+srW1palTp1JZWZnGfKNGjTTmIyIi6NSpUxqzjDH2b+ANKmOM/Y0ePHhAbdq0EV/wubm5Uffu3Wnjxo1aNwovHDp0iMzMzFReMI4cOZJSU1N13lkpLS2l3r17i1lra2t69913adGiRfTo0SOdta9du0Y1a9ZU2aB8/fXXtG/fPq0veF+YN2+emDU2NqYWLVrQ1KlT6caNGzqz2dnZlJiYqLIh7tatG61fv57y8/N15o8dO6ZyBzUsLIy+//57+v3333XevS0vL6e+ffuKWUtLS3rnnXdowYIFet31vnHjhsom09fXl7766ivas2ePzrveRES//fabmJXJZBQTE6P3Xe+cnBx6++23VTbEXbp0obVr1+p11/vUqVMqd1Bf3PU+deqUzr4plUoaMGCAmLWwsKC33nqL5s2bR/fv39dZ+9atWxQaGirmq1atSn369KFdu3bpvOtNRLRq1Sox+/Jd76tXr+r8WXn69Cm99957Yt7R0ZE6depEq1atotzcXJ21U1NTVe6g1q5dm4YMGUInTpzQefeWiGjo0KFi1tC73rdv36b69euLeR8fH+rdu7ded72JiDZu3CjeQX35rvfly5d19o0xxv4N2jaoxmCMMWYQMzMzlJSUYNiwYZDL5YiIiICRkf4f6b9z5w7atGkDuVyOxMREeHp66p01MTFBdnY2+vTpg6SkJMTExMDMzEzvfElJCdzd3fHJJ59ALpcjICAAgiDonc/IyMBHH30EuVyO2NhY2Nvb6501MzNDUVERhgwZgqSkJDRo0AAymUzv/L1799C8eXPI5XIkJSXBy8tL76xMJsOjR4/Qu3dvJCUloXnz5jA3N9c7X15eDkdHR0yYMAFyuRyBgYEG9+2DDz6AXC5HXFwcHBwc9M6am5ujoKAAgwYNQlJSEiIjIw3qW1ZWFqKjo8W++fj46J0VBAHZ2dn49NNPIZfL0aJFC1hYWOidJyLY2Nhg3LhxSEpKQkhIiMF969ChA+RyOeLj4+Ho6Kh31sLCArm5ufj2228hl8sRFRUFY2P9X/Y8fPgQ9evXF39Oq1Wrpnf2Rb5nz56Qy+Vo2bIlLC0t9c4KggAzMzOMGTMGcrkcderUMahv6enpaN++vdg3Z2dng66dMcZeJ+GPDeybJSIiglJSUl73ZTDGmCQiMujF4t+Zf/Hf7FfJv85r577979UGuG//dv51XztjjP3TBEFIJaIIqcf4DipjjBnoVV/4vUr+ddZ+1fz/1dqvmv+/WvtV83ztjDH2v4l/zQxjjDHGGGOMsTcCb1AZY4wxxhhjjL0ReIPKGGOMMcYYY+yNwBtUxhhjjDHGGGNvBN6gMsYYY4wxxhh7I/AGlTHGGGOMMcbYG4E3qIwxxhhjjDHG3gi8QWWMsb+RUqlE165dMX78eFy6dAlEZFA+JSUFH3zwAVasWIHc3FyD648aNQrfffcdjh49CoVCYVA2NzcX7dq1w+zZs3H37l2Da69cuRKffvoptm3bhuLiYoOyRIQePXpg7NixuHDhgsF9u3DhAjp06IClS5fiyZMnBmUBYNy4cfj2229x+PBhVFRUGJTNz89Hu3btMGPGDGRkZBhce/369ejZsye2bNmCoqIig7JEhE8//RRjxozBuXPnDO7b1atX8d577+G3337D48ePDcoCwKRJk9C/f38cPHgQ5eXlBmWLiorw3nvvYfr06UhPTze49tatW9GjRw9s3LgRhYWFBmWJCF988QVGjRqFM2fOGNy3mzdvol27dli0aBGys7MNygLAtGnT0K9fP+zbt8/gvhUXF+P999/H1KlTcfPmTYNrJycno1u3bli/fj0KCgoMzjPG2D+OiN64r/DwcGKMsf9VixcvJgAEgKpVq0Zffvkl7dq1i0pKSnRmlUolRUdHEwCSyWTUtGlTmjRpEl27dk2v2hcvXiRBEAgAOTk5UefOnWn16tWUl5enV75fv37itdepU4eGDh1KJ0+eJIVCoTNbWFhIrq6uBIAsLCwoKSmJfv31V7p//75etVeuXCnWrlKlCn3xxRe0c+dOvfpGRNSiRQsCQEZGRtS4cWP68ccf6cqVK6RUKnVm09LSyMjIiACQg4MDffjhh7Ry5UrKzc3Vq/bgwYPFaw8JCaHBgwfTsWPHqKKiQme2uLiYvLy8CACZm5tTQkIC/fLLL3Tv3j29am/cuFGs7ePjQ59//jlt376diouL9conJCQQABIEgRo1akTjx4+nS5cu6dW327dvk7GxMQEge3t76tixIy1fvpyePn2qV+2RI0eK1x4UFETfffcdHTlyRK++lZaWUrVq1QgAmZmZUVxcHM2aNYvu3LmjV+0dO3aItT09PalXr160detWev78uV75tm3bin2LjIykH374gc6fP69X3zIzM8nU1JQAkK2tLb3//vu0dOlSysnJ0av2+PHjxWsPCAigAQMG0KFDh6i8vFxntry8nPz9/QkAmZqaUps2bWjGjBl0+/ZtvWozxtjfAUAKadgLCmTgu4b/hoiICEpJSXndl8EYY5JycnJw9uxZjY9XVFSgY8eOyM/PV1m3trZGbGws6tati1q1asHe3l4yf+jQIYwdO1Zt3d/fH/Hx8fD29kZISAiMjY0l84MGDcKZM2dU1oyNjdGsWTM0atQIfn5+8PT0lMw+fPgQXbp0UVt3dXVFYmIiatSogZCQEFhYWEjmFy1ahJUrV6qth4eHo2XLlqhSpQr8/f0hCILacxQKBT766CM8ffpUZd3Kygpt2rRBvXr1EBAQAAcHB8naJ06cwIgRI9TWq1evjsTERLFvJiYmkvnhw4fj1KlTKmvGxsZo0qQJoqOj4efnBy8vL8lsTk4OPvroI7U7cS4uLkhISIC/vz9CQkJgaWkpmV++fDl+++03tfXQ0FC0bt1a7JuRkfrBJyJC586d1e7kWVpaonXr1ggLC0NAQAAcHR0la6ekpGDIkCFq676+vkhMTISXlxfq1KmjsW9jxozBkSNHVNZkMhkaN26Mxo0bo3r16vDx8ZHM5uXloWPHjlAqlSrrTk5OSEhIQEBAAIKDg2FlZSWZX7NmDebPn6+2XqdOHbRp0wY+Pj4ICAjQ2Lfu3bvj/v37KusWFhZo2bIlIiIiEBAQACcnJ8na58+fx7fffqu2XqVKFcjlcrFvpqamkvkJEyZg//79KmtGRkZo1KgRmjVrBl9fX/j4+Ej+rBQUFKBDhw5qd/sdHBwQHx+PwMBABAcHw9raWrL2xo0b8csvv6ith4SEQC6XIykpCQ0bNoRMJpPMM8bYqxIEIZWIIiQf4w0qY4wZJjk5GfHx8a/7Mhhj7B/z4s0VuVyONm3awMbG5nVfEmPsP0TbBpU/g8oYY4wxxlQ8efIEt27dwq1bt/DgwYPXfTmMsf9DpM+HMcYY0ygoKAizZ8/W+DgRYfDgwWpHfIE/jmwGBQXB29sbVapUkTx6ePHiRcnjdxYWFmjRogXs7e0REhICOzs7yfq//PILLl68qLZetWpVREZGwsXFBTVr1pQ8Ivzs2TMMHjxYbd3IyAiNGzeGt7c3atSoATc3N8mjhzt37sTWrVvV1h0dHRETEwMHBwcEBQVJHhEmIgwfPlztiC8A1K5dGyEhIfD29kbVqlUl+3b16lXMmDFDbd3c3BwtWrSAnZ0dateurfFo9bx58ySPbvv4+CAqKkrsm9RR16KiIgwcOFDtiK+RkRGioqJQpUoV1KhRA+7u7pJ927t3LzZs2KC27uDgoNI3TUeER44cKTmsJzg4GHXq1IGXlxeqVasm2bebN29iypQpautmZmYqfdN0tHrx4sU4ffq02rqXlxeio6Ph7OyMmjVrSh51LSkpwYABA9SO+AqCgMjISFSrVg1+fn7w8PCQ7NvBgwexZs0atXU7Ozs0b94c9vb2Wo8I//DDD8jKylJbDwwMRGhoKDw8PFC9enXJvmVkZGDixIlq66ampmjevDkcHBwQHBys8YjwsmXLcPz4cbV1T09PNG7cGE5OTggICJDsW1lZGQYMGKB2xFcQBDRo0AB+fn7w9fWFp6enZN+OHj2KFStWqK3b2toiLi4OSUlJiI+Ph7Ozs+S1M8bYP0rTh1Nf5xcPSWKM/S/bsmWLOMDEzMyM4uPjafbs2XT37l298nK5XMx7eXnRZ599Rtu2bdNreMudO3fIxMREHN4SFRVF48aNo4sXL+o1vGXMmDFibTs7O+rQoQMtW7aMnjx5ojNbVlZG1atXF/OBgYE0cOBAOnz4sF7DW3bt2iVmTU1NKTY2lmbOnEkZGRk6s0RE7du3F/MeHh7Us2dP2rJlCxUVFenMZmVlkbm5udi3hg0b0pgxY+jcuXN69W3SpElibRsbG3rvvfdoyZIl9PjxY53ZiooKqlWrlpivWbMm9e/fnw4ePKhX3w4ePChmTUxMqHXr1vTzzz9Tenq6ziwRUadOncS8m5sb9ejRgzZt2kSFhYU6s9nZ2WRlZSXm69evT6NGjaIzZ87o1beff/5ZzFpbW1O7du1o8eLF9OjRI51ZhUJBderUEfM1atSgfv360f79+6msrExn/sSJE2LW2NiYWrZsSVOnTqWbN2/qzBIR9ejRQ8y7urrSxx9/TBs2bKCCggKd2adPn5Ktra2YDwsLoxEjRlBKSopeffv111/FrJWVFbVt25YWLlxIDx8+1JlVKpUUEREh5qtXr059+/alvXv3UmlpqV7fO2OMvSrwkCTGGPt3EBHkcjnc3d0hl8vRqlUrjXdvpJw5cwafffYZkpKSIJfLERoaKnkHRJOBAwciPT0dSUlJSEhIgKurq97ZZ8+eoU2bNoiOjoZcLkfjxo01DsaRsmzZMixatAhyuRxyuRx+fn56Z4kI7777Luzt7SGXy9G6dWuDPvN2+fJldOvWDYmJiUhKSkJYWJjkXS9Nhg0bhsuXL0MulyMxMRFubm56Z4uKitCqVSs0aNAAcrkcTZs21TgYR8ratWsxe/ZscThNzZo19c4CQIcOHWBubi5+VtDW1lbv7PXr1/Hhhx8iISEBSUlJiIiIMKhvo0ePRmpqqtg3Dw8PvbMlJSVo2bIlwsLCIJfL0axZM5iZmemd37x5M6ZMmSL2LSAgwKCflU6dOkEQBMjlcsTGxmo8kSDl9u3beO+99xAbGwu5XI4GDRoY1LcJEybg2LFjYt80Dd+SUlZWhlatWqF27dqQy+WIiYmBubm53vnk5GSMHTtW7FtgYKBBfWOMsb/DKw1JEgRhIYAkANlEFPLn2moAAX8+xR5AHhGFSmQzABQAUACo0HQRf8UbVMbY/6oXRxUNebH6MoVC8UqTM18lr1AoYGRkVOkXq69Sm4igVCpf6dq5b/9u7VfNc9/+9/rGGGN/F20bVH0+g7oYwEwAS14sEFGHl/7wnwA805JvTkQ5+l0qY4z9b6vsxvSFV33h+Cr511lbEIT/2Wvnvv3v1ea+McbYm0vnBpWIDguCUE3qMeGPt+/eB9Dib74uxhhjjDHGGGP/x7zqr5lpAuAREd3Q8DgB2C0IQqogCL1esRZjjDHGGGOMsf+wV/01Mx8AWKnl8WgiyhIEwRXAHkEQrhHRYakn/rmB7QUAVapUecXLYowxxhhjjDH2v6bSd1AFQTAG8C6A1ZqeQ0RZf/7fbAAbATTQ8ty5RBRBRBEuLi6VvSzGGGOMMcYYY/+jXuWIbysA14goU+pBQRCsBEGwefG/AbQBcOkV6jHGGGOMMcYY+w/TuUEVBGElgBMAAgRByBQEocefD3XEX473CoLgKQjCjj//0Q3AUUEQzgM4DWA7ESX/fZfOGGP/GxQKBa5du4bK/t7p+/fvIy8vr9L1r127BoVCUanss2fPkJkp+T6kXm7duoWSkpJKZZVKJa5evVrpvmVlZSE3N7dSWeDV+pafn4+7d+9WunZ6ejqKi4srlSUiXLlypdJ9e/DgAZ48eVKpLPBH3yoqKiqVLSoqwp07dypd+/bt23j+/HmlskSEy5cvV7pvjx49Qk5O5X9pQVpaGsrLyyuVff78OdLT0ytdOyMjA0VFRZXOM8bY30nnBpWIPiAiDyIyISJvIlrw53o3Iprzl+dmEVHCn/87nYjq/vkVTERj/5lvgTHG3mwymQzfffcd/P390a9fP+zbt8+gF6JKpRLe3t5o0aIFpk6dips3bxpUf/369fDw8EC3bt2wfv16FBQU6J21srJCTEwMwsLCMGLECPz+++/i73rVR3p6OpycnPDOO+9gwYIFePjwod5ZIyMjjBgxAn5+fvjqq6+wZ88elJWV6Z0XBAFVqlRBTEwMfvrpJ1y/fl3vLABs27YNbm5u6NKlC9auXYv8/Hy9s1ZWVoiLi0NoaCiGDRuGU6dOGdS3e/fuwcnJCW+99RbmzZuHrKwsvbOCIGD8+PHw9fVFnz59sGvXLpSWluqdNzY2hp+fH5o2bYpJkyYZ/CbBnj174Obmhk6dOmH16tV49kzbb6JTZWFhgbfffhu1a9fGkCFDcOLECYPeJMjOzoaTkxOSkpIwZ84cg95cEQQB06ZNQ9WqVdG7d2/s3LnToDdXzMzMULNmTURHR2PChAkGb3YPHz4MV1dXfPjhh1i5cqVBb65YWFigY8eOCA4OxqBBg3Ds2DGD+pabmwtnZ2ckJCRg9uzZuHfvnt5Zxhj72xHRG/cVHh5OjDH2X5Kamkr4Y7I5ASBbW1t6//33aenSpZSTk6Mz//nnn6vkAwICaMCAAXTo0CEqLy/Xmn327Bk5ODiIWVNTU2rTpg3NmDGDbt++rbP2okWLVGp7eHjQJ598Qps3b6aioiKtWaVSSY0aNVLJN2jQgEaPHk1nz54lpVKpNX/x4kWVrI2NDbVv355+++03ys7O1nntX3/9tUre39+fvvnmGzpw4ACVlZVpzRYWFpKLi4uYNTExoVatWtG0adPo1q1bOmuvWLFCpbabmxt1796dNmzYQAUFBTrzzZs3V8mHh4fTyJEjKTU1VWffrl27RkZGRmLWysqK2rZtSwsXLqRHjx7prP3dd9+p1Pbz86Ovv/6a9u7dq7NvxcXF5OHhIWaNjY2pefPmNGXKFLpx44bO2hs2bFCp7eLiQt26daN169ZRfn6+znx8fLxKvl69evT999/T77//TgqFQms2PT2djI2NxaylpSW9/fbbNH/+fHrw4IHO2iNGjFCp7evrS1999RXt3r2bSktLtWZLS0upatWqYlYmk1GzZs1o8uTJlJaWprP29u3bVWo7OTlR586dac2aNfTs2TOd+XfeeUclX7duXRo2bBidPHlSZ98YY8xQAFJIw15QoEoeZfknRUREUEpKyuu+DMYYk3Tu3DmMGzfO4NyOHTs0HqNzdnaGh4cHPD09YWtrq/Z4dnY2Dh06JJk1MTGBh4eH+GViYqL2nJMnT2q8K2JrawtPT094enrC0dERf/yK6/+voqICGzdulMwaGRnB1dVVzFtYWKg95/r16zh//rxk3sLCAp6envDw8ICrqytkMpnac5KTkzXe9XVychJrS/UtJycHBw4ckMyamJjA3d0dnp6ecHd3h6mpqdpzTp8+rfHIqa2trfh35uTkpNY3hUKBDRs2SGZf9O1F3tLSUu05t27dwpkzZyTz5ubmYt/c3Nwk+7Znzx6NR8MdHR3FvtnZ2ak9npubi71790pmjY2Nxb55eHhI9i01NVXjkVMbGxvx+3Z2dlbrm1KpxIYNGyTvPhoZGcHFxUWsbWVlpfac27dvQ9NrCHNzc7G2pr7t27cPT58+lcw7OjqKeXt7e7XHnz17ht27d0tmX/Ttxc+pmZmZ2nPOnj2r8YSEtbW1+H07OzvDyEj1EBwRYePGjZJ3TgVBEPvm6ekp2be7d+/i1KlTkrXd3NyQmJgIuVyOVq1awdraWvJ5jDGmL0EQUokoQvIx3qAyxphhkpOTER8f/7ovgzHG/nVmZmZo1aoVfvjhB4SGhr7uy2GM/Y/StkF91d+DyhhjjDHG/uNsbW0RFxeHpKQkxMfHw9nZ+XVfEmPsP+pVfs0MY4z9n9SmTRuUl5cb9PXw4UO1Y3GmpqaIjY3FjBkzkJ6erjU/Y8YMtevw9PREr169sHnzZuTn52vMlpWVSd7piIyMxJgxY3D27FmUlZVpzJ88eVIta2tri/feew+//fYbHj16pPXae/bsqZavVasWBgwYgP3796O4uFhjNicnR+0opYmJCVq3bo3p06fj5s2bWmvPnTtXrba7uzt69OiBjRs34tmzZ1r71rBhQ7V8gwYNMGrUKKSmpmrtm9TxXGtra7Rr1w6LFi3CgwcPtF57nz591PIvBm3t3btXa9/y8vLg5OSkkjU2NkbLli0xdepUXL9+XWvt3377Ta22q6srPv74Y6xfvx55eXla802bNlXLR0RE4Pvvv8fp06e19u3ixYtqx36trKzQtm1bLFiwAPfv39dau3///mq1/fz80LdvX+zZswfPnz/XmC0oKIC7u7tKViaToXnz5pg8eTKuXbumtfbq1eq/Gt7FxQVdu3bF2rVrkZubqzXfunVrtXy9evUwfPhwnDx5Umvf0tLS1I4sW1pa4u2338a8efOQmZmptfbQoUPValevXh19+/bF3r178fjxY6xevRqdO3fmzSlj7J+l6cOpr/OLhyQxxv5rhg4dKg7K6dGjB23atIkKCwv1ypaUlJCPjw8BoIiICBo1ahSdOXNG56CcF7Zs2UIAyNramtq1a0eLFi3Sa1DOC3K5nABQjRo1qF+/frR//36dg3JeuHPnDpmYmJCxsTG1aNGCpk6dSjdv3tS79pgxYwgAubq60scff0zr16/Xa1AOEVFZWRlVr16dAFBYWBiNGDGCUlJS9B74smvXLnHA0DvvvEMLFiyghw8f6n3t7du3VxmUs2fPHp2Dcl7Iysoic3NzkslkFBMTQz/99JNeg3JemDhxIgEgZ2dn6tKlC61du1avQTlERBUVFRQQEEAAKDQ0lIYPH06nTp3Su28HDhwgAGRhYUFvvfUWzZs3j7KysvS+9o8++ogAUNWqValPnz60a9cuKikp0SubnZ1NlpaWZGRkRE2bNqVJkybR1atX9f5Z+fnnnwkAOTo6UqdOnWj16tWUl5enV1ahUFCdOnUIANWpU4eGDBlCJ06c0LtvJ06cIABkbm5OSUlJ9Ouvv1JmZqZeWSKiHj16EADy8fGh3r17086dO6m4uFiv7NOnT8nW1paMjIyocePG9OOPP9Lly5f17htjjBkKWoYk8RFfxhj7hykUCtjZ2eHUqVOIiIhQG26iy5UrVzB8+HAkJibC09PT4PqPHz/Grl270KxZM8nBLNo8efIETZs2xcSJExEQEKB2Z0uXS5cuYenSpYiLi5McxqONUqmEhYUFTpw4gQYNGhjct6tXr2LgwIFISkqCl5eXQVngj98HunPnTsTExMDc3NygbF5enninNTAw0OC+Xbx4EQsXLkRcXBwcHBwMyhIRjI2NcezYMTRs2FByEJA2aWlp6Nu3L5KSkuDj42NQFgAyMzOxbds2tGjRQnJoljYFBQWoU6cOBg0ahODg4Er1be7cuYiPj4ejo6NBWSKCUqnE4cOHERUVBWNjw14i3bp1C7169UJSUhKqVq1qUBb4Y7jTli1b0LJlS8mhWdo8f/4c/v7+OHfuHOrUqVOpvs2cOZOP7jLG3gg8JIkxxhhjjDHG2L9G25Ak/gwqY4wxxhhjjLE3Am9QGWOMMcYYY4y9EXiDyhhjjDHGGGPsjcAbVMYYY4wxxhhjbwTeoDLGGGOMMcYYeyPwBpUxxhhjjDHG2BuBN6iMMfYvuXTpEiZPnoy0tLRK5RcuXIi1a9ciPz/f4GxBQQFGjhyJU6dOQalUGpzfvXs35s6di6ysLIOzRIQff/wRu3btQmlpqcH5tLQ0TJw4EVevXkVlfjXakiVLsHr1auTl5RmcLSoqwsiRI3HixAkoFAqD8/v27cOcOXOQmZlpcJaIMHnyZOzcuRMlJSUG52/duoUJEybg8uXLlerb8uXLsWLFCuTm5hqcLSkpwciRI3H06NFK9e3w4cOYPXs27t69a3AWAKZOnYpt27ahuLjY4Ozdu3cxbtw4XLx4sVJ9W716NZYtW4YnT54YnC0rK8OoUaNw+PBhVFRUGJw/fvw4Zs6ciTt37hicBYCff/4ZW7ZswfPnzyuVZ4yxvwURvXFf4eHhxBhj/zUVFRUUFBREAMjf35+++eYbOnDgAJWVlemVP3LkCAEgExMTatmyJU2bNo1u3bqld/2uXbsSAHJzc6Pu3bvThg0bqKCgQK9sTk4OWVtbEwAKDw+nkSNHUmpqKimVSr3ys2bNIgBkZWVFbdu2pYULF9KjR4/0yiqVSgoNDSUA5OfnR19//TXt3btX776dPn2aAJCxsTE1b96cpkyZQjdu3NArS0TUq1cvAkAuLi7UtWtXWrduHeXn5+uVzc3NJXt7ewJA9erVo++//55Onz5NCoVCr/z8+fMJAFlaWtLbb79N8+fPpwcPHuiVVSqV1LBhQwJAvr6+9OWXX9Lu3buptLRUr/y5c+cIAMlkMmrWrBlNnjyZrl27pleWiOjLL78kAOTk5ESdO3emNWvW0LNnz/TKFhQUkJOTEwGgunXr0tChQ+nkyZN6923p0qUEgCwsLEgul9PcuXPp/v37el97s2bNCABVrVqVvvjiC0pOTqaSkhK9slevXiVBEMjIyIiaNGlCEydOpCtXruj9s/Ltt98SAHJ0dKSPPvqIVq1aRXl5eXplnz9/Tu7u7gSAateuTYMHD6bjx49TRUWFXvm1a9cSADI3N6fExESaM2cO3bt3T68sY4wZAkAKadgLClSJdwf/aREREZSSkvK6L4MxxiRVVFRU+g7DmjVr0LNnT5U1Ozs7tGrVCnFxcWjdujUcHBw05hMSEnDs2DGVtYCAAMTFxSE+Ph4NGjSATCaTzN68eRPh4eEqa6ampmjatCni4uIQFxcHHx8fjbW///57TJ8+XWXN3d1drN2sWTNYWFhIZktLSxESEoLs7GyV9YiICDEfHBwMQRAk81u2bEHnzp1V1mxsbNCqVSvEx8ejdevWcHR01Hjtbdu2xf79+1XWatSogfj4eMTHx6Nhw4YwNjaWzN65cwehoaEqd55NTEzQpEkTxMbGIj4+HlWrVtVYe+zYsZg4caLKmqurq0rfrKysJLPl5eWoU6eO2p3rsLAwMV+7dm2NfUtOTkaHDh1U1qytrdGyZUvExcWhTZs2cHZ21njtHTt2xM6dO1XWqlevLvYtMjISJiYmktn79++jdu3aKndQjY2NER0djfj4eMTFxcHX11dj7cmTJ2PMmDEqay4uLoiNjUVcXByaN28Oa2tryWxFRQXCwsLU7iSGhoaKfatbt67Gvh08eBBvv/22ypqlpSVatGiB+Ph4xMbGwsXFReO1d+vWDRs3blRZ8/X1FX/OoqOjNfYtOzsbwcHBKCsrE9dkMhkaNWok9s3Pz09j7RkzZmDYsGEqa05OTmLfWrRoARsbG8msUqlEw4YNcf36dZX1evXqQS6XQy6XIywsDEZGfACPMfZqBEFIJaIIycd4g8oYY4ZJTk5GfHz8674Mxhj713l4eCAxMRFyuRytWrWCpaXl674kxtj/IG0bVH4LjDHGGGOM6eXBgweYP38+vv76a4wePbpSn+1mjDFtpM8zMcYY08jLywvdunWrVPbx48fYvn275GPm5ubw8fGBj48PPDw8JI8AHjlyBLdu3ZLMOzk5iXknJye1xxUKBZYuXSqZNTY2hqenJ6pUqQJvb2+Ym5urPSctLQ0nTpyQzNvY2Ii13dzcJI8Abtq0SfLFrCAIcHNzE2vb2tqqPefp06fYsmWLZG0zMzOxtqenp2Tfjh8/rnZs8QVHR0eVvv312KdSqcTSpUslB+bIZDJ4eXnBx8cH3t7ekkecb968iaNHj0rWtra2Fmu7u7tL9m3Lli14+vSp2vqLvnl7e6NKlSqSfXv27JnaUdMXzMzM4O3tDR8fH3h5eUn27dSpU7h69apk3sHBQbx2Z2dntb4REZYuXSo5lEsmk8HT01Psm9RduNu3b+PQoUOSta2srFT6JnWsfdu2bcjJyZHMu7m5iXk7Ozu1xwsLC7Fu3TrJrKmpqUrfTE1N1Z6TmpqKixcvSub16duKFStQXl6ulpXJZPDw8BDzUn27e/eu2nH2FywtLcWfMw8PD8m+7dmzB/fv31dbNzIyQlRUlHjUNzAwUOMRacYYeyWaPpz6Or94SBJj7L/q66+/JgDiV926dWnYsGF6DYApLCwkV1dXMWvoAJiVK1eq1K5SpYpBA2BatGghZl8eAHP16lWdA2DS0tLIyMhIzDs4OIgDYHJzc3XWHjRokMq1165dm4YMGaLXAJji4mLy9PQUsy8PgMnMzNRZe8OGDSq1fXx86PPPP6cdO3ZQcXGxznx8fLxK36Kjo2nChAl06dIlnX1LT08nY2NjMW9vb08ffPABrVixgp4+faqz9ogRI1SuPTg4mL777js6evSozr6VlpZS1apVxayZmRnFx8fT7Nmz6e7duzprb9++XaW2l5cXffrpp7Rt2zZ6/vy5zvw777wjZgVBoMjISBo7dixduHBBZ9/u3btHpqamYt7Ozo46dOhAy5Yto5ycHJ21x48fr3LttWrVom+//ZYOHz5M5eXlWrPl5eXk7+8vZk1NTSk2NpZmzJhBt2/f1ll73759KrU9PDyoZ8+etGXLFioqKtKZ79ixo0q+QYMGNGbMGDp37pzOvj18+JAsLCzErI2NDb333nv022+/0ePHj3XWZowxfUHLkKTXvhmV+uINKmPsv+jBgwdkb29PcXFxNGvWLLpz545B+cmTJ5Onpyd9+umntHXrVr1e5L9QUVFBwcHBBr3If9mhQ4fI1taW3n//fVq6dKleL/Jf1rlzZ4Ne5L/s8ePH5OjoSG3atNH7Rf7LZsyYIb7I37x5s14v8l9QKBQUGhpq0Iv8l508eZJsbGyoffv2lXqR/8knn1DNmjWpf//+Bk18JvpjgrCLiwu1atWKpk+fbtDEZyKiuXPnihOfN27cqPfEZ6L/P0E4IiLC4InPRERnz54lGxsbevfdd2nRokV6T3x+oU+fPuLE53379hnUt/z8fHJ3d6cWLVrQ1KlTDZr4TES0ZMkScnFxoW7dutH69ev1nvhM9EffmjZtSmFhYfT999/T77//rvfkYiKiy5cvk42NDb3zzju0YMECvSc+v9C/f3/y9fWlr776ivbs2aP3xGfGGDOUtg0qD0lijLF/SXZ2NiwtLTVOHtUlIyMDVatWrdSxuqKiIhQVFcHV1bVStTMzM+Hm5qZx8qg2RISMjAytE1u1efz4MczNzTVOHtUlIyMDVapUqdTk0efPnyM/Px/u7u6Vqn3//n24uLhIHgPV5VX79uTJE5iYmEge/dXHnTt34OPjU6m+lZSU4OnTp/D09KxU7aysLDg5OcHMzKxS+du3b6NatWqV+ll5+vQpjIyMYG9vX6nad+7cgbe3t8Zp2tqUlZXh8ePH8PLyqlTtBw8ewMHBQfKIvj5epW+MMWYInuLLGGOMMcYYY+yNwFN8GWOMMcYYY4y98XiDyhhjjDHGGGPsjcAbVMYYY4wxxhhjbwTeoDLGGGOMMcYYeyPwBpUxxhhjjDHG2BuBN6iMMfYvISKUlZVVOl9aWvpK9V8lX15eDqVS+VpqE9Er5UtLS/EqE+tftW8KheK11H7V/OvsW0VFxf9s38rKyl5b3xQKBSoqKl5LbcYY+7vo3KAKgrBQEIRsQRAuvbQ2UhCE+4IgnPvzK0FDNk4QhDRBEG4KgjDo77xwxhj7XyMIAjp27Ij33nsPS5YsQU5OjkH5u3fvIigoCP3798fBgwdRXl5uUH78+PFo3bo1fv75Z6SnpxuUVSgUaNCgAXr06IFNmzahqKjIoHxycjLq16+PUaNG4cyZMwa9gBcEAV27dkW7du2wePFiZGdnG1T7wYMHCA4ORr9+/bB//36D+/bTTz+hZcuWmDp1Km7evGlQlojQqFEjfPzxx9iwYQMKCgoMyh84cABhYWEYMWIEUlJSDH6ToGfPnmjbti0WLlyIhw8fGpTNyclBcHAw+vbti7179xr85sqMGTPQvHlz/PTTT7h+/bpBWQBo1qwZunbtirVr1yI/P9+g7PHjxxEaGorhw4fj9OnTBvftiy++wFtvvYV58+bhwYMHBmXz8vIQEhKCL7/8Ert27TJ40zd37lw0bdoUkyZNwrVr1wz+WWnVqhU6deqE1atX49mzZwbVTk1NRZ06dTB06FCcPHnyld4kYIyxSiMirV8AmgIIA3DppbWRAAboyMkA3AJQHYApgPMAgnTVIyKEh4cTY4z9Fx0+fJgAEAASBIEaNWpE48ePp0uXLpFSqdSZ79Kli5i3t7enDz74gJYvX05Pnz7VmX38+DFZW1uL+aCgIPruu+/o6NGjVFFRoTM/c+ZMMWtmZkZxcXE0a9YsunPnjs6sUqmk0NBQMe/l5UWffvopbd26lZ4/f64zf+rUKZW+RUZG0tixY+nChQt69a1nz55i3s7Ojjp06EBLly6lnJwcndnc3Fyys7MT87Vq1aJvv/2WDh8+TOXl5Trz8+bNE7OmpqbUpk0bmjFjBmVkZOjMKpVKatCggZj38PCgnj170ubNm6moqEhn/uzZs2IWADVo0IDGjBlD586d06tvffr0EbM2NjbUvn17+u233+jx48c6s/n5+eTk5CTma9asSf3796cDBw7o1bclS5aIWRMTE2rVqhVNnz6dbt26pTOrVCqpSZMmYt7NzY26d+9OGzdupMLCQp35K1eukCAIYj4iIoJGjRpFqampevVtwIABYtba2preffddWrRoET169Ehn9vnz5+Tu7i7ma9SoQV9//TXt27ePysrKdObXrFkjZo2NjalFixY0depUunHjhs4sEVHr1q3FvIuLC3Xr1o3Wr19P+fn5euUZY0wfAFJIw15QID3emRMEoRqAbUQU8uc/jwRQSESTtWSiAIwkotg//3nwnxvi8brqRUREUEpKis7rYoyx1+H27dvYsGFDpfOjRo2SvJPm6OiIwMBABAcHo3r16jA2NlZ7zvXr1zF37ly1dUEQ4Ovri6CgIAQFBcHV1VWy9rx585CWlqa2bmlpicDAQAQFBSEgIADm5uZqzykpKcHw4cMl7+h4eHiItatUqQJBENSes3v3buzevVtt3djYGDVr1kRQUBACAwNhZ2cnee0//PAD8vLy1NYdHBzEvvn5+Un2LT09HbNnz1ZbFwQB1apVU+mb1LUvWrQIly9fVlu3sLBQ6ZuFhYXac8rLyzFkyBDJvrm7u6v0zchI/WDTgQMHsH37drV1Y2Nj+Pv7i32zt7dXew4ATJgwQfJuvZ2dHYKCgsS+mZiYqD0nMzMT06ZNU1sXBAFVq1YVr93NzU2yb0uXLsX58+fV1s3NzVGrVi0EBwcjICAAlpaWas+pqKjA0KFDJe/iubm5ibWrVq0q2bcjR45g8+bNausymQw1atQQ8w4ODmrPAYBJkybh0aNHauu2trZi1t/fX7Jv2dnZmDhxouSfW6VKFQQHByMoKAju7u6SfVu5ciVSU1PV1s3NzREQEICgoCDUqlULVlZWas9RKpUYOnSo5EkBFxcXsXa1atUk+3bu3DksW7ZMbd3U1BQxMTGQy+WQy+WoWrWq5PfHGGP6EAQhlYgiJB97hQ1qNwD5AFIA9Cei3L9k2gOII6JP/vznzgAaElEfXfV4g8oYe5MlJycjPj7+dV8GY4y9NrVr10ZSUhLef/99hIaGvu7LYYz9j9G2Qa3skKRfAPgBCAXwAMBPUnUl1jTuhgVB6CUIQoogCCmPHz+u5GUxxhhjjLF/kpeXF6KjoxEdHY2AgIDXfTmMsf8Y9XNQeiAi8cyLIAjzAGyTeFomAJ+X/tkbQJaWP3MugLnAH3dQK3NdjDH2b2jYsCGOHTtWqaxCocBbb72ldlTVxsYGUVFRiI6ORsOGDWFjYyOZP3z4MAYPHqy2Xr16dTRu3BjR0dEIDAyETCaTzH/99df4/fffVdZMTU0RHh4u5l1cXCSzOTk5eOedd9SOqrq6uoovVsPCwmBmZiaZnzdvHhYvXqyyJggCQkJC0LhxYzRq1Ai+vr6SRx6VSiXeffdd/PUNTGtra0RGRqJx48Zo2LAhbG1tJWufOnUK33zzjdq6r68vGjVqhMaNGyM4OFhj37799lscP35cZc3ExATh4eHi9+7m5iaZzcvLg1wuVxvU4+zsjOjoaDRu3Bjh4eEa+7Z48WLMmzdPbT04OFjMV69eXbJvRIT27durDUiysrJCZGQkoqOjERkZqfFY9dmzZ9Gnj/rBpypVqoj/voSEhEgeqwaAoUOH4uDBgyprxsbGCAsLE/vm4eEhmS0oKEBSUpLaVFonJycxGxERIXkcHQBWrFiBWbNmqa0HBgaK116jRg2Nffvwww9x9+5dlXVLS0s0bNgQ0dHRiIqK0nis+sqVK+jZs6fauo+Pj/h3Vrt2bY19GzVqlNpxeJlMhnr16ok/K15eXpLZ58+fIzExUW2olYODg1g7IiJC8jg6AGzZsgU//vij2npERIR4vDc0NFSyb4wx9rfQ9OHUl78AVIPqkCSPl/53PwCrJDLGANIB+OL/D0kK1qceD0lijP1XrVixotLDdoiIWrRooTZs5/bt23pl09LSyMjIqFLDdoiIBg0aVOlhO8XFxeTp6VmpYTtERBs2bJActqPP0Bgiovj4+EoN2yEiSk9PJ2NjY7VhOwUFBXrlR4wYoTJsZ+TIkXoP2yktLaWqVatWatgOEdH27dvF2n5+fgYN2yEieueddyo9bOfevXtkampa6WE748aNE689LCyMvv/+e/r9999JoVDozJaXl1ONGjUIAFlaWtI777xDCxYsoAcPHuhVe9++fWJtX19f+uqrr2jPnj1UWlqqV75jx44EgGQyGcXExNDkyZMpLS1Nr+zDhw/JwsKCAJCTkxN16dKF1q5dS8+ePdMrP2XKFPHa69atS8OGDaNTp07p1TeFQkFBQUEEgCwsLOitt96iefPm0f379/WqzRhj+oKWIUk676AKgrASQAwAZ0EQMgGMABAjCELon/8BzADw6Z/P9QQwn4gSiKhCEIQ+AHbhj4m+C4lIfcIEY4z9H0FEOHbsGKZMmQK5XI4aNWoYlL98+TJ8fHywbt06tGnTRuNdVk22bt2KYcOGQS6XIywsTHJAiiaFhYXIzMzE/PnzkZiYCHd3d4Nq7969G+3bt4dcLkfTpk1hamqqd5aIcOjQIUyePBlyuRw1a9Y0qPb169fh7OyMNWvWIDY2VuNdVk22bt2KQYMGQS6XIyIiwqC+FRcXIz09HXPnzkViYiI8PT0Nqr1v3z4kJSVBLpcjJiZG411WTfbv34+JEydCLpcjICDAoLtet2/fhrW1NVatWoXY2FiNdws12bp1KwYMGICkpCQ0aNBA491pKaWlpUhLS8OcOXOQlJSk8W6hJocOHRJ/pVLz5s013mXVZM+ePRg/fjzkcjmCgoIM6ltmZiZkMhlWrFiBuLg4jUOYNNm6dSu++uoryOVyREZGGtS38vJyXLx4EbNnz0ZiYiKqVKliUO2jR4+iSZMmmDhxIlq0aKHxLitjjP2T9BqS9G/jIUmMMcYYY4wx9t/0TwxJYowxxhhjjDHG/la8QWWMMcYYY4wx9kbgDSpjjDHGGGOMsTcCb1AZY4wxxhhjjL0ReIPKGGOMMcYYY+yNwBtUxhhjjDHGGGNvBN6gMsbYv2jLli3Izs6uVPbevXvYt28fysrKKpU/ePAgbty4UalsaWkpNm7ciIKCgkrlz58/j99//x1KpbJS+a1bt+Lhw4eVymZlZWHPnj2V7tvhw4eRlpZWqWx5eTk2bNiAZ8+eVSp/6dIlnDp1qtJ92759O7KysiqVffToEZKTk1FaWlqp/NGjR3H16lVU5tfZKRQKbNiwAXl5eZWqffXqVZw4cQIKhaJS+Z07dyIzM7NS2SdPnmDHjh0oKSmpVP7EiRO4fPlypfqmVCqxYcMG5ObmVqp2Wloajh49Wum+McbY34E3qIwx9i+6dOkS3N3dERkZibFjx+LChQt6vxD18PDAp59+ChcXF3To0AHLli3DkydP9K5dUVGBmjVrolatWvj2229x+PBhVFRU6JU1MzPDqlWr4OzsjNjYWMyYMQMZGRl613Zzc0PTpk3h5eWFnj17YsuWLSgqKtI7f/36dXh4eKBBgwYYM2YMzp07p3ff3Nzc0LdvXzg7O+O9997Db7/9hsePH+tdGwBq1aqFmjVron///jhw4ADKy8v1ypmYmGDTpk1wdnZGq1atMH36dKSnp+td193dHa1atYKHhwe6d++OjRs3orCwUO98RkYGvLy8EBERgVGjRuHMmTN6983V1RWDBw+Gk5MT3n33XSxatMigN1dMTU0RFBQEf39/9OvXD/v27dO7bzKZDMnJyXBxcUGLFi0wdepU3Lx5U+/aHh4eiI+Ph4eHB7p164b169cb9ObK/fv34ePjg7CwMIwYMcKgN1ccHR0xatQoODk54Z133sGCBQsMenPFwsICISEh8PPzw1dffWXQmytGRkY4cOAAXFxcEBMTg59++gnXr1/Xu7anpyfeeecduLm5oUuXLli7di3y8/P1zjPG2N+CiN64r/DwcGKMsf+iZ8+ekaOjIwEQv6pUqUJffPEFJScnU0lJidb84sWLVbJGRkbUuHFj+vHHH+nKlSukVCo1ZpVKJUVHR6vkHRwc6KOPPqKVK1dSbm6u1toXL14kQRBU8iEhITR48GA6fvw4VVRUaM3369dPJWtubk4JCQn0yy+/0L1797RmCwsLydXVVSXv4+NDn3/+OW3fvp2Ki4u15leuXKmSFQSBGjVqROPHj6dLly5p7RsRUYsWLVTy9vb21LFjR1q+fDk9ffpUazYtLY2MjIxU8kFBQTRw4EA6cuSIzr4NHjxYJWtmZkZxcXE0a9YsunPnjtZscXExeXl5qeQ9PT2pV69etHXrVnr+/LnW/MaNG9X6FhkZSWPHjqXz58/r7FtCQoJK3tbWlt5//31aunQp5eTkaM3evn2bjI2NVfK1atWiAQMG0KFDh6i8vFxrfuTIkSpZU1NTatOmDc2YMYNu376tNVtaWkrVqlVTyXt4eNAnn3xCmzdvpqKiIq35HTt2qGQBUIMGDWj06NF09uxZnX1r27atStbGxobat29Pv/32Gz1+/FhrNjMzk0xNTVXy/v7+9M0339CBAweorKxMa378+PEqWRMTE2rVqhVNnz6dbt26pTXLGGP6ApBCGvaCAlXiCMk/LSIiglJSUl73ZTDGmKQjR46gZ8+elc7funVL451LQRBgZWUFa2trWFtbQyaTqTxeWlqq9c6liYmJmLWwsIAgCCqPZ2Zmar1zaWlpKeZNTEzUHr9+/brGO3AymUy8disrKxgZqR7Syc3N1XoHzszMTKxtbm6u9nh6errGO3Av983KygrGxsYqj5eXl2u9c2liYiLmLS0t1fqWlZWl9Q6chYWFeO2mpqZqj2vrm5GRkZiV6lteXh4ePXqksbauvt2+fVvjHThBEFT+zv/aN6VSqfVYuLGxsZiV6tuDBw+03oH7J/v27NkzrXcuTU1NVX5W/iojI0Pj8WZdfSMirXcudfXt4cOHWo+F6+rbjRs3NN7xNTIyUvlvzF/7VlJSgjt37misHRQUBLlcDrlcjsjISLX/RjHGmD4EQUglogjJx3iDyhhjhklOTkZ8fPzrvgzGGHutgoKCMHPmTDRv3vx1Xwpj7H+Mtg2qsdQiY4wxzaytrREUFFTp/I0bNzTeCXz5rpCNjY3kHdRbt25p/LNNTU1hY2MDGxsbWFpaqj1+9+5drZ9htLKyEvNSd1C1Db2RyWRiVuqO1pMnT7TeCTQ3NxfzUncCdfXt5Wv/a9/Ky8u13gl8cTftRd/+ekfr3r17Wu+gvrgjZWNjI3lHS5++abqjlZubiwcPHmis/aJvmu4E3rx5U+sd1BfXLXUnUKFQaB0QZWJiovLv21/7dv/+fa13Ai0tLcV8Zfr28rVL3XnWNiDK3NxczEv17datW1rvoL78cyp1B/Xq1asaa7/o24u7v1J3nrUNOnrRN2tra5iZmak9fu3aNY13UHX1raSkROtpgzp16iApKQlyuRwNGjRQyzPG2CvTdPb3dX7xZ1AZY/9VeXl55ODgoPIZL19fX/rqq69oz549VFpaqjW/cOFClaxMJqOYmBj66aefKC0tTWtWqVRSVFSUSt7Z2Zm6dOlCa9eupWfPnmnNX7hwQe1zdaGhoTRs2DA6deoUKRQKrfm+ffuqZC0sLOitt96iefPm0f3797VmCwsLydnZWSVftWpV6tOnD+3atUvnZ3eXL1+u9tndpk2b0qRJk+jq1as6PxMYExOjknd0dKROnTrRqlWrdH529+rVq2qfQa1duzYNGTKETpw4obNv3333ndpnd5OSkmjOnDmUmZmpNVtcXEweHh5qn93t3bs37dy5U+dnd9evX6/Wt+joaJowYQJdvnxZZ9/i4uLUPvP84Ycf0ooVK3R+dvfWrVtqn0ENDg6mQYMG0bFjx3R+dvf7779X++xufHw8zZ49m+7evas1W1paSlWqVFHJe3l50WeffUbbtm3T+dndbdu2qX12NyoqisaNG0cXL17U2be3335bJW9nZ0cdO3akZcuW0ZMnT7Rm7969q/YZ1MDAQPEzz7o+uzt27Fi1z+7GxsbSzJkzKSMjQ2uWMcb0BS2fQX3tm1GpL96gMsb+q8aMGWPwi/wXysrKqHr16ga9yH/Zrl27DH6R/7L27dsb9CL/ZVlZWWRubm7Qi/yXTZw40eAX+S9UVFRQQECAQS/yX3bw4EGVF/mHDx/W+SL/ZR999FGlX+RnZ2eTlZUVeXh4UM+ePWnLli06B/S87OeffyZBEKhhw4b0ww8/0Llz5/Tum0KhoDp16pCNjQ299957tGTJEp0Del524sQJAkABAQHUv39/OnjwoEF969GjB5mYmFDr1q3p559/pvT0dL2zT58+JVtbW3Jzc6MePXrQpk2bqLCwUO/8r7/+SgCofv36NHr0aDpz5ozefVMqlRQREUHW1tbUrl07Wrx4MWVnZ+td+8yZMwSAatSoQf369aP9+/frHGz0st69e5OxsTG1bNmSpk2bRjdv3tQ7+2KIm6urK3388ce0YcMGKigo0DvPGGP60rZB5c+gMsbYv2j79u1o2LAhnJ2dDc5mZmbi1q1biI6OVjtSqI/Dhw/Dx8cHvr6+BmdLS0uxe/dutGjRAlZWVgbnL1y4AIVCgdDQULXjjPrYsWMHIiIi4OrqanD2wYMHuHbtGho3bix5bFmXo0ePwsPDA35+fgZny8vLsWPHDrRo0QI2NjYG5y9fvoySkhLUq1evUkcpk5OTUa9ePbi5uRmczc7OxoULF9C0aVPJ47e6HD9+HC4uLvD39zc4q1AosG3bNjRv3hy2trYG569du4aCggKEh4dXqm+7d+9G7dq14eHhYXD2yZMnSE1NRbNmzSSP3+py8uRJODg4ICAgwOCsUqnE1q1bERMTAzs7O4Pz169fx9OnT/noLmPsH8dDkhhjjDHGGGOMvRG0bVD57THGGGOMMcYYY28E3qAyxhhjjDHGGHsj8AaVMcYYY4wxxtgbgTeojDHGGGOMMcbeCLxBZYwxxhhjjDH2RuANKmOMMcYYY4yxNwJvUBlj7F/0zTffYNy4cbh48SIM/TVfGRkZ+OCDD7B8+XI8ffrU4NqzZs3CwIEDceTIEVRUVBiULS0tRefOnTFr1izcuXPH4Np79+5Fr169sHXrVjx//tzg/HfffYcffvgB58+fN7hv9+/fR8eOHbFkyRLk5OQYXHvevHkYMGAADh06ZHDfysvL0bVrV/z888+4ffu2wbUPHz6MTz75BJs3b0ZRUZHB+WHDhmH06NE4e/aswX17+PAhOnbsiMWLF+Px48cG1168eDG++eYbHDhwAOXl5QZlFQoFPv74Y0ybNg23bt0yuPbJkyfRvXt3bNiwAYWFhQbnR44ciZEjRyI1NRVKpdKgbE5ODjp27IiFCxfi0aNHBtdevnw5vv76a+zduxdlZWUGZZVKJT755BNMmTIFN27cMLj2mTNn0LVrV6xbtw75+fkG5xlj7G9BRG/cV3h4ODHG2H/Rzp07CQABoGrVqlGfPn1o165dVFJSolf+3XffJQBkZGRETZo0oYkTJ9LVq1dJqVTqzGZmZpKZmRkBIEdHR+rUqROtXr2a8vLy9Ko9YcIE8dpr165NQ4YMoRMnTpBCodCZLS8vp5o1axIAMjc3p6SkJJozZw5lZmbqVXv//v1i7SpVqlDv3r1p586dVFxcrFf+gw8+EPsWHR1NEyZMoMuXL+vVt0ePHpGlpSUBIAcHB/rwww9pxYoV9PTpU71qT5s2Tbz24OBgGjRoEB07dowqKip0ZhUKBYWEhBAAMjMzo/j4eJo9ezbdvXtXr9rHjh0Ta3t7e9Nnn31G27dvp+fPn+uV//jjjwkACYJAUVFRNG7cOLp48aJefXvy5AnZ2NgQALKzs6OOHTvSsmXL6MmTJ3rV/uWXX8RrDwwMpIEDB9KRI0eovLxcZ1apVFJYWBgBIFNTU4qNjaWZM2dSRkaGXrVTUlLE2p6entSzZ0/asmULFRUV6ZX/7LPPxL41bNiQfvjhBzp37pxefcvLyyMHBwcCQLa2tvTee+/RkiVLKCcnR6/aCxcuFK89ICCA+vfvTwcPHtS7b1FRUQSATExMqHXr1vTzzz/T7du39arNGGP6ApBCGvaCAhn4juq/ISIiglJSUl73ZTDGmKSnT5/i8uXLlcoSETp27IgHDx6orFtYWKB+/fqIjo5GVFQU7O3tJfNnz55F37591da9vLzQqFEjREdHo06dOjA2NpbMDxs2DIcPH1ZZk8lkqFu3rpj38vKSzBYWFuKtt95Su4tob2+PqKgoNGrUCPXr14elpaVkfsWKFZgzZ47aes2aNcXa/v7+MDJSP9xDROjUqRPu3bunsm5ubo6IiAixb46OjpK1L1++jM8//1xt3cPDA9HR0WjUqBHq1q0LExMTyfzo0aOxd+9elTUjIyPUqVNHzPv4+Ehmi4uL8dZbb6G0tFRl3c7ODpGRkYiOjkb9+vVhZWUlmV+/fj2mT5+utl6jRg2xdkBAgGTfAKBbt25IT09XWTMzM0NERAQaNWqERo0awcnJSTJ78+ZNdO/eXW3d3d1dzIaGhsLU1FQyP378eOzcuVNlzcjICLVr1xb/zqtUqSKZLS0txVtvvYXi4mKVdRsbG/HftwYNGsDa2loyv3XrVkyaNElt3c/PD1FRUYiOjkZgYKDGvvXs2RNpaWkqa6ampggPDxf/fXNxcZHM3r17F506dVJbd3V1Fb/v0NBQmJmZSeanTJmCTZs2qawJgoCQkBAxX7VqVQiCoJYtLy/H22+/rXbn2NraWvz3rUGDBrCxsZGsfeDAAYwYMUJtPTg4GHK5HHK5HA0bNoRMJpPMM8aYPgRBSCWiCMnHeIPKGGOGSU5ORnx8/Ou+DMYYey2cnZ2RmJgIuVyONm3aaNzsMsaYJto2qPwZVMYYY4wxprecnBykpqYiNTVV7S4zY4y9KukzYIwxxjSqVasWpk6dWun82LFjJYf1ODg4ICQkBMHBwfDz85M8pnvnzh1MmzZNbV0QBPj6+op5V1dXydqLFi3ChQsX1NYtLS0RFBSEoKAg1KpVCxYWFmrPqaiowKBBg6BQKNQe8/DwEGtXqVJF8ujhoUOH1I4tAoCxsTFq1qyJ4OBgBAcHw87OTvLaJ0yYIDl0xt7eXszWqFFD8phuVlaW5HFPQRBQrVo1Me/m5iZ57cuWLUNqaqrauoWFBQIDAxEcHIzAwEDJvimVSgwaNEhyUJC7u7tYu2rVqpLHTY8dO4Z169aprctkMpW+aToWPmnSJGRlZamt29nZiVl/f3/JvuXk5GDs2LGSf+7LfXN3d5fs26pVq3Dq1Cm1dXNzc5W+SR0LJyIMHjxY7Wg0ALi5uYm1q1WrJtm306dPY+XKlWrrMpkM/v7+CA4ORlBQkMZj4VOnTsXdu3fV1m1tbVX6JnW8+dmzZxg5cqTkn1u1alUx7+HhIdm39evX4+jRo2rrZmZmKn2TOhZORBg6dKja0WjgjyPGL/dN6pju1atXMXfuXLV1ExMTNG/eHElJSUhKSoKvr6/k98cYY69M04dTX+cXD0lijP1XnT17VhxgIggCNWrUiMaPH6/34Jk+ffqI+ReDZ5YvX67X4Jn8/HxycnIS80FBQeLgGX0G9ixZskTMmpqaUlxcHM2aNUuvwTNKpZKaNGmiMnimV69etHXrVr0Gz1y+fJkEQVAbPHP+/Hm9+ta/f3+xtq2tLb3//vu0dOlSevz4sc7s8+fPyd3dXWXwzIABA+jQoUN6DZ5Zs2aNmDUxMaE2bdrQzz//TOnp6TqzREStW7cW8+7u7vTJJ5/Q5s2bqbCwUGf2xo0bJJPJxHz9+vVp9OjRdPbsWb36NnToUDFrY2ND7du3p8WLF1N2drbObElJCXl7e4t5f39/+uabb+jAgQNUVlamM79582Yxa2xsTC1btqRp06bRzZs3dWaJiJKSksS8q6srde/enTZs2EAFBQU6sxkZGWRiYiLmw8PDaeTIkZSamqpX30aPHi1mrays6N1336WFCxfSw4cPdWbLysrI19dXzPv5+dHXX39N+/bto9LSUp355ORklb41b96cpkyZQjdu3NCZJSJq166dmHd2dqauXbvSunXrKD8/X688Y4zpAzwkiTHG3gxdu3ZFUVER5HI5EhISNA5ZkXL//n3Ex8ejdevWkMvliI6O1jjUR8pPP/2EnTt3Qi6XIykpCX5+fnpnKyoq0KJFC/j7+yMpKQmtW7fWOJxGyoEDB/Dtt9+KQ1bq1asneedIk549e+LJkydi39zc3PTOPnr0CK1bt0aLFi0gl8vRpEkTjUN9pMycORMbNmwQ++bv7693VqlUolWrVqhSpUqlPq93/Phx9OnTB0lJSZDL5QgPD9c41EdKnz59kJmZCblcjsTERLi7u+udffLkCVq0aIFmzZpBLpejWbNmBvVt3rx5WL58udi3gIAAvbNEhLi4OLi5uYl903RnXUpKSgo++eQTsW/169c3qG/ffPMNbt68KfbN09NT7+yzZ88QExOD6OhoyOVyxMTEaByGJOW3337DggULxGuvVauW3j8rRISkpCQ4ODhALpcjNjZW4511KRcuXEDnzp3Fz5c2aNCAhyExxv4RrzQkSRCEhQCSAGQTUcifa5MAyAGUAbgF4GMiypPIZgAoAKAAUKHpIv6KN6iMsf+q8vJygzaVf1f2VfMVFRUwMjIy6EX+31UbAMrKygzaHP21trGxsUEb4r/mK3vtL45DV/ZF/uv8O+e+/e/1TalUQqlUapzircur/JwxxpghXnVI0mIAcX9Z2wMghIjqALgOYLCWfHMiCtV3c8oYY/9lr/Ki+VWyr5o3Njau9Ob0VWsDeKUXzSYmJpXeLLzIV5ZMJnulO1Cv8++c+1b57Ovqm5GRUaU3p8Cr/ZwxxtjfReerDSI6DODpX9Z2E9GLX4R3EoD3P3BtjDHGGGOMMcb+D/k7fs1MdwA7NTxGAHYLgpAqCEKvv6EWY4wxxhhjjLH/qFf6NTOCIAwFUAFguYanRBNRliAIrgD2CIJw7c87slJ/Vi8AvQCgSpUqr3JZjDHGGGOMMcb+B1X6DqogCF3xx/Ckj0jDpCUiyvrz/2YD2AiggaY/j4jmElEEEUUYMtWSMcYYY4wxxth/Q6U2qIIgxAH4DsBbRPRcw3OsBEGwefG/AbQBcKmyF8oYY4wxxhhj7L9N5wZVEISVAE4ACBAEIVMQhB4AZgKwwR/Hds8JgjDnz+d6CoKw48+oG4CjgiCcB3AawHYiSv5HvgvGGPsfcfPmTVT2908/efIEubm5la6dnp4u/voOQ5WWluLu3buVrn3//n0UFxdXOv8qfXv69CmePHlS6dq3b99GRUWF7idKKC8vx507dypdOysrC8+fS74PrJdX6VteXh4eP35c6doZGRkoLy+vVFahUOD27duVrv3gwQMUFRVVOn/r1q1K9+3Zs2fIzs6udO07d+5Uum9KpRLp6emVrv3w4UMUFBRUOs8YY38Hfab4fkBEHkRkQkTeRLSAiGoQkc+fvz4mlIg++/O5WUSU8Of/Tieiun9+BRPR2H/6m2GMsTfd1KlT4efnh6+++gp79uxBWVmZ3lkTExPUqlULMTEx+Omnn3D9+nWDah85cgRubm7o0qUL1q5di/z8fL2zpqam+PDDDxEaGorhw4fj1KlTUCqVeudzc3Ph4uKCt956C/PmzcODBw8MuvbZs2fD19cXffr0wa5du1BaWqp31szMDLVr10bTpk0xadIkXL161aDNx6lTp+Dm5oZOnTph9erVePbsmd5ZExMTdO/eHXXq1MGQIUNw4sQJg94kKCwshJubG5KSkvDrr7/i/v37emcBYMGCBahatSp69+6NnTt3oqSkRO+subk5wsPDER0djQkTJuDy5csG9e3s2bNwdXXFhx9+iJUrVxr05opMJkOfPn0QHByMQYMG4dixYwb1rbS0FB4eHkhISMDs2bNx7949vbMAsGzZMvj4+OCzzz7D9u3bDXpzxcLCAlFRUYiKisK4ceNw8eJFg/p25coVuLi4oGPHjli2bJlBb64YGRlhwIABCAwMxMCBA3HkyBGD3lxRKBTw9vZGbGwsZs6c+UpvrjDGWKUR0Rv3FR4eTowx9l909+5dMjU1Jfwx5ZxsbGyoffv29Ntvv9Hjx4915seOHStmAZC/vz998803dODAASorK9OaLS8vJz8/PzFrYmJCrVq1ounTp9OtW7d01t6zZ49KbTc3N+revTtt3LiRCgsLdebff/99lXxERASNHDmSUlNTSalUas0+ePCAzM3Nxay1tTW9++67tGjRInr06JHO2pMnT1ap7efnR19//TXt27dPZ98qKiooMDBQzBobG1OLFi1oypQpdOPGDZ21Dx06pFLbxcWFunXrRuvXr6f8/Hyd+c6dO6vk69WrR99//z39/vvvpFAotGYfP35MVlZWYtbKyoreeecdWrBgAT148EBn7RkzZqjU9vX1pa+++or27NlDpaWlWrMKhYLq1q0rZmUyGTVr1owmT55MaWlpOmufOnVKpbazszN16dKF1qxZQ8+ePdOZ79mzp0q+bt26NGzYMDp16pTOvuXm5pKdnZ2YtbCwILlcTnPnzqWsrCydtefNm6dSu2rVqtSnTx9KTk6mkpISrVmlUkkNGjQQs0ZGRtSkSROaOHEiXb16VefPytmzZ1VqOzo60kcffUSrVq2ivLw8ndfep08flXzt2rVpyJAhdOLECaqoqNCZZ4wxfQBIIQ17QYEqeYTlnxQREUEpKSmv+zIYY0zShQsXMHny5ErnN23apPEYnYuLC7y9veHt7Q17e3u1x3Nzc7Ft2zbJrImJCby8vODt7Q0vLy+YmpqqPefQoUMaj+ra2dmJtV1cXCAIgsrjRIQVK1ZI3jk1MjKCu7u7mLeyslJ7ztWrV6Hpv+0WFhZi1sPDAzKZTO05mzdv1njX19nZWcw7ODioPZ6fn4/NmzdLZk1MTODp6Sn2zczMTO05R44cQUZGhmTe1tYW3t7e8PHxgbOzM4yM1A8nrVixQvIOoJGREdzc3MS8VN+uX7+OU6dOSda2sLCAl5cXfHx84O7uDmNj9eH827Zt03j30snJSawt1bfi4mKsW7dOMmtsbCz2zdvbW7Jvx48fx61btyTzNjY28PHxgZeXF1xdXSX7tmrVKsnjroIgwM3NDT4+PvD29oa1tbXac9LT03Hs2DHJ2ubm5mLfPDw8JPu2Y8cOjXcvX/TN29sbjo6Oao+XlZVh9erVktmX++bl5QVzc3O155w6dUrjCQkbGxuxtqa+rVmzRvKUwYu+vcjb2NioPSc7Oxu7du2SrO3i4oLExETI5XK0adNGsu+MMaYPQRBSiShC8jHeoDLGmGGSk5MRHx//ui+DMcZeG1NTUzRv3hyDBg1CTEzM674cxtj/GG0b1Ff6PaiMMcYYY+z/DhMTEzRr1gxyuRxJSUmoXr36674kxth/DG9QGWPMQK1atUJhYWGlsuXl5ahTp47a0Jb69esjISEB8fHxCA4OVjte+8KuXbvQrl07lTVbW1u0bt0acXFxaNOmDZycnDTW79ChA7Zv366yVrNmTcTHxyMhIQENGzaUPO4I/DEZNSgoSOXIpYmJCZo0aSJee9WqVTXWnjRpEkaNGqWy5ubmhvj4eMTHx6N58+awtLSUzCoUCoSGhqpNdg0PD0dCQgISEhIQEhKisW8HDx5EUlKSypq1tTVatWqFhIQEtGnTBs7OzhqvvUuXLtiwYYPKWo0aNZCQkIC4uDhERUXBxMREMvv48WPUqlVL5cilsbExmjRpIn7vvr6+Gmv//PPPGDJkiMqaq6srYmNjkZCQgObNm2s8aqlUKlG/fn2kpaWprNerV0/sW506dTT27fjx42jTpo3KmpWVFVq2bCn2zdXVVeO19+zZEytXrlRZ8/X1Ff99iY6O1ti33Nxc1KpVS2Uar0wmQ+PGjcW++fn5aaz966+/on///iprzs7OYt9atGghecQV+OM4e6NGjXDx4kWV9bp164rXHhoaKnm8FvhjQFSTJk1U1iwsLMS+xcbGws3NTeO1f/nll1i0aJHKWtWqVcXajRs3ljzCD/xxnL1WrVoqx+GNjIwQHR0t9s3f319j7SVLlqB3794qa87OzkhISBCP9tra2mrMM8bYK9P04dTX+cVDkhhj/1ULFy6s1JAfoj+Gp0RFRRk85OeFCxcuqAz5mTp1ql5Dfl7o27dvpYb8EBEVFhaSs7MzAaCwsDAaMWKEXkN+Xli+fDkBIEtLS4OG/LwQExNj8JCfF65evUpGRkYkk8koJiZG7yE/LwwcOJAAkJOTE3Xp0oXWrl2r15AfIqLnz5+Th4eHwUN+Xli3bp045Oett96iuXPn0v379/W+9tjYWJUhP7t27dI55OeFW7dukUwmM3jIzwvff/+9OOSnU6dOtGrVKsrNzdUrW1paSlWqVFEb8qNv37Zt20YAyNzcnJKSkmjOnDmUmZmpV5aI6O233yYA5OPjQ71796adO3dScXGxXtkXg9SMjIwoOjqaJkyYQJcvX9a7by8GqTk4ONCHH35IK1asoKdPn+qVfXmQWnBwMA0aNIiOHTvGw5EYY387aBmSxHdQGWPsX5SXl4fk5GTExMRIDpXR5s6dO2jbti0WLlyIgIAAjXe9NLl8+TJWrVqF2NhYyQFM2pSWlsLZ2RknTpxA/fr1JYcYaXP27Fn88MMPSEpKgpeXl0FZ4I/fAbtjxw40b95ccqiMNpmZmYiLi8OsWbMQGBhocN8uXbqEZcuWIS4uTnKQkDbl5eWwsbHB0aNHERkZaXDfzp8/j+HDhyMpKQk+Pj4GZQHg0aNH2LZtG1q0aAELCwuDsg8fPhR/NY+2u9OaXLhwAb/99hvi4+MlBwlpo1AoYGZmhsOHDyMqKkrjXX1NLl68iIEDByIpKUnrXX1NMjMzsWXLFrRs2VLjXX1NcnJyUL9+fYwaNUrr3WlNzp8/j/nz5yM+Pl7rXX0pSqUSgiDg4MGDiI6ONrhvly9fxldffQW5XK71rj5jjP2TeEgSY4wxxhhjjLF/jbYhSdIfnmCMMcYYY4wxxv5lvEFljDHGGGOMMfZG4A0qY4wxxhhjjLE3Am9QGWOMMcYYY4y9EXiDyhhjjDHGGGPsjcAbVMYYY4wxxhhjbwTeoDLG2L/o559/xr59+1BWVmZwNiMjA1OmTMGNGzcqVXvNmjVYt24dCgoKDM6WlpZi3Lhx+P3336FUKg3OHzt2DPPnz8fDhw8NzgLAzJkzsXv3bpSWlhqczczMxOTJk5GWllap2uvXr8eaNWvw7Nkzg7Pl5eUYP348Tp48Wam+nTp1CnPnzkVWVpbBWQD45ZdfkJycXKm+PXz4ED/++COuXLmCyvxKus2bN2PVqlXIy8szOKtQKDBhwgQcP34cCoXC4HxqairmzJmDzMxMg7MAMG/ePOzYsQMlJSUGZ3NycjBhwgRcunSpUn3btm0bVqxYgdzcXIOzSqUSP/74I44ePVqpvp0/fx6zZs3C3bt3Dc4yxtjfhojeuK/w8HBijLH/ovnz5xMAsrW1pffee4+WLFlCOTk5emWVSiU1bNiQAFBAQAANGDCADh06ROXl5Xrlz507RwDIxMSEWrduTT///DPdvn1b72v/8ssvCQC5u7vTJ598Qps2baLCwkK9sgUFBeTk5EQAqH79+jR69Gg6e/YsKZVKvfJLly4lAGRjY0Pt2rWjxYsXU3Z2tl5ZpVJJTZs2JQDk7+9P/fr1o/3791NZWZle+StXrpAgCGRsbEwtW7akadOm0c2bN/XKEhENGDCAAJCrqyt9/PHHtGHDBiooKNAr+/z5c3J3dycAFB4eTiNGjKCUlBS9+7ZmzRoCQFZWVtS2bVtauHAhPXr0SO9rb926NQGg6tWrU9++fWnv3r1UWlqqV/bmzZskk8nI2NiYmjdvTlOmTKHr16/rXXvo0KEEgFxcXKhr1660bt06ys/P1ytbUlJCPj4+BIDq1atHw4cPp9OnT5NCodArv2XLFgJAlpaW9Pbbb9P8+fPpwYMHel+7XC4nAOTr60tffvkl7d69W+++3blzh0xMTEgmk1GzZs1o0qRJdO3aNb1rjxkzhgCQk5MTde7cmdasWUPPnj3TK1tWVkbVq1cnAFSnTh0aOnQonTx5Uu++McaYvgCkkIa9oECVeHfvnxYREUEpKSmv+zIYY0ySUqlEeXl5pbLl5eUICgrCvXv3xDVBEBAVFYXExEQkJiYiICAAgiBI5nfu3Im2bduqrNnb2yM2NhaJiYlo06YN7O3tNdZv3749tm3bprIWFBSExMREJCQkoEGDBpDJZJLZ+/fvo1atWirfu5mZGWJiYsS8t7e3xtoTJkzAyJEjVda8vLyQkJCAxMRExMTEwNzcXDJbUVGBOnXqID09XWU9MjJSrB0UFKSxb/v370dCQoLKmp2dHdq0aSP2zdHRUeO1f/TRR1i/fr3KWkBAgPh3FhkZqbFv2dnZ8Pf3V7mLaWJigubNmyM+Ph6JiYmoUqWKxtpTp07F4MGDVdY8PDzEvjVv3hwWFhaSWaVSibCwMFy7dk1lvX79+uK1h4SEaOzbsWPH0LJlS5U1GxsbsW+xsbFwcnLSeO0ff/wxVq5cqbLm7+8v1o6KioKxsbFk9unTp6hRowaeP38urpmYmKBZs2Zi36pVq6ax9i+//IJ+/fqprLm5uan0zcrKSjJLRIiMjMT58+dV1sPDw8Vrr1Onjsa+paamIjo6WmXN2toarVu3RkJCAuLi4uDi4qLx2j///HMsWrRIZc3Pz0+s3ahRI5iYmEhm8/PzUaNGDeTn54trxsbGaNKkifizUr16dY21Fy9ejM8++0xlzc3NDYmJiZDL5WjVqhWsra015hljTB+CIKQSUYTkY7xBZYwxwyQnJyM+Pv51XwZjjP3rzMzM0Lx5c8jlciQlJWl9c4UxxjTRtkHlz6AyxhhjjDG9lJaWIjk5GX379kWPHj1w8ODB131JjLH/GOlzNYwxxjTy8PBAx44dK53ftm0bCgsLJR9zcnKCp6cnvLy8JI/q5uXlITk5WTJrbGwMDw8PeHl5wcPDA2ZmZmrPOXr0qMbBMTY2NmJtFxcXteOLRIS1a9dKDvsRBAGurq7w8vKCp6en5BHA69ev48yZM5K1zczM4OXlBS8vL7i5uUke+9y+fbvGAU+Ojo5ibQcHB7XHCwoKsH37dsmssbEx3N3dxb5JHTM+fvy4xsEx1tbWYm0XFxcYGam/97t27VrJoTUv+vai71J9u3nzJjSdKjIzMxOz7u7ukn1LTk7WOKjIwcFBvHapI84lJSXYtGmTZFYmk8HDwwOenp7w9PSU7NupU6dw+/ZtybyVlZX4d66pb+vWrUNFRYXauiAIcHFxEb93GxsbtedkZGTg5MmTkrVNTU1V+iZ1XHb37t14+vSpZN7e3l68dgcHB7WflfLycrUj4S/IZDK4u7uLfZM6np2SkoKbN29K5q2srFR+TqWOlm/YsEFyEJsgCHB2dhb/zm1tbdWe8/jxY+zbt0+ytpOTExISEpCUlITY2FjY2dlJPo8xxl6Jpg+nvs4vHpLEGPuvyszMJFNTUwKgMrxmwYIF9PDhQ5358ePHi1kYOLymvLyc/P39xaxMJqOYmBj66aef9Bpes2/fPpXazs7O1LVrV1q7dq1eQ1g6duyokg8NDdV7eM3Dhw/JwsJCzL4YXjNv3jzKysrSWXvKlCkqtatVq0Zffvkl7dq1i0pKSrRmFQoFBQUFqfStadOm4vAaXQOLjhw5olLb0dGROnXqRKtXr6a8vDyd1961a1eV/IvhNSdOnNDZt5ycHLK2thaz5ubmlJSURL/++itlZmbqrD1r1iyV2j4+PtS7d2/auXMnFRcXa80qlUoKDQ0Vs0ZGRtS4cWP68ccf6fLlyzr7dvr0aZXaDg4O9OGHH9LKlSspNzdX57V/+umnKvmQkBAaPHgwHTt2jCoqKrRm8/LyyN7eXsyamZlRQkIC/fLLL3Tv3j2dtRcsWKBS29vbmz777DPavn07PX/+XGtWqVRSZGSkmBUEgRo1akTjx4+nixcv6uzb+fPnVWrb2dlRx44dafny5fTkyROd1/7VV1+p5IOCgmjgwIF05MgRnX1jjDF9QcuQpNe+GZX64g0qY+y/qk+fPga9yH9Zfn4+ubq6GvQi/2VLliwx+EX+C0qlkpo0aUIhISE0aNAgvV7kv+zy5ctkaWkpvsi/e/eu3lkiov79+xv0Iv9lRUVF5OnpSY0aNaJx48bp9SL/ZatXrzb4Rf7LWrVqRYGBgZV6kX/jxg2ytLSkuLg4mjlzJmVkZBhUe8iQIeTp6Um9evWirVu3UlFRkd7ZF5NwGzZsSD/88AOdP3/eoL5t2rSJbG1t6f3336clS5bQ48ePDbr2xMTESk2rJiLKyMggKysrcVp1enq6QbVHjx5dqWnVRH9MwvXz86vUtGoiouTkZLK2tjZ4WvUL7dq1I39/f/rmm2/owIEDek+rJiK6f/8+2djYVGpaNWOMGULbBpWHJDHG2L8oLS0NNWvW1Dj9U5ucnBwAgLOzc6Vq37x5E9WqVdM4NVWb0tJSZGVlwdfXt1K17927B0dHR41TU3V5lb49ffoUCoVC69RUbW7duoUqVaponJqqTXl5Oe7evQs/P79K1c7MzIS9vX2lp6Zev34d/v7+lepbbm4uysrK4ObmVqna6enp8Pb2hqmpqcFZhUKB9PR0+Pv7V6p2VlYWrK2tJY+w6uP69euoUaOG5LFjXZ49e4bnz5/Dw8OjUrVv374NT09PySP6uiiVSty6davSfXvw4AEsLS356C5j7B/HU3wZY4wxxhhjjL0ReIovY4wxxhhjjLE3Hm9QGWOMMcYYY4y9EXiDyhhjjDHGGGPsjcAbVMYYY4wxxhhjbwTeoDLGGGOMMcYYeyPwBpUxxv5FFRUVryX7qnmFQgGlUvlaar9qnvtW+eyrTPp/ldpKpRIKheK11H7V/P/lvjHG2N9B5wZVEISFgiBkC4Jw6aU1R0EQ9giCcOPP/+ugIRsnCEKaIAg3BUEY9HdeOGOM/S/65JNP0LFjRyxbtgxPnjwxKPvgwQOEhoZi4MCBOHLkiMEvJqdPn47Y2FjMnDkTd+7cMShLRGjevDl69eqFrVu34vnz5wblDx06hIYNG+KHH37A+fPnDX4B37t3b7z//vtYsmSJ+Ptg9ZWTk4N69ephwIABOHTokMF9++WXX9C6dWv8/PPPuH37tkFZAGjdujU++eQTbNq0CUVFRQZlT548ifr162P06NE4e/aswX3r27cv2rVrh8WLF+Px48cGZfPy8hAWFoZ+/fph//79KC8vNyi/YMECtGzZEtOmTcOtW7cMygJAQkICPv74Y2zYsAGFhYUGZc+ePYvw8HCMHDkSKSkpBr9JMHDgQLRt2xYLFy7Eo0ePDMoWFhYiIiICffv2xd69e1FWVmZQftmyZWjevDmmTJmC69evG5QVBAFvv/02unbtinXr1iE/P9+g/OXLlxEWFobhw4fj9OnTr/TmCmOMVRoRaf0C0BRAGIBLL61NBDDoz/89CMCPEjkZgFsAqgMwBXAeQJCuekSE8PBwYoyx/6IzZ84QAAJARkZG1KRJE5o4cSJdvXqVlEqlznzv3r3FvKOjI3300Ue0atUqysvL05l99uwZOTo6ivnatWvTkCFD6MSJE1RRUaEzv3jxYjFrbm5OiYmJNGfOHMrMzNSZVSqVFB0dLeZ9fHyod+/etGPHDiouLtaZv3jxIgmCIPYtOjqaJkyYQJcvX9arb/369RNr29vb0wcffEArVqygp0+f6swWFhaSq6urmA8ODqZBgwbR0aNH9erbypUrxayZmRnFx8fT7Nmz6e7duzqzREQtWrQQ815eXvTpp5/Stm3b6Pnz5zqzaWlpZGRkRABIEASKioqicePG0cWLF/Xq26BBg8TadnZ21KFDB1q2bBk9efJEZ7a4uJg8PT3FfK1atejbb7+lw4cPU3l5uc78hg0bxKypqSnFxsbSzJkzKSMjQ2eWiCghIUHMe3h4UM+ePWnLli1UVFSkM3v79m0yNjYW+9awYUMaM2YMnTt3Tq++jRw5Uqxta2tL7733Hi1ZsoQeP36sM1taWkrVqlUT8zVr1qT+/fvTwYMH9erbjh07xKyJiQm1bt2apk+fTunp6TqzRERt27YV8+7u7tSjRw/atGkTFRYW6pVnjDF9AEghDXtBgfR4N1YQhGoAthFRyJ//nAYghogeCILgAeAgEQX8JRMFYCQRxf75z4P/3BCP11UvIiKCUlJSdF4XY4y9Dnfu3MHWrVsrnR81apTkXUBnZ2eEhISgdu3a8PPzg0wmU3tORkYGfvrpJ7V1IyMj1KhRAyEhIQgJCYGLi4tk7QULFuDcuXNq69bW1ggODkZISAgCAwNhZmam9pyKigoMGDBA8giht7c3ateujZCQEPj4+EAQBLXnHDhwABs2bFBbNzU1Ra1atRASEoLg4GDY2tpKXvsPP/wgeTfLyclJ/L5r1KgBY2Njtefcv38fEyZMUFsXBAF+fn7itbu6ukrW/u233yD1/5esrKxU+mZubq72HIVCgW+//VbyDqSXl5f4d16lShXJvh05cgRr1qxRWzcxMVHpm52dneS1T5gwAffv31dbd3R0FPvm7+8v2bfHjx9j9OjRauuCIKB69eritbu6ukpe+/Lly3Hy5Em1dUtLS5W+WVhYqD1HqVRi4MCBKC0tVXvMw8ND/DurVq2aZO2TJ09i+fLlauvGxsYICAgQv3d7e3u15wDA5MmTJU8aODg4qPTNxMRE7Tl5eXkYPny42rogCPD19RXz7u7ukte+Zs0aHDlyRG3dwsICQUFBCAkJQVBQECwtLdWeQ0QYNGiQ5CkHd3d3lb4ZGakfpLt8+TLmzJmjtm5mZoYWLVpALpcjKSkJPj4+as9hjDF9CYKQSkQRko9VcoOaR0T2Lz2eS0QOf8m0BxBHRJ/8+c+dATQkoj666vEGlTH2JktOTkZ8fPzrvgzGGHttQkNDIZfL0bZtW9SrV+91Xw5j7H+Mtg3qPzkkSf0twT+OjEg/WRB6CYKQIghCiqGfk2GMMcYYY/8OBwcHBAcHIzg4GL6+vq/7chhj/zHq53n080gQBI+XjvhmSzwnE8DL5z+8AWRp+gOJaC6AucAfd1AreV2MMfaPq1+/Pvbt21epLBGhU6dOePjwocq6mZkZwsPDERUVhcjISDg6Okrmz58/j2+++UZt3c3NDVFRUYiKikLdunUljx0CwMiRI9WODhoZGSEkJETMazq6V1RUhHfffVdtyJCtrS0aNGiARo0aITw8HNbW1pL51atXY+7cuWrr1atXF2sHBARIHjsEgG7duuHevXsqa6ampmLfGjZsCGdnZ8ns1atX0aeP+gEeV1dXlb6ZmppK5seOHYv9+/errAmCgJCQEERGRiIqKkrjEd3i4mK8++67asNyrK2t0bBhQ0RFRaF+/foa+7Zx40bMnDlTbb1atWritdeqVUvySDjwx2Cuvw53MjExQVhYmHjtmo6E37p1C7169VJbd3Z2FmvXq1dPY98mTZqE5ORktfXg4GAxX7VqVcm+lZWVoW3btigpKVFZt7KyQoMGDcS+aToSvn37dkyZMkVtvWrVqmLtwMBAjX37/PPP1YYUmZiYoF69eoiMjERkZCTc3Nwks/fu3UO3bt3U1p2dncWe16tXT/IoPQBMmzZN8mMEgYGB4rX7+vpK9q2iogLt2rVTGyxlZWWF+vXrIzIyEg0aNNB4JPzQoUOSx7pr1aoFuVwOuVyOqKgoySPhjDH2t9D04VRSHXhUDapDkiZBdUjSRImMMYB0AL74/0OSgvWpx0OSGGP/Vbt27RIHkHh7e9Pnn3+u96AgIqL27duLg1saNWpE48ePp0uXLuk1uCUrK4vMzc1VBgUtX75cr4E3REQTJ04Urz0oKIi+++47vQcFVVRUUEBAgMqgoFmzZtGdO3f0qn3gwIFKDwoiIvroo4/EvkVGRtLYsWPpwoULevUtOzubLC0txYE377//Pi1dupRycnL0qj19+nS1QUGHDh3Sa+CNQqGg2rVri4OC2rRpQzNmzKDbt2/rVfv48eMqA28++eQT2rx5s94Db3r06CHmGzRoQGPGjKGzZ8/q1benT5+Sra0tASAbGxtq3749/fbbb3oNCiIi+vXXX9UGBR04cIDKysp0ZpVKJf35ZjeZmJhQq1ataPr06XTr1i29ar88zMzNzY26d+9OGzdupIKCAr3yLw8zi4iIoFGjRlFqaqpefXt5mJm1tTW9++67tGjRInr06JFetV8eZubn50dff/017du3T+++vRhmZmxsTC1atKCpU6fSjRs39KrNGGP6wqsMSRIEYSWAGADOAB4BGAFgE4A1AKoAuAvgPSJ6KgiCJ4D5RJTwZzYBwDT8MdF3IRGN1WfTzJ9BZYz9V3399ddwcnKCXC5H3bp1Je+AaJKRkYHvvvsOiYmJSEhI0Hi3UJNZs2YhPT0dcrkc0dHRGu+ySiktLUX37t3RsGFDJCUloXr16gbV3rt3L1auXAm5XI5WrVppvFuoybfffgtra2vI5XLUq1fPoL5lZmbim2++QUJCAhISEjQOQtJk7ty5uHr1KuRyOZo0aWJQ38rLy9G9e3eEhYVBLpejRo0aBtU+fPgwFi1aBLlcjtatW8PGxsag/JAhQ2BiYgK5XI6wsDCNd6elPHz4EF9++SXi4uKQmJgId3d3g2ovWrQI586dg1wuR9OmTTXeZZWiUCjQo0cP1K5dG3K5HDVr1jSo9smTJ/HLL78gKSkJsbGxGu+yajJixAgolUrI5XJEREQY1LecnBx8/vnnaNOmDRITE+Hp6WlQ7WXLluHUqVOQy+Vo1qyZxrusUpRKJXr27Cne7QwICDDoZyU1NRVTp06FXC5HbGysxgFSjDH2ql55SNK/jTeojDHGGGOMMfbf9LqGJDHGGGOMMcYYY3rjDSpjjDHGGGOMsTcCb1AZY4wxxhhjjL0ReIPKGGOMMcYYY+yNwBtUxhhjjDHGGGNvBN6gMsYYY4wxxhh7I/AGlTHG/kU7d+7E06dPK5XNzMzE0aNHoVAoKpU/cuQI7t69W6lsaWkptm/fjuLi4krlL168iAsXLqCyv9osOTkZT548qVT2wYMHOHz4MCoqKiqVP3bsGDIyMiqVLS8vx7Zt21BUVFSp/JUrV3Du3LlK92337t14/PhxpbLZ2dk4cOAAysvLK5U/efIk0tPTK5VVKBTYtm0bCgsLK5VPS0vDmTNnKt23vXv3Ijs7u1LZJ0+eYN++fZXu2+nTp3Hz5s1KZZVKJbZt24aCgoJK5W/cuIHff/8dSqWyUnnGGPs78AaVMcb+Rb///jtcXV3RrFkzTJ48GWlpaXpn3dzc0LlzZ7i5uaFLly5Yu3Yt8vPz9c4XFRWhatWqqFu3LoYNG4ZTp07p/ULUzMwMCxcuhJOTE+RyOebOnYusrCy9azs6OqJBgwaoVq0a+vTpg127dqG0tFTv/Pnz5+Hq6oomTZpg4sSJuHr1qt6bDxcXF/Ts2ROurq7o1KkTVq1ahby8PL1rl5WVwdfXF7Vr18aQIUNw4sQJvd8kMDExwYoVK+Ds7IzExETMmTMHmZmZetd2dnZGo0aNULVqVfTu3Rs7duxASUmJ3vkrV67Azc0N0dHRmDBhAi5fvqx335ydnfHVV1/B1dUVH3zwAVasWIHc3Fy9ayuVSvj5+SE4OBiDBg0y6M0VmUyG9evXw9nZGfHx8Zg9e7ZBb664uLggJiYG3t7e+PTTT7Ft2zaD3ly5efMm3N3dERUVhXHjxuHixYt6983R0REDBw6Es7MzOnTogGXLlhn05opMJoO/vz8CAwPx7bffGvTmipGREbZv3w5nZ2fExsZi5syZuHPnjt61XV1dERsbC29vb/Ts2RNbtmzB8+fP9c4zxtjfgojeuK/w8HBijLH/otzcXLK3tycA4pe/vz998803dODAASorK9Oanz9/vkrWxMSEWrZsSdOmTaNbt25pzSqVSmrYsKFK3s3Njbp3704bN26kgoICrflz586pZAFQeHg4jRw5klJTU0mpVGrNf/nllypZa2trevfdd2nhwoX06NEjrdmCggJycnJSyfv5+dHXX39N+/bt09m3pUuXqmSNjY2pefPmNGXKFLpx44bWrFKppKZNm6rkXVxcqGvXrrRu3TrKz8/Xmr9y5QoJgqCSr1evHn3//fd0+vRpUigUWvMDBgxQyVpaWtLbb79N8+fPpwcPHmjNPn/+nNzd3VXyvr6+9OWXX9Lu3buptLRUa37NmjUqWZlMRs2aNaPJkydTWlqa1iwRUevWrVXyTk5O1LlzZ1qzZg09e/ZMa/bGjRskk8lU8nXr1qVhw4bRyZMndfZt2LBhKlkLCwuSy+U0d+5cysrK0potKSkhHx8flXzVqlXpiy++oOTkZCopKdGa37Jli0rWyMiImjRpQhMnTqQrV67o/FmRy+UqeUdHR/roo49o1apVlJeXpzV7584dMjExUcnXrl2bBg8eTMePH6eKigqt+TFjxqhkzc3NKTExkebMmUOZmZlas4wxpi8AKaRhLyhQJY+//JMiIiIoJSXldV8GY4xJOnbsGHr37l3p/NWrVzUe/zMyMoKtrS1sbW1hY2MDmUym8nhJSQmuX7+u8c82MzMT81ZWVmqPZ2RkaLzrKggCrK2txbyJiYnac7TdSTI2Nla5dkEQVB7PycnRetfV0tJSzJubm6s9fu3aNZSVlUlmjYyMYGNjI+b/2rfy8nJcvXpVY+2X+2Zpaal27Xfu3MGzZ88ks4IgwMrKSsybmpqqPUffvllbW8PISPVw05MnT3D//n2N125hYSHmLSws1B5PS0vTeLdaV98UCgUuX76ssbapqanKv29/7dvdu3e13q1++d83qb5dunRJ411+Y2Nj2NjYwM7OTrJvubm5uHfvnsbauvp2/fp1jXerX+6bjY0NjI2NVR4nIly8eFFjbV19y8zM1PpRAGtra/F7N7RvMplM5ef0r30rLi7GjRs3NNauV68e5HI55HI5wsLC1PKMMaYPQRBSiShC8jHeoDLGmGGSk5MRHx//ui+DMcZeq+DgYMycORMxMTGv+1IYY/9jtG1QjaUWGWOMaWZhYYHq1atXOn/37l2NnykTBAEWFhawtLSElZWV5J1AbXeFjI2Nxay5ubnanZmHDx9q/UyZubm5mJe6g6pt6I2RkREsLS3Fr7/eWcnLy9N6V8jU1FSsbWZmpvb4q/StoqJC62cYZTIZrKysYGlpCQsLC7W+PXr0SOugI119u337tsY7qLr6lp+fj5ycHI21TUxMxGuXuvN87949rQN7LCwsxPxf7wQqlUqtA6J09S07O1vroCMzMzMxL3UnUFffXr72v/atoKBA64AoXX3LzMzUeMce0N43IsLt27c1ZmUymfjvi1TfHj9+rHXQkZmZmZg3tG+CIIhZqb6VlpZqvWMfEBCApKQkyOVyREdHq33vjDH2yjSd/X2dX/wZVMbYf1V+fr7aZym9vLzo008/pW3bttHz58+15pcsWaKSFQSBoqKiaNy4cXThwgWtn21TKpXUpEkTlbydnR116NCBli1bRk+ePNFa+/Lly2qfpQwMDKSBAwfS4cOHqby8XGu+f//+KllTU1OKjY2lmTNnUkZGhtZsUVERubm5qeQ9PDyoZ8+etGXLFioqKtKaX716tVrfGjZsSGPGjKFz587p/Exgq1atVPI2Njb03nvv0ZIlS+jx48das1KfpaxZsyb179+fDh48qLNvQ4YMUfvccevWrWn69Ok6P3dcUlJCXl5eap877tGjB23atIkKCwu15jdt2qT2ueOIiAgaNWoUnTlzRmffEhMT1T533K5dO1q8eLHOzx1nZGSQsbGxSr5GjRrUr18/2r9/v87PHY8ePVrtc8ctW7akqVOn0s2bN7Vmy8rKyNfXVyXv6upKH3/8MW3YsEHn546Tk5PV+hYWFkYjRoyglJQUnZ+fbdeunUrWysqK2rZtSwsWLKCHDx9qzd6/f5/MzMxU8tWrV6e+ffvS3r17dX7u+Mcff1T73HFMTAz99NNPdP36da1ZxhjTF7R8BvW1b0alvniDyhj7rxo/frzBL/JfKC8vJ39/f/FF/qJFi3S+yH/Zvn37DH6R/7KOHTuSsbExtWjRQq8X+S97+PAhWVhYiC/y169fr/NF/sumTJli8Iv8FxQKBQUFBZGVlRW98847er3If9mRI0dUXuTv2bNH54v8l3Xt2lXlRb4+w4VeyMnJIWtra3J2dqYuXbrQ2rVrdQ4XetmsWbMIAIWGhtLw4cPp1KlTevdNqVRSaGgoWVhY0FtvvUXz5s3TOVzoZadPnxaHC/Xp04d27dqlc7jQy3r16kVGRkbUtGlTmjRpEl29elXvn5W8vDyyt7cnR0dH6tSpE61evVrncKGXLViwgABQnTp1aMiQIXTixAmD+hYZGUnm5uaUlJREv/76q0HDhc6fP08AyMfHh3r37k07d+6k4uJivfNfffUVGRkZUePGjenHH3+ky5cv6923goICcnZ2JgcHB/rwww9p5cqVlJubq3dtxhjTl7YNKn8GlTHG/kUbN25Ew4YN4enpaXD23r17uHr1Kpo1ayZ5BFaX/fv3w9PTEwEBAWpHCnUpLS3F1q1b0bp1a9jZ2Rlc+9y5cygpKUGDBg0qNVRl8+bNiIiIgJeXl8HZrKwsXLhwATExMZJHOXU5ePAgXF1dERgYaHDfysvLsXnzZrRs2RIODg4G17548SIKCgrQsGFDtWPL+ti6dStCQ0Ph4+NjcPbRo0dISUlBixYtJIcI6XLkyBE4ODggODjY4L4pFAps2LABLVu2hKOjo8G1r1y5gidPniAqKqpSR1C3b9+OkJAQVK1a1eDskydPcPz4cbRs2RKWlpYG548dOwYbGxvUrl3b4L4plUps2LABMTExcHZ2Nrh2WloaHj58yEd3GWP/OB6SxBhjjDHGGGPsjaBtg8qzwRljjDHGGGOMvRF4g8oYY4wxxhhj7I3AG1TGGGOMMcYYY28E3qAyxhhjjDHGGHsj8AaVMcYYY4wxxtgbgTeojDHGGGOMMcbeCLxBZYyxf9HAgQMxZcoUXL9+3eBsRkYGunXrhnXr1iE/P9/g/Jw5czB8+HCcPn0aSqXSoGxpaSm6d++O+fPn48GDBwbX3rdvH7788kvs3r0bpaWlBueHDBmCSZMm4dq1azD016NlZmaia9euWLNmDZ49e2Zw7QULFmDo0KE4efKkwX0rLy/HJ598grlz5+L+/fsG1z58+DC++OILJCcno6SkxOD8iBEj8OOPP+LKlSsG9+3hw4fo0qULVq5cidzcXINrL1myBIMHD8bx48ehUCgMyioUCvTq1Qu//PIL7t27Z3DtkydP4vPPP8f27dtRXFxscP6HH37A+PHjcenSJYP7lpOTgy5dumD58uV4+vSpwbVXrlyJ7777DkePHkVFRYVBWaVSic8//xyzZs3C3bt3Da6dmpqKXr16YevWrXj+/LnBecYY+1sQ0Rv3FR4eTowx9l+0bds2AkAAqGbNmtS/f386ePAglZeX65V/++23CQCZmJhQ69atafr06ZSenq5X9u7du2RqakoAyN3dnXr06EGbNm2iwsJCvfJjx44Vrz0iIoJGjRpFZ86cIaVSqTNbXl5Ofn5+BICsra2pXbt2tHjxYsrOztar9p49e8TaNWrUoH79+tH+/fuprKxMr/z7779PAMjY2JhatmxJU6dOpZs3b+qVffDgAZmbmxMAcnV1pY8//pg2bNhABQUFeuUnT54sXntYWBiNGDGCUlJS9OpbRUUFBQYGEgCysrKitm3b0oIFC+jhw4d61T506JBYu3r16tS3b1/au3cvlZaW6pXv3LkzASCZTEYxMTH0008/0fXr1/XKPn78mKysrAgAOTs7U5cuXWjt2rX07NkzvfIzZswQrz00NJSGDx9Op0+fJoVCoTOrVCopNDSUAJClpSW99dZbNG/ePMrKytKr9qlTp8Ta1apVoy+//JJ27dpFJSUleuV79uwp9q1p06Y0adIkunbtml7Z3NxcsrOzIwDk6OhInTp1otWrV1NeXp5e+Xnz5onXXqdOHRo6dCidOHFC7741aNCAAJCFhQUlJSXRr7/+Svfv39erNmOM6QtACmnYCwpk4DuD/4aIiAhKSUl53ZfBGGOS8vLyKnUHFPjjTcG2bduq3YW0sbFBVFQUGjdujKioKNja2krmU1JS8MUXX6it+/r6okmTJmjSpAmCg4Mhk8kk89999x0OHjyosmZiYoKIiAg0adIEjRs3hpubm2Q2Pz8f8fHxand1XF1dER0djSZNmiA8PBzm5uaS+aVLl2LmzJlq6yEhIeK1V69eHYIgqD2HiPD++++r3RWysrJCo0aNxL7Z2dlJ1r5w4QJ69uyptl6tWjXx+w4JCYGxsbFkfvjw4di9e7fKmrGxMcLDw8Vrd3d3l8wWFRUhLi4OZWVlKuvOzs5o3LgxGjdujPr162vs26pVqzB16lS19eDgYPHaa9SoIdk3APjwww9x69YtlTUrKytERkaicePGiI6O1ti3tLQ0dOnSRW29SpUqaNy4MZo0aYI6depo7Nvo0aOxfft2lTWZTCb2rXHjxvD09JTMlpSUIC4uTu0OqKOjo9i3Bg0awMLCQjK/adMmjB8/Xm09MDBQrF2zZk2NfevWrRuuXr2qsmZhYYHIyEg0adIEjRo1goODg2Q2IyMDHTp0UFv38fERrz00NFRj33788Uds2LBBZU0mk6FevXritXt7e0tmy8rKEB8fj8LCQpV1BwcH8ee0QYMGsLS0lMzv2bMHw4YNU1sPDw9HUlIS5HI5wsLCNPaNMcb0IQhCKhFFSD7GG1TGGDNMcnIy4uPjX/dlMMbYa+Hp6SluVlu2bKnxTQLGGNNE2wZV+q07xhhjjDHGJGRlZeHAgQOwtraGi4sLGjZs+LoviTH2H8IbVMYYM1DNmjUljw7qa/LkyXjy5Inauo2NDQIDA1GrVi34+fnB1NRU7Tn37t3D7NmzJf9cHx8f1KpVC4GBgXB3d5c8grd8+XJcunRJbd3MzAw1a9ZEYGAgatasCSsrK7XnKBQKjBgxQnLgjbOzMwIDAxEYGIiqVavCyEh9Bt/Ro0fVjnsCgJGREfz8/FCrVi3UqlULjo6Okt/f1KlTkZ2drbZubW0t9q1GjRqSfXv48CGmT58u+ed6e3uLffPw8JDs26pVq3D+/Hm1dVNTU9SsWVO8dqm+KZVKjBgxQnLgjZOTk3jt1apVkzyaffLkSWzevFlt3cjICL6+vmLeyclJ8vubPn06Hj58qLZuZWUlft81atSAmZmZ2nOePn2KSZMmSf65Xl5eYt7T01Oyb+vWrUNqaqrauomJCfz9/cVrt7a2VnsOEWHkyJFqR6OBP475vsj6+vpK9i01NRXr1q1TWzcyMkK1atXEvLOzs+T3N2vWLGRmZqqtW1pait+3v7+/ZN/y8/M1/jfCw8ND/Fnx8vKS7NvmzZtx8uRJtXUTExPUqFFDvHYbGxu15xARxowZIzkcyt7eXqxdvXp1yb5dv34dixYtUluXyWRo3Lgx5HI5kpKSEBAQIPn9McbYK9P04dTX+cVDkhhj/1UXLlwQB5gAoPDwcBo5cqTeQ3P69u0rZl8MzVm4cKFeQ3MKCwvJ2dm50kNzli9fLmZlMhk1b96cpkyZovfQnJiYGDHv7OxMXbt2pXXr1lF+fr7O7NWrV8nIyEjM16tXz6ChOQMHDhSzlpaW9Pbbb9P8+fP1Gprz/Plz8vDwUBuas3v3br2G5qxbt06lb82aNTNoaE5sbKyYd3Jyos6dO9OaNWv0Gppz69YtkslkakNzTp48qVffvv/+ezFrYWFBcrlc76E5paWlVKVKFTFfpUoV+uKLLyg5OZmKi4t15l8eKGZkZESNGzemH3/8ka5cuaLXz8qLgWIAyMHBgT766CNauXIl5ebm6sy+PFAMAIWEhNDgwYPp+PHjVFFRoTP/8kAxMzMzSkhIoF9++YXu3bunM/vyQDEA5O3tTZ9//jnt2LFDr769PFBMEARq1KgRjR8/ni5duqRX314MFANA9vb29MEHH9Dy5cvpyZMnOrOMMaYv8JAkxhh7M3Tp0gW5ubmQy+VITEyEl5eX3tkHDx6gefPmaNWqFZKSkhDz/9q77/Coqq0N4O+Z9N57pSUQCAESCD2UkEIygoiCoiKCFEEBlaZcrIAoF5AivYv0jhB6kx5aCIReUkggCSG9z/r+AObLMGcqSCJ3/Z5nngtnzpu1WZl4Z8/ZZ6dDB5Ub64iZNm0aNm/eDKlUCqlUivr162u90UllZSXat2+PWrVqITY2FlFRUbC1tdW69uHDhzFs2DB57RYtWqjcyEnMgAEDkJ6eLr96o2qDGDGZmZlo3749OnbsiNjYWHTs2FGne+Zmz56N1atXy8ceEBCgdd9kMhk6duwId3d3SKVSREVFqbxCLObEiRMYMGCA/N/dqlUrnfr26aef4s6dO/K8t7e31tmcnBz5pjpSqRSdOnVSubGOmEWLFmHx4sXy2oGBgVr3jYjQpUsXODg4QCqVIjo6WuUVYjHnz59Hnz59EBMTA6lUitatW6vckEjMyJEjceXKFfnYfX19tc7m5eWhdevWaNWqlfweTbEr66qsWLECc+bMkd/jGRQUpFPfYmJiYGFhIe+bk5OT1rUTExPRs2dPed/atGkDIyMjrfOMMaatf2STJEEQ/AGsrXKoNoAJRDSjyjkdAGwFcOfpoU1E9IOmr80TVMbY66qkpESnSeXzWRMTE713z3yR2s+Wp+ryJv9l1X7RfGlpKYyNjautb0Sk95v8/9W+VVZWorKyUnS59j9d+0XzpaWlMDIyEl3m/k/XlslkqKioqLa+McaYtv6RTZKI6BqAJk8LGABIA7BZ5NSjRBSrbx3GGHudvMibvxd94/gieX0npi+j9ovmxe4RfFW1uW/6MTAw0OlK8cus/aL56uybRCLRe3L6orUZY+xl0e/jPWWdAdwionsv6esxxhhjjDHGGPsf87ImqL0BrFbxXCtBEC4KgrBLEISGL6keY4wxxhhjjLHXzAtPUAVBMAbwBoD1Ik+fA+BDREEAZgHYoubrDBQEIV4QhPjMzMwXHRZjjDHGGGOMsX+Zl3EFNRrAOSJ68PwTRJRHRAVP/7wTgJEgCKK/cIyIFhBRCBGF6LLjHGOMMcYYY4yx18PLmKC+CxXLewVBcBWebv8nCEKLp/WUfzs9Y4wxxhhjjLH/eS80QRUEwRxAFwCbqhwbLAjC4Kd/7QkgURCEiwBmAuhNNfEXrzLG2CuSnJysd/bRo0fIz8/XO5+SkgKZTKZXtrS0FBkZGXrXTk9PR1lZmd75F+lbTk4O8vLy9M6/SN/Ky8uRnp6ud+2MjAyUlpbqnU9OToa+/7ebm5uLx48f6107NTUVlZWVemUrKyuRlpamd+0HDx6gpKRE7/yL9C0vLw85OTl6136RvslkMqSkpOhd++HDhyguLtY7zxhjL8MLTVCJqIiIHIgot8qxeUQ07+mfZxNRQyIKIqKWRHT8RQfMGGP/ZhMnTkSDBg0watQoHDlyRP77RbUhkUhQr149REZGYvbs2bh7965Otffs2QNPT0988skn2LZtG4qKirTOGhsbo0ePHggNDcWPP/6ICxcu6PQG/uHDh3BycsLbb7+NFStWICsrS6exT506FX5+fvjyyy9x6NAhlJeXa501MjJCgwYN0KVLF8ycORO3b9/Wqfbhw4fh7u6O/v37Y8uWLSgsLNQ6a2hoiHfffRfNmzfH999/j3PnzunUt5ycHDg7O+Ott97CsmXL8PDhQ53GPmvWLNSrVw8jR47EgQMHdOqbsbExGjdujE6dOmH69Om4efOmTrVPnjwJNzc39OvXDxs3btTpwxUDAwN8/PHHaNasGb799lvEx8fr9CFBQUEBXF1d0b17dyxevFjnD1cWLlyIOnXqYPjw4di3b59OH66YmJggODgYHTp0wH//+19cv35dp9rnz5+Hq6sr+vbti/Xr1+v04YpEIsHQoUPRpEkT/Oc//8Hp06d16ltJSQnc3d3xxhtvYOHChS/04QpjjOmNiGrcIzg4mBhj7HV09+5dMjQ0JAAEgOzt7alPnz60Zs0aevz4scb8999/L88CoEaNGtG4cePo+PHjVFFRoTZbVlZGvr6+8qypqSnFxMTQvHnzKDU1VWPtXbt2KdT28vKiIUOG0M6dO6m4uFhjvkePHvKsIAjUunVrmjx5MiUmJpJMJlObTU1NJRMTE3ne1taW3n33Xfrzzz/p0aNHGmv//PPPCmMPCAigMWPG0N9//62xb+Xl5eTn5yfPmpiYUHR0NM2ZM4eSk5M11j5w4IBCbQ8PDxo0aBDt2LGDioqKNObfffddhb61bNmSJk6cSAkJCRr79uDBAzIzM5PnbWxsqFevXrRy5UrKysrSWHv69OkKY69fvz6NGjWKjhw5QuXl5WqzlZWV1KhRI3nW2NiYIiIiaNasWXT37l2NtY8dO6ZQ283NjT755BPaunUrFRYWasz369dPId+iRQv68ccf6cKFCxr7lp2dTVZWVvKslZUV9ezZk5YvX06ZmZkaa8+dO1ehtp+fH3355Zd06NAhjX2TyWTUrFkzedbIyIjCw8Ppt99+o9u3b2usHR8fr1DbxcWFPv74Y9q8eTMVFBRozA8ePFghHxISQt9//z2dO3dOY98YY0xbAOJJxVxQoBq44jYkJITi4+OrexiMMSYqMTERv/32m975devWiV4VEQQBrq6u8Pb2ho+PD6ytrZXOyc7OxubNm0W/rqmpKby8vODj4wMPDw8YGRkpnbNv3z6VV14dHBzg7e0Nb29vODo64ukWAnJEhKVLl4pekTE0NISHhwe8vb3h5eUFc3NzpXMSExNx8uRJ0dqWlpbw8fGBt7c33NzcIJEoL/DZsGGD6JLTqn3z9vaGjY2N0jm5ublYv15ss/knV7y8vLzg7e0NT09PGBsbK51z8OBB3Lp1SzRvb28v/56p6tuyZctEl20aGBjI++bt7S3at6SkJBw7dky0tqWlpTzr5uYGAwMDpXM2bdqER48eieaf79vzYy8qKsKff/4pmjUxMYGnpyd8fHxU9u3IkSMqryDa2dnJv+dOTk5KtQFg+fLlold9DQwM4O7uLh+7hYWF0jk3btzA4cOHRWtbWFjIs+7u7qJ927p1K1T9VgEXFxd53tbWVmnspaWlWLlypWjW2NhY4fVmYmKidM6xY8eQlJQkmre1tZX3zdnZWbRvK1euFF0aLpFI4O7uDh8fH3h5ecHS0lLpnPT0dPz111+itT08PBAbGwupVIpOnTrBzMxM9DzGGNNEEISzRBQi+hxPUBljTDdxcXGIjo6u7mEwxli1MTc3R3h4OEaOHIkOHTpU93AYY/8y6iaohq96MIwxxhhj7N9JIpGgTZs2kEqlkEql8Pf3r+4hMcZeMzxBZYwxHXXq1EnnTX6eqaioQEhICFJTUxWOBwYGIjIyEpGRkQgKChJd4go8WaLbu3dvhWNmZmbo0KEDIiMj0aVLF7i4uKis/+GHH2Lnzp0Kx7y9veW1W7duLbpUE3iyM2qTJk0UllxKJBK0bNlSnq9bt67K2jNmzMBPP/2kcMzOzg5dunRBZGQkOnXqBCsrK9GsTCZDaGgo7ty5o3C8YcOG8tpNmzZV2be///4b3bt3VzhmamqKsLAwed/c3NxUjn3AgAHYsmWLwjEPDw9ERUUhMjISbdq0EV2qCTxZlt24cWOFJZeCICA0NBQRERGIiopCvXr1RJdqAsDvv/+OCRMmKByzsbFR6JvYsmbgyfLitm3b4tq1awrH69evj8jISERFRaFZs2aiS1wB4PTp0+jatavCMRMTE7Rv3x6RkZGIiIiAu7u7aBYAhg4dirVr1yocc3Nzk/etbdu2MDU1Fc3m5uaicePGCptSCYKA5s2by/vm7++vsm9LlizB6NGjFY5ZW1sjPDwckZGR6Ny5M2xtbUWzRISOHTsiMTFR4bifn5987CEhISr7lpCQgE6dOikcMzY2Rrt27RAREYHIyEh4enqKZgFg5MiRSkuEXV1d5a/1du3aqVxeW1BQgMaNGyvdRhAcHCwfe4MGDVT2bfXq1fjss88UjtnY2CAqKgpSqRRRUVFwcHBQOXbGGHthqm5Orc4Hb5LEGHtdrVixQr7RTteuXWnu3LmUkpKiVVYmk1G7du0IAHl6euq0QRER0eXLl0kQBJ03KHrmyy+/VNigaNWqVZSdna1VtrCwkFxcXHTeoOiZtWvXyjfaiYqKojlz5tC9e/e0yhIRhYeHEwByd3engQMH0vbt27XaaIeI6MaNG2RgYKCwQdHFixe17tvXX39NAMja2preeecdrTcoIiIqKSkhDw8P+QZFX331FR0+fFjjRjvPbNmyRb7RzrMNiu7cuaNVlogoJiaGAJCrqysNGDCAtm7dqtVGO0SKG4I926Do/PnzWvfthx9+0GuDIqInG4LVqlWLAFC9evXoiy++oIMHD1JZWZlW+bi4OKUNim7duqVVlojorbfeUtqgKD8/X6tsWlqafEOwkJAQ+u677+js2bNa923KlCkEgCwtLalHjx60dOlSevDggVbZiooK+YZgderUoREjRtD+/fu17htjjGkLajZJ4iuojDH2CmVkZGDr1q3o3Lmz6MYu6ty7d0/+q1KCgoJUXgFR5fz581i6dCm6du0KJycnnbKlpaUwNzfHwYMH0aZNG9ENmNQ5e/Ysxo0bB6lUitq1a+uUBZ78bshNmzahS5cuohu7aMq2bdsWU6ZMQdOmTXXu29mzZ7Fw4UJ07dpV7dVpMeXl5TAwMMC+ffvQrl07lVenVTl37hy+/PJLSKVStVenVbl79y42bNiAiIgIlVenVcnIyEBwcDC+/fZbBAcHq7w6rUp8fDzmzZuHmJgYuLq66pStrKxEZWUl9uzZg7CwMJ37dvHiRQwdOhRSqRR+fn46ZQHg5s2bWLduHSIjI0U3K1MnKysLAQEBGDVqFJo3b65z386cOYNZs2YhJiZG7dVpMTKZDMXFxYiLi0OHDh1UXtVX5dKlS+jfvz+kUinq16+v888KY4y9DLxJEmOMMcYYY4yxV0bdJkm6fazHGGOMMcYYY4z9Q3iCyhhjjDHGGGOsRuAJKmOMMcYYY4yxGoEnqIwxxhhjjDHGagSeoDLGGGOMMcYYqxF4gsoYY4wxxhhjrEbgCSpjjL1Cc+fOxd9//43Kykqds3fv3sXvv/+O5ORkvWpv3LgRO3bsQHFxsc7Z0tJSTJ06FQkJCdDn15OdOHECf/zxB7Kzs3XOAsCCBQtw5MgRVFRU6JxNTU3F7NmzcffuXb1qb926Fdu2bUNRUZHO2fLycvz3v//FhQsX9OrbmTNnsGLFCmRlZemcBYDFixfj0KFDKC8v1zmbkZGB3377Dbdv39ar9o4dO7BlyxYUFhbqnK2srMS0adNw7tw5vfp27tw5LF26FA8fPtQ5CwDLli3DgQMH9OpbVlYWpk+fjps3b+pVe9euXdi0aRPy8/N1zspkMkyfPh3x8fGQyWQ65y9duoTFixcjIyND5yxjjL0sPEFljLFXSCKRoF27dnBxccGHH36I9evXIy8vT6usj48PlixZAh8fHwQFBWH8+PE4deqU1m9Ea9WqBalUCgcHB7zxxhtYuHAh7t+/r1XWxMQEt2/fRlBQEGrVqoVhw4Zh9+7dKC0t1SrfsGFDfP7553B2dkb79u3xyy+/ICkpSevJh4mJCcLCwuDi4oL3338fa9aswePHj7XKenh4YM2aNahVqxYCAwPx9ddf48SJE1p/SFCnTh10794dDg4OiI2Nxbx585CamqpV1sjICGlpaWjatCl8fHzw6aefYteuXSgpKdEqHxAQgFGjRsHZ2Rlt2rTBzz//jMuXL2vdNwsLC3Ts2BHOzs5477338OeffyInJ0errKurK7Zt24Y6deqgYcOGGDt2LI4dO6Z13/z8/PDWW2/BwcEB0dHROn24YmBggMzMTAQHB8PLywuDBw/W6cOVgIAAjB8/Hq6urmjVqhUmTZqES5cuad03GxsbdO7cGY6OjujVq5dOH644Ojpi7969qFevHho0aIDRo0fr9OFK/fr10atXLzg6OiIyMhKzZ8/GvXv3tMpKJBLk5uaiefPm8PT0xCeffKLThyv+/v746aef4ObmhtDQUPz00096f7jCGGN6I6Ia9wgODibGGHsdlZaWkre3NwGQP4yMjKhz5840Y8YMunXrltr89u3bFbIAyMXFhT7++GPatGkT5efnq82/8cYbSvng4GD67rvv6OzZsySTyVRmk5OTydjYWCFrYWFBb775Ji1ZsoQePHigtvZPP/2kVLtOnTo0YsQI2rdvH5WVlanMlpeXU506dRSyhoaG1LFjR5o2bRpdv35dbe29e/cq1XZycqK+ffvShg0bKC8vT23+nXfeUco3bdqUJkyYQKdPn6bKykqV2fT0dDIzM1PImpubU7du3WjRokWUnp6utvbUqVOVateqVYs+++wz2rNnD5WWlqrMVlRUUIMGDRSyBgYGFBYWRlOnTqWrV6+qrX3kyBGl2g4ODvTBBx/QunXrKDc3V23+gw8+UMoHBQXRN998QydPnlTbt8zMTLK0tFTImpmZkVQqpQULFlBaWpra2rNmzVKq7ePjQ0OHDqW4uDgqKSlRma2srKSgoCCFrEQioXbt2tEvv/xCV65cUfuzcurUKaXa9vb21KdPH1qzZg09fvxY7dgHDBiglA8MDKRx48bR8ePHqaKiQmU2JyeHbGxsFLKmpqYUExND8+bNo5SUFLW1Fy5cqFTby8uLhgwZQjt37qTi4mK1ecYY0waAeFIxFxSoBn4qFhISQvHx8dU9DMYYExUXF4fo6OjqHgZjjL1y5ubm6NKlC6RSKWJiYuDq6lrdQ2KM/QsJgnCWiELEnuMlvowxxhhjTCtFRUXYunUrBg4ciHfeeQeHDh2q7iExxl4zhtU9AMYY+7dxcXHBm2++qXd+z549KjeOsbGxgaurK9zc3GBrawtBEBSez83NxYEDB0SzEokEzs7OcHNzg6urK0xNTZXOOXnyJNLT00XzZmZmcHNzg5ubGxwdHSGRKH+GuXXrVpX3vDo4OMhrW1lZKT1/8+ZNXLp0STRrZGQEV1dXuLq6wsXFBUZGRkrn7N27FwUFBaJ5a2tred/s7OyU+lZYWIg9e/aIZiUSCZycnORjNzMzUzrnzJkzKu87NTMzk9d2dHSEgYGB0jnbtm1Tee+mvb29vO9ifbt79y7Onz8vmjUyMoKLiwvc3NxU9u3AgQPIzc0VzVtZWcn/3fb29kp9Ky0txc6dO0Wzz/r27N8u1rdz586pvH/S1NRUXtvJyUm0b9u3b1d576a9vb28trW1tdLzKSkpULUay9DQUKFvxsbGSuccPHhQ5X3OVlZW8terg4ODUt8qKiqwfft20awgCAqvN3Nzc6VzLly4gDt37ojmTUxM5FlnZ2fRvv31118oKysTzdvZ2cnzNjY2Ss9nZ2fjyJEjolkrKytERUVBKpUiOjoajo6OoucxxtgLUbX2tzoffA8qY+x1df/+fTI1NZXf22ViYkLR0dH0+++/U3Jyssb8r7/+qnBvmIeHBw0aNIh27NhBRUVFarMVFRVUv359eVYQBGrVqhVNmjSJEhIS1N5TR0R06NAhhdo2NjbUq1cv+uOPPyg7O1vj2N9//32FfIMGDWjUqFF05MgRKi8vV5t9+PAhWVhYyLPGxsYUGRlJs2bNojt37misPXPmTIXabm5u9Mknn9C2bduosLBQbVbsfsQWLVrQjz/+SBcuXNDYt5MnTypkrays6O2336bly5dTZmamxrE/fz+in58fffnll3To0CGNfXv+fkQjIyMKDw+n3377TeP9zkRECxYsULrfuX///rRlyxYqKChQm5XJZNS8eXOFfEhICH3//fd07tw5jX07d+6cQtbS0pLeeustWrp0qcb7nYmIhg4dqpCvW7cujRw5kg4cOKD2fmciory8PLK3t1e437lTp040ffp0unnzpsbay5cvV6jt7OxM/fr1o40bN2q831kmk1Hbtm0V8s2aNaNvv/2W4uPj1d63S0SUmJhIgiAo3CfevXt3Wrx4MWVkZGgc+xdffKF0v/Pnn39Oe/fuVXu/M2OM6QJq7kGt9smo2IMnqIyx19WIESPkmxpt3rxZ46ZGVRUUFJCzs7NOb/Kr+vPPP8nS0pJ69Oih9Zv8qjp27Ch/k79//36Nb/Krunr1KpmYmMjf5N+4cUOn2mPGjCEnJyf66KOPtHqTX1VxcTG5u7tTs2bNaMKECXTmzBmNb/Kr2rRpE5mbm8vf5Gva1Oh50dHRer/Jv337NpmamlKHDh1o6tSpdO3aNZ1qf/vtt+Tg4EAffvghrV+/XuOmRlWVlpaSj48PBQUF0fjx4+nUqVM69e2vv/4iMzMzeuONN2jhwoUaNzV6Xvfu3cnHx4eGDRtGu3fvVrup0fNSUlLI3Nyc2rdvT7/88gslJSXp9LMyadIksre3p/fff5/Wrl2rcVOjqsrLy6lu3boUGBhIX3/9NZ04cUKnvu3bt49MTU0pNjaW5s2bR6mpqVpniYh69epFXl5e9Omnn9KuXbt02tQoPT2dLC0tqU2bNvTzzz/T5cuXdeobY4xpS90ElTdJYoyxV+jSpUto2LCh6PJZTR4+fIiKigq4u7vrVfvq1auoVasWTExMdM6Wlpbizp078Pf3V1rOqI27d+/C1tYWtra2OmeBJ30LCAgQXc6oSVZWFkpLS+Hh4aFX7WvXrsHHx0d0ybQm5eXluH79OgICAvTqW3JyMqysrGBnZ6dzFgASExPRoEEDvfr26NEjFBQUwNvbW6/a169fh5eXl+jSX00qKyuRlJSEhg0b6tW3lJQUWFhYwN7eXucs8KRv9evXh6Gh7ndCPX78GLm5ufDx8dGr9o0bN+Dh4SG69FcTmUyGy5cvo1GjRnr1LS0tDSYmJrx0lzH2j1O3SRJPUBljjDHGGGOMvTK8iy9jjDHGGGOMsRqPJ6iMMcYYY4wxxmoEnqAyxhhjjDHGGKsReILKGGOMMcYYY6xG4AkqY4wxxhhjjLEagSeojDH2CslksmrJvozaL7Lre3WPvTprc9/0y3LfdPfsdwhWR23GGHtZeILKGGOvUP/+/dG3b19s2LABeXl5OmVTUlIQGhqKCRMm4MyZMzq/mZw+fTq6deuGRYsWIT09XadsZWUlwsPD8fnnn2PPnj0oLS3VKX/gwAGEhYVh6tSpuHbtmk5ZABg8eDA++OADrFu3Drm5uTplMzIyEBoaivHjx+PkyZM692327NmQSqVYsGAB0tLSdMrKZDJERkZi6NChiIuLQ0lJiU75Y8eOoV27dpgyZQquXLmi8+Rj+PDh6NOnD9asWYPHjx/rlM3KykJoaCjGjRuH48ePo7KyUqf8woULERMTg3nz5iE1NVWnLADExsZiyJAh2Llzp859O3PmDNq0aYPJkycjMTFR576NGjUK7777Lv788088evRIp+zjx4/RqlUrjBkzBn///bfOfVu+fDmio6MxZ84cJCcn65QFgO7du2PQoEHYsWMHiouLdcpevHgRrVq1wsSJE5GQkPBCk13GGNPbs0/b9HkAuAvgEoALAOJFnhcAzARwE0ACgGbafN3g4GBijLHX0enTpwkAASAjIyPq0qULzZw5k27fvq1VfuDAgfK8q6sr9e/fn7Zs2UIFBQUaszk5OWRrayvPN2/enL7//ns6d+4cyWQyjflFixbJs5aWlvTWW2/RsmXL6OHDhxqzMpmMQkND5fl69erRyJEj6cCBA1RWVqYxf+HCBXnW0NCQOnfuTDNmzKCbN29qzBIRffbZZ/K8s7Mz9evXjzZt2kT5+fkas/n5+eTg4CDPN2vWjL799luKj4/Xqm8rV66UZy0sLOjNN9+kxYsXU0ZGhlZjDwsLk+dr165Nw4cPp3379lFpaanGbFJSEgmCQADIwMCAOnToQP/973/p+vXrWtUeNWqUvLajoyP17duX1q9fT7m5uRqzRUVF5OrqKs83adKE/vOf/9Dp06epsrJSY379+vXyrLm5Ob3xxhu0cOFCun//vlZjj4iIkOd9fX3ps88+o927d1NJSYnG7M2bN8nAwEDet/bt29Ovv/5KV69e1ar2+PHj5bUdHBzogw8+oLVr19Ljx481ZktKSsjLy0ueb9y4MX3zzTd08uRJrfq2bds2edbMzIxiY2Np/vz5lJaWptXYpVKpPO/t7U1Dhw6lXbt2adU3xhjTltjc8dlDoBf4dEwQhLsAQogoS8XzXQF8BqArgFAAvxFRqKavGxISQvHx8XqPizHG/kkpKSmIi4vTO//NN98gMzNT6bibmxuCgoIQFBSEWrVqQSJRXuRy69YtTJkyRem4oaEh6tevj8aNG6Nx48awt7cXrT1v3jycO3dO6bitra08W79+fRgbGyudU15ejs8//1z0ilDt2rURFBSExo0bw93dHYIgKJ2zd+9erF+/Xum4mZkZGjZsiKCgIDRq1AgWFhaiY//2229Fr/y6urrKa9euXRsGBgZK56SkpODHH39UOm5gYAB/f3953sHBQbT2okWLcPr0aaXjNjY28r41aNBAtG8VFRUYPnw4ysvLlZ6rVauWPO/p6Snat0OHDuHPP/9UOm5qaoqGDRuicePGCAwMhKWlpejYf/jhB9ErmC4uLmjcuDGCgoJQp04d0b5lZGRgwoQJSscNDAzg5+cn75ujo6No7eXLl+PYsWNKx62trREYGIigoCA0aNAAJiYmSufIZDKMGDFC9Oqpr6+vPO/l5SXat2PHjmH58uVKx01MTBT6ZmVlJTr2SZMm4e7du0rHnZ2d5d+zevXqifbt0aNHGDt2rNJxiUQi71tgYCCcnZ1Fa69atQqHDx9WOm5lZaXQN1NTU6VziAgjR45EUVGR0nPe3t7y77m3t7do3xISEjB79myl4xYWFoiIiIBUKkXXrl3h4uIiOnbGGNOGIAhniShE9Ll/eII6H8AhIlr99O/XAHQgIrVry3iCyhiryeLi4hAdHV3dw2CMsWohCAJatGgBqVSKbt26oVGjRtU9JMbYv4y6CeqL3oNKAPYIgnBWEISBIs97AEip8vfUp8fEBjlQEIR4QRDixa4sMMYYY4yx6mdpaQkvLy94eXnxlVTG2Etn+IL5NkR0XxAEZwB7BUG4SkRHqjyvvHbkyaRW+SDRAgALgCdXUF9wXIwx9o8JDg7Gzp079coSEfr374+MjAyF44aGhggKCkJoaCiaN2+u8k1fYmIiRo8erXTc3t4eLVq0QGhoKIKCgkSX/gHAxIkTRZdc+vv7IzQ0FKGhofD19RVd+ldUVITevXujoqJC4biZmRlCQkLQokULhISEwMbGRrT2xo0bsXjxYqXjHh4e8toBAQGiSyYBYODAgUpLVQ0MDNC4cWOEhoaiRYsWcHV1Fc1ev34dI0aMUDpuZ2eHFi1aoEWLFmjatKnKvv3yyy84dOiQ0vF69erJx167dm3RvpWWlqJXr14oKytTOG5qaorg4GD591xV37Zv3465c+cqHXd3d1fom6Gh+P+lDx06FHfu3FE4JpFIEBgYKM+7ubmJZu/evYtPP/1U6biNjY389da0aVOYmZmJ5qdPn469e/cqHa9bt668dp06dUT7Vl5ejt69eytt9GNiYoJmzZrJ+2ZnZydae/fu3fjtt9+Ujru6usprN2zYEEZGRqL5ESNG4Pr16wrHJBIJGjVqJM+7u7uLZu/fv48BAwYoHbe2tkbz5s0RGhqKZs2awdzcXDQ/e/Zs0f/G1K5dW167bt26orcBVFZWonfv3igsLFQ4bmJigqZNm8r7puo2gGPHjmHixIlKx319fSGVSiGVShEWFia6nJ0xxl4KVTen6voA8B2Ar547Nh/Au1X+fg2Am6avxZskMcZeV/v379d7sx4iot69e8vzwcHB9N1332m9WU9GRgaZmZkpbNazZMkSrTfrmTZtmt6b9VRWVlJAQIB805mOHTvqtFnP0aNHlTbr2bBhg1ab9RAR9e3bV+/NerKyssjS0lK+WU+3bt102qxnzpw5Spv17NmzR6tNZ2QyGTVt2lTvzXrOnDmjtFnPunXrtNqsh4ho0KBBem/W8/jxY/mmXGZmZiSVSnXarGfx4sVKm/XExcVRcXGxxqxMJqOWLVsSAJJIJNS2bVuaMmUKXblyRauflYsXL8pr29nZUZ8+fWj16tWUk5Oj1dg///xzeb5Ro0Y0btw4OnbsGFVUVGjM5ufnk6OjIwEgExMT6tq1K82dO5dSUlK0qv3HH3/Ia3t6etLgwYPpr7/+oqKiIq3yzzblEgSBWrduTZMnT6bExESt+sYYY9rCP7FJkiAIFgAkRJT/9M97AfxARHFVzokBMAz/v0nSTCJqoelr8z2ojLHX1WeffQYbGxvExsaiRYsWoldAVLl79y6GDx+OmJgYxMTEwMND9I4JlWbOnIlr165BKpWiQ4cOKq8WiiktLcX777+P5s2bIzY2Fg0aNBC96qXK3r17sWzZMkilUkRFRcHW1lansY8cORKmpqaQSqUIDQ1VeZVVTGpqKoYOHYro6GjExMTAy8tLp9rz5s3DxYsXIZVK0bFjR5VXC8WUl5fjgw8+QFBQEKRSKRo2bKhT344cOYK5c+fK+6bqqpcqY8aMAQBIpVK0atVKp75lZGRg4MCBiIyMRGxsLHx8fHSqvXjxYpw+fRpSqRSdOnVSebVQTGVlJT788EMEBARAKpUiMDBQp76dPHkS06dPR2xsLLp27apy8ytVxo8fj9LSUkilUrRu3Vrl1WkxWVlZ6N+/P8LDwxEbG4tatWrpVHvlypU4cuQIYmNjER4ernLTMDEymQwfffQR6tWrB6lUiqCgIJ36dvbsWUyePFm+EZKTk5NOY2eMMW39I5skCYJQG8Dmp381BPAnEU0UBGEwABDRPOHJfxVnA4gCUASgHxFpnHnyBJUxxhhjjDHGXk/qJqh634NKRLcBBIkcn1flzwRgqL41GGOMMcYYY4z973jRXXwZY4wxxhhjjLGXgieojDHGGGOMMcZqBJ6gMsYYY4wxxhirEXiCyhhjjDHGGGOsRuAJKmOMMcYYY4yxGoEnqIwx9ooQEfbu3YuioiK98nfv3sWFCxeg768H+/vvv5GVlaVXtqCgAIcOHUJFRYVe+YSEBNy5c0ev7LO+FRYW6pVPTk7GuXPn9O7b8ePH8fDhQ72yRUVFOHDgAMrLy/XKJyYm4ubNm3plAWD//v0oKCjQK5uWlob4+HjIZDK98idPnsSDBw/0ypaWlmL//v0oKyvTK3/lyhVcv35drywAHDhwAHl5eXplMzIycPr0ab37durUKaSnp+uVLS8vx759+1BaWqpX/urVq7h69arePyuMMfYy8ASVMcZeEUEQsGPHDjg4OCA2Nhbz589Hamqq1nlHR0d06dIFPj4++PTTT7Fr1y6UlJRonb937x5cXFzQtm1b/Pzzz7h8+bLWb0QtLS3x3XffwcnJCe+99x5Wr16NnJwcrWsbGxujbt26aNiwIcaOHYtjx46hsrJSq6wgCNi7dy8cHBzQtWtXzJ07FykpKVrXdnJyQkxMDLy8vDB48GD89ddfKC4u1jp///59uLq6onXr1pg0aRIuXbqkdd/Mzc0xZcoUODk5oXfv3li1ahWys7O1rm1mZob69eujQYMGGD16NI4eParThwSHDh2Cg4MDoqKiMHv2bNy7d0/rrKOjI3r06AFPT08MHDgQ27dv1+nDlczMTLi6uiI0NBQ//fQTLl68qHXfTExMMHPmTDg6OuLtt9/GihUrdPpwxcrKCo0aNYK/vz+++uornT9cOXHihPznbebMmTp9uOLo6Ij33nsPHh4eGDBgALZs2aLThyt5eXlwd3dH8+bN8cMPP+D8+fNa983IyAgLFiyAo6Mj3nrrLSxbtkynD1dsbGzQtGlT+Pn54YsvvnihD1cYY0xvRFTjHsHBwcQYY6+jtLQ0MjExIQDyR9OmTWnChAl05swZqqysVJufMmWKQtbc3Jy6detGixYtovT0dLXZiooK8vPzU8jXqlWLPv/8c9qzZw+VlpaqzR88eFAha2BgQGFhYTR16lS6du2axn/7e++9p5B3cHCgDz74gNatW0e5ublqsw8ePCBzc3OFfFBQEI0fP55OnjypsW8zZsxQyJqZmZFUKqUFCxbQ/fv31WYrKyupUaNGCnkfHx8aNmwYxcXFUUlJidr8sWPHFLISiYTatWtHv/zyCyUlJZFMJlOb79evn0Le3t6e+vTpQ2vWrKHHjx+rzWZnZ5OVlZVCPjAwkL7++ms6fvw4VVRUqM3PnTtXIWtqakoxMTE0b948Sk1NVZuVyWTUrFkzhbyXlxcNGTKEdu7cScXFxWrzZ8+eVepbmzZtaPLkyZSYmKixb0OGDFHI29ra0rvvvkt//vknPXr0SG02NzeX7OzsFPIBAQE0ZswY+vvvvzX2benSpQpZExMTio6Opt9//52Sk5PVZmUyGbVu3Voh7+HhQYMGDaIdO3ZQUVGR2vylS5cUsoIgUKtWrWjixImUkJCgsW8jRoxQyNvY2FCvXr3ojz/+oKysLLVZxhjTFoB4UjEXFKgGLuMICQmh+Pj46h4GY4yJOnHiBIYPH653/sKFCyqvShgZGcHW1ha2trawtraGRKK40KWgoABJSUkqv7aFhYU8b25urvT8tWvXVC5dlEgksLGxkecNDQ2Vzjlz5ozK2iYmJrC1tYWdnR0sLS0hCILC8/fv30daWppoVhAEWFlZyWubmJgonXPx4kWVSz4NDQ3lWRsbG6W+FRcXIzExUeXYzc3N5WMX69v169eRm5srmq3aNxsbGxgZGSmdEx8fr/Iq2LO+2drawsrKSqlvGRkZaq8YP+ubnZ2daN8SEhJULvms2jdra2sYGBgoPF9aWoqEhASVtZ/1zdbWFhYWFkrP37x5U+WVdolEAmtra3le174ZGxvDzs5OZd8ePnyo9opx1debqamp0vOXLl1SuULB0NBQ4Xv+fN8qKipw/vx5lbXNzMzkYxfr261bt/Do0SPRrCAICj+nYn07e/asyiXGxsbGCt/z5/uWl5eHa9euiWYlEgnatGkDqVQKqVQKf39/pTxjjGlDEISzRBQi+hxPUBljTDdxcXGIjo6u7mEwxli1CgkJwaxZs9CyZcvqHgpj7F9G3QRV+eNxxhhjapmYmMDDw0PvfHp6utoNVExNTeWP56/MlJWVITMzU2XWwMBAnjUxMVG6upGVlaV2AxVjY2OYmprCzMxM9AqqqiugwJMrO8+yJiYmSlcx8/LykJ+frzJvaGgozxsbGys9r6lvJiYmMDMzE+1bRUWF2g17JBKJPPsifTM1NRW9oqVN3549xK6aq7p6C2juW0ZGhtr7ff/JvmVnZ6u9T9rIyEier66+PRv787Tp27O+P983mUymdqMjiUSi8LPyfN8ePXqk9j7pF+1b1e/5830rLS1Ve79v3bp15VdQ27ZtK1qfMcZeiKq1v9X54HtQGWOvq6ysLKV7Al1dXWnAgAG0detWKigoUJt//p5AANSiRQv68ccf6fz582rvLxO7J9DKyop69uxJy5cvp8zMTLW14+PjlWrXq1ePvvjiCzp48CCVlZWpzQ8ePFgha2RkROHh4fTbb7/RrVu31GYfP36sdE+gi4sLffzxx7R582bKz89Xm1+yZInS2ENCQui7776js2fPauxbq1atFLKWlpbUo0cPWrp0KT148EBt7YSEBKXaderUoREjRtD+/fs19m348OEKWUNDQ+rUqRNNnz6dbty4oTZbUFBAjo6OCnknJyf66KOPaOPGjZSXl6c2v2rVKqWxN2vWTOt7pjt06KB0z3T37t1p8eLFGu+ZTkpKIolEInrP9N69ezXeMz169Gi975kuLi4mNzc3pXumP/zwQ63umd64caNS357dM33q1CmNfYuKilJ5z3RaWpra7K1bt8jQ0FD0nundu3drvGd6woQJL3TPNGOMaQNq7kGt9smo2IMnqIyx19U333xD0HFjpGdKSkrIy8tLp42Rqtq2bZvCm3xtNkaqSiqV6rwx0jP37t0jIyMjnTZGqurHH3/UeWOkZ8rKyqh27do6vcmvavfu3QSAvL29aejQoVptjFRVz5499X6Tf//+fTI1NSU7Ozv5xkg5OTla1/7ll1903hjpmYqKCvL399dpY6Sqnm2qpcvGSFX16dNH542Rnnn48CGZm5vrtDFSVTNnztR5Y6RnKisrqXHjxvKNkebMmUP37t3TuvaJEyd03hipqv79+5MgCNSyZUutN0Z65tGjR2Rtbc0bIzHG/nHqJqi8xJcxxl4RIkJAQABSUlLg6empcz45ORnz5s1Dp06dRDd10UQikSAxMREBAQE6b2xSUFCAd999F8uWLYO9vb3Ote/fv4+DBw+iZcuWSsshNSEi1K1bF/fu3YO3t7fOtVNSUvDbb7+hc+fOMDMz0zkvk8mQkJCARo0a6dy34uJivPnmm5g3bx4cHBx0rp2amordu3ejdevWokuuNfHx8cGdO3fg6+urczYtLQ2//PILwsPDRTeO0qSsrAwXLlxA48aNde5baWkpoqOjMWPGDDg6OupcOyUlBX/99RfatGmj1xJUNzc33Lp1C7Vr19Y5m56eju+//x7h4eGwtLTUOV9YWIizZ8+iadOmOvetvLwcHTt2xKRJk+Ds7Kxz7eTkZGzevBnt2rXjpbuMsWrDmyQxxhhjjDHGGHtl1G2SJBE7yBhjjDHGGGOMvWo8QWWMMcYYY4wxViPwBJUxxhhjjDHGWI3AE1TGGGOMMcYYYzUCT1AZY4wxxhhjjNUIPEFljDHGGGOMMVYj8ASVMcZekYSEBAwbNgy7d+9GaWmpzvkZM2bg119/RVJSEnT9FWH5+fn45JNPsHbtWuTm5upce9u2bfj6669x4sQJVFZW6pQlIowaNQrz589HWlqazrWvXr2KTz/9FLt27UJJSYnO+dmzZ2PKlCm4fPmyzn0rLCzEwIEDsXr1auTk5Ohce9euXRg7diyOHTumV9/Gjh2LuXPnIiUlRefat27dwuDBg/HXX3+huLhY5/y8efMwadIkXLp0See+lZSUYNCgQfjjjz+QnZ2tc+19+/Zh9OjROHr0KCoqKnTOjx8/HrNnz8a9e/d0ziYnJ2PQoEHYvn07ioqKdM4vXrwYP/30Ey5evKhz38rKyjBkyBCsWLECWVlZOtc+fPgwvvrqKxw+fFivvn3//feYOXMm7ty5o3OWMcZeGiKqcY/g4GBijLHXjUwmo5YtWxIAsrS0pB49etDSpUvpwYMHWuUTEhIIAAGgOnXq0IgRI2j//v1UVlamVX748OEEgAwNDalTp040bdo0unHjhlbZgoICcnR0JADk5OREH330EW3cuJHy8vK0yq9atUo+9qZNm9KECRPozJkzVFlZqVW+Q4cOBIAsLCyoe/futGjRIkpPT9cqm5SURBKJhABQrVq16PPPP6e9e/dSaWmpVvnRo0cTADIwMKCwsDCaOnUqXbt2TatsUVERubm5EQBydHSkDz/8kNatW0e5ubla5Tds2CDvW1BQEI0fP55OnTqldd8iIyMJAJmZmdEbb7xBCxYsoPv372uVvXXrFhkYGBAA8vX1pWHDhtHu3buppKREq/x//vMfAkASiYTatWtHv/zyCyUlJZFMJtOYLS0tJS8vLwJA9vb21KdPH1qzZg09fvxYq9rbt2+X9y0wMJC+/vprOn78OFVUVGiV79atGwEgU1NTiomJoXnz5lFqaqpW2eTkZDI2NiYA5OXlRUOGDKGdO3dScXGxVvmJEyfK+9amTRv6+eefKTExUau+lZeXU506dQgA2dra0rvvvkt//vknPXr0SKvae/fulfetYcOGNHbsWPr777+17htjjGkLQDypmAsKpOOne69CSEgIxcfHV/cwGGNMVF5ent5XGPbt24evvvpK6XhgYCDCwsIQFhaGunXrQhAE0fynn36K48ePKxyzsLBAmzZt0L59e7Rt2xa2trai2fT0dERHRysd9/X1RVhYGNq3b4+goCAYGhqK5ufOnYv58+crHDM0NETz5s3Rvn17hIWFwd3dXTRbWVmJqKgoZGZmKhx3dHREu3btEBYWhtDQUJiZmYnmjx49is8++0zpeKNGjeS1/fz8VPZt+PDhOHz4sMIxc3NztG7dGmFhYWjbti3s7OxEs5mZmYiMjIRMJlM47uPjg/bt26N9+/Zo0qQJjIyMRPOLFi3C7NmzFY4ZGhoiODhY3ndPT0/RrEwmQ0xMDNLT0xWO29vby/vWqlUrlX07efIkBg8erHQ8ICBAXrt+/foq+zZq1Cjs3btX4ZiZmRlatWqFsLAwtGvXDvb29qLZnJwchIeHK1059vT0lL/WmzZtqrJvK1aswLRp0xSOGRgYoFmzZvLvube3t2iWiNCtWzckJycrHLezs5P3rWXLlrCwsBDNnz9/Hv369VM67u/vLx97gwYNIJGIL0QbP348duzYoXDM1NRU3re2bdvC0dFRNJuXl4fw8HCUlZUpHHd3d5fXDg4OVtm3tWvXYvLkyQrHJBKJQt98fHxEs0SEXr164fr16wrHHR0d0bVrV0ilUkRERMDa2lo0zxhj2hIE4SwRhYg+xxNUxhjTTVxcnOhEjzHGXndGRkYICwuDVCqFVCpFrVq1qntIjLF/IXUTVPGPyRljjDHGGHtOeXk5Dh06BJlMhsrKSvTr10/lqg3GGNMHT1AZY0xHdevWxXfffadX9u7du1i2bJnoc+7u7vD394e/vz9cXFxEl11u2LABiYmJSseNjY1Rt25d+Pn5oV69eqJLF0tLS5WW/j1jb28vr+3l5QUDAwOlc06dOoVdu3YpHZdIJPD19YWfnx/8/f1VLpWdNWuW6IY5FhYW8mzt2rVhbGysdE5qaioWLVok+nXd3NzkY3d1dRXt25YtW3DhwgWl40ZGRvK++fn5ifatvLwckyZNEt3wxs7ODv7+/vDz84OPj49o3+Lj45WWewJP+ubt7S0fu6qlsr///jsePnyodNzc3Bz16tWDv78/6tSpAxMTE6VzMjIyMG/ePNGv6+rqKq/t5uYm2rcdO3ZAbEWTkZERateuLf+3W1paKp1TWVmJSZMmiW4OZWtrK8/6+vqK9u3ChQvYsmWL0nFBEBT65uDgIPrvW7BgAe7fv6903MzMTN63unXrivYtKytLaVn2My4uLvKxe3h4iPZt9+7dOHHihNJxQ0NDhb5ZWVkpnSOTyTB58mSUl5crPWdjYyP/WfH19RVdjp+YmIgNGzYoHRcEAV5eXgp9Exv78uXLRW9hsLOzky/zjYyM5EkpY+yfo+rm1Op88CZJjLHX1UcffSTfhMTc3Jy6deum9YY/2dnZZGVlJc/7+vrSZ599Rnv27NFqw5+5c+fKs1U3/Ll69arGrEwmo2bNmsnzDg4O9MEHH9C6deu02rgmPj5ensXTDX+++eYbOnnypFYb/gwePFieNTMzI6lUSgsWLKC0tDSN2cePH5OdnZ087+3tTUOHDqW4uDitNvxZsmSJPCuRSKht27Y0ZcoUunLlisaNa2QyGbVq1Uqet7Ozoz59+tDq1aspJydHY+2qG2MBoEaNGtG4ceO03vDn2cZYAMjExIS6du1Kc+fOpZSUFI3ZqhtjASBPT0+dNvypujGWIAjUunVrmjx5stYb/jzbGAtVNvxZtWoVZWdna8xevXpVvjEWAAoICKAxY8ZoveHPmDFj5FljY2OKioqiOXPm0L179zRmi4uL5RtjASB3d3caNGgQbd++nYqKijTmN27cqNC3li1b0sSJEykhIUGrvkVFRcnz1tbW9M4779DKlSspKytLY/bWrVtkaGgoz9evX59GjRpFR44cofLyco15xhjTFniTJMYYq363bt1CeHg4oqKiIJVK0bFjR5Wb24j59ttvsW/fPvm9XwEBASo3t3leaWkpWrRogYCAAEilUkRFRam8Yidm+/btGDt2LKRSKWJjY9GqVSvRq16qvP322ygoKJDnVW1uIyY5ORlhYWGIiIiAVCpFp06dYG5urnV+0qRJ2L59u7x2YGCg1n0rLy9HaGgo6tWrB6lUiujoaJVX7MTs2bMHw4cPR2xsLKRSKVq3bq1yEyoxffr0QVZWlnzsvr6+WmfT09PRpk0bdO7cGVKpFJ07d1a5KZCYqVOnYv369fKxBwUFad23yspKtG7dGt7e3vK+OTk5aV378OHD+OSTT+Sv9TZt2qjcFEhM//79kZycLB977dq1tc5mZmbKNzOSSqUIDw8XvUKsyuzZs7Fs2TL52Js2bap132QyGdq3bw8XFxfExsYiJiYGzs7OWtc+efIk3n//fXntdu3a6dS3IUOG4Nq1a/J83bp1tc4yxpgueJMkxhirAQoLC2Fubq71m9XnFRQU6PRGuarS0lJIJBKd3qy+rNpEhKKiIp0mR1VVZ9+e7aQqtuz4n679on0rKiqCqampyp1mNXmRsZeXl4OIqqVvL5qv7r7JZDLRZcfa1rawsKiWnxXGGNPFPzJBFQTBC8AKAK4AZAAWENFvz53TAcBWAM9uZthERD9o+to8QWWMMcYYY4yx19M/tYtvBYAvieicIAhWAM4KgrCXiK48d95RIop9gTqMMcYYY4wxxv4H6Ld+BQARpRPRuad/zgeQBMDjZQ2MMcYYY4wxxtj/Fr0nqFUJguALoCmAUyJPtxIE4aIgCLsEQWio5msMFAQhXhCE+MzMzJcxLMYYY4wxxhhj/yIvPEEVBMESwEYAI4go77mnzwHwIaIgALMAbFH1dYhoARGFEFGILjv9McYYY4wxxhh7PbzQBFUQBCM8mZyuIqJNzz9PRHlEVPD0zzsBGAmC4PgiNRljjDHGGGOMvZ70nqAKT/YwXwwgiYimqTjH9el5EAShxdN62frWZIyxf6PKykq8yK0LWVlZKC8v1zufkZGhd7agoAAFBQV65x88eACZTKZXViaT4eHDh3rXzs7Olv+aGH28SN8KCwuRl/f8oiLtvUjfiAgPHjzQu/ajR49QWlqqd/5F+lZUVITc3Fy98w8fPnyhvr3I2HNyclBSUqJ3PiMjA/r+ZoWSkhI8fvxY79oPHz5EZWWl3nnGGHuZXuQKahsAHwDoJAjChaeProIgDBYEYfDTc3oCSBQE4SKAmQB6U038xauMMfYPMjAwQJ8+fdC6dWtMnjwZly5d0umNaE5ODtzc3NC7d2+sWrUKjx490qn+zJkzERAQgNGjR+Po0aOoqKjQOmtoaIigoCBERUVhzpw5uHfvnk61T5w4AS8vLwwcOBDbt29HUVGR1lmJRIL+/fujZcuWmDhxIi5evKhT3/Lz8+Hu7o533nkHK1euRHa2bp+Pzp8/H/Xr18dXX32Fw4cP69Q3IyMjNG/eHBEREZg1axbu3LmjOVTFuXPn4OHhgQEDBmDr1q0oLCzUOisIAj799FO0aNECP/zwA86fP69T34qLi+Hp6YmePXti+fLlOn+4smzZMvj5+eGLL77AwYMHdfpwxdjYGG3atEHnzp0xY8YM3Lp1S6faly9fhpubGz7++GNs2rRJpw9XBEHAl19+ieDgYHz33Xc4e/asTn0rLy+Hj48PevTogSVLluj8IcGaNWtQt25djBgxAvv379fpwxVjY2N07NgRHTt2xLRp03Djxg2dat+4cQNubm746KOPsGHDhhf6cIUxxl4YEdW4R3BwMDHG2OvkyJEjBED+8PX1pWHDhtHu3buppKREY/7DDz+UZyUSCbVr145++eUXSkpKIplMpjabmZlJlpaW8ry9vT29//77tGbNGnr8+LHG2rNnz1YYe2BgIH399dd04sQJqqioUJuVyWTUpEkTedbU1JRiYmJo3rx5lJqaqrH2qVOnFGp7e3vTp59+Sjt37qTi4mKN+U8++UShb23atKGff/6ZLl++rLFvOTk5ZGNjI8/b2dnRe++9R3/++Sc9evRIY+2FCxcqjL1hw4Y0duxYOnbsmFZ9a9GihTxrYmJC0dHR9Pvvv1NycrLG2ufPn1eo7enpSYMHD6YdO3ZQUVGRxvywYcPkWUEQqFWrVjRp0iS6dOmSxr7l5eWRg4ODPG9jY0O9evWiP/74g7KzszXWXrFihcLYGzRoQKNGjaIjR45QeXm52qxMJqN27drJs8bGxhQZGUmzZ8+mu3fvaqx95coVEgRBnnd3d6dPPvmEtm3bRoWFhRrzX331lULfQkND6aeffqILFy5o7FtRURG5urrK89bW1vT222/TihUrKCsrS2PtdevWKfTN39+fvvzySzp06JDGvhERdenSRZ41MjKiLl260MyZM+n27dsas4wxpisA8aRiLihQDbygGRISQvHx8dU9DMYYE3XlyhXMnTtX59zSpUtFr4QZGRnBy8sLtWrVgo+PD8zNzZXOSU5OxrZt20S/ro2NDXx9fVGrVi24u7tDIlFeHLNr1y7Rq1GCIMDDw0Oet7GxUTqnpKQEixYtEq1tamoqz3p7e8PIyEjpnHPnzuH48eOieScnJ3neyckJT+8KUbBy5UrRZZ+Ghobyvvn6+or2LS0tDZs3bxatbW1trdA3AwMDpXP27NmD69evKx0XBAHu7u7yvK2trdI55eXlmD9/vmhtU1NT+Pj4yPtmbGysdM7Fixdx9OhR0byjo6O8trOzs2jf/vzzT9Gr7c/65uvrC19fX1hYWCidk5GRgQ0bNojWtrKyktf28PAQ7dv+/fuRlJSkdFwQBLi5uSn07fmxV1RUYP78+aJXL01MTOTj9vb2homJidI5iYmJOHTokOjYHRwc5LVdXFxE+7Z27VrRq8YGBgYKfbO0tFQ6JzMzE2vXrhWtbWlpKX+tenh4wNBQ+VfRHzp0CImJiaL5qn2zs7NTGrtMJsP8+fNFl+qamJjAx8cHvr6+8PHxEe1bUlIS9u/fL1q7YcOGkEqlkEqlCA0NFf2eM8aYLgRBOEtEIaLP8QSVMcZ0ExcXh+jo6OoeBmOMvXKOjo7o2rUrRo4ciSZNmlT3cBhj/1LqJqjKH98xxhhjjDFWhYGBAdq1a4fY2FhIpVL4+flV95AYY68pnqAyxpiOOnTogLS0NJ0y+fn5CAkJUdq0JTAwEF26dEFERAQaNWokuuQQeLJcc9SoUQrHzMzMEBYWhi5duiA8PByOjuK/xYuIEBsbiwsXLigc9/HxQZcuXdClSxeEhoaKLs8Fnixp7tKli8IxAwMDhIaGyvO1atVS+W8fP348li5dqnDMzs4O4eHh6NKlC8LCwkSXSwJPdnVt3ry50g6ljRo1ktcODAwUXdYMABs2bMDw4cMVjpmamqJ9+/aIiIhA586d4ezsrHLsPXr0wKlTpxSOeXl5yWu3bNlSdHkuANy8eRNhYWEKxyQSCVq0aCHP16lTR2XtH374QWmJsJ2dHTp16oQuXbqgQ4cOsLKyEs2WlpaiefPmShtDBQQEyF8vTZo0Udm37du3Y/DgwQrHTE1N0a5dO3Tp0gWdO3eGq6uryrH37t1baXmyu7s7IiIi0KVLF7Rq1Up0mSkA3Lt3D23atFFY4isIApo3by7vW926dVX+rPz888+YNWuWwjEbGxuFvoktZQeeLMtu2bKl0m6+/v7+8tpNmzZVucR1z5496Nevn8IxExMTtG3bVt53Nzc30SwA9O3bF/v27VM45ubmJq/dunVrmJqaimbv37+Pli1bKizxFQQBwcHB8ryfn5/Kvs2YMQO//vqrwjFbW1tER0dDKpUiKioKdnZ2KsfOGGMvjaqbU6vzwZskMcZeN5MmTSIAZGZmRlKplObPn09paWlaZcvLy6levXryTYKGDh1KcXFxWm0SRES0f/9++SZBbdu2pSlTptCVK1c0btryTO/eveWbBPXp04dWr15NOTk5WmUzMjLIzMyMAFCjRo1o3LhxdPz4cY2bBD0zbdo0+SZBXbt2pblz51JKSopW2crKSgoICJBvEjRkyBCtN1ciIjp69Kh8s5vWrVvT5MmTKTExUeu+9e3blwCQra0tvfvuu7Rq1SqtNgkiIsrKypJvbBUQEEBjxoyhv//+W+u+zZkzR75JUFRUFM2ZM4fu3bunVbbqxlbu7u40aNAg2r59u1abKxERnT59Wt63li1b0sSJEykhIUHrvg0cOFC+SdA777xDK1eu1GqTIKInG1vZ2toSAKpfvz599dVXdPjwYa02CSIiWrx4sXyToIiICJo1axbduXNHq6xMJqOWLVsSAHJ1daUBAwbQ1q1bqaCgQKv8xYsX5ZsUtWjRgn788Uc6f/681n37/PPPCQBZWVlRz549afny5ZSZmalVNj8/nxwdHQkA1atXj7744gs6ePAglZWVaZVnjDFdQc0mSXwFlTHG/mGVlZUoKCjA9u3b0alTJ9HNfNS5cOEC+vbtC6lUisDAQJVXQFRJTEzEypUrER0dDQcHB52y2dnZ8Pb2xuHDh9G6dWvRjV3UOX78OKZMmQKpVApfX1+dsjKZDI8ePcLWrVvRuXNn0c181ElISEDv3r0hlUoRFBSkc98SEhKwbNkydO3aFU5OTjplHz9+DBcXFxw8eBBt2rRReXValePHj+Onn36CVCpF7dq1dcoSER4+fIjNmzcjPDxc5dVpVa5cuYLu3btj8eLFaNq0qc59O3fuHJYsWYKYmBi1V6fF5Ofnw8bGBvv27UO7du1UXp1W5eTJk5gwYQKkUinq1q2rU5aIkJaWhg0bNiAiIkLl1WlVbty4If+1Qs2aNVN5dVqV+Ph4LFq0CDExMWqvTospKiqCqakp9uzZg7CwML36NnbsWF66yxirEXiTJMYYY4wxxhhjr4y6TZJ0+3iPMcYYY4wxxhj7h/AElTHGGGOMMcZYjcATVMYYY4wxxhhjNQJPUBljjDHGGGOM1Qg8QWWMMcYYY4wxViPwBJUxxhhjjDHGWI3AE1TGGHuJZDIZ5syZg8TEROjza7wSEhKwatUqPHr0SK/6q1atwtGjR1FRUaFzNicnB7///jvu3bunV+19+/Zh+/btKCoq0jlLRJgzZw4uXryoV9+uXLmClStXIisrS+csAKxZswaHDx/Wq295eXmYPXs27ty5o1ftQ4cOYevWrSgsLNQ5S0SYO3cuzp8/r1ffrl+/juXLlyMzM1PnLABs2LABBw8eRHl5uc7ZwsJCzJo1C7du3dKr9tGjR7F582YUFBTonCUiLFiwAGfPntWrb7dv38aSJUvw4MEDnbMAsGnTJuzfvx9lZWU6Z4uLizFr1izcuHFDr9rHjx/Hxo0bkZ+fr1eeMcb+aTxBZYyxl0gikeD+/fsIDAxE7dq18dlnn2HPnj0oLS3VKu/v748xY8bA2dkZYWFh+PXXX3H16lWt30RbWlqiffv2cHFxwQcffIB169YhNzdXq6ydnR127twJX19fNG7cGN988w1OnjwJmUymVb5evXro0aMHHBwcIJVKsWDBAqSlpWmVFQQB2dnZaNKkCXx9fTF06FDs2rULJSUlWteeMGECXFxc0LZtW0yZMgVXrlzRum+2trbo0KEDnJ2d0adPH6xevRo5OTlaZa2trXHo0CHUrl0bjRo1wrhx43D8+HFUVlZqlffz80OvXr3g4OCArl27Yu7cuUhJSdEqKwgC8vPz0axZM3h7e2PIkCH466+/UFxcrFW+Tp06mDRpElxcXNC6dWtMnjxZpw9XHB0d0alTJzg5OaF37946fbhiYWGBkydPom7duggICMCYMWN0+nDF398f77//PhwcHBAVFYU5c+Zo/eGKIAgoLi5GSEgIPD09MWjQIJ0+XPH19cX06dPh5uaGli1bYuLEiUhISNC6b66urggPD4eTkxPeeecdrFy5EtnZ2VplzczMcP78efj5+aF+/foYNWqUTh+u1K9fH/369YODgwMiIiIwa9Ys3L17V6ssY4y9EkRU4x7BwcHEGGP/VllZWWRpaUkA5A9LS0vq0aMHLV26lB48eKA2P2fOHIUsAKpbty6NHDmS9u/fT2VlZSqzMpmMmjRpopA1NDSkTp060fTp0+nmzZtqa58+fVqptrOzM3300Ue0ceNGys/PV5sfOHCgUr5Zs2b07bff0pkzZ6iyslJlNicnh2xtbRWyFhYW1L17d1q8eDFlZGSorb1o0SKl2rVr16bPP/+c9u7dS6WlpWr7FhoaqpA1MDCgDh060H//+1+6du2a2toXL15Uqu3o6EgffvghrV+/nnJzc9XmP//8c6V8kyZNaPz48XTq1Cm1fcvPzydHR0eFrLm5Ob3xxhu0cOFCun//vtraf/zxh1JtX19fGjZsGO3evZtKSkrU5sPCwpT61r59e/r1118pKSmJZDKZymxSUhIJgqCQt7e3p/fff5/Wrl1Ljx8/Vlt71KhRSmMPDAykr7/+mk6cOKG2b0VFReTq6qqQNTU1pdjYWJo/fz6lpqaqrb1+/Xql2t7e3vTpp5/Srl27qLi4WG0+IiJCISuRSKht27b0888/0+XLl9X27ebNm2RgYKCQt7Ozo/fee49Wr15Njx49Ult7/PjxSmNv2LAhjR07lo4dO0YVFRVq84wx9qIAxJOKuaBAeixt+aeFhIRQfHx8dQ+DMcZE7dmzB2+88YbaczRdMRUEAQYGBpBIJBAEQeE5mUymccmkRCKR559XXl6u9qqnIAjy/PO1NY1dEAR5XmzslZWVGq/kPBu32NjLysrUXoWqCX1TNXZN3/Oq2ZrUNyLSuNT0WV0DAwOl5yoqKtReLa7uvqn7nmvTN1U/KzW9b+q+55r65ujoiK5du0IqlSIiIgLW1tZqazHGmK4EQThLRCGiz/EElTHGdBMXF4fo6OjqHgZjjP2jJBIJOnbsiClTpiA4OLi6h8MYe42om6AavurBMMbYv52TkxO6du2q9pzDhw+r3PTGzc0NFhYWcHFxgbW1tdLVjZycHJw4cUI0a2ZmBmtrazg7O8PZ2RkmJiZK51y8eFHlvZ9OTk4wNzeHi4sL7O3tla7MyGQyxMXFiWYNDAzg5OQEW1tbuLi4wMLCQumce/fu4fLly6J5GxsbWFpawtnZGU5OTjA0VP6/oKNHj6rcvMXV1VXeNxsbG6W+5ebm4tixY6JZU1NThb6ZmpoqnXPp0iWV9346OjrCwsICzs7OcHBwUOobESEuLk70apxEIoGzszNsbW3h7OwMS0tLpXNSUlJw6dIl0drW1tYKfTMyMlI65/jx43j8+LFo/lnfno3h+b7l5+fj6NGjolljY2PY2NjAxcVFZd+uXLmi8h5GBwcH+fdMVd92794teuVaEAS4urrKv29WVlZK56SlpeHixYuitS0tLWFlZQUXFxeVfTt58qTKe2ZdXV1hbm4OZ2dn2NnZKfWtsLAQhw8fFs0+69uz15uZmZnSOVevXsXt27dF8w4ODvKfUwcHB9ErsHv27BG9Cvqsb8/+7WJ9S09Px/nz50VrW1tbIyoqClKpFNHR0XBwcBA9jzHG/jGq1v5W54PvQWWM/ZtdvnxZ4b46ExMT6tq1K82dO5dSUlI05r/88kuFe8M8PT1p8ODB9Ndff1FRUZHabGFhIbm4uMizgiBQ69atafLkyXTp0iW197UREa1du1ahto2NDfXu3ZtWrVpF2dnZGsceHh6ukA8ICKDRo0fT0aNHNd7XduPGDYX76oyNjSkqKormzJlDd+/e1Vj766+/Vqjt7u5OAwcOpO3bt1NhYaHabElJCXl4eCj0rWXLlvTTTz/RxYsXNfZt69atCrWtra3pnXfeoZUrV1JWVpbGscfGxirk/f396auvvqLDhw9TeXm52uzdu3fJyMhInjUyMqKIiAiaOXMm3blzR2PtH374QaG2q6srDRgwgLZu3UoFBQVqs2VlZVSrVi2FfPPmzemHH36g8+fPa+xbXFycQtbKyop69uxJy5cvp4cPH2oc+1tvvaWQr1evHn3xxRd08OBBtfdqExGlpaWRiYmJwr3anTt3phkzZmi8V5uIaMqUKUr3an/88ce0adMmjfdqV1RUkJ+fn0I+ODiYvvvuOzp79qzGvh08eFDpXu0ePXrQkiVLNN6rTUT03nvvKeTr1KlDI0aMoP3796u9V5sxxl4WqLkHtdono2IPnqAyxv7NevfuLX+Tv2XLFo1v8qvKyMggCwsLnd7kVzVt2jSytLSkt956i5YtW6bVm/xnKisrKSAgQKc3+VUdPXpU5zf5VfXt25ecnZ2pX79+Wr3JryorK4usrKzkb/Lj4+N16tucOXPIwsKC3nzzTa3f5D8jk8moadOmVLt2bRo+fDjt27dPpzf5Z86cIUNDQ+rYsSNNmzaNrl+/rnWWiGjQoEHk6OhIffv2pQ0bNlBeXp7W2cePH5OdnR01bdqU/vOf/9Dp06fVbiz0vMWLF5O5uTl169aNFi1aROnp6VpnZTIZtWzZknx9femzzz6jPXv26NS3ixcvkqGhIYWFhdHUqVPp6tWrWmeJnmxM5eDgQB988AGtW7dO44ZMVT3bmCooKIi++eYbOnnypE59++OPP8jMzIykUiktWLCA0tLSdBp7WFgYeXt709ChQykuLk7jRlZVJSUlkZGREbVr146mTJlCV65c0elnhTHGXgZ1E1S+B5Uxxl4imUyG8+fPo2nTpqIbm2iSnJwMIyMjuLm56VX/woULaNCggejSX01yc3ORkZEBf39/vWpfvXoVbm5usLGx0TlLRDh79iyaNWumV99SU1MhCAI8PDx0zgJPlkX7+/uLLmHVJD8/HykpKWjQoIHoplOaXL9+Xb78VlfP+ta0aVPRZaCa3L9/HzKZDJ6enjpngSe/t7devXqiS1g1KSwsxJ07d9CwYUO9+nbjxg04ODjA3t5e5ywR4dy5c2jSpIlefUtPT0dZWRl8fHx0zgJPlpPXqVMH5ubmOmeLi4tx48YNBAYG6tW3mzdvws7OjpfuMsaqFW+SxBhjjDHGGGOsRlA3QdX9Y2rGGGOMMcYYY+wfwBNUxhhjjDHGGGM1Ak9QGWOMMcYYY4zVCDxBZYwxxhhjjDFWI/AElTHGGGOMMcZYjcATVMYYY4wxxhhjNQJPUBljjDHGGGOM1QgvNEEVBCFKEIRrgiDcFARhrMjzgiAIM58+nyAIQrMXqccYYzXBo0ePsGzZMjx8+FCv/KFDh3DgwAGUl5frnCUiLFmyBDdv3tSrdlJSEjZt2oT8/Hy98ps2bUJ8fDxkMpnO2by8PCxZsgQZGRl61T569Cj27duHsrIynbNEhKVLl+L69et61b5x4wY2bNiAvLw8vfJbt27F6dOn9epbYWEhFi9ejPT0dL1qHz9+HHv27EFpaanOWSLC8uXLcfXqVejze9Nv376NdevWITc3V+csAGzfvh0nT57Uq2/FxcVYtGgR0tLS9Kp96tQp7Nq1CyUlJXrl//jjD1y5ckWvviUnJ2P16tXIycnRq/bOnTtx/PhxVFZW6pVnjLHqpPcEVRAEAwBzAEQDCADwriAIAc+dFg2g3tPHQABz9a3HGGM1hb29PVatWgVXV1e0bt0akyZNwqVLl7R+I+rp6YmIiAg4OTmhd+/e+OOPP5Cdna1VVhAE3L59G/Xq1UODBg0wevRoHD16FBUVFVrla9eujeHDh8PR0RGRkZGYPXs27t27p1UWAAwNDdG8eXN4enpi4MCB2LZtG4qKirTKWltbY/PmzXBzc0NoaCh++uknXLx4Ueu+eXt7o2vXrnB0dMTbb7+NFStWICsrS6usIAhITU2Fv78//P398dVXX+HQoUNa983X1xejR4+Go6MjunTpgpkzZ+LOnTtaZQHA1NQUoaGh8PDwwIABA7BlyxYUFhZqlbWwsMCuXbvg7u6O5s2b44cffsD58+e17puvry+6desGR0dHvPXWWzp9uCIIAh48eIAGDRrAz88PX3zxhU4frvj4+GDChAlwdHRE586dMWPGDNy6dUurLABYWVmhVatWcHNzQ79+/XT6cMXMzAwHDx6Ep6cngoOD8d133+n04Urt2rXRs2dPODo64s0339T5w5VHjx6hYcOGqFu3LoYPH67Thyuenp6YPHkynJyc0LFjR0ybNk2nD1fs7OzQpk0buLq6om/fvi/04QpjjL1yRKTXA0ArALur/H0cgHHPnTMfwLtV/n4NgJumrx0cHEyMMVZTHTx4kGxsbAiAwsPHx4eGDh1KcXFxVFJSojI/cOBAMjAwUMhKJBJq164dTZkyhZKSklRmc3JyyMnJSam2vb099enTh9asWUOPHz9Wmf/999/JzMxMKR8YGEjjxo2j48ePU2Vlpcp827ZtlbKmpqYUExNDc+fOpdTUVJXZ48ePi/bNy8uLhgwZQjt37qTi4mKV+WHDhpGhoaFS39q0aUOTJ0+my5cvq8wWFRWJ9s3W1pbeffddWrVqFT169EhlftGiRWRubq6UDwgIoDFjxtDff/9NFRUVKvOdOnVSypqYmFB0dDTNmTOHkpOTVWbj4+PJ1tZWKe/h4UGDBg2iHTt2UFFRkcr8F198QUZGRgpZQRCoVatWNHHiREpISFCZraioIGdnZ6XaNjY21KtXL1q5ciVlZ2erzK9YsYIsLCyU8vXr16dRo0bRkSNH1PYtOjpaKWtsbEwRERE0a9Ysunv3rspsQkIC2dnZKeXd3Nzok08+oa1bt1JhYaHK/Lhx48jY2Fgp36JFC/rxxx/p/PnzJJPJVOY9PT2VslZWVtSzZ09avnw5ZWZmqsyuXbuWLC0tlfJ+fn705Zdf0sGDB6m8vFxlvnv37kpZIyMjCg8Pp99++41u376tMssYY68CgHhSMRd8kSW+HgBSqvw99ekxXc8BAAiCMFAQhHhBEOIzMzNfYFiMMfbPMjAwgLGxsdJxa2tr2NjYwMbGBoaGhirzZmZmkEgU//NrbGwsz1tZWanMCoIAMzMzpeMWFhawsbGBtbU1TExMVOaNjY1hZGSkcEwikSiMXRAElXlzc3OlY6ampvK82PPPGBgYiI6tau3nx1aVWN+MjIy06puqsT/rm42NDUxNTVVmxfomCII8a2NjozS25+s8r2rfxJ5/xsDAQHRsz7LW1tZq+2Zqaqq2b9bW1iqzgHjfzM3N5fl/sm9itU1MTORZffpmZWUlH7vYz/EzqvpWdey6/qyYm5vLs2I/x1XriH1Pn32/bGxsYGBgoLb282PTtm+MMVbtVM1cNT0AvA1gUZW/fwBg1nPn/AWgbZW/7wcQrOlr8xVUxlhNJpPJqH379mRsbEyRkZE0e/ZsunPnjtb5pKQkEgRBfiVn27Ztaq/kPG/UqFEKV3IuXLig9kpOVUVFReTq6kpWVlb09ttva7yS87z169crXMk5dOiQ2is5z4uIiFC4knPr1i2tszdv3iQDAwNycXGh/v3705YtW6igoEDr/Pjx4wkAhYSE0Pfff0/nzp3Tum8lJSXk5eVFlpaW9NZbb9HSpUvpwYMHWtfetm0bAaC6devSyJEj6cCBA1RWVqZ1XiqVkqGhIXXq1ImmT59ON2/e1Dp77949MjIyImdnZ+rXrx9t3LiR8vLytM7/+OOPBICaNWtG3377LcXHx6u9yl5VWVkZ1a5dmywsLKh79+60ePFiysjI0Lr27t27CQDVrl2bhg8fTnv37qXS0lKt8z179iQDAwPq0KED/fe//6Vr165pnb1//z6ZmpqSo6Mjffjhh7R+/XrKzc3VOv/rr78SAGrSpAn95z//oVOnTmndt4qKCqpfvz6ZmZnRG2+8QQsXLqT79+9rXfvQoUPyVR3Dhg2j3bt3q13VwRhjrxrUXEFV/RG/ZqkAvKr83RPAfT3OYYyxf5WcnBwMHz4cO3bs0HjVTkx2djZOnz6NZs2aqb16JIaefIiH9PR0uLq66lw7JSUFK1euRPv27dVePVLF3Nwc165dg5+fn87ZvLw8fPLJJ1i/fr3Gq3ZiMjMzcfz4cYSEhOjVt8DAQKSlpcHd3V3n2qmpqVi0aBHCwsLUXqFWxcjICElJSfD391d71U1MYWEh3n//faxcuRI2NjY6187IyMCRI0fQokULvfrm7++P1NRUeHiILoBSKy0tDXPmzEGHDh3UXmlV5/Lly2jQoIHOfSsuLkbPnj2xYMEC2NnZ6Vz3/v372L9/P0JDQ9VerVSlVq1aSE5OhpeXl+aTRWpPnToVnTp1UnulVZWKigpcunQJDRs21LlvjDFW3QTSY3c5ABAEwRDAdQCdAaQBOAPgPSK6XOWcGADDAHQFEApgJhG10PS1Q0JCKD4+Xq9xMcYYY4wxxhiruQRBOEtEIWLP6X0FlYgqBEEYBmA3AAMAS4josiAIg58+Pw/ATjyZnN4EUASgn771GGOMMcYYY4y93l5kiS+IaCeeTEKrHptX5c8EYOiL1GCMMcYYY4wx9r/hRXbxZYwxxhhjjDHGXhqeoDLGGGOMMcYYqxF4gsoYY4wxxhhjrEbgCSpjjDHGGGOMsRqBJ6iMMcYYY4wxxmoEnqAyxhhjjDHGGKsReILKGGOMMcYYY6xG4AkqY4wxxhhjjLEagSeojDHGGGOMMcZqBIGIqnsMSgRByARwr7rHwf51HAFkVfcg2P8Mfr2xV4lfb+xV4tcbe5X49fa/yYeInMSeqJETVMb0IQhCPBGFVPc42P8Gfr2xV4lfb+xV4tcbe5X49caex0t8GWOMMcYYY4zVCDxBZYwxxhhjjDFWI/AElb1OFlT3ANj/FH69sVeJX2/sVeLXG3uV+PXGFPA9qIwxxhhjjDHGagS+gsoYY4wxxhhjrEbgCSr7VxME4W1BEC4LgiATBCHkuefGCYJwUxCEa4IgRFbXGNnrRRCEqKevqZuCIIyt7vGw148gCEsEQXgoCEJilWP2giDsFQThxtP/tavOMbLXgyAIXoIgHBQEIenp/5cOf3qcX2/spRMEwVQQhNOCIFx8+nr7/ulxfr0xBTxBZf92iQB6ADhS9aAgCAEAegNoCCAKwO+CIBi8+uGx18nT19AcANEAAgC8+/S1xtjLtAxP/rtV1VgA+4moHoD9T//O2IuqAPAlETUA0BLA0Kf/TePXG/snlALoRERBAJoAiBIEoSX49caewxNU9q9GRElEdE3kqW4A1hBRKRHdAXATQItXOzr2GmoB4CYR3SaiMgBr8OS1xthLQ0RHADx67nA3AMuf/nk5gO6vckzs9URE6UR07umf8wEkAfAAv97YP4CeKHj6V6OnDwK/3thzeILKXlceAFKq/D316THGXgS/rlh1cSGidODJpAKAczWPh71mBEHwBdAUwCnw6439QwRBMBAE4QKAhwD2EhG/3pgSw+oeAGOaCIKwD4CryFPfENFWVTGRY7xlNXtR/LpijL12BEGwBLARwAgiyhMEsf/UMfbiiKgSQBNBEGwBbBYEoVE1D4nVQDxBZTUeEYXrEUsF4FXl754A7r+cEbH/Yfy6YtXlgSAIbkSULgiCG55cfWDshQmCYIQnk9NVRLTp6WF+vbF/FBE9FgThEJ7cb8+vN6aAl/iy19U2AL0FQTARBKEWgHoATlfzmNi/3xkA9QRBqCUIgjGebMS1rZrHxP43bAPQ9+mf+wJQtXqEMa0JTy6VLgaQRETTqjzFrzf20gmC4PT0yikEQTADEA7gKvj1xp4jEPHqNPbvJQjCmwBmAXAC8BjABSKKfPrcNwA+xpNdCkcQ0a7qGid7fQiC0BXADAAGAJYQ0cTqHRF73QiCsBpABwCOAB4A+BbAFgDrAHgDSAbwNhE9v5ESYzoRBKEtgKMALgGQPT38NZ7ch8qvN/ZSCYLQGE82QTLAk4tk64joB0EQHMCvN1YFT1AZY4wxxhhjjNUIvMSXMcYYY4wxxliNwBNUxhhjjDHGGGM1Ak9QGWOMMcYYY4zVCDxBZYwxxhhjjDFWI/AElTHGGGOMMcZYjcATVMYYY4wxxhhjNQJPUBljjDHGGGOM1Qg8QWWMMcYYY4wxViP8H/VkuZWYtjCdAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAH5CAYAAADwc7KnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU9f7/8fdm03slvQOBBEiDhE5CKCm7gKAIiICKoIBSRLp0BKVKEaQIUqRJExCQ3nvvPUAglEBIIX33/fvjHuZHbsrO7E4u4vf1OCfnXLLj845LPi77ZuczCmZmAgAAAAAAAAAAABDB6G2fAAAAAAAAAAAAALw7MFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRjN/2CchBq9XSo0ePyMbGhhQKxds+HQAAAAAAAAAAgHcKM1NWVhZ5eHiQkVH5n0H8VwwUHz16RN7e3m/7NAAAAAAAAAAAAN5pDx48IC8vr3KP+VcMFG1sbIjoP//Ctra2b/lsAAAAAAAAAAAA3i2ZmZnk7e0tzNnK868YKL6+zNnW1hYDRQAAAAAAAAAAAD2J2U4QN2UBAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAABDh0aNHlJOTI3v32bNnlJGRIXv35cuXlJaWJns3NzeXHj16JHtXo9HQ3bt3Ze8SEd2+fZuY+Z3p3r17lzQajezde/fuUWFhoezdlJQUysvLk737+PFjys7Olr37/PlzSk9Pl72blZVFT548kb1bUFBA9+/fl73LzHTnzh3Zu0QVtzbu3LlDWq1W9m5ycjIVFRXJ3n3w4AHl5+fL3q2o1yMAAAApMFAEAAAQIScnh1xdXUmlUtEvv/xCDx8+lKVrZGREAQEB1KxZM/rpp5/o9u3bsnQtLCyodu3a1LBhQ/rhhx/o8uXLsrzBNzc3J7VaTbVr16bRo0fT6dOnZekqlUr66quvqEaNGjRkyBA6fPiwbEO1H3/8kSpXrkz9+vWj3bt3U0FBgSzdFStWkLe3N33xxRe0detWys3NlaW7Z88ecnd3p27dutG6desoKytLlu6VK1fIxcWFOnToQCtWrKAXL17I0k1LSyNnZ2dq06YNLVq0iB4/fixLV6PRkKenJ8XHx9OcOXPo3r17snRNTU2pevXqFBMTQ1OnTqUbN27I0rWwsKAmTZpQ3bp1acKECXT+/HlZ1oaJiQl17tyZwsLC6LvvvqPjx4/LMlRTKBQ0fPhwqlatGg0cOJD2798v21Bt7ty55O/vT3369KEdO3bINlTbtGkTeXp6Uvfu3WnTpk306tUrWbonTpwgV1dX6ty5M61evVq2v+S5d+8eubi40Pvvv0+//fYbPXv2TJZuRb0eAQAASML/AhkZGUxEnJGR8bZPBQAA/sW6du3KRCR8hYeH88iRI/nkyZOs0Wj07g4bNqxYt3r16jxo0CA+ePAgFxUV6d2dM2dOsa6/vz9//fXXvHPnTs7Pz9e7u3HjxmJdDw8P7tGjB2/evJlfvXqld/fEiRPFus7OztylSxdes2aNQa/xycnJbGxsLHRtbW25ffv2vHTpUk5LS9O7m56ezvb29kLXwsKCW7VqxfPnz+dHjx7p3S0oKGA/Pz+ha2pqyi1atOCZM2fy3bt39e5qtVqOiooSukqlkhs3bsw//vgjX716lbVard7t9957r9jvXVRUFI8dO5bPnj1rULdPnz7FujVr1uRhw4bx0aNHDVpzEydOLNatUqUKDxgwgPfu3csFBQV6d5cuXVqs6+Pjw7169eJt27Zxbm6u3t3du3cX67q6uvKnn37KGzZs4KysLL27ly9fZoVCIXQdHBy4U6dOvHLlSn7x4oXe3cePH7OFhYXQtba25rZt2/LixYv5yZMnendfvXrFrq6uQtfMzIwTExP5559/5vv37+vd1Wg0HBwcLHSNjY25adOmPG3aNL5586beXWbmZs2aCV2FQsH16tXj77//ni9evGjQ2qio1yMAAPi/Tcp8DQNFAAAAEcaNG8fW1tbF3sC9+eXu7s7du3fnTZs2SRqqLViwgG1tbcvsOjo6cufOnXn16tX88uVL0d0tW7awg4NDmV0bGxt+//33+bfffuNnz56J7p4+fZqdnJzK7FpYWLBKpeJffvmFHz58KLr76NEjdnZ2LrNrYmLCzZo1459++onv3LkjusvM7OzszEZGRqV2jYyMuGHDhvzDDz/wlStXJL3Br1GjRrFB5X9/1a5dm8eMGcNnzpyR1G3evDmbmZmV2a1RowYPHTqUjxw5Imng/PHHHxcb8vz3V+XKlbl///68Z88eSUO1QYMGsZWVVZldb29v/vLLL3nr1q2ShmrTp09nGxubMruVKlXiTz75hNetWydpqLZy5Uq2s7Mrs2tvb88dOnTgFStWSBqq7du3jx0dHcvsWllZcZs2bXjRokX8+PFj0d3r16+Xu+bMzMw4Pj6e58yZw/fu3RPdzczMZGdn52IDxTe/lEolx8TE8NSpU/nGjRuiu8zMvr6+rFQqS+0qFAquW7cuT5gwgS9cuCBpbdStW5dNTEzKfC7CwsL4u+++4xMnTkgaqr333ntsbm5eZrdatWr87bff8v79+7mwsFB0t1evXmxpaVlm18/Pj7/66ivesWMH5+Xlie5W1OsRAAAABooAAAAyGzJkSJlv3v57KDN8+HDRr0mzZs0S1fXy8uK+ffuK/nTP+vXrRXUrVarE3bt35+TkZFHd48ePi+ra29tzp06d+PLly6K6KSkporpWVlb83nvv8dGjR0V1mVlU18zMjBMSEnjHjh2iux4eHjq7SqWSY2Njec2aNaIHJ3Xq1NHZff1JpwULFogeKrZu3VrUcxEeHs7Tpk0T/SnWXr16iepWq1aNx4wZw9nZ2aK6EyZMENX18/Pjb7/9lp8/fy6qu2TJElFdd3d3/vLLL0UPxnfu3Cmq6+TkxF27dhU9pLty5Yqoro2NDbdv357Pnj0rqvv6z8+6viwsLFitVvP+/ftFdZm53GHX6y8TExNu3rw5b9q0SfTaCAoK0tk1MjLiRo0a8dKlS0V3mzZtKuq5qF27Ns+ePVv0UPHjjz8W1a1RowZPnDhR9MC9ol6PAAAAMFAEAACQ2d69e7lly5alvnlt3LgxT548Wa/LRk+ePMkffPBBqW8Go6KieNy4cXpdNnrt2jX+7LPPSu3WqlVL78tGHz58yP379y+1a8hlo5mZmTxy5MhSPy3l7e1t0GWj48ePL/XTR4ZeNjpz5kx2cXEp0X3zstH09HTJ3cWLF3NgYGCJrqGXja5du5bDw8NLdF9fNjp37lx+8OCB5O727du5SZMmJbqvLxudPn26XpeNHj58mFu1alWiq1AouH79+jxx4kS+dOmS5LVx4cIF7ty5c6k/wxERETxq1Ci9Lhu9c+dOmcPV4OBgHjx4sF7bGDx79qzMAZIh2xjk5eXx2LFjS/0koaHbGEyZMqXUT16/3sZg7dq1ev25fd68eezl5VWi+3obg2XLlum1jcGKFSuKXfL85jC1VatWvGDBAr22Mfjzzz+5Xr16pQ5TW7RowbNmzdJrG4OKej0CAACQMl8zJgAAANCpUaNG9OWXXxIRkZ2dHSUkJJBKpaKEhARydHTUu1u7dm3hbsyWlpbUvHlzUqvVlJSURG5ubnp3g4KChBshmJqaUmxsLKnValKpVOTr66t318PDg0xNTYnoPzdSadiwIanValKr1VS1alW9uzY2NuTs7EzMTAqFgqKiooRuzZo1SaFQ6N2uXr26cBfi0NBQoVu7dm0yMtL//nR16tQRbrIQFBQkdOvXr0/Gxvr/Eatx48bCDUh8fX2FbpMmTcjMzEzvbtOmTemzzz4jIiI3NzdSqVSkVqspLi6OrKys9O7GxsbS559/TkREjo6OlJiYSCqVilq2bEn29vZ6d+vVqyfcbMLGxoZatmxJKpWKEhMTycXFRe9uzZo1KTMzk4j+c5OhZs2akUqlIpVKRZ6ennp3/f39hZuwGBsbU5MmTYQ1FxgYqHfX2dmZrK2tieg/N3GqV6+e8DNRvXp1vdeGmZkZeXt7Czc/ioyMFLrh4eEGrblatWoJz3FISIjQjY6OJqVSqXe3QYMGlJKSQkREgYGBQrdhw4bCf5f0ERsbK6wNT09P4fetadOmZGFhoXf3zTXn4uJCSUlJpFKpqEWLFmRjY6N3t6JejwAAAKTAQBEAAECEY8eOUUJCAv3888/UsGFDMjExkaV7/fp1qlatGn377bcUGxtL5ubmsnSfPn1K5ubmtH79emrevLkwkDBUTk4OvXjxgn7//XeKj48nBwcHWboajYauX79OixYtoqSkJHJ1dZWlS/SfO7jOmTOHVCoV+fj4yNbdt28fTZ06ldRqNVWpUkW27s6dO2nMmDGkVqupRo0aBg12/rvbt29fUqvVFBkZadAw9U379++nDh06kFqtpnr16hk0TH3T2bNnqX79+jRx4kRq0qSJQQOjN927d4/c3Nzozz//pLi4OLK0tJSl+/LlSyosLKQ1a9ZQixYtyM7OTpZuQUEBpaSk0NKlSykhIYGcnZ1l6TIzXbhwgebPn09JSUnk4eEhS5eI6PDhw/TTTz+RWq0mf39/2bq7du2iH374gdRqNVWrVk22tfH333/T0KFDSa1WU1hYmGzdPXv2UPfu3UmtVlNUVJRBw9Q3VdTrEQAAgBQKfv1Xqe+wzMxMsrOzo4yMDLK1tX3bpwMAAAAAAAAAAPBOkTJfk+evpgEAAAAAAAAAAOD/BAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAGSUmZlJzCx7Nysri7RarezdV69eUVFRkezdvLw8ys/Pl71bVFREr169kr3LzJSZmSl7l4jQfaNbEWsjMzOzQtZGdnY2aTQa2bu5ublUUFAge7egoIByc3Nl72q1WsrKypK9S/Ru/gy/a92KWHMAAABEGCgCAADI6saNG+Tn50e9evWibdu2UV5enizdFy9ekJ+fH3366ae0YcMGys7OlqVbVFREQUFB1KlTJ1q5ciWlp6fL0lUqlRQVFUVt27alxYsX09OnT2XrqlQqSkxMpLlz59KDBw9k6SoUCurZsyc1bdqUpk+fTjdv3pSlS0Q0atQoql+/Pk2cOJEuXrwo2xv8efPmUUREBI0aNYpOnjwp21Bt8+bNFBwcTIMGDaKDBw/KNnA+c+YMBQYG0tdff007d+6Ubaj26NEj8vX1pR49etDmzZspJydHlm5OTg4FBARQly5daO3atbIOfWrVqkXt27enZcuW0fPnz2VpGhsbU0xMDLVq1YoWLFhAqampsnSNjIyoY8eO1KJFC5o1axYlJyfL0iUiGjBgADVu3JgmT55M165dk21tTJ48maKiomjcuHF09uxZ2borVqygWrVq0fDhw+no0aOyDZz37dtHVatWpW+++Yb27t1LhYWFsnQr6vUIAACAiIj4XyAjI4OJiDMyMt72qQAAALBKpWIiYiJiKysrbtOmDS9cuJBTU1MN6vbs2VPompqacnx8PM+ePZvv3btnUHfs2LFCV6lUcpMmTXjKlCl8/fp1g7qLFi0SugqFgqOjo3n8+PF8/vx51mq1ene3b98udImIQ0NDecSIEXz8+HHWaDR6d8+fP1+sGxQUxAMHDuT9+/dzYWGh3t2HDx+ymZmZ0PXz8+M+ffrwjh07OC8vT+9uVlYWOzs7C103Nzfu3r07b9q0ibOzs/XuFhUVcdWqVYWuo6Mjd+7cmVevXs0vX77Uu8vM3KRJE6FrY2PD77//Pi9ZsoSfPn1qULdTp05C19zcnFUqFc+bN49TUlIM6g4cOFDompiYcLNmzXjGjBl8+/Ztg7rTp08XukZGRtywYUOeNGkSX7582aC1sWbNmmI/w5GRkTx69Gg+ffq0Qd1Dhw4V64aEhPCQIUP48OHDXFRUpHf35s2brFQqhW5gYCD369ePd+/ezQUFBXp309LS2MbGRuh6eXnxF198wVu3buWcnBy9u3l5eezl5SV0XVxcuFu3brxu3TrOzMzUu6vVajk8PFzo2tvbc4cOHXjFihX8/PlzvbvMFfd6BAAA/05S5msYKAIAAMjs5MmTxd58v/kVFRXF48aN43Pnzkl+g5+cnMwmJialdmvVqsXDhw/no0ePSh6qvXz5ku3t7UvtVq1alb/55hveu3ev5KFaQUEB+/v7l9r18fHhXr168bZt2yQP1bRaLdetW7fUrpubG3/22We8YcMGvYZq7dq1K7Xr4ODAnTp14pUrV3J6errk7tdff11q19ramtu2bcuLFy/mJ0+eSO7+8MMPpXbNzc05MTGR586dyw8ePJDcXb58ealdY2Njbtq0KU+fPp1v3bolubt3795SuwqFguvXr88TJ07kS5cuSV4bV69eZYVCUWo7IiKCR40axSdPnpS8Np48ecIWFhaldoODg3nw4MF86NAhyUO1nJwcdnNzK7UbEBDAffv25Z07d3J+fr6krkaj4ZCQkFK7np6e3LNnT968ebNeQ7XmzZuX2nV2duYuXbrw2rVr9fqzeLdu3Urt2tracvv27XnZsmWclpYmuTt8+PBSu5aWltyqVStesGABP3r0SHL3559/LrVramrKLVq04FmzZnFycrLk7qZNm0rtKpVKbty4MU+ePJmvXbsmuVtRr0cAAPDvJGW+pmB+9zfWyMzMJDs7O8rIyCBbW9u3fToAAPAvtHfvXjp69Kjo42fOnElPnjwp9xhvb2+Kiooia2trCggIIGNjY53dJUuW6Lwct1KlStSwYUMyNzenypUrk5mZmc7u+vXr6fTp0+UeY29vT02aNCEzMzOqWrUqWVhY6Ozu2rWL9u7dW+4xVlZWFBsbS6amphQUFETW1tY6uydOnKBNmzaVe4yZmRk1bdqUTExMqFq1amRnZ6eze/36dVq6dGm5xxgbG1OjRo3Izs6O/P39ydnZWWc3NTWVZs+eXe4xCoWC6tatS+7u7uTp6Umurq6kUCjK/Weys7Np4sSJOv//w8PDKSAggCpVqkSenp46uxqNhsaNG6fz0stq1apRjRo1yMHBgXx8fMjISPduOpMnT6aXL1+We4y/vz9FRESQra0t+fv7k1Kp1Nn95Zdf6P79++Ue4+7uTvXq1SNLS0uqXLkymZiY6OyuXLmSLl26VO4xTk5O1KhRIzI3N6cqVaqQubm5zu7WrVvpyJEj5R5ja2tLMTExwtqwtLTU2T148CBt37693GMsLCyKrTkxf34+f/48rVmzptxjTExMKCYmRnh+HR0ddXbv3r1LCxcuLPcYIyMjatCgAbm4uJC3tze5uLjo/Bl+/vw5TZs2Tef/f506dcjHx4fc3NzI3d1dZzc/P5/GjRun8zLqmjVrUlBQEDk5OZGXl5fOtcHMNGHCBJ37YFapUoVCQ0PJzs6OfH19Ra0Nsa9HKpWK1Go1xcbGivoZBgCAfx8p8zUMFAEAAEQYOnQoTZo06W2fBgAAQIWytLSk5s2bk1qtpqSkJHJzc3vbpwQAAP8jUuZruCkLAAAAAAAAENF/bki0adMm6t69O8XGxtLatWtxt2gAAChB97VVAAAAAAAA8K+nVCqpYcOGpFarSa1WU9WqVd/2KQEAwD8UBooAAAAi9OjRgxISEkQdq9VqqWPHjvT48eMyj7G3t6eEhARq0KAB+fn5kY2Njah2r1696PLly2U+bmVlRS1atKCYmBjy8fERtYcZEdHIkSNp//79ZT7+ej/CuLg48vHxIVdXV1HdWbNm0R9//FHm40qlkho3bkzx8fHk5eVFXl5eororV66kefPmlfn46/0I1Wo1ubm5UUBAgM690Yj+s+fjuHHjyj0mPDycVCoV+fn5UUBAgKh9A8+dO0d9+/Yt95jq1auTSqWioKAgCggIELU3WkpKCn300UflHuPn50dqtZpq1qxJAQEBovYNzMrKovfee6/cPRTd3d1JpVJRZGQk+fv7i9pzraioiNq1a1fuHopOTk6UmJhI9erVI19fX1F7ajIzffLJJ3T37t0yj7GxsaH4+Hhq1KgR+fr6kr29vc4uEdHAgQPp5MmTZT5uYWFBzZo1o6ZNm5KPj4+oPTWJiH744Qf666+/ynz89X6ELVu2JC8vL3J3dxfVXbRoUbn7gL7ejzAhIYG8vLzIx8dH1NrYtGmTzj0J69SpQyqViry9vUWvuSNHjtDQoUPLPaZGjRqkVqspMDBQ9Nq4ceMGff755+UeU7lyZVKr1RQcHCx6H9u0tDR6//33y/3EnpeXF6nVagoLC6OAgAAyNTXV2c3Ly6M2bdqUu4dipUqVKCkpiaKiosjPz0/UnppSXo/UajXFx8eTg4ODzi4AAAAGigAAACL4+/uTv7+/qGM3bNhQ6pu3KlWqCJ/6aNCggajBzpuOHz9e6jDR29tb6MbExEjeTP/u3bt0+PDhEt93dXWlpKQkUqvV1KxZM1GDnTe9fPmSdu7cWeL7Dg4Oxd68ih3svFZQUEBdunQp8X1ra2tq0aIFqdVqSkxMpEqVKknqMjMNHDiwxPfNzMwoLi6O1Go1qVQq0UPPN02fPr3E94yNjalx48ZCt3LlypK7ffr0KfE9hUJB9erVE34mgoODRQ123jRx4sRSh4kRERHC+UZERIgapr5p6dKlpQ4Tg4ODhW69evVEDYzetHv37lKHif7+/sLz0LhxY1GDnTddunSJTp06VeL7Hh4ewg0smjZtKmqw86bHjx/Tnj17Snzf2dmZEhMTSa1WU4sWLSTvDf7q1Sv64IMPSnzf1taW4uPjSa1WU0JCAjk5OUnqajQa+uKLL0p838LCothee2KHnm8aM2ZMie+ZmJhQbGys8DPh5+cnuVvajV6MjIyET9+9Ht5LXRtDhw4tdZgYFRUldENDQyV3Z8+eXeowsVatWsLPWlRUlOQ1V1GvRwAAAFRRt5r+X5JyW2sAAICKpNFoODQ0lImIlUolN2nShKdMmcLXr183uJ2QkMBExAqFgqOjo3n8+PF8/vx51mq1BnW7d+/ORMRExKGhoTxixAg+duwYazQag7qjRo0SukFBQTxw4EDet28fFxYWGtSdP3++0PX19eU+ffrwjh07OC8vz6Du1q1bha6bmxt3796dN27cyNnZ2QZ1z5w5I3QdHR25c+fOvGrVKk5PTzeo++DBAzY1NWUiYmtra27Xrh0vWbKEnz59alA3MzOTHR0dmYjY3Nyck5KSeN68eZySkmJQt7CwkCtXrsxExMbGxhwXF8czZszgW7duGdTVarXcsGFDJiI2MjLiBg0a8KRJk/jy5csGr4327dsLv3eRkZE8evRoPn36tMHd/v37C92QkBAeMmQIHz58mIuKigzqTpkyRegGBgZyv379eNeuXZyfn29Qd+XKlULX09OTv/jiC96yZQvn5OQY1N2/f7/QdXZ25q5du/Iff/zBmZmZBnWvX7/ORkZGTERsZ2fHH374IS9fvpyfP39uUPfZs2dsZWXFRMSWlpbcunVrXrhwIaemphrUzc3NZQ8PDyYiNjU15ZYtW/Ls2bM5OTnZoG5Fvh4BAMC/k5T5Gu7yDAAAIKN9+/bR/PnzSaVSUXx8vOhLjnW5fPkyjRgxQvgkkNhLjnVJTU2lnj17Unx8PKlUKvLx8ZGlm52dTR9//DE1atSI1Go1ValSRZZuUVERffzxx1SzZk1Sq9VUo0YNyZ8EKg0z0xdffEGurq6kVqspMjJS8ieByjJs2DAqKioitVpN9erVE3VZpRhTp06le/fuCZ++MzMzk6X722+/0eHDh0mtVlNcXJzkT9+VZevWrbRq1SpSq9XUsmVLsrOzk6V78uRJ+vHHH4VPpoq95FiXO3fu0IABAygxMZFUKhV5eHjI0n3x4gV98sknFBcXRyqVigICAmTp5uXlUefOnYVPylWrVk2WtaHVaumTTz6hwMBA4TJeObpERP369SNLS0vh03dSP5lalnHjxlF6ejqp1Wpq2LChbJ+++/nnn+nSpUukVqspNjZW8qfBy7JmzRravn07qVQqat68uegtMHSpqNcjAAD495IyX8NAEQAAAAAAAAAA4P84KfM1ef7qHQAAAAAAAAAAAP5PkDxQPHDgAKnVavLw8CCFQkEbN24s9rhCoSj1a/LkyWU2R48eXeL4atWqSf6XAQAAAAAAAAAAgIoleaD46tUrCg0NpTlz5pT6eGpqarGvX3/9lRQKBbVr167cbkhISLF/7tChQ1JPDQAAAAAAAAAAACqY5F3BExISKCEhoczH3dzciv1606ZNFBsbq3PDaWNj4xL/bFny8/MpPz9f+HVmZqaofw4AAAAAAAAAAAAMU6F7KD558oS2bt1Kn332mc5jb968SR4eHhQQEEAfffQR3b9/v8xjJ06cSHZ2dsKXt7e3nKcNAAAAAAAAAAAAZajQgeJvv/1GNjY21LZt23KPi46OpiVLltD27dtp7ty5dPfuXWrUqBFlZWWVevzQoUMpIyND+Hrw4EFFnD4AAAAAAAAAAAD8F8mXPEvx66+/0kcffUTm5ublHvfmJdS1atWi6Oho8vX1pTVr1pT66UYzMzMyMzOT/XwBAAAAAAAAAACgfBU2UDx48CBdv36dVq9eLfmftbe3p6pVq9KtW7cq4MwAAAAAAAAAAABAXxV2yfOiRYsoMjKSQkNDJf+z2dnZdPv2bXJ3d6+AMwMAAAAAAAAAAAB9SR4oZmdn07lz5+jcuXNERHT37l06d+5csZuoZGZm0tq1a6l79+6lNuLi4mj27NnCrwcOHEj79++n5ORkOnLkCL333nukVCqpY8eOUk8PAADgH0uj0aBbwV1mlr2r1WpJq9XK3iV6N59jdN/NbkWsjYrqMvM7+RyjCwAA/5dIHiieOnWKwsPDKTw8nIiIBgwYQOHh4TRy5EjhmFWrVhEzlzkQvH37NqWlpQm/TklJoY4dO1JQUBC1b9+enJyc6NixY+Ti4iL19AAAAP6x/vzzT2rSpAlNnjyZrl27Jtsb8RMnTlB0dDSNGzeOzp07J1v37t27FBkZSSNGjKBjx47JNlR7+fIl1a5dm7755hvat28fFRYWytItKiqiRo0aUe/evWn79u2Ul5cnS1ehUJBKpaLPPvuMNm7cSK9evZKlS0T0ySef0EcffUSrVq2ily9fytYdPHgwtWvXjpYsWUJPnz6VrTtt2jRKSkqiefPmUUpKimzdFStWUFxcHM2YMUPWLW92795NDRo0oEmTJtGlS5dkWxuXL1+m2rVr06hRo+jUqVOyrY3Hjx9TZGQkDR48mA4dOiTb0Cc3N5fq1q1Lffv2pV27dlFBQYEsXWamuLg46tmzJ23ZsoVyc3Nl6RIRffjhh9S1a1f6448/KDMzU7Zunz596MMPP6Tly5fT8+fPZeuOGzeOWrduTQsXLqTU1FTZuvPnz6eWLVvS7NmzKTk5WbZuRb0eAQDA/yH8L5CRkcFExBkZGW/7VAAAAMqk0Wg4JCSEiYiJiCtXrsz9+/fnPXv2cEFBgUHt5s2bC11vb2/+8ssveevWrZybm2tQt2vXrkK3UqVK/Mknn/C6des4KyvLoO6wYcOErr29PXfs2JFXrFjBL168MKg7Z84coWtlZcXvvfceL1q0iB8/fmxQd+PGjULXzMyM4+Pjec6cOXzv3j2DuidOnBC6SqWSY2JieOrUqXzjxg2DusnJyWxsbMxExAqFguvWrcsTJkzgCxcusFar1bubnp7O9vb2wjmHhYXxd999xydOnGCNRqN3t6CggP38/IRutWrV+Ntvv+UDBw5wYWGh3l2tVsvR0dFC18/Pj7/66ivesWMH5+Xl6d1lZm7btq3QdXd3588//5w3bdrEr169Mqj71VdfCV0nJyf++OOPefXq1fzy5UuDupMmTRK6tra2/MEHH/Bvv/3Gz549M6i7bNkyoWthYcEqlYp/+eUXfvjwoUHdPXv2CF0TExNu1qwZ//TTT3znzh2DuleuXGGFQsFExEZGRtywYUP+4Ycf+MqVKwatjSdPnrCFhYVwzrVr1+YxY8bwmTNnDOrm5OSwm5ub0K1RowYPHTqUjxw5wkVFRXp3K/L1CAAA3l1S5msYKAIAAPwPrVmzRngD9+aXnZ0df/jhh7x8+XJ+/vy55O6hQ4dK7VpaWnLr1q154cKFnJqaKrl78+ZNViqVJbqmpqbcsmVLnj17NicnJ0vupqWlsY2NTYmuUqnkJk2a8JQpU/j69euSu3l5eezl5VWiq1AoODo6msePH8/nzp2T/AZfq9VyWFhYqc9xaGgojxgxgo8dO6bXUC0pKanUblBQEH/zzTe8b98+vYZqPXr0KLXr6+vLvXv35u3bt+s1VBszZkypXTc3N/7ss89448aNnJ2dLbm7cOHCUruOjo780Ucf8apVq/Qaqm3btq3UrrW1Nbdr146XLFnCT58+ldw9d+5cqV1zc3NOSkriefPmcUpKiuRuSkoKm5mZlegaGxtzXFwcz5gxg2/duiW5m5WVxU5OTiW6RkZG3KBBA540aRJfunRJ8tooLCzkqlWrlvpcREZG8ujRo/nUqVN6rbnGjRuX2g0JCeEhQ4bwoUOH9BqqdezYsdRuYGAg9+3bl3ft2sX5+fmSuwMHDiy16+npyT179uQtW7ZwTk6O5O706dNL7bq4uHDXrl35jz/+4MzMTMndino9AgCAd5eU+ZqC+d3/fHtmZibZ2dlRRkYG2dravu3TAQCAf6HTp0/TpUuXDO5otVrq27cvZWVllXmMQqGgKlWqUFhYGIWHh5ObmxspFAqd7REjRui8DNXf35/CwsIoLCyMfHx8RHWnTp1KFy9eLPcYLy8voRsQEEBGRrp3Vfn111/pwIED5R7j6uoqdKtUqULGxsY6uxs2bKBNmzaVe4yjo6PQrV69OpmYmOjs7t27l3777bdyj7G1taXQ0FAKCwujkJAQMjc319k9d+4czZgxo9xjLC0tqVatWhQWFkY1a9YkKysrnd179+7RqFGjyj3GzMyMatSoQWFhYRQaGirqz1EZGRnUt2/fco8xNjam4OBgoevk5KSzW1hYSH369KH8/PwyjzEyMqKgoCDh987V1VVnl5lp4MCBOi9vDQwMpPDwcAoLCyNPT09Ra2P8+PE6L9H28fERur6+vqLWxpw5c+jkyZPlHuPu7i50K1euLKr7+++/099//13uMc7OzkI3KChI1Jrbtm0brV69utxj7O3thd+34OBgMjU11dk9duwYzZs3r9xjrK2thTVXo0YNsrCw0Nm9fv06TZw4sdxjzM3NhTVXq1Ytsra21tl9+vQpDRo0qNxjTExMKCQkRHgu7O3tdXZzc3OpT58+5V4Cr1QqqVq1asLrhrOzs86umNcjIyMjatCgAanValKr1RQUFCRqbQAAwLtJynwNA0UAAAARhg4dSpMmTXrbpwEAAPDWVK5cmdRqNalUKmrUqJGov4wBAIB3h5T5muSbsgAAAAAAAMD/Pbdu3aLp06dTXFwcBQcH07Zt2972KQEAwFui+xoGAAAAAAAA+D8vJCRE+IRi3bp1SalUvu1TAgCAtwQDRQAAABE6dOhAtWrVMrij0Wjoyy+/pOzs7DKPUSqVVL16dYqIiKDw8HBR+8QREQ0aNKjcPRQVCgVVrVqVIiIiKCIigjw8PETthTVx4kSdeyj6+/tTZGQkRUREkK+vr6juL7/8Qvv37y/3GC8vL+F8xe4Tt3btWtqwYUO5x7i6ugpdsfvE7dq1i3799ddyj3F0dBS6YveJO336NE2dOrXcY2xtbSk8PJwiIiJE7xN39+5dGj58eLnHWFpaUmhoKEVERFBoaKiofeLS09Opd+/e5R5jZmZGNWvWFH6G7ezsdHYLCgqoZ8+e5e6haGxsTCEhIUJXzD5xzExff/11uXsoKhQKqlatGkVERFBkZCS5ubnp7BIRjRw5UuceipUrVxZ+Jry9vUWtjRkzZtCJEyfKPcbX11fo+vv7i1obS5cupe3bt5d7jIeHh9CtUqWKqIHR5s2baeXKleUe4+zsLPw3olq1aqIulT18+DDNmTOn3GPs7e2LrQ0zMzOd3StXrtD48ePLPcba2prCwsIoIiKCatWqRZaWljq7jx8/pgEDBpR7jLm5OYWGhlJ4eDiFh4eTjY2Nzu6rV6/oiy++KHcPRRMTE6pZs6bwXDg4OOjsink9MjExoSZNmghDxICAAJ1dAAD4vwEDRQAAABFCQ0MpNDTU4M6qVatKffPm7OxMiYmJpFarqUWLFpL3BD5w4ECpw0RbW1uKj48ntVpNCQkJom6O8aYbN27Q5cuXS3zfwsKCmjdvTmq1mpKSksjd3V1SNy0tjT7//PMS3zcxMaHY2Fjhzaufn5+kbl5eHg0cOLDE942MjKhhw4ZCV+qNBbRabZl7aEZFRQnd0NBQyTcsWLp0aanfr1WrFqlUKlKr1RQVFSVqYPSm7t27l/r9KlWqCDdYaNCggeQ90Mq60Yu3t7fQjYmJEXVDmjfNnz+/1GGiq6srJSUlkVqtpmbNmokaer5p69atpQ4THRwcKCEhgdRqNcXHx4u6Ocabzp49W+ow0dramlq0aEFqtZoSExOpUqVKkroPHjygbt26lfi+mZkZxcXFCWvO29tbUjczM5P69OlT4vvGxsbUuHFj4We4cuXKkrpFRUX03Xfflfi+QqGgevXqCd2QkBBJa4OZyxwmRkRECN2IiAjJa+PDDz8s9fvBwcHCmqtXr57kT9+VNUz09/cX1kbjxo1F/UXDm6ZOnVrqMNHDw0M436ZNm4oaer6pol6PAADg/4iKvN30/4qU21oDAAC8LUVFRVy9enUmIiYiDgkJ4SFDhvDhw4e5qKjIoHbTpk2FbmBgIPfr14937drF+fn5BnU7d+4sdD09PfmLL77gLVu2cE5OjkHdwYMHC10XFxfu1q0b//HHH5yZmWlQd+bMmULXzs6OO3TowMuXL+fnz58b1F23bp3QtbS05NatW/PChQs5NTXVoO7Ro0eFrqmpKbds2ZJnz57NycnJBnVv377NxsbGTESsVCq5SZMmPGXKFL5+/bpB3RcvXrCtrS0TESsUCo6Ojubx48fz+fPnWavV6t3Nz89nHx8f4bkIDQ3lESNG8PHjx1mj0ejd1Wq1XLt2baEbFBTEAwcO5H379nFhYaHeXWbm1q1bC11fX1/u06cPb9++nfPy8gzq9urVS+i6ublx9+7deePGjZydnW1Qd8KECULX0dGRO3fuzKtWreL09HSDukuWLBG61tbW3K5dO16yZAk/ffrUoO7OnTuFrrm5OSclJfG8efM4JSXFoO7FixdZoVAwEbGxsTHHxcXxjBkz+NatWwZ1U1NT2dzcnImIjYyMuEGDBjxp0iS+fPmyQWsjOzubK1WqJDwXkZGRPHr0aD59+rRB3Yp8PQIAgHeXlPka7vIMAADwP7J+/XqaN28eqVQqWS8dO3LkCA0ZMkT4pEq1atUkf0quNDdv3qQuXbpQYmIiqVQqCgsLk6WblpZGrVq1opiYGOHTd3Lsw5WXl0fx8fHCp5caNmwoyx1ItVottW7dWvgEXmxsrORP35WlW7duZGRkRGq1mpo3by7503dl+fbbb+nhw4fCp+/EXP4oxuTJk+no0aPCp+/EXo6vy9KlS2nVqlXCp+98fHxk6e7YsYN++OEH4dNsVapUkaV7/vx56tWrl/DJyRo1asiyNlJSUuiDDz4QPv0bGRkp+dN3pcnMzKTExESqX7++8Ok7MZf561JUVESJiYlUrVo14dN3Yi451oWZ6cMPPyR7e3tSq9UUFxcn+dN3ZenduzdlZWUJn74Tczm+GKNHj6YrV64InwYXczm+GHPnzqVt27YJa8PDw0OWbkW9HgEAwLtNynwNA0UAAID/Ea1WK8twAN3/fVehUMgyMCqt/a49F+ii+2a3ItYGMxMzv3PPBboAAPCukzJfwx6KAAAA/yMV9eYN3XezW5FtdNF9l7sVNcAneveei3etCwAA/3fglQQAAAAAAAAAAABEw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAAAAAAAAAABEw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAAAAAAAAAABEw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAOB/7PHjx5SQkEDTp0+nmzdvytZ99eoVqVQq+v777+nixYvEzLJ0NRoNtW/fnkaOHEknT54krVYrS5eZqXv37jRo0CA6ePAgFRUVydIlIhoyZAh9/fXXtHPnTiooKJCtO2XKFOrRowdt3ryZcnJyZOsuWbKEunTpQmvXrqXMzEzZun/99Re1b9+eli1bRmlpabJ1T506Ra1ataIFCxbQo0ePZOsmJydTQkICzZw5k+7evStbNz09nRITE+nHH3+kq1evyrY28vPzqU2bNjR27Fg6e/asbF1mps6dO9OwYcPo6NGjpNFoZOkSEfXt25cGDBhAe/fupcLCQtm6Y8eOpV69etG2bdsoLy9Ptu7PP/9Mn376KW3YsIGys7Nl665du5Y6depEK1eupPT0dNm6+/fvp7Zt29LixYvp6dOnsnWvXr1KSUlJ9PPPP9ODBw9k61bU6xEAAPwfwP8CGRkZTESckZHxtk8FAABAlC+//JKJiImIg4KCeODAgbx//34uLCw0qDt+/Hih6+fnx3369OEdO3ZwXl6eQd3FixcLXTc3N+7evTtv2rSJs7OzDer+/fffQtfR0ZE7d+7Mq1ev5pcvXxrUvXjxotC1sbHh999/n5csWcJPnz41qPvo0SM2NzdnImJzc3NWqVQ8b948TklJMaibnZ3NLi4uTERsYmLCcXFxPGPGDL59+7ZB3aKiIq5WrRoTERsZGXGDBg140qRJfPnyZdZqtQa1Y2Njhec4MjKSR48ezadPnza427lzZ6EbEhLCQ4YM4cOHD3NRUZFB3cGDBwvdwMBA7tevH+/evZsLCgoM6s6cOVPoenl58RdffMFbt27lnJwcg7rr1q0Tui4uLtytWzdet24dZ2ZmGtQ9evSo0LW3t+cOHTrwihUr+Pnz5wZ1b9++zcbGxkxEbGVlxW3atOFFixZxamqqQd0XL16wra0tExGbmppyfHw8z549m+/du2dQNz8/n318fJiIWKlUckxMDE+ZMoWvX79uUFer1XLt2rWZiFihUHB0dDSPHz+ez58/b/DaaN26tfB7FxoayiNGjODjx4+zRqMxqFtRr0cAAPDukTJfw0ARAADgLbh//z6bmJgIb+Jefzk4OPBHH33EK1eu5PT0dMndjIwMdnBwKNG1trbmtm3b8uLFi/UaqhUWFnJgYGCJrrm5OScmJvLcuXP5wYMHkrtarZbr169fomtsbMxNmzbl6dOn861btyR3mZk/+OCDEl2FQsH169fniRMn8qVLl/R6g9+vX78SXSLiiIgIHjVqFJ86dUqvN/iTJ08utRscHMyDBw/mQ4cO6TVU+/3330vtBgQEcN++fXnnzp2cn58vubtv375Su56entyzZ0/evHmzXkO1a9eusZGRUYmus7Mzd+nShdeuXavXn/mePn3KVlZWJbq2trbcvn17XrZsGaelpUnu5ubmsru7e4mupaUlt2rVihcsWMCPHj2S3NVoNFyrVq0SXVNTU27RogXPmjWLk5OTJXeZmePj40t0lUolN27cmCdPnszXrl3Tq/vZZ5+V+jMRFRXF48aN43Pnzum15kaOHFlqt1atWjx8+HA+duyYXmvul19+KbVbtWpV/uabb3jfvn16DdW2bNlSatfHx4d79+7N27dv1+svec6cOVNq183NjT/77DPesGGDXn/JU1GvRwAA8O6RMl9TMMt0bcZblJmZSXZ2dpSRkUG2trZv+3QAAOBf6NatW5ScnCxrc8KECbRv374yHzcyMqKaNWtSvXr1qG7duuTp6Smq+8svv9Aff/xR7jHVq1cXun5+fqRQKHR2161bR/PmzSv3mMDAQKFbpUoVMjLSvbvKvn37aMKECeUe4+PjQ3Xr1qW6detScHAwKZVKnd1Lly5R//79yz3Gzc2NoqOjqV69elSrVi0yMTHR2U1NTaUuXbqUe4yTkxNFR0dT3bp1KTw8nMzNzXV2X716RR988EG5l6Ha2NgI3dq1a5OVlZXOrkajoY4dO5Z7WaelpSXVrl2b6tatS9HR0aL/PNWzZ0+6c+dOmY+bmppSRESE8Hvn5OQkqjt8+HA6ceJEmY8rlUoKDQ0Vftbc3NxEdadPn05//fVXmY8rFAoKCQmhevXqUXR0NPn4+IhaG8uWLaOlS5eWe0zVqlWF8w0MDBTV3bZtG02bNq3cY/z9/YXnNygoSNTaOHnyJA0bNqzcYzw9PYVujRo1yNjYWGf3zp071LNnz3KPcXFxEbphYWFkamqqs5uenk4dOnQod7sFe3t7YW1ERkaShYWFzm5BQQG1b9+eXr16VeYxVlZWFBUVRXXr1qU6deqQjY2Nzi4zU9euXSk1NbXMY8zNzSkyMlJYcw4ODjq7REQDBgygixcvlvm4iYkJhYWFCT/DlSpVEtXV9XpkbGxMjRo1IrVaTWq1mipXriyqCwAA7xYp8zUMFAEAAEQYOnQoTZo06W2fBgAAwFtXrVo1UqlUpFarqX79+qIGzgAA8M8nZb6Gm7IAAAAAAACAaNeuXaMpU6ZQkyZNyNXVlX788UdZb4AFAAD/fPirJAAAAAAAABDNxMSEYmNjSaVSkUqlIn9//7d9SgAA8D+GgSIAAIAICQkJovd/E2vt2rXl7hNH9J+97apXr07BwcEUFBREZmZmOrt///037dy5s9xjzM3NKSgoiIKDg6latWpkaWmps3v8+HGdezOamJhQ1apVKTg4mKpXry5qv7GrV6/Sr7/+Wu4xSqWSAgMDKTg4mIKDg0XtN/bo0SOaPn16uccoFAry9/cXzlfMfmPZ2dk0ZswYncf5+PgIXXd3d5175hUVFdHIkSPL3UORiMjd3V14Hry9vXV2mZkmTpxY7h6KRP/Z2+71z5q/v7+o/S/nzJmjc29Re3t74XwDAwNFXRq5fPlyOn/+fLnHWFtbC90qVaqI2ovvzz//pIMHD5Z7jIWFBVWrVk1Yc2L24tu/fz9t2bKl3GNMTU2LrTlra2ud3XPnztGKFSvKPcbY2JgqV64sPBd2dnY6u3fv3qWff/653GOMjIwoICBA6Ir579/z5891bg2hUCjI19dXWBuurq46f4bz8/Np5MiR5e6hSPSffR9fn6+np6eotTFmzJhy91AkInJ1dRXWhq+vr6i1MW3atHL3UCQicnR0FM7X399f1NpYtGgRXbt2rdxjbG1thW7lypVF7Q0r5vXI2dmZkpKSSK1WU4sWLUT99x0AAP7FKvLuMP8ruMszAAC8a9LT09ne3r7UO3bWqFGDhw4dykeOHJF8V9+CggL28/MrtVu5cmXu378/79mzhwsKCiR1tVotR0dHl9r18vLiL7/8kv/66y/Ozc2V1GVmbtu2bandSpUq8SeffMLr1q3jzMxMyd2vvvqq1K69vT137NiRV6xYwc+fP5fcnTRpUqldKysrbtOmDS9atIgfP34subts2bJSu6amphwfH89z5szhe/fuSe7u2bOn1K5SqeSYmBieOnUq37hxQ3L3ypUrrFAoSr2Tdt26dXnChAl84cIFyXf1ffLkCVtYWJR6zmFhYfzdd9/xiRMnJN/VNycnh93c3ErtVqtWjb/99ls+cOCA5Lv6ajQaDgkJKbXr5+fHX331Fe/YsUOvu/o2b9681K67uzt//vnnvGnTJn716pXkbrdu3UrtOjk58ccff8yrV6/mly9fSu4OHz681K6NjQ1/8MEH/Ntvv/GzZ88kd3/++edSu+bm5qxSqfiXX37hlJQUyd1NmzaV2jUxMeFmzZrxTz/9xLdv35bcPXnyZKldIyMjbtiwIf/www985coVyWsjOTm51LsxExHXrl2bx4wZw2fOnJHcrajXIwAAePdIma9hoAgAAPAWjBkzptib1xYtWvCsWbP47t27BnUXLlxY7M1r48aNefLkyXz16lXJbzLftG3btmJvMqOionjs2LF89uxZg7rnzp0r1q1VqxYPGzaMjx49Knlg9KaUlBQ2MzMTulWqVOEBAwbw3r17JQ9T35SVlcVOTk5C19vbm3v16sXbtm3Ta5j6WmFhIVetWlXourq68qeffsobNmzgrKwsvbtarZYbN24sdB0cHLhTp068cuVKfvHihd5dZuaOHTsKXWtra27bti0vXryYnzx5YlB34MCBQtfMzIwTExN57ty5fP/+fYO606dPF7rGxsbctGlTnjZtGt+8edOg7po1a4oNU+vXr8/ff/89X7x40aC1cejQoWJrIyIigkeOHMknT540aG3cvHmTlUql0K1evToPGjSIDx48aNDAKC0tjW1sbISuv78/f/3117xz507Oz8/Xu5uXl8deXl5C18PDg3v06MGbN2/Wa5j6mlar5fDw8GLD1C5duvDatWsNfk+hUqmErq2tLbdv356XLVvGaWlpBnV79uwpdC0sLLhVq1a8YMECfvjwoUHdino9AgCAd4+U+Rru8gwAAPA/9vLlS4qOjqb69euTSqWS7dKxwsJCio6OpqCgIFKpVJSQkECOjo4Gd5mZmjVrRjY2NqRWqykpKYnc3NwM7hIRderUiV68eEFqtZpUKhX5+vrK0h0wYACdOXOG1Go1qdVqqlq1qizdyZMn07p164RuzZo1dV5WKcby5ctpypQpQrd27dqiLqvUZe/evfTll18Kz2+DBg1kuRvr1atXSaVSUWJiIqlUKoqJiRF1Ob4uT58+pfr16wt7szVr1oysrKwM7ubm5lLt2rUpPDyc1Go1tWzZkuzt7Q3uarVaatiwIXl4eJBarabExERycXExuEtE1Lp1a9JoNMLvnaenpyzdHj160J07d4RuYGCgLN1Ro0bR7t27hZ/h6tWry7I25s2bRwsXLhTONyIiQpbun3/+ScOGDRO6devWJaVSaXD31KlT1KFDB6HbqFEjUZfj63Lv3j2KjY2lFi1akFqtpqZNm4q6HF+Xino9AgCAd5OU+RoGigAAAP9jubm5ZGpqKsub1zcVFBSQQqEQtV+WFBqNhgoLC8nc3FzWLjNTTk6OLAOj//bq1St0K7hraWkpy2DnTTk5OWRubi7LMPVNeXl5ZGxsLMsw9U2FhYWk1WplGaa+iZkpNzdX1N6mUr2LP2vvWrei1oaFhYXs3Yp6PQIAgHcTBooAAAAAAAAAAAAgmpT5mrx//QsAAAAAAAAAAAD/ahgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAC8BQsWLKCRI0fSyZMnSavVytZdt24dDRo0iA4ePEhFRUWydfft20dff/017dy5kwoKCmTrXrp0iXr06EGbN2+mnJwc2bqPHj2ibt260dq1aykzM1O2blZWFnXr1o2WLl1KaWlpsnWLioqoR48eNH/+fHr06JFsXWam/v3708yZM+nu3buydYmIxowZQz/++CNdvXqVmFm27syZM2ns2LF09uxZWbvLly+nYcOG0dGjR0mj0cjW/euvv2jAgAG0d+9eKiwslK17/Phx6tWrF23bto3y8vJk696+fZs+/fRT2rBhA2VnZ8vWff78OXXr1o1WrlxJ6enpsnXz8vLo008/pV9//ZWePHkiW1er1VLv3r3p559/pgcPHsjWJSIaOnQoTZs2jW7evClr98cff6Tvv/+eLl68KOvaqKjXIwAA+Jfjf4GMjAwmIs7IyHjbpwIAACBKSkoKm5qaMhGxm5sbd+/enTdu3MjZ2dkGdTMzM9nJyYmJiB0dHblz5868evVqfvnypUHdwsJCrlKlChMR29jY8Pvvv89Llizhp0+fGtTVarXcqFEjJiI2NzdnlUrF8+bN45SUFIO6zMwdOnRgImITExOOi4vjGTNm8O3btw3ufvPNN0xEbGRkxA0aNOBJkybx5cuXWavVGtSdNm0aExETEUdGRvLo0aP59OnTBndXr14tdENCQnjIkCF8+PBhLioqMqh78OBBoRsYGMj9+vXj3bt3c0FBgUHdmzdvslKpZCJiLy8v/uKLL3jr1q2ck5NjUDctLY2tra2ZiNjFxYW7devGf/zxB2dmZhrUzc3NZU9PTyYitrOz4w4dOvDy5cv5+fPnBnW1Wi2HhYUxEbGlpSW3bt2aFy5cyKmpqQZ1mZkTExOZiNjU1JRbtmzJs2fP5nv37hnc/fzzz5mIWKlUcpMmTXjKlCl8/fp1g7ujR49mImKFQsHR0dE8fvx4Pn/+vMFrY8GCBcLPcGhoKI8YMYKPHz/OGo3GoO5ff/0ldIOCgnjgwIG8f/9+LiwsNKh79uxZoevr68t9+vTh7du3c15enkHdino9AgCAd4+U+ZrkgeL+/ftZpVKxu7s7ExFv2LCh2ONdu3YVXuhef7Vs2VJnd/bs2ezr68tmZmYcFRXFx48fF31OGCgCAMC7qE+fPiVeM83NzTkxMZHnzp3LDx480Ks7ceLEEl1jY2Nu2rQpT58+nW/duqVXd+nSpSW6CoWC69evzxMnTuRLly7p9QZ/9+7dJbpExBERETxq1Cg+deqUXm/wL1++zAqFokQ3ODiYBw8ezIcOHdJrqPb48WO2sLAo0Q0ICOC+ffvyzp07OT8/X3L31atX7OrqWqLr6enJPXv25M2bN+s1VNNoNBwcHFyi6+zszF26dOG1a9fq/WeoZs2aleja2tpy+/btedmyZZyWlqZXt7Q/T1paWnKrVq14wYIF/OjRI726w4YNK9E1NTXlFi1a8KxZszg5OVmv7uzZs0t0lUolN27cmCdPnszXrl3Tq7thw4ZS10ZUVBSPGzeOz507p9eaO378eKndWrVq8fDhw/no0aN6rbm7d++ysbFxiW7VqlX5m2++4b179+o1VEtPT2c7O7sSXR8fH+7Vqxdv27ZNr6Fafn4++/n5lei6urryp59+yhs2bNBrqKbVajkqKqpE18HBgTt16sQrV67k9PR0yV1m5vfee69E19ramtu2bcuLFy/mJ0+e6NWtqNcjAAB4t0iZrymYpX1eftu2bXT48GGKjIyktm3b0oYNG6hNmzbC4926daMnT57Q4sWLhe+ZmZmRg4NDmc3Vq1dTly5daN68eRQdHU0zZsygtWvX0vXr16lSpUo6zykzM5Ps7OwoIyODbG1tpfzrAAAAiPL06VN6/vy5rM2HDx9S8+bNyz2mevXq1KRJE4qNjaWQkBAyMtK9W0lWVhY1adKk3MskAwICKDY2lpo0aUJhYWFkbGyss1tUVETNmjWjp0+flnmMp6cnxcTEUGxsLNWuXZtMTU11dpmZ3n//fbp69WqZx7i4uAjPQ926dcnCwkJnl4iod+/etHfv3jIft7OzoyZNmlBMTAw1bNiQrK2tRXXHjh1Lq1atKvNxKysratiwIcXExFCTJk3I3t5eVHfevHk0c+bMMh83MzOjevXqUWxsLMXExJCLi4uo7oYNG2j48OFlPm5sbEx16tSh2NhYio2NJU9PT1HdI0eOUPfu3ct8XKFQUEREBMXExFBMTAwFBASQQqHQ2b116xa1atWq3GNq1Kgh/AxXr15dVPf58+cUExNT7iXPVapUEX6Ga9asSUqlUmc3Ly+PYmJiyr283tfXV/gZjoiIIBMTE51dZqbExES6d+9emce4ubkJz290dDSZmZnp7BIRdenShU6dOlXm446OjsL51qtXj6ysrER1Bw0aRFu2bCnzcRsbG2rUqBHFxsZSw4YNyc7OTlR3ypQp9Ouvv5b5uIWFBdWvX1/4mXBychLVXbZsGU2cOLHMx01MTKhu3brCc+zu7i6q+/fff1O/fv3KfFypVFJkZKRwvn5+fqK6586do06dOpV7TGhoqPAzXKVKFVFr4+HDh9SiRYtyL6UODw8nlUpFarWaIiMjRb0eAQDAu0XKfE3yQLHYP6xQlDpQfPnyJW3cuFF0Jzo6murUqUOzZ88mov/saeLt7U1fffUVDRkyROc/j4EiAABUtKFDh9KkSZPe9mkAAAC8dW5ubsJwMS4uTvTAGQAA/tmkzNcq5K+V9u3bR5UqVaKgoCD68ssvy/1ER0FBAZ0+fZqaNWv2/0/KyIiaNWtGR48eLfWfyc/Pp8zMzGJfAAAAAAAAUPEeP35MCxcupNatW5OzszOpVCo6fvz42z4tAAD4H9J9fZNE8fHx1LZtW/L396fbt2/TsGHDKCEhgY4ePVrqJSNpaWmk0WjI1dW12PddXV3p2rVrpf5/TJw4kcaMGSP3qQMAAAAAAIAI5ubm1KxZM1Kr1ZSUlCR6qwQAAPh3kH2g2KFDB+F/16xZk2rVqkWBgYG0b98+iouLk+X/Y+jQoTRgwADh15mZmeTt7S1LGwAAoDQNGjQodz8sfRQVFQnbfZTHysqK/P39KSAggLy9vXXuvcbMNG/ePMrPzy/3OHNzc/L39yd/f3/y8/MTtd/h0qVL6cWLF+UeY2pqSr6+vhQQEEB+fn6i9jtcv3493b9/v9xjlEol+fj4UEBAAPn7+4va73D37t108eLFco8xMjIiLy8voStmT7fjx4+XeSXFmzw8PCggIIACAgLIwcFB515mly5dol27dunsurq6Cl1nZ2ed3eTkZFHb0Tg5OQldV1dXnXukpaWl0fLly3V27e3tha6Hh4fObl5eHs2bN09n19raWuh6eXnp3AtUq9XSnDlzyt1Dkeg/+/G9/nnw9fUVtd/hwoULKTs7u9xjzMzMyM/PjwICAsjX15fMzc11dletWkWPHz8u9xhjY2Py8/MT1rOlpaXO7pYtW+jWrVvlHqNUKsnb21t4LmxsbHR2Dxw4QGfOnCn3GIVCQZ6ensLvnZg9Rs+cOUMHDhzQeZy7u7twvk5OTjrXxo0bN+ivv/7S2XVxcRHOt1KlSjq7jx49ojVr1ujsOjo6Cv99d3d317k2MjMzy91L8jVbW1vhefDy8tK5F2hRURHNmTOn3D0Uif7z3zSVSkUqlYri4uJE/awBAMC/k+wDxf/2+g+6t27dKnWg6OzsTEqlkp48eVLs+0+ePCE3N7dSm2ZmZqI3nAYAAJDD6zdQclqyZEmZj0VERJBarSa1Wk0RERGiNtV/befOnfTTTz+V+lhISIiw71XdunVF3XDitUuXLtGMGTNKfSwgIEA430aNGokaTr6Wmppa5vDI09NTON+mTZuKvhkLEdGrV69oxYoVpT7m7OxMSUlJpFarqUWLFqIGJa9pNBqqUaNGqY/Z2dlRfHw8qdVqio+PF31jiNeaNm1a6vctLS2pefPmpFarKTExUfSNIV77+OOPS/2+qakpxcbGCp8wEntjiNfK2utaqVRSw4YNSa1Wk0qloqCgIEndWbNmlfp9hUJBUVFRws9ErVq1JK2N9evXl3nTm9DQUKFbp04dSTecOHr0aJlro2rVqsLaaNCggagbIL12586dMp8LHx8foRsTEyPpz8YvXrwocyjl6uoqPA/NmjWTtDdeQUEBVa5cudTHHBwcKDExkdRqNbVs2VL0jYqI/vOXJHXq1Cn1MWtra2rZsiWp1WpKSEgQdUPHN7Vu3brU75ubm1NcXJywNry8vCR1e/XqVer3jY2NqUmTJsJzHBgYKKk7YcKEUr9vZGRE9erVE7rBwcGS1saSJUvKHCYa8noEAAD/YobcTpqIeMOGDeUe8+DBA1YoFLxp06Yyj4mKiuI+ffoIv9ZoNOzp6ckTJ04UdR5SbmsNAADwT1BYWMiBgYFMRExEbG5uziqVin/55RdOSUnRu6vVarl+/fpC18TEhJs1a8Y//fQT375926Bz/uCDD4SukZERN2zYkH/44Qe+cuUKa7Vavbv9+vUTukTEtWvX5jFjxvCZM2cM6k6ePLlYt0aNGjx06FA+fPgwFxUV6d39/fffi3UrV67M/fv35927d3NBQYHe3X379hXrenl58RdffMFbt27lnJwcvbvXrl1jIyMjoevi4sLdunXjdevWcWZmpt7dp0+fspWVldC1s7PjDh068IoVK/j58+d6d3Nyctjd3V3oWllZcZs2bXjRokX8+PFjvbsajYZr1qwpdE1NTTk+Pp7nzJnD9+7d07vLzNyyZUuhq1QqOSYmhqdOncrXr183qPvpp58KXYVCwXXr1uUJEybwhQsXDFob3333XbGftbCwMP7uu+/4+PHjrNFo9O7OmzevWLdatWr87bff8v79+7mwsFDv7ubNm4t1/fz8+KuvvuIdO3ZwXl6e3t3Tp08X67q5uXH37t1506ZNnJ2drXf3/v37bGJiInQdHR25c+fOvHr1an758qXe3YyMDHZwcBC6NjY2/P777/Nvv/3Gz54907tbUa9HAADw7pEyX5M8UMzKyuKzZ8/y2bNnmYh42rRpfPbsWb537x5nZWXxwIED+ejRo3z37l3etWsXR0REcJUqVYq92Ddt2pRnzZol/HrVqlVsZmbGS5Ys4StXrnCPHj3Y3t5e9B8aMVAEAIB3zeLFi9nDw4N79OjBmzdv5levXsnS/fvvv9nJyYm7dOnCa9eule218eLFi2xvb8/t27fnZcuWGfTm9U2PHj1iJycnbtWqFc+fP58fPnwoSzc7O5u9vLy4RYsWPHPmTL5z544s3aKiIq5RowY3atSIf/zxR7569apBg503NW3alOvUqcNjx47ls2fPytbt3Lkz16xZk4cNG8ZHjx41aGD0pkGDBnGVKlV4wIABvHfvXoOGqW/66aef2Nvbm3v16sXbtm3j3NxcWbp//PEHu7q68qeffsobNmzgrKwsWbpHjhxhBwcH7tSpE69cuZJfvHghS/f27dtsb2/Pbdu25cWLF/OTJ09k6T5//pwrVarEiYmJPHfuXL5//74s3fz8fA4MDOSmTZvytGnT+ObNm7J0tVotR0VFcf369fn777/nixcvyrY2WrVqxeHh4Txy5Eg+efKkbGvjyy+/5OrVq/OgQYP44MGDBv0FxpvGjx/P/v7+/PXXX/POnTs5Pz9flm5FvR4BAMC7R8p8TcGsY6OM/7Jv3z6KjY0t8f2uXbvS3LlzqU2bNnT27Fl6+fIleXh4UIsWLWjcuHHFbrri5+dH3bp1o9GjRwvfmz17Nk2ePJkeP35MYWFhNHPmTIqOjhZ1TlJuaw0AAPBP8PDhQ/Lw8JD90rFHjx6Rq6urpEuZxXjy5Ak5ODhIupRZjOfPn5OlpaWkS5nFyMjIICMjI0mXMouRk5NDeXl55OjoKGu3qKiInj17JvlSZl2YmR4+fCj5ck0xUlJSKqzr6ekp+9p4+PChqD3qpHr8+DE5OztLupRZjGfPnpGtra3s2/y8ePGCzMzMJF3KLEZWVhZpNBpJlzKLkZ+fT5mZmeTi4iJrV6vVUmpqaoXcSORdXBsV8XoEAADvHinzNckDxX8iDBQBAAAAAAAAAAD0J2W+Ju9f0QIAAAAAAAAAAMC/GgaKAAAAAAAAAAAAIBoGigAAAAAAAAAAACAaBooAAAAAAAAAAAAgGgaKAAAAAAAAAAAAIBoGigAAAAAAAAAAACAaBooAAAAAAAAAAAAgGgaKAAAAAAAAAAAAIBoGigAAAAAAAAAAACAaBooAAABvwcaNG2nWrFmUnJwsa3ffvn00efJkunr1KjGzbN3z58/TuHHj6OzZs7J2Hzx4QMOGDaOjR4+SRqORrZuRkUGDBg2ivXv3UmFhoWzdgoICGjJkCG3bto3y8vJk6zIzjR49mjZs2EDZ2dmydYmIpk6dSitXrqT09HRZu/Pnz6fFixfT06dPZe2uXr2a5s6dSw8ePJC1u2PHDpo+fTrdvHlT1u7x48fp+++/p4sXL8q6Nm7cuEEjR46kkydPklarla377NkzGjJkCB08eJCKiopk6+bk5NDgwYNp586dVFBQIFtXo9HQiBEjaPPmzZSTkyNbl4jo+++/p7Vr11JmZqas3VmzZtGyZcvo+fPnsnZ/++03WrBgAaWmpsrarajXIwAA+Jfjf4GMjAwmIs7IyHjbpwIAACDKkydP2MLCgomIQ0JCeMiQIXz48GEuKioyqJuTk8Nubm5MRBwYGMj9+vXj3bt3c0FBgUFdjUbDISEhTETs5eXFX3zxBW/dupVzc3MN6jIzN2/enImIXVxcuFu3brxu3TrOzMw0uNutWzcmIra3t+cOHTrwihUr+Pnz5wZ3hw8fzkTEVlZW3KZNG160aBGnpqYa3P3555+ZiNjU1JTj4+N59uzZfO/ePYO7mzZtYiJipVLJMTExPGXKFL5+/brB3ZMnTzIRsUKh4OjoaB4/fjyfP3+etVqtQd3k5GQ2MTFhIuLQ0FAeMWIEHz9+nDUajUHdly9fsr29PRMRBwUF8cCBA3n//v1cWFhoULegoID9/f2ZiNjPz4/79OnDO3bs4Ly8PIO6Wq2W69aty0TEbm5u3L17d960aRO/evXKoC4zc7t27ZiI2NHRkTt37syrV6/mly9fGtz9+uuvmYjYxsaG33//ff7tt9/42bNnBnd/+OEHJiI2NzdnlUrF8+bN45SUFIO7y5YtYyJiExMTbtasGf/00098+/Ztg7t79uxhImIjIyNu2LAhT5o0iS9fvmzw2rhy5QorFAomIq5duzaPHj2aT58+bXC3ol6PAADg3SNlvoaBIgAAwFsycOBAJqJiX87Ozty1a1f+448/9B6qTZ8+vUTXzs6OP/zwQ162bBmnpaXp1V2zZk2JrqWlJbdu3ZoXLFig91Dt0KFDJbqmpqbcokULnjVrFicnJ+vVvXnzJiuVymJdpVLJjRs35smTJ/O1a9f06qalpbGNjU2Jc46KiuJx48bxuXPn9HqDn5eXx15eXiW6tWrV4uHDh/OxY8f0GqpptVoODw8v0a1atSp/8803vG/fPr2HaiqVqkTX19eXe/fuzdu3b9d7qNazZ88SXTc3N/7ss89448aNnJ2drVd37NixJbqOjo780Ucf8apVqzg9PV2v7qJFi0p0ra2tuV27drxkyRJ++vSpXt3t27eX6Jqbm3NSUhLPnTuXHzx4oFf3/PnzJbrGxsYcFxfH06dP51u3bunVffjwIZuZmRXrKhQKrl+/Pk+cOJEvXbqk19rIyspiZ2fnEuccERHBo0aN4lOnTunVLSws5KpVq5boBgcH8+DBg/nQoUN6DdW0Wi03bty4RDcgIID79u3Lu3bt4vz8fMldZuaOHTuW6Hp6enLPnj15y5YtnJOTo1e3ol6PAADg3SJlvqZglvHajLckMzOT7OzsKCMjg2xtbd/26QAAwL9QXl6erJfxERE9ffqUQkJCyuwaGxtTo0aNKD4+nhISEsjX11dUNzc3l4KDg+nFixelPq5QKKhu3bqUkJBACQkJVKVKFVIoFDq7Wq2WoqKiyr1kNCIiQjjfmjVriuoSESUlJdGhQ4fKfDw4OFg434iICFIqlaK6PXr0oNWrV5f5eEBAACUkJFB8fDzVq1ePTExMRHVHjRpFM2bMKPNxT09PoduoUSMyNzcX1f3ll19o0KBBZT7u7OxMLVu2pISEBIqNjSVra2tR3T///JM+/vjjMh+3s7Oj5s2bU3x8PDVr1owcHBxEdU+dOkVxcXFlPm5lZUVNmzal+Ph4atmyJbm4uIjq3rt3j8LCwsq81NfU1JQaN24sPMdeXl6iuhkZGRQcHFzmZeVKpZLq168vdAMDA0V1CwsLKTQ0lB4+fFjmMXXq1BF+hqtXry5qbTAzxcTE0Llz58o8platWsL5hoWFkZGRuB2NOnbsSH/99VeZj1etWlU43zp16pCxsbGo7jfffEMLFy4s83FfX1/hvxENGjQgU1NTUd2pU6fS2LFjy3zczc2N4uPjKT4+npo0aUKWlpaiur///jt9+eWXZT7u6OhILVq0oPj4eIqLixP9XmPv3r3Upk2bMh+3sbGhuLg4SkhIoBYtWpCjo6Oo7tWrV6lu3bplPm5ubk4xMTHCz4Sbm5uo7tOnT6lGjRqUn59f6uMmJiYUExNDarWa1Go1+fn5ieoCAMC7Rcp8DQNFAAAAEYYOHUqTJk1626cBAADw1tWoUYPUajWpVCqKjo4W/Zc8AADwzyZlvoabsgAAAAAAAIBoly5dookTJ1KDBg3I3d2dunXrRvv373/bpwUAAP9D4q5dAAAAAAAAAHhDSEgIqVQqUqvV5V6KDQAA/z4YKAIAAIhQs2ZN+uCDD2Tvbty4kQoLC8s9RqFQkIuLC3l4eJCHhwdZWVnp7G7btq3MfeLe5OzsTO7u7uTh4SFq25B9+/bRs2fPdB7n4OAgnK+9vb3O40+cOEH37t3TeZytra3QdXR01LkP3ZUrV+jy5cs6u9bW1sLz4OzsrHMfurt379KpU6d0di0sLMjDw4Pc3d2pUqVKOi8LfPz4MR08eFBn18zMjNzd3cnd3Z3c3Nx07m+XkZFBf//9t86uiYkJubm5kYeHB7m5uenc366goIA2bdqks6tUKsnV1VV4LnTtKcnMtH79+jL3UHzNyMiIKlWqJPzeidk3b/PmzZSXl1fuMQqFgpydnYWfNTF7Ve7atYvS09N1Hufo6Ch07ezsdB5/+PBhevTokc7j7O3thefBwcFB59o4d+5cufuhvmZjYyOcr5OTk87uzZs3y93z8TVLS8tia0PXmktJSaGjR4/q7JqbmwvPg6urq8419/z5c9qzZ4/OrqmpabE1p2u/1ZycHNq6davOrrGxMbm5uQltMzOzco/XaDS0fv16nV0jI6Nia87CwkLnP/Pnn3+WuYfiayYmJtSkSRPhcueAgACdXQAA+Jeq0NvD/I/gLs8AAPAu2r9/f4m7ar7+cnJy4i5duvDatWslv75dv36djYyMSu3a2tpy+/bt9brb87Nnz9jKyqrUroWFBbdq1YoXLFjADx8+lNTNzc1lDw+PUrsmJibcokULnjlzJt+9e1dSV6PRcGhoaKldIyMjbty4Mf/444989epVyXeITUhIKPP3rk6dOjx27Fg+e/as5G737t3L7NasWZOHDRvGR48elXy351GjRpXZrVKlCg8YMID37t3LBQUFkrrz588vs+vt7c29evXibdu2cW5urqTu1q1by+y6urryp59+yhs2bOCsrCxJ3TNnzpTZdXBw4E6dOvHKlSv5xYsXkroPHjxgU1PTUrvW1tbctm1bXrx4MT958kRSNzMzkx0dHUvtmpmZcWJiIs+dO5fv378vqVtYWMiVK1cutWtsbMxNmzbladOm8c2bNyV1tVotN2zYsNTu67s9f//993zx4kXJa+PDDz8s8/cuPDycR44cySdPnpS8Nvr3719mt3r16jxo0CA+ePCg5Ls9T5kypcyuv78/f/3117xz507Jd3teuXJlmV0PDw/u0aMHb968mV+9eiWpW1GvRwAA8G6RMl/DQBEAAOAtadq0abE3bSEhITxkyBA+dOiQ5Devb/r444+LdQMDA7lfv368a9cuyW9e3zRkyJBiXU9PT+7Zsydv2bKFc3Jy9O7OmjWrWNfZ2Zm7du3Kf/zxB2dmZurdXb9+fbGunZ0df/jhh7x8+XJ+/vy53t1jx44V61paWnLr1q154cKFnJqaqnf3zp07bGxsLHRNTU25ZcuWPHv2bE5OTta7m56eznZ2dkJXqVRykyZNeMqUKXzt2jW9u/n5+ezr61tsYBQdHc3jx4/n8+fPSx4YvabVarlOnTrFnuPQ0FAeMWIEHzt2TPLA6E1t2rQp1g0KCuKBAwfyvn37uLCwUO9u7969i3V9fHy4d+/evH37ds7Ly9O7+/3335cYpn722We8ceNGzs7O1rv722+/lRimfvTRR7xq1SpOT0/Xu7tr164Sw9R27drxkiVL+OnTp3p3L126xAqFQuiam5tzUlISz5s3j1NSUvTupqamsrm5ebFhalxcHM+YMYNv3bqldzc7O5srVaokdI2MjLhBgwY8adIkvnz5st5ro6ioiKtXr17sOY6MjOTRo0fzqVOn9O4yV9zrEQAAvFukzNdwl2cAAIC34MCBA9SsWTOKiYkhlUol26VjN27coJo1a1J0dLSwr1W1atV0XqaoS1paGgUEBFBQUBCp1WpSq9UUFhZmcDcvL48CAwPJ0dFR6EZFRRl8x1CtVksRERH06tUroduwYUOdlymKkZiYSBcvXhS6sbGxOi/hFePzzz+nP//8k5KSkkitVlOzZs3IxsbG4O7o0aPpp59+ooSEBFKpVBQfH0+Ojo4GdxcsWED9+/enFi1akEqloqSkJHJ1dTW4+9dff1Hbtm2padOmwtrw8fExuHv27FmKioqihg0bCr93VapUMbibkpJCVapUobCwMKFbo0YNg9dGVlYW+fv7k7e3t9CNjIzUeWmwLkVFRVS9enUyNjYWuvXq1dN52bwuzEyNGzemlJQUodu4cWOdl/CK0aFDBzpw4IDw89CsWTNRl7frMmDAAFq6dCklJiaSWq2mFi1aiLoMXZepU6fSmDFjKD4+ntRqNSUkJJCzs7PB3VWrVtGnn35KzZo1I7VaTUlJSeTh4WFwt6JejwAA4N0jZb6GgSIAAMBbcO3aNdH7Fkpx584dsrOzIycnJ1m7KSkppFQqyd3dXdbu06dPKScnh/z8/GTtZmZm0qNHjygoKMjgwc6bCgoK6MqVKxQaGiprl5npzJkzFB4ebvDA6L+dPXuWatSoIcsw9U0XLlygqlWryjJMfdOVK1fIx8dH1L6FUty8eZNcXFxE7ekpRXJyMllaWlKlSpVk7aamplJRURF5e3vL2n3x4gW9ePGCKleuLGs3NzeXbt++TSEhIbKuDY1GQ+fPn6ewsDDZ18aZM2coNDTU4L/A+G/nzp2j4OBgnXuQSnXp0iUKCAiQZZj6pop6PQIAgHcPBooAAAAAAAAAAAAgmpT5mrx/zQcAAAAAAAAAAAD/ahgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAC8BTt27KD169dTVlaWrN0jR47Q77//Ti9evJC1e+nSJfr111/p8ePHsnbv379Pc+bMofv378vazcjIoGnTptGNGzdk7RYUFNDUqVPpwoULxMyydZmZZs6cSSdOnCCtVitbl4ho4cKFdODAASoqKpK1u3LlSvr7778pPz9f1u7mzZvpzz//pFevXsna3bdvH61Zs4YyMjJk7Z4+fZp+++03evbsmazdmzdv0i+//EIPHz6Utfvs2TP66aef6M6dO7J2c3JyaOrUqXTlyhVZ14ZGo6Hp06fTmTNnZO0SEc2dO5eOHDlCGo1G1u7SpUtpz549VFhYKGt33bp19Ndff1Fubq6s3Yp6PQIAgH83DBQBAADegmrVqlGHDh3I2dmZWrZsSbNnz6Z79+4Z3A0JCaHevXtTpUqVqEmTJjRlyhS6fv26wd2goCAaP348ubu7U3R0NI0fP57Onz9v8Bt8b29vWrZsGfn6+lJoaCiNGDGCjh8/bvBQzc7Ojg4fPkxBQUEUFBREAwcOpP379xs8VDM1NaV79+5RaGgo+fn5UZ8+fWjHjh0GD9UUCgXl5uZSdHQ0eXp6Uvfu3Wnjxo2yDNXMzc2pSZMmVKlSJercuTOtWrWKXr58aXDXzc2NWrZsSc7OztSuXTtasmSJLEO1ypUrU5s2bcjZ2ZmSkpJo3rx5lJKSYnA3ODiYunXrRs7OzhQXF0czZsyg27dvy9IdMmQIubq6UoMGDWjSpEl0+fJlg9dGYGAgzZo1i7y8vCgyMpJGjx5Np0+fNrjr4uJCW7dupcDAQAoJCaEhQ4bQ4cOHDR6qWVpa0qVLlygkJIQqV65M/fr1o927d1NBQYFBXaVSSc+fP6fIyEjy9vamL774grZu3SrbUK1Bgwbk5uZGXbt2pT/++EOWoZq9vT3FxcWRs7Mzffjhh7R8+XJ6/vy5wV1fX19KSkoiZ2dnat26NS1cuFCWv+SpqNcjAAD4l+N/gYyMDCYizsjIeNunAgAAIFrPnj2ZiIp91axZk4cNG8ZHjx7loqIivbpjx44t0a1SpQoPGDCA9+zZwwUFBXp1Fy1aVKLr7e3NvXr14r/++otzc3P16m7btq1Et1KlSvzJJ5/w+vXrOSsrS6/uuXPnSnTt7e25Y8eO/Pvvv/OLFy/06qakpLCZmVmxrpWVFb/33nv866+/8pMnT/TqZmVlsZOTU7GumZkZJyQk8M8//8z379/Xq1tYWMhVq1Yt1jU2NubY2FieNm0a37x5U6+uVqvlxo0bF+sqFAquV68ef//993zx4kXWarV6tTt27Fji9y48PJxHjhzJJ06cYI1Go1d34MCBJbrVq1fnQYMG8YEDB7iwsFCv7vTp00t0/f39+auvvuK///6b8/Pz9equWbOmRNfDw4N79OjBf/75J7969Uqv7qFDh0p0nZ2duUuXLrxmzRq9/0x98+ZNViqVxbq2trb8wQcf8NKlSzktLU2vblpaGtvY2BTrWlhYsFqt5vnz5/OjR4/06ubl5bGXl1exromJCTdv3pxnzpzJd+/e1aur1Wo5PDy8WNfIyIgbNWrEP/74I1+9elXvtaFSqUr83tWpU4fHjh3LZ8+e1btbUa9HAADwbpEyX8NAEQAA4C1JTk5mExOTEm/iXn+5uLhwt27deN26dZKGai9fvmR7e/syu/b29tyhQwdesWKFpKFaQUEB+/v7l9m1srLiNm3a8KJFi/jx48eiu1qtlqOjo8vsmpmZcXx8PM+ZM4fv3bsnusvM3LZt2zK7SqWSY2JieOrUqXz9+nVJ3a+++qrMrkKh4Lp16/KECRP4/Pnzkt7gT5o0qcwuEXFYWBiPGDGCjx8/LmmotmzZsnK71apV44EDB/L+/fslDdX27NlTbtfPz4/79OnDO3bs4Ly8PNHdK1eusEKhKLPr7u7O3bt3502bNkkaqj158oQtLCzK7Do6OnLnzp159erV/PLlS9HdnJwcdnNzK7NrY2PD77//Pv/222/87Nkz0V2NRsMhISFldi0sLFilUvEvv/zCDx8+FN1lZm7evHmZXRMTE27WrBn/9NNPfOfOHUndbt26ldk1MjLihg0b8g8//MBXrlyRtDaGDx9e7s9a7dq1ecyYMXz69GlJ3Z9//rncbo0aNXjo0KF8+PBhSUO1TZs2ldutXLky9+vXj3fv3i3pL3lOnjxZbtfLy4u/+OIL3rp1q6S/5Kmo1yMAAHi3SJmvKZhl3ozkLcjMzCQ7OzvKyMggW1vbt306AADwLzRq1CiaNm2a7N3s7GzRxyqVSjI2NiZjY2NSKBTlHvvq1SvRl0a+7iqVSjIyKn83lJycHNGXIxsZGQnnq6ubl5cn+nJkKd2CggLRl1wqFAqhq1Qqyz22qKiI8vLyZO9qNBrRl3K+7r7+/SuPVqulnJwcUV0iEs5XV5eZJV2W/ebzoOtnuKLWRkV1K2pt5Obmir4cuaLXnFKp1PkzXFhYKHoLgH/CmpOyNhQKRbGfifK8i2tD7OuGqakpxcbGklqtJpVKRb6+vqLPBwAA/tmkzNcwUAQAABBh6NChNGnSpLd9GgAAAP8oNWvWJLVaTW3btqXIyMi3fToAAGAAKfM13JQFAAAAAAAAJHN0dKTQ0FAKDQ2lypUrv+3TAQCA/6HyP6sPAAAARPSfu2vWr19f9u6JEydEXXZoYWFBjo6O5ODgQDY2NjovXTt79qyoS2fNzMyErp2dnc7u5cuXKSMjQ2fXxMSEHB0dydHRkezs7HRefnnr1i16+vSpzq6xsTE5ODiQo6Mj2dvb67yc8eHDh6LuVqpUKsne3l7ompiYlHv8s2fP6ObNmzq7RkZGZGdnJzzHpqam5R6fkZFBly9f1tlVKBRkZ2cnPBdmZmblHp+bm0tnz57V2SUisrW1FboWFhblHqvRaOj48eOiutbW1kLXyspK5/FHjx4VdfmlpaVlsbWhy6lTp0RdBm9ubi50bW1tda6N8+fPi7rE1dTUVFgbtra2OtfGtWvX6MWLFzq7JiYmwvNrZ2enc20kJyfTo0ePdHaVSmWxNafrUt/Hjx/TnTt3dHaNjIyENefg4KBzzb148YKuXbums6tQKMje3p4cHBzIwcFB59rIzs6mCxcu6OwS/WdtvP69Mzc3L/fYgoICOnXqlKiujY2N8BxbWlqWeywz09GjR0V1rayshK61tbXO48WujerVq5NarSa1Wk316tXT+bMGAAD/UhW2k+P/EG7KAgAA76IzZ86UuQG+sbExx8XF8YwZM/jWrVuSug8ePGBTU9Myb4rQoEEDnjRpEl+6dEnSzQsyMzPZ0dGxzHOOjIzk0aNH86lTpyR1CwsLOTAwsMxuSEgIDx48mA8dOiTppgharZYbNGhQZjcgIID79u3Lu3btknwX3vbt25fZ9fT05J49e/KWLVs4JydHUrd///5ldp2dnblr1678xx9/cGZmpqTulClTyuza2dnxhx9+yMuXL+fnz59L6q5cubLMrqWlJbdu3ZoXLlzIqampkrr79+8vs2tqasotW7bk2bNnc3JysqTu9evX2cjIqNSuUqnkJk2a8JQpU/jatWuSus+ePWMrK6tSuwqFgqOjo3ncuHF87tw5SWsjNzeXPTw8ynwuQkNDecSIEXzs2DFJN+nRaDQcGhpaZjcoKIi/+eYb3rdvn+Q7XyckJJTZ9fHx4d69e/P27dsl3aSHmbl79+5ldl1dXfmzzz7jjRs3cnZ2tqTuqFGjyuw6ODjwRx99xKtWreL09HRJ3fnz55fZtba25nbt2vGSJUv46dOnkrpbt24ts2tubs5JSUk8b948fvDggaRuRb0eAQDAuwV3eQYAAHgHtG7dutibNicnJ/74448l32H2v/Xq1atY18bGhj/44APJd5j9bxMmTCjx5vX1HWZTUlL07i5ZsqRY9807zN6+fVvv7s6dO0sMU/W9w+ybLl68WOIOxK/vMHvmzBm9u6mpqWxubl6s+/oOs0eOHJE0TH1TdnY2V6pUqVi3cuXK3L9/f8l3mH1TUVERV69evVjXy8uLv/zyS966davkYeqbmjZtWqxbqVIl/uSTT3jdunWSh6lv+vjjj0sMU1/f8VzqMPVNQ4YMKdbV947n/23WrFklhqn63vH8TevXry8xTH19x/MbN27o3T127FiJYerrO55fuHBB77Vx584dNjY2LtYOCwvj7777jk+cOCFpmPqm9PR0trOzK9atVq0af/vtt3zgwAHJw9TX8vPz2dfXt1jXz8+Pv/rqK8l3PH+TVqvlOnXqFOu6u7vz559/LvmO5/+tol6PAADg3YKBIgAAwD/c60+DBAcH86BBg/jgwYN6D4zedP/+fTY1NWV/f3/++uuveefOnZI/fVeajIwMdnR0ZA8PD+7Rowdv3rzZoDevr73+dKKzszN36dKF165dK8vr+etPJ9ra2nL79u152bJlnJaWZnCX+T+fTrSwsOBWrVrxggUL+OHDh7J0+/fvzyYmJtyiRQueNWsW3717V5bulClT2MjIiBs3bsyTJ0/mq1ev6j3YedPrTydGRUXx2LFj+ezZs7J0X386sVatWjxs2DA+evSo3gOjN73+dGKVKlV4wIABvHfvXr2HqW96/elEb29v7tWrF2/bto1zc3MN7r7+dKKrqyt/+umnvGHDBs7KyjK4+/rTiQ4ODtypUydeuXIlv3jxwuAu838+nWhtbc1t27blxYsX85MnT2Tpdu/enc3MzDgxMZHnzp3L9+/fl6U7atQoNjY25qZNm/K0adP45s2bsnTnz5/PCoWC69evz99//z1fvHhRlrXx+tOJ4eHhPHLkSD558qQsa6OiXo8AAODdI2W+hrs8AwAAvAWnTp0iBwcHCgwMlLV76dIlMjIyourVq+vc802K27dvU0ZGBoWHh8vaffToEd29e5fq1q0r6z5cGRkZdOrUKWrUqJHOfQulKCgooN27d1NMTIzO/QWlYGbavn07NWzYUNQ+gFLs3LmTIiMjydHRUdbu/v37KSgoiNzc3GTtHjt2jNzd3cnX11fW7rlz58jS0pKqVq0qa/fatWuUn59PtWrVknVt3L9/n1JTU6lOnTo691mUIi0tjS5fvkwNGjTQuR+iFDk5OXTw4EGKiYnRuW+hFBqNhnbs2EFNmjQRtfemFDt27KDo6Giyt7eXtbtnzx6qWbMmubi4yNo9fPgw+fn5kaenp6zdino9AgCAd4+U+RoGigAAAAAAAAAAAP/HSZmvSf7rzgMHDpBarSYPDw9SKBS0ceNG4bHCwkIaPHgw1axZk6ysrMjDw4O6dOmi8w5yo0ePJoVCUeyrWrVqUk8NAAAAAAAAAAAAKpjkgeKrV68oNDSU5syZU+KxnJwcOnPmDH333Xd05swZWr9+PV2/fp1atWqlsxsSEkKpqanC16FDh6SeGgAAAAAAAAAAAFQwyRunJCQkUEJCQqmP2dnZ0c6dO4t9b/bs2RQVFUX3798nHx+fsk/E2Fj2PXgAAAAAAAAAAABAXvLt8FyGjIwMUigUOjc7vnnzJnl4eFBAQAB99NFHdP/+/TKPzc/Pp8zMzGJfAAAAAAAAAAAAUPEqdKCYl5dHgwcPpo4dO5a7mWN0dDQtWbKEtm/fTnPnzqW7d+9So0aNKCsrq9TjJ06cSHZ2dsKXt7d3Rf0rAAAAAAAAAAAAwBsMusuzQqGgDRs2UJs2bUo8VlhYSO3ataOUlBTat2+fpLsvv3z5knx9fWnatGn02WeflXg8Pz+f8vPzhV9nZmaSt7c37vIMAAAAAAAAAACgByl3eZa8h6IYhYWF1L59e7p37x7t2bNH8pDP3t6eqlatSrdu3Sr1cTMzMzIzM5PjVAEAAAAAAAAAAEAC2S95fj1MvHnzJu3atYucnJwkN7Kzs+n27dvk7u4u9+kBAAAAAAAAAACAASQPFLOzs+ncuXN07tw5IiK6e/cunTt3ju7fv0+FhYX0/vvv06lTp2jFihWk0Wjo8ePH9PjxYyooKBAacXFxNHv2bOHXAwcOpP3791NycjIdOXKE3nvvPVIqldSxY0fD/w0BAAAAAAAAAABANpIHiqdOnaLw8HAKDw8nIqIBAwZQeHg4jRw5kh4+fEh//vknpaSkUFhYGLm7uwtfR44cERq3b9+mtLQ04dcpKSnUsWNHCgoKovbt25OTkxMdO3aMXFxcZPhXBAAA+Oc5ePAgHT9+nLRarazd06dP0/79+6moqEjW7rVr12jHjh3F9jCWQ0pKCm3cuJFevXolazcjI4NWrVpFL1++lLVbUFBAy5cvp2fPnsnaZWb6/fffKSUlRdYuEdG6devo9u3bsne3bt1Kly9fJgO24y7Vnj176PTp07J3jx07RocPHyaNRiNr98KFC7R79+5if3kuhzt37tDWrVspNzdX1u7Tp09p3bp1Zd78UF85OTm0YsUKev78uaxdjUZDy5cvp8ePH8vaJSJavXo13bt3T/bupk2b6Pr167J3//77bzp//rzsa6OiXo8AAODfTfJAMSYmhpi5xNeSJUvIz8+v1MeYmWJiYoRGcnIyjR49Wvj1qlWr6NGjR5Sfn08pKSm0atUqCgwMlOPfDwAA4B/J2dmZ6tWrR+7u7vTpp5/Shg0bKDs72+Cut7c3JSQkkIuLC3Xq1IlWrlxJ6enpBnd9fX2pW7du5OTkRG3btqXFixfT06dPDe56eHjQiBEjyMnJiRITE2nu3Ln04MEDg7t2dnb066+/kouLCzVt2pSmT59e5t7MUpiamtLu3bvJ1dWV6tevTxMnTqRLly4Z/AZfoVDQlStXyNvbmyIiImjUqFF08uRJWd7gP336lCpXrkzBwcE0ePBgOnjwoCwD56KiIqpRowYFBgZS3759adeuXbIM1WxsbKh27drk5eVFPXv2pM2bN1NOTo7BXXd3d4qJiSE3Nzfq2rUrrV27ljIzMw3u+vj40Pvvv08uLi7Uvn17WrZsmSxDNW9vb+rTpw85OTlRq1ataMGCBZSammpw18XFhSZPnkxOTk7UokULmjVrFiUnJxvctbS0pPXr11OlSpWocePGNHnyZLp27ZrBa0OpVNKJEyfI3d2doqKiaNy4cXTu3DlZhmrJycnk5+dHtWrVouHDh9OxY8dkGThnZWVRtWrVqGrVqvTNN9/Q3r17qbCw0OCuiYkJhYWFka+vL/Xu3Zu2bdtGeXl5Bncr6vUIAAD+5fhfICMjg4mIMzIy3vapAAAAiNaxY0cmIuHLzMyM4+Pjec6cOXzv3j29uwMHDizWVSqVHBMTw1OnTuUbN27o3Z0+fXqxrkKh4Lp16/KECRP4woULrNVq9equWbOmWJeIOCwsjL/77js+fvw4azQavbqHDh0q0a1WrRoPHDiQ9+/fz4WFhXp1b968yUqlsljXz8+P+/Tpwzt27OC8vDy9umlpaWxjY1Os6+7uzt27d+dNmzbxq1ev9Orm5eWxl5dXsa6joyN37tyZV69ezS9fvtSrq9VqOSwsrFjXxsaG33//ff7tt9/42bNnenWZmZOSkop1LSwsWKVS8S+//MIPHz7Uu9ujR49iXRMTE27WrBn/9NNPfOfOHb27Y8aMKdY1MjLihg0b8g8//MBXrlzRe20sXLiwxM9w7dq1ecyYMXz69Gm9u9u2bSvRrVGjBg8dOpQPHz7MRUVFenXPnTtXolu5cmXu168f7969mwsKCvTqpqSksJmZWbGul5cXf/HFF7x161bOzc3Vq5uVlcVOTk7Fui4uLtytWzdet24dZ2Vl6dUtLCzkqlWrFuva29tzhw4deMWKFfzixQu9ulqtlhs3blysa2VlxW3atOFFixbx48eP9eoyV9zrEQAAvFukzNcwUAQAAHhLrly5wgqFosQb8NdftWrV4uHDh/OxY8ckDdWePHnCFhYWZXaDgoL4m2++4X379kkaquXk5LCbm1uZXV9fX+7duzdv375d0lBNo9FwSEhImV03Nzf+7LPPeOPGjZydnS26y8zcvHnzMruOjo780Ucf8apVqyQP1bp161Zm19ramtu1a8dLlizhp0+fSuoOHz68zK65uTknJSXxvHnzOCUlRVL3559/LrNrbGzMcXFxPGPGDL5165ak7saNG8vsGhkZcYMGDXjSpEl86dIlScOvEydOlNklIo6MjORRo0bxqVOnJHWTk5PZ2Ni4zG5ISAgPHjyYDx06JGmolp6ezvb29mV2AwICuG/fvrxr1y7Oz88X3S0oKGA/P78yu56entyzZ0/esmUL5+TkiO5qtVqOjo4us+vi4sJdu3blP/74gzMzM0V3mZnbtm1bZtfOzo4//PBDXr58OT9//lxS96uvviqza2lpya1bt+aFCxdyamqqpO6kSZPK7JqamnLLli159uzZnJycLKm7bNmyMrtKpZKbNGnCkydP5mvXrknq7tmzp8yuQqHg6OhoHjduHJ87d07S2qio1yMAAHi3SJmvKZhl3oTjLcjMzCQ7OzvKyMggW1vbt306AADwLzRt2jSaP3++7N2bN2+KuqxVqVSStbU1WVtbk6WlJRkZlb9ryZ07d0RdYmdkZCR0raysdHYfPHgg6vJThUJBVlZWQlupVJZ7/OPHjykjI0NU19LSUugaGxuXe/yLFy9E73f4ZtfExKTcYzMzM0VffmphYSE8F2ZmZuUem5OTI/qSbzMzM+F8zc3Nyz22sLCQ7ty5I6pramoqdC0sLMo9lpnpxo0boromJibFugqFotzjb9y4IeqyVmNjY+H5tbKy0tm9ffu2qEu+lUplsa6utZGcnCxqj1EjI6NiXV1r4+HDh6IuP3295l63da2NZ8+e0YsXL3R2iaStjZcvX9KTJ09EdS0sLISuqalpucdmZ2fTw4cPRXXNzc2Frq41l5eXJ3ofRTMzM+H51bU2NBqN6G0WpKwNKWvO2Ni42OuGXGvD1dWVkpKSSK1WU7Nmzcja2lrU+QAAwD+flPkaBooAAAAiDB06lCZNmvS2TwMAAOAfw8zMjGJjY0mtVpNKpSIfH5+3fUoAAGAAKfM1yTdlAQAAAAAAANBoNJSfn0/5+fmy3+kcAAD+2cq/FgIAAACIiMje3p58fX1l796/f1/UZZ1GRkZkYWEhfOm6/PLRo0eiLnlWKBRCU8yl1E+ePBF9V9E3u7ou60xLS6NXr16J6pqbmwtdXZd1ZmZmir7LtZmZmdDVdVnnq1evKC0tTVTX1NRU6Oq6rDM/P58eP34sqmtiYiJ0dV3WWVRUJPpyUWNjY6Gr61JqZqb79++L6iqVymJdXZdfSl0blpaWoi6lTklJEXUn39dr43VX19pITU0VNVBRKBRkbm4udHWtjWfPnom+y/WbXV1rIz09XfRdrs3MzISurrWRlZUl+lJqU1NToatrbeTm5oq+s7yJiYnQ1bU2CgoKRG9fYGxsLHR1rQ2tVit6+wKlUlmsq+tnWOwl2kZGRkJXzrXh4OBAiYmJpFarqWXLlmRvby/qfAAA4F+mwnZy/B/CTVkAAOBddP36dTYyMipzE/xq1arxt99+ywcOHJB085Rnz56xlZVVmV0/Pz/+6quv+O+//5Z085Tc3Fz28PAos+vu7s6ff/655DsSazQaDg0NLbPr5OTEH3/8sV53JE5ISCiza2Njwx988IFedyTu3r17uTdPeX1HYqk3Txk1alSZ3TfvSHz79m1J3fnz55d78xR970i8ZcuWcm+e8vqOxGfOnJHUPXPmTLnd13ckPnLkiKSbp9y/f59NTU3L7FauXJn79+/Pe/bskXRH4oyMDHZ0dCyz6+XlxV9++SX/9ddfku5IXFhYyIGBgWV2K1WqxJ988gmvW7dO0s1TtFotN2jQoMyuvb09d+zYkVesWCH55int27cvs2vIHYn79+9f7s1T9L0j8ZQpU8q9eUpMTAxPnTqVb9y4Iam7cuXKcm+eUrduXZ4wYQJfuHBB0trYv39/uWsjLCyMv/vuOz5x4oSkm6dU1OsRAAC8W3CXZwAAgHfAxx9/XOwNm7GxMTdt2pSnTZvGN2/e1Ls7ZMiQEm9e69evz99//z1fvHhR0pvXN82aNavEm8yIiAgeOXIknzx5Uu87f65fv75Et3r16jxo0CA+ePCgpIHRm44dO1ai6+/vz19//TXv3LlT0t1233Tnzp0Sdwr28PDgHj168ObNmyUNU9+Unp7OdnZ2JYapXbp04bVr1+r955z8/Hz29fUt1rW1teX27dvzsmXLOC0tTa+uVqvl2rVrF+taWFhwq1ateMGCBfzw4UO9uszMrVu3LjFMbdGiBc+aNYvv3r2rd7dXr14lhqmNGzfmyZMn89WrV/VeGxMmTCjxsxYVFcVjx47ls2fP6t1dsmRJiW6tWrV42LBhfPToUb3X3M6dO0t0q1SpwgMGDOC9e/dKGqa+6eLFiyXuFOzt7c29evXibdu2SRqmvik1NZXNzc2LdV1dXfnTTz/lDRs2cFZWll7d7OxsrlSpUrGug4MDd+rUiVeuXMkvXrzQq1tUVMTVq1cv1rW2tua2bdvy4sWL+cmTJ3p1mZmbNm1arGtmZsaJiYk8d+5cvn//vt7dino9AgCAdwsGigAAAP9wrz8N4uDgwB999BGvWrWK09PTDe6+/nSitbU1t2vXjpcsWcJPnz41uPv604nm5uaclJTE8+bNk/zpu9K8/nSisbExx8XF8YwZM/jWrVsGd5n/8+lEIyMjbtCgAU+aNIkvX76s92DnTa8/nRgZGcmjR4/mU6dOydJ9/enEkJAQHjJkCB86dEjvYeqbXn86MTAwkPv168e7du3Se5j6ptefTvT09OQvvviCt2zZwjk5OQZ3X3860cXFhbt168Z//PGHpE/fleX1pxPt7Oy4Q4cOvHz5csmfvivN608nWlpacuvWrXnhwoWcmppqcPf1pxNNTU25ZcuWPHv2bE5OTja4+/rTiUqlkps0acJTpkzh69evG9xl/s+nExUKBUdHR/P48eP5/PnzsqyN159ODA0N5REjRvDx48f1Hqa+6fWnE4OCgnjgwIG8b98+WT599/rTib6+vtynTx/evn27pE+Dl+X1pxPd3Ny4e/fuvHHjRs7Ozja4W1GvRwAA8O6RMl/DHooAAABvQWpqKu3bt4/q1aunc68zKZKTk2nDhg3UuHFjnXuHSXH37l2aN28excXFkaWlpWzdR48e0bBhw6hly5ZkZ2cnWzcjI4M6dOhAS5cuJWdnZ9m6BQUFVL9+fRozZgx5eHjI1mVmCggIoNu3b1NAQIBsXSIiW1tbunLlClWrVk3nHmpSaDQaOnPmDIWFhcnaTUtLoyNHjlBUVJTO/QWlePDgAW3fvp0aNmyocx9AKe7evUvLly+n2NhYnfvqSXHv3j2aPHkyNW/enKytrWXrPnv2jHr37k2bN28mBwcH2bo5OTmUkJBAM2fOJFdXV9m6Go2GatWqRffu3ZP9DsJubm5048YNqlKliqxdExMTunDhAtWoUUPWtfHq1Ss6ceIERUZG6tzTU4qKej0CAIB/NwWziN2u/+Gk3NYaAAAAAAAAAAAAipMyX5Pvr7YAAAAAAAAAAADgXw8DRQAAAAAAAAAAABANA0UAAAAAAAAAAAAQDQNFAAAAAAAAAAAAEA0DRQAAAAAAAAAAABANA0UAAAAAAAAAAAAQDQNFAAAAAAAAAAAAEA0DRQAAAAAAAAAAABANA0UAAAAAAAAAAAAQDQNFAACAt+DMmTP04MED2btXrlyhW7duyd69c+cOXbp0iZhZ1m5qaiqdPHmStFqtrN2MjAw6ePAgFRUVydotKCigXbt2UUFBgaxdZqadO3dSTk6OrF0ion379lFmZqbs3cOHD9Pz589l7548eZJSU1Nl7164cIGSk5Nl7964cYOuXbsm+9q4f/8+nTt3TvZuWloaHTt2jDQajazdnJwc2rt3LxUWFsra1Wg0tHPnTsrLy5O1S0S0e/duys7Olr174MABSk9Pl7177Ngxevr0qezdino9AgCAfzcMFAEAAN4CjUZDPj4+FB4eTt999x2dOHFClqGalZUVBQcHU/Xq1enbb7+lAwcOyDJUc3R0pEaNGlFAQAB99dVX9Pfff1N+fr7BXWdnZ2rfvj15eXnR559/Tn/++acsQzVbW1v69ttvydXVlT7++GNas2YNZWRkGNw1NTWluXPnkrOzM33wwQe0dOlSSktLM7irUCho8+bN5OTkRGq1mubPn08PHz40uEtEdPz4cXJ2dqbmzZvTzJkz6e7du7J07969S5UqVaJGjRrRjz/+SFevXpVl+JWdnU0eHh5Up04dGjt2LJ05c0aWrrGxMQUEBFDNmjVp2LBhdOTIEVmGanZ2dhQREUFVq1al/v370549e2QZqjk7O1N8fDz5+PjQl19+SX/99ZcsQzVHR0f67LPPyN3dnT755BNav369LEM1S0tL+v7776lSpUrUsWNH+v3332UZqimVSlqxYgU5OzvTe++9R7/++is9efLE4C4R0Z49e8jZ2ZkSEhLo559/pvv378vSvXTpErm4uFBsbCxNmzaNbty4IUv3yZMn5ObmRvXq1aPvv/+eLly4IMvaqKjXIwAA+Jfjf4GMjAwmIs7IyHjbpwIAACBaUlISE5Hw5ebmxp999hlv3LiRs7Oz9e726NGjWNfR0ZE/+ugjXrVqFb98+VLv7pgxY4p1ra2tuV27drxkyRJ++vSp3t2FCxcW65qbm3NSUhLPmzePU1JS9O5u27atWNfY2Jjj4uJ4+vTpfOvWLb27586dK9ZVKBRcv359njhxIl+6dIm1Wq1e3ZSUFDYzMyvWjoiI4FGjRvGpU6f07mZlZbGTk1OxbkhICA8ePJgPHTrERUVFenULCwu5atWqxboBAQHct29f3rVrF+fn5+vV1Wq13Lhx42JdT09P7tmzJ2/ZsoVzcnL06jIzd+jQoVjXxcWFu3btyn/88QdnZmbq3f3mm2+Kde3s7PjDDz/k5cuX8/Pnz/XuTps2rVjX0tKSW7duzQsXLuTU1FS9u6tXry7WNTU15ZYtW/Ls2bM5OTlZ7+7BgweLdZVKJTdp0oQnT57M165d07t78+ZNViqVxdZcdHQ0jxs3js+dO6f32khLS2Nra+ti51yrVi0ePnw4Hzt2jDUajV7dvLw89vT0LNatWrUqf/PNN7xv3z4uLCzUq6vVajksLKxY19fXl3v37s3bt2/nvLw8vbrMFfd6BAAA7xYp8zUMFAEAAN6SEydOFHsD9+aXmZkZJyYm8ty5c/nBgweSusnJyWxsbFxq19jYmJs2bcrTpk3jmzdvSuqmp6ezvb19qd3XQ7Xvv/+eL168KOkNfkFBAfv5+ZX5XISHh/PIkSP55MmTkt7ga7Vajo6OLrNbvXp1HjRoEB88eFDyUK1t27Zldv39/fnrr7/mnTt3Sh6qffXVV2V2PTw8uEePHrx582bJQ7VJkyaV2XV2duYuXbrw2rVrJf9ZatmyZWV2bW1tuX379rxs2TJOS0uT1N2zZ0+ZXQsLC27VqhXPnz+fHz16JKl7+fJlVigUpXZNTU25RYsWPHPmTL57966k7uPHj9nCwqLUrpGRETdq1Ih//PFHvnr1qqS18erVK3Z1dS3zuahTpw6PHTuWz549K6mr0Wg4ODi4zG7NmjV52LBhfPToUclDtWbNmpXZrVKlCg8YMID37t3LBQUFkrpdu3Yts+vj48O9evXibdu2cW5urqTusGHDyuy6urryp59+yhs2bOCsrCxJ3Tlz5pTZdXBw4E6dOvHvv//OL168kNTduHFjmV1ra2tu27Yt//rrr/zkyRNJ3Yp6PQIAgHeLlPmaglnmjVnegszMTLKzs6OMjAz6f+zdd1RU5/r//Wtm6L13FAQRFRQUsCDYwAYTTYwtGjUaNUejsUUlJhpN7C3WWGPvPWrsXaNGY+/YO1jonZnr+eP82I8cYGbPzCZGv5/XWq51wmzf2QdmZ5zL2fdtY2Pzrk8HAAA+QIsXL6a1a9dK3hV7S7KVlRU5OTmRk5OTqNe6U6dOUU5OjtbjLCwshK6trS3JZDKNx58/f55SU1O1ds3MzISunZ0dyeWaV1m5fv06vXjxQmvXxMRE6Nrb25NCodB4/IMHD+jevXtau0ZGRkLXwcGBjIyMNB7//PlzunHjhtauQqEgR0dHcnJyIkdHRzI2NtZ4/Js3b+jixYtau3K5nOzt7YVzNjU11Xh8dnY2nT59WmtXJpORnZ2d0DU3N9d4fGFhIR07dkxrl+i/twYXdS0tLTUey8x05MgRUbdzWltbC11ra2utx584cULUGpiWlpbFrjlt18bZs2cpIyNDa9fc3LzYtaGte+XKFXr58qXWrqmpabFrQ9s1l5iYKGrdPGNj42LXhrZr7smTJ6Ju8TUyMiIHBwdydnYmR0dHrdfcy5cv6cqVK1q7crmcHBwchHM2MTHReHx6ejqdO3dOa1cmkxW75szMzDQen5eXRydPntTaJaJi15yFhYXGY5mZDh8+LKprY2MjdK2srLQeL/baCAkJIaVSSUqlkmrXrq31uQYAAO8PXeZrGCgCAACIkJCQQBMnTnzXpwEAAPCv4ebmRvHx8RQfH08xMTFa/7IAAAD+3XSZr2n+q0AAAAAAAACAUrx48YKOHz9Otra25ObmRnXq1HnXpwQAAP8QDBQBAABEkMvlWm/J04cuOzDLZDKSyWSibi/7N3SJ/vt9K+q/i65KpdJpF1SxXbVardMuqEXfX21dZtZp5+F33SX6dzzX0P3/vetrTtdrA9ecbl2id/9cUygUFBUVJdz2XLlyZdHnAwAAHw4seAEAACDCuHHjqKCgQNJf9+7d07i+l729PX322We0du1aevPmDanValKpVFq7r1+/JgcHhzK7VlZW9Mknn9DSpUspKSlJdDcnJ4f8/PzK7JqamlKrVq3o119/pUePHglvqAsLCzV28/PzKTIyssyukZERNWnShKZPn06JiYmiuwUFBdSuXbsyuzKZjOrXr0/jx4+nK1euCN8HMd1vvvmmzC4RUWhoKI0aNYrOnj1LKpWK1Gq1qO6kSZM0dqtWrUrDhg2j48ePU2FhoejuqlWrNHZ9fX1pwIABtH//fsrLyxPdPXjwoMauh4cH9e7dm3bs2EFZWVmin2vXrl3TOABxdHSkrl270saNGyktLU1099mzZxpvybSxsaH27dvTypUr6dWrV6K7GRkZ5O7uXmbX3NycPvroI1q0aBE9ffpUdDcvL49q1KhRZtfY2JiaNWtGs2bNovv37+t0bbRo0aLMrlwup+joaJo8eTLduHFDp2vjiy++KLNLRBQeHk5jx46lCxcu6NT9/vvvNXaDg4Ppu+++o1OnTul0zc2bN09jt3LlyjR48GA6fPgw5efni+5u375dY9fb25v69u1Lu3fvppycHNHdv/76S2PXxcWFevToQVu3bqWMjAzRzzVdXo9evnxJhw8fpsGDB2OYCADwf1l57ArzT8MuzwAA8D7q27dvid00q1SpwkOHDuUjR45wQUGBXt1x48aVugtqv379eM+ePZybm6tXd9myZaXugtqzZ0/etm0bZ2Zm6tXdv39/qbugdu7cmdetW8cpKSl6da9cuVJiR18rKytu27YtL1u2jJOTk/XqPn/+nM3MzIp1zczMOC4ujufPn89PnjzRq5uZmckuLi7FukZGRty0aVP+5Zdf+M6dO3p1CwsLOTAwsMTOw5GRkTxx4kS+du2aTjsEv61x48Ylfna1a9fmH3/8kc+dO6d3t0uXLiW61atX5xEjRvCJEyd03pW7yPDhw0t0/fz8eODAgXzgwAGdd+UuMmvWrBJdT09P7tOnD+/cuVPnXbmLbN68udRdubt168abNm3i9PR0vbqnTp0q0bW1teUOHTrwqlWr+PXr13p17969W2KHeQsLC27dujUvXryYnz9/rlf3zZs3bGNjU2JX7ubNm/OcOXP4wYMHenXz8vK4QoUKxboKhYIbNmzIU6dO5Zs3b+rVVavVHBYWVqwrk8m4Tp06/PPPP/PFixf1vjZat25d4mdXs2ZN/v777/n06dM678pdpLxejwAA4P2iy3wNA0UAAIB34NGjR2xiYsIKhYIbNWrE06ZN49u3bxvcTUtLYwcHB5bJZFy3bl0eN24cX758We83r0UKCgrYz8+PiYhDQkL4hx9+4L/++kvvN69F1Go1R0ZGMhFxYGAgf/vtt3zs2DFJ3ry2b9+eiYh9fHy4f//+vG/fPr2HqW8bNGgQExG7u7tzr169ePv27ZyVlWVwd+rUqUxE7OjoyJ9//jmvX7+eU1NTDe6uWbOGiYitra25Xbt2vGLFCn758qXB3SNHjjARsbm5OSuVSl64cCE/ffrU4O7NmzdZLpezsbExx8bG8syZM/nu3bsGd5OTk9nS0pLlcjlHRUXxpEmT+Pr16wZfGzk5Oezu7s5ExGFhYTxmzBg+f/68wV2VSsU1atRgIuKgoCBOSEjgP//8U+9h6ttatGjBRMT+/v48aNAgPnToEOfn5xvc7dmzJxMRe3l58X/+8x/+448/OCcnx+DuqFGjmIjYxcWFv/jiC96yZYvew9S3LViwgImI7ezsuFOnTrx69Wq9h6lv27lzJxMRW1pa8scff8xLlizhFy9eGNw9f/48ExGbmppyy5Ytee7cufzw4UODu+X1egQAAO8fXeZrWEMRAADgHbh69SotX76cWrRoQXZ2dpJ1r1y5QtOmTaNWrVqRi4uLZN0bN27Q0KFDKS4ujry9vSXrPnnyhNq2bUvLli0jf39/ybppaWlUq1Yt+uGHH6h69eqi1iUTIz8/n1xdXens2bNUq1YtUeuSicHMJJPJ6Pjx41SvXj1SKBSSdIn++73Yv38/RUdHa7ylUVePHz+mHTt2UJMmTcjCwkKy7o0bN2j9+vXUrFkzrbsL6uLy5cs0f/58atmyJTk6OkrWvXr1Ko0dO5bi4uI03vasq7t371KvXr0oPj6efHx8JOsmJydT06ZNacaMGVSlShXJro3s7Gzy9/enCxcuUM2aNSXrqlQqsrKyolOnTlFERIRk1xwRUV5eHh0+fJgiIyPJ2NhYsm5SUhLt3r2bGjVqRGZmZpJ1ExMTaevWrRQTE0NWVlaSdcvr9QgAAD5sMmYdVir/l9JlW2sAAAAAAAAAAAAoTpf5GjZlAQAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAAAAAAAAAANEwUAQAAAAAAAAAAADRMFAEAAAAAAAAAAAA0TBQBAAAeAcSExMpOztb8u6DBw8oLS1N8u7Tp0/p1atXkndfvnxJT58+lbybnp5O9+7dk7ybn59P169fJ2aWtMvMdPnyZcm7RERXr14llUoleff69etUUFAgeffWrVuUm5sreffu3buUmZkpeffRo0eUkpIieffFixeUlJQkeTclJYUePXokeTc7O5tu374teVelUtGVK1fK5dq4cuUKqdVqybvXrl2jwsJCybs3b96kvLw8ybvl9XoEAAAfNgwUAQAA3oEnT56Qo6MjxcfH0/z58+nJkyeSdHNycsjV1ZViYmLol19+obt370rSNTY2Jl9fX4qMjKSJEyfStWvXJHmDb2VlReHh4VS7dm368ccf6e+//5as+9FHH1H16tVpxIgRdPLkSUmGaiYmJjRw4EDy9/engQMH0sGDByk/P9/grkwmoxkzZpC3tzd99dVXtGvXLsrJyTG4S0S0bt06cnNzo+7du9PmzZspIyNDku6RI0fI2dmZOnbsSKtXr6Y3b95I0r158yY5OjpSmzZtaMmSJfTixQtJum/evCEnJydq0aIFzZ07lx4+fChJl5nJ09OTGjVqRFOnTqVbt25J0jUzM6Nq1apR3bp16eeff6ZLly5Jdm00atSIatasSd9//z2dOXNGkqGaubk5de3alapUqUJDhw6lo0ePSjJUUygU9OOPP5Kvry99/fXXtHfvXsmGaosWLSJPT0/68ssvafv27ZSVlSVJd+fOneTq6kpdunSh9evXU2pqqiTdc+fOkZOTE3366ae0fPlyevnypSTd8no9AgCADxzr6OjRoxwfH8/u7u5MRLx169Zij6vVav7hhx/Yzc2NzczMuGnTpnz79m2t3Tlz5nDFihXZ1NSUIyIi+MyZM6LPKS0tjYmI09LSdP2/AwAA8E6o1WqOjo5mIhJ+hYaG8qhRo/js2bOsUqn0bnfq1KlYt2rVqjxs2DA+fvw4FxQU6N0dOnRosa6vry8PGDCA9+/fz3l5eXp3Z8yYUazr4eHBvXv35t9//52zsrL07m7YsKFY18nJibt27cobNmww6M8MJ06cKNa1sbHhdu3a8YoVK/jVq1d6dxMTE1mhUAhdc3NzViqVvHDhQn727Jne3VevXrG1tbXQNTY25tjYWJ41axbfv39f725ubi57eXkJXblczlFRUTx58mS+ceMGq9VqvbpqtZpDQ0OLfY/Dw8N57NixfOHCBb27zMxxcXHFusHBwfzdd9/xqVOnDLrmevfuXaxbuXJlHjx4MB8+fJjz8/P17o4ZM6ZYt0KFCty3b1/evXs35+Tk6N1dvHhxsa6rqyv36NGDt27dyhkZGXp3d+/eXaxrb2/Pn332Ga9Zs4bfvHmjd/fixYvFulZWVvzJJ5/wb7/9xklJSXp3nzx5wqampkLX1NSUW7ZsyfPmzeNHjx7p3c3IyGBHR0eha2RkxI0bN+bp06dzYmKi3t2CggIOCAgQujKZjOvVq8fjx4/nK1euGHTNldfrEQAAvF90ma/pPFD8448/eOTIkbxly5ZSB4oTJ05kW1tb3rZtG1+6dIk/+ugj9vX11fiHnnXr1rGJiQn/9ttvfO3aNe7Vqxfb2dmJ/gMCBooAAPA+OnToULE3cG//cnd35169evH27dt1Hqpdv36dZTJZqV0HBwfu0qULr1+/nlNTU3XqJiUlsbm5ealda2tr/vTTT3n58uX88uVLnbrZ2dns5uZWatfc3Jzj4+N5wYIF/PTpU526KpWKq1evXmrX2NiYY2JieObMmXzv3j2duszMsbGxpXblcjk3aNCAJ02axNevX9f5DX737t3LfE6EhYXxmDFj+Pz58zp3R44cWWY3KCiIExIS+M8//+TCwkKduvPmzSuz6+/vz4MGDeJDhw7pPFTbvn17mV1vb2/+z3/+w7t27dJ5qHb27Nkyuy4uLvzFF1/w5s2bdR6qPXjwgI2MjErt2tnZcceOHXn16tU6D9VSUlLYzs6u1K6lpSW3adOGlyxZwi9evNCpm5+fzz4+PqV2TU1NuUWLFjx37lx++PChTl21Ws116tQptatQKLhRo0Y8bdo0UR82+F+ffPJJqV2ZTMZ169blcePG8eXLl3W+Nvr371/mcyIkJIR/+OEH/uuvv3Qeqk2cOLHMbmBgIH/77bd89OhRnf+SZ+XKlWV2fXx8uH///rx3717Ozc3VqVter0cAAPB+0WW+JmPW/94JmUxGW7dupTZt2hARETOTh4cHDRkyhIYOHUpERGlpaeTq6krLli2jjh07ltqpU6cOhYeH05w5c4iISK1Wk7e3N/Xv359GjBih9TzS09PJ1taW0tLSyMbGRt//OwAAAGXasGED7dixQ9ImM9OGDRu0rkMnl8vJ3d2dvLy8yNPTkywsLLS2t23bpnW9OJlMRq6uruTl5UVeXl5kZWWltbtv3z5KTk7Wepyzs7PQtbW11Xr8yZMn6f79+1qPc3BwELoODg5aj798+TJdvnxZ63G2trZC18nJiWQymcbj79y5Q6dPn9batbKyErouLi4kl2tebebZs2d06NAhrV1zc3Oh6+bmRgqFQuPxKSkptGvXLq1dU1NT8vT0JC8vL3J3dydjY2ONx+fl5dHGjRu1do2NjcnDw4O8vLzIw8ODTE1NNR7PzLR27Vqtt+IqFIpi14a5ubnWc9m8ebPW28nlcnmxa8PS0lJrd9euXVrXUpTJZMWuDTF/bj18+LCodUYdHR2Frr29vdbjz549K+r2bHt7e+E54ejoqPXauHHjBv39999auzY2NkLX2dlZ67Xx4MEDOnHihNaupaWl0HV1ddV6bSQnJ9O+ffu0ds3MzIpdG0ZGRhqPz8zMpG3btmntmpiYFLs2TExMNB5fWFhI69at09o1MjIiDw8P8vT0JE9PTzIzM9N4PDPTpk2btN5ObmZmRk2bNiWlUknx8fHk6emp9VwAAOD9oct8TdKB4r1798jPz48uXLhAISEhwnENGzakkJAQmjlzZolGfn4+WVhY0KZNm4QOEVG3bt0oNTWVtm/fXuL35OXlFXuxS09PJ29vbwwUAQCg3CQkJNDEiRPf9WkAAAD8a9SqVUsYLtaqVUvrYBgAAP7ddBkoSvpf/KJFs11dXYt93dXVtcwFtV+9ekUqlUqn3zNhwgSytbUVfnl7e0tw9gAAAAAAACDW+fPn6ZdffqFp06bRsWPH3vXpAADAP0jzZ/X/pRISEmjw4MHCPxd9QhEAAAAAAADKV+XKlUmpVJJSqaTIyEityyMAAMCHR9KBopubGxERJSUlkbu7u/D1pKSkYrdAv83JyYkUCgUlJSUV+3pSUpLQ+1+mpqZa194BAACQ0siRI2nQoEGSNl+9ekWhoaGUn59f6uNyuZzq1KlDzZo1o2bNmpG/v7+obm5uLoWGhtKbN2/KPKZWrVpCt1q1alrXRSP67xrH0dHRlJiYWOYx1apVo+bNm1NsbCyFhoaKvv2tbdu2GtdH8/PzE843IiJC6/plRfr3708bNmwo83FPT09q1qwZNW/enOrXry/6zxfjxo2jWbNmlfm4s7MzxcbGUrNmzSg6OlrUGnxERL/99hslJCSU+bitrS3FxMRQs2bNqHHjxqLWpyQi2r17N3Xv3r3Mxy0sLKhx48bUvHlzatq0KTk5OYnqXrhwgVq0aFHm46amphQVFUXNmjWj2NhY8vDwENV9/PgxRURElLmGokKhoPr16wvPCR8fH1Hd9PR0CgkJoaysrFIfl8lkFBYWJjyHq1SpIuraKCwspPDwcHr27FmZx9SoUUM43xo1aojqMjM1b96cLl26VOYxVapUodjYWGrevDnVrl1b65qBRbp160Z79uwp8/GKFSsK51u3bl2ta/sVSUhIoN9++63Mx93c3IRugwYNRK17SUQ0c+ZMGj9+fJmPOzg4UExMDDVv3pwaNWokak1Yov+uj9u/f/8yH7e2tqYmTZpQs2bNqEmTJqLWbiUiOn78OH366adlPm5ubk4NGzakZs2aUUxMTIm7tcpy+/ZtioqKKvNxY2NjioyMpObNm1NMTAxVqFBBVPfVq1dUq1atMtdQVCgU1KBBA+H25ipVqojqAgDAB8yQ3V/of3Z5VqvV7ObmxlOnTi22Q4ypqSmvXbu2zE5ERAR//fXXwj+rVCr29PTkCRMmiDoP7PIMAADvoxEjRpS6I2ynTp149erV/Pr1a726s2fPlnRH2CJbtmwp0TUxMdF7R9gip0+flnxHWGbme/fuldh519AdYZn/u/Oura2tpDvCMjPn5eVxxYoVy9wR9tixYzrvCMv83z+fhYeHS7ojbJHWrVuXy46wffv2LdF1dHTkzz//XK8dyouMGzeuRNfa2prbtWun1w7lRZYtW1aia2ZmJuxQ/uTJE726+/fvL9F9e4fyu3fv6tW9cuVKiZ3gDd2hnJn5+fPnbGZmVuKcDdmhnJk5MzOTXVxcSnQN2aGcmbmwsJCrVq1aolu0Q/nBgwd13qG8SJMmTUp0vby8hB3Ks7Oz9ep+/vnnJbpv71Cenp6uV7e8Xo8AAOD9ost8TeeBYkZGBl+4cIEvXLjARMTTp0/nCxcuCG8iJk6cyHZ2drx9+3a+fPkyt27dmn19fTknJ0doNGnShGfPni3887p169jU1JSXLVvG169f5969e7OdnZ3oNzwYKAIAwPvm5cuXbGlpyUTElStX5sGDB/Phw4f1fvNaJCcnhz08PJiI2Nvbm/v27cu7d+8u9jqsD5VKxTVr1mQiYldXV+7Rowdv3bqVMzIyDOoyM7ds2ZKJiO3t7fmzzz7jtWvX8ps3bwzufvnll0xEbGVlxZ988gkvXbqUk5KSDO6OHj2aiYhNTU25VatW/Ouvv/KjR48M7i5cuJCJiI2MjLhJkyY8ffp0TkxMNLi7a9cuYZhav359Hj9+PF+5ckWvwc7bzp8/LwweatWqxaNHj+azZ8/qNUx926NHj9jExISJiKtVq8bDhg3j48eP6zUweltaWho7ODgwEbGvry8PGDCA9+/fz3l5eQZ1CwoK2M/Pj4mIPTw8uHfv3rxjxw69h6lF1Go1R0ZGMhGxk5MTd+3alTdu3CjJn3fbt2/PRMQ2Njbcvn17XrlyJb969crg7qBBg5iI2NzcnD/66CNetGgRP3361ODu1KlThWFqs2bNePbs2Xz//n2Du2vXrhWGqdHR0TxlyhS+ceOGwdfG0aNHhWsjIiKCx44dyxcuXDC4e+vWLZbL5UxEXKNGDf7uu+/41KlTBl9z5fV6BAAA7x9d5ms63/J87tw5aty4sfDPRWsZduvWjZYtW0bDhg2jrKws6t27N6WmplKDBg1oz549ZGZmJvyeu3fv0qtXr4R/7tChA718+ZJGjRpFL168oJCQENqzZ4/oj/4DAAC8b44fP05jxowhpVJJAQEBknVPnz5Nffv2JaVSScHBwaJuqxTjypUrpFQqacGCBRQeHi7ZTp6PHz+matWq0fDhwykyMlL0rczapKWlkZWVFe3Zs4caNWok2VIp+fn5lJmZSdu2baOYmBjRtzJrw8z08OFDWrduHTVv3pzs7Owk6RL992e3bNkyatWqFTk7O0vWPX36NM2fP5/i4+PJ09NTsu6JEydo8uTJFB8fT35+fpJ1T548ScOGDSOlUklVq1aV7No4d+4cff7556RUKik0NFSybmJiIkVFRdHkyZOpTp06om9l1iY5OZm8vLzowIEDFBUVJfpWZm2ys7OJiGjnzp3UpEkT0bcya6NSqSg5OZk2bdpEzZo1I2tra0m6RP+9fXjVqlXUsmVL0bcyi3H+/HlavHgxxcXFlbmEkz5OnjxJs2bNovj4eKpYsaJk3fJ6PQIAgA+bjJn5XZ+EoXTZ1hoAAAAAAAAAAACK02W+Js3HCwAAAAAAAAAAAOD/BAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAADegeTkZGJmybsvX74klUoleffNmzeUn58veTctLY1ycnIk72ZlZVFGRobk3YKCAnr9+rXkXWampKQkybtE9F52y+PaSE5OJrVaLXn31atXVFhYKHk3JSWF8vLyJO9mZGRQVlaW5N3c3FxKTU2VvKtSqejly5eSd4lwbRQpr9cjAAD4sGGgCAAA8A6cPn2avLy8qE+fPrRjxw7Kzs6WpPvw4UNyc3Ojbt260caNGyk9PV2SbkZGBnl6elL79u1p5cqVkg7VKleuTB999BEtWrSInj9/LknTxMSEIiIiqFmzZjR79mx68OCBJF0jIyNq06YNRUdH05QpU+jmzZuSvBGXyWT09ddfU0REBP3000908eJFyd7gjx8/nmrUqEEjR46k06dPSzZwXrZsGQUEBNCQIUPoyJEjVFBQIEl3//795OPjQ/369aM9e/ZQbm6uJN1r166Rh4cH9ezZk7Zt20aZmZmSdF++fElubm7UuXNnWrt2LaWkpEjSLSgooIoVK1Lbtm1p6dKllJycLEnXyMiIgoKCqFWrVvTrr7/S48ePJemamJhQ48aNqUmTJjRjxgy6c+eOJF2FQkGff/451a9fnyZMmEBXr16V7NoYMWIE1apVi0aPHk3nzp2TbOA8e/ZsqlatGg0fPpxOnDgh2cB5y5Yt5OfnR9988w0dOHBAsr/kKa/XIwAA+MDxByAtLY2JiNPS0t71qQAAAIiiVqs5NDSUiYiJiM3NzTk+Pp4XLFjAT58+NagdHx8vdI2NjTkmJoZnzpzJ9+7dM6jbp08foSuXy7lBgwY8adIkvn79OqvVar27Y8eOFbpExGFhYTxmzBj++++/DeouWbKkWDcoKIgTEhL45MmTXFhYqHd3z549xbr+/v48cOBAPnjwIOfn5+vdvXTpUrGul5cXf/XVV7xr1y7OycnRu/v06VM2NTUVus7Ozty9e3fevHkzZ2Rk6N3NyMhgR0dHoWtnZ8cdO3bk1atX85s3b/TuFhQUcEBAgNC1tLTkNm3a8JIlS/jFixd6d9VqNUdHRwtdU1NTbtGiBc+dO5cfPnyod5eZuVOnTkJXoVBwo0aNeNq0aXz79m2DukOHDhW6MpmM69aty+PGjePLly8bdG3MmDGj2HMtJCSEf/jhB/7rr79YpVLp3d2wYUOxbmBgIH/77bd89OhRLigo0Lt74sSJYl0fHx/u378/7927l3Nzc/XuJiYmskKhELru7u785Zdf8vbt2zkrK0vv7qtXr9ja2lroOjg4cJcuXXj9+vWcmpqqdzc3N5e9vLyErrW1NX/66ae8fPlyfvnypd7d8nw9AgCA94su8zUMFAEAAN6R7du3F3uT/Pav2rVr848//sjnzp3TeXBw9uzZMrvVq1fn4cOH84kTJ3Qeqj148ICNjY1L7VaqVIm/+eYbPnDggM5DtdTUVLazsyu16+npyX369OGdO3dydna2Tt38/Hz29fUttevs7MzdunXjTZs2cXp6uk5dtVrNdevWLbVra2vLHTp04FWrVvHr16916jIzt23bttSuhYUFt27dmhcvXszPnz/XuTtgwIBSuyYmJty8eXOeM2cOP3jwQOfuxIkTS+0qFApu2LAhT506lW/duqVzd+XKlaV2ZTIZ16lTh3/++We+ePGiztfGoUOHyrw2atasyd9//z2fPn1a56Ha9evXWSaTldqtUqUKDxkyhI8cOaLzUC0pKYnNzc1L7VasWJH79evHe/bs0Xmolp2dzW5ubqV23dzcuGfPnrxt2zbOzMzUqatSqbh69eqldh0cHLhz5868bt06vYZqsbGxpXatrKy4bdu2vGzZMk5OTta5271791K7ZmZmHBcXx/Pnz+cnT57o3B05cmSpXSMjI27atCn/8ssvfOfOHZ278+bNK7Url8s5MjKSJ06cyFevXtX52iiv1yMAAHi/6DJfkzG//wtmpKenk62tLaWlpZGNjc27Ph0AAPgA7dmzh44cOSJpk5lpxowZWm8VtbKyIj8/P/L39ycfHx8yMjLS2p4/fz6lpaVpPMbc3JwqVapE/v7+5OvrS6amplq7q1atoqdPn2o8xsTEROhWqlSJzM3NtXZ///13unHjhsZjjIyMyMfHh/z9/cnPz4+srKy0do8dO0anTp3SeIxcLqcKFSqQv78/+fv7k62trdbu+fPnaf/+/RqPkclk5OXlJZyvg4MDyWQyjb8nMTGRtmzZovXf7+7uLjwnXFxctHZfvHhBy5cv19p1dnYWvg/u7u5au5mZmTR37lytXXt7e6Hr6elJCoVC4/GFhYU0Y8YMrbeg2tjYCN+HChUqaL02mJlmz56tdd1OCwsLoevr60vGxsYajyci+u2337Su9Wdqalqsa2ZmprW7YcMGun//vsZjjI2NydfXV7jmLC0ttXb37t1LFy9e1HiMQqGgihUrCj87a2trrd3Tp0/T0aNHNR4jk8nI29tb6Nrb22vtXr16lXbt2qX1OE9PT+F77OTkpPU5/PDhQ1q3bp3WrouLi3C+bm5uWrtv3ryhRYsWae06OjoKXQ8PD5LLNa9IlZeXR7/88ovWrq2trdD19vbWes0xM82cOVPrup0eHh4UHx9PSqWSmjZtKuq/7wAA8P7QZb6GgSIAAIAICQkJNHHixHd9GgAAAP8K5ubmFBMTQ0qlkuLi4sjDw+NdnxIAABhIl/kaNmUBAAAAAAAAneTk5NCOHTvoq6++ok6dOtHhw4ff9SkBAMA/SPs9UwAAAAAAAAD/j62tLbVo0YKUSiW1bNmSHBwc3vUpAQDAPwy3PAMAAIjw7NkzSkpKkrSZnp5OzZo1o/z8/DKP8fb2pujoaIqKiqLQ0FBRa7kVFhZS8+bNKSUlpcxjXFxcKDo6mqKjoyksLEzUWm7MTO3bt6e7d++WeYy9vT1FRUVRVFQU1a1bV9RabkRE/fr107jWoZWVFUVGRlJ0dDTVr19f1DqHREQ//fQTbd26tczHzczMqG7dusL32NHRUVR3wYIFtGDBgjIfNzIyooiICKHr7u4uqrt161b66aefynxcLpdTaGio8LOrWLGiqO6JEydowIABGo8JDg4Wuv7+/lrXiCMiun37NnXs2FHjMQEBAUK3WrVqWteIIyJ69eoVtWjRQuMaij4+PsL3t2bNmqLWFs3NzaXY2FjKysoq8xh3d3dq2LAhRUVFUe3atcnExERrV61Wk1KppOfPn5d5jKOjI0VFRVHDhg0pIiJC9Npz3bt3p8uXL5f5uI2NDTVo0ICio6OpXr16otY5JCIaPny4xnVALSwsqF69etSwYUOKjIwUtc4hEdG0adNo9erVZT5uYmJCderUEX52Li4uororV66kGTNmlPm4kZER1apVS/jZeXl5ieru3buXEhISynxcJpNRzZo1heewr6+vqGvjwoUL1LNnT43HVKtWTfg+BAYGiuo+fvyYWrdurfEYPz8/4XyDgoK0rp9I9N/Xo+bNm2tcQ9Hf35+USiXFx8dTVFSUqNcjAAB4v+gyX8MnFAEAAETw8PCQfH2o8ePHlxgmyuVyatCggbDofZUqVUS9yXzb8uXLSx0mhoeHk1KpJKVSSTVr1tS5e+DAgVKHicHBwUI3IiJC1MDobVevXqXTp0+X+HrlypWFbmRkpM5vXl+8eEG7d+8u8XVvb2+h26hRI1HD1LdlZWWVOqR0cXERfm4xMTGiNo15m0qlos6dO5f4ur29PbVs2ZKUSiU1b95c9GDnbUOHDi3xNUtLS2revDnFx8dTXFyc6MHO20ob8JiamlLTpk2FddW8vb117iYkJJQYJhoZGVF0dLTwPfb399e5O2fOnBLDRJlMRvXq1RO61atX1/na2LJlS6nDxNDQUOG5VqtWLZ2vjdOnT5c6TKxatarQrVevnqiB0dvu3btX6u2pvr6+Qjc6OlrUMPVtKSkptGPHjhJff3sjjyZNmpCFhYVO3fz8fNq8eXOJrzs6OlJcXBwplUpq1qyZzh8sYGbq3bt3ia/b2NgIn75r0aIFOTk56dQlIhozZkyJr5mbm1NsbKxwzenzmrJ48eISXzM2NqbGjRtTfHw8xcfHk6+vr87d8ePHlxgmSvF6BAAAH7Dy2mr6n6TLttYAAAD/Bmlpaezg4MBExLa2ttyhQwdetWoVv3792qBuQUEB+/n5MRGxhYUFt27dmhcvXszPnz83qKtWqzkyMpKJiE1MTLh58+Y8Z84cfvDggUFdZub27dszEbFCoeCGDRvy1KlT+ebNmwZ3Bw0axETEMpmM69Spwz///DNfvHiR1Wq1Qd2pU6cyETERcc2aNfn777/n06dPs0qlMqi7du1aoVulShUeMmQIHzlyhAsKCgzqHj16VOhWqFCB+/Xrx3v27OHc3FyDujdv3mS5XM5ExG5ubvzll1/ytm3bODMz06BucnIyW1paMhGxvb09d+7cmdetW8cpKSkGdXNyctjDw4OJiK2srLht27a8bNkyTk5ONqirUqm4Ro0aTERsZmbGcXFxPH/+fH7y5IlBXWbmFi1aMBGxkZERN23alH/55Re+c+eOwd2ePXsyEbFcLufIyEieOHEiX7t2zeBrY9SoUcJzrXbt2vzjjz/yuXPnDO4uWLBA6FavXp1HjBjBJ06c4MLCQoO6O3fuFLp+fn48cOBAPnDgAOfl5RnUPX/+vND19PTkPn368M6dOzk7O9ug7qNHj9jExISJiJ2cnLhbt268adMmTk9PN6hbXq9HAADw/tFlvoZPKAIAALwDf/zxB3Xr1o2USiU1aNBAslvHDh8+TM2aNSOlUkmNGzfW+dN3Zbl06RIFBATQ4MGDKTY2VvRtldo8fvyYjIyMaPXq1dSiRQvJ1uFKS0ujpKQkWrJkCcXFxZGrq6sk3fz8fLpy5QrNnTuX4uPjqUKFCpJ0mZmOHz9O06ZNI6VSSZUrV5akS/TfWzrHjRtHSqWSgoKCJPuE0Y4dO2jkyJGkVCqpdu3aOn/6TlO3b9++wqfvxNzKLMbevXupbdu2wqfvTE1NJemeOnWK6tSpQz///DM1bdpU50/fleXWrVvk7OxM69evp+bNm4u+zV+b5ORkysnJoeXLl1OrVq30+vRdabKzs+nevXu0YMECio+Pl+wT3SqVis6ePUszZ86k+Ph4qlSpkiRdIqJDhw7RpEmTSKlUir7lWIxdu3bRmDFjSKlUUkhIiGTd33//nYYMGSJ8GlzXT6aWpbxejwAA4MOGNRQBAAAAAAAAAAD+j9NlvibNXyUDAAAAAAAAAADA/wkYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAAAAAAAAAgGgYKAIAAAAAAAAAAIBoGCgCAAAAAAAAAACAaBgoAgAAvAO5ubnvXZeZ35tufn4+qVQqybuFhYVUUFAgeZeZ38vnBLrv3zWXl5dHarVa8m5BQQEVFhZK3lWpVJSfny95l+j9fE68T10AAPiwYaAIAADwDmzevJnCw8Np7NixdP78eckGB6dOnaLg4GD67rvv6M8//5RsqHb//n0KDAykQYMG0aFDhyQbqqWnp1PVqlXpP//5D/3xxx+SvbFVqVRUq1Yt+uKLL2jLli2UmZkpSVcul1OTJk2oU6dOtGbNGkpJSZGkK5PJ6LPPPqOPP/6YfvvtN0pKSpKkS0Q0cOBAatmyJc2bN48ePXokWXfChAnUuHFjmj59OiUmJkrWXbZsGdWrV4/Gjx9PV65ckeza2Lt3L4WGhtKoUaPo7Nmzkg3Vrly5QtWqVaNhw4bRsWPHJBuqJSUlUWBgIA0YMID27dtHeXl5knRzcnIoODiYevXqRb///jtlZ2dL0iUiqlevHn3++ee0YcMGSktLk6Qpl8spPj6e2rVrRytWrKBXr15J0iUi6tWrFymVSlq4cCE9e/ZMsu73339PsbGxNGvWLLp//75k3Tlz5lBUVBRNnjyZbty4Idm1UV6vRwAA8IHjD0BaWhoTEaelpb3rUwEAABCloKCAAwICmIiYiNjT05P79OnDO3fu5OzsbL27arWao6Ojha6zszN369aNN23axOnp6Qadc6dOnYSura0td+jQgVetWsWvX782qDt06FCha2Fhwa1bt+bFixfz8+fPDerOmDFD6JqYmHDz5s15zpw5/ODBA4O6GzZsELoKhYIbNmzIU6ZM4Zs3bxrUPXHihNCVyWRcp04d/umnn/jixYusVqv17iYmJrJCoRDaNWvW5O+//55Pnz7NKpVK7+6rV6/Y2tpa6FapUoWHDBnCR44c4YKCAr27ubm57OXlJXQrVqzI/fr14z179nBubq7eXbVazSEhIULXzc2Ne/bsydu2bePMzEy9u8zMcXFxQtfBwYE7d+7M69at49TUVIO6vXv3FrpWVlbctm1bXrZsGScnJxvUHTNmjNA1MzPjuLg4nj9/Pj958sSg7uLFi4WukZERN23alH/55Re+c+eOQd3du3cLXblczpGRkTxx4kS+evWqQdfGxYsXhS4Rce3atXn06NF87tw5g7pPnjxhU1NToVu9enUePnw4nzhxggsLC/XuZmRksKOjo9CtVKkSf/PNN3zgwAHOy8vTu1ter0cAAPD+0WW+hoEiAADAO7Jy5cpib2aLfpmbm/NHH33ECxcu5GfPnuncPXToUKldExMTbtasGc+aNYvv37+vc/f69essk8lKdOVyOUdFRfHkyZP5xo0bOr8RT0pKYnNz81LPOTw8nMeOHcsXLlzQuZudnc1ubm6ldoODg/m7777jU6dO6TxUU6lUXL169VK7lStX5sGDB/Phw4c5Pz9fpy4zc2xsbKndChUqcN++fXn37t2ck5Ojc7d79+6ldl1dXblHjx68detWvYZqI0eOLLVrb2/Pn332Ga9du5ZTUlJ07s6bN6/UrpWVFX/yySe8dOlSTkpK0rm7bdu2UrumpqbcqlUr/vXXX/nx48c6d//6669Su0ZGRtykSROePn06JyYm6tx98OABGxkZlejKZDKuX78+jx8/nq9cuaLztZGSksJ2dnalnnNoaCiPGjWKz549q/O1kZ+fzz4+PqV2q1atysOGDePjx4/rPFRTq9Vcp06dUru+vr48YMAA3r9/v15DtU8++aTUroeHB/fu3Zt37Nih11Ctf//+pXadnJy4a9euvHHjRr3eu0ycOLHUro2NDbdv355XrlzJr1690rlbXq9HAADwftFlviZjfv8/056enk62traUlpZGNjY27/p0AADgA/Tnn3/S33//LWmzsLCQhg8frvX2YW9vbwoKCqLg4GDy9PQkmUym8XhmptGjR1NqaqrG49zd3SkoKIiCgoKoYsWKJJdrXwll2rRp9PDhQ43HODk5CV0/Pz9SKBRau0uWLKFLly5pPMbOzk7oVq5cmYyNjbV2t23bRocOHdJ4jJWVFVWvXp2CgoIoMDCQTE1NtXYPHz5MW7du1XiMubk5Va1alYKCgqhatWpkYWGhtXvhwgVaunSpxmNMTEyoSpUqFBwcTNWqVRP1Z5979+7RL7/8ovEYIyMjqly5svA9tre319p98+YN/fjjjxqPkclk5OfnJ3RdXFy0dvPy8mj48OFab0v28fERuu7u7qKujYSEBK23+Xp6egrdChUqaO0SEY0bN07rreouLi4UHBxMQUFB5OPjI+ramDt3Lt26dUvjMQ4ODsL5+vv7k5GRkdbumjVr6PTp0xqPsbGxoerVq1NwcDAFBASQiYmJ1u7u3btp9+7dGo+xsLCg6tWrU/Xq1alq1apkbm6utXvq1Clau3atxmPMzMwoMDBQuOasrKy0dq9fv07z58/XeIyxsTEFBAQI32NbW1ut3WfPntHEiRM1HiOXy8nf3194Tjg6OmrtZmZm0nfffafxGJlMRr6+vsL5urq6an0OFxYWUkJCgtZb68PCwkipVJJSqaSQkBBR1wYAALw/dJmvYaAIAAAgQkJCgtY3hwAAAP9XeHl5UXx8PCmVSmrcuLGowTAAAPy76TJfw6YsAAAAAAAAoJMnT57Q/PnzKS4ujurUqUOHDx9+16cEAAD/IO33QwAAAAAAAAD8P3K5nOrXry/c/hwYGIjbnwEA/o/BQBEAAECErl27UmRkpKTN3Nxc6ty5M+Xn55d5jLm5OdWuXZsiIiKodu3aopb2UKvV1L17d0pJSSnzGBMTEwoJCaGIiAgKCwsTtXYXEdE333xD9+7dK/NxhUJBNWrUoPDwcAoPDyc3NzdR3Z9++on++uuvMh+XyWRUtWpVioiIoIiICPLy8hL15nX+/Pm0a9cujcdUrlxZ6Pr6+orqbty4kVasWKHxmIoVKwrdgIAAUWtUHjp0iGbMmKHxGHd3d6pTpw5FRERQ1apVRa2Xd+nSJfr+++81HuPk5CScb3BwsKj18h4/fkx9+/bVeIytrS2Fh4dTREQEhYSEiLotMj09nT7//HONayhaWlpSWFgYhYeHU+3atUWtl1dYWEidO3fWuIaiqakp1apVi8LDwyksLEzUWpLMTL1796YXL16UeYyRkRHVrFmTIiIiKDw8nJydnbV2iYhGjBhB165dK/NxuVxO1atXF352Hh4eorpTp06lo0ePajwmMDBQ6IpdS3L58uW0adMmjcdUqlRJ6Pr5+Ym6Nnbu3EkLFizQeIyXl5fQDQwMFLVG5alTp2j8+PEaj3F1dRV+bkFBQaLWb719+zYNGTJE4zEODg7CtVGzZk1R67e+evWKvvjiC43HWFtbC/8NrlWrlqj1W3Nzc6lLly4a11C0sbGhFi1akFKppBYtWpCTk5PWLgAAfLgwUAQAABChatWqVLVqVUmbc+bMKXWYWKlSJeFTH1FRUaIGO2/bunVrqcNET09PYb2rJk2a6Lze1ZkzZ0odJjo5OVFcXBwplUpq1qwZWVtb69S9f/8+nT9/vsTXbW1thTevLVu2JAcHB526qamp1KVLlxJft7CwoNjYWFIqlRQXFyd66FkkPz+fvv766xJfNzExocaNG5NSqaT4+HiqWLGiTl1mprFjx5b4ukKhoAYNGgjdKlWq6NQlIlq8eHGJr8lkMoqIiBC6NWrU0PkTRv369Sv16zVr1hS64eHhogZGbxs/fnypw8QqVaoIz+HIyEhRw9S3LV++vNRhYoUKFYRrrlGjRqIGO287cOBAqcNEV1dX4XxjYmLI0tJSp+7Vq1fp+vXrJb5ub29PrVq1IqVSSc2bNyc7Ozudui9evKAzZ86U+LqVlRU1b96clEoltWrVSvTQs0hWVhb17NmzxNfNzMyoadOmwjXn5eWlU1elUtGwYcNKfN3IyIgaNmwoPNf8/Px06hJRqQN8uVxO9erVE7rVqlXT+dro2rVrqV+vXbu28JyoVauWzt2EhIRSv169enWhW7duXVHD1LfNmTOn1GGioa9HAADwASvH3ab/Mbpsaw0AAPBvkJOTwx4eHkxELJfLuUGDBjxp0iS+fv06q9VqvbsqlYpr1qzJRMRExGFhYTxmzBg+f/68QV1m5pYtWwrdoKAgTkhI4D///JMLCwsN6n755ZdC19/fnwcNGsQHDx7k/Px8g7qjR48Wul5eXvyf//yHd+3axdnZ2QZ1Fy5cKHRdXFz4iy++4M2bN3N6erpB3V27dgldW1tb7tixI69evZpfv35tUPf8+fNC19LSktu0acNLlizhFy9eGNR99OgRm5iYMBGxiYkJt2jRgufOncsPHz40qJuWlsYODg5MRKxQKLhRo0Y8bdo0vn37tkHdgoIC9vPzYyJimUzGdevW5XHjxvHly5cNujbUajVHRkYK3+OQkBD+4Ycf+K+//mKVSmXQObdv317oBgYG8rfffsvHjh3jgoICg7qDBg0Suj4+Pty/f3/eu3cv5+bmGtSdOnWq0HV3d+devXrx9u3bOSsry6Du2rVrha6DgwN36dKF169fz6mpqQZ1jx49KnStra35008/5eXLl/PLly8N6t66dYvlcjkTEZuZmXF8fDwvWLCAnzx5YlD35cuXbGlpyUTExsbGHBMTwzNnzuS7d+8a1C2v1yMAAHj/6DJfwy7PAAAA78DKlStp586dwqfvxN5yrM3evXtp3rx5wieMxN7+qM3Fixdp+PDhwidgfHx8JOk+fvyYvvjiC+FTUVWqVJFkHa60tDRq164dRUVFkVKppJo1a0rSLSgooLZt21JwcDAplUqKiIjQ+dN3pWFm+vzzz8nV1VX49J2Y2yrFGDBgAKlUKuHTd2ZmZpJ0f/rpJ3rw4IHw6TsxtxyLMX/+fDp+/Ljw6TsxtxyLsWXLFlq9erVwbbi4uEjSPXHiBE2YMEH49J23t7ck3du3b1O/fv2ETyL6+/tL0k1OTqbPPvtM+MRg9erVJbk2srOzqW3btsKnXmvVqiXJtaFSqahDhw7k5+dHSqWS6tWrp/On78rSq1cvsrCwIKVSSdHR0ZJ9+i4hIYHevHkjfBpczC3HYkybNo0uX74sfBpcqvc95fV6BAAA7x9d5msYKAIAALwDzFwuC9iji+4/1UYX3fe5W55tdAEA4H2ly3zN8L82BAAAAJ2V15s3dNH9p9roovs+d8uzjS4AAPxfIPlA0cfHh2QyWYlfZS3avWzZshLHSnUrDgAAAAAAAAAAAEhL8l2ez549SyqVSvjnq1evUmxsLLVr167M32NjY0O3bt0S/hl/SwYAAAAAAAAAAPDvJPlA0dnZudg/T5w4kfz8/Khhw4Zl/h6ZTEZubm6i/x15eXmUl5cn/HN6erruJwoAAAAAAAAAAAA6K9c1FPPz82nVqlXUo0cPjZ86zMzMpIoVK5K3tze1bt2arl27prE7YcIEsrW1FX5JtZseAAAAAAAAAAAAaFauuzxv2LCBPvvsM3r06BF5eHiUesypU6coMTGRatSoQWlpaTR16lQ6duwYXbt2jby8vEr9PaV9QtHb2xu7PAMAAAAAAAAAAOhBl12ey3Wg2Lx5czIxMaEdO3aI/j0FBQVUtWpV6tSpE/3000+ifo8u/4cBAAAAAAAAAACgOF3ma5KvoVjk4cOHdODAAdqyZYtOv8/Y2JhCQ0Ppzp075XRmAAAAAAAAAAAAoK9yW0Nx6dKl5OLiQnFxcTr9PpVKRVeuXCF3d/dyOjMAAAAAAAAAAADQV7kMFNVqNS1dupS6detGRkbFPwTZtWtXSkhIEP557NixtG/fPrp37x6dP3+eunTpQg8fPqQvv/yyPE4NAADgX6G8VhxB9/3tvo/njC66/0T3fTxndAEA4ENXLgPFAwcO0KNHj6hHjx4lHnv06BE9f/5c+OeUlBTq1asXVa1alVq1akXp6en0559/UrVq1crj1AAAAP4VVq5cSW3atKElS5bQixcvJOvu27ePWrRoQXPnzqWHDx9K1r106RI1atSIpk6dSrdu3ZKs++TJE4qOjqaff/6ZLl26JNkb24yMDGrcuDF9//33dObMGVKr1ZJ0CwsLqVWrVjR06FA6evQoFRYWStIlIvrss8/o66+/pr179xbbfM5QAwYMoC+//JK2b99OWVlZknXHjh1LXbp0ofXr11NaWppk3V9//ZU+/fRTWr58Ob18+VKy7pYtWyg+Pp4WLFhAT548kax78uRJiomJoZkzZ9Ldu3cl6yYmJlJ0dDRNnDiRrl27Jtm18erVK4qOjqYff/yR/v77b8m6ubm5FBMTQyNGjKCTJ0+SSqWSpMvM9PHHH9PAgQPp4MGDlJ+fL0mXiKhnz5701Vdf0a5duygnJ0ey7ogRI6h79+60efNmysjIkKw7bdo06tixI61evZpev34tWbe8Xo8AAOADxx+AtLQ0JiJOS0t716cCAAAgSm5uLnt5eTERMRFxeHg4jx07li9cuMBqtVrvrlqt5tDQUKEbHBzM3333HZ86dYoLCwsNOuf4+HihW7lyZR48eDAfPnyY8/PzDer26dNH6FaoUIH79u3Lf/zxB+fk5BjUHTt2rNB1dXXlHj168JYtWzgjI8Og7pIlS4Suvb09f/bZZ7xmzRp+8+aNQd09e/YIXUtLS/7444/5t99+46SkJIO6ly5dErqmpqbcsmVLnjdvHj969Mig7pMnT9jU1JSJiI2MjLhx48Y8ffp0TkxMNKibkZHBjo6OTEQsk8m4Xr16PH78eL5y5YpB10ZBQQEHBAQI34vQ0FAeNWoUnz17llUqld5dtVrN0dHRQrdq1ao8bNgwPn78OBcUFOjdZWbu1KmT0PX19eUBAwbw/v37OS8vz6Du0KFDha6Hhwf37t2bf//9d87KyjKoO2PGDKHr5OTEXbt25Q0bNhj8Z/QNGzYIXRsbG27Xrh2vWLGCX716ZVD3xIkTQtfc3JyVSiUvXLiQnz17ZlA3MTGRFQoFExEbGxtzbGwsz5o1i+/fv29Q99WrV2xtbc1ExHK5nKOionjy5Ml848YNg66N8no9AgCA948u8zUMFAEAAN6RefPmCW/g3v7l5eXFX331Fe/atUuvodr27dtL7To7O3P37t158+bNeg3Vzp49W2rXzs6OO3bsyKtXr9ZrqPbgwQM2NjYu0bW0tOQ2bdrwkiVL+MWLFzp3U1NT2c7OrkTX1NSUW7RowXPnzuWHDx/q3M3Pz2dfX98SXYVCwY0aNeJp06bxrVu3dO6q1WquW7duia5MJuO6devyuHHj+NKlS3q9wW/btm2pP7uQkBD+/vvv+cyZM3oN1fr3719qNzAwkL/99ls+evSoXkO1iRMnltr18fHhr7/+mvfu3cu5ubk6d1euXFlq193dnb/88kvevn27XkO1Q4cOldp1cHDgLl268Pr16zk1NVXn7vXr11kmk5XoWltb86effsrLly/nly9f6txNSkpic3PzEl1zc3OOj4/nBQsW8NOnT3XuZmdns5ubW4musbExx8TE8MyZM/nu3bs6d1UqFVevXr1EVy6Xc4MGDXjSpEl87do1va6N2NjYUn92YWFhPGbMGP7777/16nbv3r3UblBQEI8YMYJPnjyp11/yjBw5stSuv78/Dxw4kA8ePKjXX/KU1+sRAAC8X3SZr8mY3/9FM3TZ1hoAAEAfV69epdu3b0vazMvLo+7du2u8hc/ExIRq1KhB4eHhVLt2bbK3t9faZWbq1asXpaSklHmMkZERBQUFUe3atSk8PJycnZ1FnfO3335L9+7dK/NxuVxOgYGBFBYWRmFhYeTp6SmqO3HiRDp79qzGY/z9/SksLIzCw8OpYsWKJJPJtHaXLFlCf/zxh8ZjKlasKJyvv78/yeXaV4TZunUrrVq1SuMx7u7uFB4eTmFhYRQYGEgKhUJr9+jRozRr1iyNxzg7O1Pt2rUpLCyMgoKCyNjYWGv36tWrNHr0aI3H2NnZCd0aNWqQmZmZ1u6zZ8+of//+Go+xsrKi0NBQCgsLo9DQULK0tNTazczMpC+++ELjrepmZmYUEhJCtWvXptq1a5Otra3WbmFhIX3xxReUnZ1d5jHGxsYUHBwsPCccHR21dpmZvv76a423i8rlcqpWrZrwnHBzc9PaJSIaNWoUXbt2TeMxVapUEc7X29tb1LUxc+ZMOnbsmMZjfH19hfOtVKmSqO7q1atpy5YtGo/x8vISruWAgABR19yePXto0aJFGo9xdXUVvg/VqlUrsZZ7af766y+aNGmSxmMcHByEayM4OJhMTU21du/cuUPDhw/XeIy1tbXQrVmzJllYWGjtvn79mnr37q3xGAsLCwoNDaXatWtTrVq1yNraWms3Ly+PvvjiC43LLVhYWFBMTAwplUqKi4vDJpoAAB8gXeZrGCgCAACIkJCQQBMnTnzXpwEAAPCvEB4eTkqlkuLj4ykkJETUwBkAAP7ddJmvlcumLAAAAAAAAPDhOnv2LI0aNYpq1apFwcHBdPjw4Xd9SgAA8A/Sfh8AAAAAAAAAwFt8fX1JqVSSUqmk6OhoMjExedenBAAA/yAMFAEAAERo06YN+fj4SNosLCykQYMGUUFBQZnHyGQyqlSpEtWoUYNq1KhBbm5uWm8rY2ZKSEig1NRUjcdVqFBB6Ipdd23ChAn08OFDjce4u7sLXV9fX1Hro82fP58uXryo8RgnJyehW7lyZVFrEm7atIkOHDig8Rg7OzuhGxAQIOpN8YEDB2jTpk0aj7G0tKTg4GCqUaMGVatWTdSahOfOnaPFixdrPMbMzIyqV69ONWrUoKCgIFFrEt65c4emTp2q8RhjY2OqVq2a0BWzJuGrV6/o+++/13iMQqGgKlWqUI0aNSg4OFjUmoS5ubk0ePBgjWsoymQy8vf3F352rq6uWrtqtZqGDh2qcQ1FIiIfHx+h6+npKera+PHHHzWuoUj037UDi54TFStWFHVt/PLLL3Tz5k2Nx7i6ugrnW6lSJVHXxvLly+nUqVMaj3FwcCh2zYlZr3PHjh20a9cujcfY2NgI34fAwEBRaxIeP36cVq9erfEYCwsLCgoKEq45MWsSXr16lebMmaPxGFNT02LXhpg1CZ88eUI///yzxmOMjIwoMDBQ+B7b2dlp7aanp9OwYcM0HiOXy6ly5cpCV8wauYWFhTRkyBCNayjK5XKqV6+eMESsWrUqbnMGAPg/DANFAAAAEerUqUN16tSRtLl8+fJSh4nW1tbUokULio+Pp1atWpGTk5NO3QMHDpQ6TDQ3N6eYmBiKj4+n+Ph48vDw0Kl79epVevToUYmvGxsbU8OGDYW1tCpVqqRT98WLFzRw4MASX5fL5VS/fn3hzWtgYKBOb16zsrJo1KhRpT4WFhYmdHVd+0ulUtHMmTNLfSwoKEjoRkREiBrsvG3Dhg2lft3f31/oNmjQQNRg521du3Yt9eteXl5Ct3HjxqKGnm9LSEgo9esuLi4UFxdHSqWSYmNjycrKSqfunDlzSh0m2tnZUcuWLUmpVFKLFi1EbVL0tq1bt5Y6TLS0tKRmzZqRUqmkVq1aiRpOvu306dOlDhNNTU2pSZMmwjVXoUIFnbr37t2jr7/+usTXFQoFRUdHU3x8PCmVSqpcubJO3ZSUlFKHUjKZjOrUqSM8J4KCgnS6NvLz82n8+PGlPhYSEiJ0a9euLWqYWoSZyxy0BwYGCt169eqJ2ojlbW3atCn16z4+PsU+fSdm6Pm2fv36lfp1d3d34efWtGlTUUPPt5X1/XV0dKRWrVqRUqmkZs2aifoLgbctX7681GGioa9HAADwASvH3ab/Mbpsaw0AAPBvUFBQwH5+fkxETETs6+vLAwYM4P3793NeXp7eXbVazZGRkULXw8ODe/fuzTt27OCsrCyDzrl9+/ZC19HRkbt27cobN240+PV30KBBQtfGxobbt2/PK1eu5FevXhnUnTp1qtA1Nzfnjz76iBctWsRPnz41qLt27Vqha2xszM2aNeNZs2bx/fv3DeoePXpU6Mrlco6OjubJkyfzjRs3WK1W6929desWy+VyoR0eHs5jx47lCxcuGNRNTk5mS0tLoVujRg3+7rvv+NSpU6xSqfTu5uTksIeHh9CtXLkyDx48mA8fPsz5+fl6d1UqFdeoUUPoent7c9++fXn37t2ck5Ojd5eZuUWLFkLX1dWVe/TowVu3buWMjAyDuj179hS69vb2/Nlnn/HatWs5JSXFoO6oUaOErpWVFX/yySe8dOlSTkpKMqi7YMECoWtqasqtWrXiX3/9lR89emRQd+fOnULXyMiImzRpwjNmzODExESDuufPnxe6MpmM69evz+PHj+crV64YdG08evSITUxMhHatWrV41KhRfPbsWYOujbS0NHZwcBC6VatW5WHDhvHx48e5sLBQ7255vR4BAMD7R5f5GnZ5BgAAeAdWrVpF8+fPFz7VV61aNUluHTt48CANHz5c6NaqVUuS7rVr16hTp07CJ2Dq1q2r86fvSvPixQuKjY2lpk2bklKppKioKEnW4crKyqLo6GhhF9ImTZqQubm5wV2VSkVNmzYVPr3UrFkzUbc/itG2bVsyNjYmpVJJLVu2JAcHB0m6//nPf+j58+ekVCopLi6O3NzcJOmOHj2azpw5IzzXKlasKEn3119/pfXr1wufDgsICJCku23bNpo4caLQDQ4OluTaOHPmDPXp00f4PoSHh+v06buy3Lt3j1q3bi18OiwyMlLnT9+VJiUlhRo1akRRUVGkVCqpUaNGOn/6rjT5+fkUHR0tfEo3JiZG1O342jAztWzZkpycnEipVFLz5s1F3Rosxueff045OTnCJ1PF3BosxtChQ+nmzZvCc8LT01OS7pQpU2jv3r1C18/PT5Jueb0eAQDA+0eX+RoGigAAAO9Afn5+uSxg/z52jY2NJX/zWlBQQEZGRpJ3VSoVEZEkw9S3MTMVFhbqfCuzGO/jcwLd8uuW17VRWFhIcrlckmHq29RqNanVakmGqf/rffvZvW9dAAB4/+gyX8MaigAAAO9Aeb15Q/e/ymMwRyT9ILGITCYrt3N+33526JZvt7yeZ+Ux8COichlSFnnffnbvWxcAAD5s5fPqDAAAAAAAAAAAAB8kDBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAAAAAAAAAEA0DBQBAAAAAAAAAABANAwUAQAAAAAAAAAAQDQMFAEAAN6BNWvWUL9+/Wj37t2Um5srWXffvn3Us2dP2rp1K2VmZkrWvXDhAn322We0du1aSklJkaz7+PFjateuHS1dupSSk5Ml66alpVG7du3o119/pcePH0vWzc/Pp86dO9OMGTPozp07knWZmfr06UMTJkygq1evEjNL1h4xYgSNHj2azp07R2q1WrLu5MmTafjw4XT8+HEqLCyUrLtkyRL65ptvaP/+/ZSfny9Zd9u2bdS7d2/asWMHZWdnS9Y9efIkde3alTZu3Ejp6emSdW/fvk0dOnSglStX0uvXryXrvnz5kj799FNatGgRPX/+XLJudnY2dezYkWbPnk0PHjyQrKtSqeiLL76gKVOm0M2bNyW9NgYOHEg//fQTXbx4UdLumDFjaOTIkXT69GlSqVSSdefMmUNDhgyhw4cPU0FBgWTd8no9AgCADxx/ANLS0piIOC0t7V2fCgAAgCgZGRns5OTERMSWlpbcpk0bXrJkCb948cKgbkFBAQcEBDARsampKbdo0YLnzp3LDx8+NKirVqs5OjqaiYgVCgU3atSIp02bxrdu3TKoy8zcqVMnJiKWyWRct25dHjduHF+6dInVarVB3aFDhzIRMRFxSEgIf//993zmzBlWqVQGdWfMmCF0AwMDeejQoXz06FEuKCgwqLthwwah6+Pjw19//TXv3buXc3NzDeqeOHFC6Lq7u/OXX37J27dv56ysLIO6iYmJrFAomIjYwcGBu3TpwuvXr+fU1FSDuq9evWJra2smIra2tuZPP/2Uly9fzi9fvjSom5uby15eXkxEbGZmxvHx8bxgwQJ+8uSJQV21Ws2hoaFMRGxsbMwxMTE8c+ZMvnv3rkFdZub4+HgmIpbL5dygQQOeNGkSX7t2zeBro0+fPsJzIiwsjMeMGcN///23wd2xY8cK3aCgIB4xYgSfPHmSCwsLDeouWbJE6Pr7+/PAgQP54MGDnJ+fb1B3z549QtfLy4u/+uor3rVrF+fk5BjUvXTpktB1dnbm7t278+bNmzk9Pd2g7tOnT9nU1JSJiO3s7Lhjx468evVqfvPmjUHd8no9AgCA948u8zUMFAEAAN6RSZMmCW863/4VERHBP/30E1+8eFGvN/irVq0qtVujRg0eOXIknz59Wq+h2uHDh0vtBgQE8JAhQ/jIkSN6DdWuX7/OMpmsRLdixYrcr18/3rNnj15DtaSkJDY3Ny/RdXNz4549e/K2bds4MzNT5252dja7ubmV6Do4OHDnzp157dq1nJKSonNXpVJx9erVS3StrKy4bdu2vHTpUk5OTta5y8wcGxtbomtmZsZxcXH866+/8uPHj/Xqdu/evUTXyMiImzRpwjNmzOA7d+7o1R05cmSJrkwm4/r16/OECRP46tWrel0b8+bNK/U5XKtWLR49ejSfO3dOr+727dtL7VarVo2HDx/OJ06c0Guodvbs2VK7lSpV4m+++YYPHDjAeXl5OncfPHjAxsbGJbqenp7cp08f3rlzJ2dnZ+vcTU1NZTs7uxJdJycn7tatG2/atEmvoVp+fj77+vqW6Nra2nKHDh145cqV/OrVK527arWa69atW6JrYWHBrVu35kWLFvHz58917jIzt23btkTXxMSEmzVrxrNnz+YHDx7o1R0wYECJrkKh4OjoaJ4yZQrfvHlTr255vR4BAMD7RZf5moxZws/3vyPp6elka2tLaWlpZGNj865PBwAAPkCPHj2S9PZAIqLMzExq1aqVxts6XVxcqEGDBtSgQQOqXbs2mZqaau2qVCpSKpX05s2bMo+xt7enyMhIatCgAUVERJCFhYWoc+7SpYvGW32trKyoXr16FBUVRXXr1hX9ujxo0CA6depUmY+bmZlRnTp1qEGDBhQZGUkODg6iuhMnTqRt27aV+bixsTGFhYUJ32NXV1dR3SVLltCiRYvKfFyhUFDNmjUpKiqKGjRoQN7e3qK6v//+O40fP17jMUFBQRQVFUWRkZHk5+dHMplMa/fUqVM0aNAgjccEBAQI34fAwECSy7WvjHPnzh3q0qWLxmN8fHwoMjKSoqKiKCgoiIyMjLR237x5Q/Hx8Rpv0XZ3dxfOt1atWmRsbKy1m5eXR61ataKsrKwyj3FychKujfDwcDIzM9PaZWZq27YtPXv2rMxjbGxsqH79+sK1YWlpqbVLRNS7d2+6fPlymY9bWFhQ3bp1KSoqiurXr0+2traiut9//z0dOHCgzMdNTU0pPDxc+B47OTmJ6s6ePZtWr15d5uMKhYJq164tdD08PER1161bR7/88kuZj8tkMqpRo4ZwzVWsWFHUtXHw4EEaOXKkxmOqVq0qnG9AQICo7uXLl6l3794aj/Hz8xO61apVI4VCobX77Nkz+uSTTzQe4+3tLXRr1qwp6prLzMykuLg4ysvL09iNj48npVJJjRs3FnVtAADA+0WX+RoGigAAACIkJCTQxIkT3/VpAAAAvHOWlpYUGxtLSqWSWrVqRW5ubu/6lAAAQAK6zNewKQsAAAAAAACIlpWVRdu2baOePXuSu7s71a9fnw4fPvyuTwsAAP5B2j//DgAAAAAAAPAWKysrat68ufApRWdn53d9SgAA8A/CQBEAAECEJk2aiFqjTRdqtZomT55MBQUFGo+ztbWlgIAACggIoAoVKohaD2vWrFmUlpam8RgrKyuqXLkyBQQEkK+vr6j/f0uXLqUnT55oPMbc3Jz8/f0pICCAKlWqJGqdrS1bttC1a9c0HmNiYkJ+fn4UEBBA/v7+otZ9PHToEJ08eVLjMUZGRuTr60sBAQFUuXJlsra21to9e/Ys7dmzR+MxcrmcKlasKHTt7e21dm/evEkbN27Uepy3t7fwnHB0dNS6ptuzZ89oyZIlWrvu7u5C19XVVWs3IyND47p2RZydnYWuh4eH1vUZCwsLadKkSRrXUCT671qgRV1vb2+ta9AxM02fPp2ys7M1HmdtbS10fXx8RF1zCxYsoOTkZI3HWFhYUOXKlaly5cpUqVIlUWuirlmzhu7evavxGFNTU+Ga8/PzI3Nzc63dXbt20fnz5zUeY2xsTJUqVRKuOSsrK63dkydP0qFDhzQeo1AoyMfHR7g2xKz7ePnyZdq+fbvGY2QyGVWoUEH42YlZa/X+/fu0atUqrcd5enoKXWdnZ63XxuvXr2nevHlau66urkLX3d1dazc3N5emTJmitevo6Ch0vby8tF5zarWapk6dqnENRaL/romqVCpJqVRSdHS0qOcwAAB8oMp1e5h/CHZ5BgCA99GWLVtK3VWzaDfb8ePH85UrV3TeWfP06dOldun/7WY7atQoPnv2rM47Pd+7d4+NjIxK7VatWpWHDRvGx48f13k325SUFLa1tS216+vrywMGDOD9+/frvJttXl4eV6xYsdSuh4cH9+7dm3fs2MFZWVk6ddVqNYeHh5fadXR05K5du/LGjRv1+nNJmzZtSu3a2Nhw+/bt9d7Ntl+/fqV2zc3N+aOPPuJFixbx06dPde6OHz++1K6xsTE3a9aMZ82axffv39e5u3z58lK7crmco6OjefLkyXzjxg2dr40DBw6UeW2Eh4fz2LFj+cKFCzp3r169WupO5UTEwcHB/N133/GpU6d0vuaeP39e6k7lRMSVK1fmwYMH8+HDhzk/P1+nblZWFru4uJTa9fb25r59+/Lu3bs5JydHp25hYSFXq1at1K6Liwv36NGDt27dyhkZGTp1mZmbNm1aatfe3p4/++wzvXdX79q1a6ldS0tL/uSTT3jp0qWclJSkczchIaHUrqmpKbdq1YrnzZvHjx490rk7Z86cUrtGRkbcuHFjnj59OicmJurcLa/XIwAAeL/oMl/DQBEAAOAdUKlUXLNmTeFNm5WVFbdt25aXLVvGycnJBrVbtmwpdM3MzDguLo7nz5/PT548Maj75ZdfFnvz2rRpU/7ll1/4zp07BnVHjx5dbGAUGRnJEydO5KtXrxr05nXhwoXF3hjXrl2bf/zxRz537pxB3V27dhXrVq9enYcPH84nTpzQeZj6tvPnzxfrVqpUib/55hs+cOCAzsPUtz1+/JhNTEyErqenJ/fp04d37tzJ2dnZenfT09PZwcFB6Do5OXG3bt1406ZNnJ6erne3oKCA/f39ha6trS136NCBV61axa9fv9a7q1aruUGDBkLXwsKCW7duzYsXL+bnz5/r3WVm7tChg9A1MTHh5s2b85w5c/jBgwcGdQcPHix0FQoFN2zYkKdOnco3b940qDtt2rRiA6M6derwTz/9xBcvXjTo2li3bl2x53DNmjV55MiRfPr0aZ2HqW87duxYsW5AQAAPGTKEjxw5wgUFBXp3b9++zXK5XOhWqFCB+/Xrx3v27OHc3Fy9uy9fvmQrKyuh6+rqyj179uRt27ZxZmam3t2cnBz29PQsNkzt3Lkzr1u3Tq9hapHyfD0CAID3iy7zNezyDAAA8A5s3bqVBg8eTEqlkuLj46lhw4aS3Dp25swZ+vjjjyk+Pp7i4+MpJiZG1K3B2ty/f5/q169PMTExpFQqqXnz5qJuU9QmNTWVatSoQXXq1BHW4XJycjK4m5+fTyEhIeTn50dKpZLi4uLI09PT4C4zU1RUFJmbmws/u0qVKhncJSL69NNPKSkpSbidMDAwUOvtj2L079+fTp8+LXRDQkIk6U6YMIHWrFkjfB/q1Kmj9ZZjMVasWEE//fST0I2KipJkuYGDBw9S9+7dKT4+npRKJTVu3FjUrcHaXLt2jZo2bUotW7YkpVJJsbGxom6b1+bFixdUq1YtatiwISmVSmrRooWoW3i1yc7OpuDgYKpRo4Zwbbi6uhrcValUFB4eTq6ursLPrkKFCgZ3iYhatGhBeXl5QjcgIECS7hdffEE3b94UusHBwZJcG9999x3t3r1b6IaFhWm95ViMuXPn0pw5c4TncP369UXdjq9Neb0eAQDA+0eX+RoGigAAAO/A69evycHBQZI3r2978+YN2dnZSfLm9W2pqalkbW0tycDobRkZGWRqakomJiaSdovWyJNimPq2goICysnJkfzPG8xMKSkpkgyM/tfr16/J0dHxveqW17Vhb28veTclJYVsbGwkvzbS0tLIwsJC8rVbs7KySKFQiFrbVBd5eXlUUFAgap1FXahUKkpPTxe1Bqmu3sdr43265gAA4P2DgSIAAAAAAAAAAACIpst8TdqPLwAAAAAAAAAAAMAHDQNFAAAAAAAAAAAAEA0DRQAAAAAAAAAAABANA0UAAAAAAAAAAAAQDQNFAAAAAAAAAAAAEA0DRQAAAAAAAAAAABANA0UAAAAAAAAAAAAQDQNFAAAAAAAAAAAAEA0DRQAAAAAAAAAAABANA0UAAIB3YPPmzTR+/Hi6cuUKMbNk3UOHDtGoUaPo7NmzpFarJetevHiRhg0bRseOHaPCwkLJuo8fP6YBAwbQvn37KC8vT7JuWloa9evXj37//XfKzs6WrJufn0/ffPMNbdiwgdLS0iTrMjONGDGCVqxYQa9evZKsS0Q0fvx4WrhwIT179kzS7ty5c2nWrFl0//59SburV6+myZMn040bNyS9Nv744w8aO3YsnT9/XtLuqVOnKCEhgf78809SqVSSdW/fvk2DBg2iQ4cOUUFBgWTdly9f0tdff01//PEH5ebmStbNzs6mr7/+mrZs2UKZmZmSdVUqFQ0ZMoTWrFlDKSkpknWJiEaNGkW//fYbJSUlSdqdNm0azZs3jx49eiRpd/HixTR9+nRKTEyUtFter0cAAPCB4w9AWloaExGnpaW961MBAAAQ5dWrV2xtbc1ExBUrVuR+/frxnj17ODc316Bubm4ue3l5MRGxm5sb9+zZk7dt28aZmZkGddVqNYeGhjIRsYODA3fu3JnXrVvHqampBnWZmePj45mI2MrKitu2bcvLli3j5ORkg7t9+vRhImIzMzOOi4vj+fPn8+PHjw3ujh07lomIjYyMuGnTpvzLL7/wnTt3DO4uWbKEiYjlcjlHRkbyhAkT+OrVq6xWqw3q7tmzh4mIiYhr167No0eP5nPnzhncvXTpktCtVq0aDx8+nE+cOMGFhYUGdZ8+fcqmpqZMRFypUiX+5ptv+MCBA5yXl2dQNyMjg52cnJiI2NPTk/v06cM7d+7k7Oxsg7qFhYUcEBDARMTOzs7crVs33rRpE6enpxvUZWZu2LAhExHb2tpyhw4deNWqVfzq1SuDu5999hkTEVtYWHDr1q158eLF/Pz5c4O73377LRMRm5iYcPPmzXn27Nn84MEDg7u//PILExErFApu2LAhT5kyhW/evGlwd8OGDUxELJPJuE6dOvzzzz/zxYsXDb42Tpw4IVwbNWvW5JEjR/Lp06dZpVIZ1E1MTGSFQsFExFWqVOEhQ4bwkSNHuKCgwKBueb0eAQDA+0eX+ZrkA8XRo0cLL6BFv6pUqaLx92zYsIGrVKnCpqamHBQUxLt27dLp34mBIgAAvI9GjhxZ4jXT0tKSP/74Y/7tt984KSlJr+68efNKdE1NTblly5Y8b948fvTokV7d7du3l+gaGRlx48aNefr06ZyYmKhX9+zZsyW6MpmM69Wrx+PHj+crV67o9Qb/wYMHbGxsXKIdGhrKo0aN4rNnz+r1Bj81NZXt7OxKdKtWrcrDhg3jY8eO6fUGPz8/n319fUt0fX19ecCAAbxv3z69hmpqtZrr1q1bouvh4cG9e/fm33//nbOysnTuMjO3bdu2RNfJyYm7du3KGzZs0PvPZgMGDCjRtbGx4Xbt2vGKFSv0HqpNmjSpRNfc3JyVSiUvXLiQnz17pld31apVJbrGxsYcGxvLs2bN4vv37+vVPXz4cImuXC7nqKgonjx5Mt+4cUOva+PGjRssk8lKtMPDw3ns2LF84cIFvbpJSUlsYWFRohscHMzfffcdnzp1Sq+Bc3Z2Nru5uZXoVq5cmQcPHsyHDh3i/Px8nbsqlYqrV69eoluhQgXu27cv//HHH5yTk6Nzl5k5Nja2RNfV1ZV79OjBW7Zs4YyMDL263bt3L9G1t7fnzz77jNesWcNv3rzRq1ter0cAAPB+0WW+JmOW9nPtP/74I23atIkOHDggfM3IyIicnJxKPf7PP/+k6OhomjBhAsXHx9OaNWto0qRJdP78eQoKChL170xPTydbW1tKS0sjGxsbSf5/AAAAvC0tLY0yMjIkbb5+/ZoiIiIoPz+/zGNCQ0MpJiaGYmNjKTAwkGQymdZuXl4eRURE0Js3b8o8plq1ahQTE0MxMTFUs2ZNksu1r4LCzNS0aVONt9tVqlSJYmNjKSYmhsLCwsjIyEhrl4ioU6dOdOLEiTIf9/LyEs63bt26ZGpqKqo7ePBg2rhxY5mPu7i4UNOmTSkmJoaioqLI3NxcVHfy5Mk0e/bsMh+3s7Ojxo0bU2xsLDVs2FD0n09WrFhBI0eOLPNxS0tLatiwIcXGxlLjxo3J0dFRVHffvn3Us2fPMh83NTWlBg0aUGxsLDVp0oTc3d1FdS9fvkxxcXFlPm5kZER169al2NhYatq0KVWsWFFU99mzZ1SvXr0yb9uXyWQUFhYmPCcqV64s6trIzMyk8PBwjbfk1qhRQ+gGBQWJ6qpUKoqMjKSnT5+WeUyVKlWoadOmFBsbS6GhoaRQKLR2iYiUSiVdvHixzMd9fHyEbkREBBkbG4vq9urVi/bs2VPm425ubsJ/e+rXr09mZmaiuqNGjaKlS5eW+biDg4NwvlFRUWRlZSWqO2/ePJowYUKZj9vY2FCjRo0oJiaGGjduTHZ2dqK6W7ZsoW+++abMx83NzSk6OppiYmKoSZMm5OLiIqr7559/UocOHcp83MTEhOrXry881zw9PUV17969S40aNSrzcblcThEREcJ/hytVqiSq+/r1a6pTp06ZS0/IZDKqU6cOxcfHk1KppODgYFHXBgAAvF90ma+Vy0Bx27ZtGv/g87YOHTpQVlYW7dy5U/ha3bp1KSQkhObPny+qgYEiAACUt4SEBJo4ceK7Pg0AAIB3rkKFCqRUKkmpVFKjRo1E/yUPAAD8u+kyXyuXTVkSExPJw8ODKlWqRJ07d9a4IPGpU6coJiam2NeaN29Op06dKvP35OXlUXp6erFfAAAAAAAAUP4ePXpEc+fOpRYtWpCjoyN98skndPjw4Xd9WgAA8A8Sdx+SDurUqUPLli2jKlWq0PPnz2nMmDEUFRVFV69eJWtr6xLHv3jxglxdXYt9zdXVlV68eFHmv2PChAk0ZswYqU8dAAAAAAAARCi6Dbrok4pil6sCAIAPg+QDxZYtWwr/u0aNGlSnTh2qWLEibdiwQePaPbpISEigwYMHC/+cnp5O3t7ekrQBAABKExYWRj169JC0ycy0atUqKigo0HickZEReXp6UoUKFcjLy0vUOn8bN27UuuajXC4nDw8PqlChAnl7e5OlpaXW7h9//KHxL/2I/vsm083NTeiKWY7k6NGjdPfuXa3Hubi4kLe3N1WoUIHs7Oy0ruF1/vx5UcuwODo6Cl1HR0et3Vu3btHJkye1dm1tbalChQpUoUIFcnFx0dp9/Pgx7d+/X2vXyspK6Lq5uWldA/PNmze0bds2rV0LCwvh++Du7q51Dczc3Fxas2aN1q6pqSl5e3uTt7c3eXp6komJicbj1Wo1rVixosw1FIsYGxuTl5eX0BZz2+XatWspJydH4zEKhYI8PT2FroWFhdbutm3bNK5bSvTfa8PDw0P4HotZP3D//v30+PFjrce5uroK15ytra3W59qpU6foxo0bWrtOTk5C18HBQWv36tWr9Ndff2nt2tvbC11nZ2et3Xv37tGRI0e0dm1sbITvr6urq9ZrIykpiXbt2qW1a2lpWeza0LYGZkZGhsb1W4uYmZkJXQ8PD61rYBYWFtKKFSu0dk1MTMjLy0t43dB2zTEzrVmzpsw1FItYWVlRs2bNSKlUUqtWrUSvKQkAAB8eyQeK/8vOzo4CAgLozp07pT7u5uZGSUlJxb6WlJREbm5uZTZNTU2xTgcAAPyj2rZtS23btpW0eeDAgTI3LzBkfaqrV6+W2XV1dRUW1Y+JiRE1RCzy4sWLModH9vb21KpVK1IqldS8eXPRGyIQEWVlZZW5cYCVlRU1b95cePPq7OwsuqtSqSg4OLjUx8zMzKhp06akVCopPj5e9IYIRZo2bVrq142MjKhhw4ZC18/PT6du165dS/26XC6nevXqCd1q1arptCFCQkJCmY/Vrl1b6NaqVUun7pw5c8p8TlSvXl3o1q1bV/QmJEREW7dupWXLlpX6WKVKlYRrIyoqSuug5G1nzpyh3377rdTHPD09hWujSZMmojfoISK6f/9+mUMeJycniouLI6VSSc2aNSv1jp2ypKamko+PT6mP2draUosWLUipVFLLli3JwcFBdDc/P58CAgJKfczCwoJiY2NJqVRSXFycxj+T/y9mpjp16pT6mImJCTVu3Fh4TojdoKfIxx9/XOrXFQoFNWjQQHhOlPX/qyxff/11qV+XyWQUEREhdHXdhGTChAllDhRr1qwpfB/Cw8NFbYpVZMWKFWU+16pUqSJ0IyMjRW+KRVR+r0cAAPABK8fdppmZOSMjg+3t7XnmzJmlPt6+fXuOj48v9rV69epxnz59RP87dNnWGgAA4N9ArVZzZGQkExETEctkMq5bty6PGzeOL1++zGq1Wu92+/bthS4RcUhICP/www/8119/sUql0rs7aNCgYt3AwED+9ttv+dixY1xQUKB3d+rUqcW6Pj4+3L9/f967dy/n5ubq3V27dm2xrru7O/fq1Yu3b9/OWVlZenePHj1arOvg4MBdunTh9evXc2pqqt7dW7dusVwuF7rW1tb86aef8vLly/nly5d6d1++fMmWlpZC18zMjOPj43nBggX85MkTvbs5OTns4eEhdI2NjTkmJoZnzpzJd+/e1burUqm4Zs2aQlcul3ODBg140qRJfP36dYOujZYtWxb72YWFhfGYMWP4/PnzBnW//PLLYt2goCBOSEjgkydPcmFhod7d0aNHF+v6+/vzoEGD+ODBg5yfn693d+HChcW6Xl5e/NVXX/GuXbs4Oztb7+6uXbuKdZ2dnbl79+68efNmTk9P17t7/vz5Yl1bW1vu2LEjr169ml+/fq1399GjR2xiYiJ0LS0tuU2bNrxkyRJ+8eKF3t20tDR2cHAQuiYmJtyiRQueO3cuP3z4UO9uQUEB+/v7C12FQsGNGjXiadOm8e3bt/XulufrEQAAvF90ma9JPlAcMmQIHzlyhO/fv88nT57kmJgYdnJy4uTkZGZm/vzzz3nEiBHC8SdPnmQjIyOeOnUq37hxg0ePHs3GxsZ85coV0f9ODBQBAOB9s3//fra0tORPPvmEf/vtN05KSpKke+XKFTY3N+dWrVrxvHnz+NGjR5J0nz9/ztbW1ty4cWOePn06JyYmStLNzMxkNzc3rlevHo8fP56vXLkiyZvXwsJCrlatGoeGhvKoUaP47NmzBg1T39akSROuWrUqDxs2jI8fP27QwOhtn3/+Ofv6+vKAAQN4//79nJeXJ0l3xIgR7OHhwb179+YdO3YYNEx92+zZs9nR0ZG7du3KGzZskOzPYVu2bGEbGxtu3749r1ixwqBh6ttOnz7N5ubmrFQqeeHChfz06VNJuvfu3WMLCwuOjY3lWbNm8b179yTppqSksIODA0dFRfHkyZP5xo0bklwbeXl57OPjw+Hh4Tx27Fi+cOGCJF21Ws3h4eEcHBzM3333HZ86dUqya6NNmzZcuXJlHjx4MB8+fNigYerb+vbty97e3ty3b1/evXs35+TkSNIdN24cu7i4cI8ePXjr1q2ckZEhSXfZsmVsb2/Pn332Ga9du5bfvHkjSbe8Xo8AAOD9o8t8TcbMLOEHHqljx4507Ngxev36NTk7O1ODBg1o3Lhxwi0/jRo1Ih8fn2K3sWzcuJG+//57evDgAVWuXJkmT55MrVq1Ev3v1GVbawAAgH+D+/fvk4eHh+S3jj1+/JgcHBx0upVZjOfPn5O5ublOtzKL8fr1a1KpVJKvw5WRkUFpaWnk5eUlaTc/P58eP36s863M2jAz3b59mwICAnS6rVKMW7dulUs3MTGRKlWqpNOtzGLcvXuXvL29dbqVWYyHDx+Si4uLTrcyi/H06VOytraW/M+gycnJpFAoyNHRUdJuamoq5eTkkLu7u6TdnJwcSkpKKvMWbX2pVCq6e/euzrcyi3Hz5k2qUqVKuVxzlStX1ulWZjHu3LlDPj4+Ot3KLEZ5vR4BAMD7R5f5muQDxXcBA0UAAAAAAAAAAAD96TJfk/avzQAAAAAAAAAAAOCDhoEiAAAAAAAAAAAAiIaBIgAAAAAAAAAAAIiGgSIAAAAAAAAAAACIhoEiAAAAAAAAAAAAiIaBIgAAAAAAAAAAAIiGgSIAAAAAAAAAAACIhoEiAAAAAAAAAAAAiIaBIgAAAAAAAAAAAIiGgSIAAMA7sGHDBlq7di2lpKRI2t2zZw8tXbqUkpOTJe3++eef9Ouvv9Ljx48l7V6/fp1mzJhBd+7ckbT77NkzmjBhAl29epWYWbJuZmYm/fTTT3T27FlSq9WSdQsLC+nnn3+m48ePU2FhoWRdZqYpU6bQ/v37KT8/X7IuEdG8efNox44dlJ2dLWl35cqVtHHjRkpPT5e0u23bNlq5ciW9fv1a0u7hw4dp0aJF9Pz5c0m758+fp9mzZ9ODBw8k7d67d4+mTJlCN2/elPTaeP36Nf3888908eJFSbu5ubk0duxYOnXqFKlUKsm6arWaJkyYQIcPH6aCggLJukREM2fOpN27d1Nubq6k3SVLltDWrVspMzNT0m55vR4BAMCHDQNFAACAdyAoKIg6d+5Mzs7O1LhxY5o+fTrdvn3b4G5oaCj169eP3NzcqF69ejRu3Di6fPmywW/wQ0JCaMyYMVShQgUKDQ2lH374gf766y+Dh2qBgYG0ePFiqly5MgUGBtK3335Lx44dM3io5uHhQYcOHaLg4GCqVKkS9e/fn/bt20d5eXkGda2srOju3bsUERFBXl5e1KtXL/r9998NHqoZGRlRTk4ORUdHk6urK33++ee0YcMGSktLM6grk8nI0tKSmjVrRk5OTtSuXTtasWIFvXz50qAu0X+/xx999BE5OTmRUqmkhQsX0rNnzwzuVqlShdq3b09OTk4UGxtLs2bNonv37hncDQkJoR49epCLiwtFRUXR5MmT6fr16wZfG6GhofTtt9+Sh4cHhYeH09ixY+n8+fMGd4OCgmj69Onk6+tLwcHBlJCQQH/++afBQzVfX1/atGkTVa1alQICAmjQoEF06NAhg4dqjo6OdP78eQoNDaUKFSrQf/7zH/rjjz8MHqqZmZnRy5cvqX79+uTu7k5ffPEFbdmyhTIyMgzqyuVykslk1KRJE3JxcaFOnTrRmjVrJBmqOTg4UKtWrcjJyYk+/vhj+u233+jFixcGd319femTTz4hJycnatmyJc2bN48ePXpkcLe8Xo8AAOADxx+AtLQ0JiJOS0t716cCAAAgWseOHZmIiv0KCAjgIUOG8OHDh7mgoECv7pAhQ0p0K1SowP369eM9e/Zwbm6uXt3p06eX6Lq5uXHPnj1569atnJmZqVd3/fr1Jbr29vbcuXNnXrt2LaekpOjVPX78eImulZUVf/LJJ7x06VJOTk7Wq5uYmMgKhaJY18zMjFu1asW//vorP378WK/uq1ev2MrKqljXyMiImzRpwjNmzOA7d+7o1c3NzWVPT89iXZlMxvXr1+cJEybw1atXWa1W69xVq9UcEhJS4ntcq1YtHj16NJ87d06vLjNzq1atSnSrVavGw4cP5xMnTnBhYaFe3V69epXoVqpUib/55hs+cOAA5+Xl6dX98ccfS3Q9PT25T58+vGPHDs7Oztaru2jRohJdJycn7tatG2/cuFHvP/v+8ccfJbq2trbcoUMHXrlyJb969Uqv7oULF0p0LSws+KOPPuJFixbxs2fP9Oo+efKETUxMinVNTEy4WbNmPHv2bH7w4IFe3fT0dHZ0dCzWVSgUHB0dzVOmTOGbN2/q1S0oKODKlSuX+F5ERETwTz/9xBcvXtT7mouKiirRrVGjBo8cOZJPnz7NKpVKr3Mur9cjAAB4v+gyX8NAEQAAQAS1Wi35r6tXr5Z4A/e/b/A7duzIq1ev5tevX4vuPn/+nM3MzMrsWlhYcJs2bXjJkiX84sUL0d3MzEx2cXEps2tiYsItWrTguXPn8sOHD0V3CwsLuWrVqmV2FQoFN2rUiKdNm8a3bt3S6XvctGlTjd/junXr8rhx4/jSpUusUqlEd7t27aqxGxISwj/88AOfOXOGCwsLRXcTEhI0dgMDA3no0KF89OhRzs/PF92dM2eOxq6Pjw9//fXXvHfvXs7NzRXd3bp1q8auu7s7f/nll7x9+3bOzMwU3T1z5ozGroODA3fp0oXXr1/Pqamporv3798vMQx++5e1tTV/+umnvHz5cn758qXo7ps3b9jGxqbMrpmZGcfHx/OCBQv4yZMnort5eXlcsWLFMrtGRkYcExPDM2fO5Lt374ruqlQqDg8PL7Mrk8m4QYMGPGnSJL527ZpO10abNm00/uzCwsL4xx9/5L///lunbr9+/TR2g4KCeMSIEXzy5EkuKCgQ3R0/frzGrr+/Pw8cOJAPHjzIeXl5orvLly/X2PXy8uKvvvqKd+3axdnZ2aK7Bw4c0Nh1dnbm7t278+bNmzk9PV109+rVqyyTycrs2tnZcadOnXjNmjX85s2bd/2SDAAA5USX+ZqMWcJFTt6R9PR0srW1pbS0NLKxsXnXpwMAAB+ghIQEmjhx4rs+DQAAgHdKoVBQgwYNSKlUklKppICAgHd9SgAAIBFd5mtYQxEAAAAAAABEUalUdPToURo6dChVqVKFqlSpQkOGDKHz58+/61MDAIB/EAaKAAAAAAAAoDN/f3+Ki4ujuLg4Cg4OftenAwAA/yCjd30CAAAA74OAgABq0aKFpE1mpr1794o61t7enlxcXMjFxYUsLS21Hn/o0CHKz8/XepytrS05OzuTi4uLqGVDTp48KWp3VSsrK+F8bW1tSSaTaTz+77//FrXzsIWFhdC1t7fX2r1x4wY9fPhQa9fMzEzoOjg4kFyu+e9c79+/T7du3dLaNTExEb6/Tk5OpFAoNB7//PlzunTpktaukZFRsa6xsbHG49+8eUN//fWX1q5CoSAnJyehbWJiovH47OxsOnbsmNauTCYr1jUzM9N4yY+1SgAAT5NJREFUvEqlov3794vqvn1tWFhYaP09+/btE7U7uZ2dHbm4uJCzszNZW1trPf7o0aOUk5Oj9Thra2vhfG1sbLQ+h0+fPk2pqalau5aWlkLXzs5Oa/fSpUv0/PlzrV1zc/Ni15y2ayMxMZHu3r2rtWtqaip8fx0dHbVeG48fP6Zr165p7RobGxe7NoyMNL/dSU5OFvXJOoVCUayr7dpIT0+nP//8U2tXLpeTo6Oj8D02NTXVeHx+fj4dOnRIa1cmk5GDg4PQNTc313g8M9O+ffu07k4ul8spMjJSuN25SpUqWp9rAADwgSrf5Rz/GdiUBQAA3kc7duwocwH8oh1XV61apfOOq3///XeZXQsLC27dujUvXryYnz9/rlP30aNHbGxsXGrXxMSEmzdvznPmzNF5x9W0tDS2t7cvtatQKLhhw4Y8depUnXdcLSgoYD8/vzI3nahTp45eO66q1WquX79+md/jmjVr6r3jart27crsFu24euTIEZ13XB04cGCZXUN2AJ8yZUqZXVdXV+7Zsydv27ZN5x3A16xZU2a3aAfwdevW6bwD+JEjR8rsWllZcdu2bXnZsmWclJSkU/fGjRssl8vL3JAlLi6O58+fr/MO4MnJyWxhYVHmhixNmzbVawfw7Oxsdnd3L7Url8s5MjJSrx3AVSoVBwcHl/k9NmQH8ObNm5fZNWQH8B49epTZNWQH8B9++KHMbtEO4Dt37tR5B/D58+eX2S3aAXzTpk06vy8qr9cjAAB4v2CXZwAAgH85tVrNtWvXLvamzc/PT9hNND8/X+/2Rx99VKz7v7uJ6us///lPse7/7iaqr59//rnEm9e3d7fW19KlS0sMU9/e3Vpf+/btKzFMfXt3a31duXKlxDD17d2t9fXs2bNiu37LZDKuW7cu//zzz3zp0iWdBztFMjMz2dnZudg5v727ta7D1CKFhYUcGBhYrPv27ta6DlPf1rhx42LdihUrFtvdWl+dO3cu1nVzcyu2u7W+hg0bVqz7v7tb62vmzJnFuv+7u7W+Nm3aVGKY+vbu1vr6888/i3WNjY2L7W6tr7t37xbb9Vsulxfb3Vrfa+P169cldv1+e3drfbt5eXns7e1drPv27ta6DlOLlOfrEQAAvF8wUAQAAPiX27FjB8vlco6KiuLJkyfzjRs39H6T+ba///6bZTIZh4eH89ixY/n8+fOSdB89esQmJiYcHBzM3333Hf/55596v3l9W9GnE/39/XnQoEF86NAhSd68Fn060dvbm//zn//wH3/8wTk5OQZ3iz6d6OLiwl988QVv2bKFMzIyDO4y//fTiXZ2dtypUydes2YNv3nzRpLuwIED2dLSkj/++GP+7bffDBqmvm3KlClsamrKLVu25Hnz5vGjR48k6a5Zs4aNjIy4cePGPH36dE5MTJSke+TIEZbJZFyvXj0eP348X7lyRZJro+jTiaGhoTxq1Cg+e/as3sPUtxV9OrFq1ao8bNgwPnbsmEHD1CJFn0709fXlAQMG8L59+3T+9F1pij6d6O7uzr169eLff/+ds7KyDO4y//fTiY6Ojvz555/zhg0bJPszf48ePdja2prbtWvHK1asMGiY+rYffviBzc3NWalU8sKFC/np06eSdOfPn8/GxsYcGxvLs2bN4nv37knSLa/XIwAAeP/oMl+TMWtZKOM9oMu21gAAAP8Gf//9N/n4+JCjo6Ok3StXrpCTkxO5u7tL2r19+zaZmJiQj4+PpN2HDx9Sbm4uValSRdJucnIyPX/+nGrUqCHp+l6ZmZl07do1Cg8P17qWnC4KCwvpzz//pHr16mldD1EXzEzHjh2jOnXqaF23UFcnT56kkJAQUWt66uKvv/6igIAAsrOzk7R78eJF8vDwIBcXF0m7169fJxsbG/Ly8pK0W7QOoZ+fn6Tdp0+fUmpqKlWrVk3Sa+PNmzd0//59Cg0NlfTayM3Npb///pvq1q2rdZ1FXajVajp+/DjVq1dP63qIujp+/DiFhYVpXbdQV6dOnaLq1atL/n6nvF6PAADg/aPLfA0DRQAAAAAAAAAAgP/jdJmvSffXhwAAAAAAAAAAAPDBw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAAAAAAAAAABEw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAAAAAAAAAABEw0ARAAAAAAAAAAAARMNAEQAAAAAAAAAAAETDQBEAAOAf9uLFC1q+fDm9fPlS0m5WVhYtWrSInj59KmlXpVLRwoUL6e7du5J2mZmWLl1K165dI2aWtL1u3Tr6+++/Je/+/vvvdPLkSVKpVJJ2Dxw4QAcPHqT8/HxJu6dPn6Zdu3ZRTk6OpN2rV6/S5s2bKSMjQ9Luo0ePaPXq1fTmzRtJuykpKbRkyRJ68eKFpN28vDxasGABPXz4UNIuM9PixYvp1q1bknaJiFatWkWXLl2S/NrYvHkznTlzhtRqtaTd3bt309GjR6mwsFDS7rFjx2jv3r2Ul5cnaff8+fO0fft2ysrKkrSbmJhI69evp9TUVEm75fV6BAAAHz4MFAEAAP5hrq6utHDhQnJ1daX69evThAkT6OrVqwa/wbe0tKT9+/eTl5cX1apVi0aPHk3nzp0z+A2+QqGgGzdukL+/P1WrVo2GDx9OJ06cMHioJpPJ6PXr1xQUFER+fn70zTff0IEDByQZqjEzhYWFkZeXF/Xp04d27txJ2dnZBndtbW2pQYMG5ObmRt26daONGzdSenq6wV1vb29q1qwZOTs7U4cOHWjlypX0+vVrg7t+fn7UoUMHcnR0pNatW9OiRYvo+fPnBnf9/f2pf//+5OjoSM2aNaPZs2fTgwcPDO56eXnR5MmTydnZmaKjo2nKlCl08+ZNg68Ne3t72rRpE7m7u1NERAT99NNPdPHiRYO7pqamdPbsWfLx8aEaNWrQyJEj6fTp05JcG48fP6bAwEAKCAigIUOG0JEjR6igoMCgLhFRdnY2hYSEkI+PD/Xr1492795Nubm5BnfNzMyobt265OHhQT179qStW7dSZmamwV03Nzdq1KgRubi4UOfOnWnt2rWUkpJicNfX15c++ugjcnR0pE8++YSWLl1KycnJBnf9/f2pR48e5OjoSK1ataJff/2VHj9+LMn5jhw5kpydnalJkyY0Y8YMunPnjsHd8no9AgCA/wP4A5CWlsZExGlpae/6VAAAAETZt28fE1GxXz4+Pvz111/z3r17OTc3V6/ulStXSnTd3d35yy+/5O3bt3NWVpZe3WfPnrGZmVmxroODA3fp0oXXr1/PqampenUzMzPZ2dm5WNfa2po//fRTXr58Ob98+VKvbmFhIQcGBhbrmpubc3x8PC9YsICfPn2qV5eZuXHjxsW6xsbGHBMTwzNnzuS7d+/q3e3SpUuxrlwu5wYNGvCkSZP42rVrrFar9eoOHz68xHMiLCyMx4wZw3///bfe3VmzZpXoBgUF8YgRI/jkyZNcWFioV3fz5s0luv7+/jxw4EA+ePAg5+fn69U9depUia6Xlxd/9dVXvGvXLs7JydGre/fuXTYyMirWdXZ25u7du/PmzZs5PT1dr+6bN2/YxsamWNfOzo47duzIq1ev5jdv3ujVzcvL4woVKhTrWlpacps2bXjJkiX84sULvbpqtZrDwsKKdU1NTblFixY8d+5cfvjwoV5dZubWrVsX6yoUCm7UqBFPmzaNb926pXe3b9++xboymYzr1q3L48aN40uXLul9bYwbN67Ecy0kJIS///57PnPmDKtUKr26y5YtK9ENDAzkoUOH8tGjR7mgoECvbnm9HgEAwPtHl/kaBooAAADvgFqt5vr165d4E1f0y8rKitu2bcvLli3j5ORkndrt2rUrs2tmZsZxcXH866+/8uPHj3XqDhw4sMyukZERN23alGfMmMF37tzRqTtlypQyuzKZjOvXr88TJkzgq1ev6vQGf82aNWV2iYhr1arFo0eP5nPnzunUPXLkiMZutWrVePjw4XzixAmdhmo3b95kuVxeZrdSpUr8zTff8IEDBzgvL090Nzk5mS0tLcvsenp6cp8+fXjnzp2cnZ0tupuTk8Pu7u5ldp2cnLhbt268adMmnYZqKpWKa9SoUWbX1taWO3TowCtXruRXr16J7jIzt2jRosyuhYUFt27dmhctWsTPnz/XqduzZ88yuyYmJtysWTOePXs2P3jwQKfuqFGjyuwqFApu2LAhT5kyhW/evKlTd8GCBRqfwxEREfzTTz/xxYsXdbo2du7cqbFbo0YNHjlyJJ8+fVqnodr58+c1dgMCAnjIkCF85MgRnYZqjx49YhMTkzK7FStW5H79+vGePXt0GqqlpaWxg4NDmV03Nzfu2bMnb9u2jTMzM0V3CwoK2M/Pr8yug4MDd+7cmdeuXcspKSmiu+X5egQAAO8XXeZrMub3//Ps6enpZGtrS2lpaWRjY/OuTwcAAD5A48ePpzlz5kjazMjIEH1LoLGxMZmZmZGZmRkZGRlpPDYrK0v0bbhGRkZC19jYWOOxubm5om81NDIyIlNTUzIzMyMTExONxxYUFNCrV69EdRUKBZmZmZGpqSmZmppqPFatVlNSUpKorlwuF74PJiYmJJPJNB4v9rZhmUwmdE1NTbV2k5KSRN2iLpPJhO+vqakpyeWaV7F59eqV6Ntli7pmZmZauykpKaJvlzUxMRG6CoVC47FpaWmib1E3MTERzlnbtZGZmSl63ceia87U1FTrtZGTkyN6bTtdrrn8/HzRt74XXRtirrnCwkLRa+bpcm0ws+h1KuVyebHnsLZr48WLF6Juwy265ora2rovX74UtT5j0TVX1NV2bbx+/Vr08g1vfx+0XRupqami10TV5ZoT+3okk8mobt26pFQqSalUUvXq1bV+jwEA4P2hy3wNA0UAAAAREhISaOLEie/6NAAAAP41fHx8KD4+npRKJTVu3FjrkBwAAP7ddJmvYVMWAAAAAAAA0JmTkxM5OzuTs7Oz1k8IAwDAhwX/1QcAABDBzc2NgoODJW2+ePFC1G2HMpmMrKysyMbGhmxsbLS+aXv9+jU9e/ZM1DkUda2trbXeJpmenk4PHz4U1bW0tCRra2uysbHRemtydnY23b17V1TX3Nxc+D6YmZlpPLagoIBu3rwpqmtmZiacr4WFhcZjmZmuXr0qqmtiYiKcr4WFhdZbA2/cuCHq9ktjY2PhfK2srLR279y5I+o2SYVCIZyvlZWV1ts6Hz58KOr2eoVCQdbW1sIvbbdfPnv2TNStvjKZTPg+WFtba702kpOTRd0GX3TNFbW1feoqJSWFnjx5orVL9N9ro+h7rO2ay8zMpPv374vqWlhYCN8HbddGXl4e3b59W1TXzMxMOF9zc3ONx6rVarp27ZqorqmpqXC+lpaWWo+/du2aqOUAjI2NhfO1tLTUem3cunVL1K3JRkZGxbraro179+5RVlaW1m7RtVH0vdDWffz4sajb6+VyebGutmtO7OuRubk5xcbGklKppFatWpGHh4fW3wMAAB+o8lzM8Z+CTVkAAOB9o1arOSQkRPKNMpiZ4+LiJN8og5m5d+/eWjfKWLVqFb9+/Vqn7pgxY7RulLF48WKdN8pYvHixxo0ymjdvznPmzNF5o4zdu3dr3Shj6tSpOm+UcfHixTK7MpmM69Spo9dGGU+ePGFTU9My2zVr1tRro4yMjAx2dHSUfKOMgoICDggIKLNboUIFvTbKUKvVHB0dXWbX1dVVr40ymJk7depUZtfe3p47d+7M69at02mjDGbmoUOHlstGGTNmzCizW7Rx0/z58/nJkyc6dTds2FBmt2jjpl9++UXnjZtOnDhRZlcul3NkZCRPnDhR542bEhMTWaFQlNmuXbs2//jjjzpv3PTq1Su2trYus1u9enW9Nm7Kzc1lLy+vMrv6btxUnq9HAADwfsEuzwAAAP9y27ZtK/GmLSwsjMeMGcPnz5/X6c3r2/76668S3aCgIE5ISOCTJ0/q9Ob1bQ8ePGAjI6NiXX9/fx40aBAfPHiQ8/Pz9eqmpKSwnZ1dsa6Xlxd/9dVXvGvXLr3fvObn57OPj0+xrrOzM3fv3p03b96s8zC1iFqt5jp16pQYpnbs2JFXr16t8zD1bZ988kmJYWqbNm14yZIl/OLFC727/fv3LzFMbdGiBc+dO5cfPnyod3fixIklhqmNGjXiadOm8a1bt/Turly5ssQwtW7dujxu3Di+dOmS3tfGoUOHSlwbISEh/MMPP/CZM2d0Gqa+7fr16yyTyYp1AwMDeejQoXz06FGdhqlvS0pKYnNz82LdihUr8tdff8179+7VaZj6tuzsbHZzcyvWdXNz4y+//JK3b9/OWVlZenVVKhVXr169WNfBwYG7dOnC69ev59TUVL26zMyxsbHFutbW1vzpp5/y8uXL+eXLl3p3u3fvXmKYGh8fzwsWLNB5mPq2kSNHFusaGxtzTEwMz5w5k+/evat3d968eSWGqQ0aNOBJkybx9evX9b42yuv1CAAA3j8YKAIAAPyLFX0axNzcnJVKJS9cuJCfPn0qSTsuLo6NjY05NjaWZ82axffu3ZOk27t3b5bL5RwVFcWTJ0/mGzduSPIms+jTieHh4Tx27Fi+cOGCJN2iTycGBwfzd999x6dOndJ7mPq2ok8nVq5cmQcPHsyHDx/We5j6tqJPJ3p7e3Pfvn35jz/+4JycHIO7RZ9OdHFx4R49evCWLVs4IyPD4G7RpxPt7Oy4U6dOvGbNGn7z5o3B3aJPJ1paWvLHH3/Mv/32m0HD1CJFn040NTXlli1b8rx58/jRo0cGd5n/++lEIyMjbty4MU+fPp0TExMl6Q4dOpRlMhnXq1ePx48fz1euXJHk2ij6dGJoaCiPGjWKz549q/cw9W1Fn06sWrUqDxs2jI8dO6b3MPVtRZ9O9PX15QEDBvC+fft0+vRdWYo+neju7s69evXi33//Xe9h6tuKPp3o6OjIn3/+OW/YsEGS9yhFn060trbmdu3a8YoVKwwaphYpz9cjAAB4/+gyX8MuzwAAAP+wpKQkOnfuHDVp0kTrmmS6yMrKoj179lBsbKykr4cqlYo2b95MTZs2JUdHR8m6zExbtmyh+vXrk7u7u2RdIqKdO3dSUFAQ+fj4SNo9cOAAeXt7U5UqVSTtnjhxgqytralGjRpa13zTxfnz56mgoIDCw8O1rs2mi5s3b1JSUhJFRkZKuhHD48eP6fr169SwYUOt6wDqIiUlhY4dO0YxMTGi1usTKy8v7/9r777jqq7////fD3uDbBDcA8yFIop7gIpwShumfZxpw1VqmtnQtEytzDSxtCy1nL3NlStyYLnf7omaKIqCKMje5/H7oy/nJ2/W6xxeSNr9ermcP4TDrVfEs+N58Hq9ntiyZQtCQ0Ph5OSkWldE8J///AddunSBu7u7al0A2Lx5M1q3bg0fHx9Vuzt37kTDhg1Rv359Vbv79u2Dm5sbmjRpouraOHLkCMzMzBAQEKDq2jh79izS0tLQrl27Cu9baIhr164hNjYWnTp1qvDem4aoqtcjIiJ6PBkyX+NAkYiIiIiIiIiI6F/OkPmaer+O+39mz56NNm3awN7eHu7u7ujbty9iYmLK/Zrly5dDo9EUe6j5W2kiIiIiIiIiIiJSh+oDxejoaIwZMwaHDx9GVFQU8vPz0bNnT2RmZpb7dQ4ODrhz547+cePGDbUPjYiIiIiIiIiIiCpJvZve/D87d+4s9ufly5fD3d0dx48fR+fOncv8Oo1GA09PT7UPh4iIiIiIiIiIiFSk+hmK/ys1NRUA4OzsXO7zMjIyULt2bfj6+uKZZ57B+fPny3xubm4u0tLSij2IiIiIiIiIiIio6lXpQFGn02H8+PHo0KEDmjZtWubzGjdujO+//x6bN2/GTz/9BJ1Oh/bt2+PWrVulPn/27NlwdHTUP3x9favqX4GIiIiIiIiIiIgeUqW7PI8aNQo7duzAn3/+CR8fH8Vfl5+fD39/fwwcOBAfffRRic/n5uYiNzdX/+e0tDT4+vpyl2ciIiIiIiIiIiIjGLLLs+r3UCwyduxY/Prrr9i/f79Bw0QAMDc3R0BAAK5evVrq5y0tLWFpaanGYRIREREREREREZEBVL/kWUQwduxYbNy4EXv27EHdunUNbhQWFuLs2bPw8vJS+/CIiIiIiIiIiIioElQ/Q3HMmDFYvXo1Nm/eDHt7eyQkJAAAHB0dYW1tDQAYMmQIatasidmzZwMAZs6ciXbt2qFBgwZ48OABPvvsM9y4cQMjR45U+/CIiIiIiIiIiIioElQ/Q/Hrr79GamoqunbtCi8vL/1j3bp1+ufExcXhzp07+j+npKTglVdegb+/P/r06YO0tDQcPHgQTZo0UfvwiIiIqs3x48dx9uxZqH374gsXLuDo0aPQ6XSqdq9fv44//vgDBQUFqnaTkpIQFRVV7H7IasjKysLWrVuRlZWlarewsBCbNm1Camqqql0A2Lp1K+7du6d697fffsPt27dV70ZHRyM2Nlb17pEjR3Dx4kXV18aZM2dw8uRJ1btXrlzBoUOHUFhYqGo3Pj4ee/bsQX5+vqrd1NRUbN++HTk5Oap28/LysHnzZmRkZKjaFRFs3rwZKSkpqnYBYMeOHUhMTFS9u3v3bsTFxanePXDgAK5cuaJ6t6pej4iI6N+jSi55Lu0xbNgw/XP27duH5cuX6/88f/583LhxA7m5uUhISMC2bdsQEBCg9qERERFVK0dHRwQEBKBu3boYO3Ysdu3apcpQzcPDAyEhIahZsyZGjhyJzZs3IzMzs9JdLy8vDBw4EB4eHhg0aBDWrVunylDN1dUVb7/9Ntzc3PD8889jxYoVSEpKqnTXxsYGS5YsgYuLCyIiIrBkyRLEx8dXumtqaoodO3bA1dUVISEhWLBgAa5du1bpLgCcPHkSHh4e6NixI+bOnYvz58+r8gb/5s2bqFmzJgIDAzFjxgwcP35clW52djbq1auHpk2bYurUqThw4IAqQzUrKys0adIEDRs2xPjx47F7927k5eVVuuvi4oLg4GD4+vri9ddfx7Zt25CdnV3prpeXF7RaLby8vDBs2DBs2LAB6enple56eHhg1KhRcHNzw4ABA7Bq1SokJydXuuvg4IC5c+fCxcUFffv2xbJly/RXEVWGhYUF1q1bBxcXF/Tu3RuRkZG4ceNGpbsajQZ//vkn3Nzc0LVrV8ybNw8xMTGV7gJATEwMvLy80K5dO8yaNQunT59WZW0kJyejdu3aaNmyJd5//30cOXJEtV/yNGrUCH5+fpg0aRKio6NV+SVPVb0eERHRv4g8AVJTUwWApKamVvehEBERlWvYsGECQP+ws7OTZ599Vr7//ntJTEw0uvvee+8V61paWkpYWJgsXrxY4uLijO5GRkYW65qZmUn37t3liy++kCtXrhjd3bRpU7GuRqOR4OBg+eSTT+Ts2bOi0+mM6h49erRYF4AEBATItGnT5NixY1JYWGhU9/r162JmZlas6+/vL2+//bb88ccfUlBQYFQ3JSVFnJycinXr1q0rb7zxhkRFRUlubq5R3by8PKlTp06xrre3t7z66quydetWyczMNKqr0+mkbdu2xbqurq4yZMgQWb9+faX+Lvbss88W6zo4OEj//v1l5cqVcu/ePaO748aNK9a1traWp59+WpYuXSq3b982ujtnzpxiXXNzcwkNDZWFCxdKbGys0d0ff/yxWNfExEQ6deokn376qVy8eNHotbFnz54Sa6NNmzYyc+ZMOXnypNHdCxcuiEajKdZt1qyZvPvuu3Lo0CGj11xiYqJYW1sX6zZs2FAmTpwoe/fulby8PKO6WVlZ4unpWaxbq1YtGT16tOzYsUOys7ON6hYWFspTTz1VrOvh4SEvv/yybNy4UdLT043qioiEhoYW69aoUUNeeuklWb16tSQnJxvdrarXIyIienwZMl/jQJGIiOgRunLlipiampZ4Y180VGvXrp3MmjVLTp8+bdAb/Hv37om9vX2pXQDSsmVL+eCDD+TIkSMGvcHPyckRHx+fMrt+fn4yefJkiY6Olvz8fMVdnU4nAQEBZXbr1Kkj48aNk127dklOTo7irohIREREmV0vLy8ZOXKkbN682eCh2quvvlpm19nZWQYNGiTr1q2TBw8eGNSdMWNGmV17e3t5/vnnZcWKFZKUlGRQ97vvviuza21tLREREbJkyRKJj483qLtjx44yu+bm5hISEiILFiyQa9euGdQ9depUmV0TExPp2LGjzJ07Vy5cuGDQ2rh165ZYWlqW2Q4MDJQZM2bI8ePHDeqmp6eLi4tLmd2mTZvK1KlT5cCBAwYNnPPz86VRo0Zldhs0aCDjx4+X3bt3GzRU0+l00rlz5zK7vr6+MmrUKNm2bZvBQ7WBAweW2XV3d5dhw4bJhg0bDB6qTZo0qcyuk5OTDBgwQFatWmXwUG3+/Plldm1tbaVv376ybNkySUhIMKi7fv36MruWlpbSu3dviYyMlBs3bhjU/fPPP8vsmpqaSteuXWXevHly+fJlg7pV9XpERESPL0PmaxqRx//GGWlpaXB0dERqaiocHByq+3CIiOgJtGjRIqxYsUKV1rlz5xTdy8zCwgJOTk5wdHSEg4MDNBpNuc+/fPky0tLSKuyamZnByckJTk5OcHBwgIlJ+XdAiY2Nxf379yvsmpqawtHRUX/Mpqam5T4/Pj6+2D2Vy2JiYlKsa2ZW/p5yd+/eVXQvM41GAwcHB33XwsKi3Oc/ePAAV69erbALAPb29vrvsaWlZbnPzczMxMWLFxV17ezs9N+Los3uypKfn4/Tp08r6trY2OiP18bGptznigiOHz+uqGtlZaXv2tnZVfj806dPK7p/oKWlpf77YG9vX+HauHjxoqLbAJibm+uP197evsK1cfXqVTx48KDCrpmZmf54HRwcKlwbcXFxuHv3boVdU1PTYj/DFa2NhIQE3Lp1q8KuiYlJsa65uXm5z79//76ie2tqNJpia6OiNZeenq74Umd7e3v999jKyqrc5+bk5ODcuXOKura2tvrvQ0VrQ6fT4cSJE4q61tbW+u+Dra1thc8/efKkotsLWFpaFltzFa0Npa9HtWvXRkREBLRaLbp27Vrh/9eIiOjxZMh8jQNFIiIiBaZOnYo5c+ZU92EQERFVK1tbW/Ts2RNarRbh4eFwd3ev7kMiIiKVGDJfU31TFiIiIiIiInoyZWZmIjY2FrGxsbh582Z1Hw4REVWT8q+LICIiIgB/XxLq7OysSis1NVXxzrjm5uawsLCAubl5hZdfpqenK7pcFPj7EkwLCwtYWFhU2M3MzFS8+6eZmZn+mCu6rDM7O1vxjrumpqb6462om5ubq3iXa1NTU/3xVnS5aH5+vuKdfE1MTPT/3Sq6XLSwsFDx7tkajUb/faioKyJISUlR3H34Z62iyySV7jxsaPfBgweKd8Y1ZG2kpaUp3hm36L+ZkrWRkZGheDfqojVnbm5e4c9wVlaWostQAcPWRk5ODrKysgzqmpubV7g28vLykJGRoahbtDaUrLmCggJFt3Eo6j78M1EenU6n6FJ14P9fc0U/F+X9DFflmktJSVG8G3VR08LCosKu0tcjS0tL9OjRQ39Woq+vr6JjISKiJ1gV3svxkeGmLERE9Li4c+eOWFlZlXmDfQ8PDxkxYoRs2rRJMjIyFHczMjLE3d29zG6NGjXk//7v/2Tt2rWSkpKiuFtQUCD+/v5ldu3s7OS5556T5cuXy927dw36XnTv3r3MrpWVlYSHh8s333wjt27dMqg7ePDgMrtmZmbSo0cP+fLLL+Xq1asGdadMmVLupiEdOnSQOXPmyLlz5wzawGDhwoVldgFI69at5cMPP5T//ve/BnU3bNhQbvepp56SKVOmyJ9//mnQpiGHDh0qt1uvXj1588035ffffzdol+q//vqrxE7aDz9q1qwpr732mvz666+SlZWluJucnCwODg5ldl1dXWXo0KHyn//8R9LS0hR3c3NzpVatWmV2HR0d5cUXX5SffvpJ7t+/r7ir0+kkMDCwzK6NjY0888wz8t1338mdO3cUd0VEnnnmmTK7FhYW0qtXL1m0aJFcv37doO7o0aPL3TSkS5cu8vnnn0tMTIxB3VmzZpXZ1Wg00rZtW/n4448N3jRk+fLl5f4Mt2jRQt5//305fPiwQZtYRUVFldtt3LixTJo0Sfbt22fQJlZnz54tsZP2w49atWrJmDFjZOfOnQZtYlVVr0dERPT44i7PRERE/1ATJkwo8aataAfmo0ePGvTm9WGff/55iW7RDsz79+836M3rw9asWVOiW5kdmItER0eX6Hp5eckrr7xi1A7MRWJiYsTExKRYtzI7MBe5e/eu2NraFutWZgfmItnZ2eLl5VVimFq0A7Ohw9QihYWF0rx582Ldh3dg/uuvv4zqioj07t27xDDV2B2YHzZixIgSPxNFOzCfOHHC6O60adNKdI3dgflhS5YsKdFt0KCBTJgwweAdmB/266+/luj6+PjI66+/Ltu2bTNomPqwEydOlOi6u7vL8OHDZcOGDQYNUx8WFxcnFhYWxbpOTk4ycOBAWbVqlUHD1IelpqaKs7NzsW5ldmAukp+fL/Xr1y8xTDV2B+YiOp1OOnToUGKYauwOzA/r379/iWFq0Q7MZ86cMXptVNXrERERPb44UCQiIvoHKjobxNLSUsLCwmTx4sUSFxdX6W7R2YlmZmbSrVs3+eKLL+TKlSuV7hadnajRaCQ4OFg++eQTOXv2rNFvXh9WdHZiQECATJs2TY4dO6bKm9eisxP9/f3l7bfflj/++MPogdHDis5OrFu3rrzxxhsSFRVl0Nl3ZSk6O9Hb21teffVV2bp1q9HD1IcVnZ3o4uIiQ4YMkfXr16vy96SisxMdHBykf//+snLlSqOHqQ8rOjvR2tpatFqtLF26VOLj4yvdLTo70dzcXEJDQ2XhwoVy7dq1SneLzk40MTGRTp06yaeffioXL16s9Np4+OzENm3ayMyZM+XkyZOqrLmisxObNWsm7777rhw6dEiVNVd0dmLDhg1l4sSJsnfvXqOHqQ8rOjvR19dXRo8eLTt27JDs7OxKd4vOTnR3d5eXX35ZNm7cKOnp6ZXuFp2dWDRMXb16tSQnJ1e6W3R2oq2trfTr10++//57SUxMrHS3ql6PiIjo8WbIfI33UCQiInpELl++jLVr1yIkJAS2traqdWNiYrBgwQL07t0bTk5OqnVjY2MxZcoUhIWFqbqL5927d9G/f3+sWLECPj4+qnWzsrIQFBSE6dOno379+qp1CwsL4ePjg3PnzqFJkyYV3pPMEFZWVvjvf/+LVq1aqdrNzs7Gn3/+iXbt2lV4Xz1DJCQk4Pfff0enTp1gYWGhWvevv/7Cpk2b0L17d1hbW6vWjYmJwffff4/Q0NAKdyo0xJUrV/DJJ5+gd+/ecHFxUa1769YtvPbaa9iyZQu8vLxU66ampiI0NBRffvkl6tSpo1o3Ly8Pfn5+uHTpEho3bqxaV0RQo0YNnDp1Cs2bN1d1bYgIDh8+jDZt2lR4j0xDJCcnY9++fejQoUOF94Y0RFxcHHbs2IEuXbrAyspKtW5VvR4REdG/h0ZE4d19/8EM2daaiIiIiIiIiIiIijNkvqber+WIiIiIiIiIiIjoiceBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERGRiv766y/cuXNH9e7NmzcRGxurejcpKQkXL16EiKjazcjIwMmTJ1XvFhQU4MiRIygsLFS1KyI4fPgw8vPzVe0CwLFjx5CTk6N69+TJk8jIyFC9e+7cOaSkpKjejYmJQWJiourd69ev4+bNm6p379y5g6tXr6reTUlJwdmzZ1VfGzk5OTh27Bh0Op2qXZ1Oh0OHDqGgoEDVLgAcOXIEeXl5qnePHz+OrKws1bunT59GWlqa6t2LFy/i/v37qner6vWIiIgI4ECRiIhIVWZmZqhTpw4CAwMxY8YMnDhxQpXBgYODA1q1aoWmTZti6tSpOHjwoCpDNScnJ4SHh6Nhw4aYMGEC9uzZo8pQzdbWFqNHj0atWrUwatQobN++HdnZ2ZXumpmZ4bPPPoOXlxeGDx+OX375Benp6ZXuajQarFmzBu7u7hg4cCBWr16N5OTkSncBYO/evXB1dUW/fv2wbNkyJCQkqNK9cOECXFxcEBYWhsjISMTFxanSvXfvHtzc3NC1a1fMmzcPly9fVqUrIvDx8UG7du0wa9YsnDlzRpW1YWNjA39/f7Rs2RIffPABjh49qspQzcnJCZ06dYKfnx8mT56M/fv3qzJUc3R0xMCBA1GvXj2MGzcOv/32G3JzcyvdtbKywnvvvQcfHx+88sor2LJliypDNRMTEyxduhQeHh4YPHgw1q9fj9TU1Ep3AWDr1q1wdXXFCy+8gJUrVyIpKUmV7tGjR+Hi4gKtVoulS5ciPj5ele6NGzfg6uqK0NBQLFiwANeuXVOlm5mZCQ8PD3Tq1Alz587FhQsXVFkbVfV6REREBACQJ0BqaqoAkNTU1Oo+FCIiInnttdcEgP7h7e0tr776qmzdulWysrKM7s6cObNY19XVVYYMGSI///xzpV4Dly1bVqzr4OAg/fv3lx9//FHu3btndHfnzp3FujY2NvL000/Lt99+K7dv3za6e/r06WJdCwsL6dmzp3z11Vdy/fp1o7vx8fFiaWmp75qamkrnzp3ls88+k0uXLhndTU9PF1dX12LHHBQUJB999JGcOnVKdDqdUd2CggJp1KhRsW7z5s3lvffek0OHDklhYaHRx9ylS5di3UaNGslbb70le/fulfz8fKO7L730UrFurVq1ZPTo0bJjxw7Jyckxujt58uRiXQ8PD3n55Zdl48aNkpGRYXR3/vz5xbo1atSQl156SdasWSMpKSlGd9evX1+sa2dnJ88++6z88MMPkpiYaHT3zz//LNa1srKSPn36yNdffy03b940unvlyhUxNTXVd83MzKR79+4yf/58uXr1qtHde/fuib29vb6r0Wikffv2Mnv2bDl37pzRayMnJ0d8fHyKfS9atWol06dPl2PHjhm9NnQ6nQQEBBTrNmnSRKZMmSJ//PGHFBQUGNUVEYmIiCjWrVevnrz55psSFRUlubm5Rner6vWIiIieTIbM1zhQJCIiUtn169fF3Ny82Ju4ooe1tbVotVpZunSpxMfHG9R98OCBODk5ldo1NzeX0NBQWbBggVy7ds2gbl5entStW7fUromJiXTq1Enmzp0rFy5cMOgNvk6nk3bt2pXaBSCBgYEyY8YMOXHihMGDg+eee67MbrNmzWTq1Kly8OBBg9/gv/HGG2V2GzZsKBMmTJA9e/ZIXl6eQd25c+eW2fX19ZVRo0bJ9u3bJTs726DuTz/9VGbX3d1dhg8fLr/88oukp6cb1N27d2+ZXScnJxk4cKCsXr1akpOTDepevHhRNBpNqV1bW1vp16+ffP/995KQkGBQNzExUWxsbErtWlpaSlhYmCxevFji4uIM6mZlZYmnp2epXTMzM+nWrZt88cUXcvnyZYO6hYWF8tRTT5Xa1Wg0EhwcLLNmzZIzZ84YvDZCQ0PL/G8XEBAgH3zwgRw9etTgodqwYcPK7Pr5+cnkyZNl//79Bg+c33vvvTK7devWlXHjxslvv/1m8FBt8eLFZXa9vLzklVdekS1btkhmZqZB3c2bN5fZdXFxkcGDB8v69esNfl9y7NixMrsODg7ywgsvyMqVKyUpKcmgblW9HhER0ZPJkPmaRuTxP+89LS0Njo6OSE1NhYODQ3UfDhERPYF+/PFHbNiwQfHz9+/fr+g+dA0aNICpqSk8PT3h5ORU4fOPHTuG27dvV/i8unXrwszMDJ6enqhRowY0Gk25zz979qyiy/d8fX1hbm4OT09PuLi4wMSk/LunXL16FefPn6+w6+XlBUtLS3h6esLV1RWmpqblPv/WrVs4fvx4hV03NzdYWVnB09MT7u7uMDMzK/f59+7dw4EDByrsOjo6wtnZGc7OznB3d4eFhUW5z8/MzMTvv/9eYdfGxgbe3t6ws7ODh4cHrKysyn1+YWEhfv311wq7FhYWqF27NqytreHp6Qlra+sKv2b79u0VXv5uamqKevXqwcLCAp6enrCzs6uwu2fPngovU9doNKhfv77+Z03J3+8OHTqEu3fvVvi8evXq6deGk5NThWvj5MmTii4nr127tv54nZ2dK+xevHhR0eXkPj4++q6rq2uFa+769es4ffp0hd2iny8PDw+4u7tXuOYSEhJw5MiRCrvOzs6wt7eHm5sb3N3dYW5uXu7zU1NTsW/fvgq79vb2cHd3h4ODAzw8PGBpaVnu83Nzc7Fz584Ku1ZWVvDx8YGtrS08PT0rXHMigq1bt1Z46bC5uTnq1Kmj//+ara1thcfy22+/VXhrCBMTk2Jrw97evsKu0tej1q1bQ6vVQqvVIiAgoMKfYSIievIYMl/jQJGIiEiBqVOnYs6cOdV9GERERFXO29sbERER0Gq16NGjh6JfQhAR0ePPkPla+b+mJyIiIiIion+V27dv4z//+Y9+Y5/w8HCesUhERMVwoEhERET0D6LRaLgTK1EpuDaqnr+/v/7MxODg4ApvE0FERP9evOSZiIhIgfz8fBQWFip6bk5ODvz9/ZGQkFDq583MzNC5c2dotVr07t0bderUUdTV6XQICgoq856EGo0GwcHB0Gq16NOnDxo2bKj4jBKtVlvuPf5atWql7zZt2rTC+7gVee2117By5coyP9+kSRNotVqEh4ejVatWFd7HrcjMmTMxe/bsMj9fr149/b3A2rRpU+E9Dot89913GDduXJmf9/b2hlarRUREBDp06KD4MsDt27fjueeeK/Pzrq6uCA8PR0REBLp06aLovmjA3/f3a9++fZmfd3BwQO/evfWXLdaoUUNR99atW2jSpEmZ91C0trZGaGgotFotevbsCXd3d0Xd9PR0NGrUCA8ePCj18xYWFujatat+bfj4+CjqFhQUoHnz5oiNjS3186ampujQoYP+Z7hevXqKuiKCbt26lXvvwKCgIH3X399f8Zp76aWXsHHjxjI/37x5c/3aaNGiheI1N2nSJERGRpb5+UaNGum7gYGBFd7jsMj8+fPx7rvvlvn5WrVq6ddGu3btKrwXYZG1a9di+PDhZX7ew8MD4eHh0Gq16NSpk6J7EQJ/3zewV69eZX6+Ro0aCAsLg1arRffu3RW/h7h8+TJatmxZ5mDTzs4OPXv2hFarRUhICFxdXRV17927h0aNGpV5D0VLS0v06NEDWq0WvXr1gpeXl6KuIa9HERERaNCggaIuERE9mQyar1XRxjCPFHd5JiKif5KvvvqqxG6azs7OMmjQIFm7dq2kpKQY1f3ll19KdO3s7OS5556T5cuXy927d43qHj58uETXyspKwsPD5ZtvvpFbt24Z1b127ZqYmZmV2Bm3R48e8uWXX8rVq1eN6qakpIijo2OJ3ag7dOggc+bMkfPnzxu8M66ISG5urtSuXbvE96J169by4YcfyvHjx43q6nQ6adOmTYnuU089Je+8844cOHDA4N2oi/Tt27dEt379+jJ+/HjZvXu3wbtRFxkzZkyJbs2aNeX111+Xbdu2SVZWllHdTz75pETXzc1Nhg0bJhs2bJC0tDSjuitWrCjRdXR0lAEDBshPP/0k9+/fN6obFRVVomtjYyN9+/aV7777Tu7cuWNU9+zZsyV2u7awsJBevXrJokWL5Pr160Z179y5I1ZWVsW6pqam0qVLF/n8888lJibGqG5GRoa4u7uX2I26bdu28vHHH8vp06eNWhsFBQXi7+9f4nvcokULef/99+XIkSMG70ZdpHv37iW6jRs3lkmTJkl0dLTBu1EXGTx4cIlu7dq1ZezYsbJr1y7JyckxqvvOO++U6Hp6esrIkSNl06ZNkpGRYVS3ql6PiIjoyWTIfI0DRSIiIhVlZ2eLt7e3ABA/Pz+ZPHmy7N+/3+g3r0UKCwulRYsWAkDq1Kkj48aNk99++83oN68PCwsLEwDi5eUlr7zyimzZskUyMzMr3R05cqQAEBcXFxk8eLCsX79eHjx4UOnu9OnTBYDY29vLCy+8ICtXrpSkpKRKd5cuXSoAxNraWrRarSxZskTi4+Mr3d22bZsAEHNzcwkJCZEFCxbItWvXKt09ceKEfpjasWNHmTt3rly4cMGowc7Dbt68KRYWFgJAAgMDZcaMGXLixIlKd9PS0sTZ2VkASNOmTWXq1Kly8OBBo4epRfLz86VBgwYCQBo0aCATJkyQPXv2GD1MLaLT6aRDhw4CQHx8fGTUqFGyfft2yc7OrlRXRKR///4CQNzd3WX48OHyyy+/SHp6eqW7EyZMEADi5OQkAwcOlNWrV0tycnKlu59//rkAEFtbW+nXr598//33kpCQUOnumjVrBIBYWlpKWFiYREZGyo0bNyrdjY6O1g9Tu3XrJvPmzZPLly9XuhsTEyMmJiai0WikXbt2MmvWLDlz5kyl10ZSUpLY2toKAGnZsqV88MEHcvToUaOHqUWq6vWIiIieXIbM13hTDCIiIhWdOHECkydPVv3SsUuXLuHFF1/ETz/9hKeeekq1m+PfuXMHbdq0wcyZM9GqVSvFl1VWJCMjAx4eHvjjjz8QHBys+FLmihQUFEBEEBUVhc6dOyu+lLkiIoJ79+5h69at6N69O2xsbFTpAsC1a9fw888/o2fPnqremuXMmTP48ccfERYWBhcXF9W6x44dQ2RkJPr06QNvb29Vux9++CG0Wq3iy/yVOHPmDF599VVotVo0btxYtbURGxuL3r17Y9GiRWjRooVq3eTkZDRq1AiHDh1CUFCQamsuJycHtra22Lt3Lzp06KD4UuaK6HQ6ZGZmYseOHejataviS5mViI+Px8aNGxESEgI7OzvVupcuXcKaNWvQu3dvODk5qdY9ceIEli1bhj59+ii+zF+Jo0eP4vPPP0d4eDh8fX1V61bV6xERERHAeygSERERERERERH96xkyX1PnV6JERERERERERET0r8CBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESlWZQPFyMhI1KlTB1ZWVmjbti2OHj1a7vN//vln+Pn5wcrKCs2aNcP27dur6tCIiIgMdvv2bWRlZaneTUpKQmpqqurdBw8e4N69e6p3s7Ozcfv2bdW7hYWFiI2NVb0LAH/99RdE5LHpxsbGorCwUPXujRs3kJ+fr3r31q1byMnJUb2bkJCAjIwM1bv3799HSkqK6t309HQkJiaq3s3Ly0NcXJzqXRHBtWvXVO8CVbc2rl27Bp1Op3r3+vXrKCgoUL178+ZN5Obmqt6tqtcjIiIiQ1TJQHHdunWYOHEipk+fjhMnTqBFixbo1asX7t69W+rzDx48iIEDB2LEiBE4efIk+vbti759++LcuXNVcXhEREQGy8rKgoeHByIiIrBkyRLEx8er0jUxMUG9evUQEhKCBQsW4K+//lKla21tjcDAQHTs2BFz587F+fPnVXmDb2VlBa1Wi8DAQHz44Yc4fvy4Kl1TU1OMGzcOTZs2xTvvvIMDBw6oNlT79NNP0aBBA4wfPx67d+9GXl6eKt1Vq1bB19cXr7/+OrZt24bs7GxVunv27IGXlxeGDRuGDRs2ID09XZXuhQsX4ObmhgEDBmDVqlVITk5WpXvv3j24urqib9++WLZsGRISElTpFhYWombNmujduzciIyNx48YNVboWFhbw9/dH165dMW/ePFy+fFmVrrW1Nbp06YJ27dph1qxZOH36tCprw9zcHIMGDULLli3xwQcf4MiRI6oM1TQaDd577z34+flh0qRJiI6OVm2o9vXXX6Nu3boYO3Ysdu3apdpQbfPmzahZsyZGjhyJzZs3IzMzU5Xu0aNH4eHhgUGDBmHdunWq/ZLnxo0bcHNzw/PPP48VK1YgKSlJlW5VvR4REREZRKpAUFCQjBkzRv/nwsJC8fb2ltmzZ5f6/P79+0t4eHixj7Vt21Zee+01Rf+81NRUASCpqanGHzQREVEFhg4dKgD0j4CAAJk2bZocO3ZMCgsLje6+++67xbr+/v7y9ttvyx9//CEFBQVGdyMjI4t169atK2+88YZERUVJbm6u0d1NmzYV63p7e8urr74qW7dulczMTKO7R48eLdZ1dXWVIUOGyPr16yv1Gn/9+nUxMzPTdx0cHKR///6ycuVKuXfvntHdlJQUcXJy0netra3l6aeflqVLl8rt27eN7ubl5UmdOnX0XQsLC+nZs6csXLhQYmNjje7qdDoJCgrSd01NTaVz587y6aefysWLF0Wn0xnd7tevX7H/dkFBQTJz5kw5efJkpbpjx44t1m3WrJm8++67cujQoUqtudmzZxfrNmzYUCZOnCh79+6VvLw8o7srV64s1q1Vq5aMHj1aduzYIdnZ2UZ3d+/eXazr4eEhL7/8smzcuFHS09ON7p4/f140Go2+W6NGDXnppZdkzZo1kpycbHQ3ISFBrK2t9V07Ozt59tln5YcffpDExESju5mZmeLh4aHvWlpaSp8+fWTx4sUSFxdndLewsFCaNGmi75qZmUn37t3liy++kCtXrhjdFREJCQnRdzUajQQHB8snn3wiZ8+erdTaqKrXIyIi+nczZL6m+kAxNzdXTE1NZePGjcU+PmTIEHn66adL/RpfX1+ZP39+sY9NmzZNmjdvXurzc3JyJDU1Vf+4efMmB4pERFSlPvroI7Gzsyv2Bu7hh5eXl4wcOVI2b95s0FDt22+/FQcHhzK7zs7OMmjQIFm3bp08ePBAcffXX3+VGjVqlNm1t7eX559/XlasWCFJSUmKu8ePHxcXF5cyu9bW1hIRESFLliyR+Ph4xd3bt2+Lq6trmV1zc3MJCQmRBQsWyLVr1xR3RURcXV3FxMSk1K6JiYl07NhR5s6dKxcuXDDoDX7Tpk2LDSr/9xEYGCgzZsyQEydOGNQNDQ0VS0vLMrtNmzaVqVOnysGDBw0aOA8ePLjYkOd/Hw0aNJAJEybInj17DBqqvf3222Jra1tm19fXV0aNGiXbtm0zaKg2f/58sbe3L7Pr7u4uw4cPlw0bNhg0VFuzZo04OjqW2XVycpIBAwbIqlWrDBqq7du3T5ydncvs2traSt++fWXZsmWSkJCguBsTE1PumrO0tJTevXtLZGSk3LhxQ3E3LS1NXF1diw0UH36YmppK165dZd68eXL58mXFXRGR2rVri6mpaaldjUYj7dq1k1mzZsmZM2cMWhvt2rUTc3PzMr8XLVu2lA8++ECOHj1q0FCtX79+YmVlVWbXz89PJk+eLNHR0ZKfn6+4O3r0aLGxsSmzW6dOHRk3bpzs2rVLcnJyFHer6vWIiIioWgeK8fHxAkAOHjxY7OOTJ0+WoKCgUr/G3NxcVq9eXexjkZGR4u7uXurzp0+fXuqLJweKRERUVd55550y37z971DmvffeU/ya9NVXXynq+vj4yJtvvqn47J5ffvlFUdfd3V1Gjhwp169fV9Q9cuSIoq6Tk5O89NJLcv78eUXdW7duKera2tpKv3795NChQ4q6IqKoa2lpKWFhYbJr1y7FXW9v7wq7pqam0q1bN1m/fr3iwUmbNm0q7Bad6fTtt98qHio+88wzir4XAQEB8sUXXyg+i3X06NGKun5+fjJjxgzJyMhQ1J01a5aibp06dWTy5Mly//59Rd3ly5cr6np5ecmoUaMUD8ajoqIUdV1cXGTo0KGKh3QXLlxQ1LW3t5f+/fvLyZMnFXWL3jBU9LC2thatVivR0dGKuiJS7rCr6GFubi6hoaGyefNmxWujcePGFXZNTEykU6dOsnLlSsXd7t27K/peBAYGyqJFixQPFQcPHqyo27RpU5k9e7bigXtVvR4RERE98QNFnqFIRESP2t69e6VXr16lvnnt3LmzfPbZZ0ZdNnrs2DF54YUXSn0zGBQUJB999JFRl41eunRJRowYUWq3efPmRl82Gh8fLxMmTCi1W5nLRtPS0mTatGmlni3l6+tbqctGP/7441LPPqrsZaMLFy4UNze3Et2HLxtNSUkxuPvDDz9I/fr1S3Qre9nozz//LAEBASW6RZeNfv3113Lz5k2Duzt37pQuXbqU6BZdNjp//nyjLhs9cOCAPP300yW6Go1G2rdvL7Nnz5Zz584ZvDbOnDkjgwYNKvVnuFWrVjJ9+nSjLhu9du1amcPVJk2ayJQpU4y6jUFSUlKZA6TK3MYgJydHZs6cWeqZhJW9jcHnn39e6pnXRbcx+Pnnn436e/s333wjPj4+JbpFtzH48ccfjbqNwapVq4pd8vzwMPXpp5+Wb7/91qjbGGzZskWCg4NLHab27NlTvvrqK6NuY1BVr0dERESGDBTNoDJXV1eYmpqW2OUuMTERnp6epX6Np6enQc+3tLSEpaWlOgdMRESkQKdOnTBq1CgAgKOjI8LCwhAREYGwsDA4Ozsb3Q0MDNTvxmxjY4PQ0FBotVqEh4eX+TqoROPGjfUbIVhYWKBbt27QarWIiIhA7dq1je56e3vDwsICwN8bqXTs2BFarRZarRaNGjUyumtvbw9XV1eICDQaDYKCgvTdZs2aQaPRGN329/fX70LcokULfTcwMBAmJsbvT9emTRv9JguNGzfWd9u3bw8zM+P/itW5c2f9BiS1a9fWd7t06VKpv/90794dI0aMAPD3370iIiKg1WrRo0cP2NraGt3t1q0bXnnlFQCAs7Mz+vTpg4iICPTq1QtOTk5Gd4ODg/WbTdjb26NXr16IiIhAnz594ObmZnS3WbNmSEtLA/D3JkMhISGIiIhAREQEatasaXS3bt26+k1YzMzM0KVLF/2aq1+/vtFdV1dX2NnZAfh7E6fg4GD9z4S/v7/Ra8PS0hK+vr76zY9at26t7wYEBFRqzTVv3lz/PX7qqaf03bZt28LU1NTobocOHXDr1i0AQP369fXdjh076v+/ZIxu3brp10bNmjX1/926d+8Oa2tro7sPrzk3NzeEh4cjIiICPXv2hL29vdHdqno9IiIiMoTqA0ULCwu0bt0au3fvRt++fQEAOp0Ou3fvxtixY0v9muDgYOzevRvjx4/XfywqKgrBwcFqHx4REZFRDh8+jLCwMCxevBgdO3aEubm5Kt2YmBj4+flh8uTJ6NatG6ysrFTp3r17F1ZWVvjll18QGhqqH0hUVlZWFpKTk7F69Wr07t0bNWrUUKVbWFiImJgYLFu2DOHh4fDw8FClC/y9g2tkZCQiIiJQq1Yt1br79u3DvHnzoNVq0bBhQ9W6UVFRmDFjBrRaLZo2bVqpwc7/dt98801otVq0bt26UsPUh0VHR2PAgAHQarUIDg6u1DD1YSdPnkT79u0xe/ZsdOnSpVIDo4fduHEDnp6e2LJlC3r06AEbGxtVug8ePEB+fj7Wr1+Pnj17wtHRUZVuXl4ebt26hZUrVyIsLAyurq6qdEUEZ86cwdKlSxEeHg5vb29VugBw4MABLFiwAFqtFnXr1lWt+/vvv2Pu3LnQarXw8/NTbW389ttvmDp1KrRaLVq2bKlad8+ePRg5ciS0Wi2CgoIqNUx9WFW9HhERERlCI0W/SlXRunXrMHToUCxZsgRBQUH48ssvsX79ely6dAkeHh4YMmQIatasidmzZwMADh48iC5dumDOnDkIDw/H2rVr8cknn+DEiRNo2rRphf+8tLQ0ODo6IjU1FQ4ODmr/6xARERERERERET3RDJmvqX6GIgC8+OKLSEpKwrRp05CQkICWLVti586d+rMN4uLiiv1WvH379li9ejXef/99vPvuu2jYsCE2bdqkaJhIREREREREREREj06VnKH4qPEMRSIiIiIiIiIiIuMZMl9T5+Y5RERERERERERE9K/AgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESnGgSIREREREREREREpxoEiERERERERERERKcaBIhERERERERERESlmVt0HoAYRAQCkpaVV85EQERERERERERE9formakVztvI8EQPF9PR0AICvr281HwkREREREREREdHjKz09HY6OjuU+RyNKxo7/cDqdDrdv34a9vT00Gk11Hw5RlUtLS4Ovry9u3rwJBweH6j4coice1xzRo8d1R/Rocc0RPVpcc/RPJCJIT0+Ht7c3TEzKv0viE3GGoomJCXx8fKr7MIgeOQcHB774ED1CXHNEjx7XHdGjxTVH9GhxzdE/TUVnJhbhpixERERERERERESkGAeKREREREREREREpBgHikSPIUtLS0yfPh2WlpbVfShE/wpcc0SPHtcd0aPFNUf0aHHN0ePuidiUhYiIiIiIiIiIiB4NnqFIREREREREREREinGgSERERERERERERIpxoEhERERERERERESKcaBIREREREREREREinGgSERERERERERERIpxoEj0mJk1axbat28PGxsbODk5lfqcuLg4hIeHw8bGBu7u7pg8eTIKCgoe7YESPUEiIyNRp04dWFlZoW3btjh69Gh1HxLRE2H//v3QarXw9vaGRqPBpk2bin1eRDBt2jR4eXnB2toaISEhuHLlSvUcLNETYPbs2WjTpg3s7e3h7u6Ovn37IiYmpthzcnJyMGbMGLi4uMDOzg7PPfccEhMTq+mIiR5vX3/9NZo3bw4HBwc4ODggODgYO3bs0H+e640eZxwoEj1m8vLy8MILL2DUqFGlfr6wsBDh4eHIy8vDwYMHsWLFCixfvhzTpk17xEdK9GRYt24dJk6ciOnTp+PEiRNo0aIFevXqhbt371b3oRE99jIzM9GiRQtERkaW+vlPP/0UCxcuxDfffIMjR47A1tYWvXr1Qk5OziM+UqInQ3R0NMaMGYPDhw8jKioK+fn56NmzJzIzM/XPmTBhArZu3Yqff/4Z0dHRuH37Np599tlqPGqix5ePjw/mzJmD48eP47///S+6d++OZ555BufPnwfA9UaPN42ISHUfBBEZbvny5Rg/fjwePHhQ7OM7duxAREQEbt++DQ8PDwDAN998gylTpiApKQkWFhbVcLREj6+2bduiTZs2WLRoEQBAp9PB19cX48aNwzvvvFPNR0f05NBoNNi4cSP69u0L4O+zE729vfHWW29h0qRJAIDU1FR4eHhg+fLlGDBgQDUeLdGTISkpCe7u7oiOjkbnzp2RmpoKNzc3rF69Gs8//zwA4NKlS/D398ehQ4fQrl27aj5iosefs7MzPvvsMzz//PNcb/RY4xmKRE+YQ4cOoVmzZvphIgD06tULaWlp+t+EEZEyeXl5OH78OEJCQvQfMzExQUhICA4dOlSNR0b05IuNjUVCQkKx9efo6Ii2bdty/RGpJDU1FcDfAw4AOH78OPLz84utOz8/P9SqVYvrjqiSCgsLsXbtWmRmZiI4OJjrjR57ZtV9AESkroSEhGLDRAD6PyckJFTHIRE9tu7du4fCwsJS19SlS5eq6aiI/h2KXrNKW398PSOqPJ1Oh/Hjx6NDhw5o2rQpgL/XnYWFRYn7dHPdERnv7NmzCA4ORk5ODuzs7LBx40Y0adIEp06d4nqjxxrPUCT6B3jnnXeg0WjKfXB4QURERERqGTNmDM6dO4e1a9dW96EQPdEaN26MU6dO4ciRIxg1ahSGDh2KCxcuVPdhEVUaz1Ak+gd46623MGzYsHKfU69ePUUtT0/PEjvQFu0U5unpadTxEf1bubq6wtTUtMRue4mJiVxPRFWsaI0lJibCy8tL//HExES0bNmymo6K6MkwduxY/Prrr9i/fz98fHz0H/f09EReXh4ePHhQ7Kwpvu4RGc/CwgINGjQAALRu3RrHjh3DggUL8OKLL3K90WONZygS/QO4ubnBz8+v3IfSzVSCg4Nx9uzZYjvQRkVFwcHBAU2aNKmqfwWiJ5KFhQVat26N3bt36z+m0+mwe/duBAcHV+ORET356tatC09Pz2LrLy0tDUeOHOH6IzKSiGDs2LHYuHEj9uzZg7p16xb7fOvWrWFubl5s3cXExCAuLo7rjkglOp0Oubm5XG/02OMZikSPmbi4OCQnJyMuLg6FhYU4deoUAKBBgwaws7NDz5490aRJEwwePBiffvopEhIS8P7772PMmDGwtLSs3oMnegxNnDgRQ4cORWBgIIKCgvDll18iMzMTw4cPr+5DI3rsZWRk4OrVq/o/x8bG4tSpU3B2dkatWrUwfvx4fPzxx2jYsCHq1q2LDz74AN7e3vqdoInIMGPGjMHq1auxefNm2Nvb6+/T5ujoCGtrazg6OmLEiBGYOHEinJ2d4eDggHHjxiE4OJg7zhIZYerUqQgLC0OtWrWQnp6O1atXY9++fdi1axfXGz32NCIi1X0QRKTcsGHDsGLFihIf37t3L7p27QoAuHHjBkaNGoV9+/bB1tYWQ4cOxZw5c2Bmxt8hEBlj0aJF+Oyzz5CQkICWLVti4cKFaNu2bXUfFtFjb9++fejWrVuJjw8dOhTLly+HiGD69OlYunQpHjx4gI4dO2Lx4sVo1KhRNRwt0eNPo9GU+vEffvhBf/udnJwcvPXWW1izZg1yc3PRq1cvLF68mJdgEhlhxIgR2L17N+7cuQNHR0c0b94cU6ZMQWhoKACuN3q8caBIREREREREREREivEeikRERERERERERKQYB4pERERERERERESkGAeKREREREREREREpBgHikRERERERERERKQYB4pERERERERERESkGAeKREREREREREREpBgHikRERERERERERKQYB4pERERERERERESkGAeKREREREREREREpBgHikRERERERERERKQYB4pERERERERERESk2P8HBwA0/BLo6LcAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 1152x432 with 1 Axes>"
+       "<Figure size 1600x600 with 1 Axes>"
       ]
      },
-     "metadata": {
-      "needs_background": "light"
-     },
+     "metadata": {},
      "output_type": "display_data"
     }
    ],
@@ -389,13 +359,24 @@
    "metadata": {},
    "outputs": [
     {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n",
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n",
-      "WARNING:root:Using Nodes is experimental and not fully tested. Double check your generated code!\n",
-      "WARNING:root:Lhs\"dir of type \"int64_t\" is assigned with a different datatype rhs: \"indexField[0](dir)\" of type \"int32_t\".\n"
+     "ename": "AttributeError",
+     "evalue": "'tuple' object has no attribute 'items'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[14], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m channel:\n\u001b[0;32m----> 2\u001b[0m     reference \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_channel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdomain_size\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mforce\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlb_method\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m      3\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m      4\u001b[0m     reference \u001b[38;5;241m=\u001b[39m create_lid_driven_cavity(domain_size, relaxation_rate\u001b[38;5;241m=\u001b[39momega, lid_velocity\u001b[38;5;241m=\u001b[39mlid_velocity,\n\u001b[1;32m      5\u001b[0m                                          compressible\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/scenarios.py:142\u001b[0m, in \u001b[0;36mcreate_channel\u001b[0;34m(domain_size, force, pressure_difference, u_max, diameter_callback, duct, wall_boundary, parallel, data_handling, **kwargs)\u001b[0m\n\u001b[1;32m    140\u001b[0m     kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mforce\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtuple\u001b[39m([force, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m][:dim])\n\u001b[1;32m    141\u001b[0m     \u001b[38;5;28;01massert\u001b[39;00m data_handling\u001b[38;5;241m.\u001b[39mperiodicity[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m--> 142\u001b[0m     step \u001b[38;5;241m=\u001b[39m \u001b[43mLatticeBoltzmannStep\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_handling\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_handling\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mforce_driven_channel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    143\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m pressure_difference:\n\u001b[1;32m    144\u001b[0m     inflow \u001b[38;5;241m=\u001b[39m FixedDensity(\u001b[38;5;241m1.0\u001b[39m \u001b[38;5;241m+\u001b[39m pressure_difference)\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/lbstep.py:122\u001b[0m, in \u001b[0;36mLatticeBoltzmannStep.__init__\u001b[0;34m(self, domain_size, lbm_kernel, periodicity, kernel_params, data_handling, name, optimization, velocity_data_name, density_data_name, density_data_index, compute_velocity_in_every_step, compute_density_in_every_step, velocity_input_array_name, time_step_order, flag_interface, alignment_if_vectorized, fixed_loop_sizes, timeloop_creation_function, lbm_config, lbm_optimisation, config, **method_parameters)\u001b[0m\n\u001b[1;32m    119\u001b[0m lbm_config \u001b[38;5;241m=\u001b[39m replace(lbm_config, temporary_field_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_tmp_arr_name)\n\u001b[1;32m    121\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m time_step_order \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstream_collide\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[0;32m--> 122\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lbmKernels \u001b[38;5;241m=\u001b[39m [\u001b[43mcreate_lb_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    123\u001b[0m \u001b[43m                                           \u001b[49m\u001b[43mlbm_optimisation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_optimisation\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    124\u001b[0m \u001b[43m                                           \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m]\n\u001b[1;32m    125\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m time_step_order \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcollide_stream\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m    126\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lbmKernels \u001b[38;5;241m=\u001b[39m [create_lb_function(lbm_config\u001b[38;5;241m=\u001b[39mlbm_config,\n\u001b[1;32m    127\u001b[0m                                            lbm_optimisation\u001b[38;5;241m=\u001b[39mlbm_optimisation,\n\u001b[1;32m    128\u001b[0m                                            config\u001b[38;5;241m=\u001b[39mconfig,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    132\u001b[0m                                            config\u001b[38;5;241m=\u001b[39mconfig,\n\u001b[1;32m    133\u001b[0m                                            kernel_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstream_pull_only\u001b[39m\u001b[38;5;124m'\u001b[39m)]\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/creationfunctions.py:505\u001b[0m, in \u001b[0;36mcreate_lb_function\u001b[0;34m(ast, lbm_config, lbm_optimisation, config, optimization, **kwargs)\u001b[0m\n\u001b[1;32m    502\u001b[0m     ast \u001b[38;5;241m=\u001b[39m lbm_config\u001b[38;5;241m.\u001b[39mast\n\u001b[1;32m    504\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ast \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 505\u001b[0m     ast \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_lb_ast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupdate_rule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlbm_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    506\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mlbm_optimisation\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlbm_optimisation\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    508\u001b[0m res \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mcompile()\n\u001b[1;32m    510\u001b[0m res\u001b[38;5;241m.\u001b[39mmethod \u001b[38;5;241m=\u001b[39m ast\u001b[38;5;241m.\u001b[39mmethod\n",
+      "File \u001b[0;32m~/pystencils/lbmpy/lbmpy/creationfunctions.py:530\u001b[0m, in \u001b[0;36mcreate_lb_ast\u001b[0;34m(update_rule, lbm_config, lbm_optimisation, config, optimization, **kwargs)\u001b[0m\n\u001b[1;32m    525\u001b[0m     update_rule \u001b[38;5;241m=\u001b[39m create_lb_update_rule(lbm_config\u001b[38;5;241m.\u001b[39mcollision_rule, lbm_config\u001b[38;5;241m=\u001b[39mlbm_config,\n\u001b[1;32m    526\u001b[0m                                         lbm_optimisation\u001b[38;5;241m=\u001b[39mlbm_optimisation, config\u001b[38;5;241m=\u001b[39mconfig)\n\u001b[1;32m    528\u001b[0m field_types \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m(fa\u001b[38;5;241m.\u001b[39mfield\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;28;01mfor\u001b[39;00m fa \u001b[38;5;129;01min\u001b[39;00m update_rule\u001b[38;5;241m.\u001b[39mdefined_symbols \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fa, Field\u001b[38;5;241m.\u001b[39mAccess))\n\u001b[0;32m--> 530\u001b[0m config \u001b[38;5;241m=\u001b[39m \u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcollate_types\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfield_types\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mghost_layers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m    531\u001b[0m ast \u001b[38;5;241m=\u001b[39m create_kernel(update_rule, config\u001b[38;5;241m=\u001b[39mconfig)\n\u001b[1;32m    533\u001b[0m ast\u001b[38;5;241m.\u001b[39mmethod \u001b[38;5;241m=\u001b[39m update_rule\u001b[38;5;241m.\u001b[39mmethod\n",
+      "File \u001b[0;32m/usr/lib/python3.11/dataclasses.py:1492\u001b[0m, in \u001b[0;36mreplace\u001b[0;34m(obj, **changes)\u001b[0m\n\u001b[1;32m   1485\u001b[0m         changes[f\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(obj, f\u001b[38;5;241m.\u001b[39mname)\n\u001b[1;32m   1487\u001b[0m \u001b[38;5;66;03m# Create the new object, which calls __init__() and\u001b[39;00m\n\u001b[1;32m   1488\u001b[0m \u001b[38;5;66;03m# __post_init__() (if defined), using all of the init fields we've\u001b[39;00m\n\u001b[1;32m   1489\u001b[0m \u001b[38;5;66;03m# added and/or left in 'changes'.  If there are values supplied in\u001b[39;00m\n\u001b[1;32m   1490\u001b[0m \u001b[38;5;66;03m# changes that aren't fields, this will correctly raise a\u001b[39;00m\n\u001b[1;32m   1491\u001b[0m \u001b[38;5;66;03m# TypeError.\u001b[39;00m\n\u001b[0;32m-> 1492\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__class__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mchanges\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m<string>:24\u001b[0m, in \u001b[0;36m__init__\u001b[0;34m(self, target, backend, function_name, data_type, default_number_float, default_number_int, iteration_slice, ghost_layers, cpu_openmp, cpu_vectorize_info, cpu_blocking, omp_single_loop, gpu_indexing, gpu_indexing_params, default_assignment_simplifications, cpu_prepend_optimizations, use_auto_for_assignments, index_fields, coordinate_names, allow_double_writes, skip_independence_check)\u001b[0m\n",
+      "File \u001b[0;32m~/pystencils/pystencils/pystencils/config.py:177\u001b[0m, in \u001b[0;36mCreateKernelConfig.__post_init__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    174\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_type(dtype)\n\u001b[1;32m    176\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, \u001b[38;5;28mdict\u001b[39m):\n\u001b[0;32m--> 177\u001b[0m     dt \u001b[38;5;241m=\u001b[39m \u001b[43mcopy\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_type\u001b[49m\u001b[43m)\u001b[49m  \u001b[38;5;66;03m# The copy is necessary because BasicType has sympy shinanigans\u001b[39;00m\n\u001b[1;32m    178\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type \u001b[38;5;241m=\u001b[39m defaultdict(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mDataTypeFactory(dt))\n\u001b[1;32m    180\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_type, defaultdict):\n",
+      "File \u001b[0;32m/usr/lib/python3.11/copy.py:102\u001b[0m, in \u001b[0;36mcopy\u001b[0;34m(x)\u001b[0m\n\u001b[1;32m    100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(rv, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m    101\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m x\n\u001b[0;32m--> 102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_reconstruct\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mrv\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m/usr/lib/python3.11/copy.py:273\u001b[0m, in \u001b[0;36m_reconstruct\u001b[0;34m(x, memo, func, args, state, listiter, dictiter, deepcopy)\u001b[0m\n\u001b[1;32m    271\u001b[0m     state \u001b[38;5;241m=\u001b[39m deepcopy(state, memo)\n\u001b[1;32m    272\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(y, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__setstate__\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[0;32m--> 273\u001b[0m     \u001b[43my\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__setstate__\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    274\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    275\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(state, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(state) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m:\n",
+      "File \u001b[0;32m~/.local/lib/python3.11/site-packages/sympy/core/basic.py:144\u001b[0m, in \u001b[0;36mBasic.__setstate__\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m    143\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__setstate__\u001b[39m(\u001b[38;5;28mself\u001b[39m, state):\n\u001b[0;32m--> 144\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m name, value \u001b[38;5;129;01min\u001b[39;00m \u001b[43mstate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m():\n\u001b[1;32m    145\u001b[0m         \u001b[38;5;28msetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, name, value)\n",
+      "\u001b[0;31mAttributeError\u001b[0m: 'tuple' object has no attribute 'items'"
      ]
     }
    ],
@@ -410,7 +391,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -437,7 +418,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.9"
+   "version": "3.11.0rc1"
   }
  },
  "nbformat": 4,
diff --git a/setup.py b/setup.py
index 1d055a76b2bf5266440618eb5a22fefc2a437c27..87ca1837bbb20d6cdd74106d3ac909fa7135a473 100644
--- a/setup.py
+++ b/setup.py
@@ -107,7 +107,7 @@ setup(name='lbmpy',
           "Source Code": "https://i10git.cs.fau.de/pycodegen/lbmpy",
       },
       extras_require={
-          'gpu': ['pycuda'],
+          'gpu': ['cupy'],
           'opencl': ['pyopencl'],
           'alltrafos': ['islpy', 'py-cpuinfo'],
           'interactive': ['scipy', 'scikit-image', 'cython', 'matplotlib',