diff --git a/doc/notebooks/04_tutorial_cumulant_LBM.ipynb b/doc/notebooks/04_tutorial_cumulant_LBM.ipynb index 1493236657a256a0552536332a12008d3a19ed29..607bab7f541d2294e30983ac4eab7056532d046d 100644 --- a/doc/notebooks/04_tutorial_cumulant_LBM.ipynb +++ b/doc/notebooks/04_tutorial_cumulant_LBM.ipynb @@ -60,9 +60,7 @@ "\\end{align}\n", "$$\n", "\n", - "Other than with moments, there is no straightforward way to express cumulants in terms of the populations. However, their generating functions can be related to allowing the computation of cumulants from both raw and central moments, computed from populations. In lbmpy, the transformations from populations to cumulants and back are implemented using central moments as intermediaries. This is done for two primary reasons:\n", - " 1. All cumulants of orders 2 and 3 are equal to their corresponding central moments, up to the density $\\rho$ as a proportionality factor.\n", - " 2. The conserved modes of the first order, which correspond to momentum, are relaxed in central moment space to allow for a more efficient implicit forcing scheme.\n", + "Other than with moments, there is no straightforward way to express cumulants in terms of the populations. However, their generating functions can be related to allowing the computation of cumulants from both raw and central moments, computed from populations. In lbmpy, the transformations from populations to cumulants and back are implemented using central moments as intermediaries. All cumulants of orders 2 and 3 are equal to their corresponding central moments, up to the density $\\rho$ as a proportionality factor.\n", "\n", "The central moment-generating function $K$ can be related to the moment-generating function through $K(\\mathbf{X}) = \\exp( - \\mathbf{X} \\cdot \\mathbf{u} ) M(\\mathbf{X})$. It is possible to recombine the equation with the definition of the cumulant-generating function\n", "\n", @@ -74,16 +72,7 @@ "\n", "Derivatives of $C$ can thus be expressed in terms of derivatives of $K$, directly yielding equations of the cumulants in terms of central moments.\n", "\n", - "In the cumulant collision operator, forces can be applied through a simple forcing scheme which in lbmpy is called *implicit forcing*. Ony the force contributions to the first-order (momentum) modes are considered. When the first-order central moments are taken in the frame of reference shifted by $F/2$, they trail behind zero by just that much. Forcing can be applied by first adding half the force *before* collision, and then adding the remaining half *after* collision. Due to this, the first-order central moments entering the cumulant equations are always zero. By applying the force already in central-moment space, the cumulant equations are simplified significantly as no forces need to be taken into account. The pre- and post-collision momentum central moments take the form:\n", - "\n", - "$$\n", - "\\begin{align}\n", - " \\kappa_{100} &= - \\frac{F_x}{2}, \\\\ \n", - " \\kappa^{\\ast}_{100} &= \\kappa_{100} + F_x = \\frac{F_x}{2}\n", - "\\end{align}\n", - "$$\n", - "\n", - "In total, through forcing, the first central moments change sign. This is equivalent to relaxation with a relaxation rate $\\omega = 2$. For this reason, lbmpy's implementation of the cumulant LBM calculates the collision of the momentum modes in central moment space, and the default force model overrides their relaxation rate by setting it to 2." + "In the cumulant lattice Boltzmann method, forces are applied symmetrically in central moment space." ] }, { @@ -134,7 +123,7 @@ " <tr>\n", " <td>Compressible: ✓</td>\n", " <td>Deviation Only: ✗</td>\n", - " <td>Order: ∞</td>\n", + " <td>Order: 2</td>\n", " </tr>\n", " </table>\n", " \n", @@ -146,19 +135,19 @@ " <th>Relaxation Rate</th>\n", " </tr>\n", " <tr style=\"border:none\">\n", - " <td style=\"border:none\">$1 (central moment)$</td>\n", - " <td style=\"border:none\">$\\rho$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho \\log{\\left(\\rho \\right)}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$\\rho u_{0}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$y (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$\\rho u_{1}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2}$</td>\n", @@ -178,22 +167,22 @@ "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "</table>" ], "text/plain": [ - "<lbmpy.methods.centeredcumulant.centeredcumulantmethod.CenteredCumulantBasedLbMethod at 0x127614b50>" + "<lbmpy.methods.cumulantbased.cumulantbasedmethod.CumulantBasedLbMethod at 0x7f9ebcdebd60>" ] }, "execution_count": 2, @@ -249,7 +238,7 @@ " <tr>\n", " <td>Compressible: ✓</td>\n", " <td>Deviation Only: ✗</td>\n", - " <td>Order: ∞</td>\n", + " <td>Order: 2</td>\n", " </tr>\n", " </table>\n", " \n", @@ -261,19 +250,19 @@ " <th>Relaxation Rate</th>\n", " </tr>\n", " <tr style=\"border:none\">\n", - " <td style=\"border:none\">$1 (central moment)$</td>\n", - " <td style=\"border:none\">$\\rho$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho \\log{\\left(\\rho \\right)}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$\\rho u_{0}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$y (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$\\rho u_{1}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y$</td>\n", @@ -288,27 +277,27 @@ "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} + y^{2}$</td>\n", " <td style=\"border:none\">$\\frac{2 \\rho}{3}$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "</table>" ], "text/plain": [ - "<lbmpy.methods.centeredcumulant.centeredcumulantmethod.CenteredCumulantBasedLbMethod at 0x156980190>" + "<lbmpy.methods.cumulantbased.cumulantbasedmethod.CumulantBasedLbMethod at 0x7f9ebcc63d60>" ] }, "execution_count": 3, @@ -322,125 +311,6 @@ "method_polynomial" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Central Moments and Forcing\n", - "\n", - "The conserved modes are marked with the note *(central moment)* in the table above. It highlights the fact that these modes are relaxed in central moment space, other than cumulant space. As described in section A, this is done to enable the implicit forcing scheme. When a force is specified, the momentum modes' relaxation rates are overridden by the force model. In the following cell, a symbolic force is specified. Further, a full list of relaxation rates is passed to allow the specification of bulk viscosity." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " <table style=\"border:none; width: 100%\">\n", - " <tr>\n", - " <th colspan=\"3\" style=\"text-align: left\">\n", - " Cumulant-Based Method\n", - " </th>\n", - " <td>Stencil: D2Q9</td>\n", - " <td>Zero-Centered Storage: ✓</td>\n", - " <td>Force Model: CenteredCumulantForceModel</td>\n", - " </tr>\n", - " </table>\n", - " \n", - " <table style=\"border:none; width: 100%\">\n", - " <tr>\n", - " <th colspan=\"3\" style=\"text-align: left\">\n", - " Continuous Hydrodynamic Maxwellian Equilibrium\n", - " </th>\n", - " <td rowspan=\"2\" style=\"width: 50%; text-align: center\">\n", - " $f (\\rho, \\left( u_{0}, \\ u_{1}\\right), \\left( v_{0}, \\ v_{1}\\right)) \n", - " = \\frac{3 \\rho e^{- \\frac{3 \\left(- u_{0} + v_{0}\\right)^{2}}{2} - \\frac{3 \\left(- u_{1} + v_{1}\\right)^{2}}{2}}}{2 \\pi}$\n", - " </td>\n", - " </tr>\n", - " <tr>\n", - " <td>Compressible: ✓</td>\n", - " <td>Deviation Only: ✗</td>\n", - " <td>Order: ∞</td>\n", - " </tr>\n", - " </table>\n", - " \n", - " <table style=\"border:none; width: 100%\">\n", - " <tr> <th colspan=\"3\" style=\"text-align: left\"> Relaxation Info </th> </tr>\n", - " <tr>\n", - " <th>Cumulant</th>\n", - " <th>Eq. Value </th>\n", - " <th>Relaxation Rate</th>\n", - " </tr>\n", - " <tr style=\"border:none\">\n", - " <td style=\"border:none\">$1 (central moment)$</td>\n", - " <td style=\"border:none\">$\\rho$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$2 (overridden by force model)$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$y (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$2 (overridden by force model)$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x y$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega_{shear}$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x^{2} - y^{2}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega_{shear}$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x^{2} + y^{2}$</td>\n", - " <td style=\"border:none\">$\\frac{2 \\rho}{3}$</td>\n", - " <td style=\"border:none\">$\\omega_{bulk}$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x^{2} y$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega_{3}$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x y^{2}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega_{3}$</td>\n", - " </tr>\n", - "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x^{2} y^{2}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega_{4}$</td>\n", - " </tr>\n", - "</table>" - ], - "text/plain": [ - "<lbmpy.methods.centeredcumulant.centeredcumulantmethod.CenteredCumulantBasedLbMethod at 0x156d58ee0>" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lbm_config = LBMConfig(method=Method.CUMULANT, force=sp.symbols('F_:3'), compressible=True,\n", - " relaxation_rates= [sp.Symbol('omega_shear'),\n", - " sp.Symbol('omega_bulk'),\n", - " sp.Symbol('omega_3'),\n", - " sp.Symbol('omega_4')])\n", - "method_with_force = create_lb_method(lbm_config=lbm_config)\n", - "method_with_force" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -452,7 +322,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -471,7 +341,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -493,7 +363,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -511,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -535,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -566,7 +436,7 @@ " <tr>\n", " <td>Compressible: ✓</td>\n", " <td>Deviation Only: ✗</td>\n", - " <td>Order: ∞</td>\n", + " <td>Order: 2</td>\n", " </tr>\n", " </table>\n", " \n", @@ -578,57 +448,57 @@ " <th>Relaxation Rate</th>\n", " </tr>\n", " <tr style=\"border:none\">\n", - " <td style=\"border:none\">$1 (central moment)$</td>\n", - " <td style=\"border:none\">$\\rho$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$\\rho \\log{\\left(\\rho \\right)}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$x (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$x$</td>\n", + " <td style=\"border:none\">$\\rho u_{0}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", - " <td style=\"border:none\">$y (central moment)$</td>\n", - " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$y$</td>\n", + " <td style=\"border:none\">$\\rho u_{1}$</td>\n", + " <td style=\"border:none\">$0.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1.99982001619854$</td>\n", + " <td style=\"border:none\">$1.9998200161985422$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} - y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1.99982001619854$</td>\n", + " <td style=\"border:none\">$1.9998200161985422$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} + y^{2}$</td>\n", " <td style=\"border:none\">$\\frac{2 \\rho}{3}$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} y^{2}$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$1$</td>\n", + " <td style=\"border:none\">$1.0$</td>\n", " </tr>\n", "</table>" ], "text/plain": [ - "<lbmpy.methods.centeredcumulant.centeredcumulantmethod.CenteredCumulantBasedLbMethod at 0x156f28580>" + "<lbmpy.methods.cumulantbased.cumulantbasedmethod.CumulantBasedLbMethod at 0x7f9ebcc02a60>" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -646,14 +516,106 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Initialisation with equilibrium" + "### Initialization with equilibrium" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'zero'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'zero'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'zero'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'extended_negative'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'extended_real'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'finite'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-9-75e28407fdf7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0minit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdf_initialization_assignments\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_velocity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcenter_vector\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mast_init\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_kernel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdh\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_target\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mkernel_init\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mast_init\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/LSS/lssgit/python_includes/lbmpy/macroscopic_value_kernels.py\u001b[0m in \u001b[0;36mpdf_initialization_assignments\u001b[0;34m(lb_method, density, velocity, pdfs, streaming_pattern, previous_timestep, set_pre_collision_pdfs)\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0mcqc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlb_method\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconserved_quantity_computation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0minp_eqs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcqc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mequilibrium_input_equations_from_init_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdensity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvelocity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforce_substitution\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 35\u001b[0;31m \u001b[0msetter_eqs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlb_method\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_equilibrium\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconserved_quantity_equations\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minp_eqs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 36\u001b[0m setter_eqs = setter_eqs.new_with_substitutions({sym: field_accesses[i]\n\u001b[1;32m 37\u001b[0m for i, sym in enumerate(lb_method.post_collision_pdf_symbols)})\n", + "\u001b[0;32m~/LSS/lssgit/python_includes/lbmpy/methods/cumulantbased/cumulantbasedmethod.py\u001b[0m in \u001b[0;36mget_equilibrium\u001b[0;34m(self, conserved_quantity_equations, subexpressions, pre_simplification, keep_cqc_subexpressions, include_force_terms)\u001b[0m\n\u001b[1;32m 229\u001b[0m r_info_dict = {c: RelaxationInfo(info.equilibrium_value, sp.Integer(1))\n\u001b[1;32m 230\u001b[0m for c, info in self.relaxation_info_dict.items()}\n\u001b[0;32m--> 231\u001b[0;31m ac = self._centered_cumulant_collision_rule(\n\u001b[0m\u001b[1;32m 232\u001b[0m \u001b[0mr_info_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconserved_quantity_equations\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpre_simplification\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 233\u001b[0m include_force_terms=include_force_terms, symbolic_relaxation_rates=False)\n", + "\u001b[0;32m~/LSS/lssgit/python_includes/lbmpy/methods/cumulantbased/cumulantbasedmethod.py\u001b[0m in \u001b[0;36m_centered_cumulant_collision_rule\u001b[0;34m(self, cumulant_to_relaxation_info_dict, conserved_quantity_equations, pre_simplification, include_force_terms, symbolic_relaxation_rates)\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0mk_to_c_transform\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cumulant_transform_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstencil\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpolynomial_cumulants\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvelocity\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0mk_to_c_eqs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mk_to_c_transform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msimplification\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpre_simplification\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 336\u001b[0;31m \u001b[0mc_post_to_k_post_eqs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mk_to_c_transform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msimplification\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpre_simplification\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 337\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0mC_pre\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mk_to_c_transform\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpre_collision_symbols\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/LSS/lssgit/python_includes/lbmpy/moment_transforms/cumulanttransforms.py\u001b[0m in \u001b[0;36mbackward_transform\u001b[0;34m(self, central_moment_base, simplification, subexpression_base, start_from_monomials)\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0mmain_assignments\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 144\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mexp\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcentral_moment_exponents\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 145\u001b[0;31m \u001b[0meq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcentral_moment_from_cumulants\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmono_base_post\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 146\u001b[0m \u001b[0mk_symbol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstatistical_quantity_symbol\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcentral_moment_base\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0mmain_assignments\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mAssignment\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk_symbol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0meq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/LSS/lssgit/python_includes/lbmpy/moment_transforms/cumulanttransforms.py\u001b[0m in \u001b[0;36mcentral_moment_from_cumulants\u001b[0;34m(self, moment_exponents, cumulant_symbol_base)\u001b[0m\n\u001b[1;32m 208\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0mc_indices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mdim\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mmoment_index_from_derivative\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwave_numbers\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0md\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mderivatives\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 210\u001b[0;31m moment = moment.subs([(statistical_quantity_symbol('c', idx),\n\u001b[0m\u001b[1;32m 211\u001b[0m statistical_quantity_symbol(cumulant_symbol_base, idx) / rho)\n\u001b[1;32m 212\u001b[0m for idx in c_indices])\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/basic.py\u001b[0m in \u001b[0;36msubs\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 976\u001b[0m \u001b[0mrv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 977\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mold\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msequence\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 978\u001b[0;31m \u001b[0mrv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_subs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mold\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 979\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBasic\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 980\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/basic.py\u001b[0m in \u001b[0;36m_subs\u001b[0;34m(self, old, new, **hints)\u001b[0m\n\u001b[1;32m 1090\u001b[0m \u001b[0mrv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_subs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mold\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1091\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrv\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1092\u001b[0;31m \u001b[0mrv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfallback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mold\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1093\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mrv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1094\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/basic.py\u001b[0m in \u001b[0;36mfallback\u001b[0;34m(self, old, new)\u001b[0m\n\u001b[1;32m 1067\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1068\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhit\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1069\u001b[0;31m \u001b[0mrv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1070\u001b[0m \u001b[0mhack2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhints\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'hack2'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhack2\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_Mul\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mrv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_Mul\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# 2-arg hack\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/operations.py\u001b[0m in \u001b[0;36m__new__\u001b[0;34m(cls, *args, **options)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mc_part\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnc_part\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder_symbols\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflatten\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0mis_commutative\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mnc_part\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_from_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mc_part\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mnc_part\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mis_commutative\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/mul.py\u001b[0m in \u001b[0;36mflatten\u001b[0;34m(cls, seq)\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[0mseq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 196\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mS\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOne\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 197\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_Rational\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 198\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_coeff_Mul\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_Add\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 500\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 501\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 502\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_all_facts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/add.py\u001b[0m in \u001b[0;36m_eval_is_extended_positive\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnonneg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnonpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munknown_sign\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0msaw_INF\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 651\u001b[0;31m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0ma\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 652\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 653\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/add.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnonneg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnonpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munknown_sign\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0msaw_INF\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 651\u001b[0;31m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0ma\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 652\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 653\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 500\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 501\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 502\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_all_facts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/power.py\u001b[0m in \u001b[0;36m_eval_is_algebraic\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1307\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1308\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1309\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_is_one\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1310\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1311\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_rational\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/power.py\u001b[0m in \u001b[0;36m_is_one\u001b[0;34m(expr)\u001b[0m\n\u001b[1;32m 1302\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_is_one\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1303\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1304\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mexpr\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1305\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1306\u001b[0m \u001b[0;31m# when the operation is not allowed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 500\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 501\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 502\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_all_facts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/expr.py\u001b[0m in \u001b[0;36m_eval_is_negative\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 869\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinite\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 870\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 871\u001b[0;31m \u001b[0mextended_negative\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_extended_negative\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 872\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinite\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 873\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mextended_negative\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 500\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 501\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 502\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_all_facts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/add.py\u001b[0m in \u001b[0;36m_eval_is_extended_negative\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 722\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_coeff_Add\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 723\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_zero\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 724\u001b[0;31m \u001b[0mv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_monotonic_sign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 725\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 726\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mv\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/exprtools.py\u001b[0m in \u001b[0;36m_monotonic_sign\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0;34m>>\u001b[0m\u001b[0;34m>\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# could be negative, zero or positive\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \"\"\"\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_extended_real\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0;32mreturn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mhandler_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[0;31m# we might have found the value of fact\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 500\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 501\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 502\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_all_facts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/expr.py\u001b[0m in \u001b[0;36m_eval_is_positive\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 856\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 857\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_eval_is_positive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 858\u001b[0;31m \u001b[0mfinite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_finite\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 859\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinite\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 860\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36mgetit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_assumptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_assumptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_ask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0mgetit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mas_property\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/site-packages/sympy/core/assumptions.py\u001b[0m in \u001b[0;36m_ask\u001b[0;34m(fact, obj)\u001b[0m\n\u001b[1;32m 506\u001b[0m \u001b[0;31m# Try assumption's prerequisites\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 507\u001b[0m \u001b[0mprereq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_assume_rules\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprereq\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfact\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 508\u001b[0;31m \u001b[0mshuffle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprereq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 509\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mprereq\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0massumptions\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/random.py\u001b[0m in \u001b[0;36mshuffle\u001b[0;34m(self, x, random)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mreversed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0;31m# pick an element in x[:i+1] with which to exchange x[i]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 306\u001b[0;31m \u001b[0mj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrandbelow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/walberla_dev/lib/python3.8/random.py\u001b[0m in \u001b[0;36m_randbelow_with_getrandbits\u001b[0;34m(self, n)\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[0mgetrandbits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetrandbits\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0mk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbit_length\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# don't use (n-1) here because n can be 1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 255\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetrandbits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 0 <= r < 2**k\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 256\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetrandbits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], "source": [ "init = pdf_initialization_assignments(method, 1.0, initial_velocity, src.center_vector)\n", "\n", @@ -672,7 +634,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -694,7 +656,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -706,12 +668,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC0MAAAPhCAYAAACB15VPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACbyElEQVR4nOzdaZSdVZk3/GvXkFRlJhBCEmZiBiaRQFoBRQQHRFrBbgVZbTMqr75qi0Yc8Gn1sR9oA62CrTTdCLzd+oC0uNAo3SCgMmkGEGlCgkJkCkMChEyVpCq13w85BYdKTRmqTm3y+6111tn3va/7uq+TRL/4X9uUcw4AAAAAAAAAAAAAgNLU1XoAAAAAAAAAAAAAAICtIQwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAitRQ6wF2FCmloRFxUOVyWURsrOE4AAAAAAAAAAAA7DjqI2JcZf1Aznl9LYcB2J6EoQfOQRExr9ZDAAAAAAAAAAAAsEM7PCLm13oIgO2lrtYDAAAAAAAAAAAAAABsDSdDD5xlHYu5c+fGhAkTajkLAAAAAAAAAAAAO4inn346Zs6c2XG5rKdagNIIQw+cjR2LCRMmxO67717LWQAAAAAAAAAAANgxbey9BKAcdbUeAAAAAAAAAAAAAABgawhDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEgNtR5gR/THo98aqxobaz0GAAAAAAAAAAAAO4BnWltrPQJAv+nXk6FTSrumlN6TUvpaSummlNLylFKufK7uY4+mlNJ7U0qXpZR+l1J6IaXUWvm+J6X0lZTShC2YaVhKaVZKaW6lx+qU0kMppYtTSntu9Y8FAAAAAAAAAAAAAAZUf58M/ey2PJxSOjgi7oyIkV1s7xQRb6x8zkspnZ1z/lEv/faLiJ9HxNROW9Mqn7NTSh/KOf9iW+YGAAAAAAAAAAAAAPpfv54M3ckTEXHzFj4zKl4JQt8VEV+IiLdHxKER8c6I+JeI2Fip+WFK6fjuGqWURkTEnHglCP2vEXFsRBwREV+KiNURMToirq+EsAEAAAAAAAAAAACAQay/T4b+WkTMi4h5OednU0p7R8SSLXi+PSJ+FBFfzTkv7GL/5pTSTRHxk4ioj4jLUkqvyznnLmo/G5tOf46I+FzOeXbV3j0ppdsj4jcRMSwivhURb9uCOQEAAAAAAAAAAACAAdavJ0PnnP8+5zwn5/zsVj5/d875g90EoTtqboyIGyqX+0XEIZ1rUkqNEfGpyuVDEXFJF33uiYgrK5fHpJRmbM3MAAAAAAAAAAAAAMDA6Ncw9AC6vWq9Xxf7b42IMZX1NTnn9m76XF21PnmbpwIAAAAAAAAAAAAA+k1DrQfYToZWrbsKOr+5av3rHvrMj4g1ETE8Io7aDnN1Kb/hkcjDN7//7glz+uuVAAAAAAAAAAAA7ABGTv/8ZvdaX8gR59VgGIAB8Fo5GfroqvWiLvan97IfERE557aIeKSLZwAAAAAAAAAAAACAQab4k6FTSq+PiBMqlw/mnBd2UbZH5XtNznlFLy2fiIiDI2JcSmloznl9H+fYvZeS3frSBwAAAAAAAAAAAADom6LD0CmloRHxbxFRX7n1xW5KR1a+V/eh7Zqq9YiI6FMYOjaFqAEAAAAAAAAAAACAAVJX6wG20Xci4rDK+pqc80+7qWuqfG/oQ8/q8HPz1g4GAAAAAAAAAAAAAPSvYk+GTil9ISLOrlwuiIiP91C+rvI9pA+th1atW7ZgpD162d8tIuZtQT8AAAAAAAAAAAAAoAdFhqFTSh+NiP9TuVwcEcfnnNf08MiqyveIPrQfXrVe3deZcs5P9rSfUuprKwAAAAAAAAAAAACgD+pqPcCWSimdGhHfrVw+FhHH5ZyX9fJYR1B5eEppTC+1HSc8L8s5r9+6KQEAAAAAAAAAAACA/lZUGDql9JcR8f/FprmfjohjezuRuWJh1XpaD/0bImK/yuVDWzsnAAAAAAAAAAAAAND/iglDp5SOjYgfRURDRDwfEW/POT/Sx8fvrFof3UPdYRExvLK+a4uHBAAAAAAAAAAAAAAGTBFh6JTSERFxY0QMjYiVEfHOnPODW9DiVxHxUmX9tyml1E3d6VXrn2zhmAAAAAAAAAAAAADAABr0YeiU0iER8fPYdGLzmoh4d855wZb0yDlviIhLK5fTI+KzXbznTRFxVuXy1znneVs7MwAAAAAAAAAAAADQ/xr6s3lK6aiImFx1a5eq9eSU0unV9Tnnqzs9v19E/HdEjKncuiAiXkopHdjDa5/LOT/Xxf3ZEfHBiJgSEd9IKU2OiGsjoiUijomIL8amP4+WiPi7HvoDAAAAAAAAAAAAAINAv4ahI+LsiPjbbvaOrHyqXd3p+s0RsWvV9Tf78M6vRsRXOt/MOa9KKZ0QEb+IiNdFxEcqn2orI+K0nPPv+/AeAAAAAAAAAAAAAKCG6mo9wEDKOf8pIt4QEedHxPyIWBERayNicWwKWh+cc55TswEBAAAAAAAAAAAAgD7r15Ohc86nR8Tp2/D81bH5adHbJOe8JiK+UfkAAAAAAAAAAAAAAIXaoU6GBgAAAAAAAAAAAABeO4ShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABF6tcwdEpp15TSe1JKX0sp3ZRSWp5SypXP1VvR710ppRtSSk+mlNZXvm9IKb1rC3oMSynNSinNTSm9kFJanVJ6KKV0cUppzy2dCQAAAAAAAAAAAACojYZ+7v/s9miSUkoRcXlEfKTT1qSIOCkiTkopXRER5+accw999ouIn0fE1E5b0yqfs1NKH8o5/2J7zA0AAAAAAAAAAAAA9J9+PRm6kyci4uatfPbr8UoQ+r6IODUiZla+76vc/0hE/O/uGqSURkTEnHglCP2vEXFsRBwREV+KiNURMToirk8pHbyVcwIAAAAAAAAAAAAAA6S/T4b+WkTMi4h5OednU0p7R8SSLWmQUpocEZ+rXM6PiLfknFsq1/NSSj+NiF9HxGERcX5K6aqc8yNdtPpsbDr9OSLicznn2VV796SUbo+I30TEsIj4VkS8bUvmBAAAAAAAAAAAAAAGVr+eDJ1z/vuc85yc87Pb0ObT8Upo+xNVQeiOd6yNiE9ULhsi4u86N0gpNUbEpyqXD0XEJV3Mek9EXFm5PCalNGMbZgYAAAAAAAAAAAAA+lm/hqG3VUopRcR7K5eLcs6/7aqucn9x5fJ9leeqvTUixlTW1+Sc27t55dVV65O3dF4AAAAAAAAAAAAAYOAM6jB0ROwTEZMq61/3Utuxv3tE7N1p781d1HVlfkSsqayP6sN8AAAAAAAAAAAAAECNDPYw9PSq9aJeaqv3p3fa61OfnHNbRDzSTQ8AAAAAAAAAAAAAYBBpqPUAvdijav1kL7VPdPNc9fWanPOKPvQ5OCLGpZSG5pzX9zplRKSUdu+lZLe+9AEAAAAAAAAAAAAA+mawh6FHVq1X91K7pmo9ops+vfXoqk+fwtDx6jA2AAAAAAAAAAAAANDP6mo9QC+aqtYbeqmtDi03d9Ontx699QEAAAAAAAAAAAAABonBfjL0uqr1kF5qh1atW7rp01uP3vr0ZI9e9neLiHlb0A8AAAAAAAAAAAAA6MFgD0OvqlqP6KV2eNV6dTd9euvRW59u5Zyf7Gk/pdTXVgAAAAAAAAAAAABAH9TVeoBeVAeMd++ltvpk5ie66TM8pTSmj32W5ZzX91ILAAAAAAAAAAAAANTIYA9DL6xaT+ultnr/oa3pk1JqiIj9uukBAAAAAAAAAAAAAAwigz0MvSQillbWR/dS+5bK91MR8edOe3dWrXvqc1hEDK+s7+rDfAAAAAAAAAAAAABAjQzqMHTOOUfEjZXLaSmlN3ZVV7nfceLzjZXnqv0qIl6qrP82pZS6eeXpVeufbPHAAAAAAAAAAAAAAMCAGdRh6IpvRURbZX1ZSqm5erNyfVnlsq1S/yo55w0RcWnlcnpEfLZzTUrpTRFxVuXy1znneds6OAAAAAAAAAAAAADQfxr6s3lK6aiImFx1a5eq9eSU0unV9Tnnqzv3yDk/nFK6OCI+HxGHRcRdKaV/jIhHImK/iDg/It5QKZ+dc/5jN+PMjogPRsSUiPhGSmlyRFwbES0RcUxEfDE2/Xm0RMTf9flHAgAAAAAAAAAAAAA10a9h6Ig4OyL+tpu9Iyufald3U/uliNg1Is6MTcHna7uouTIiLuhukJzzqpTSCRHxi4h4XUR8pPKptjIiTss5/767PgAAAAAAAAAAAADA4FBX6wH6IufcnnM+KyJOiIgbI2JpRGyofN8YEe/OOZ+dc27vpc+fYlOY+vyImB8RKyJibUQsjohvRsTBOec5/fU7AAAAAAAAAAAAAIDtp19Phs45nx4Rp2/Hfr+ITSc7b0uPNRHxjcoHAAAAAAAAAAAAAChUESdDAwAAAAAAAAAAAAB0JgwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAAChSUWHolNKQlNJZKaX/Sik9nVJan1JanVJanFL6fkrpjX3s866U0g0ppScrPZ6sXL+rv38DAAAAAAAAAAAAALB9NNR6gL5KKe0RET+PiIM6bQ2JiCmVzxkppW9GxGdyzrmLHikiLo+Ij3TamhQRJ0XESSmlKyLi3K6eBwAAAAAAAAAAAAAGjyJOhk4pNcSrg9B/iIjTI+JNEfGOiPhaRKyp7H06Ij7bTauvxytB6Psi4tSImFn5vq9y/yMR8b+33/QAAAAAAAAAAAAAQH8o5WTo98YrQeh7IuLNOeeNVfu3pJR+WtlrjIgvpJS+mXNu6yhIKU2OiM9VLudHxFtyzi2V63mV538dEYdFxPkppatyzo/0308CAAAAAAAAAAAAALZFESdDR8SRVesLOwWhIyIi57wgIuZULneKiGmdSj4dr4S/P1EVhO54fm1EfKJy2RARf7eNMwMAAAAAAAAAAAAA/aiUMPSQqvWjPdRVn+Q8tGORUkqx6XTpiIhFOeffdvVw5f7iyuX7Ks8BAAAAAAAAAAAAAINQKWHoh6vW+/ZQt1/lO0fEH6vu7xMRkyrrX/fyro793SNi7z7OBwAAAAAAAAAAAAAMsFLC0P83IlZW1uenlOo7F6SU3hARJ1Qur805r6zanl61XtTLu6r3p3dbBQAAAAAAAAAAAADUVEOtB+iLnPOylNLpEfGDiDgyIuallL4Vm06MHlG595mIGBIRv4+I8zq12KNq/WQvr3uim+d6lFLavZeS3fraCwAAAAAAAAAAAADoXRFh6IiInPNPUkqHxaag85kRcU2nkmcj4u8j4oqc85pOeyOr1qt7eVX1syO2YMQnei8BAAAAAAAAAAAAALaXuloP0FcppcaI+FBEnBgRqYuS8RFxakS8tYu9pqr1hl5etb5q3bwFIwIAAAAAAAAAAAAAA6iIMHRKaXhE/DIivhQRO0fENyJiekQMjYjREfGOiLgzIg6PiJ+llD7VqcW6qvWQXl43tGrdsgVj7tHL5/At6AUAAAAAAAAAAAAA9KKh1gP00Vcj4i2V9Vk552uq9jZExC0ppdsj4uaIOCYi/imldHvO+Q+VmlVV9SN6edfwqvXqvg6Yc36yp/2UujrMGgAAAAAAAAAAAADYWoP+ZOi0KUV8RuXy4U5B6JflnNsi4suVy7qqZyIiqoPKu/fyyj2q1k9swagAAAAAAAAAAAAAwAAa9GHoiBgfEWMr6/t6qV1QtZ5WtV7Yzf2uVO8/1EstAAAAAAAAAAAAAFAjJYSh26rWDb3UNnbz3JKIWFpZH91Lj7dUvp+KiD/3NhwAAAAAAAAAAAAAUBslhKFfiIiVlfWbUko9BaKrg85LOhY55xwRN1Yup6WU3tjVw5X7HSdD31h5DgAAAAAAAAAAAAAYhAZ9GDrn3B4RP69cToyIL3VVl1LaKSL+serWnE4l34pXTou+LKXU3On55oi4rHLZVqkHAAAAAAAAAAAAAAapQR+GrvhaRKytrL+SUvppSun9KaU3pJTelFL6dET8PiL2r9TcmnO+ubpBzvnhiLi4cnlYRNyVUvpgSumwlNIHI+Kuyv2IiNk55z/25w8CAAAAAAAAAAAAALZNQ60H6Iuc86KU0nsj4v9GxC4RcWLl05XbIuKvu9n7UkTsGhFnRsQbIuLaLmqujIgLtmlgAAAAAAAAAAAAAKDflXIydOScfxkR0yLi/Ij4VUQsi4jWiGiJiCUR8aOIeF9EHJdzfrGbHu0557Mi4oSIuDEilkbEhsr3jRHx7pzz2Tnn9n79MQAAAAAAAAAAAADANiviZOgOOefnI+Iblc+29PlFRPxiuwwFAAAAAAAAAAAAANREMSdDAwAAAAAAAAAAAABUE4YGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACK1FDrAQAAAOhfs1Y013qEfjF7TEutRwAAAAAAAACgxpwMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCI11HoAAAAAXjFrRXOtRyhGf/xZzR7Tst17AgAAAAAAANB/nAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIjXUegAAAIAdzawVzbUegW709Hcze0zLAE4CAAAAAAAAQF84GRoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFaqj1AAAAAKWataK51iMwgLbm73v2mJZ+mAQAAAAAAACADk6GBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJEaaj0AAADAYDdrRXOtR6BQPf3bmT2mZQAnAQAAAAAAAHhtcjI0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEVqqPUAAAAAg8GsFc21HoEdTE//5maPaRnASQAAAAAAAADK5WRoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAitRQ6wEAAAAGyqwVzbUeAfqkp3+rs8e0DOAkAAAAAAAAAIObk6EBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQpIZaDwAAALA9zVrRXOsRoF/19G989piWAZwEAAAAAAAAoPacDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIDbUeAAAAYEvNWtFc6xFgUOrpPxuzx7QM4CQAAAAAAAAAA8PJ0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIpUXBg6pbRLSulzKaW7UkrPpJTWp5SWppR+l1KanVJ6Ux96vCuldENK6cnK809Wrt81EL8BAAAAAAAAAAAAANh2DbUeYEuklP46Ir4XETt32ppQ+cyMiNdFxPu6eT5FxOUR8ZFOW5Mi4qSIOCmldEVEnJtzzttvcgAAAAAAAAAAAABgeysmDJ1S+nBEXBWbTrN+LjaFou+MiBciYreI2C8iToyI1h7afD1eCULfFxHfiIhHKs9+LiLeUNlfFhEXbPcfAQAAAAAAAAAAAABsN0WEoVNK0yPiitgUhL4jIk7MOb/URellKaUh3fSYHJsCzxER8yPiLTnnlsr1vJTSTyPi1xFxWEScn1K6Kuf8yPb8HQAAAAAAAAAAAADA9lNX6wH66LKIGBoRyyPi5G6C0BERkXPe0M3Wp+OV8PcnqoLQHc+tjYhPVC4bIuLvtmVgAAAAAAAAAAAAAKB/DfowdEppWkQcW7n8Ts55+Vb0SBHx3srlopzzb7uqq9xfXLl8X+U5AAAAAAAAAAAAAGAQaui9pOb+ump9fccipbRTROwSES/knJ/vpcc+ETGpsv51L7W/joipEbF7ROwdEUu2ZFgAAAAAAAAAAACgfy1YsKAhImZGxHERcWBEjKjtREAP1kbEExHx24i4e8aMGU9sz+YlhKHfWPl+KSIeSimdFhGfi4iDOwpSSksi4pqIuCTnvLqLHtOr1ot6eV/1/vQQhgYAAAAAAAAAAIBBY8GCBcMi4tKIOCSlNKS+vn54RNTXeCyge+3t7e37t7e3vyUi8oIFCy6PiCtnzJiRt0fzEsLQ+1e+/xwRl0XEx7uo2ScivhIRf5VSemfOeWmn/T2q1k/28r7qtPke3VZ1klLavZeS3fraCwAAAAAAAAAAANhc5UToSyPi0CFDhuxeV1c3PKWU6+rqNqaUtkuwEtiuUnt7e117e3tdRLS3tbU939bWdm5E7B6bsr/brIQw9NjK97SIeH1ErIiIz0fEDRGxMiIOioivRcTxsemo++tTSm/OObdX9RhZte7q5Ohqa6rWW3Js/nY9shsAAAAAAAAAAADYzMyIOGTIkCG7NzY2No0fP/6p0aNHr6qrqxOEhkEq5xwtLS1DX3rppdEvvPDCuJRSQ2tr63sWLFjw7zNmzHhkW/vXbY8h+9nwyvfQiNgYEcfnnP8l57ws57w+5zw/It4TETdV6o6IiJM79WiqWm/o5X3rq9bNWzkzAAAAAAAAAAAAsP0dl1IaUldXN3z8+PHP7LTTTisFoWFwSynFsGHD1k+YMOG5cePGPVdfXz8mIupj87zvVikhDL2uan19zvm3nQsqp0DPqrp1ag89hvTyvqFV65Y+TbjJHr18Dt+CXgAAAAAAAAAAAMDmDqyvrx+eUsqjR49eVethgC0zduzYFyMi1dfXj4yIN2yPng3bo0k/WxWvnA59U3dFOecHU0pPRcSk2Dx4XP1feCN6ed/wqvXqvg6Zc36yp/2UUl9bAQAAAAAAAAAAAF0bERH1dXV1G50IDeVpaGhor6+vb2tra2uIiNHbo2cJJ0M/UbXuMXBcVbtrp/vVz+3eS489unk3AAAAAAAAAAAAMAiklAShoVBV//ndLicNlxCGfrBqXd9Lbcd+W6f7C6vW03rpUb3/UC+1AAAAAAAAAAAAAECNlBCG/k3Ver9eavetfD/V6f6SiFhaWR/dS4+3VPX4c2/DAQAAAAAAAAAAAAC1UUIY+qcR0VpZn9xdUUrp6IjYuXJ5R/VezjlHxI2Vy2kppTd20+ON8crJ0DdWngMAAAAAAAAAAAAABqFBH4bOOT8fEf9WuXx7SumUzjUppZER8a2qW//SRatvRURbZX1ZSqm5U4/miLisctnWqR8AAAAAAAAAAAAAMMgM+jB0xd9HxOOV9b+nlC5LKR2TUpqRUjo9IuZGxCGV/e/lnOd1bpBzfjgiLq5cHhYRd6WUPphSOiyl9MGIuKtyPyJids75j/30WwAAAAAAAAAAAABeMy699NKdK5nOGYsXLx5S63lqbebMmVNTSjNmzpw5tdaz7Agaaj1AX+Scl6WU3hURP42IyRHx/1Y+nX0/Ij7VQ6svRcSuEXFmRLwhIq7toubKiLhgmwYGAAAAAAAAAAAAaurt//Tr6S+s3dBY6zn629hhQ1pvOe/oh2o9B9RKEWHoiIic80MppUMi4v+JiL+KiNdFxIiIeC42ner8Lznn23vp0R4RZ6WUfhwRH4mIwyNil4hYHhHzKj1u6rcfAQAAAAAAAAAAAAyIF9ZuaHx+9Ws/DA07umLC0BEROec1EXFx5bMtfX4REb/YLkMBAAAAAAAAAAAAQMXcuXMX13qGHUldrQcAAAAAAAAAAAAAANgawtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAADo1rJly+o/9rGPTdpnn30OaGpqOnTs2LGvP+KII6Z8//vf36mvPRYvXjzkrLPO2mPy5MkHDB8+/A3Nzc1v2GuvvQ780Ic+tNfcuXObe3o2pTQjpTTjvPPOmxgR8bOf/Wzkcccdt9+uu+56cFNT06H77rvvAbNmzZqwcuXKV+Vir7vuutFHH3305I66/fbb74AvfOELu61bty51965169alH/7wh6M//OEP73nggQdOHzVq1CENDQ2Hjhkz5pCDDz542nnnnTfx6aefbuhp3pkzZ05NKc2YOXPm1K7+HDp+z6WXXrpzRMRPfvKTUW9729sm77LLLq8fMmTIoZMmTTrotNNO2/ORRx5p7Ok9bNLjXwYAAAAAAAAAAAAAO64FCxY0HX/88VOWLVv2cjB3/fr1Dffcc8/Ie+65Z+R//dd/LT/qqKNW99TjO9/5zs6f+cxn9tqwYcOrQsiPP/740Mcff3zoj370o11mzZr11IUXXvhMb/N88Ytf3O2iiy6alHN++d6SJUuaLr744om33nrr6Ntvv/3hkSNHtp999tl7XHXVVbtWP/voo482XXTRRZPuuuuukbfddtsfGxo2j9Gedtppe91www07d77/0ksv1T/wwAPDH3jggeFXXXXVuOuuu+5P73jHO9b0Nm9vPvaxj0363ve+t1v1vaVLlw754Q9/OO6mm27a6Ze//OXiQw89dN22vue1TBgaAAAAAAAAAAAAgM08//zz9SeccMLLQegTTjjhxQ9/+MPLJ0yY0LZw4cKmyy67bPz111+/y0MPPTSsux7XXnvt6E9+8pN755xj2LBh7R/96Eeffec737myoaEh33HHHSO+/e1v77ZixYqGiy66aNKYMWM2nn/++cu66/XLX/5y1AMPPDD8kEMOWXPuuec+t//++6977rnnGi699NJdf/Ob34y+7777hn/5y1/ebezYsRuvuuqqXd/ylre8dOaZZy7fb7/9Njz22GONs2fPnnD//fcPv+OOO0b90z/907jPfe5zm72rra0t7b777uuPP/74FTNnzlyzzz77bGhsbMyPPvrokFtuuWXU9ddfv8uKFSsaTjnllMkPPPDAg5MmTWrb2j/fq6++etx99903/PDDD1991llnLdt///3XvfDCC/XXXHPNzj/5yU92fvHFFxvOPPPMvX//+98v2tp37AhSdTKe/pNS2j0inoiIuPX9EbsN37zm3RPmDPBUAABQplkrevx/SAK6MHtMS61HAAAAAAAABsDI6Z/f7F7rC62x+LzFHZd75JyfHNChtqMFCxb8oqGhYf+mpqYxU6dO/VNPtTO+fsvBz6/e0NhTzWvBziOGtC644O1/6I/e55xzzu7/9m//Nj4i4vOf//xmJzevX78+HXvssZPvuuuuUR33Fi1a9MDUqVM3dOzvueeeBz333HONw4YNa7/lllsWHXHEEa/6H64efvjhIUcdddS0ZcuWNTY1NbU/+uijD0yYMOFVAeOU0oyO9Tvf+c4X58yZ82j1qc5tbW1x2GGHTbv//vuHDx8+vL2trS2ddtppy6688sonqvusWrWqbtq0aQcsXbp0yJQpU1oWL168sPNvfvDBB4dOnz59fV1dXZd/JnPnzm0+5phjpq1du7buk5/85NPf/va3l3aumTlz5tR58+aNOPzww1fPnTt3cfXe4sWLh0ybNu2gjutTTjll+Q9+8IPHOr/vlFNO2eu6667bJSLizjvvXHjkkUe+Zv4Hv8WLF09et27dira2toUzZsx497b26/pvCgAAAAAAAAAAAIAdVktLS/rRj360S0TElClTWr7+9a8/07lm6NCh+ZprrvlzQ0NDlyfz/vu///uY5557rjEi4lOf+tTTnYPQld4bvvrVrz4ZEbFu3bq67373uzt3N1NTU1P7Nddc81h1EDoioqGhIc4888xlERFr1qyp22mnnVq/+93vbhb6HzlyZPsHPvCB5yMiHn744ebnn3++vnPNAQcc0G0QOiJi5syZLaeccsryiIibbrppTLeFfTBu3LjW73//+4939b4vfOELL/9533777SO35T2vdcLQAAAAAAAAAAAAALzKnXfeOWzlypX1ERGnnnrq8/X1m+WGIyJiv/32az3qqKNWdrV36623joqISCnFxz/+8eXdveuMM854ccSIERsjIm6//fZR3dUdeeSRK8ePH7+xq71DDz305aD18ccfv2Lo0KFdBrQPOeSQtR3rxYsXD+nuXR2WLVtW/+CDDw6dP39+07x585rmzZvXNGbMmLaIiEceeaR5/fr1qbce3Xn3u9/9YnNzc5dzvv71r18/bNiw9oiIRx99dOjWvmNH0NB7CQAAAAAAAAAAAAA7kt///vfNHes3vvGNa3qqnTFjxppf/epXozvfX7RoUXNExMSJEzdMmjSprbvnm5qa8v7777927ty5Ix9++OHm7uomT568vru9sWPHvtx/ypQp67qr22mnnV4OU3eEvTubO3du8+zZs8f/6le/GrV8+fLG7nq1t7fH8uXL63v6bT2ZNm1at3NGRIwaNapt7dq1Q1avXu3w4x4IQwMAAAAAAAAAAADwKi+++OLLGdMJEya09lQ7fvz4LvdXrFhRHxGxyy679Ph8RMSuu+7aGhGxcuXKbrOtHScld6X65Oqe6urqXskVt7W1bXaq8ze/+c1dZs2atefGjRv7dOLzmjVrtjqo3NOcEa/M2tdZdlSS4gAAAAAAAAAAAAC8Ss755XVKPWdxc849FvT2fF96DIT77ruvqSMIPXbs2LYvf/nLT95xxx0PPfPMM79ft27dvTnnBTnnBd/85jf/3PFM9Z8TteFkaAAAoDizx7R0uzdrRbf/j0nwmtfTfzYAAAAAAABgS4wdO7atY7106dLGgw8+eH13tc8991yXedQxY8ZsjIhYtmxZY2/vW7ZsWUNExKhRo9p6q+0v//qv/7rzxo0bU319fdxyyy2LDz300HVd1VWfmk3tORkaAAAAAAAAAAAAgFc55JBDXj6J57e//e3wnmrvvffeLvenTZvWEhGxdOnSIU899VS3AeL169enhQsXDouImDJlSs1OAFq0aFFzRMTUqVPXdheEjoi49957hw3cVPRGGBoAAAAAAAAAAACAVznqqKPWjho1amNExHXXXbdze3t7l3VLlixpvPPOO0d1tXfssceujIjIOcc///M/79Ldu66++uqdVq9eXR8Rccwxx6zc5uG3UltbW4qIaGlp6TZf+/jjjzf88pe/HDNgQ9ErYWgAAAAAAAAAAAAAXqW5uTl/4AMfWB6x6cTk//W//tf4zjWtra1x+umn79Xa2pq66vE3f/M3K8aNG9caEXHppZdOuOeee5o71/zpT39q/PKXv7x7RERTU1P7xz72see37y/pu3333XddRMRjjz3WdOutt2522vWqVavqPvCBD+y7bt06+dtBxF8GAAAAAAAAAAAAAJu56KKLnh4/fnxrRMQ//MM/7H7iiSfu85//+Z+j7rzzzmFXXHHFToceeuj03/zmN6MPPPDAtV09P3To0HzppZc+llKKNWvW1B133HHTPvvZz064+eabh992223Dv/rVr+76F3/xF/svW7asMSLiK1/5ypMTJkxoG8jfWO2MM854PiKivb09Tj755Nd98Ytf3O2mm24acfvttw/7x3/8x3EHHXTQ/r/73e9GHnrooatrNSOba6j1AAAAAAAAAAAAAAAMPjvvvPPGOXPmPHz88cdPWb58eeOcOXPGzpkzZ2x1zV/91V89/+Y3v3nVpz71qb276nHKKae8tGzZsj9/9rOf3Wvt2rV1l1xyycRLLrlkYnVNfX19zJo166nzzz9/WT/+nF4dffTRaz/zmc8sveSSSyauXLmy/sILL5x04YUXvqrmnHPOefbAAw9suffee0fUaEw6cTI0AAAAAAAAAAAAAF067LDD1v3P//zPg+eee+4ze+211/ohQ4bkMWPGtP3FX/zFqssvv3zJ9ddf/+feenziE594/g9/+MP/nHHGGc/tu+++65qbm9ubmpra99hjj/WnnHLK8rvvvnvhhRde+MwA/JxeXXzxxU9fe+21fzryyCNXjho1amNjY2MeP3586zve8Y4VN9xwwx+vuOKKJ2s9I6+Wcs61nmGHkFLaPSKeiIi49f0Ruw3fvObdE+YM8FQAAPDaM2tFc61HgJqZPaal1iMAAAAAAAA1NnL65ze71/pCayw+b3HH5R4552LDnAsWLPhFQ0PD/k1NTWOmTp36p55qZ3z9loOfX72hcaBmq5WdRwxpXXDB2/9Q6zmgrxYvXjx53bp1K9ra2hbOmDHj3dvar2F7DAUAAAAAAAAAAAAwmIwdNqS11jMMhB3ld0J3hKEBAAAAAAAAAACA15xbzjv6oVrPAPS/uloPAAAAAAAAAAAAAACwNYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARWqo9QAAAADb0+wxLd3uzVrRPICTQP/o6d84AAAAAAAAwI7GydAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAoUkOtBwAAABgos8e0dLs3a0XzAE4CPevp3yoAAAAAAAB988gXD5zetmpZY63n6G8NI8e17vd//ueh/uj9/ve/f+8bbrhh54iIRYsWPTB16tQNvT0zadKkg5YuXTpk4sSJG5566qkHqvdSSjO6e27o0KF5zJgxbfvvv//a97///S989KMffaGhofuYa8d7utprbGzMo0ePbpsyZUrLX/7lX674+Mc/vnzEiBG5t9kpkzA0AAAAAAAAAAAA8JrTtmpZ48aVz73mw9CvFevXr0/PPvts47PPPjv69ttvH/29731v/M033/zHiRMntm1pr9bW1rR8+fLG5cuXN959992jvvvd746fM2fOHw866KD1/TE7tSUMDQAAAAAAAAAAAMCAOeCAA9ZeddVVS6rvrVy5sv7+++9vvuKKK3ZdvHhx84MPPjjsve99737z5s1b3FOvcePGtf785z9/uPre2rVr6x588MGmq666atz8+fNHPP7440NPPPHE1z300EMPNjc3OyH6NUYYGgAAAAAAAAAAAIABM2zYsPbDDz98Xef7xx577Jpzzjnnhde//vXTlyxZ0jR//vwRt9122/C3ve1ta7rr1djYmLvqdfTRR6/96Ec/+sIRRxwxZe7cuSMfe+yxof/xH/8x5pxzznlxe/8eaquu1gMAAAAAAAAAAAAAQETEyJEj288555znOq7vvvvu4Vvbq76+Pj796U8/23H9u9/9bqt7MXgJQwMAAAAAAAAAAAAwaOyzzz4bOtbr1q1L29Jr8uTJ66t6yc2+BvlLBQAAAAAAAAAAAGDQWLJkyZCO9Z577rmhp9re/OlPfxq6vXoxOAlDAwAAAAAAAAAAADAorF69Ol155ZW7RkQ0NTW1v+c971m1tb3a29vj29/+9viIiJRSnHTSSSu205gMIg21HgAAAAAAAAAAAACAHcfatWvr5s2b11R9b/Xq1XX3339/8xVXXLHrI4880pRSigsuuOCpiRMntvXUq7W1NXXu1dLSUrdw4cKmq6++epff/e53IyMizj777GcPP/zwddv/11BrwtAAAAAAAAAAAAAADJgHH3xw2MyZMw/obv+II45YOWvWrGfe97739Xoq9LJlyxp76nXggQeuPe+8854544wzXtzaeRnc6mo9AAAAAAAAAAAAAAB0mDt37sjLL7983JIlSxq3tdfChQuHXXnllbvMnz+/qfdqSiQMDQAAAAAAAAAAAMCAOfzww1fnnBdUf9atW3fvokWLHrjwwgsfHzFixMb//u//3ulNb3rT9D/84Q9De+o1ceLEDZ17bdiwYcGjjz76h+985ztLdttttw133XXXqLe97W3TbrnlluED9RsZOMLQAAAAAAAAAAAAAGwmpbTFz+Sct+pdQ4cOzVOnTt3w+c9/ftktt9yyuKGhIT/77LONZ5555t5b2quxsTH22Wef1o9//OMv3H333YtGjx69cdWqVfVnnHHGvq2trVs1H4OXMDQAAAAAAAAAAAAAm2lqamrvWK9evbpPmdOWlpa6iIhhw4a191bbncMOO2zd0Ucf/VJExIIFC0Y88MADPZ4O3ZO99tqr9eSTT34+IuKpp54aMmfOnFFb24vBqaHWAwAAAAwGs8e0dLs3a0XzAE7CjqKnf3MAAAAAAAAwGIwdO7atY/3UU081zpgxY11P9S0tLWnVqlUNERGjR49u66m2N1OmTFl36623RkTEvffe23zQQQet39pe06ZNe3nu+++/v/mkk05auS2zMbg4GRoAAAAAAAAAAACAzRx88MEvn/Azf/78Yb3V//a3v23euHFjRETsv//+23Q6UFtbW+pYb9iwIfVU24deL69bW1u3qReDjzA0AAAAAAAAAAAAAJt5xzvesaq+vj5HRPz4xz8e297e3mP9Nddcs3PH+rjjjtum05fvu+++4R3rvffee8O29Jo/f/7LvfbYY49t6sXgIwwNAAAAAAAAAAAAwGb23HPPtuOPP/7FiIiFCxcO+9KXvrRbd7U//elPR/7gBz8YFxExceLEDaeeeuqKrX3vtddeO3r+/PkjIiLGjBnT9ta3vnXN1va68847h/385z8fGxHR2NiYTzzxxG0KaTP4NNR6AAAAAAAAAAAAAAAGp+985ztP3n333aNeeOGFhosuumjSHXfcMfLUU099fvr06esbGxvzY489NuRnP/vZ6B//+Mc7b9y4MdXV1cXll1/+58bGxm57rl27tm7evHlN1fc2bNiQHn/88SFz5swZfd111+3Scf+CCy54qqdera2tqXOvtra29PTTTzfefPPNo6655ppxGzZsSBER55577jOTJk1q29o/CwYnYWgAAAAAAAAAAAAAurTXXnu13nbbbYtOPvnkyY8++mjTXXfdNequ/5+9O4/Tuqz3x/++ZgZmgBkWBTEWRVFBrVwQUxJEJbU0176dzGNqi9qmtlm/TuecNsssKys1zdSjebJFTSPN0AxNSMHllBsoLiCogKwDzMDMfH5/zD16i7PCMMOHeT4fDx739bmv63Pd73vQi2tmXnPNAw/0b25sVVVV/VVXXfX8+9///tWtzfnEE0/0PfDAA/dubUxZWVn25S9/eeEXvvCFpa2NW7JkSa+25kopxRlnnLH4xz/+8aLWxpFPwtAAAABt+P7Adc0+/6UVfbq4EvKmpf92AAAAAAAAIE/22Wef2qeffvqJq6++ervbb7994D//+c9+y5YtK6uvr08DBgyo23333WumTJmy8rzzzlu6/fbb12/Ka5SWlkZlZWX9TjvtVHPIIYes/tSnPrX07W9/e+2mzFVSUhJ9+/atHzlyZO348eOrzz777KUTJkzwzbttlDA0AAAAAAAAAAAAAK3q1atXfPKTn1z2yU9+ctmmzpFl2cOdVc/ChQv/1VlzkW/C0AAAAAAAAAAAAMA2p6xqyIburqEr9JT3CS0RhgYAAAAAAAAAAAC2OaO/8/hT3V0DsOWVdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJfKursAAACAvPr+wHWbdN+XVvTp5EroCpv69w0AAAAAAADAluNkaAAAAAAAAAAAAAAgl4ShAQAAAAAAAAAAAIBcEoYGAAAAAAAAAAAAAHJJGBoAAAAAAAAAAAAAyCVhaAAAAAAAAAAAAAAgl4ShAQAAAAAAAAAAAIBcKuvuAgAAAHqa7w9c12Lfl1b06cJK2FhrfzcAAAAAAAAAbH2cDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS2XdXQAAAABv+P7AdZ0+55dW9On0ObcGW+JjBQAAAAAAAGy7qqur03//93/vOHXq1EHz588vr6mpKYmIOPPMMxdfc801C37yk59sf955542KiHj66af/NWbMmPXdWjDtIgwNAAAAAAAAAAAAbHNOuO2EPZfXLO/V3XVsaYMqBm34w/F/eKorXuu1114rveqqq7b785//PODZZ5/ts2zZsrKysrJs++23r3vnO9+55v3vf/+KM888c3lZ2dYXT62trU2TJk0a8+ijj/br7lq2VnPmzOk9duzYd3TkniOOOGLF3XffPW9L1dQeW99/bQAAAAAAAAAAAACbaXnN8l7LapZt82HorvLDH/5w8Le+9a3hK1aseEv2tLq6uvTFF18s/+Mf/7jd9773vZrLLrvsxaOOOqp6S9eUUhoXEfG5z33u5R/+8IeLWht77bXXDmoKQp988smvnXHGGa8NHTp0Q0TE0KFD67Z0rWw5wtAAAAAAAAAAAAAAtOjss88ecdVVVw2NiCgtLc2OPfbY5ccdd9yKXXbZpXb9+vUlTz75ZMXvfve77WbOnFk1b968iuOOO26Pn//858+feeaZy7u79ib33HNP/4iIwYMHb7jpppte2BpPr96aHHHEESu++93vLmxr3MCBAxu6op7W+JsEAAAAAAAAAAAAoFnf/e53hzQFoXfcccf1t9xyy7MHH3zwuuIxRx11VPXnPve5pb/4xS8GffrTn95l/fr16eyzz95lzJgxNRMmTFjX/Mxd6+WXX+4VETFy5Mj1gtBtGzBgQP348eNruruO9ijp7gIAAAAAAAAAAAAA2PrMnTu39ze+8Y2RERF9+/ZtmDZt2tyNg9DFPvGJTyz/2c9+9nxExIYNG9IZZ5yxS0NDtx8cHBER69evL4mIKCsry7q7FjqXMDQAAAAAAAAAAAAAb/G9731vaG1tbYqI+MIXvrDo7W9/e21b95x11lnLJ0+evDIi4plnnulz0003Ddh4zPDhw9+RUhp38sknj2ptrpNPPnlUSmnc8OHD39Hc/U3XP/rRj96WUhpX/Ofkk08eNWfOnN5N17NmzaqMiJg1a1Zl8biN526PRYsWlZ177rnD9txzz72qqqr2LS8v33/48OHvOOGEE3a56667Klu6p+k1v//97w9ubsy//du/7dw05vTTTx/Z3JhvfvObO6SUxpWVlY1btmyZHHBEOOcbAABgG/f9gVvFb50CAAAAAAAAcqShoSFuvvnm7SMiKioqGs4777yl7b33s5/97OK//e1vAyIirrvuusEf/vCHV26pOrvaLbfc0v/000/ftbq6urT4+UWLFvW+7bbbtrvtttu2O+2005Zce+2180tL3xgybNiwutGjR9fMmzevYvr06f2/9KUvveXjOXPmzKqm9owZM/o39/r33XdfVUTE2LFj12633XavH7s9fPjwdyxatKh3RESWZQ9v9hvNEWFoAAAAAAAAAAAAAN7k4Ycfrli5cmVpRMQBBxxQvf3229e3997jjjtuVUVFRUNNTU3J7Nmzmz0peXPceeedc2tra9OBBx64d0TEqaeeuuS8885bXDxm8ODB9cOGDat76KGHnoiIOPPMM3d54okn+u69995rr7322uebxpWXl2ftfd0ZM2b0+dCHPrTbhg0bUllZWfaRj3xkyYknnriiqqqqftasWX1//OMfv23hwoW9b7jhhiH9+vWrv+KKKxYW33/QQQetnjdvXsWDDz74lo/J888/32vBggXlTdfz5s2rWLRoUdmwYcPqmp5raGiI2bNnV0VETJgwYXV7697WCUMDAAAAAAAAAAAA8CazZ8/u29TeZ5991nbk3rKyshg7duy6xx57rN/y5cvLXnjhhV6jRo3a0Fm1vfOd76wtvt5hhx3qxo8fX9Pc2Kbn+/bt29D02NLYtpx99tmjNmzYkEpLS+M3v/nNsyeddNKqpr5DDz107emnn7784IMPHjtv3ryKq666asePfexjrx1wwAGvv9bkyZNX33jjjUOWLl3a69FHH63Yb7/9Xu+78847qyIidtttt5qampr00ksvld91111VZ5555vKmMf/4xz/6NAXUJ0+evEXD0CtXriydNWtWRVvjxowZs75///4NbY3bkoShAQAAAAAAAAAAAHiTpUuXvp4x3XHHHTscZB48ePDr9yxevLisM8PQ3eHee+/t+/jjj/eNiPjgBz+4pDgI3WTIkCH1l19++QtHHXXU2IaGhrj00kt3uOGGG+Y39R911FGvB5inTZtWVRyGvu+++6oiIg4++ODVNTU16Xe/+135vffe+6Yw9D333FMVEVFSUhJHHnlk9ZZ5p6+/1sADDzxwYFvj/vjHP8499thju/WU6pLufHEAAAAAAAAAAAAAtj6rV68ubWr369evwyf/Np3EHBGxYsWK3OdV77rrrv5N7bPPPntpS+OOPPLINbvuumtNRMT999/fv7hv5MiRdbvssktNxBvh5yYzZ86siog47LDDVh966KGri59r0nTPmDFj1g4ePLi+uG/hwoX/yrLs4SzLHt6U95dnToYGAAAAAAAAAAAA4E2qqqpeD9tWV1d3OMy8Zs2a1+8ZOHBgh8PUW5snnniiT0REr169sgkTJqxtbex+++235rnnnquYP39+eU1NTaqoqMia+g466KDVzz//fMWDDz5Y2fTcCy+80Gv+/PnlKaU46qijVq9bty5FRMybN69i0aJFZcOGDatraGiI2bNnV0ZETJgwYYufxHzSSSe9dvPNN7+wpV+nM+Q+aQ8AAAAAAAAAAABA59p+++3rmtqvvPJKr47ev3Tp0tfv2WGHHepaG5sHK1asKIuIGDBgQF2vXq1/OIYOHbohIiLLsliyZElpcd/kyZNXRzR+fB599NGKiIg777yzKiJi9OjRNcOGDasbPXr0hhEjRtRmWRZ33XVXVUTEgw8+2KephsmTJ1d38tvLNWFoAAAAAAAAAAAAAN7kgAMOWNfU/uc//9m3I/fW1dXFnDlz+kREDBo0qG7UqFEbOru+7pJSanNMlmUt9h111FGvB5mnTZtWFRFx3333VUVEHHzwwa+f+NzUvvfee6siIu65556qptc/6qijtvjJ0HkiDA0AAAAAAAAAAADAmxxwwAHrBgwYUB8RMXv27MrXXnuttK17mtx22239a2pqSgrzvOUU46ZAcUNDQ6vzrF27dqvJuQ4cOLAuovGE6A0bWs92L168uFdE4/scMmRIfXHfzjvvvGHnnXeujXgjBD1z5syqiIjDDjvs9ZDzoYceurq4r2nsHnvssW7jOXu6reY/EgAAAAAAAAAAAAC2DiUlJXHSSSe9FhFRU1NTcumllw5u770/+9nPdmhqn3766Us37u/Xr199RMTKlSvLWptn3rx5Fe2veMvae++910VEbNiwIc2YMaPVk7Ife+yxfhERO+20U21FRcVbjoluOvX5wQcfrHzhhRd6vfjii+Ubn/h89NFHr45o/BgsXLiwbNasWZURERMmTHAq9EaEoQEAAAAAAAAAAAB4iwsuuODV3r17ZxERl1xyybDHH3+8vK17rrrqqkF/+9vfBkREjB49uuZDH/rQyo3HjBw5sjYi4vHHH+/b0unQs2bNqnjmmWf6tPZa5eXlWUREbW1tavPNbKajjjpqVVP7yiuvbDEYfvfdd/drCnFPnDhxVXNjmk59Xrp0aa8f//jHQyIaP1bDhg2raxozevToDSNGjKjNsiy+//3v77BixYqyiIjJkycLQ29EGBoAAAAAAAAAAACAtxg7duz6//zP/3wpImLt2rUlRx555B4zZ85sMaB89dVXD/rMZz6zS0REr169suuuu+750tLSt4ybOHHi6oiIJUuW9Lrqqqu227h/+fLlJR/96Ed3aau+wYMHb4iIeP7559sMaW+uww47bO3b3/72tRERv/3tb4fceuut/Tce89prr5V+6lOf2jmi8WTtc889d3FzczWd+hwR8ctf/nKHiDdOiy7W9FzTmJRSHHnkkc2GoYcPH/6OlNK4lNK4jr+7fGv1eHEAAAAAAAAAAAAAeq6vfe1ri5977rnya6+9doeXX36598SJE/d8//vfv+y4445bueuuu9auX78+PfHEExW//e1vt585c2ZVRGMQ+rLLLnv+kEMOWdvcnJ/4xCeW/eAHPxhWXV1dev7554969tlny9/3vvetSillDz74YL/LL7986OLFi3vvueeea5966qm+LdU2bty46oULF253zz33DPz+978/ePLkydV9+vTJIiIGDRpUP3z48LqW7t0UV1555QuTJ0/ec8OGDemDH/zgbmecccbi448/fmX//v3rZ82a1ffHP/7xji+99FJ5RMRZZ531yvjx42uam2fUqFEbdtppp9r58+eXV1dXl0ZEHHbYYW8JOR966KGrf/e73w1uGrPbbrut23HHHes78z21ZOXKlaWzZs2qaGtcaWlp7L///s2+z64iDA0AAAAAAAAAAABAi6655poFY8eOrfnOd74zfOXKlaV/+MMftv/DH/6wfXNjd9lll5qf/vSnLx5zzDHVLc03bNiwuksvvfTFs846a9fa2tp0ySWXDLvkkkuGNfWXl5dnl19++fN/+tOfBrQWhv7yl7/8yp///OdB69evTxdccMHOxX0nnXTSazfffPMLm/B2WzRhwoR1N91007Onn376rtXV1aVXX3310KuvvnroxuNOO+20JT/72c8WtjbXQQcdtHr+/PnlEY0nPh911FFvCUMXnyBdeP1mT4XeEu65556BBx544MC2xlVWVtavXr36sS1fUctKuvPFAQAAAAAAAAAAANj6XXDBBUueffbZf1144YXzJ06cuGrHHXdcX15envXt27dh5MiRtccee+yyK6+88rk5c+Y80VoQuslHP/rR5dOmTXvqPe95z4pBgwbV9erVK9txxx3Xn3TSSa/9/e9/f/KjH/3o8rbmmDBhwrq//vWvTx177LHL3va2t63v3bt31jnvtmUnnXTSqjlz5jz+mc985pWxY8euq6ysrO/du3f2tre9bf1xxx237M9//vOc66+/fn5paWmr8xx66KGvB5tHjx5dM2zYsLecYj169OgNI0eOrG26njx5cpeFofMkZdkW/3snIlJKIyJiQUTEPSdH7NjvrWPe97apXVwVAAAAAAAAAAAA25KqPb/yluc2LNsQcz4/p+lyZJZlL3VpUZ3o4YcfvqOsrGyvioqKgWPGjHm2tbEn3HbCnstrlvfqqtq6y6CKQRv+cPwfnuruOqC95syZs1tNTc2Kurq6J8eNG/e+zZ2vrDOKAgAAAAAAAAAAANiaCAhDz1DS3QUAAAAAAAAAAAAAAGwKYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXMp1GDqldHFKKSv6M7kd9xydUrolpfRSSqm28HhLSunoLV8xAAAAAAAAAAAAANBZchuGTintExGf68D4lFK6MiLujIgTI2J4RPQuPJ4YEXemlK5MKaUtUS8AAAAAAAAAAAAA0LlyGYZOKZVExC8ioiwiFrfztm9HxFmF9qMRcUpEHFh4fLTw/FkR8a3OqxQAAAAAAAAAAAAA2FJyGYaOiHMjYnxEPB0Rv2xrcEppt4i4oHA5OyLenWXZTVmWzcqy7KaIOKTwfETEl1NKo7dAzQAAAAAAAAAAAABAJ8pdGDqlNDLeOL35kxGxvh23fS4aT5GOiPhslmXrijuzLFsbEZ8tXJZFxPmbXykAAAAAAAAAAAAAsCXlLgwdEZdHRGVE/E+WZX9ra3BKKUXE8YXLp7Ms+0dz4wrPzylcnlC4DwAAAAAAAAAAAADYSuUqDJ1S+mBEHBsRyyLiS+28bZeIGF5oT29jbFP/iIgY1dH6AAAAAAAAAAAAAICuk5swdEppYERcWrj8cpZlS9p5655F7afbGFvcv2eLowAAAAAAAAAAAADoNieffPKolNK44cOHv6O5/uHDh78jpTTu5JNPHtXFpdHFyrq7gA64OCJ2jIgZEfHLDtw3sqj9UhtjF7RwX5tSSiPaGLJjR+YDAAAAAAAAAAAANt28Y9+/Z/3y5b26u44trXTQoA2jp/7xqe6uA7pLLsLQKaVDIuLjEVEXEedkWZZ14PaqonZ1G2PXFLUrO/AaEW8OUgMAAAAAAAAAAADdqH758l71r722zYehoacr6e4C2pJS6h0RV0VEiogfZVn2rw5OUVHUXt/G2Nqidp8Ovg4AAAAAAAAAAAAA0IXycDL0VyNiz4iYHxHf2IT7a4ravdsYW17UXtfB1xnZRv+OETGrg3MCAAAAAAAAAAAAAC3YqsPQKaWxEfH/FS4/m2XZmk2YZnVRu7KNsf2K2tUdeZEsy15qrT+l1JHpAAAAAAAAAAAAAIA2lHR3AW34XDSe5vxcRPRNKX1o4z8R8fai8YcX9TUFm4tDyiPaeL3i050XbHb1AAAAAAAAAAAAADk0efLk3VJK4/bdd9+xzfXfddddlSmlcSmlcVVVVfvW1dW9ZcySJUtKS0pKxqWUxn33u98d0vR8fX193H777VVnnXXWiP3333/soEGD9ikrK9u/qqpq37Fjx+511llnjXjmmWd6b8G3xzZkqz4ZOiLKC4+7RsSv2zH+P4vau0TEmoh4sui5Zv+HbKH/qXa8HgAAAAAAAAAAAMA2Z+LEiaunT58+4PHHH++7cuXKkgEDBjQU999zzz1VTe3q6urSGTNm9J00adLa4jF//vOfq7Isi4iIKVOmrG56/ktf+tKwH/3oR2/b+DWrq6tL58yZ02fOnDl9brjhhiFXXnnl8x/5yEdWdPZ7Y9uytZ8M3Rmej4hFhfahbYydVHhcGBEvbKmCAAAAAAAAAAAAALZmhx9++OqIiPr6+jRt2rTKjfv//ve/VxVf33333VUbj7n33nurIiIGDhxYN27cuJqm5+vq6mLIkCEb/v3f/33JZZdd9vxf/vKXp++///6nbrjhhnnnnHPOK3379m2oqakpOeuss3Z95JFHKjr/3bEt2arD0FmWnZFlWWrtT0R8o+iWw4r6XijMkUXEbYX+sSmlg5p7rcLzTSdD35Y1/SgCAAAAAAAAAAAAQA8zceLEtf369WuIiPjrX//6pqBzbW1tevTRR/tFRBx++OErIiLuv//+t4ShZ8yYURURceCBB1aXlLwRWf30pz+9dMGCBf+64YYb5n/qU59a9p73vGfNIYccsvbf//3fV1xxxRUL//nPfz6+ww47bKitrU3f/OY333KCNBTbqsPQnejHEVFXaP80pdSnuLNw/dPCZV1hPAAAAAAAAAAAAECPVFZWFvvvv391RMQDDzzwpqDz9OnT+9bU1JRUVlbWf+5zn1scETF79uzKurq618csWbKk9JlnnukTETFp0qTVxfePGTNmfXl5eYuH1o4ePXrDZz7zmVciIu65554BDQ0Nnfa+2Pb0iDB0lmVzI+IHhcsDIuKBlNK/pZQOSCn9W0Q8UHg+IuL7WZY90x11AgAAAAAAAAAAAGwtJk6cuDoi4oknnui7cuXK1zOn99xzT1VExAEHHFA9ZcqU6oqKiobq6urSGTNm9G0ac9ddd1U1hZinTJmyOlqxbNmykqeffrr37NmzK2bNmlUxa9asir59+zZERFRXV5c+/fTTvbfA22MbUdbdBXSh/4iIHSLioxGxX0Tc1MyYX0bE17qyKAAAAAAAAAAAAICt0eGHH776O9/5TtTX16dp06ZVfuADH1gVEXH//fdXRTSGpSsqKrJ99913zT/+8Y+qu+++u2rSpElrIyLuvffeqoiIAQMG1I8fP37dxnPPnTu394UXXjj07rvvHrho0aJWw86vvvpq2V577bW+898h24IecTJ0RESWZQ1Zln0sIo6JiNsiYlFErC883hYR78uy7ONZljlLHQAAAAAAAAAAAOjxJk2atKbphOa//vWvVRERtbW16dFHH62MeOPE50MOOWR1xBsh6YiIGTNmVEVEjB8/fnVJyZvjqr/97W/777PPPntff/31O7QVhI6IWLt2bY/Ju9Jxuf+PI8uyr2dZlgp//taO8XdkWXZClmXDsywrLzyekGXZnV1QLgAAAAAAAAAAAEAu9OrVK/bbb7/qiIgHHnigKiLivvvu61tTU1NSWVlZP2HChLUREUccccTqiIjZs2dX1tXVxdKlS0vnzp3bJyJi0qRJq4vnfOWVV0o//vGP71pTU1PSt2/fhs9//vOL7r777qcXLlz4f+vWrXsky7KHsyx7+LbbbpvbdE+WZamr3jP5U9bdBQAAAAAAAAAAAACwdZo4ceLqBx54oP8TTzzRd+XKlSX33HNPVUTEAQccUF1W1hhDnTx58pqKioqG6urq0hkzZvRdsGBBr4aGhoh4Iyjd5Prrr99u9erVpRERv/rVr+adeOKJq5p73WXLlpVuyffFtiP3J0MDAAAAAAAAAAAAsGUcfvjhqyMi6uvr07Rp0yrvv//+qojGkHTTmIqKimzfffddExFx9913V917771VERH9+/evf9e73rWueL4nnniiIiJiwIAB9S0FoSMiZs2a1a/z3w3bImFoAAAAAAAAAAAAAJo1adKktX369GmIiLjrrrv6P/roo5UREVOmTHnTic+HHHLI6oiI+++/v2rGjBlNp0evLi198wHPdXV1KSJi/fr1qb6+vtnXXL16dcnvfve77Tv7vbBtEoYGAAAAAAAAAAAAoFnl5eXZvvvuWx0RcdNNNw1et25dSWVlZf2ECRPWFo874ogjVkdEPPTQQ1Vz5szpGxExadKk1RvPt/vuu9dGRKxbt67k2muvHbRxf11dXXz4wx/eecmSJb22xPth2yMMDQAAAAAAAAAAAECLJk6cuDoiorq6ujQi4oADDqguKyt705jJkyevqaioaFi7dm1JQ0NDREQcccQR1RvPddpppy3r3bt3FhHx2c9+dtRnPvOZ4bfffnvVfffd1/enP/3p9vvuu++eU6dO3W7//fd/y73QHGFoAAAAAAAAAAAAAFp0+OGHvymY3BSOLlZRUZHtu+++a5quKysr6w8++OC1G48bPXr0hosvvvjFkpKSqKmpKbnssst2PP744/c49NBD9zz33HNHPfHEE32POeaY5f/1X/+1aMu8G7Y1wtAAAAAAAAAAAAAAtOjQQw9dU1FR0dB0PWXKlLeEoSPeHJIeP358dWlpabPznXfeea/9+c9/fnrKlCkrBg0aVFdWVpYNGTJkw8SJE1f94he/eG7q1KnPtXQvbKys7SEAAAAAAAAAAAAA+VI6aNCG7q6hK3TF+6yoqMjWrVv3aFvjLr744pcvvvjil9sz53ve854173nPe+a11H/ssceuzrLs4Zb6b7755hci4oWW+hcuXPiv9tRB/glDAwAAAAAAAAAAANuc0VP/+FR31wBseSXdXQAAAAAAAAAAAAAAwKYQhgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAIBOd/LJJ49KKY0bPnz4O7q7lq3d1KlTq1JK41JK46ZOnVrV3fXkSVl3FwAAAAAAAAAAAADQ2X79jQf3XFe9vld317Gl9ansveGU/37XU91dB3QXYWgAAAAAAAAAAABgm7Ouen2vdas3bPNhaFr2k5/8ZPvzzjtvVETE008//a8xY8as7+aS2AJKursAAAAAAAAAAAAAAIBNIQwNAAAAAAAAAAAAAOSSMDQAAAAAAAAAAAAAkEvC0AAAAAAAAAAAAAC0qKamJl100UVD3vWud+0xaNCgfXr16rX/4MGD9zn00EN3u/zyy7err69v1zzPP/98r49//OMjRo0a9fY+ffrsN2jQoH0OPfTQ3X7729/2b+ve66+/fuCUKVNGDx069J29e/fev1+/fvuNGDHiHePGjRtz3nnnDbv33nv7No2dOnVqVUpp3HnnnTeq6bmxY8e+I6U0rvjP1KlTq4pf45577ul37rnnDjvwwAPHDB48eJ9evXrtX1lZud/o0aP3PvXUU3d6+OGHK9r7MfvNb34z4Pjjj99lxIgR7+jTp89+VVVV++622257H3vssbted911A6urq1N759rYrbfe2v/444/fZfjw4e+oqKjYv7Kycr8xY8bsdc4554x48cUXe23qvHlV1t0FAAAAAAAAAAAAALB1mjt3bu/3vve9uz/33HNvCgK/9tprZffdd9+A++67b8Avf/nLIXfcccezQ4cObTEVfd999/U98cQTd1+2bNnr2dWampqSpjn+/Oc/L77mmmsWbHxfXV1dHHfccbveeeedg4qf37BhQ1q7dm3vhQsX9n7kkUcq77nnngGPP/74U5v6Pn/yk59sXxyeLnr99Nxzz1U899xzFb/5zW+GfPvb357/la98ZUlL87zyyiulJ5100uiZM2dWbdxXXV1dOm/evIo//elPg1atWvXCueee+1pHaly1alXJBz7wgV2mTZs2sPj52traNHfu3D5z587tc8MNNwy5+uqrnzvllFNWdmTuPBOGBgAAAAAAAAAAAOAtVq5cWXLEEUfs8dJLL5VHREyZMmXFmWeeuXTkyJEbnn322fIrrrhih1mzZlU+8sgjlUcfffTus2bNerqs7K3R1HXr1pWccsopo6urq0s/9alPvfL+979/ZXl5ecOMGTMqL7300h2XLFnS69prr91hp512Wv/1r3/91eJ7L7744iFNQej999+/+owzzli6xx571FZVVdUvXbq07J///Gefv/zlLwNWrFhR2nTPpEmT1jz00ENP/P73vx948cUXD4+IuPnmm58ZOXLk+uK5x4wZ8/p1XV1d6t+/f/2UKVNWTJo0afXYsWNrKysr6xcsWND74Ycf7nv11VfvsGLFirKvfvWrO+211141xx133OqN3+fq1atLJk2aNOaZZ57pExGx9957rz3jjDOW7LPPPusqKiqyF154off06dMrb7/99u06+ndRV1cXRx555G4PPvhgVUopjjnmmGUnnXTSit122612/fr1aebMmf0uv/zyoS+//HLv008/ffSIESOenjhx4tqOvk4eCUMDAAAAAAAAAAAA8BYXXHDBsKYg9LnnnvvypZdeuqipb+LEiWtPP/305SeeeOIut99++3aPPfZYv0suuWTIl7/85becmrx8+fKy1atXZ7fffvvc9773vdVNzx922GFrTz311OUHHXTQnq+++mqv733ve8M+8YlPvDZ8+PC6pjG33HLLdhER73znO9f84x//mNOrV683zX3cccet/trXvrb41VdffT0M3b9//4bx48fXzJw5c0PTc3vvvXdNcfh5YyeeeOLKT3ziE8uqqqoaNupa96EPfWjlV77ylcUTJkwYM3fu3D7f+MY3hh133HFzNp7j/PPPH94UhD7ttNOWXHfddfNLSkpe7584ceLa0047bUVNTc3CJUuWlG58f2u+9a1vDX3wwQerysrKshtvvPHZD37wg6uK+4844og1Z5999msTJkwY++yzz1acf/75Ix9++OG31LgtKml7CAAAAAAAAAAAAAA9ybp169Kvf/3rwRERo0ePrrnkkksWbTympKQkrr322hcHDhxYFxHxi1/8YoeW5vvwhz+8pDgI3WTUqFEbvv3tby+IiKipqSn5+c9/vn1x/9KlS3tFRIwfP7564yB0saFDh9a38601a5dddtnQTBD6ddtvv339f/7nfy6KiHjkkUcqX3nllTeFmZcsWVL6v//7v4MjIvbaa6+111xzzZuC0MUqKiqykSNH1jXb2Yza2tp0xRVXDI2IOP300xdvHIRuMmTIkPoLL7xwQVONjz/+eHl7XyPPhKEBAAAAAAAAAAAAeJO///3vfVevXl0aEXHKKacsLSsra3bcdttt13DMMccsj4iYN29exYsvvthsYvkTn/jEay291mmnnbaiqqqqPiLi3nvv7V/cN2TIkA0REdOmTRv48ssvN1/EFrBq1aqSOXPm9J49e3bFrFmzKmbNmlXRq1evrKn/oYce6ls8/o477qiqqakpiYg455xzFrf08doU06dP77tkyZJeERGnnHLK8tbGHn300a8HzqdPn96v04rYinXZfxQAAAAAAAAAAAAA5MP//d//9WlqT5gwYU1rY9/1rnetufHGG4dERDzyyCN9dt555w3F/b169cre9a53rW3p/vLy8myvvfZa++CDD1bNnTu3T3HfqaeeunT27NmV8+fPL99jjz3efvTRR6+YMmXKqilTpqwePXr0hpbm3BQvv/xy2YUXXjh06tSpg+bPn1+eZVmLYxcvXvymDO4jjzzyejj6Pe95z+rOrOvBBx98PdQ8ZcqUse2975VXXmn5KO1tiDA0AAAAAAAAAAAAAG+ybNmy1zOmw4YNazV0XNy/dOnS0o37BwwYUNerV+u53KYToFetWvWmbOv555//2rx58yquuOKKodXV1aW///3vt//973+/fUTEyJEja48++ugV559//uK99tprfbveWAvuv//+vscdd9zuK1asaFe2dt26dSXF10uXLn39vp122qlTQ9qLFy/epFDz2rVrS9oelX/C0AAAAAAAAAAAAAC0KKXUan9rJyi35/7CHC0O+ulPf7rws5/97JJrrrlmu+nTp/d/7LHH+tXU1JQsWLCg/Be/+MXQa6+9docLL7xwwQUXXLCkzRdqRk1NTfrwhz+864oVK8rKysqyM844Y/FJJ520Yu+9964ZMmRIfZ8+fbKIiCeffLL33nvv/Y5CvZvyUpukvr7+9fbUqVPn7LDDDnXtuW/YsGHtGpd3wtAAAAAAAAAAAAAAvMl22233epB24cKFvd75znfWtjT25Zdffv3k4sGDB9dv3L9ixYqyurq6KCtrObbadLJy//79mw3w7rHHHusvuuiiVyLildra2jR9+vS+N91003b/+7//O6S2tjZ95Stf2end73539bvf/e517XuHb5g6dWrVSy+9VB4RcdFFF83/whe+sLS5ca+99lqLb2Dw4MGv1z1//vxeY8eO3ayTqottv/32r89dXl6ejR8/vqaz5t4W9IjjrwEAAAAAAAAAAABov3322ef1UPGMGTP6tTb2oYceer1///33f0sYecOGDekf//hH35bu37BhQzz11FN9IyL22GOPNsPM5eXl2ZFHHrnmmmuuWXDVVVc9F9F4UvNNN920XfG49pxIHRHxr3/9q09T+6Mf/eiylsa19h7GjRu3tqk9bdq0qna9cDsVz33nnXf278y5twXC0AAAAAAAAAAAAAC8ySGHHLK2qqqqPiLipptuGlxX1+yBzbF8+fKSqVOnDoqIGD16dM3OO++8oblxv/zlL7dv6bVuuOGGQatWrSqNiDjssMNWdaTOY4899vXxG5/cXFFR0dDUrqmpaTEZXVdX93pfdXV1s9na+vr6uO6664a0NMf73ve+1X369GmIiLjyyit3aOnjtSmOPPLI6gEDBtRHRFx//fVDli1bJv9bxAcDAAAAAAAAAAAAgDfp06dPdsoppyyNiHj22WcrvvjFLw7beExDQ0N87GMf22nFihVlERGf+MQnFrc0369+9ashd911V+XGz8+fP7/sa1/72oiIxvDyOeec81px/+WXX77dhg3N5qsjIuK2224b0NQeNWpUbXHfiBEjXr/x6aefrmhpjj322KOmqX3llVc2G9r+zGc+M/zJJ59s8WTowYMH15966qlLIiKeeOKJvh/72MdGNjQ0NDu2trY2LVy4sKzZzmb07ds3++QnP/lKRMTSpUt7nXjiibuuWrWqxQzw8uXLS77zne+0GNze1rT7AwkAAAAAAAAAAABAz3HRRRctuuOOOwa+9NJL5ZdeeunbnnzyyT5nnnnm0pEjR2549tlne19xxRU7PPTQQ1UREfvuu++aL3zhC0uam2fQoEF1ffr0aTj++OP3+PjHP/7q+9///pUVFRUNM2bM6PejH/3obUuWLOkVEfHlL3950fDhw990pPKnP/3pXf7rv/5r5NFHH718woQJ1XvssUdtnz59Gl5++eVed911V/9f/epXQyIi+vbt2/Cxj33sTUHqgw46aG15eXlWW1ubvvnNbw7r1atXtttuu9WWlDTmiEeNGrW+srIyO/HEE1d9/vOfr1u2bFnZRRddNPzFF18sP+GEE1bssMMOdU8//XT5tddeO2TmzJlV+++/f/UjjzzylkB3kx/+8IeLpk+f3v+ZZ57pc/311+/w8MMPV5555plL9t1333Xl5eXZiy++2Ov++++vuvXWW7f7j//4j4Xnnnvuay3NtbFvfetbr0yfPr3/zJkzq+67774BY8eO3fv0009f8u53v3vNdtttV7dq1arSJ598smL69OlV06ZNG1heXt7w1a9+tdm/j22NMDQAAAAAAAAAAAAAbzFo0KCGu+++e+573/ve3Z9//vmKadOmDZw2bdrAjcftv//+1XfcccezZWXNx1L79OnT8Otf/3re8ccfv/tll12242WXXbbjxmPOOOOMxV//+tdfbe7+1157rezGG28ccuONNzZ72nFVVVX9dddd99zo0aPfdIT0oEGDGs4888xXf/7zn+/45JNP9j355JN3L+7/4x//OPfYY49d3b9//4arrrrq+VNPPXW32tra9Ktf/WpIU8i6yYEHHrj6sssumz9+/Pi9m32TjXU0TJ8+fe5xxx03evbs2ZVPPPFE3y9+8Ys7tzS+I8rKyuIvf/nLMx/5yEd2vvXWW7d/+eWXe1900UXDWxq/3Xbb1bXUt61p8YhsAAAAAAAAAAAAAHq2MWPGrH/yySef/M53vjN//Pjx1QMHDqwrKyvLtt9++7qJEyeuuuyyy55/6KGH5gwdOrS+tXkmTZq0dtasWU+eccYZi0eOHFlbXl6eDRw4sG7ixImrfvOb3zxz7bXXLmjuvscee+zxCy+8cP6UKVNWjB49umbgwIF1paWlWf/+/ev32WefNZ///OcXPfXUU4+fdNJJq5q7/7LLLlt4ySWXvDhu3LjqAQMG1JeWljZb38knn7zq73//+5PHH3/8siFDhmwoKyvLBg0aVDd+/PjqH/zgBy/OmDFjblVVVUNbH6+3ve1tdbNmzZrzP//zP/OOPvro5UOHDt3Qu3fvrH///vW77777uuOOO27Zr371q2fPOuusZW3NtbHKysrslltueeG+++576tRTT12y22671VRWVtaXlpZmVVVV9WPHjl33wQ9+cOm1114775lnnnm8o/PnVcqyrLtr6BFSSiMiYkFExD0nR+zY761j3ve2qV1cFQAAAAAAAAAAANuSqj2/8pbnNizbEHM+P6fpcmSWZS91aVGd6OGHH76jrKxsr4qKioFjxox5trWxv/7Gg3uuq17fq6tq6y59KntvOOW/3/VUd9cB7TVnzpzdampqVtTV1T05bty4923ufM2fRw4AAAAAAAAAAACQYwLC0DOUdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAyJUsy1J31wBsmqL/f7POmE8YGgAAAAAAAAAAAMiL6oiob2hoKG1oaBCIhpypq6srqa+vL8uyrC4iVnbGnMLQAAAAAAAAAAAAQF48Xl9fvybLsrRy5cqq7i4G6Jhly5YNioisvr5+dUQ82hlzCkMDAAAAAAAAAAAAeXF3lmXrGxoa1rz66qs7Ll++vL8TomHrlmVZrF27tvzll1/eYcmSJTvU19eviIj6iLilM+Yv64xJAAAAAAAAAAAAALrAQxHx2Pr160siYsSiRYuGv/zyy1lJSUl9Sinr7uKAN8uyLGVZVtLQ0FASEQ11dXVL6urqlkbE1HHjxs3rjNcQhgYAAAAAAAAAAAByYdy4cXUPP/zwuRHxk/Xr1zeklHqXlpb2i4jS7q4NaFFDQ0NDTUNDw7qIyCLiioi4prMmF4YGAAAAAAAAAAAAcmPcuHFrH3744XMiYnyWZVPq6ureERGV3V0X0KI1EfFSRMyMiJnjxo1b0JmTC0MDAAAAAAAAAAAAuTJu3Li6KAQru7sWoHuVdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJdyEYZOKe2fUvpqSunOlNKClFJtSqk6pTQ3pXRdSmliB+c7OqV0S0rppcJcLxWuj95S7wEAAAAAAAAAAAAA6Fxl3V1AW1JK0yNiUjNdvSNi98Kf01NKN0TEx7MsW9/KXCkifh4RZ23UNTwiToyIE1NKV0XEOVmWZZ1RPwAAAAAAAAAAAACwZeThZOjhhcdFEXFpRHwgIg6MiIMj4vMRsbDQf1pEXNfGXN+ON4LQj0bEKYW5TilcR6H/W51QNwAAAAAAAAAAAACwBW31J0NHxNMR8dWIuDnLsvqN+v5ROBH6gYjYIyJOSSldkWXZ/RtPklLaLSIuKFzOjohJWZatK1zPSindHhHTI+KAiPhySunaLMvmbYH3AwAAAAAAAAAAAAB0gq3+ZOgsy47Nsuy3zQShm/qXRsQXip76QAtTfS7eCH9/tigI3TTP2oj4bOGyLCLO3+SiAQAAAAAAAAAAAIAtbqsPQ7fT34raozfuTCmliDi+cPl0lmX/aG6SwvNzCpcnFO4DAAAAAAAAAAAAALZC20oYundRu6GZ/l0iYnihPb2NuZr6R0TEqM0rCwAAAAAAAAAAAADYUraVMPShRe2nm+nfs43+aKF/zxZHAQAAAAAAAAAAAADdqqy7C9hcKaWSiPhK0VO/bWbYyKL2S21MuaCF+9qqY0QbQ3Zs71wAAAAAAAAAAAAAQNtyH4aOiM9FxIGF9q1Zls1uZkxVUbu6jfnWFLUrO1DHgraHAAAAAAAAAAAAAACdpaS7C9gcKaVDI+KiwuXiiPhkC0Mritrr25i2tqjdZxNLAwAAAAAAAAAAAAC2sNyeDJ1S2jsibo3G91AbER/MsuzVFobXFLV7tzF1eVF7XQdKGtlG/44RMasD8wEAAAAAAAAAAAAArchlGDqltEtE/CUiBkVEfUSckmXZ9FZuWV3Urmxj+n5F7er21pRl2Uut9aeU2jsVAAAAAAAAAAAAANAOJd1dQEellIZFxN0RMSwisoj4aJZlt7ZxW3FQeUQbY4tPeF7Q8QoBAAAAAAAAAAAAgK6QqzB0SmlwREyLiF0LT302y7Lr23Hrk0XtsW2MLe5/qgPlAQAAAAAAAAAAAABdKDdh6JTSgIi4KyL2Kjz1lSzLLmvn7c9HxKJC+9A2xk4qPC6MiBc6UiMAAAAAAAAAAAAA0HVyEYZOKfWNiD9FxP6Fpy7Msux77b0/y7IsIm4rXI5NKR3UwuscFG+cDH1b4T4AAAAAAAAAAAAAYCu01YehU0q9I+LWiHh34alLsyz72iZM9eOIqCu0f5pS6rPR6/SJiJ8WLusK4wEAAAAAAAAAAACArVRZdxfQDr+OiCML7b9GxC9TSm9vZfz6LMvmbvxklmVzU0o/iIivRMQBEfFASul7ETEvIkZHxJcjYr/C8O9nWfZMZ70BAAAAAAAAAAAAAKDz5SEMfVJR+/CI+Gcb41+MiFEt9P1HROwQER+NxuDzTc2M+WVEbMrJ0wAAAAAAAAAAAABAFyrp7gK6UpZlDVmWfSwijomI2yJiUUSsLzzeFhHvy7Ls41mWNXRjmQAAAAAAAAAAAABAO2z1J0NnWZa2wJx3RMQdnT0vAAAAAAAAAAAAANB1etTJ0AAAAAAAAAAAAADAtkMYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXemQYOqW0U0rpBymlp1JKa1JKy1JKD6WUvphS6tvd9QEAAAAAAAAAAAAAbSvr7gK6WkrpmIi4MSIGFD3dNyLGF/58PKX0vizLnuuO+gAAAAAAAAAAAACA9ulRJ0OnlPaJiN9GYxC6OiL+IyImRMQREfGLwrAxEfGnlFJltxQJAAAAAAAAAAAAALRLTzsZ+sfReAp0XUQcmWXZzKK+v6aUnomIiyNibER8PiK+2eUVAgAAAAAAAAAAAADt0mNOhk4pjY+IyYXLX24UhG5ySUQ8VWifn1Lq1RW1AQAAAAAAAAAAAAAd12PC0BFxQlH72uYGZFnWEBHXFy4HxRvhaQAAAAAAAAAAAABgK1PW3QV0oYmFxzUR8XAr46YXtQ+JiGmdXUh6dHSkXm89dPrO+GJnvxQAAAAAAAAAAAA9yR/e+tQrG+ri8C4vBKBr9KSTofcsPD6bZVldK+OebuYeAAAAAAAAAAAAAGAr0yNOhk4pVUTE4MLlS62NzbJseUppTUT0i4iRHXiNEW0M2bG9cwEAAAAAAAAAAAAAbesRYeiIqCpqV7djfFMYurIDr7GgQxUBAAAAAAAAAAAAAJulpLsL6CIVRe317RhfW3jsswVqAQAAAAAAAAAAAAA6QU85GbqmqN27HePLC4/rOvAaI9vo3zEiZnVgPgAAAAAAAAAAAACgFT0lDL26qF3ZjvH9Co/V7X2BLMteaq0/pdTeqQAAAAAAAAAAAACAdugRYegsy2pSSksjYnBEjGhtbEppULwRhl6wJerZffrfYsSIVssAAAAAAAAAAACATlH10ksRI0d2dxkAW0RJdxfQhZ4qPO6WUmotBD62mXsAAAAAAAAAAAAAgK1MTwpD/73w2C8ixrUy7tCi9gNbrhwAAAAAAAAAAAAAYHP0pDD0H4raZzY3IKVUEhEfKVyuiIh7t2xJAAAAAAAAAAAAAMCm6jFh6CzLHoqI+wuXH0spHdzMsC9ExJ6F9qVZlm3okuIAAAAAAAAAAAAAgA4r6+4Cuth5EfFARPSJiL+klL4Tjac/94mID0XEWYVxcyPikm6pEAAAAAAAAAAAAABolx4Vhs6y7NGU0r9FxK8ion9EfKeZYXMj4pgsy1Z3aXEAAAAAAAAAAAAAQIeUdHcBXS3Lsj9GxDsj4kfRGHxeGxErImJ2RHw5IvbLsuzZbisQAAAAAAAAAAAAAGiXHnUydJMsy16MiM8X/gAAAAAAAAAAAAAAOdTjToYGAAAAAAAAAAAAALYNwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLZd1dQA9S2tR4+eWXu7MOAAAAAAAAAAAAepCNMmulLY0DyKOUZVl319AjpJQOiIhZ3V0HAAAAAAAAAAAAPdr4LMtmd3cRAJ2lpLsLAAAAAAAAAAAAAADYFE6G7iIppfKIeEfhcklEDIk3TooeHxGvdEddANuQHcO6CtDZrK0Ancu6CtD5rK0Ancu6CtD5rK0Anc/aumlKozGzFhHxryzLaruzGIDOVNbdBfQUhX88Xv/VAiml+qLuV7Ise6nrqwLYdqSUii+tqwCdwNoK0LmsqwCdz9oK0LmsqwCdz9oK0PmsrZvlxe4uAGBLKOnuAgAAAAAAAAAAAAAANoUwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAupSzLursGAAAAAAAAAAAAAIAOczI0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtDdIKW0U0rpBymlp1JKa1JKy1JKD6WUvphS6tvd9QFsDVJKWTv//K0dcx2dUrolpfRSSqm28HhLSunoLngrAFtcSmmHlNKxKaVvppTuTCktLVonr9uE+TZ73Uwp9U0pfamwz12WUqou7H9/kFLaqaM1AXS1zlhbU0pndGBfe0Y75rO2ArmVUto/pfTVwpq6oLDPrE4pzU0pXZdSmtjB+exZgR6vM9ZWe1aAN6SU+qeUPpRSuiSlND2l9GxKaWVKaX1KaXFK6W8ppQtSStu3cz57VqBH64x11X4VgPZKWZZ1dw09SkrpmIi4MSIGtDBkTkS8L8uy57quKoCtT0qpvf9ATc+ybHILc6SI+HlEnNXK/VdFxDmZfxCBHGtjzfyfLMvOaOc8nbJuppRGR8SfImJMC0NWRsSHsyy7oz11AXSHzlhbC198v7adL3lmlmXXtTKXtRXIrZTS9IiY1I6hN0TEx7MsW9/KXPasANF5a6s9K8AbUkpTImJaO4YujYh/z7LsrhbmsWcFiM5ZV+1XAWivsu4uoCdJKe0TEb+NiL4RUR0R342IeyOiT0R8KCI+EY3/4P4ppTQ+y7Lq7qoVYCtyRURc3kr/mlb6vh1vfKHp0Yi4OCLmRcToiLggIvYr9C+JiK9tdqUAW4cFEfFURBy5Cfdu9rqZUqqMiKnxxheSfhERN0XEuog4LCL+v2j8wcDfpZQOzrLsn5tQJ0BX25y1tclREbGolf6XWuqwtgLbgOGFx0UR8buIuD8i5kdEaUQcHBFfKIw5LRq/Zv3hVuayZwVo1JlraxN7VoDGrwHcGxEPF9ovR+Nv3B4RER+IiJMiYnBE3F74nn5z65k9K8AbOmNdbWK/CkCLnAzdhVJK90bE5Iioi4hJWZbN3Kj/S9H4iVBExH9nWfbNrq0QYOtRdBLfN7Is+/om3L9bNAZWyiJidjSuu+uK+vtGxPSIOCAa1+WxWZbN29y6AbpDSukbETErImZlWfZqSmlURDxf6G7v6aWdsm6mlL4eEf9duLwgy7Lvb9R/cETcV3ide7MsO7z97xSg63TS2npGvHFqyS5Zlr2wibV8PaytQI6llKZGxPURcXOWZfXN9A+OiAciYo/CU5OyLLu/mXH2rAAFnbi2nhH2rAAREZFSKm1uTd1ozAkRcWvh8pYsy07eqN+eFaCgk9bVM8J+FYB2KOnuAnqKlNL4aAxCR0T8cuMgdMEl0fiJUUTE+SmlXl1RG8A26nPxxm9A+GzxF5oiIrIsWxsRny1clkXE+V1XGkDnyrLsv7Msm5pl2aubMc1mr5uF/et5hcunonF/u3GtMyPil4XLw1JK4zajZoAtppPW1s1mbQW2BVmWHZtl2W9b+gZolmVLo/EE0yYfaGEqe1aAgk5cWzebtRXYVrQV2CuM+UNEPF24nNTMEHtWgIJOWlc3m3UVoGcQhu46JxS1r21uQJZlDdH4U/wREYPijfA0AB2QUkoRcXzh8uksy/7R3LjC83MKlycU7gPocTpx3ZwcEQML7f8p7G+bc11R+6SO1gvQw0wOayvQM/ytqD164057VoBN8rei9lvW1k40OaytQM+ypvBYUfykPSvAJmt2Xe1Ek8O6CrDNE4buOhMLj2si4uFWxk0vah+y5coB2KbtEhHDC+3prQ0s6h8REaO2VEEAW7nOWjcnNjOuObPjjS9s2fMCtM7aCvQUvYvazX1T0p4VoOPaWls7i7UV6DFSSntGxL6Fy6c36rZnBeigNtbVzmJdBegBhKG7zp6Fx2ezLKtrZVzxP+x7tjgKoOf4fymlOSmldSml1SmlZ1JK/5NSOqyVe4rXz7Y+YbLuAnTeutmueQr74XktzAGwrboupfRqSml9SmlpSukfKaVvp5SGt3GftRXoKQ4taje33tmzAnRcW2vrxuxZAZqRUuqbUto9pfT5iLg3IkoLXZduNNSeFaAdOrCubsx+FYAWCUN3gZRSRUQMLly+1NrYLMuWxxs/ZTRyS9YFkBN7RcQe0fgrcSojYreI+EhE/DWldGtKaUAz9xSvn62uuxGxoIX7AHqSzlo3m67XZFm2op3zDEkplbcxFmBbcGhE7BARvSJi+4h4V0T8R0Q8m1I6u5X7rK3ANi+lVBIRXyl66rfNDLNnBeiAdq6tG7NnBShIKZ2RUspSSlk0fv9+bkRcEhFDC0N+EBE3bnSbPStACzZxXd2Y/SoALSrr7gJ6iKqidnU7xq+JiH7RGPoD6KnWRsTtEXFPNP50ZnVEDInGT3DOicZPbk6IiNtSSu/JsmxD0b0dWXfXFLWtu0BP1VnrZtM87d3zFs9T2457APLouYi4JSJmxhtfSN81Ik6OiA9E4w/9/TyllGVZdlUz91tbgZ7gcxFxYKF9a5Zls5sZY88K0DHtWVub2LMCtN9jEXFOlmUPNtNnzwrQcY9Fy+tqE/tVANokDN01Kora69sxvukf0j5boBaAvBjewk9lTksp/TQi7oyI/aIxHP3JiPhJ0ZiOrLvFn7xYd4GeqrPWzaZ5OrLnbW4egG3FrRHxP1mWZRs9PysifpNSOjYav4jfKyJ+lFK6PcuyVzYaa20FtmkppUMj4qLC5eJo/By/OfasAO3UgbU1wp4VoCV/iIimHyTpExGjI+KDEXFiRNyYUjo/y7KpG91jzwrQsj9Ex9fVCPtVANqppLsL6CFqitq92zG+6dcsrNsCtQDkQmu/nibLslej8Sc8mz5Z+exGQzqy7hb/ahvrLtBTdda62TRPR/a8zc0DsE3IsmxlM1+kL+6fGhHfKFz2jYiPNTPM2gpss1JKe0fjNzXLovGbjR8sfM7fHHtWgHbo4NpqzwrQgizLVmRZ9njhz6wsy27KsuykiPhINJ5GeltK6YyNbrNnBWjBJq6r9qsAtJswdNdYXdTe+FfcNKdf4bE9v54BoEfKsuy5iJhWuNwtpTSsqLsj626/orZ1F+ipOmvdbJqnI3ve5uYB6El+ERFNX8w/tJl+ayuwTUop7RIRf4mIQRFRHxGnZFk2vZVb7FkB2rAJa2t72bMCFGRZdkNE/C4asxY/SykNKuq2ZwXooDbW1fayXwVAGLorZFlWExFLC5cjWhtb+Ee96R/WBVuyLoBtwJNF7eFF7ZeK2q2uuxExsqht3QV6qs5aN5vm6ZdSGtjOeZZkWVbb6kiAbViWZYvjja8ZDG9miLUV2OYUfqD57ogYFo3frPxolmW3tnGbPStAKzZxbW0Xe1aAt7it8NgvIt5b9Lw9K8CmaWldbRf7VQAihKG70lOFx91SSmWtjBvbzD0ANC+18HxxSHpsC2Oa67fuAj1VZ62b7ZqnsB8e3cIcAD1RS/vaCGsrsI1JKQ2Oxt/0tGvhqc9mWXZ9O261ZwVowWasrR16mVb6rK1AT7OkqL1zUdueFWDTtLSudoT9KkAPJwzddf5eeOwXEeNaGVf86xoe2HLlAGwT9ipqLypqP1903dyvwSk2qfC4MCJe6JyyAHKns9bNvxe1W5vngHjjt6HY8wI9Wkpph4jYvnC5qJkh1lZgm5FSGhARd8Ubn89/Jcuyy9p5uz0rQDM2c21t72vYswK8WfGpo9VFbXtWgE3T0rraLvarAEQIQ3elPxS1z2xuQEqpJCI+UrhcERH3btmSAPIrpbRrRLyncPlclmULm/qyLMvijV+lMzaldFALcxwUb/zk522F+wB6nE5cN/8WESsL7dNTSi39FP4ZRe1O+ZW9ADl2Vrxxasn0Zvr/FtZWYBuQUuobEX+KiP0LT12YZdn32nu/PSvAW23u2toB9qwAb/b/itr/amrYswJssmbX1Q6wXwVAGLqrZFn2UETcX7j8WErp4GaGfSEi9iy0L82ybEOXFAewlUkpvb/wK2ha6h8aEb+PiF6Fp5o76eTHEVFXaP80pdRnozn6RMRPC5d1hfEAPdmPYzPXzSzL1kfETwqXe0bEFzceU9gHf6xwOT3LslmbWzjA1iilNCqltF8bY46NiP8sXNZExLUbj7G2AtuClFLvaPwm4rsLT12aZdnXNmGqH4c9K0BEdM7aas8K8GYppTNSShVtjPlcRLyvcPlCvPm00Qh7VoDXbe66ar8KQEckh2B2ncI/0A9ERJ9o/LUO34nG05/7RMSHovEnlSIi5kbEAVmWre6OOgG6W0rphWgMOt8cETOj8ZOedRExOCImR8Q58cavufl7REzJsqy2mXm+GxFfKVw+GhHfi4h5ETE6Ir4cEU2fOH03y7Kvdv47AegaKaVDImK3oqcGR8T3C+0HIuLq4vFZll3XwjybvW6mlKoiYnZE7FF46qqIuCka1/HDIuKrEVFZuJ6QZdlj7XiLAF1uc9fWlNLkaPycf2ZE/DEiHouIxdF4QsmuEfGBwp+mU0g+09KvM7e2AnmXUro5Ik4qXP41Is6PiNa+ML0+y7K5LcxlzwoQnbO22rMCvFnh+1NV0fj9qb9H4z6zuvDcOyLi1Hjjh1DWR8QxWZbd3cw89qwAsfnrqv0qAB0hDN3FUkrvj4hfRUT/FobMjcZ/3J/tuqoAti6FT4p2bsfQmyPi41mWrWhhnpKI+EVEfLSVOX4ZEWdlWdbQwTIBthoppesi4vT2js+yrNlf/9VZ62ZKabeIuCMidm9hyKqIODXLsqntqxig623u2lr0hfq2rI2Iz2VZdlUb9VhbgdxKKXX0i9AvZlk2qoW57FkBonPWVntWgDfrwPenXoqIj2ZZNq2FeexZAWLz11X7VQA6Qhi6G6SUdo6I8yLimIgYEY0/3fRsRPwuIn6WZdnabiwPoNullA6NiEMj4uBo/InOwdH4QyTVEbEgImZExP9kWTaznfO9LxpP3x9fmGtpRMyKiCuzLLuz098AQBfrrDB00XybvW6mlPpFxKcj4v9F48mqvaNxDb8jGn9174vtrRegO3RCGLoqIo6Lxj3tARHxtmhcU8siYnlEPBER90TE1VmWLW5nTdZWIJc6MwxdNKc9K9CjdVIY2p4VoEhKaXRETInGE0L3jIih0fibSmsi4tVoPJF0akT8tj3f07dnBXq6zV1X7VcB6AhhaAAAAAAAAAAAAAAgl0q6uwAAAAAAAAAAAAAAgE0hDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0A/3+7dkACAAAAIOj/63YEukMAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYCnXgij4BGxi6wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAC0MAAAPhCAYAAACB15VPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACbyElEQVR4nOzdaZSdVZk3/GvXkFRlJhBCEmZiBiaRQFoBRQQHRFrBbgVZbTMqr75qi0Yc8Gn1sR9oA62CrTTdCLzd+oC0uNAo3SCgMmkGEGlCgkJkCkMChEyVpCq13w85BYdKTRmqTm3y+6111tn3va/7uq+TRL/4X9uUcw4AAAAAAAAAAAAAgNLU1XoAAAAAAAAAAAAAAICtIQwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAitRQ6wF2FCmloRFxUOVyWURsrOE4AAAAAAAAAAAA7DjqI2JcZf1Aznl9LYcB2J6EoQfOQRExr9ZDAAAAAAAAAAAAsEM7PCLm13oIgO2lrtYDAAAAAAAAAAAAAABsDSdDD5xlHYu5c+fGhAkTajkLAAAAAAAAAAAAO4inn346Zs6c2XG5rKdagNIIQw+cjR2LCRMmxO67717LWQAAAAAAAAAAANgxbey9BKAcdbUeAAAAAAAAAAAAAABgawhDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEgNtR5gR/THo98aqxobaz0GAAAAAAAAAAAAO4BnWltrPQJAv+nXk6FTSrumlN6TUvpaSummlNLylFKufK7uY4+mlNJ7U0qXpZR+l1J6IaXUWvm+J6X0lZTShC2YaVhKaVZKaW6lx+qU0kMppYtTSntu9Y8FAAAAAAAAAAAAAAZUf58M/ey2PJxSOjgi7oyIkV1s7xQRb6x8zkspnZ1z/lEv/faLiJ9HxNROW9Mqn7NTSh/KOf9iW+YGAAAAAAAAAAAAAPpfv54M3ckTEXHzFj4zKl4JQt8VEV+IiLdHxKER8c6I+JeI2Fip+WFK6fjuGqWURkTEnHglCP2vEXFsRBwREV+KiNURMToirq+EsAEAAAAAAAAAAACAQay/T4b+WkTMi4h5OednU0p7R8SSLXi+PSJ+FBFfzTkv7GL/5pTSTRHxk4ioj4jLUkqvyznnLmo/G5tOf46I+FzOeXbV3j0ppdsj4jcRMSwivhURb9uCOQEAAAAAAAAAAACAAdavJ0PnnP8+5zwn5/zsVj5/d875g90EoTtqboyIGyqX+0XEIZ1rUkqNEfGpyuVDEXFJF33uiYgrK5fHpJRmbM3MAAAAAAAAAAAAAMDA6Ncw9AC6vWq9Xxf7b42IMZX1NTnn9m76XF21PnmbpwIAAAAAAAAAAAAA+k1DrQfYToZWrbsKOr+5av3rHvrMj4g1ETE8Io7aDnN1Kb/hkcjDN7//7glz+uuVAAAAAAAAAAAA7ABGTv/8ZvdaX8gR59VgGIAB8Fo5GfroqvWiLvan97IfERE557aIeKSLZwAAAAAAAAAAAACAQab4k6FTSq+PiBMqlw/mnBd2UbZH5XtNznlFLy2fiIiDI2JcSmloznl9H+fYvZeS3frSBwAAAAAAAAAAAADom6LD0CmloRHxbxFRX7n1xW5KR1a+V/eh7Zqq9YiI6FMYOjaFqAEAAAAAAAAAAACAAVJX6wG20Xci4rDK+pqc80+7qWuqfG/oQ8/q8HPz1g4GAAAAAAAAAAAAAPSvYk+GTil9ISLOrlwuiIiP91C+rvI9pA+th1atW7ZgpD162d8tIuZtQT8AAAAAAAAAAAAAoAdFhqFTSh+NiP9TuVwcEcfnnNf08MiqyveIPrQfXrVe3deZcs5P9rSfUuprKwAAAAAAAAAAAACgD+pqPcCWSimdGhHfrVw+FhHH5ZyX9fJYR1B5eEppTC+1HSc8L8s5r9+6KQEAAAAAAAAAAACA/lZUGDql9JcR8f/FprmfjohjezuRuWJh1XpaD/0bImK/yuVDWzsnAAAAAAAAAAAAAND/iglDp5SOjYgfRURDRDwfEW/POT/Sx8fvrFof3UPdYRExvLK+a4uHBAAAAAAAAAAAAAAGTBFh6JTSERFxY0QMjYiVEfHOnPODW9DiVxHxUmX9tyml1E3d6VXrn2zhmAAAAAAAAAAAAADAABr0YeiU0iER8fPYdGLzmoh4d855wZb0yDlviIhLK5fTI+KzXbznTRFxVuXy1znneVs7MwAAAAAAAAAAAADQ/xr6s3lK6aiImFx1a5eq9eSU0unV9Tnnqzs9v19E/HdEjKncuiAiXkopHdjDa5/LOT/Xxf3ZEfHBiJgSEd9IKU2OiGsjoiUijomIL8amP4+WiPi7HvoDAAAAAAAAAAAAAINAv4ahI+LsiPjbbvaOrHyqXd3p+s0RsWvV9Tf78M6vRsRXOt/MOa9KKZ0QEb+IiNdFxEcqn2orI+K0nPPv+/AeAAAAAAAAAAAAAKCG6mo9wEDKOf8pIt4QEedHxPyIWBERayNicWwKWh+cc55TswEBAAAAAAAAAAAAgD7r15Ohc86nR8Tp2/D81bH5adHbJOe8JiK+UfkAAAAAAAAAAAAAAIXaoU6GBgAAAAAAAAAAAABeO4ShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABF6tcwdEpp15TSe1JKX0sp3ZRSWp5SypXP1VvR710ppRtSSk+mlNZXvm9IKb1rC3oMSynNSinNTSm9kFJanVJ6KKV0cUppzy2dCQAAAAAAAAAAAACojYZ+7v/s9miSUkoRcXlEfKTT1qSIOCkiTkopXRER5+accw999ouIn0fE1E5b0yqfs1NKH8o5/2J7zA0AAAAAAAAAAAAA9J9+PRm6kyci4uatfPbr8UoQ+r6IODUiZla+76vc/0hE/O/uGqSURkTEnHglCP2vEXFsRBwREV+KiNURMToirk8pHbyVcwIAAAAAAAAAAAAAA6S/T4b+WkTMi4h5OednU0p7R8SSLWmQUpocEZ+rXM6PiLfknFsq1/NSSj+NiF9HxGERcX5K6aqc8yNdtPpsbDr9OSLicznn2VV796SUbo+I30TEsIj4VkS8bUvmBAAAAAAAAAAAAAAGVr+eDJ1z/vuc85yc87Pb0ObT8Upo+xNVQeiOd6yNiE9ULhsi4u86N0gpNUbEpyqXD0XEJV3Mek9EXFm5PCalNGMbZgYAAAAAAAAAAAAA+lm/hqG3VUopRcR7K5eLcs6/7aqucn9x5fJ9leeqvTUixlTW1+Sc27t55dVV65O3dF4AAAAAAAAAAAAAYOAM6jB0ROwTEZMq61/3Utuxv3tE7N1p781d1HVlfkSsqayP6sN8AAAAAAAAAAAAAECNDPYw9PSq9aJeaqv3p3fa61OfnHNbRDzSTQ8AAAAAAAAAAAAAYBBpqPUAvdijav1kL7VPdPNc9fWanPOKPvQ5OCLGpZSG5pzX9zplRKSUdu+lZLe+9AEAAAAAAAAAAAAA+mawh6FHVq1X91K7pmo9ops+vfXoqk+fwtDx6jA2AAAAAAAAAAAAANDP6mo9QC+aqtYbeqmtDi03d9Ontx699QEAAAAAAAAAAAAABonBfjL0uqr1kF5qh1atW7rp01uP3vr0ZI9e9neLiHlb0A8AAAAAAAAAAAAA6MFgD0OvqlqP6KV2eNV6dTd9euvRW59u5Zyf7Gk/pdTXVgAAAAAAAAAAAABAH9TVeoBeVAeMd++ltvpk5ie66TM8pTSmj32W5ZzX91ILAAAAAAAAAAAAANTIYA9DL6xaT+ultnr/oa3pk1JqiIj9uukBAAAAAAAAAAAAAAwigz0MvSQillbWR/dS+5bK91MR8edOe3dWrXvqc1hEDK+s7+rDfAAAAAAAAAAAAABAjQzqMHTOOUfEjZXLaSmlN3ZVV7nfceLzjZXnqv0qIl6qrP82pZS6eeXpVeufbPHAAAAAAAAAAAAAAMCAGdRh6IpvRURbZX1ZSqm5erNyfVnlsq1S/yo55w0RcWnlcnpEfLZzTUrpTRFxVuXy1znneds6OAAAAAAAAAAAAADQfxr6s3lK6aiImFx1a5eq9eSU0unV9Tnnqzv3yDk/nFK6OCI+HxGHRcRdKaV/jIhHImK/iDg/It5QKZ+dc/5jN+PMjogPRsSUiPhGSmlyRFwbES0RcUxEfDE2/Xm0RMTf9flHAgAAAAAAAAAAAAA10a9h6Ig4OyL+tpu9Iyufald3U/uliNg1Is6MTcHna7uouTIiLuhukJzzqpTSCRHxi4h4XUR8pPKptjIiTss5/767PgAAAAAAAAAAAADA4FBX6wH6IufcnnM+KyJOiIgbI2JpRGyofN8YEe/OOZ+dc27vpc+fYlOY+vyImB8RKyJibUQsjohvRsTBOec5/fU7AAAAAAAAAAAAAIDtp19Phs45nx4Rp2/Hfr+ITSc7b0uPNRHxjcoHAAAAAAAAAAAAAChUESdDAwAAAAAAAAAAAAB0JgwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAAChSUWHolNKQlNJZKaX/Sik9nVJan1JanVJanFL6fkrpjX3s866U0g0ppScrPZ6sXL+rv38DAAAAAAAAAAAAALB9NNR6gL5KKe0RET+PiIM6bQ2JiCmVzxkppW9GxGdyzrmLHikiLo+Ij3TamhQRJ0XESSmlKyLi3K6eBwAAAAAAAAAAAAAGjyJOhk4pNcSrg9B/iIjTI+JNEfGOiPhaRKyp7H06Ij7bTauvxytB6Psi4tSImFn5vq9y/yMR8b+33/QAAAAAAAAAAAAAQH8o5WTo98YrQeh7IuLNOeeNVfu3pJR+WtlrjIgvpJS+mXNu6yhIKU2OiM9VLudHxFtyzi2V63mV538dEYdFxPkppatyzo/0308CAAAAAAAAAAAAALZFESdDR8SRVesLOwWhIyIi57wgIuZULneKiGmdSj4dr4S/P1EVhO54fm1EfKJy2RARf7eNMwMAAAAAAAAAAAAA/aiUMPSQqvWjPdRVn+Q8tGORUkqx6XTpiIhFOeffdvVw5f7iyuX7Ks8BAAAAAAAAAAAAAINQKWHoh6vW+/ZQt1/lO0fEH6vu7xMRkyrrX/fyro793SNi7z7OBwAAAAAAAAAAAAAMsFLC0P83IlZW1uenlOo7F6SU3hARJ1Qur805r6zanl61XtTLu6r3p3dbBQAAAAAAAAAAAADUVEOtB+iLnPOylNLpEfGDiDgyIuallL4Vm06MHlG595mIGBIRv4+I8zq12KNq/WQvr3uim+d6lFLavZeS3fraCwAAAAAAAAAAAADoXRFh6IiInPNPUkqHxaag85kRcU2nkmcj4u8j4oqc85pOeyOr1qt7eVX1syO2YMQnei8BAAAAAAAAAAAAALaXuloP0FcppcaI+FBEnBgRqYuS8RFxakS8tYu9pqr1hl5etb5q3bwFIwIAAAAAAAAAAAAAA6iIMHRKaXhE/DIivhQRO0fENyJiekQMjYjREfGOiLgzIg6PiJ+llD7VqcW6qvWQXl43tGrdsgVj7tHL5/At6AUAAAAAAAAAAAAA9KKh1gP00Vcj4i2V9Vk552uq9jZExC0ppdsj4uaIOCYi/imldHvO+Q+VmlVV9SN6edfwqvXqvg6Yc36yp/2UujrMGgAAAAAAAAAAAADYWoP+ZOi0KUV8RuXy4U5B6JflnNsi4suVy7qqZyIiqoPKu/fyyj2q1k9swagAAAAAAAAAAAAAwAAa9GHoiBgfEWMr6/t6qV1QtZ5WtV7Yzf2uVO8/1EstAAAAAAAAAAAAAFAjJYSh26rWDb3UNnbz3JKIWFpZH91Lj7dUvp+KiD/3NhwAAAAAAAAAAAAAUBslhKFfiIiVlfWbUko9BaKrg85LOhY55xwRN1Yup6WU3tjVw5X7HSdD31h5DgAAAAAAAAAAAAAYhAZ9GDrn3B4RP69cToyIL3VVl1LaKSL+serWnE4l34pXTou+LKXU3On55oi4rHLZVqkHAAAAAAAAAAAAAAapQR+GrvhaRKytrL+SUvppSun9KaU3pJTelFL6dET8PiL2r9TcmnO+ubpBzvnhiLi4cnlYRNyVUvpgSumwlNIHI+Kuyv2IiNk55z/25w8CAAAAAAAAAAAAALZNQ60H6Iuc86KU0nsj4v9GxC4RcWLl05XbIuKvu9n7UkTsGhFnRsQbIuLaLmqujIgLtmlgAAAAAAAAAAAAAKDflXIydOScfxkR0yLi/Ij4VUQsi4jWiGiJiCUR8aOIeF9EHJdzfrGbHu0557Mi4oSIuDEilkbEhsr3jRHx7pzz2Tnn9n79MQAAAAAAAAAAAADANiviZOgOOefnI+Iblc+29PlFRPxiuwwFAAAAAAAAAAAAANREMSdDAwAAAAAAAAAAAABUE4YGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACK1FDrAQAAAOhfs1Y013qEfjF7TEutRwAAAAAAAACgxpwMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCI11HoAAAAAXjFrRXOtRyhGf/xZzR7Tst17AgAAAAAAANB/nAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIjXUegAAAIAdzawVzbUegW709Hcze0zLAE4CAAAAAAAAQF84GRoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFaqj1AAAAAKWataK51iMwgLbm73v2mJZ+mAQAAAAAAACADk6GBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJEaaj0AAADAYDdrRXOtR6BQPf3bmT2mZQAnAQAAAAAAAHhtcjI0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEVqqPUAAAAAg8GsFc21HoEdTE//5maPaRnASQAAAAAAAADK5WRoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAitRQ6wEAAAAGyqwVzbUeAfqkp3+rs8e0DOAkAAAAAAAAAIObk6EBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQpIZaDwAAALA9zVrRXOsRoF/19G989piWAZwEAAAAAAAAoPacDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAokjA0AAAAAAAAAAAAAFAkYWgAAAAAAAAAAAAAoEjC0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIDbUeAAAAYEvNWtFc6xFgUOrpPxuzx7QM4CQAAAAAAAAAA8PJ0AAAAAAAAAAAAABAkYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARRKGBgAAAAAAAAAAAACKJAwNAAAAAAAAAAAAABRJGBoAAAAAAAAAAAAAKJIwNAAAAAAAAAAAAABQJGFoAAAAAAAAAAAAAKBIwtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIpUXBg6pbRLSulzKaW7UkrPpJTWp5SWppR+l1KanVJ6Ux96vCuldENK6cnK809Wrt81EL8BAAAAAAAAAAAAANh2DbUeYEuklP46Ir4XETt32ppQ+cyMiNdFxPu6eT5FxOUR8ZFOW5Mi4qSIOCmldEVEnJtzzttvcgAAAAAAAAAAAABgeysmDJ1S+nBEXBWbTrN+LjaFou+MiBciYreI2C8iToyI1h7afD1eCULfFxHfiIhHKs9+LiLeUNlfFhEXbPcfAQAAAAAAAAAAAABsN0WEoVNK0yPiitgUhL4jIk7MOb/URellKaUh3fSYHJsCzxER8yPiLTnnlsr1vJTSTyPi1xFxWEScn1K6Kuf8yPb8HQAAAAAAAAAAAADA9lNX6wH66LKIGBoRyyPi5G6C0BERkXPe0M3Wp+OV8PcnqoLQHc+tjYhPVC4bIuLvtmVgAAAAAAAAAAAAAKB/DfowdEppWkQcW7n8Ts55+Vb0SBHx3srlopzzb7uqq9xfXLl8X+U5AAAAAAAAAAAAAGAQaui9pOb+ump9fccipbRTROwSES/knJ/vpcc+ETGpsv51L7W/joipEbF7ROwdEUu2ZFgAAAAAAAAAAACgfy1YsKAhImZGxHERcWBEjKjtREAP1kbEExHx24i4e8aMGU9sz+YlhKHfWPl+KSIeSimdFhGfi4iDOwpSSksi4pqIuCTnvLqLHtOr1ot6eV/1/vQQhgYAAAAAAAAAAIBBY8GCBcMi4tKIOCSlNKS+vn54RNTXeCyge+3t7e37t7e3vyUi8oIFCy6PiCtnzJiRt0fzEsLQ+1e+/xwRl0XEx7uo2ScivhIRf5VSemfOeWmn/T2q1k/28r7qtPke3VZ1klLavZeS3fraCwAAAAAAAAAAANhc5UToSyPi0CFDhuxeV1c3PKWU6+rqNqaUtkuwEtiuUnt7e117e3tdRLS3tbU939bWdm5E7B6bsr/brIQw9NjK97SIeH1ErIiIz0fEDRGxMiIOioivRcTxsemo++tTSm/OObdX9RhZte7q5Ohqa6rWW3Js/nY9shsAAAAAAAAAAADYzMyIOGTIkCG7NzY2No0fP/6p0aNHr6qrqxOEhkEq5xwtLS1DX3rppdEvvPDCuJRSQ2tr63sWLFjw7zNmzHhkW/vXbY8h+9nwyvfQiNgYEcfnnP8l57ws57w+5zw/It4TETdV6o6IiJM79WiqWm/o5X3rq9bNWzkzAAAAAAAAAAAAsP0dl1IaUldXN3z8+PHP7LTTTisFoWFwSynFsGHD1k+YMOG5cePGPVdfXz8mIupj87zvVikhDL2uan19zvm3nQsqp0DPqrp1ag89hvTyvqFV65Y+TbjJHr18Dt+CXgAAAAAAAAAAAMDmDqyvrx+eUsqjR49eVethgC0zduzYFyMi1dfXj4yIN2yPng3bo0k/WxWvnA59U3dFOecHU0pPRcSk2Dx4XP1feCN6ed/wqvXqvg6Zc36yp/2UUl9bAQAAAAAAAAAAAF0bERH1dXV1G50IDeVpaGhor6+vb2tra2uIiNHbo2cJJ0M/UbXuMXBcVbtrp/vVz+3eS489unk3AAAAAAAAAAAAMAiklAShoVBV//ndLicNlxCGfrBqXd9Lbcd+W6f7C6vW03rpUb3/UC+1AAAAAAAAAAAAAECNlBCG/k3Ver9eavetfD/V6f6SiFhaWR/dS4+3VPX4c2/DAQAAAAAAAAAAAAC1UUIY+qcR0VpZn9xdUUrp6IjYuXJ5R/VezjlHxI2Vy2kppTd20+ON8crJ0DdWngMAAAAAAAAAAAAABqFBH4bOOT8fEf9WuXx7SumUzjUppZER8a2qW//SRatvRURbZX1ZSqm5U4/miLisctnWqR8AAAAAAAAAAAAAMMgM+jB0xd9HxOOV9b+nlC5LKR2TUpqRUjo9IuZGxCGV/e/lnOd1bpBzfjgiLq5cHhYRd6WUPphSOiyl9MGIuKtyPyJids75j/30WwAAAAAAAAAAAABeMy699NKdK5nOGYsXLx5S63lqbebMmVNTSjNmzpw5tdaz7Agaaj1AX+Scl6WU3hURP42IyRHx/1Y+nX0/Ij7VQ6svRcSuEXFmRLwhIq7toubKiLhgmwYGAAAAAAAAAAAAaurt//Tr6S+s3dBY6zn629hhQ1pvOe/oh2o9B9RKEWHoiIic80MppUMi4v+JiL+KiNdFxIiIeC42ner8Lznn23vp0R4RZ6WUfhwRH4mIwyNil4hYHhHzKj1u6rcfAQAAAAAAAAAAAAyIF9ZuaHx+9Ws/DA07umLC0BEROec1EXFx5bMtfX4REb/YLkMBAAAAAAAAAAAAQMXcuXMX13qGHUldrQcAAAAAAAAAAAAAANgawtAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAADo1rJly+o/9rGPTdpnn30OaGpqOnTs2LGvP+KII6Z8//vf36mvPRYvXjzkrLPO2mPy5MkHDB8+/A3Nzc1v2GuvvQ780Ic+tNfcuXObe3o2pTQjpTTjvPPOmxgR8bOf/Wzkcccdt9+uu+56cFNT06H77rvvAbNmzZqwcuXKV+Vir7vuutFHH3305I66/fbb74AvfOELu61bty51965169alH/7wh6M//OEP73nggQdOHzVq1CENDQ2Hjhkz5pCDDz542nnnnTfx6aefbuhp3pkzZ05NKc2YOXPm1K7+HDp+z6WXXrpzRMRPfvKTUW9729sm77LLLq8fMmTIoZMmTTrotNNO2/ORRx5p7Ok9bNLjXwYAAAAAAAAAAAAAO64FCxY0HX/88VOWLVv2cjB3/fr1Dffcc8/Ie+65Z+R//dd/LT/qqKNW99TjO9/5zs6f+cxn9tqwYcOrQsiPP/740Mcff3zoj370o11mzZr11IUXXvhMb/N88Ytf3O2iiy6alHN++d6SJUuaLr744om33nrr6Ntvv/3hkSNHtp999tl7XHXVVbtWP/voo482XXTRRZPuuuuukbfddtsfGxo2j9Gedtppe91www07d77/0ksv1T/wwAPDH3jggeFXXXXVuOuuu+5P73jHO9b0Nm9vPvaxj0363ve+t1v1vaVLlw754Q9/OO6mm27a6Ze//OXiQw89dN22vue1TBgaAAAAAAAAAAAAgM08//zz9SeccMLLQegTTjjhxQ9/+MPLJ0yY0LZw4cKmyy67bPz111+/y0MPPTSsux7XXnvt6E9+8pN755xj2LBh7R/96Eeffec737myoaEh33HHHSO+/e1v77ZixYqGiy66aNKYMWM2nn/++cu66/XLX/5y1AMPPDD8kEMOWXPuuec+t//++6977rnnGi699NJdf/Ob34y+7777hn/5y1/ebezYsRuvuuqqXd/ylre8dOaZZy7fb7/9Njz22GONs2fPnnD//fcPv+OOO0b90z/907jPfe5zm72rra0t7b777uuPP/74FTNnzlyzzz77bGhsbMyPPvrokFtuuWXU9ddfv8uKFSsaTjnllMkPPPDAg5MmTWrb2j/fq6++etx99903/PDDD1991llnLdt///3XvfDCC/XXXHPNzj/5yU92fvHFFxvOPPPMvX//+98v2tp37AhSdTKe/pNS2j0inoiIuPX9EbsN37zm3RPmDPBUAABQplkrevx/SAK6MHtMS61HAAAAAAAABsDI6Z/f7F7rC62x+LzFHZd75JyfHNChtqMFCxb8oqGhYf+mpqYxU6dO/VNPtTO+fsvBz6/e0NhTzWvBziOGtC644O1/6I/e55xzzu7/9m//Nj4i4vOf//xmJzevX78+HXvssZPvuuuuUR33Fi1a9MDUqVM3dOzvueeeBz333HONw4YNa7/lllsWHXHEEa/6H64efvjhIUcdddS0ZcuWNTY1NbU/+uijD0yYMOFVAeOU0oyO9Tvf+c4X58yZ82j1qc5tbW1x2GGHTbv//vuHDx8+vL2trS2ddtppy6688sonqvusWrWqbtq0aQcsXbp0yJQpU1oWL168sPNvfvDBB4dOnz59fV1dXZd/JnPnzm0+5phjpq1du7buk5/85NPf/va3l3aumTlz5tR58+aNOPzww1fPnTt3cfXe4sWLh0ybNu2gjutTTjll+Q9+8IPHOr/vlFNO2eu6667bJSLizjvvXHjkkUe+Zv4Hv8WLF09et27dira2toUzZsx497b26/pvCgAAAAAAAAAAAIAdVktLS/rRj360S0TElClTWr7+9a8/07lm6NCh+ZprrvlzQ0NDlyfz/vu///uY5557rjEi4lOf+tTTnYPQld4bvvrVrz4ZEbFu3bq67373uzt3N1NTU1P7Nddc81h1EDoioqGhIc4888xlERFr1qyp22mnnVq/+93vbhb6HzlyZPsHPvCB5yMiHn744ebnn3++vnPNAQcc0G0QOiJi5syZLaeccsryiIibbrppTLeFfTBu3LjW73//+4939b4vfOELL/9533777SO35T2vdcLQAAAAAAAAAAAAALzKnXfeOWzlypX1ERGnnnrq8/X1m+WGIyJiv/32az3qqKNWdrV36623joqISCnFxz/+8eXdveuMM854ccSIERsjIm6//fZR3dUdeeSRK8ePH7+xq71DDz305aD18ccfv2Lo0KFdBrQPOeSQtR3rxYsXD+nuXR2WLVtW/+CDDw6dP39+07x585rmzZvXNGbMmLaIiEceeaR5/fr1qbce3Xn3u9/9YnNzc5dzvv71r18/bNiw9oiIRx99dOjWvmNH0NB7CQAAAAAAAAAAAAA7kt///vfNHes3vvGNa3qqnTFjxppf/epXozvfX7RoUXNExMSJEzdMmjSprbvnm5qa8v7777927ty5Ix9++OHm7uomT568vru9sWPHvtx/ypQp67qr22mnnV4OU3eEvTubO3du8+zZs8f/6le/GrV8+fLG7nq1t7fH8uXL63v6bT2ZNm1at3NGRIwaNapt7dq1Q1avXu3w4x4IQwMAAAAAAAAAAADwKi+++OLLGdMJEya09lQ7fvz4LvdXrFhRHxGxyy679Ph8RMSuu+7aGhGxcuXKbrOtHScld6X65Oqe6urqXskVt7W1bXaq8ze/+c1dZs2atefGjRv7dOLzmjVrtjqo3NOcEa/M2tdZdlSS4gAAAAAAAAAAAAC8Ss755XVKPWdxc849FvT2fF96DIT77ruvqSMIPXbs2LYvf/nLT95xxx0PPfPMM79ft27dvTnnBTnnBd/85jf/3PFM9Z8TteFkaAAAoDizx7R0uzdrRbf/j0nwmtfTfzYAAAAAAABgS4wdO7atY7106dLGgw8+eH13tc8991yXedQxY8ZsjIhYtmxZY2/vW7ZsWUNExKhRo9p6q+0v//qv/7rzxo0bU319fdxyyy2LDz300HVd1VWfmk3tORkaAAAAAAAAAAAAgFc55JBDXj6J57e//e3wnmrvvffeLvenTZvWEhGxdOnSIU899VS3AeL169enhQsXDouImDJlSs1OAFq0aFFzRMTUqVPXdheEjoi49957hw3cVPRGGBoAAAAAAAAAAACAVznqqKPWjho1amNExHXXXbdze3t7l3VLlixpvPPOO0d1tXfssceujIjIOcc///M/79Ldu66++uqdVq9eXR8Rccwxx6zc5uG3UltbW4qIaGlp6TZf+/jjjzf88pe/HDNgQ9ErYWgAAAAAAAAAAAAAXqW5uTl/4AMfWB6x6cTk//W//tf4zjWtra1x+umn79Xa2pq66vE3f/M3K8aNG9caEXHppZdOuOeee5o71/zpT39q/PKXv7x7RERTU1P7xz72see37y/pu3333XddRMRjjz3WdOutt2522vWqVavqPvCBD+y7bt06+dtBxF8GAAAAAAAAAAAAAJu56KKLnh4/fnxrRMQ//MM/7H7iiSfu85//+Z+j7rzzzmFXXHHFToceeuj03/zmN6MPPPDAtV09P3To0HzppZc+llKKNWvW1B133HHTPvvZz064+eabh992223Dv/rVr+76F3/xF/svW7asMSLiK1/5ypMTJkxoG8jfWO2MM854PiKivb09Tj755Nd98Ytf3O2mm24acfvttw/7x3/8x3EHHXTQ/r/73e9GHnrooatrNSOba6j1AAAAAAAAAAAAAAAMPjvvvPPGOXPmPHz88cdPWb58eeOcOXPGzpkzZ2x1zV/91V89/+Y3v3nVpz71qb276nHKKae8tGzZsj9/9rOf3Wvt2rV1l1xyycRLLrlkYnVNfX19zJo166nzzz9/WT/+nF4dffTRaz/zmc8sveSSSyauXLmy/sILL5x04YUXvqrmnHPOefbAAw9suffee0fUaEw6cTI0AAAAAAAAAAAAAF067LDD1v3P//zPg+eee+4ze+211/ohQ4bkMWPGtP3FX/zFqssvv3zJ9ddf/+feenziE594/g9/+MP/nHHGGc/tu+++65qbm9ubmpra99hjj/WnnHLK8rvvvnvhhRde+MwA/JxeXXzxxU9fe+21fzryyCNXjho1amNjY2MeP3586zve8Y4VN9xwwx+vuOKKJ2s9I6+Wcs61nmGHkFLaPSKeiIi49f0Ruw3fvObdE+YM8FQAAPDaM2tFc61HgJqZPaal1iMAAAAAAAA1NnL65ze71/pCayw+b3HH5R4552LDnAsWLPhFQ0PD/k1NTWOmTp36p55qZ3z9loOfX72hcaBmq5WdRwxpXXDB2/9Q6zmgrxYvXjx53bp1K9ra2hbOmDHj3dvar2F7DAUAAAAAAAAAAAAwmIwdNqS11jMMhB3ld0J3hKEBAAAAAAAAAACA15xbzjv6oVrPAPS/uloPAAAAAAAAAAAAAACwNYShAQAAAAAAAAAAAIAiCUMDAAAAAAAAAAAAAEUShgYAAAAAAAAAAAAAiiQMDQAAAAAAAAAAAAAUSRgaAAAAAAAAAAAAACiSMDQAAAAAAAAAAAAAUCRhaAAAAAAAAAAAAACgSMLQAAAAAAAAAAAAAECRhKEBAAAAAAAAAAAAgCIJQwMAAAAAAAAAAAAARWqo9QAAAADb0+wxLd3uzVrRPICTQP/o6d84AAAAAAAAwI7GydAAAAAAAAAAAAAAQJGEoQEAAAAAAAAAAACAIglDAwAAAAAAAAAAAABFEoYGAAAAAAAAAAAAAIokDA0AAAAAAAAAAAAAFEkYGgAAAAAAAAAAAAAoUkOtBwAAABgos8e0dLs3a0XzAE4CPevp3yoAAAAAAAB988gXD5zetmpZY63n6G8NI8e17vd//ueh/uj9/ve/f+8bbrhh54iIRYsWPTB16tQNvT0zadKkg5YuXTpk4sSJG5566qkHqvdSSjO6e27o0KF5zJgxbfvvv//a97///S989KMffaGhofuYa8d7utprbGzMo0ePbpsyZUrLX/7lX674+Mc/vnzEiBG5t9kpkzA0AAAAAAAAAAAA8JrTtmpZ48aVz73mw9CvFevXr0/PPvts47PPPjv69ttvH/29731v/M033/zHiRMntm1pr9bW1rR8+fLG5cuXN959992jvvvd746fM2fOHw866KD1/TE7tSUMDQAAAAAAAAAAAMCAOeCAA9ZeddVVS6rvrVy5sv7+++9vvuKKK3ZdvHhx84MPPjjsve99737z5s1b3FOvcePGtf785z9/uPre2rVr6x588MGmq666atz8+fNHPP7440NPPPHE1z300EMPNjc3OyH6NUYYGgAAAAAAAAAAAIABM2zYsPbDDz98Xef7xx577Jpzzjnnhde//vXTlyxZ0jR//vwRt9122/C3ve1ta7rr1djYmLvqdfTRR6/96Ec/+sIRRxwxZe7cuSMfe+yxof/xH/8x5pxzznlxe/8eaquu1gMAAAAAAAAAAAAAQETEyJEj288555znOq7vvvvu4Vvbq76+Pj796U8/23H9u9/9bqt7MXgJQwMAAAAAAAAAAAAwaOyzzz4bOtbr1q1L29Jr8uTJ66t6yc2+BvlLBQAAAAAAAAAAAGDQWLJkyZCO9Z577rmhp9re/OlPfxq6vXoxOAlDAwAAAAAAAAAAADAorF69Ol155ZW7RkQ0NTW1v+c971m1tb3a29vj29/+9viIiJRSnHTSSSu205gMIg21HgAAAAAAAAAAAACAHcfatWvr5s2b11R9b/Xq1XX3339/8xVXXLHrI4880pRSigsuuOCpiRMntvXUq7W1NXXu1dLSUrdw4cKmq6++epff/e53IyMizj777GcPP/zwddv/11BrwtAAAAAAAAAAAAAADJgHH3xw2MyZMw/obv+II45YOWvWrGfe97739Xoq9LJlyxp76nXggQeuPe+8854544wzXtzaeRnc6mo9AAAAAAAAAAAAAAB0mDt37sjLL7983JIlSxq3tdfChQuHXXnllbvMnz+/qfdqSiQMDQAAAAAAAAAAAMCAOfzww1fnnBdUf9atW3fvokWLHrjwwgsfHzFixMb//u//3ulNb3rT9D/84Q9De+o1ceLEDZ17bdiwYcGjjz76h+985ztLdttttw133XXXqLe97W3TbrnlluED9RsZOMLQAAAAAAAAAAAAAGwmpbTFz+Sct+pdQ4cOzVOnTt3w+c9/ftktt9yyuKGhIT/77LONZ5555t5b2quxsTH22Wef1o9//OMv3H333YtGjx69cdWqVfVnnHHGvq2trVs1H4OXMDQAAAAAAAAAAAAAm2lqamrvWK9evbpPmdOWlpa6iIhhw4a191bbncMOO2zd0Ucf/VJExIIFC0Y88MADPZ4O3ZO99tqr9eSTT34+IuKpp54aMmfOnFFb24vBqaHWAwAAAAwGs8e0dLs3a0XzAE7CjqKnf3MAAAAAAAAwGIwdO7atY/3UU081zpgxY11P9S0tLWnVqlUNERGjR49u66m2N1OmTFl36623RkTEvffe23zQQQet39pe06ZNe3nu+++/v/mkk05auS2zMbg4GRoAAAAAAAAAAACAzRx88MEvn/Azf/78Yb3V//a3v23euHFjRETsv//+23Q6UFtbW+pYb9iwIfVU24deL69bW1u3qReDjzA0AAAAAAAAAAAAAJt5xzvesaq+vj5HRPz4xz8e297e3mP9Nddcs3PH+rjjjtum05fvu+++4R3rvffee8O29Jo/f/7LvfbYY49t6sXgIwwNAAAAAAAAAAAAwGb23HPPtuOPP/7FiIiFCxcO+9KXvrRbd7U//elPR/7gBz8YFxExceLEDaeeeuqKrX3vtddeO3r+/PkjIiLGjBnT9ta3vnXN1va68847h/385z8fGxHR2NiYTzzxxG0KaTP4NNR6AAAAAAAAAAAAAAAGp+985ztP3n333aNeeOGFhosuumjSHXfcMfLUU099fvr06esbGxvzY489NuRnP/vZ6B//+Mc7b9y4MdXV1cXll1/+58bGxm57rl27tm7evHlN1fc2bNiQHn/88SFz5swZfd111+3Scf+CCy54qqdera2tqXOvtra29PTTTzfefPPNo6655ppxGzZsSBER55577jOTJk1q29o/CwYnYWgAAAAAAAAAAAAAurTXXnu13nbbbYtOPvnkyY8++mjTXXfdNequ/5+9O4/Tuqz3x/++ZgZmgBkWBTEWRVFBrVwQUxJEJbU0176dzGNqi9qmtlm/TuecNsssKys1zdSjebJFTSPN0AxNSMHllBsoLiCogKwDzMDMfH5/zD16i7PCMMOHeT4fDx739bmv63Pd73vQi2tmXnPNAw/0b25sVVVV/VVXXfX8+9///tWtzfnEE0/0PfDAA/dubUxZWVn25S9/eeEXvvCFpa2NW7JkSa+25kopxRlnnLH4xz/+8aLWxpFPwtAAAABt+P7Adc0+/6UVfbq4EvKmpf92AAAAAAAAIE/22Wef2qeffvqJq6++ervbb7994D//+c9+y5YtK6uvr08DBgyo23333WumTJmy8rzzzlu6/fbb12/Ka5SWlkZlZWX9TjvtVHPIIYes/tSnPrX07W9/e+2mzFVSUhJ9+/atHzlyZO348eOrzz777KUTJkzwzbttlDA0AAAAAAAAAAAAAK3q1atXfPKTn1z2yU9+ctmmzpFl2cOdVc/ChQv/1VlzkW/C0AAAAAAAAAAAAMA2p6xqyIburqEr9JT3CS0RhgYAAAAAAAAAAAC2OaO/8/hT3V0DsOWVdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJfKursAAACAvPr+wHWbdN+XVvTp5EroCpv69w0AAAAAAADAluNkaAAAAAAAAAAAAAAgl4ShAQAAAAAAAAAAAIBcEoYGAAAAAAAAAAAAAHJJGBoAAAAAAAAAAAAAyCVhaAAAAAAAAAAAAAAgl4ShAQAAAAAAAAAAAIBcKuvuAgAAAHqa7w9c12Lfl1b06cJK2FhrfzcAAAAAAAAAbH2cDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS2XdXQAAAABv+P7AdZ0+55dW9On0ObcGW+JjBQAAAAAAAGy7qqur03//93/vOHXq1EHz588vr6mpKYmIOPPMMxdfc801C37yk59sf955542KiHj66af/NWbMmPXdWjDtIgwNAAAAAAAAAAAAbHNOuO2EPZfXLO/V3XVsaYMqBm34w/F/eKorXuu1114rveqqq7b785//PODZZ5/ts2zZsrKysrJs++23r3vnO9+55v3vf/+KM888c3lZ2dYXT62trU2TJk0a8+ijj/br7lq2VnPmzOk9duzYd3TkniOOOGLF3XffPW9L1dQeW99/bQAAAAAAAAAAAACbaXnN8l7LapZt82HorvLDH/5w8Le+9a3hK1aseEv2tLq6uvTFF18s/+Mf/7jd9773vZrLLrvsxaOOOqp6S9eUUhoXEfG5z33u5R/+8IeLWht77bXXDmoKQp988smvnXHGGa8NHTp0Q0TE0KFD67Z0rWw5wtAAAAAAAAAAAAAAtOjss88ecdVVVw2NiCgtLc2OPfbY5ccdd9yKXXbZpXb9+vUlTz75ZMXvfve77WbOnFk1b968iuOOO26Pn//858+feeaZy7u79ib33HNP/4iIwYMHb7jpppte2BpPr96aHHHEESu++93vLmxr3MCBAxu6op7W+JsEAAAAAAAAAAAAoFnf/e53hzQFoXfcccf1t9xyy7MHH3zwuuIxRx11VPXnPve5pb/4xS8GffrTn95l/fr16eyzz95lzJgxNRMmTFjX/Mxd6+WXX+4VETFy5Mj1gtBtGzBgQP348eNruruO9ijp7gIAAAAAAAAAAAAA2PrMnTu39ze+8Y2RERF9+/ZtmDZt2tyNg9DFPvGJTyz/2c9+9nxExIYNG9IZZ5yxS0NDtx8cHBER69evL4mIKCsry7q7FjqXMDQAAAAAAAAAAAAAb/G9731vaG1tbYqI+MIXvrDo7W9/e21b95x11lnLJ0+evDIi4plnnulz0003Ddh4zPDhw9+RUhp38sknj2ptrpNPPnlUSmnc8OHD39Hc/U3XP/rRj96WUhpX/Ofkk08eNWfOnN5N17NmzaqMiJg1a1Zl8biN526PRYsWlZ177rnD9txzz72qqqr2LS8v33/48OHvOOGEE3a56667Klu6p+k1v//97w9ubsy//du/7dw05vTTTx/Z3JhvfvObO6SUxpWVlY1btmyZHHBEOOcbAABgG/f9gVvFb50CAAAAAAAAcqShoSFuvvnm7SMiKioqGs4777yl7b33s5/97OK//e1vAyIirrvuusEf/vCHV26pOrvaLbfc0v/000/ftbq6urT4+UWLFvW+7bbbtrvtttu2O+2005Zce+2180tL3xgybNiwutGjR9fMmzevYvr06f2/9KUvveXjOXPmzKqm9owZM/o39/r33XdfVUTE2LFj12633XavH7s9fPjwdyxatKh3RESWZQ9v9hvNEWFoAAAAAAAAAAAAAN7k4Ycfrli5cmVpRMQBBxxQvf3229e3997jjjtuVUVFRUNNTU3J7Nmzmz0peXPceeedc2tra9OBBx64d0TEqaeeuuS8885bXDxm8ODB9cOGDat76KGHnoiIOPPMM3d54okn+u69995rr7322uebxpWXl2ftfd0ZM2b0+dCHPrTbhg0bUllZWfaRj3xkyYknnriiqqqqftasWX1//OMfv23hwoW9b7jhhiH9+vWrv+KKKxYW33/QQQetnjdvXsWDDz74lo/J888/32vBggXlTdfz5s2rWLRoUdmwYcPqmp5raGiI2bNnV0VETJgwYXV7697WCUMDAAAAAAAAAAAA8CazZ8/u29TeZ5991nbk3rKyshg7duy6xx57rN/y5cvLXnjhhV6jRo3a0Fm1vfOd76wtvt5hhx3qxo8fX9Pc2Kbn+/bt29D02NLYtpx99tmjNmzYkEpLS+M3v/nNsyeddNKqpr5DDz107emnn7784IMPHjtv3ryKq666asePfexjrx1wwAGvv9bkyZNX33jjjUOWLl3a69FHH63Yb7/9Xu+78847qyIidtttt5qampr00ksvld91111VZ5555vKmMf/4xz/6NAXUJ0+evEXD0CtXriydNWtWRVvjxowZs75///4NbY3bkoShAQAAAAAAAAAAAHiTpUuXvp4x3XHHHTscZB48ePDr9yxevLisM8PQ3eHee+/t+/jjj/eNiPjgBz+4pDgI3WTIkCH1l19++QtHHXXU2IaGhrj00kt3uOGGG+Y39R911FGvB5inTZtWVRyGvu+++6oiIg4++ODVNTU16Xe/+135vffe+6Yw9D333FMVEVFSUhJHHnlk9ZZ5p6+/1sADDzxwYFvj/vjHP8499thju/WU6pLufHEAAAAAAAAAAAAAtj6rV68ubWr369evwyf/Np3EHBGxYsWK3OdV77rrrv5N7bPPPntpS+OOPPLINbvuumtNRMT999/fv7hv5MiRdbvssktNxBvh5yYzZ86siog47LDDVh966KGri59r0nTPmDFj1g4ePLi+uG/hwoX/yrLs4SzLHt6U95dnToYGAAAAAAAAAAAA4E2qqqpeD9tWV1d3OMy8Zs2a1+8ZOHBgh8PUW5snnniiT0REr169sgkTJqxtbex+++235rnnnquYP39+eU1NTaqoqMia+g466KDVzz//fMWDDz5Y2fTcCy+80Gv+/PnlKaU46qijVq9bty5FRMybN69i0aJFZcOGDatraGiI2bNnV0ZETJgwYYufxHzSSSe9dvPNN7+wpV+nM+Q+aQ8AAAAAAAAAAABA59p+++3rmtqvvPJKr47ev3Tp0tfv2WGHHepaG5sHK1asKIuIGDBgQF2vXq1/OIYOHbohIiLLsliyZElpcd/kyZNXRzR+fB599NGKiIg777yzKiJi9OjRNcOGDasbPXr0hhEjRtRmWRZ33XVXVUTEgw8+2KephsmTJ1d38tvLNWFoAAAAAAAAAAAAAN7kgAMOWNfU/uc//9m3I/fW1dXFnDlz+kREDBo0qG7UqFEbOru+7pJSanNMlmUt9h111FGvB5mnTZtWFRFx3333VUVEHHzwwa+f+NzUvvfee6siIu65556qptc/6qijtvjJ0HkiDA0AAAAAAAAAAADAmxxwwAHrBgwYUB8RMXv27MrXXnuttK17mtx22239a2pqSgrzvOUU46ZAcUNDQ6vzrF27dqvJuQ4cOLAuovGE6A0bWs92L168uFdE4/scMmRIfXHfzjvvvGHnnXeujXgjBD1z5syqiIjDDjvs9ZDzoYceurq4r2nsHnvssW7jOXu6reY/EgAAAAAAAAAAAAC2DiUlJXHSSSe9FhFRU1NTcumllw5u770/+9nPdmhqn3766Us37u/Xr199RMTKlSvLWptn3rx5Fe2veMvae++910VEbNiwIc2YMaPVk7Ife+yxfhERO+20U21FRcVbjoluOvX5wQcfrHzhhRd6vfjii+Ubn/h89NFHr45o/BgsXLiwbNasWZURERMmTHAq9EaEoQEAAAAAAAAAAAB4iwsuuODV3r17ZxERl1xyybDHH3+8vK17rrrqqkF/+9vfBkREjB49uuZDH/rQyo3HjBw5sjYi4vHHH+/b0unQs2bNqnjmmWf6tPZa5eXlWUREbW1tavPNbKajjjpqVVP7yiuvbDEYfvfdd/drCnFPnDhxVXNjmk59Xrp0aa8f//jHQyIaP1bDhg2raxozevToDSNGjKjNsiy+//3v77BixYqyiIjJkycLQ29EGBoAAAAAAAAAAACAtxg7duz6//zP/3wpImLt2rUlRx555B4zZ85sMaB89dVXD/rMZz6zS0REr169suuuu+750tLSt4ybOHHi6oiIJUuW9Lrqqqu227h/+fLlJR/96Ed3aau+wYMHb4iIeP7559sMaW+uww47bO3b3/72tRERv/3tb4fceuut/Tce89prr5V+6lOf2jmi8WTtc889d3FzczWd+hwR8ctf/nKHiDdOiy7W9FzTmJRSHHnkkc2GoYcPH/6OlNK4lNK4jr+7fGv1eHEAAAAAAAAAAAAAeq6vfe1ri5977rnya6+9doeXX36598SJE/d8//vfv+y4445bueuuu9auX78+PfHEExW//e1vt585c2ZVRGMQ+rLLLnv+kEMOWdvcnJ/4xCeW/eAHPxhWXV1dev7554969tlny9/3vvetSillDz74YL/LL7986OLFi3vvueeea5966qm+LdU2bty46oULF253zz33DPz+978/ePLkydV9+vTJIiIGDRpUP3z48LqW7t0UV1555QuTJ0/ec8OGDemDH/zgbmecccbi448/fmX//v3rZ82a1ffHP/7xji+99FJ5RMRZZ531yvjx42uam2fUqFEbdtppp9r58+eXV1dXl0ZEHHbYYW8JOR966KGrf/e73w1uGrPbbrut23HHHes78z21ZOXKlaWzZs2qaGtcaWlp7L///s2+z64iDA0AAAAAAAAAAABAi6655poFY8eOrfnOd74zfOXKlaV/+MMftv/DH/6wfXNjd9lll5qf/vSnLx5zzDHVLc03bNiwuksvvfTFs846a9fa2tp0ySWXDLvkkkuGNfWXl5dnl19++fN/+tOfBrQWhv7yl7/8yp///OdB69evTxdccMHOxX0nnXTSazfffPMLm/B2WzRhwoR1N91007Onn376rtXV1aVXX3310KuvvnroxuNOO+20JT/72c8WtjbXQQcdtHr+/PnlEY0nPh911FFvCUMXnyBdeP1mT4XeEu65556BBx544MC2xlVWVtavXr36sS1fUctKuvPFAQAAAAAAAAAAANj6XXDBBUueffbZf1144YXzJ06cuGrHHXdcX15envXt27dh5MiRtccee+yyK6+88rk5c+Y80VoQuslHP/rR5dOmTXvqPe95z4pBgwbV9erVK9txxx3Xn3TSSa/9/e9/f/KjH/3o8rbmmDBhwrq//vWvTx177LHL3va2t63v3bt31jnvtmUnnXTSqjlz5jz+mc985pWxY8euq6ysrO/du3f2tre9bf1xxx237M9//vOc66+/fn5paWmr8xx66KGvB5tHjx5dM2zYsLecYj169OgNI0eOrG26njx5cpeFofMkZdkW/3snIlJKIyJiQUTEPSdH7NjvrWPe97apXVwVAAAAAAAAAAAA25KqPb/yluc2LNsQcz4/p+lyZJZlL3VpUZ3o4YcfvqOsrGyvioqKgWPGjHm2tbEn3HbCnstrlvfqqtq6y6CKQRv+cPwfnuruOqC95syZs1tNTc2Kurq6J8eNG/e+zZ2vrDOKAgAAAAAAAAAAANiaCAhDz1DS3QUAAAAAAAAAAAAAAGwKYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXMp1GDqldHFKKSv6M7kd9xydUrolpfRSSqm28HhLSunoLV8xAAAAAAAAAAAAANBZchuGTintExGf68D4lFK6MiLujIgTI2J4RPQuPJ4YEXemlK5MKaUtUS8AAAAAAAAAAAAA0LlyGYZOKZVExC8ioiwiFrfztm9HxFmF9qMRcUpEHFh4fLTw/FkR8a3OqxQAAAAAAAAAAAAA2FJyGYaOiHMjYnxEPB0Rv2xrcEppt4i4oHA5OyLenWXZTVmWzcqy7KaIOKTwfETEl1NKo7dAzQAAAAAAAAAAAABAJ8pdGDqlNDLeOL35kxGxvh23fS4aT5GOiPhslmXrijuzLFsbEZ8tXJZFxPmbXykAAAAAAAAAAAAAsCXlLgwdEZdHRGVE/E+WZX9ra3BKKUXE8YXLp7Ms+0dz4wrPzylcnlC4DwAAAAAAAAAAAADYSuUqDJ1S+mBEHBsRyyLiS+28bZeIGF5oT29jbFP/iIgY1dH6AAAAAAAAAAAAAICuk5swdEppYERcWrj8cpZlS9p5655F7afbGFvcv2eLowAAAAAAAAAAAADoNieffPKolNK44cOHv6O5/uHDh78jpTTu5JNPHtXFpdHFyrq7gA64OCJ2jIgZEfHLDtw3sqj9UhtjF7RwX5tSSiPaGLJjR+YDAAAAAAAAAAAANt28Y9+/Z/3y5b26u44trXTQoA2jp/7xqe6uA7pLLsLQKaVDIuLjEVEXEedkWZZ14PaqonZ1G2PXFLUrO/AaEW8OUgMAAAAAAAAAAADdqH758l71r722zYehoacr6e4C2pJS6h0RV0VEiogfZVn2rw5OUVHUXt/G2Nqidp8Ovg4AAAAAAAAAAAAA0IXycDL0VyNiz4iYHxHf2IT7a4ravdsYW17UXtfB1xnZRv+OETGrg3MCAAAAAAAAAAAAAC3YqsPQKaWxEfH/FS4/m2XZmk2YZnVRu7KNsf2K2tUdeZEsy15qrT+l1JHpAAAAAAAAAAAAAIA2lHR3AW34XDSe5vxcRPRNKX1o4z8R8fai8YcX9TUFm4tDyiPaeL3i050XbHb1AAAAAAAAAAAAADk0efLk3VJK4/bdd9+xzfXfddddlSmlcSmlcVVVVfvW1dW9ZcySJUtKS0pKxqWUxn33u98d0vR8fX193H777VVnnXXWiP3333/soEGD9ikrK9u/qqpq37Fjx+511llnjXjmmWd6b8G3xzZkqz4ZOiLKC4+7RsSv2zH+P4vau0TEmoh4sui5Zv+HbKH/qXa8HgAAAAAAAAAAAMA2Z+LEiaunT58+4PHHH++7cuXKkgEDBjQU999zzz1VTe3q6urSGTNm9J00adLa4jF//vOfq7Isi4iIKVOmrG56/ktf+tKwH/3oR2/b+DWrq6tL58yZ02fOnDl9brjhhiFXXnnl8x/5yEdWdPZ7Y9uytZ8M3Rmej4hFhfahbYydVHhcGBEvbKmCAAAAAAAAAAAAALZmhx9++OqIiPr6+jRt2rTKjfv//ve/VxVf33333VUbj7n33nurIiIGDhxYN27cuJqm5+vq6mLIkCEb/v3f/33JZZdd9vxf/vKXp++///6nbrjhhnnnnHPOK3379m2oqakpOeuss3Z95JFHKjr/3bEt2arD0FmWnZFlWWrtT0R8o+iWw4r6XijMkUXEbYX+sSmlg5p7rcLzTSdD35Y1/SgCAAAAAAAAAAAAQA8zceLEtf369WuIiPjrX//6pqBzbW1tevTRR/tFRBx++OErIiLuv//+t4ShZ8yYURURceCBB1aXlLwRWf30pz+9dMGCBf+64YYb5n/qU59a9p73vGfNIYccsvbf//3fV1xxxRUL//nPfz6+ww47bKitrU3f/OY333KCNBTbqsPQnejHEVFXaP80pdSnuLNw/dPCZV1hPAAAAAAAAAAAAECPVFZWFvvvv391RMQDDzzwpqDz9OnT+9bU1JRUVlbWf+5zn1scETF79uzKurq618csWbKk9JlnnukTETFp0qTVxfePGTNmfXl5eYuH1o4ePXrDZz7zmVciIu65554BDQ0Nnfa+2Pb0iDB0lmVzI+IHhcsDIuKBlNK/pZQOSCn9W0Q8UHg+IuL7WZY90x11AgAAAAAAAAAAAGwtJk6cuDoi4oknnui7cuXK1zOn99xzT1VExAEHHFA9ZcqU6oqKiobq6urSGTNm9G0ac9ddd1U1hZinTJmyOlqxbNmykqeffrr37NmzK2bNmlUxa9asir59+zZERFRXV5c+/fTTvbfA22MbUdbdBXSh/4iIHSLioxGxX0Tc1MyYX0bE17qyKAAAAAAAAAAAAICt0eGHH776O9/5TtTX16dp06ZVfuADH1gVEXH//fdXRTSGpSsqKrJ99913zT/+8Y+qu+++u2rSpElrIyLuvffeqoiIAQMG1I8fP37dxnPPnTu394UXXjj07rvvHrho0aJWw86vvvpq2V577bW+898h24IecTJ0RESWZQ1Zln0sIo6JiNsiYlFErC883hYR78uy7ONZljlLHQAAAAAAAAAAAOjxJk2atKbphOa//vWvVRERtbW16dFHH62MeOPE50MOOWR1xBsh6YiIGTNmVEVEjB8/fnVJyZvjqr/97W/777PPPntff/31O7QVhI6IWLt2bY/Ju9Jxuf+PI8uyr2dZlgp//taO8XdkWXZClmXDsywrLzyekGXZnV1QLgAAAAAAAAAAAEAu9OrVK/bbb7/qiIgHHnigKiLivvvu61tTU1NSWVlZP2HChLUREUccccTqiIjZs2dX1tXVxdKlS0vnzp3bJyJi0qRJq4vnfOWVV0o//vGP71pTU1PSt2/fhs9//vOL7r777qcXLlz4f+vWrXsky7KHsyx7+LbbbpvbdE+WZamr3jP5U9bdBQAAAAAAAAAAAACwdZo4ceLqBx54oP8TTzzRd+XKlSX33HNPVUTEAQccUF1W1hhDnTx58pqKioqG6urq0hkzZvRdsGBBr4aGhoh4Iyjd5Prrr99u9erVpRERv/rVr+adeOKJq5p73WXLlpVuyffFtiP3J0MDAAAAAAAAAAAAsGUcfvjhqyMi6uvr07Rp0yrvv//+qojGkHTTmIqKimzfffddExFx9913V917771VERH9+/evf9e73rWueL4nnniiIiJiwIAB9S0FoSMiZs2a1a/z3w3bImFoAAAAAAAAAAAAAJo1adKktX369GmIiLjrrrv6P/roo5UREVOmTHnTic+HHHLI6oiI+++/v2rGjBlNp0evLi198wHPdXV1KSJi/fr1qb6+vtnXXL16dcnvfve77Tv7vbBtEoYGAAAAAAAAAAAAoFnl5eXZvvvuWx0RcdNNNw1et25dSWVlZf2ECRPWFo874ogjVkdEPPTQQ1Vz5szpGxExadKk1RvPt/vuu9dGRKxbt67k2muvHbRxf11dXXz4wx/eecmSJb22xPth2yMMDQAAAAAAAAAAAECLJk6cuDoiorq6ujQi4oADDqguKyt705jJkyevqaioaFi7dm1JQ0NDREQcccQR1RvPddpppy3r3bt3FhHx2c9+dtRnPvOZ4bfffnvVfffd1/enP/3p9vvuu++eU6dO3W7//fd/y73QHGFoAAAAAAAAAAAAAFp0+OGHvymY3BSOLlZRUZHtu+++a5quKysr6w8++OC1G48bPXr0hosvvvjFkpKSqKmpKbnssst2PP744/c49NBD9zz33HNHPfHEE32POeaY5f/1X/+1aMu8G7Y1wtAAAAAAAAAAAAAAtOjQQw9dU1FR0dB0PWXKlLeEoSPeHJIeP358dWlpabPznXfeea/9+c9/fnrKlCkrBg0aVFdWVpYNGTJkw8SJE1f94he/eG7q1KnPtXQvbKys7SEAAAAAAAAAAAAA+VI6aNCG7q6hK3TF+6yoqMjWrVv3aFvjLr744pcvvvjil9sz53ve854173nPe+a11H/ssceuzrLs4Zb6b7755hci4oWW+hcuXPiv9tRB/glDAwAAAAAAAAAAANuc0VP/+FR31wBseSXdXQAAAAAAAAAAAAAAwKYQhgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAIBOd/LJJ49KKY0bPnz4O7q7lq3d1KlTq1JK41JK46ZOnVrV3fXkSVl3FwAAAAAAAAAAAADQ2X79jQf3XFe9vld317Gl9ansveGU/37XU91dB3QXYWgAAAAAAAAAAABgm7Ouen2vdas3bPNhaFr2k5/8ZPvzzjtvVETE008//a8xY8as7+aS2AJKursAAAAAAAAAAAAAAIBNIQwNAAAAAAAAAAAAAOSSMDQAAAAAAAAAAAAAkEvC0AAAAAAAAAAAAAC0qKamJl100UVD3vWud+0xaNCgfXr16rX/4MGD9zn00EN3u/zyy7err69v1zzPP/98r49//OMjRo0a9fY+ffrsN2jQoH0OPfTQ3X7729/2b+ve66+/fuCUKVNGDx069J29e/fev1+/fvuNGDHiHePGjRtz3nnnDbv33nv7No2dOnVqVUpp3HnnnTeq6bmxY8e+I6U0rvjP1KlTq4pf45577ul37rnnDjvwwAPHDB48eJ9evXrtX1lZud/o0aP3PvXUU3d6+OGHK9r7MfvNb34z4Pjjj99lxIgR7+jTp89+VVVV++622257H3vssbted911A6urq1N759rYrbfe2v/444/fZfjw4e+oqKjYv7Kycr8xY8bsdc4554x48cUXe23qvHlV1t0FAAAAAAAAAAAAALB1mjt3bu/3vve9uz/33HNvCgK/9tprZffdd9+A++67b8Avf/nLIXfcccezQ4cObTEVfd999/U98cQTd1+2bNnr2dWampqSpjn+/Oc/L77mmmsWbHxfXV1dHHfccbveeeedg4qf37BhQ1q7dm3vhQsX9n7kkUcq77nnngGPP/74U5v6Pn/yk59sXxyeLnr99Nxzz1U899xzFb/5zW+GfPvb357/la98ZUlL87zyyiulJ5100uiZM2dWbdxXXV1dOm/evIo//elPg1atWvXCueee+1pHaly1alXJBz7wgV2mTZs2sPj52traNHfu3D5z587tc8MNNwy5+uqrnzvllFNWdmTuPBOGBgAAAAAAAAAAAOAtVq5cWXLEEUfs8dJLL5VHREyZMmXFmWeeuXTkyJEbnn322fIrrrhih1mzZlU+8sgjlUcfffTus2bNerqs7K3R1HXr1pWccsopo6urq0s/9alPvfL+979/ZXl5ecOMGTMqL7300h2XLFnS69prr91hp512Wv/1r3/91eJ7L7744iFNQej999+/+owzzli6xx571FZVVdUvXbq07J///Gefv/zlLwNWrFhR2nTPpEmT1jz00ENP/P73vx948cUXD4+IuPnmm58ZOXLk+uK5x4wZ8/p1XV1d6t+/f/2UKVNWTJo0afXYsWNrKysr6xcsWND74Ycf7nv11VfvsGLFirKvfvWrO+211141xx133OqN3+fq1atLJk2aNOaZZ57pExGx9957rz3jjDOW7LPPPusqKiqyF154off06dMrb7/99u06+ndRV1cXRx555G4PPvhgVUopjjnmmGUnnXTSit122612/fr1aebMmf0uv/zyoS+//HLv008/ffSIESOenjhx4tqOvk4eCUMDAAAAAAAAAAAA8BYXXHDBsKYg9LnnnvvypZdeuqipb+LEiWtPP/305SeeeOIut99++3aPPfZYv0suuWTIl7/85becmrx8+fKy1atXZ7fffvvc9773vdVNzx922GFrTz311OUHHXTQnq+++mqv733ve8M+8YlPvDZ8+PC6pjG33HLLdhER73znO9f84x//mNOrV683zX3cccet/trXvrb41VdffT0M3b9//4bx48fXzJw5c0PTc3vvvXdNcfh5YyeeeOLKT3ziE8uqqqoaNupa96EPfWjlV77ylcUTJkwYM3fu3D7f+MY3hh133HFzNp7j/PPPH94UhD7ttNOWXHfddfNLSkpe7584ceLa0047bUVNTc3CJUuWlG58f2u+9a1vDX3wwQerysrKshtvvPHZD37wg6uK+4844og1Z5999msTJkwY++yzz1acf/75Ix9++OG31LgtKml7CAAAAAAAAAAAAAA9ybp169Kvf/3rwRERo0ePrrnkkksWbTympKQkrr322hcHDhxYFxHxi1/8YoeW5vvwhz+8pDgI3WTUqFEbvv3tby+IiKipqSn5+c9/vn1x/9KlS3tFRIwfP7564yB0saFDh9a38601a5dddtnQTBD6ddtvv339f/7nfy6KiHjkkUcqX3nllTeFmZcsWVL6v//7v4MjIvbaa6+111xzzZuC0MUqKiqykSNH1jXb2Yza2tp0xRVXDI2IOP300xdvHIRuMmTIkPoLL7xwQVONjz/+eHl7XyPPhKEBAAAAAAAAAAAAeJO///3vfVevXl0aEXHKKacsLSsra3bcdttt13DMMccsj4iYN29exYsvvthsYvkTn/jEay291mmnnbaiqqqqPiLi3nvv7V/cN2TIkA0REdOmTRv48ssvN1/EFrBq1aqSOXPm9J49e3bFrFmzKmbNmlXRq1evrKn/oYce6ls8/o477qiqqakpiYg455xzFrf08doU06dP77tkyZJeERGnnHLK8tbGHn300a8HzqdPn96v04rYinXZfxQAAAAAAAAAAAAA5MP//d//9WlqT5gwYU1rY9/1rnetufHGG4dERDzyyCN9dt555w3F/b169cre9a53rW3p/vLy8myvvfZa++CDD1bNnTu3T3HfqaeeunT27NmV8+fPL99jjz3efvTRR6+YMmXKqilTpqwePXr0hpbm3BQvv/xy2YUXXjh06tSpg+bPn1+eZVmLYxcvXvymDO4jjzzyejj6Pe95z+rOrOvBBx98PdQ8ZcqUse2975VXXmn5KO1tiDA0AAAAAAAAAAAAAG+ybNmy1zOmw4YNazV0XNy/dOnS0o37BwwYUNerV+u53KYToFetWvWmbOv555//2rx58yquuOKKodXV1aW///3vt//973+/fUTEyJEja48++ugV559//uK99tprfbveWAvuv//+vscdd9zuK1asaFe2dt26dSXF10uXLn39vp122qlTQ9qLFy/epFDz2rVrS9oelX/C0AAAAAAAAAAAAAC0KKXUan9rJyi35/7CHC0O+ulPf7rws5/97JJrrrlmu+nTp/d/7LHH+tXU1JQsWLCg/Be/+MXQa6+9docLL7xwwQUXXLCkzRdqRk1NTfrwhz+864oVK8rKysqyM844Y/FJJ520Yu+9964ZMmRIfZ8+fbKIiCeffLL33nvv/Y5CvZvyUpukvr7+9fbUqVPn7LDDDnXtuW/YsGHtGpd3wtAAAAAAAAAAAAAAvMl22233epB24cKFvd75znfWtjT25Zdffv3k4sGDB9dv3L9ixYqyurq6KCtrObbadLJy//79mw3w7rHHHusvuuiiVyLildra2jR9+vS+N91003b/+7//O6S2tjZ95Stf2end73539bvf/e517XuHb5g6dWrVSy+9VB4RcdFFF83/whe+sLS5ca+99lqLb2Dw4MGv1z1//vxeY8eO3ayTqottv/32r89dXl6ejR8/vqaz5t4W9IjjrwEAAAAAAAAAAABov3322ef1UPGMGTP6tTb2oYceer1///33f0sYecOGDekf//hH35bu37BhQzz11FN9IyL22GOPNsPM5eXl2ZFHHrnmmmuuWXDVVVc9F9F4UvNNN920XfG49pxIHRHxr3/9q09T+6Mf/eiylsa19h7GjRu3tqk9bdq0qna9cDsVz33nnXf278y5twXC0AAAAAAAAAAAAAC8ySGHHLK2qqqqPiLipptuGlxX1+yBzbF8+fKSqVOnDoqIGD16dM3OO++8oblxv/zlL7dv6bVuuOGGQatWrSqNiDjssMNWdaTOY4899vXxG5/cXFFR0dDUrqmpaTEZXVdX93pfdXV1s9na+vr6uO6664a0NMf73ve+1X369GmIiLjyyit3aOnjtSmOPPLI6gEDBtRHRFx//fVDli1bJv9bxAcDAAAAAAAAAAAAgDfp06dPdsoppyyNiHj22WcrvvjFLw7beExDQ0N87GMf22nFihVlERGf+MQnFrc0369+9ashd911V+XGz8+fP7/sa1/72oiIxvDyOeec81px/+WXX77dhg3N5qsjIuK2224b0NQeNWpUbXHfiBEjXr/x6aefrmhpjj322KOmqX3llVc2G9r+zGc+M/zJJ59s8WTowYMH15966qlLIiKeeOKJvh/72MdGNjQ0NDu2trY2LVy4sKzZzmb07ds3++QnP/lKRMTSpUt7nXjiibuuWrWqxQzw8uXLS77zne+0GNze1rT7AwkAAAAAAAAAAABAz3HRRRctuuOOOwa+9NJL5ZdeeunbnnzyyT5nnnnm0pEjR2549tlne19xxRU7PPTQQ1UREfvuu++aL3zhC0uam2fQoEF1ffr0aTj++OP3+PjHP/7q+9///pUVFRUNM2bM6PejH/3obUuWLOkVEfHlL3950fDhw990pPKnP/3pXf7rv/5r5NFHH718woQJ1XvssUdtnz59Gl5++eVed911V/9f/epXQyIi+vbt2/Cxj33sTUHqgw46aG15eXlWW1ubvvnNbw7r1atXtttuu9WWlDTmiEeNGrW+srIyO/HEE1d9/vOfr1u2bFnZRRddNPzFF18sP+GEE1bssMMOdU8//XT5tddeO2TmzJlV+++/f/UjjzzylkB3kx/+8IeLpk+f3v+ZZ57pc/311+/w8MMPV5555plL9t1333Xl5eXZiy++2Ov++++vuvXWW7f7j//4j4Xnnnvuay3NtbFvfetbr0yfPr3/zJkzq+67774BY8eO3fv0009f8u53v3vNdtttV7dq1arSJ598smL69OlV06ZNG1heXt7w1a9+tdm/j22NMDQAAAAAAAAAAAAAbzFo0KCGu+++e+573/ve3Z9//vmKadOmDZw2bdrAjcftv//+1XfcccezZWXNx1L79OnT8Otf/3re8ccfv/tll12242WXXbbjxmPOOOOMxV//+tdfbe7+1157rezGG28ccuONNzZ72nFVVVX9dddd99zo0aPfdIT0oEGDGs4888xXf/7zn+/45JNP9j355JN3L+7/4x//OPfYY49d3b9//4arrrrq+VNPPXW32tra9Ktf/WpIU8i6yYEHHrj6sssumz9+/Pi9m32TjXU0TJ8+fe5xxx03evbs2ZVPPPFE3y9+8Ys7tzS+I8rKyuIvf/nLMx/5yEd2vvXWW7d/+eWXe1900UXDWxq/3Xbb1bXUt61p8YhsAAAAAAAAAAAAAHq2MWPGrH/yySef/M53vjN//Pjx1QMHDqwrKyvLtt9++7qJEyeuuuyyy55/6KGH5gwdOrS+tXkmTZq0dtasWU+eccYZi0eOHFlbXl6eDRw4sG7ixImrfvOb3zxz7bXXLmjuvscee+zxCy+8cP6UKVNWjB49umbgwIF1paWlWf/+/ev32WefNZ///OcXPfXUU4+fdNJJq5q7/7LLLlt4ySWXvDhu3LjqAQMG1JeWljZb38knn7zq73//+5PHH3/8siFDhmwoKyvLBg0aVDd+/PjqH/zgBy/OmDFjblVVVUNbH6+3ve1tdbNmzZrzP//zP/OOPvro5UOHDt3Qu3fvrH///vW77777uuOOO27Zr371q2fPOuusZW3NtbHKysrslltueeG+++576tRTT12y22671VRWVtaXlpZmVVVV9WPHjl33wQ9+cOm1114775lnnnm8o/PnVcqyrLtr6BFSSiMiYkFExD0nR+zY761j3ve2qV1cFQAAAAAAAAAAANuSqj2/8pbnNizbEHM+P6fpcmSWZS91aVGd6OGHH76jrKxsr4qKioFjxox5trWxv/7Gg3uuq17fq6tq6y59KntvOOW/3/VUd9cB7TVnzpzdampqVtTV1T05bty4923ufM2fRw4AAAAAAAAAAACQYwLC0DOUdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAyJUsy1J31wBsmqL/f7POmE8YGgAAAAAAAAAAAMiL6oiob2hoKG1oaBCIhpypq6srqa+vL8uyrC4iVnbGnMLQAAAAAAAAAAAAQF48Xl9fvybLsrRy5cqq7i4G6Jhly5YNioisvr5+dUQ82hlzCkMDAAAAAAAAAAAAeXF3lmXrGxoa1rz66qs7Ll++vL8TomHrlmVZrF27tvzll1/eYcmSJTvU19eviIj6iLilM+Yv64xJAAAAAAAAAAAAALrAQxHx2Pr160siYsSiRYuGv/zyy1lJSUl9Sinr7uKAN8uyLGVZVtLQ0FASEQ11dXVL6urqlkbE1HHjxs3rjNcQhgYAAAAAAAAAAAByYdy4cXUPP/zwuRHxk/Xr1zeklHqXlpb2i4jS7q4NaFFDQ0NDTUNDw7qIyCLiioi4prMmF4YGAAAAAAAAAAAAcmPcuHFrH3744XMiYnyWZVPq6ureERGV3V0X0KI1EfFSRMyMiJnjxo1b0JmTC0MDAAAAAAAAAAAAuTJu3Li6KAQru7sWoHuVdHcBAAAAAAAAAAAAAACbQhgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJeEoQEAAAAAAAAAAACAXBKGBgAAAAAAAAAAAABySRgaAAAAAAAAAAAAAMglYWgAAAAAAAAAAAAAIJdyEYZOKe2fUvpqSunOlNKClFJtSqk6pTQ3pXRdSmliB+c7OqV0S0rppcJcLxWuj95S7wEAAAAAAAAAAAAA6Fxl3V1AW1JK0yNiUjNdvSNi98Kf01NKN0TEx7MsW9/KXCkifh4RZ23UNTwiToyIE1NKV0XEOVmWZZ1RPwAAAAAAAAAAAACwZeThZOjhhcdFEXFpRHwgIg6MiIMj4vMRsbDQf1pEXNfGXN+ON4LQj0bEKYW5TilcR6H/W51QNwAAAAAAAAAAAACwBW31J0NHxNMR8dWIuDnLsvqN+v5ROBH6gYjYIyJOSSldkWXZ/RtPklLaLSIuKFzOjohJWZatK1zPSindHhHTI+KAiPhySunaLMvmbYH3AwAAAAAAAAAAAAB0gq3+ZOgsy47Nsuy3zQShm/qXRsQXip76QAtTfS7eCH9/tigI3TTP2oj4bOGyLCLO3+SiAQAAAAAAAAAAAIAtbqsPQ7fT34raozfuTCmliDi+cPl0lmX/aG6SwvNzCpcnFO4DAAAAAAAAAAAAALZC20oYundRu6GZ/l0iYnihPb2NuZr6R0TEqM0rCwAAAAAAAAAAAADYUraVMPShRe2nm+nfs43+aKF/zxZHAQAAAAAAAAAAAADdqqy7C9hcKaWSiPhK0VO/bWbYyKL2S21MuaCF+9qqY0QbQ3Zs71wAAAAAAAAAAAAAQNtyH4aOiM9FxIGF9q1Zls1uZkxVUbu6jfnWFLUrO1DHgraHAAAAAAAAAAAAAACdpaS7C9gcKaVDI+KiwuXiiPhkC0Mritrr25i2tqjdZxNLAwAAAAAAAAAAAAC2sNyeDJ1S2jsibo3G91AbER/MsuzVFobXFLV7tzF1eVF7XQdKGtlG/44RMasD8wEAAAAAAAAAAAAArchlGDqltEtE/CUiBkVEfUSckmXZ9FZuWV3Urmxj+n5F7er21pRl2Uut9aeU2jsVAAAAAAAAAAAAANAOJd1dQEellIZFxN0RMSwisoj4aJZlt7ZxW3FQeUQbY4tPeF7Q8QoBAAAAAAAAAAAAgK6QqzB0SmlwREyLiF0LT302y7Lr23Hrk0XtsW2MLe5/qgPlAQAAAAAAAAAAAABdKDdh6JTSgIi4KyL2Kjz1lSzLLmvn7c9HxKJC+9A2xk4qPC6MiBc6UiMAAAAAAAAAAAAA0HVyEYZOKfWNiD9FxP6Fpy7Msux77b0/y7IsIm4rXI5NKR3UwuscFG+cDH1b4T4AAAAAAAAAAAAAYCu01YehU0q9I+LWiHh34alLsyz72iZM9eOIqCu0f5pS6rPR6/SJiJ8WLusK4wEAAAAAAAAAAACArVRZdxfQDr+OiCML7b9GxC9TSm9vZfz6LMvmbvxklmVzU0o/iIivRMQBEfFASul7ETEvIkZHxJcjYr/C8O9nWfZMZ70BAAAAAAAAAAAAAKDz5SEMfVJR+/CI+Gcb41+MiFEt9P1HROwQER+NxuDzTc2M+WVEbMrJ0wAAAAAAAAAAAABAFyrp7gK6UpZlDVmWfSwijomI2yJiUUSsLzzeFhHvy7Ls41mWNXRjmQAAAAAAAAAAAABAO2z1J0NnWZa2wJx3RMQdnT0vAAAAAAAAAAAAANB1etTJ0AAAAAAAAAAAAADAtkMYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXhKEBAAAAAAAAAAAAgFwShgYAAAAAAAAAAAAAckkYGgAAAAAAAAAAAADIJWFoAAAAAAAAAAAAACCXemQYOqW0U0rpBymlp1JKa1JKy1JKD6WUvphS6tvd9QEAAAAAAAAAAAAAbSvr7gK6WkrpmIi4MSIGFD3dNyLGF/58PKX0vizLnuuO+gAAAAAAAAAAAACA9ulRJ0OnlPaJiN9GYxC6OiL+IyImRMQREfGLwrAxEfGnlFJltxQJAAAAAAAAAAAAALRLTzsZ+sfReAp0XUQcmWXZzKK+v6aUnomIiyNibER8PiK+2eUVAgAAAAAAAAAAAADt0mNOhk4pjY+IyYXLX24UhG5ySUQ8VWifn1Lq1RW1AQAAAAAAAAAAAAAd12PC0BFxQlH72uYGZFnWEBHXFy4HxRvhaQAAAAAAAAAAAABgK1PW3QV0oYmFxzUR8XAr46YXtQ+JiGmdXUh6dHSkXm89dPrO+GJnvxQAAAAAAAAAAAA9yR/e+tQrG+ri8C4vBKBr9KSTofcsPD6bZVldK+OebuYeAAAAAAAAAAAAAGAr0yNOhk4pVUTE4MLlS62NzbJseUppTUT0i4iRHXiNEW0M2bG9cwEAAAAAAAAAAAAAbesRYeiIqCpqV7djfFMYurIDr7GgQxUBAAAAAAAAAAAAAJulpLsL6CIVRe317RhfW3jsswVqAQAAAAAAAAAAAAA6QU85GbqmqN27HePLC4/rOvAaI9vo3zEiZnVgPgAAAAAAAAAAAACgFT0lDL26qF3ZjvH9Co/V7X2BLMteaq0/pdTeqQAAAAAAAAAAAACAdugRYegsy2pSSksjYnBEjGhtbEppULwRhl6wJerZffrfYsSIVssAAAAAAAAAAACATlH10ksRI0d2dxkAW0RJdxfQhZ4qPO6WUmotBD62mXsAAAAAAAAAAAAAgK1MTwpD/73w2C8ixrUy7tCi9gNbrhwAAAAAAAAAAAAAYHP0pDD0H4raZzY3IKVUEhEfKVyuiIh7t2xJAAAAAAAAAAAAAMCm6jFh6CzLHoqI+wuXH0spHdzMsC9ExJ6F9qVZlm3okuIAAAAAAAAAAAAAgA4r6+4Cuth5EfFARPSJiL+klL4Tjac/94mID0XEWYVxcyPikm6pEAAAAAAAAAAAAABolx4Vhs6y7NGU0r9FxK8ion9EfKeZYXMj4pgsy1Z3aXEAAAAAAAAAAAAAQIeUdHcBXS3Lsj9GxDsj4kfRGHxeGxErImJ2RHw5IvbLsuzZbisQAAAAAAAAAAAAAGiXHnUydJMsy16MiM8X/gAAAAAAAAAAAAAAOdTjToYGAAAAAAAAAAAAALYNwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLZd1dQA9S2tR4+eWXu7MOAAAAAAAAAAAAepCNMmulLY0DyKOUZVl319AjpJQOiIhZ3V0HAAAAAAAAAAAAPdr4LMtmd3cRAJ2lpLsLAAAAAAAAAAAAAADYFE6G7iIppfKIeEfhcklEDIk3TooeHxGvdEddANuQHcO6CtDZrK0Ancu6CtD5rK0Ancu6CtD5rK0Anc/aumlKozGzFhHxryzLaruzGIDOVNbdBfQUhX88Xv/VAiml+qLuV7Ise6nrqwLYdqSUii+tqwCdwNoK0LmsqwCdz9oK0LmsqwCdz9oK0PmsrZvlxe4uAGBLKOnuAgAAAAAAAAAAAAAANoUwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAupSzLursGAAAAAAAAAAAAAIAOczI0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtAAAAAAAAAAAAAAQC4JQwMAAAAAAAAAAAAAuSQMDQAAAAAAAAAAAADkkjA0AAAAAAAAAAAAAJBLwtDdIKW0U0rpBymlp1JKa1JKy1JKD6WUvphS6tvd9QFsDVJKWTv//K0dcx2dUrolpfRSSqm28HhLSunoLngrAFtcSmmHlNKxKaVvppTuTCktLVonr9uE+TZ73Uwp9U0pfamwz12WUqou7H9/kFLaqaM1AXS1zlhbU0pndGBfe0Y75rO2ArmVUto/pfTVwpq6oLDPrE4pzU0pXZdSmtjB+exZgR6vM9ZWe1aAN6SU+qeUPpRSuiSlND2l9GxKaWVKaX1KaXFK6W8ppQtSStu3cz57VqBH64x11X4VgPZKWZZ1dw09SkrpmIi4MSIGtDBkTkS8L8uy57quKoCtT0qpvf9ATc+ybHILc6SI+HlEnNXK/VdFxDmZfxCBHGtjzfyfLMvOaOc8nbJuppRGR8SfImJMC0NWRsSHsyy7oz11AXSHzlhbC198v7adL3lmlmXXtTKXtRXIrZTS9IiY1I6hN0TEx7MsW9/KXPasANF5a6s9K8AbUkpTImJaO4YujYh/z7LsrhbmsWcFiM5ZV+1XAWivsu4uoCdJKe0TEb+NiL4RUR0R342IeyOiT0R8KCI+EY3/4P4ppTQ+y7Lq7qoVYCtyRURc3kr/mlb6vh1vfKHp0Yi4OCLmRcToiLggIvYr9C+JiK9tdqUAW4cFEfFURBy5Cfdu9rqZUqqMiKnxxheSfhERN0XEuog4LCL+v2j8wcDfpZQOzrLsn5tQJ0BX25y1tclREbGolf6XWuqwtgLbgOGFx0UR8buIuD8i5kdEaUQcHBFfKIw5LRq/Zv3hVuayZwVo1JlraxN7VoDGrwHcGxEPF9ovR+Nv3B4RER+IiJMiYnBE3F74nn5z65k9K8AbOmNdbWK/CkCLnAzdhVJK90bE5Iioi4hJWZbN3Kj/S9H4iVBExH9nWfbNrq0QYOtRdBLfN7Is+/om3L9bNAZWyiJidjSuu+uK+vtGxPSIOCAa1+WxWZbN29y6AbpDSukbETErImZlWfZqSmlURDxf6G7v6aWdsm6mlL4eEf9duLwgy7Lvb9R/cETcV3ide7MsO7z97xSg63TS2npGvHFqyS5Zlr2wibV8PaytQI6llKZGxPURcXOWZfXN9A+OiAciYo/CU5OyLLu/mXH2rAAFnbi2nhH2rAAREZFSKm1uTd1ozAkRcWvh8pYsy07eqN+eFaCgk9bVM8J+FYB2KOnuAnqKlNL4aAxCR0T8cuMgdMEl0fiJUUTE+SmlXl1RG8A26nPxxm9A+GzxF5oiIrIsWxsRny1clkXE+V1XGkDnyrLsv7Msm5pl2aubMc1mr5uF/et5hcunonF/u3GtMyPil4XLw1JK4zajZoAtppPW1s1mbQW2BVmWHZtl2W9b+gZolmVLo/EE0yYfaGEqe1aAgk5cWzebtRXYVrQV2CuM+UNEPF24nNTMEHtWgIJOWlc3m3UVoGcQhu46JxS1r21uQJZlDdH4U/wREYPijfA0AB2QUkoRcXzh8uksy/7R3LjC83MKlycU7gPocTpx3ZwcEQML7f8p7G+bc11R+6SO1gvQw0wOayvQM/ytqD164057VoBN8rei9lvW1k40OaytQM+ypvBYUfykPSvAJmt2Xe1Ek8O6CrDNE4buOhMLj2si4uFWxk0vah+y5coB2KbtEhHDC+3prQ0s6h8REaO2VEEAW7nOWjcnNjOuObPjjS9s2fMCtM7aCvQUvYvazX1T0p4VoOPaWls7i7UV6DFSSntGxL6Fy6c36rZnBeigNtbVzmJdBegBhKG7zp6Fx2ezLKtrZVzxP+x7tjgKoOf4fymlOSmldSml1SmlZ1JK/5NSOqyVe4rXz7Y+YbLuAnTeutmueQr74XktzAGwrboupfRqSml9SmlpSukfKaVvp5SGt3GftRXoKQ4taje33tmzAnRcW2vrxuxZAZqRUuqbUto9pfT5iLg3IkoLXZduNNSeFaAdOrCubsx+FYAWCUN3gZRSRUQMLly+1NrYLMuWxxs/ZTRyS9YFkBN7RcQe0fgrcSojYreI+EhE/DWldGtKaUAz9xSvn62uuxGxoIX7AHqSzlo3m67XZFm2op3zDEkplbcxFmBbcGhE7BARvSJi+4h4V0T8R0Q8m1I6u5X7rK3ANi+lVBIRXyl66rfNDLNnBeiAdq6tG7NnBShIKZ2RUspSSlk0fv9+bkRcEhFDC0N+EBE3bnSbPStACzZxXd2Y/SoALSrr7gJ6iKqidnU7xq+JiH7RGPoD6KnWRsTtEXFPNP50ZnVEDInGT3DOicZPbk6IiNtSSu/JsmxD0b0dWXfXFLWtu0BP1VnrZtM87d3zFs9T2457APLouYi4JSJmxhtfSN81Ik6OiA9E4w/9/TyllGVZdlUz91tbgZ7gcxFxYKF9a5Zls5sZY88K0DHtWVub2LMCtN9jEXFOlmUPNtNnzwrQcY9Fy+tqE/tVANokDN01Kora69sxvukf0j5boBaAvBjewk9lTksp/TQi7oyI/aIxHP3JiPhJ0ZiOrLvFn7xYd4GeqrPWzaZ5OrLnbW4egG3FrRHxP1mWZRs9PysifpNSOjYav4jfKyJ+lFK6PcuyVzYaa20FtmkppUMj4qLC5eJo/By/OfasAO3UgbU1wp4VoCV/iIimHyTpExGjI+KDEXFiRNyYUjo/y7KpG91jzwrQsj9Ex9fVCPtVANqppLsL6CFqitq92zG+6dcsrNsCtQDkQmu/nibLslej8Sc8mz5Z+exGQzqy7hb/ahvrLtBTdda62TRPR/a8zc0DsE3IsmxlM1+kL+6fGhHfKFz2jYiPNTPM2gpss1JKe0fjNzXLovGbjR8sfM7fHHtWgHbo4NpqzwrQgizLVmRZ9njhz6wsy27KsuykiPhINJ5GeltK6YyNbrNnBWjBJq6r9qsAtJswdNdYXdTe+FfcNKdf4bE9v54BoEfKsuy5iJhWuNwtpTSsqLsj626/orZ1F+ipOmvdbJqnI3ve5uYB6El+ERFNX8w/tJl+ayuwTUop7RIRf4mIQRFRHxGnZFk2vZVb7FkB2rAJa2t72bMCFGRZdkNE/C4asxY/SykNKuq2ZwXooDbW1fayXwVAGLorZFlWExFLC5cjWhtb+Ee96R/WBVuyLoBtwJNF7eFF7ZeK2q2uuxExsqht3QV6qs5aN5vm6ZdSGtjOeZZkWVbb6kiAbViWZYvjja8ZDG9miLUV2OYUfqD57ogYFo3frPxolmW3tnGbPStAKzZxbW0Xe1aAt7it8NgvIt5b9Lw9K8CmaWldbRf7VQAihKG70lOFx91SSmWtjBvbzD0ANC+18HxxSHpsC2Oa67fuAj1VZ62b7ZqnsB8e3cIcAD1RS/vaCGsrsI1JKQ2Oxt/0tGvhqc9mWXZ9O261ZwVowWasrR16mVb6rK1AT7OkqL1zUdueFWDTtLSudoT9KkAPJwzddf5eeOwXEeNaGVf86xoe2HLlAGwT9ipqLypqP1903dyvwSk2qfC4MCJe6JyyAHKns9bNvxe1W5vngHjjt6HY8wI9Wkpph4jYvnC5qJkh1lZgm5FSGhARd8Ubn89/Jcuyy9p5uz0rQDM2c21t72vYswK8WfGpo9VFbXtWgE3T0rraLvarAEQIQ3elPxS1z2xuQEqpJCI+UrhcERH3btmSAPIrpbRrRLyncPlclmULm/qyLMvijV+lMzaldFALcxwUb/zk522F+wB6nE5cN/8WESsL7dNTSi39FP4ZRe1O+ZW9ADl2Vrxxasn0Zvr/FtZWYBuQUuobEX+KiP0LT12YZdn32nu/PSvAW23u2toB9qwAb/b/itr/amrYswJssmbX1Q6wXwVAGLqrZFn2UETcX7j8WErp4GaGfSEi9iy0L82ybEOXFAewlUkpvb/wK2ha6h8aEb+PiF6Fp5o76eTHEVFXaP80pdRnozn6RMRPC5d1hfEAPdmPYzPXzSzL1kfETwqXe0bEFzceU9gHf6xwOT3LslmbWzjA1iilNCqltF8bY46NiP8sXNZExLUbj7G2AtuClFLvaPwm4rsLT12aZdnXNmGqH4c9K0BEdM7aas8K8GYppTNSShVtjPlcRLyvcPlCvPm00Qh7VoDXbe66ar8KQEckh2B2ncI/0A9ERJ9o/LUO34nG05/7RMSHovEnlSIi5kbEAVmWre6OOgG6W0rphWgMOt8cETOj8ZOedRExOCImR8Q58cavufl7REzJsqy2mXm+GxFfKVw+GhHfi4h5ETE6Ir4cEU2fOH03y7Kvdv47AegaKaVDImK3oqcGR8T3C+0HIuLq4vFZll3XwjybvW6mlKoiYnZE7FF46qqIuCka1/HDIuKrEVFZuJ6QZdlj7XiLAF1uc9fWlNLkaPycf2ZE/DEiHouIxdF4QsmuEfGBwp+mU0g+09KvM7e2AnmXUro5Ik4qXP41Is6PiNa+ML0+y7K5LcxlzwoQnbO22rMCvFnh+1NV0fj9qb9H4z6zuvDcOyLi1Hjjh1DWR8QxWZbd3cw89qwAsfnrqv0qAB0hDN3FUkrvj4hfRUT/FobMjcZ/3J/tuqoAti6FT4p2bsfQmyPi41mWrWhhnpKI+EVEfLSVOX4ZEWdlWdbQwTIBthoppesi4vT2js+yrNlf/9VZ62ZKabeIuCMidm9hyKqIODXLsqntqxig623u2lr0hfq2rI2Iz2VZdlUb9VhbgdxKKXX0i9AvZlk2qoW57FkBonPWVntWgDfrwPenXoqIj2ZZNq2FeexZAWLz11X7VQA6Qhi6G6SUdo6I8yLimIgYEY0/3fRsRPwuIn6WZdnabiwPoNullA6NiEMj4uBo/InOwdH4QyTVEbEgImZExP9kWTaznfO9LxpP3x9fmGtpRMyKiCuzLLuz098AQBfrrDB00XybvW6mlPpFxKcj4v9F48mqvaNxDb8jGn9174vtrRegO3RCGLoqIo6Lxj3tARHxtmhcU8siYnlEPBER90TE1VmWLW5nTdZWIJc6MwxdNKc9K9CjdVIY2p4VoEhKaXRETInGE0L3jIih0fibSmsi4tVoPJF0akT8tj3f07dnBXq6zV1X7VcB6AhhaAAAAAAAAAAAAAAgl0q6uwAAAAAAAAAAAAAAgE0hDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0AAAAAAAAAAAAA5JIwNAAAAAAAAAAAAACQS8LQAAAAAAAAAAAAAEAuCUMDAAAAAAAAAAAAALkkDA0A/3+7dkACAAAAIOj/63YEukMAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYEmGBgAAAAAAAAAAAACWZGgAAAAAAAAAAAAAYCnXgij4BGxi6wAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 3200x1200 with 1 Axes>" ] @@ -742,7 +704,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -762,7 +724,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -803,7 +765,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.8.2 ('walberla_dev')", "language": "python", "name": "python3" }, @@ -817,7 +779,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.9" + "version": "3.8.2" + }, + "vscode": { + "interpreter": { + "hash": "16c4475f8761a33edafce150242b66df5b4abe8839febe0da1ac663b672fe94f" + } } }, "nbformat": 4, diff --git a/doc/notebooks/06_tutorial_modifying_method_smagorinsky.ipynb b/doc/notebooks/06_tutorial_modifying_method_smagorinsky.ipynb index 94b7f9b840d276088638880e3737ff081d65108a..574932fbe8b2a9b1a4a592e82a0de36772d4cee3 100644 --- a/doc/notebooks/06_tutorial_modifying_method_smagorinsky.ipynb +++ b/doc/notebooks/06_tutorial_modifying_method_smagorinsky.ipynb @@ -406,27 +406,27 @@ "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x^{2} - y^{2}$</td>\n", " <td style=\"border:none\">$u_{0}^{2} - u_{1}^{2}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$x y$</td>\n", " <td style=\"border:none\">$u_{0} u_{1}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$\\omega$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$3 x^{2} + 3 y^{2} - 2$</td>\n", " <td style=\"border:none\">$3 u_{0}^{2} + 3 u_{1}^{2}$</td>\n", - " <td style=\"border:none\">$0$</td>\n", + " <td style=\"border:none\">$1.9$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$3 x^{2} y - y$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega$</td>\n", + " <td style=\"border:none\">$1.9$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$3 x y^{2} - x$</td>\n", " <td style=\"border:none\">$0$</td>\n", - " <td style=\"border:none\">$\\omega$</td>\n", + " <td style=\"border:none\">$1.9$</td>\n", " </tr>\n", "<tr style=\"border:none\">\n", " <td style=\"border:none\">$9 x^{2} y^{2} - 3 x^{2} - 3 y^{2} + 1$</td>\n", @@ -436,7 +436,7 @@ "</table>" ], "text/plain": [ - "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f2b284c7730>" + "<lbmpy.methods.momentbased.momentbasedmethod.MomentBasedLbMethod at 0x7f745d5c3b20>" ] }, "execution_count": 9, @@ -446,7 +446,7 @@ ], "source": [ "lbm_conifg = LBMConfig(stencil=Stencil.D2Q9, method=Method.MRT, force=(1e-6, 0),\n", - " force_model=ForceModel.LUO, relaxation_rates=[0, 0, ω, 1.9, 1.9])\n", + " force_model=ForceModel.LUO, relaxation_rates=[ω, 1.9, 1.9, 1.9])\n", "\n", "method = create_lb_method(lbm_config=lbm_conifg)\n", "method" @@ -467,10 +467,10 @@ { "data": { "text/html": [ - "<div>Subexpressions:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$rr_{0} \\leftarrow 0.0$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$rr_{1} \\leftarrow 1.9$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$F_{x} \\leftarrow 1.0 \\cdot 10^{-6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$F_{y} \\leftarrow 0$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 0} \\leftarrow f_{3} + f_{5} + f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 0} \\leftarrow f_{0} + f_{1} + f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 0} \\leftarrow f_{4} + f_{6} + f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 1} \\leftarrow f_{5} - f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 1} \\leftarrow f_{1} - f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 1} \\leftarrow f_{6} - f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 2} \\leftarrow f_{5} + f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 2} \\leftarrow f_{1} + f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 2} \\leftarrow f_{6} + f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{00} \\leftarrow partial_{m 0 e 0} + partial_{m 1 e 0} + partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{10} \\leftarrow partial_{m 1 e 0} - partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{01} \\leftarrow partial_{m 0 e 1} + partial_{m 1 e 1} + partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{20} \\leftarrow partial_{m 1 e 0} + partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{02} \\leftarrow partial_{m 0 e 2} + partial_{m 1 e 2} + partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{11} \\leftarrow partial_{m 1 e 1} - partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{21} \\leftarrow partial_{m 1 e 1} + partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{12} \\leftarrow partial_{m 1 e 2} - partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{22} \\leftarrow partial_{m 1 e 2} + partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\delta_{\\rho} \\leftarrow m_{00}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{0} \\leftarrow m_{10}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{1} \\leftarrow m_{01}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\rho \\leftarrow \\delta_{\\rho} + 1$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{0} \\leftarrow m_{00}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{1} \\leftarrow m_{10}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{2} \\leftarrow m_{01}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{3} \\leftarrow - m_{02} + m_{20}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{4} \\leftarrow m_{11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{5} \\leftarrow - 2 m_{00} + 3 m_{02} + 3 m_{20}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{6} \\leftarrow - m_{01} + 3 m_{21}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{7} \\leftarrow - m_{10} + 3 m_{12}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{8} \\leftarrow m_{00} - 3 m_{02} - 3 m_{20} + 9 m_{22}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 0} \\leftarrow M_{0} + rr_{0} \\left(- M_{0} + \\delta_{\\rho}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 1} \\leftarrow F_{x} + M_{1} + rr_{0} \\left(- M_{1} + u_{0}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 2} \\leftarrow F_{y} + M_{2} + rr_{0} \\left(- M_{2} + u_{1}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 3} \\leftarrow 2 F_{x} u_{0} - 2 F_{y} u_{1} + M_{3} + rr_{0} \\left(- M_{3} + u_{0}^{2} - u_{1}^{2}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 4} \\leftarrow F_{x} u_{1} + F_{y} u_{0} + M_{4} + rr_{0} \\left(- M_{4} + u_{0} u_{1}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 5} \\leftarrow 6 F_{x} u_{0} + 6 F_{y} u_{1} + M_{5} + rr_{0} \\left(- M_{5} + 3 u_{0}^{2} + 3 u_{1}^{2}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 8} \\leftarrow - M_{8} rr_{1} + M_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 18} \\leftarrow \\frac{1}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 19} \\leftarrow \\frac{1}{3}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 20} \\leftarrow \\frac{1}{6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 21} \\leftarrow \\frac{1}{9}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 22} \\leftarrow \\frac{1}{4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 0} \\leftarrow M_{post 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 1} \\leftarrow M_{post 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 2} \\leftarrow M_{post 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 3} \\leftarrow M_{post 3}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 4} \\leftarrow M_{post 4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 5} \\leftarrow M_{post 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 8} \\leftarrow M_{post 8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 00} \\leftarrow sub_{k to f 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 10} \\leftarrow sub_{k to f 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 01} \\leftarrow sub_{k to f 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 20} \\leftarrow sub_{k to f 0} sub_{k to f 19} + sub_{k to f 18} sub_{k to f 3} + sub_{k to f 20} sub_{k to f 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 02} \\leftarrow sub_{k to f 0} sub_{k to f 19} - sub_{k to f 18} sub_{k to f 3} + sub_{k to f 20} sub_{k to f 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 11} \\leftarrow sub_{k to f 4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 22} \\leftarrow sub_{k to f 21} \\left(sub_{k to f 0} + sub_{k to f 5} + sub_{k to f 8}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 10} \\leftarrow sub_{k to f 18} \\left(m_{post 02} - m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 12} \\leftarrow sub_{k to f 18} \\left(m_{post 20} - m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 14} \\leftarrow sub_{k to f 22} \\left(- m_{post 11} + m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 16} \\leftarrow sub_{k to f 22} \\left(m_{post 11} + m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\tau_{0} = \\frac{1}{\\omega}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\Pi = \\sqrt{4 \\left(- f_{5} + f_{6} + f_{7} - f_{8} - u_{0} u_{1}\\right)^{2} + 2 \\left(- \\frac{\\delta_{\\rho}}{3} + f_{1} + f_{2} + f_{5} + f_{6} + f_{7} + f_{8} - u_{1}^{2}\\right)^{2} + 2 \\left(- \\frac{\\delta_{\\rho}}{3} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8} - u_{0}^{2}\\right)^{2}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\omega_{total} = \\frac{1}{\\frac{\\tau_{0}}{2} + \\frac{\\sqrt{18 C_{S}^{2} \\Pi + \\tau_{0}^{2}}}{2}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 6} \\leftarrow - M_{6} \\omega_{total} + M_{6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 7} \\leftarrow - M_{7} \\omega_{total} + M_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 6} \\leftarrow M_{post 6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 7} \\leftarrow M_{post 7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 21} \\leftarrow sub_{k to f 19} \\left(sub_{k to f 2} + sub_{k to f 6}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 12} \\leftarrow sub_{k to f 19} \\left(sub_{k to f 1} + sub_{k to f 7}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 11} \\leftarrow sub_{k to f 18} \\left(m_{post 01} - m_{post 21}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 13} \\leftarrow sub_{k to f 18} \\left(- m_{post 10} + m_{post 12}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 15} \\leftarrow sub_{k to f 22} \\left(- m_{post 12} + m_{post 21}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 17} \\leftarrow sub_{k to f 22} \\left(m_{post 12} + m_{post 21}\\right)$$</td> </tr> </table><div>Main Assignments:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$d_{0} \\leftarrow m_{post 00} - m_{post 02} - m_{post 20} + m_{post 22}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{1} \\leftarrow sub_{k to f 10} + sub_{k to f 11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{2} \\leftarrow sub_{k to f 10} - sub_{k to f 11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{3} \\leftarrow sub_{k to f 12} + sub_{k to f 13}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{4} \\leftarrow sub_{k to f 12} - sub_{k to f 13}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{5} \\leftarrow sub_{k to f 14} + sub_{k to f 15}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{6} \\leftarrow sub_{k to f 16} + sub_{k to f 17}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{7} \\leftarrow sub_{k to f 16} - sub_{k to f 17}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{8} \\leftarrow sub_{k to f 14} - sub_{k to f 15}$$</td> </tr> </table>" + "<div>Subexpressions:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$rr_{0} \\leftarrow 0.0$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$rr_{1} \\leftarrow 1.9$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$F_{x} \\leftarrow 1.0 \\cdot 10^{-6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$F_{y} \\leftarrow 0$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 0} \\leftarrow f_{3} + f_{5} + f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 0} \\leftarrow f_{0} + f_{1} + f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 0} \\leftarrow f_{4} + f_{6} + f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 1} \\leftarrow f_{5} - f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 1} \\leftarrow f_{1} - f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 1} \\leftarrow f_{6} - f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m m1 e 2} \\leftarrow f_{5} + f_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 0 e 2} \\leftarrow f_{1} + f_{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$partial_{m 1 e 2} \\leftarrow f_{6} + f_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{00} \\leftarrow partial_{m 0 e 0} + partial_{m 1 e 0} + partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{10} \\leftarrow partial_{m 1 e 0} - partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{01} \\leftarrow partial_{m 0 e 1} + partial_{m 1 e 1} + partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{20} \\leftarrow partial_{m 1 e 0} + partial_{m m1 e 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{02} \\leftarrow partial_{m 0 e 2} + partial_{m 1 e 2} + partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{11} \\leftarrow partial_{m 1 e 1} - partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{21} \\leftarrow partial_{m 1 e 1} + partial_{m m1 e 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{12} \\leftarrow partial_{m 1 e 2} - partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{22} \\leftarrow partial_{m 1 e 2} + partial_{m m1 e 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\delta_{\\rho} \\leftarrow m_{00}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{0} \\leftarrow m_{10}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$u_{1} \\leftarrow m_{01}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\rho \\leftarrow \\delta_{\\rho} + 1$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{0} \\leftarrow m_{00}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{1} \\leftarrow m_{10}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{2} \\leftarrow m_{01}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{3} \\leftarrow - m_{02} + m_{20}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{4} \\leftarrow m_{11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{5} \\leftarrow - 2 m_{00} + 3 m_{02} + 3 m_{20}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{6} \\leftarrow - m_{01} + 3 m_{21}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{7} \\leftarrow - m_{10} + 3 m_{12}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{8} \\leftarrow m_{00} - 3 m_{02} - 3 m_{20} + 9 m_{22}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 0} \\leftarrow M_{0} + rr_{0} \\left(- M_{0} + \\delta_{\\rho}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 1} \\leftarrow F_{x} + M_{1} + rr_{0} \\left(- M_{1} + u_{0}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 2} \\leftarrow F_{y} + M_{2} + rr_{0} \\left(- M_{2} + u_{1}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 5} \\leftarrow 6 F_{x} u_{0} + 6 F_{y} u_{1} + M_{5} + rr_{1} \\left(- M_{5} + 3 u_{0}^{2} + 3 u_{1}^{2}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 6} \\leftarrow - M_{6} rr_{1} + M_{6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 7} \\leftarrow - M_{7} rr_{1} + M_{7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 8} \\leftarrow - M_{8} rr_{1} + M_{8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 18} \\leftarrow \\frac{1}{2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 19} \\leftarrow \\frac{1}{3}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 20} \\leftarrow \\frac{1}{6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 21} \\leftarrow \\frac{1}{9}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 22} \\leftarrow \\frac{1}{4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 0} \\leftarrow M_{post 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 1} \\leftarrow M_{post 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 2} \\leftarrow M_{post 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 5} \\leftarrow M_{post 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 6} \\leftarrow M_{post 6}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 7} \\leftarrow M_{post 7}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 8} \\leftarrow M_{post 8}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 00} \\leftarrow sub_{k to f 0}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 10} \\leftarrow sub_{k to f 1}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 01} \\leftarrow sub_{k to f 2}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 21} \\leftarrow sub_{k to f 19} \\left(sub_{k to f 2} + sub_{k to f 6}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 12} \\leftarrow sub_{k to f 19} \\left(sub_{k to f 1} + sub_{k to f 7}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 22} \\leftarrow sub_{k to f 21} \\left(sub_{k to f 0} + sub_{k to f 5} + sub_{k to f 8}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 11} \\leftarrow sub_{k to f 18} \\left(m_{post 01} - m_{post 21}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 13} \\leftarrow sub_{k to f 18} \\left(- m_{post 10} + m_{post 12}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 15} \\leftarrow sub_{k to f 22} \\left(- m_{post 12} + m_{post 21}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 17} \\leftarrow sub_{k to f 22} \\left(m_{post 12} + m_{post 21}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\tau_{0} = \\frac{1}{\\omega}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\Pi = \\sqrt{4 \\left(- f_{5} + f_{6} + f_{7} - f_{8} - u_{0} u_{1}\\right)^{2} + 2 \\left(- \\frac{\\delta_{\\rho}}{3} + f_{1} + f_{2} + f_{5} + f_{6} + f_{7} + f_{8} - u_{1}^{2}\\right)^{2} + 2 \\left(- \\frac{\\delta_{\\rho}}{3} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7} + f_{8} - u_{0}^{2}\\right)^{2}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$\\omega_{total} = \\frac{1}{\\frac{\\tau_{0}}{2} + \\frac{\\sqrt{18 C_{S}^{2} \\Pi + \\tau_{0}^{2}}}{2}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 3} \\leftarrow 2 F_{x} u_{0} - 2 F_{y} u_{1} + M_{3} + \\omega_{total} \\left(- M_{3} + u_{0}^{2} - u_{1}^{2}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$M_{post 4} \\leftarrow F_{x} u_{1} + F_{y} u_{0} + M_{4} + \\omega_{total} \\left(- M_{4} + u_{0} u_{1}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 3} \\leftarrow M_{post 3}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 4} \\leftarrow M_{post 4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 20} \\leftarrow sub_{k to f 0} sub_{k to f 19} + sub_{k to f 18} sub_{k to f 3} + sub_{k to f 20} sub_{k to f 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 02} \\leftarrow sub_{k to f 0} sub_{k to f 19} - sub_{k to f 18} sub_{k to f 3} + sub_{k to f 20} sub_{k to f 5}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$m_{post 11} \\leftarrow sub_{k to f 4}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 10} \\leftarrow sub_{k to f 18} \\left(m_{post 02} - m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 12} \\leftarrow sub_{k to f 18} \\left(m_{post 20} - m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 14} \\leftarrow sub_{k to f 22} \\left(- m_{post 11} + m_{post 22}\\right)$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$sub_{k to f 16} \\leftarrow sub_{k to f 22} \\left(m_{post 11} + m_{post 22}\\right)$$</td> </tr> </table><div>Main Assignments:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$d_{0} \\leftarrow m_{post 00} - m_{post 02} - m_{post 20} + m_{post 22}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{1} \\leftarrow sub_{k to f 10} + sub_{k to f 11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{2} \\leftarrow sub_{k to f 10} - sub_{k to f 11}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{3} \\leftarrow sub_{k to f 12} + sub_{k to f 13}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{4} \\leftarrow sub_{k to f 12} - sub_{k to f 13}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{5} \\leftarrow sub_{k to f 14} + sub_{k to f 15}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{6} \\leftarrow sub_{k to f 16} + sub_{k to f 17}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{7} \\leftarrow sub_{k to f 16} - sub_{k to f 17}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$d_{8} \\leftarrow sub_{k to f 14} - sub_{k to f 15}$$</td> </tr> </table>" ], "text/plain": [ - "AssignmentCollection: d_7, d_4, d_6, d_8, d_5, d_1, d_0, d_3, d_2 <- f(f_7, f_1, f_3, f_5, f_0, omega_total, f_6, f_2, f_8, f_4)" + "AssignmentCollection: d_6, d_5, d_2, d_3, d_0, d_1, d_7, d_4, d_8 <- f(f_2, f_4, f_7, f_5, omega_total, f_6, f_3, f_1, f_0, f_8)" ] }, "execution_count": 10, @@ -547,12 +547,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAAATCAYAAADyD8OaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAH8UlEQVR4Ae2a7XEUORCGF5cD4LgMIAMwEZwvA7iLAMgAil/wj4IMgAj4yACI4A5ngDPAtxn4nkeentVo50OzOy7+bFdpJbVab0vdakkzszcuLy9XBzpY4GCB3S3w8uXL2/R+QvrSoFi/gP/5qGEcsoMFDhbY3QIG1GOSAfaWdMfgIl8d+3OggwUOFtjbAn8QVGclyiHASosc6gcL7GgBAuyUrjdJXymvhdn7igjQbdJjksCLEFh3SyDxSR7FO9F1YO40kIU6LTkf7Uqq9mGN7rmYC5nlV8I8R/k56SvpPfN/4GDSCaYxKD+TAZ2QLkjP4G8deQoUZDB473yLfNGUqmv4v1kiV48Pg5IBaf01fAeV0zd4tof+CN57uZBl5F43vJ/kd0jiOdGSqjHtCIbz+kS6R3ktr49oC/3R/AFejDvxqDt+HRBk/RP8zrypz/FD9XzAjTEO2ajah80EanTPxQzb7Jwzz0mfVdhitn4w9WPrS+qvqH8n3TimolMNjj/JE1HWId/lkdqOTXOZ3YehTN+i9shMgQuOi8qgjQBbUTbKv5A/JKWHQuqSAS5pMHFte4VMZ6FTdxLyU19ydcS4y/FMYjb934OhrBuNtuklZG0zAJ1TshG5dZOBnpNB387bBmVJnsox9rl+mJxPo6fGRlU+zCZUo3suZgZfX9SGSNf6bNIW4LnmYkMaG8gTZNMaI39Aytdv8E89wQQrne+i8a2IiyWdPuSDhGwbnCEELy1O8lAsntcQAyp4Ebzu7sET4gyZhxaGiHbx2gWqHDxPS3E8Ucsx1WAawEkvOE8pa+wh0jaeVjEH5XR2J7Bpd5w6tqRHML6RYt5z/VAzn2obMc7SXit4pQ9jDpO6FZyJGdizcnRU+Qy5Klsgd8YAtmwxMSg3S2869pVuXWWr8yMKnjI/aHRx5OTCcQEnI+cNRfmfoh7VctdWucYwJQK7LQdvRm4gxITybo7ntGc+ucxeZbA9eQ2+dzkQfE/80jmeZiUv7xblff0QOHlea6NaH+bYU+XrwJzSOdZea4sxjKE210G+sbo+PrMWzj3BDKS7VIYW+03aB4l+sQO3MvDcjb2HtgRPPZ3TEJ4DkTxx5pILsrPAG4CYqO1bY5urZEDeE9/TcshmeTcX2lNk/UbiVTj6aKN83nv5IVeYlatsxJi27ARvy4cZ7mTxOjAnlY4LVNliHGKw1ceg58z5J/nvSlFON6HjKMgsKF2PaO87JQrRTRV5TzwDNl6abBqzEu1OOF2LKG8FCrx0pCPjgMX0WSuNhXw06JGV4pi+qvE7htkK1RV8PjsHTxv9TdKwnlR9Ly7cyVzAbib/UdYuyuZX5RX85BD4JQ36gT6L20jl4E76cEx3OYFazL5+S/AY607rpVY3+G6avev9qA+EDjpVI/d26uuT8QwaUy+JTfL5xlPAgPm3R1CDfETuDckxmHx5YVBKETxObIhKo05hDuH08QP7xPE143Q+Blicym0/eAZPbCLaxnlMblz0G/PD1Hx2sVGMedSHCE3pDpw8n8LMZZcu72OLvcbSG2AgfiK5876Zg468QXlK7nWnl2jzAdnAcdF9IBk4nUVJ3WeZdQBQ9tonZn6liuahPB3V0bgQ5gqcCC43igiaUPORgt9AQibxqTs/5+PJ5Ty0k8+9nXnDK2nQD/Rd3EYqB7fGh7N012CWE/8F9c56WUr/UQmEMVzEXn+Grixll7zuLh7PQDm/t4wOr04uvPTKuldowxTXD6IugIsNe6sUu5XXtinKMadky/a+efq20OA6CWHG6zXOBelJp1194RG23QrGrN8ufsjns6uNZvkwxkue687YqTgbEzv5gu2SpE33pV1tsa/e7j85mIyL4RZ5zVuvPuXuyL2TAdMd3ytPSXFFTNc/ZHw2GTOqhjcoJRdzScFrA6AGswQZqme6Ywx9om4CQV6NOldtMNxYPM0ca1x7KV4R7aN+qJlPNs6wR8CbB6+1UdY46ENlanRnWFEcxQyhPG/G7/hifeTNs8p72GKWnj7h9gRjEBrBfwHH7rqiHCdGX98OD1md5sJadxo2FYPG62A4d9PSLZ1Q7ZNJJxP9zxrxuGp1e2+ez/Jrai1miTVUF7tvjCGfFm4z13xDiPYVbcoYaHHipjb4NX6onc8cGzkm5zTmQ8dYqzvmU4OZZMsfxuN69PRbgmbZYgmFYqQAYxKeLPfJOzstPJ3deyLBL0nDS0Pya9p8rjPPKfpFQLxDxt29JHf6kLHN55Poaz3oHgWf83I9tZiBMZV7fXMhlqRuX9+ncTZjsN4na18XXzsn5Gr9UDufOTZyPGHPIR8qU6tbWakG80ryen/n2mKR0Rw1zle5O61/mWoTPP8OkhYque1jd2IXi5Qv7CvO1a/B67eglsB7QMV+rR7KSX8rRAE53zpK+enqC4aLBiM1UhbrL9KjxNj8VGFuxFMpHno7J4wt6PHk8R/TXv8Sjeh2zFvPmMh7DfQ6HKedQTjph6Tsemwk9JQPlZlryxpMcZegMZ/NWS9LjCVh3Hjx4sUPSkM7rCeBu3Iiysq6sLaObXhieA18RNkFuEXwPYXaIKFsH//x0e7idqIuP05TF7g7qi8J1uQtUdd5LnL5P0n3Se33MsotzcB0kUuOVfwzkkFgMHTeGlJXtzKS4xzS7cn0nJSfDJ1vZmBV+wGcFfLXZaNRH87RnclOYiq7K2GLKp8hV71edh1L2e9/DGBTcopdQUwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAL4AAAAPCAYAAABa4nVNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGyklEQVRoBe2a7ZEUNxCGl6sL4MAZQAbAZQAZgIkAyMAu/+MfBRkYIuAjA3AEGDKADPjI4Pw82mmtZlYz27OHq/zDXaWV1Hr7Q1JPSzN3Vy4uLjb/RXry5MlNyqfWN/pn9K9Rf2n5/7cvvwKs6XW03KG8pv3j8hr/HQ0/y8/T1j2UPhv6X6lvUJ7BSwdZVj6J+wucgR7Bb1u6ta12v0l9O4GhhdxNmo+pH7eD9A2C3wfebepv9uGHL8PQtoIf6xb8Vz8DqzL0dH0MQ43tg3s26HqD7C3a0+DWzp8Wxqj26Af8qy2Xfsx71jYY1zLW1z20b1y9n+hK4ZA5xk9lRvOugY8jHxl8Sv1Wh6h18iP1XcrB4AeTks/isG2wSTqtff3Sv9GGrdCH+B65GKNgRp8b4ObfDTRtNzjWom7YgFWHD0XhU9u3mDgqrcFWoW1jz8cYR+fBNQfjPr6kuJ4+xM6vR+cwnUNvrz0JIhEU2RW2XZsI/A3teyh4R32f0sbaQVwxvNmk/ET34rxL4AN6hNKzcEQDtH3CdcwsUIPAsSmBS8lncYP+T+DvT221/ZX6WtENsr+NGLuOQV43SjZYN8U5GoRt1rNvdq8PA30XvBc8a7CoKHbnfNSn7JqbKMo6IqM+E0mXGN/bZ3jlQaEuQaog7ZRtoOIegTfQQz7W6g/GgpfFIVLsH/QTe4vzPimatgszynwD/wP1HZS4mUvkwmbks7glW+3YUfqYj5vvwlimZHb73JmzG2ZyiEAwc6nnBaUS456Qo42hn8aGImSWfBR21NxDf6d2r3vktWSUCABlbRsTo3VGV2/Nszj9W+On+C5F4LvZ3zqIyFyOL1FWPotbstWOHavvARswCthGaTnuZzZI2NmANRg8FXsbOUBqtQYbQks+ijl27qF/VDOPyL6VD8/T72ll7Bop28i/p1y1DlHaJgHJm0ShLE4w2DV+bg10fk9RFBvZGa6sa7U1aWTls7hWPTLlSIX3C8VM6x2/nCzH6FM3ch73ddHltcS42axHZmDli32atylf6Mt/QIkXvDfw6kbDl9ZgtXHIx0vt2dal5V98cL39sja92x9tG10+MOUqSXsu8WyyOGcAtuunY0t0ymAE9VLmWppsVj6LC3+1WT+tDRP0CuJVwsBaq28z6DBLx0kWthZr8DcBuMBtEMSa3Ga88ml/pzyktJkpjUVOO4d8XD33xQn2Bw1Qy5RW22ZOrp9Bf04xcfxN2aMsbiI45+cENu6ejLuzPTPuZSgrX3EsggH+I4zSNlgN+NlsHdimrvoGnp8uZzNNIzdt+mL6FtnnDlBHIJsRp/peA3kZmKjhHcSqGzrWx6307nc6993IgRY++/DdoZ6eXAck6/DINnr8UPGc4mn6iuIXsrjyVKEsLgTAH+2ngd+724fueLo9xucoK5/FzdmRb/BfHya8Sh8yXpvWPDTa2yCnjFea3hWod3L4idEHw+tNSwexK3xcNffWiWTbd5Kev4pfyjZz9CQ0oXkljASi3hElcUt+jvRNOycY0Amp50Tw5hZhk5XP4nQErJ+/DKA58utK2m+wZgZlZufRMwTeh8W/FE+/0oTtqHvi2twgG5iou1hwaR8bnWcdZcFbNdeJHrNxN8DX2AbrKec1Z0px1fH6s8nipkroz/rZwY5Y3vElj7SyUaW3+4mMf+jIy8pncWbL3sIXf1ioT4OLWX3O7Rw5rywtuSmeIPLN6u1d3UW9Aa9metoRzAbVnG2GCrWBl8Gu9XFOZ3bPws9RzRx9cPQl1ng0PnSytkvyQqdfdpYe/Cyu+pL0s+KnjQh8N773InMLvvezJafVmZXP4l5gswahBgYyQ7joQSl96FKmlSvy8L/Lp67B7QB9HwgflKkPPgxxp/cKpP0puWa+nLb2sthWpuhFT9dHBlNznzqX6Jt0pF7i2Y7kbRs3ru80fsJGzDeLC/vWoWPJzxY/ap/YwzE38xu1G1uI9hmNXykPt5yC87pwQRldQ+hn5VM47PkvA6P7OH0/8Uk1SLN2t2LdX+doqYROs51B5VyLH1HD88XTTdpQe1d1U2vCoL23Zmux4ie056Pj2MquZasuXjrjVGjHoh3rUeYZzLZeYdvE8W4ia4xpo64l7SyuVXXQzwa8N+8r8d+Zw6a5iU74K+Wc8hT+6Mij/xm+G+6LRaUV8jqcsWMARsZ1o3yy/dcB/auUtVsFaCDjQ6X+csekNog/wPfLg/NzrEeefmb0SvSdS2yCfu6tWYBXYmd9bPRl1zJOJuerjHvqVcx3KR+gSvSdu4lt+km2YmyAy9rWZk1WtNXf+ye1FA7ZQhk/wczO+x8zrkKKNpq8cwAAAABJRU5ErkJggg==", "text/latex": [ - "$\\displaystyle 2.73505168250757 \\cdot 10^{-5}$" + "$\\displaystyle 0.00504266401703371$" ], "text/plain": [ - "2.735051682507571e-05" + "0.00504266401703371" ] }, "execution_count": 15, @@ -561,7 +561,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACg4AAAPhCAYAAAArHcafAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzddXgUV/8F8LMJIbg7wSW4O8UdEihQnCJFC6VQHAoFWqBogVJKcZdCcSgUd3d3C8E1BEL0+/sj7+5vZ3eTvZMNWULO53n2eenbHkgznZt7Zu7cMYgIiIiIiIiIiIiIiIiIiIiIiIiIiChucHH2F0BEREREREREREREREREREREREREMYcLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOCSes7+A2MBgMLgDKPy/v3wGINSJXw4RERERERERERERERERERERERHFHa4A0v7v1xdEJNDR35ALB9UUBnDC2V8EERERERERERERERERERERERERxWmlAZx09Dfhq4qJiIiIiIiIiIiIiIiIiIiIiIiI4hDuOKjmmfEXx48fR8aMGZ35tRAREREREREREREREREREREREVEc8ejRI5QpU8b4l88i+2dVceGgmlDjLzJmzAgPDw9nfi1EREREREREREREREREREREREQUN4Xa/0fs46uKiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikO4cJCIiIiIiIiIiIiIiIiIiIiIiIgoDuHCQSIiIiIiIiIiIiIiIiIiIiIiIqI4hAsHiYiIiIiIiIiIiIiIiIiIiIiIiOIQLhwkIiIiIiIiIiIiIiIiIiIiIiIiikM+6sJBg8Egip+9Cr9XXYPBsNZgMDwwGAyB//vftQaDoe7H/HcgIiIiIiIiIiIiIiIiIiIiIiIi+px88jsOGsLNArAVQGMAmQHE/9//Ngaw1WAwzDIYDAYnfplEREREREREREREREREREREREREsUK8GPpzZgL4M5K//y6SvzcaQNf//foMgAkAbgHIBWAggOL/+/vPAAxz+CslIiIiIiIiIiIiIiIiIiIiIiIi+ozF1MLBpyJyUW/IYDDkRvjiQAA4CaCyiAT8769PGAyGjQD2ASgFYJDBYFggIrei5SsmIiIiIiIiIiIiIiIiIiIiIiIi+gx96q8q/gH/v7ixl9miQQCAiLwH0Ot/fxkPQJ+Y+9KIiIiIiIiIiIiIiIiIiIiIiIiIYp9PduGgwWAwAGj0v7+8KiJHbf1z//v/r/3vL7/8X46IiIiIiIiIiIiIiIiIiIiIiIiIbPhkFw4CyAEg8/9+vc/OP2v8+x4Asn+sL4iIiIiIiIiIiIiIiIiIiIiIiIgotouphYPNDAbDNYPBEGAwGN4aDIYbBoNhkcFgqBZJJr/Zr6/a+f3N/37+CP8pIiIiIiIiIiIiIiIiIiIiIiIiojguXgz9OQUs/jr3/z7tDAbDegAdROSNxT+TxezXD+z8/j4R5JQYDAYPO/9IBr2/JxEREREREREREREREREREREREdGn6GMvHHwPYCOAXQjfFdAfQFoAVQB0B5AawJcANhgMhloiEmyWTWr2a387f847s18nicLX6WP/HyEiIiIiIiIiIiIiIiIiIiIiIiKK/T72wsHMIvLaxv+/w2AwTAewFUBxhC8k/BbA72b/TAKzXwfZ+XMCzX6dMApfJxEREREREREREREREREREREREVGc8FEXDkawaND4954YDIavAFwBEB9AL2gXDn4w+3V8O3+Uu9mvA3R+mYD91xtnAHAiCr8vERERERERERERERERERERERER0SflY+84GCkRuW0wGHYAaAAgt8FgyCQiD//3t9+a/aP2Xj+c2OzX9l5rbOvreBDZ3zcYDHp/SyIiIiIiIiIiIiIiIiIiIiIiIqJPkouzvwAAl81+ndns1+aL+Tzs/B7mOwb6OPwVEREREREREREREREREREREREREX2mPoWFgxFt52e+oDCfnd/D/O9fcezLISIiIiIiIiIiIiIiIiIiIiIiIvp8fQoLBwuY/fqh2a/vmP11FTu/R+X//a8vgLvR82URERERERERERERERERERERERERfX6cunDQYDDkBFDrf395W0R8jX9PRATAhv/9ZT6DwVAugt+jHP5/x8EN/8sRERERERERERERERERERERERERkQ0fbeGgwWDwNhgM8SL5++kB/APA7X//1wwb/9hUACH/+/V0g8GQ0OL3SAhg+v/+MuR//zwRERERERERERERERERERERERERRSDChX3RYDoAN4PBsAbAEYS/QjgAQBoAVQF0B5D6f//sQdhYOCgi1w0GwyQAgwGUAnDIYDCMB3ALQC4AgwAU/98/PlFEbnysfxkiIiIiIiIiIiIiIiIiIiIiIiKiz8HHXDgIAJkA9PrfJyJrAHQWkcAI/v6PANIB+AbhiwRX2vhn5gEY5sDXSURERERERERERERERERERERERBQnfMyFg+0BVAFQHkBOhO80mAyAPwAfAIcBLBKRI5H9JiISBqDT/3Yu7Aqg9P9+r+cATgCYJSJbP9a/BBEREREREREREREREREREREREdHn5KMtHBSRfQD2RePv9y+Af6Pr9yMiIiIiIiIiIiIiIiIiIiIiIiKKiz72q4qJnO7kyZMYPHgwAMDFxQWLFy9GhgwZlLIPHjxAx44dISIAgMmTJ6No0aJK2Xfv3qFly5YICAgAAAwYMAB16tRRyoaFhaFdu3Z4/PgxAKBt27bo0KGDUhYA+vbti/PnzwMAatSogSFDhihnJ06ciP/++w8AUKBAAfz+++/K2aVLl2LhwoUAgLRp02Lp0qVwdXVVyu7atQu//vorAMDd3R0rVqxAsmTJlLKXL1/G999/DwAwGAyYM2cOsmfPrpR99uwZ2rZti9DQUADA6NGjUa5cOaVsYGAgWrVqBT8/PwBAz5490bhxY6UsAHTq1An37t0DADRt2hTffvutcnbYsGE4evQoAKBChQr4+eeflbMzZszAunXrAAA5c+bE7NmzlbNr1qzBzJkzAQDJkyfHihUrED9+fKXs4cOH8dNPPwEA4sWLh6VLlyJNmjRK2du3b6Nbt26mc3H69OnInz+/UvbNmzdo1aoVgoKCAABDhw5F9erVlbKhoaFo3bo1Xrx4AQD45ptv0Lp1a6UsAPTq1QtXrlwBANSrVw/9+vVTzo4ZMwZ79uwBABQrVgyTJk1Szs6fPx/Lly8HAGTKlAmLFi2CwWBQym7duhWTJ08GACRKlAgrV65EokSJlLJnzpzBgAEDAISPtwsXLkSmTJmUsg8fPkSHDh0QFhYGAJgwYQJKlCihlA0ICEDLli3x7t07AOFjYP369ZWyIoL27dvj4cOHAIBWrVqhU6dOSlkAGDhwIE6fPg0AqFq1KoYNG6ac/e233/Dvv+HPRHh6emLGjBnK2RUrVmDevHkAgNSpU2PZsmWIF09tWrd3716MHj0aABA/fnysWLECyZMnV8pevXoV3333HYDw8favv/5Crly5lLIvXrxAmzZtEBISAgAYNWoUKlasqJQNDg5Gq1at8Pr1awBA9+7d8dVXXyllAaBbt264desWAKBRo0bo1auXcnbEiBE4dOgQAKBs2bIYM2aMcvavv/7CP//8AwDImjUr5s+fr5zdsGEDpk+fDgBImjQpVq5cCXd3d6XssWPH8OOPPwIAXF1dsWTJEqRLl04pe+/ePXTu3Nk03k6dOhWFChVSyr59+xatWrXChw8fAACDBg1CrVq1lLJhYWFo27Ytnj59CgBo164d2rVrp5QFgN69e+PSpUsAgNq1a2PgwIHK2XHjxmHnzp0AgMKFC2PKlCnK2UWLFmHJkiUAgPTp02PJkiVwcXFRym7fvh0TJkwAACRIkAArV65EkiRJlLIXLlzADz/8ACD8XJw3bx6yZs2qlH3y5AnatWtnmvv8+uuvKF26tFL2w4cPaNmyJfz9/QEA33//PRo2bKiUBcJ/jt6/fx8A0Lx5c3Tt2lU5O2TIEJw4cQIAUKlSJYwYMUI5+/vvv2Pjxo0AgNy5c+Ovv/5Szq5atco0V0qZMiWWL18ONzc3peyBAwcwatQoAICbmxuWLVuGVKlSKWVv3LiBHj16QERgMBgwY8YM5M2bVyn76tUrtG7dGsHBwQCA4cOHo0qVKkrZkJAQtG7dGi9fvgQAdOnSBS1atFDKAkCPHj1w/fp1AICXlxf69OmjnP3ll1+wb1/4s4clS5bE+PHjlbNz5szB33//DQDw8PDAggULlOc+mzdvxtSpUwEAiRMnxsqVK5EwYUKl7KlTpzBo0CAAzu2a/fv3R926dZWyjnbNfv364dy5cwDYNe2x7Jq//PILypcvr5R1tGt27twZd+/eBQA0adIEPXr0UM5GV9fMkSMH5syZo5xdu3Yt/vzzTwAx2zXv3LmDrl27OqVrtmnTBs+fPwcAdOzYEW3atFHKAp9G18yYMSMWL14cI13z7Nmz6N+/P4Dw8XbBggXInDmzUjY6u+YPP/yABg0aKGVFBB06dICvry+AmO2aU6ZMwZYtWwA4t2suX74cKVKkUMpeu3YN3333nWnu40jXHDlyJL744gulrGXX7NatG5o1a6aUNf7zUe2aI0eOxMGDBwEAZcqUwdixY5Wzzuqax48fx9ChQwHEbNf09/dHy5YtndI1+/Tpg4sXLwLQ3zXHjx+PHTt2AIibXXPs2LEoU6aMUjY6u2azZs3QrVs35ezQoUNx/PhxADHbNVevXo1Zs2YBAFKkSIEVK1bESNe8efMmvv32W9N4+8cff8DT01MpG51ds3PnzmjZsqVSFnBe15w7dy5WrlwJAMicOTMWLlzolK65aNEiZMyYUSnr6+uLjh07muY+MdU1RQTt2rXDo0ePAABt2rRBx44dlbKAY11z0qRJ2LZtGwB2TXuCgoLQsmVLU9fs0aMHmjRpopQFHOuaw4cPx5Ej4S+iLF++PH755Rfl7J9//om1a9cCcKxrJkuWDCtXrlTumkeOHMHw4cMBxGzX9PPzQ6tWrRAYGAjAeV2zbt26ph6mYuzYsdi9ezcA53XNhAkTYuXKlUicOLFS1pGu+ejRI7Rv39403o4fPx4lS5ZUykZn12zZsiU6d+6slAXC59KnTp0CAFSpUsX03zjFcSLCj50PAA8AAkB8fHyEYo+wsDApV66cGI8fAOnQoYNyvlWrVpps1apVlbNDhw7VZHPnzi2BgYFK2blz52qyKVKkkGfPnilld+3apcnGixdPLl++rJS9du2auLm5afLbtm1Tyr58+VJSp06tyc6cOVMpGxQUJPny5dNkBwwYoJQVEalZs6Ym27RpU+Vsly5dNNlSpUpJWFiYUvbXX3/VZDNnziz+/v5K2ZUrV2qyiRMnlgcPHihljx07JgaDwZQ1GAxy4sQJpez9+/clUaJEmj/7n3/+Ucq+fftWMmXKpMlOmDBBKRsaGiolSpTQZLt3766UFRH58ssvNdk6deooZ/v27avJFihQQIKDg5Wy06dP12TTpEkjr169Uspu2bJFk40fP77cuHFDKXvhwgVxdXXV5Pfu3auUffLkiSRPnlyTXbBggVL2w4cPkjNnTk12+PDhSlkRkS+++EKTbdu2rXL266+/1mQrVqyonB0xYoQmmyNHDvnw4YNSduHChZpssmTJ5MmTJ0rZ/fv3a7Kurq5y/vx5pezNmzfF3d1dk9+8ebNS9vXr15I2bVpN9vfff1fKBgcHS8GCBTXZH374QSkrIlK3bl1NtlGjRsrZHj16aLLFixeX0NBQpezEiRM12YwZM8rbt2+VsmvWrNFkEyZMKPfu3VPKnjx5UlxcXDTj7dGjR5Wyvr6+kjhxYs2fvWLFCqXsu3fvJEuWLJrs2LFjlbJhYWFSunRpTbZz585KWRGRZs2aabLVq1dXzg4cOFCT9fT0lKCgIKXsX3/9pcmmSpVKXrx4oZT977//NFk3Nze5du2aUvby5csSL148TX7nzp1K2efPn0vKlCk12Tlz5ihlAwMDJU+ePJrskCFDlLIiItWqVdNkW7RooZzt2LGjJluuXDnluc8vv/yiyWbNmlXev3+vlF22bJkmmyRJEnn48KFS9tChQ5qsi4uLnDlzRil79+5dSZAggSa/bt06payfn5+kT59ek/3tt9+UsiEhIVK0aFFN9rvvvlPKioh4eXlpsg0aNFDOfv/995ps4cKFJSQkRCk7depUTTZ9+vTy5s0bpeyGDRs02QQJEsjt27eVsmfPntWMtwDkwIEDStlHjx5J0qRJNdklS5YoZQMCAiRbtmya7KhRo5SyIiLly5fXZB3pmlWqVFHO/vjjj5psrly5YqRr7t69W5ONFy+eXLp0SSkb3V3zzz//VMoGBwc7rWt27dpVky1ZsmSMdM2///5bk02UKJHytazo7pqrV69Wyvr7+zutazZu3FiTrV27tnLWka75xx9/aLJ6uua///6rycZU13z69KlV15w/f75S1tGuWalSJU22TZs2ytno7poBAQFK2UWLFmmyMdU1b926ZdU1N23apJR1pGuGhIRYdc0+ffooZUVE6tWrp8k60jWLFSum3DUnTZqkyWbIkEH8/PyUso50zVOnTll1zSNHjihlo7trjhkzRikbFhYmZcqU0WRjqmsOGjRIk82bN2+MdM3t27drsm5ubnL16lWl7JUrV6zmPo50zdmzZytlg4KCrLrm4MGDlbIijnXNb775RpMtW7bsJ981Dx8+rJn7xGTXzJAhgyY7efJkpayjXdPb21uTrV+/vnI2OrtmunTplLvmxo0bNdmY6pqPHz+26pqLFy9WykZ312zfvr1ytnXr1ppsTHXNefPmabIpUqSQp0+fKmUd6ZrXr1+X+PHja/Jbt25VykZ31+zfv79SVkSkdu3ammxMdc1x48ZpsjHVNY8fPx7lrunj4xOtXXP8+PFKWVtds1u3bkpZEce6Zr9+/TTZ/Pnzf/Jd8+LFi1bX2WOqa+bKlUuTHTZsmFJWxLGu2a5dO022QoUKytmRI0dqso52zcePHytlDxw4oMm6urrKuXPnlL9u+jT4+PiYH0cPiY41cdHxm3zuH3DhYKy1YsUKzeBnnIycPn3abvbo0aNWWdXyd//+favSqFr+3r17Z3WDEoD07NlT5V9ZihQpYpVVLX+NGjWyyubPn19pwvnDDz9YZdOkSaN0se3333+3ysaPH1+p/G3evNnmcVIpfxcuXLAqjYBa+Xv69KkkSZLEKjty5Ei72aCgIMmaNatVVrX8VahQwSpbqVIlpWzbtm2tstmzZ1eacA4fPtwqmyxZMnn+/Lnd7IIFC6yyrq6uSuVv7969No+xSvm7deuW1UU6ADJjxgy72Tdv3kiqVKmssirlLywsTDw9Pa2yTZo0sZsVEalTp45Vtnjx4krZ7t27W2UzZMigdLFtwoQJVtmECRMqLWpdvXq1zfFWpfydPHlSUxqNn1WrVtnN+vr6SsKECa2yKuUvICBAMmbMaJVVLX+WpRGA1KpVSynbtGlTq2zevHmVbm4MGDDAKpsyZUp5/fq13ezMmTOtsm5ubkrlb9u2bTbPxT179tjNXrlyxeoGJaBW/l68eCHJkiWzyqqUv5CQEMmRI4dVtnXr1nazIiKVK1e2ypYvX14p26FDB6tslixZlC62/fzzz1bZJEmSKN1oXLJkiVXWxcVFqfxZLs4yfjZu3Gg3e/fuXauLdABk2rRpdrNv376VNGnSWGV79+5tNysiVjcoAUjDhg2Vsg0aNLDKFipUSCnbq1cvq2y6dOmULrb99ttvVll3d3elG43r16+3eZwOHz5sN3vmzBmb4+3y5cvtZh8/fmx1gxKAjB492m42MDBQPDw8rLKdOnWymxURqxuUAKRatWpK2ZYtW1plc+XKpXRzY8iQIVbZ5MmTy8uXL+1m58yZY5WNFy+e0o1GyweBjJ8dO3bYzV6/ft3qIh0AmTVrlt3sq1evrG5QAmo3GkNDQyV37txW2ebNm9vNiojUqFHDKluqVCmlbOfOna2ymTNnVnqIYOzYsVbZRIkSKd1otHwQCHC8a65du9Zu1sfHx2bXnDRpkt2so13T8gYlAKlXr55SNrq7ZurUqZW6puWDQEDMdM2LFy/a7JqLFi2ym3W0a1reoAQg7dq1s5sVEalYsaJVNia65k8//WSVjYmuuW/fPpvH+N9//7WbdbRrWt6gBCD9+vWzmw0LC7O6QQk41jWLFSumlP3222+tsjHRNf/55x+b4+3x48ftZj9G1xw3bpzdbEBAgNUNSiBmuuZXX31llc2TJ88n3TUtHwQyfhzpmvPmzbObffHihdUNSgDy448/2s062jWrVKlilS1XrpxS1vJBICBmuubSpUutsjHVNS0XwwKQqVOn2s1+jK7p7e2tlLV8EAhwrGumTZtWqWtOmTLFKhsTXdPW4iwAsmzZMrvZj9E1v/nmG7tZEZGyZctaZR3pmjlz5lTqmpabTgDhXVNlUevH6Jrbt2+3m/0YXXPQoEF2s6GhoVaLYYGY6ZqWm04AkEyZMikt7PgYXfPUqVN2s8eOHbN5jJ3VNXv06GE3K+JY17TcdAKA5MuXT6lrWj4IBMRM17TcdML4+dhd89mzZ1aLYQHIiBEj7GY/Rtf84osvlLKWDwIBjnXNpEmTKj1AabnpBBDeNS9evGg3+zG65h9//GE36+fnF+1ds3HjxnazItabTgAx0zUtN50AwheYq6zpcaRrnjp1ymbX/Pvvv+1mHz58aLUYFnCsa3bt2tVuVkSkZMmSVtmaNWsqZenT8TEWDqrtbU4US+XPn99qC//kyZMjS5YsdrPZsmVD0qRJNf9fvHjxlLZtT5MmDdKnT2/1/6u8fiFhwoTImTOn1f9fsGBBu1kgfBvuqGZt/XMFChRQ2grYVjZ79uxKr0GwlU2XLp3N76GlvHnzWm3hnzhxYuTIkcNuNnPmzEiZMqXm/zMYDDa/h5ZSpEgBDw8Pq/9f5Xvt5uZm81VzjhwnR7L58uVTeu2MrayHh4fSK05t/XeUMmVKpdfY5syZ02oL//jx4yNPnjx2s+nSpUPatGmt/n+V71eSJElsbg2vkjUYDDa3HHfWMc6dO7fSaxBsZTNkyIDUqVPbzebLl89qC/+kSZMqvc4kS5YsVlv4u7q6Il++fHazqVOntvmaBpXvV4IECWy++shZx8nWzyzVrK2fWarZNGnSKL1WMXfu3FavL4roZ5aljBkzWr0yRXW8TZYsmc2f2yrf64j+O3LWMc6bN6/SaxBsZW39zLKlQIECVv8dRfQzy1L27NmttvB3c3NTmvukTZvW5iuqVOY+Ef3cdtbcx5Fszpw5lV65ZyubPn16mz+zLHl6elr93I7oZ5YlDw8Pq9fFubi4KL0mI6Kf2yrfr4h+bjtz7qPy2hlb2axZsyq9dsZWNlWqVEqvFsqVKxcSJEig+f8i+pllKaKf2yrfr2TJktn8ua2SdXFx+aTGW1s/s1SzmTJlivLch10zYtHdNXPkyPFJd81MmTKxa8L2zyzVbEx0zRw5clj93I6prpktW7YoZT+1rpkrV65Pumva+rnNrqkv+zl3zYh+bqv8TP2cuqatn1m22PrvyNGuaetnliV2zXCqXdPW9yWmuqblz212TX3ZLFmyKM19ortruru7I3fu3HazGTJksPl6zrjYNS2/h6pZR7umytzHWV0zUaJENuc+qq+k/1y6ZkQ/syzlyZPH6uc2u6a+rKNd0/L6qC0RdU2V19g60jUj+rmt8v1KnDjxZ3NfU7Vr2hpnIvqZZclZ9zUj+rntrK6pOlbTZy46Vh9+7h9wx8FYzXLL5ilTpihnLbds/v7775Wzlls2e3l5KWctt2wuUqSI8pbvlq8HSp8+vfIrNiy3bE6QIIHcuXNHKRsaGmq1Sl3laUQjyy2bly5dqpy13LL5559/Vs5abtncsWNH5ezWrVs1WT2vsr548aLmieg8efIob/luuWVzypQplV8vZrllc7x48eTKlSvKX7flls3//fefctZyy2bVV1mLWL8eaODAgcpZyy2bv/rqK+Ws5ZbNpUuXVt7y3fL1QB4eHvLu3Tul7OvXryVdunSmrJ5XWYeEhEihQoVMWRcXF6WnEY0sXw+k+iprEevXA02cOFE5a/l6oG+//VY5u3btWk1W9WlEEevXAxUsWFB5y3dfX1/NbjBp06ZV3vLd8vVA7u7ucvPmTaWsrdcD7du3TykrItK8eXNNduHChcpZy9cD/fTTT8rZWbNmabJff/21cnbHjh2arOrTiCLWrwfS8ypry9cDJU+eXPn1YkFBQZI3b15T1tXVVS5cuKD8dVevXl3z77xlyxblrOXrgaZPn66cHT16tCar51XWlq8H+vLLL5WzR44c0cx99LzK2vL1QJkyZVJ+lbXl64ESJkwo9+/fV8qGhoZqnog2GAxy7NgxpayI9euBVq5cqZzt3bu3Jqv6KmsR69cDdenSRTlr+XogPU8jnjt3TjP3yZcvn/LrxSxfD5Q6dWqlXf9Ewp/CzJ49uymr51XWItY7Pe/atUs5a/l6INVXWYuIDBs2TJMdOnSoctby9UAtW7ZUzu7Zs0eTLV++vPLcx/L1QNmyZVN+vdirV680u8EkTZpUHj16pJQNDg6W/Pnza+Y+Z8+eVcqKWL8eaP369crZbt26abKOdM1evXopZ1etWqXJ6nmVtSNd0/L1QHpeZR3dXfPQoUNKWRGRJk2aaLIx1TVnzJihyep5lbWjXdN8N5jcuXM7rWtevnxZ+eu23Ok5prqm5euB9LzKOjq7ZqlSpZTH29u3b38SXdNgMMjJkyeVsiKOdc2ePXtqsqqvshYRmTx5sibrSNesW7eucvb06dNO6Zrv37/XdM348eM7rWsuWLBAOTt48GBN1pGu2bZtW+Xszp07NdmY6povXrzQvOVCz6uso7trbt68WTnbqVMnTTamuuby5cs1WT2vsna0a5rvPJoxY0blrvn27VvNWy4c7ZpHjx5VyoqINGzYUPP9Un2VtYhjXXPatGmarJ5XWUdn1/T09NTVNc3fchGTXdNy9y1ndc0hQ4YoZ+fPn6/JOtI1y5Urpzz3uXHjxifTNVVfZS0SvV3zt99+U86OHz9ek42prnnixAnNeKvnVdaOds3MmTObsnpeZR0WFhatXXPJkiXK2f79+2uyMdU1Ld8qpOdV1o50zWfPnkmKFClM2RQpUih3zcDAQM1bLmKya7Zv316TVX2VtYhjXXPx4sWarJ5XWTura75588ZpXbN+/fqaf2fVV1mLRG/X7N69u3J23bp1mqwjXbNAgQLKXfPhw4earqnnVdb06fgYOw4aJHxhHEXCYDB4APABAB8fH6Wn6OjT8fz5c/z9998Awp9O6tKli9JTCAAQFBSEuXPnGheQok2bNkpPIRjNnz8fAQEBAAAvLy+bT5RH5J9//sGTJ08AAJUrV0bhwoWVs//99x9u3rwJAChWrBgqVqyonD169ChOnToFIPxJxnr16ilnL1++jD179gAIfzqpRYsWytkHDx5gw4YNAMKfcuvcubNy1s/PD0uWLAEQ/kTEN998o/TUFwCEhoZizpw5CA0NBQA0a9ZM6YkgoyVLlsDPzw8AUKdOHaWn84w2bNiABw8eAADKly+PEiVKKGf37NmDy5cvAwh/OqBq1arK2VOnTuHo0aMAwp+IaNiwoXL2xo0b2L59O4Dwp9zatm2rnH3y5An++ecfAOFPuXXu3FnpCUwACAgIwIIFC0znYrt27ZSeeAcAEcHcuXMRFBQEAPjyyy+VnggyWrlyJV68eAEAqF69utKTskb//vsv7ty5AwAoVaoUypYtq5w9ePAgzp07ByD8CbTatWsrZ8+fP48DBw4ACH+ypmnTpsrZu3fvYsuWLQDCnxTs2LGjcvbly5dYsWIFgPDxtnPnzla7tEQkODgYc+fORVhYGACgZcuWSk9gGi1cuBDv3r0DADRo0EDpaWijNWvW4PHjxwCAL774AkWLFlXO7ty5E9euXQMAFClSBJUqVVLOHjt2DCdPngQQ/vR9gwYNlLNXr17Frl27AIQ/ndSqVSvlrK+vL9avXw8g/Cm3zp07Kz2BCQD+/v5YtGgRgPDxtkOHDkpPvANAWFgY5syZg5CQEABA06ZNlXafMFq2bBlev34NAKhVq5bSzgRGmzZtwv379wEAZcuWRalSpZSz+/btw8WLFwGE77BQvXp15eyZM2dw+PBhAOE7Bn755ZfK2Vu3bmHbtm0Awp9ya9eunXL22bNnWLVqFYDwp9y6dOmiPN5++PAB8+fPN423bdu2VXri3WjevHn48OEDAKBhw4ZKO28ZrVq1Cs+ePQMAVK1aVfkpOQDYtm0bbt26BQAoUaIEypcvr5w9fPgwzpw5AyD8yfE6deooZy9evIh9+/YBCN95qFmzZsrZ+/fvY9OmTQDCnxTs1KmTcvb169dYtmwZgPBzsVOnTkq7qwFASEgI5s6da5r7tGjRQukJTKNFixbB398fAFCvXj2lnWCM1q1bh4cPHwIAKlasiGLFiilnd+3ahatXrwIAChcujMqVKytnT5w4gePHjwMI33nI29tbOXvt2jXs3LkTQPhTxa1bt1bOPnr0CGvXrgUQ/mR2586dlXb7AYB3795h0aJF4aXdYED79u2tdmmJiIhgzpw5CA4OBgA0btxYaectoxUrVuDly5cAgJo1ayrtTGC0efNm3Lt3DwBQunRplClTRjl74MABnD9/HkD4k+M1a9ZUzp49exaHDh0CEL7zUJMmTZSzd+7cwb///gsg/MnsDh06KGdfvHiBlStXAnC8a7Zu3Vpptx8jZ3XN7du348aNGwDYNe0JDQ3F3LlzTXMfds3IfSpd8+uvv1baWRaI3q5ZrVo1pV1CjLZu3Yrbt28DiNmueeHCBezfvx9A+E4YX331lXLWka756tUrLF++HED4eNupUyel3dWA6O2a9evXV9oJxmjt2rV49OgRgJjtmsePH8eJEycAxGzXfPjwIdatWwcgal1z8eLFprkPu2bk2DXZNSPzqXTN5s2bK+10aBRdXbNChQooXry4cnb37t24cuUKgJjtmtevX8eOHTsAhO8C1qZNG+WsI13z/fv3WLhwoWm8bdeundLuakD0ds0aNWoo7cpktGXLFty9exdAzHbNc+fO4eDBgwCc2zX1XGcPCgrCvHnzTHMfds3IRWfX7NSpk/Lch11TX9c8ffo0jhw5AiBmu+bTp0+xevVqADHfNefNm4fAwEAAQKNGjXStT4murlmyZEmUK1dOOXvo0CGcPXsWQMx2zXv37mHz5s0Awncu/+abb5Sz7Jr6uiZ9Gh48eGDeh7KIyANHf08uHFTAhYNERERERERERERERERERERERETkDB9j4aDaIyhERERERERERERERERERERERERE9FngwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopD4jn7CyD62G7cuIEJEyYAAFxcXDBx4kQkS5ZMKfvq1SsMGjQIIgIA+PHHH5E9e3albHBwMPr164eAgAAAQNeuXVG6dGnlr3v48OF4/PgxAKBx48aoX7++cnbatGm4ePEiAKBSpUpo166dcnb58uXYs2cPACB//vzo27evcnb79u1YvXo1ACBt2rQYO3ascvb06dOYOXMmAMDd3R2//fYb4sePr5T18fHBzz//DAAwGAwYM2YM0qZNq5T19/dH//79ERoaCgDo168f8uXLp5QNCwvDgAED4OfnBwBo164dKlWqpJQFgNGjR+PevXsAgPr166Nx48bK2VmzZuHkyZMAgNKlS6Nr167K2bVr12Lr1q0AgBw5cmDo0KHK2f3792PJkiUAgOTJk2PixIkwGAxK2cuXL2PKlCkAgHjx4mHSpElInDixUvbp06cYNmyY6VwcMWIEPDw8lLKBgYHo27cvgoKCAAA9e/ZEsWLFlLIAMHjwYLx48QIA0KJFC9SsWVM5O2nSJFy7dg0AUL16dbRq1Uo5u2jRIhw8eBAAUKRIEfTq1Us5u2XLFqxfvx4AkClTJowaNUo5e+zYMcydOxcAkChRIkyePBnx4qlNF27duoVx48YBCB9vx48fjxQpUihlX79+jUGDBiEsLAwAMGjQIOTOnVspGxISgv79++Pdu3cAgE6dOqFcuXJKWSD8v6eHDx8CABo1agQvLy/l7B9//IFz584BACpUqICOHTsqZ1euXIldu3YBAPLmzYsBAwYoZ3ft2oWVK1cCAFKnTm36vqs4d+4c/vjjDwBA/PjxMXnyZCRIkEAp6+vri5EjRwIIH29/+eUXpE+fXin7/v179OvXDyEhIQCAPn36oGDBgkpZEcHAgQPx+vVrAEDbtm1RpUoVpSwA/Prrr7h9+zYAoE6dOvjqq6+Us3PmzMHx48cBACVLlkT37t2Vs+vXr8eWLVsAAFmzZsXw4cOVs4cOHcLChQsBAEmTJsWkSZPg4qL2zM+1a9cwadIkAICrqysmTpyIpEmTKmWfP3+OoUOHmsbbYcOGIVu2bErZoKAg9OvXDx8+fAAAdO/eHSVLllTKAuHzrKdPnwIAvvrqK9SpU0c5O2XKFFy+fBkAULVqVbRp00Y5u2TJEuzfvx8AULBgQfTp00c5u23bNqxZswYAkD59eowePVo5e/LkScyaNQsAkCBBAvz2229wc3NTyt69exdjxowBEH4u/vrrr0idOrVS1s/PDwMHDjTNfQYMGIC8efMqZUNDQ9G/f3/4+/sDADp06ICKFSsqZQHgl19+wf379wEAXl5eaNSokXJ25syZOH36NACgXLly6NSpk3J29erV2L59OwAgV65cGDx4sHJ2z549WL58OQAgZcqUGD9+vPLc5+LFi5g2bRoAwM3NDZMmTUKiRImUso8ePcKIESMgIjAYDBg1ahQyZsyolA0ICEC/fv0QHBwMAOjVqxeKFCmilBURDB48GC9fvgQAtGrVCtWrV1fKAsCECRNw48YNAECtWrXQvHlz5ez8+fNx5MgRAECxYsXQs2dP5ezGjRuxadMmAICHhwdGjBihnD1y5Ajmz58PAEicODEmT54MV1dXpezNmzcxfvx4AI53zaFDhyJHjhxKWcuu2aVLF5QpU0YpCzjWNX///XdcuHABQOzpmmfOnMGff/4JwLlds2/fvsifP79S1tGuOWbMGNy9excAUK9ePTRp0kQ5y64Zc11zyJAheP78OQCgefPmqFWrlnJ28uTJuHr1KgDndc2MGTOazg8VjnTN27dv49dffwUQPt6OGzcOKVOmVMo6s2uOHDkSvr6+AGK2a/7999/YuXMngNjTNR8+fIiRI0ea5j7O6ppt2rRB1apVlbKAY11z7ty5OHbsGACgRIkS+Pbbb5Wz7JrO6ZpVqlRB27ZtlbNLly7Fvn37ADi3a06ePFl57uNI13z79i0GDBhgmvv0798fnp6eStm42DX37t2LZcuWAQBSpEiBCRMmxEjXfPz4MX766SfTeDty5EhkypRJKRsXu+amTZuwceNGAEDmzJlN10VVRGfXnDBhApInT66UffXqFQYPHmya+8Rk1/zpp5/w6NEjAM7rmvny5UO/fv2Us9HZNSdPngx3d3el7KfSNb/++mtUrlxZKQs41jVnz56NEydOAHBe10yWLBkmTpyoPPe5cuUKfvvtNwAx3zX79euHwMBAAECPHj1QvHhxpSwQ97rm8ePHMWfOHABAwoQJ8dtvv8VI13zz5g0GDhwYpa4ZGhqKfv36RUvXbNiwIby9vZWzM2bMwNmzZwHo75r0GRMRfux8AHgAEADi4+MjFLvUr19fjMcPgPTr1085+91332myTZo0Uc5OnjxZky1RooSEhoYqZdetW6fJZsqUSfz9/ZWyp0+fFhcXF1M2UaJEyv/dPnz4UJIkSWLKGgwGOX78uFL2/fv3kjVrVs3XvWrVKqVsWFiYlC1bVpMdN26cUlZEpEWLFppst27dlLODBw/WZGvXrq2cnT17tiabL18+CQ4OVsru2LFDk02TJo28fPlSKXv16lVxc3MzZePHjy/Xr19Xyr548UJSpUql+bP37NmjlA0KCpK8efNqsvPmzVPKiohUr15dk/3xxx+Vs506ddJkW7durZwdM2aMJlu+fHnl7IoVKzTZ7NmzS0BAgFL2yJEjYjAYTNmkSZPK48ePlbL37t2ThAkTmrKurq5y7tw5payfn59kyJBB83Vv3LhRKRsaGirFihXTZKdOnaqUFRFp2LChJtu7d2/lbJ8+fTRZb29v5ezvv/+uyRYtWlR5vN20aZMmmyFDBvHz81PKnj9/XlxdXU3ZBAkSyN27d5Wyjx8/lmTJkmnG28OHDytlAwICJEeOHJqve9myZUpZEZGKFStqsqNHj1bOtmnTRpP95ptvlLPDhw/XZKtXr66cnT9/viabJ08eCQoKUsru3btXk02ZMqU8f/5cKXvjxg2JHz++Kevm5iZXrlxRyr569UrSpEmj+bO3b9+ulA0ODpYCBQposrNmzVLKiojUrl1bkx00aJBytnv37pps8+bNlbPjx4/XZMuUKSNhYWFK2dWrV2uyWbJkkXfv3illT5w4oRlvkyRJIr6+vkpZHx8fSZQokSnr4uIip06dUsr6+/tL5syZNV/32rVrlbJhYWFSsmRJTXbSpElKWRGRpk2barI9evRQzvbv31+TrVevnnL2zz//1GQLFiwoISEhStlt27ZpsunSpZPXr18rZS9duiTx4sUzZd3d3eXWrVtK2WfPnkmKFCk0f/b+/fuVsoGBgZIrVy5NdtGiRUpZEZEqVaposiNGjFDOdujQQZNt166dcnbUqFGabKVKlZSzS5Ys0WRz5colHz58UMoeOHBAk02ePLk8ffpUKXv79m1JkCCBZu5z4cIFpeybN28kXbp0mj/733//VcqGhIRI4cKFNdk//vhDKSsi0qBBA03Wka7ZuHFj5exvv/2mycZU1zxz5oxV17x//75SNrq75t9//62UDQsLk3LlymmyjnTNrl27KmeHDBmiydasWVM560jX3LlzpyabOnVqp3XN3bt3K2WDgoLE09NTk42prtm5c2dNtlWrVsrZ6Oya2bJlU+6aR48ejbau6eLiImfPnlXKvn37VjJmzKj5umOqazZq1EiT/f7775WzP/zwgybraNdUnfts3rxZk42prvnkyRNN1wQghw4dUspGd9f85ZdflLNt27bVZB3pmtWqVVPOLliwQJPNkyePBAYGKmWjs2vGixdPLl++rJSN7q75119/KWVFROrUqaPJOtI1mzVrppydMGGCJlu6dGmndM3EiRMrd80HDx5I4sSJNeOtI11zzZo1StmwsDApVaqUJhtTXXPAgAGabN26dZWz0dk106ZNq9w1L1++7LSumTt3bk124cKFSlmR6O2aX3/9tXL2559/1mQd6Zo5c+ZU7poHDx7UZGOya6ZPn17zZ2/ZskUpG91ds2/fvsrZXr16abIx1TXXr1+vyTqzax47dkwpG91d89dff1XKioi0bNlSk42prjlnzhxNNl++fMrX2R3pmteuXdN0TTc3N7l27ZpSNrq75ty5c5WyIiI1atTQZGOqa44dO1aTLVeunPLcZ+XKlZqso13z0aNHStn79+9Ha9fcsGGDUjY0NFSKFy+uyU6ZMkUpKxK9XdPLy0s5O336dE3Wka6ZPn165a554cIFq655584d5a+bPg0+Pj7m/w14SHSsiYuO3+Rz/4ALB2OtrVu3agZO42RE5cK35Q1KPZORp0+fSvLkya2yKhe+bd2g1DMZqVSpklVWdZFV+/btrbLlypVTylreoNQzGVm8eLFVVnUyYnmDUs9k5NatW+Lu7m6VV7nwbesGJaB24TskJEQKFSpklVVdZGW5GBZQv/BteYPSOBlRKX+Wi2H1TEYsb1DqmYxYLoY1flQWWVmWRuNH5cL3+/fvJUuWLFZZlUVWYWFhUqZMGaus6oVvyxuUgPqFb8vFsID6hW/LG5QAJEWKFPLs2TO7WcvFsED4hW+VRVaWNyiNn//++89u1lZpBNQWWdlaDAuoX/i2vEEJqF/4tlwMC6hf+La8QQlAPDw8lC58W96gBNQvfFsuhjWOtydPnrSbtbxBafyoLLJ6+/at1WJYQO3Ct60blID6hW/LxbCA+iIry8WwQPiFb5Wb/pY3KAH1C9+Wi2GB8AvfN2/etJu1vEFp/Khc+H78+LEkTZrUKquyyCogIECyZ89ulVW98G15gxJQX2RluRgWgHzxxRdKWcsblID6hW/LxbBA+IXvJ0+e2M1a3qAE1C98W96gNH5UFlnZukEJqF34Dg4Olvz581tlVRdZWS6GBdQvfFveoATUL3xbLoYFwi98v3371m7W8gYlAEmYMKHShW/LG5SA+oVvy8Wwxo/KhW9bNygBtUVWthbDAuoXvi1vUAKQGjVqKGUtF8MC6he+LW9QApBUqVIpXfi2vEEJON41d+3aZTdr6wYlEDNds3LlylZZ1QvfH6Nrvn//3m7W8gYlEDNd8/bt2za7psqF74/RNVUvfFveoAQc65pFihRRuvBteYMSiJmuaXmD0vhRWWT1MbqmyiIrWw9eAo51zapVqyplLW9QAjHTNS1vUALqi6wsb1AaP450TZVFVs7smpY3KAFIqVKlnNY1Hzx4YDdreYPSON460jVVFlnZukEJxEzXtLxBCagvsrK8QQk41jXTpEkjr169spu1vEEJON419+3bZzdrazEsoLbI6mN0TdVFVpaLYQHHumaOHDmUuqblYljAuV1TZZHVx+iaqousLBfDAo51zeLFiyt1TcvFsAAkY8aMTuuaR48etZu1XAxr/DjSNVUWWdlaDAvETNe0XAwLQDw9PZ3WNVUWWVkuhjV+HOmaKousbC2GBWKma1ouhgXUF1lZLoYFHOuaSZIkUeqalothAed2TZVFVh+ja6ousrJcDAs43jXfvHljN2u5GBZwbtdcunSp3aytxbCAY12zY8eOdrMi1othAce6Zu7cuZW6puViWCBuds2BAwfazYpYL4YF9D3QQ5+Gj7FwUG0fVqJYytbrMFxdXZW25o8fP77NrYpVXrERL148m1vgqmRdXFxsfn2qr/aw9c85Kxs/fnylrddtZePFi6f0ur4ECRJYbeHv4uKitB14RF+fyr+zq6trlI+xwWD4pI6xu7u70msQbGXd3NyifIz1nItRPcbx4sVz6BhH9TgZDIbP5lx0c3NTPhctOTreJkyY0G72cxtvo3ouxsR4a2usMBgMSudiRGOF6rlo6+tTPRdtfX3OPBdVXoMQ0bmosr1+dJ+LEY1nlhw5Fx0ZbwF8csfYGediROOZJTc3N6fNbz+l4+Tu7u6Uc1HPMbZ1Lsa18VZlHhBRNjaOtxH9npY+t7lPVLOO9BBHu6bqeOuMrvm5jbcx0TWjOt46s2t+Ssc4JrqmrX9fR+c+MdE1P6Xj5KyuGdHcwhK7puPZ2Dj3YdfUl3XkGMdE13TkOvvnNN466zo7u2bE4lrXdOZ1n0+pazrzXFQ5xo5e23PGufgpjref8rnoSNeM6OuLi13TkbmP6rloidfZKc6KjtWHn/sH3HEwVmvSpEmUnnARsd69Qs/rUWfMmKHJVqhQQTlr+USRnm2EL168qHmiSM8rayyfKHJ1dVXeRtjWE0Wqr6wRsX6iSM8rayx3r9DzetSRI0dqsnpeWWO5U6Ke16Na7l6h55U1lk8UJdDxyhrLJ4oMBoMcOXJEKWvriSI9r6yx3ClRzytrevbsqcnqeWWN5U6Jel5ZY7l7Rd68eZW3bbfcKVHPK2ssnyhS3blPxPbuFTt27FDK2nqiSM8ra5o3b67J6nlljeVOiXqecLHcvULP61EtnyjS88oay50S9byyxvKJIj2vrLH1RJHqK2tErHev0PPKGsudEvW8ssZy9wo9r0ddvny5JluoUCHlbdstd0rU88qau3fvanav0PPKGlu7V6i+ssbW7hV6Xo9quVOinlfWWO6UqOf1qNOmTdNk9byyxnKnRD2vrLHcvULPK2ssXxvu6uoqFy9eVMraepXb1q1blbIi1rtX6HlljeVOiXpeWTNs2DBNVs8rayx3StTzyhrL3Sv0vLLGcvcKPa+ssdy9Qs/rUW3tXqH6yhoR690r9LyyxnL3Cj2vrLHcKbFWrVrKWcvdK/Lnz6/8elTL3Sv0vLLGcvcK1Z37RGzvXqH6yhpbu1foeWWN5e4VjnRNPa+ssdy9Qs/rUR3pmpY7Jep5ZU10d03VV9aIWL/KzZGuqeeVNZY7Jep5ZY0jXdNy9wo9r6yJzq4JqO0SL2L7VW4x1TUtd0pU3U1BJHq7pp7Xo1ruXhGTXdNy9wrV16M62jUtd0pU3U1BxHr3Cke6pp7Xo+7atUuTjQtd03L3iokTJypnLXdKjKmuablTop7XozrSNS13SlTduU8k+rumntejWu6U6EjX1PN6VMudElV37hOJ/q6psnOfiPVOiY52TdXXo4qIfPHFF5psTHVNy50Sv/zyS+VsdHdNlZ37RERu3rwZrV1T9fWotl4bvnLlSqWsSPR2zS5duihnLXdKdKRr6nk96smTJ53SNd+9eyceHh6ar1tl5z6R6O+aQ4cOVc5a7pToaNdUnfv8999/mqyzuqae16NGd9fU83pUy50SY6prWu6UqLpzn4jjXTOB2WvDE+h4Paqt14Y70jVVdu4zstwpMaa6puVOiao794lY75ToaNdU2blPROTRo0eaNxI52jVVdu4Tsf3a8JkzZyplRaK3a3711VfKWcudEh3pmqq7xItY75Sop2vSp+Nj7Dhof6ktUSz322+/IXv27ADCV2EPGTJEOTt8+HDzBaTo27evcrZbt254+PAhAgICAADt27dXztapUwcTJkzA48ePAQBeXl7Kq70LFiyIv/76C5cvXwYAVKhQAenTp1fKpkmTBgsWLMCBAwcAAJ6enihatKhSNn78+Jg/fz7Wr18PAEibNi28vb2VsgDw559/Yv78+QDCV/j37NlTOTtu3DikTp0aQPgTET/++KNyduDAgXj37h1CQ0MBQNef27ZtW9y+fRt+fn4AgJYtWyo9/QAAX3zxBaZNm4Z79+4BAGrXro2kSZMqZXPkyIF58+bh9OnTAICSJUsiW7ZsStlkyZJh4cKF2Llzp+n3KleunFLW1dUVc+fOxapVqwAAyZMnR+vWrZWyADBt2jTky5cPQPjTFP3791fO/vzzz0iQIIHpXBw4cKBytlevXnj27BmCgoIAAJ06dVLOfvnllxgzZgxevHgBAGjcuLHS05sAULx4cfz555+4fv06AKBy5cqm/07tyZgxIxYsWIAjR44AAAoVKmT63tmTMGFCLFy4EFu2bAEAZMqUCTVr1lTKGgwGzJo1C4sXLwYAJEqUCF26dFHKAsCkSZPg4eEBIHy8HTZsmHL2xx9/REhICMLCwgAAvXv3Vs526tQJPj4+ePfuHQDg66+/VnqiEABq1KiBSZMm4eHDhwCA+vXrI1GiREpZT09PzJ49GxcuXAAAlC1bFpkyZVLKpkqVCgsWLMC+ffsAAHny5EGJEiWUsm5ubpg/fz7Wrl0LAEidOjWaNGmilAWAP/74A3PnzgUQPnZ///33ytmxY8ciefLkAML/e9HzM7Vfv3548+YNQkJCAADdu3dXzrZq1Qo3b97E69evAQDNmzdXevITAMqVK4fp06fj9u3bAMKPufHfwZ5s2bJh3rx5OHnyJIDw8zpnzpxK2SRJkmDBggXYvn07ACBr1qyoVKmSUtbFxQVz5szBihUrAABJkybF119/rZQFgClTpiB37twAwsfuQYMGKWdHjhwJV1dX03jbr18/5WyPHj3w5MkTfPjwAQDQsWNH5ayXlxfGjRuHp0+fAgAaNmyo9AQmABQuXBgzZ87E1atXAYT/jE2bNq1SNn369FiwYAEOHToEAChQoAAKFiyolE2QIAEWLFiAjRs3mn6vunXrKmUBYObMmVi4cKHp99JzTkyYMME0vzMYDBg+fLhydsiQIQgMDDTNfXr16qWc7dChA+7evQt/f38AQOvWrZXnPlWqVMGUKVPg4+MDAKhbty4SJ06slM2dOzfmzJmDc+fOAQBKly6NLFmyKGVTpEiBhQsXYvfu3QCAnDlzonTp0krZePHiYd68efjnn38AAClTpkTz5s2VsgDw+++/Y9asWQDCx+4ffvhBOfvLL78gceLEEBEYDAZd53GfPn3w8uVLBAcHAwC6du2qnP3qq68wevRovHz5EgDQtGlTpSd0AaBUqVKYMWMGbt68CQCoVq0aUqZMqZTNnDkz5s2bh+PHjwMAihQpgjx58ihlEydOjIULF2Lr1q0AAA8PD1SrVk0pa5z7LFu2zPR76Rm7Jk+ebJqHO9o19fz30bVrV/j6+pq6Zrt27ZSzjnTNAgUKYNasWbh06RKA8K6ZIUMGpWx0d82GDRsqZYHwrjlv3jwAMds1BwwYgHfv3pnmPj169FDOOtI1K1asqOmatWrVckrXzJ49O8qXL6+UNXbNv//+G0DMd013d3endM2xY8fi+fPnAMK7psquBgBQrFgxzJw5E9euXQMQs11zwYIFpq6ZMWNG1KpVSynraNecOHEiMmfODEB/1xw6dCiCg4OjpWu2bdtWuWtWr14dkydPhq+vL4CY7ZoLFy7E3r17AcR815wzZw6A8LFbz/fa2DWNc5+Y6potW7bEjRs3TF2zWbNmMdI1s2bNqumaxYoVQ65cuZSy0d019cwjpkyZYvo6Y7Jrfvvtt3j8+LFTuuZff/2FK1euAAjvmunSpVPKpkuXLlq7Zv369ZWyQPjcxxldc/Dgwfjw4YOpa3733XfK2ejsmnXq1EGSJEmUsrly5cLcuXNx9uxZAI53zTJlyihljV1z9erVpt+rRYsWSlnAsa45evToKHfN3r1748WLF9HWNVWvs5csWdIpXTNRokRYsGCBqWtmzpwZ1atXV8pGd9ccOnSoctbYNY1zH0e7purcp3bt2pg4cSIePXoEIGa75sKFC7F//34Azu2aesa9X3/9FalSpQIQs12zTZs2uHXrlqlrtmjRQnnu42jXnDt3rqlrlihRwnTv3h5j19yxYwcAx7pmsmTJ0KZNG6UsEN41PT09AcRs1/zuu+/w7NkzBAYGAtDXNRs1ahStXTNNmjRK2QwZMmD+/PnR1jVr166tlDUYDPjrr79MXTNhwoRO65p67rV98803uH//frR0zXr16il3zbx582LOnDk4f/48AH1dkz5vBuNgRREzGAweAHwAwMfHx7QogoiIiIiIiIiIiIiIiIiIiIiIiOhjevDggfnDLllE5IGjv6faIztERERERERERERERERERERERERE9FngwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQ4oyAgACHsiISpWxgYCDCwsKilA0ODkZISEiUsiKCDx8+RCkLOPb9ctaf6+jX7MgxDg0NjVI2JCQEwcHBUcqKiNO+X87MRvU4OXKMg4KConwuhoWFITAwMEpZIPYep6hy9Fx0ZLx15FyMjeNebDzGQUFBUR5vQ0NDERQUFKUs4NzvlzP+XEfHW2fMfTje6uOs8ZZzn5jLOnO85bmoL8uuGTNZZ/ZjZ3XNqM594up4y675eWdj69wnNo63zhqr2TVjTza2dc24eC5yvNUnNh4nds3PP+vM6+wcb2Mm66xz0ZGuCcTOXs+uqU9sPJ9i47U9Z8596PPDhYMUZxw5cgSFChXCkCFDcPjwYV0TIl9fX3h6eqJ3797YuXOnrglRQEAAChUqhC5dumDjxo14//69ctZgMOCLL75AmzZtsHLlSrx+/VpXtmXLlmjcuDHmz5+PJ0+eKGcBYODAgahTpw6mT5+Ou3fv6spOnz4dlSpVwoQJE3D58mVdPyw3bdqEEiVKYMSIETh58qSuH5YXLlxAvnz5MGDAAOzfv1/XhOj58+fw9PREz549sW3bNl0TotDQUBQvXhwdO3bE2rVr4e/vr5x1cXFBzZo10aJFCyxduhQvXrxQzhoMBnTq1Ane3t6YPXs2Hj58qJwFgFGjRqFGjRqYOnUqbt68qSu7YMEClC9fHmPHjsWFCxd0HeM9e/agaNGi+PHHH3H06FFdx/jWrVvIly8f+vbti927d+uaEPn7+yN//vzo1q0bNm/erHsSWLZsWXz99ddYtWoV3rx5o5wzGAz48ssv0bRpUyxcuBDPnj3T9ef27t0b9erVw59//on79+/ryk6aNAlVqlTBpEmTcO3aNV3Z1atXo3Tp0vj5559x5swZXcf4xIkTKFiwIAYPHoxDhw7pGm8fPnwIT09PfP/999ixY4euczEwMBBFihRB586dsWHDBrx790456+LigipVqqBVq1ZYvnw5Xr16pZw1GAxo27YtGjVqhLlz5+Lx48fKWQAYMmQIatWqhd9//x137tzRlZ05cyYqVqyIcePG4dKlS7qO07///ovixYvjp59+wokTJ3Sdi1euXEG+fPnQv39/7Nu3T9d4++rVK+TLlw89evTA1q1bdZWT0NBQlCxZEh06dMCaNWvw9u1b5ayLiwvq1auH5s2bY/HixXj+/LlyFgC6desGLy8vzJo1C76+vrqyo0ePRrVq1fDbb7/hxo0burJLlixBuXLlMHr0aJw7d07XMT5w4AAKFy6MoUOH4siRI7rOxXv37sHT0xN9+vTBrl27dM193r9/j4IFC6Jr167YtGmTrrkPAFSoUAFt27bF33//rWu8dXFxQdOmTdGkSRMsWLAAT58+1fXn9u3bF3Xr1sWMGTNw7949XdmpU6eicuXKmDBhAq5cuaLrOK1btw6lSpXCqFGjcOrUKV3ZM2fOIH/+/Bg4cCAOHDig61x88uQJPD098d133+G///7TNd4GBwejaNGi+Oabb7Bu3Trdc58aNWqgZcuWWLZsGV6+fKmcNRgM6NChAxo2bIg5c+bg0aNHylkAGD58OGrWrIlp06bh9u3burJz5sxBhQoV8Ouvv+LixYu6jtOOHTtQrFgxDB8+HMePH9c13l6/fh2enp7o168f9u7dq2vu4+fnh/z58+Pbb7/Fli1bdM19RASlS5dGu3btsHr1avj5+SlnXVxc4O3tja+++gqLFi3SPffp2bMn6tevj5kzZ8LHx0dXdty4cahatSomT56M69ev68quWLECZcqUwS+//IKzZ8/qOsafStfUM/eJjq755ZdfYt68ebrnPo50zT/++ANffPEFxo8fH2u65osXL5AvXz5T19Q794lq13R1dUXt2rVjXddcuHAhypUrhzFjxuD8+fMx1jVv376NfPny4YcffojxrlmuXLkod83GjRs7pWtOnjzZKV3z5MmTpq558ODBGO2ahQsXRqdOnbB+/Xrd423VqlWd0jWHDh3qlK65devWWNc1w8LCULJkSbRv3x7//PNPjHbN7t27o0GDBvjrr7/w4MEDXVlHu2bZsmWj1DUPHjwYp7qmwWBAs2bNYl3XXL9+PUqWLImRI0fGaNd8+vSp07pm9erVY13XnDt3rqlr6r3O7kjXvHHjBjw9PdG3b1/s2bMn1nTNhg0bOqVrjh8/3ild8+jRo1Humg8ePEC+fPmc1jVbt26NFStW6J77ONo1a9euHau65sWLF5E/f/4Y75ohISEoUaKEqWvqmfs40jUBoHPnzvD29o7SdXZndc29e/eiSJEicbZr6p37OKtr/vPPPyhdujRGjRqF06dPx1jXfPz4MTw9PdGrVy9s37491nTNr7/+2tQ19c596DMkIvzY+QDwACAAxMfHRyh2WrBggcSPH1+MxzJNmjTSvn17+eeff8TPzy/S7JYtWyRVqlSmbLJkyaRZs2ayaNEiefbsWaTZ48ePS9asWU3ZBAkSSIMGDWTmzJl2/3u6e/euFChQwJR1dXWVqlWryuTJk+X69euRZt+9eydlypQxZQ0Gg5QtW1Z++eUXOXv2rISFhUWab9SokSkLQAoVKiRDhgyRw4cPS0hISKTZPn36aLI5c+aU3r17y86dOyUwMDDS7NSpU8VgMJiyGTNmlC5dusjGjRvl3bt3kWZXrFghiRMnNmVTpUolbdq0kZUrV8rr168jze7atUvSpUtnyiZOnFgaN24s8+fPlydPnkSavXDhguTMmdOUjR8/vtSpU0f++OMPuXv3bqTZx48fS5EiRUxZFxcXqVSpkkyYMEEuX74c6XEKCwuTChUqaL7XJUuWlBEjRsjJkyftHuO2bdtqsvny5ZMBAwbI/v37JTg4ONLs8OHDNdls2bJJz549Zdu2bfLhw4dIs7Nnz5Z48eKZsunSpZOOHTvK2rVr5e3bt5Fm161bJ8mTJzdlkydPLi1atJClS5fKixcvIs0eOnRIMmfObMomTJhQvL29Zfbs2fLw4cNIs9evXxdPT09TNl68eFKjRg2ZOnWq3Lp1K9Ls69evpWTJkppzsXz58jJ27Fi5cOGC3eNUp04dzfe6aNGiMmzYMDl27JiEhoZGmu3evbsmmydPHunbt6/s3r1bgoKCIs2OHz9ek/Xw8JDu3bvL5s2b5f3795FmFy9eLO7u7prxtl27drJq1Sp58+ZNpNlt27ZJ6tSpTdmkSZNK06ZNZeHChfL06dNIs6dOnZLs2bObsu7u7lKvXj35888/5f79+5FmfXx8pGDBgprxtkqVKjJp0iS5du1apNnAwEApW7as5vtVunRp+fnnn+XMmTN2j3HTpk012YIFC8rgwYPl0KFDdsfbAQMGaLI5cuSQ77//Xnbs2GF3vJ0+fbpmvM2QIYN07txZNmzYIP7+/pFmV61aJUmSJDFlU6ZMKa1bt5bly5fLy5cvI83u3btXMmTIYMomSpRIGjVqJHPnzpVHjx5Fmr106ZLkzp1bM97Wrl1bfv/9d7lz506k2WfPnkmxYsU0423FihVl3LhxcunSJbvHqXLlyprvdfHixeWnn36SEydO2D0XO3TooMl6enpK//79Zd++fXbH21GjRmmyWbNmlR49esjWrVslICAg0uzcuXPFzc3NlE2bNq106NBB1qxZY3fus3HjRkmZMqVm7tO8eXNZsmSJPH/+PNLs0aNHxcPDQzP38fLyklmzZsmDBw8izd6+fVvy5cunGW+rV68uU6ZMkRs3bkSaffv2rZQqVUoz3pYrV07GjBkj586ds3uMGzRooPleFylSRIYOHSpHjhyxe4x79eqlyebKlUv69Okju3btsjveTpo0SZPNlCmTdO3aVTZt2mR3vF22bJkkTJhQM/dp27at/P3333bnPtu3b5e0adOaskmSJJEmTZrIggUL7M59zp49Kzly5NCMt3Xr1pUZM2bIvXv3Is36+vpK4cKFNeNt5cqVZeLEiXL16tVIs8HBwVK+fHnN96tUqVIyatQoOXXqlN1j3LJlS022QIECMmjQIDlw4IDd8XbIkCGabPbs2aVXr17y33//2Z37zJw5U1xdXU3Z9OnTyzfffCPr1q2zO96uWbNGkiZNasqmSJFCWrZsKcuWLbM73h44cEAyZcqkGW8bNmwoc+bMsTv3uXr1quTNm9eUdXNzk5o1a8q0adPk9u3bkWZfvnwpxYsX15yLFSpUkF9//VUuXrxo9zjVqFFD870uVqyYDB8+XI4fP273XOzcubMmmzdvXunXr5/s3bvX7ng7ZswYTTZLlizy7bffypYtW+yOt87qmidOnLDqmvXr1//oXfP9+/earglAypQpEyNd84cfftBkP4Wu+erVq0izu3btkvTp05uyMdU1nzx5YrNrjh8//pPumj/99JMmG1Ndc/369U7pmjdu3Iiwa968eTPS7MfqmkePHrU73n777beabJ48eeSHH36IUtfMnDmzdOvWTblrJkiQwJRNnTq1fP311x+9a54+fdqhrlmoUCHNeBtTXfOrr77SZGOqa/7xxx/i4uJiyhq75vr16z/Zrnn58mVN13Rzc5NatWrFSNesUqWK5nsdG7rmvHnznNY1s2TJopn7eHl5yV9//RXlrvnbb7/Z7Zr+/v5SunRpzXhbtmxZGT169CfdNSdPnqzJxlTX3LFjh1O65sOHDyPsmleuXIn0OIWEhNjsmiNHjoxy1xw4cKBS1xw6dKgmmz17dvnuu+9ipGsmS5bMlI0tXbNEiRKaczGmumaXLl002ZjqmgsXLrTqmu3atZPVq1fbnfs4q2veu3fPaV3zyy+/1GRjQ9dcuXKlpmumTJnS4a45b948efz4caTZCxcuSK5cuUxZ43X26dOnf9SuKSJSsWJFzfe6RIkS7JoROHz4sFO65ps3b2x2zTFjxsj58+ftHqe6detazX1+/PHHj941J0yYoMnGZNdMkyaNZu4TG7pmuXLlNN8vPV2TnMvHx8f82HlINKyJiweiOOLevXua1eHPnz/HiRMnkCFDBmTJkgVlypSJMPv48WPNE4x+fn6mrIeHB6pVqwaDwWAz++rVK80K7w8fPuDkyZPIkCEDMmbMiIwZM8LV1dVm9v3795onakJDQ3H27FlkzJjR9HUnSJDAZjYsLEzzBKOI4MKFC8iQIQMyZMiAbNmyIUWKFBH+O1s+GXft2jVTNkeOHMiQIYNy9s6dO6bvV44cOZAzZ85Is2L2BMCjR49M2WzZsqFIkSIRZh88eKB5aurly5eaY1yhQoUIs0+fPtU8wfju3TtTNlOmTKhdu3aEx/jNmzeaJ2qCgoJw6tQp0zHOlCkT3NzcbGYDAwM1uzeEhYXh7Nmzpu911qxZkThx4gi/bssnxi9dumTKZs+eHalTp44wa3mcbty4gZMnTyJjxozIkSMHPDw8lLP37983/XedI0cO5M2bN9Kv2fxpnKdPn5qy2bJlQ4kSJSLMPnz4UPPU1Js3bzTnYuXKlSM8Ti9evNA8URMQEKA5F+vXrw8XF9sb8b57907zRE1ISAhOnz5t+l5nzpwZ7u7uNrMhISGaJxhFBOfPn9cc42TJkkX472z5vb5y5YrmGKdLl045e+vWLc25mD17duXsgwcPTNns2bOjYMGCEWYjG2+zZs2KsmXLRpi1HG/fvn1rymbOnBk1atSI8Bi/fv1a8zRxYGCg5lzMmDEj4sWzPfUJCAiwOd4av9dZsmRBwoQJbWYtx1sg/ElB8+PkyHibMWNG5ezdu3c1xzhXrlzK2cePH2vG26JFi0aYtRxvX716pRlvv/jiiwizz58/1zzB+P79e9PYkylTJtSpUyfCc/Ht27ea3RvMx1vjfyMRjbdBQUGaJxjDwsJw/vx508/UrFmzIkmSJBF+3Zbfr8uXL2uOcZo0aZSzN2/e1BynLFmyKGfv37+vORfz5csXYfbu3bua8fbZs2eac7FUqVIRZh8/fqx5gtFy7lOlSpUIz8WXL19qxlvLuU+GDBkinPvYGm/PnDlj+l57eHhEOPcJCQnRPMFoPt6mT58e2bJlQ/LkySP8d45svM2RIwfSp0+vnL1z547m52KOHDkizFr+LH/48KHmGBcqVCjCrI+Pj+ZJ5JcvX5r+3CxZsqB8+fIRZp8+fap5gtHf318z3tasWVN57mM+3hrnThGNtx8+fNDMfWyNt4kSJbKZFRGr75fleJsqVaoI/50tj9P169c152LmzJmVs/fu3dNk8+TJE2H2zp07mvntkydPTONetmzZULx48Qizvr6+mvH29evXmnOxUqVKER6n58+fa85F43hrPEbp06ePcLz19/fXnIvBwcFWc5/48ePbzAYFBWl2y7E190maNGmE/872xtu0adMqZy3nPlmzZlXO+vj4aM7FAgUKRJj9WF0zc+bMqF69uq6ueerUKdO8R2/XNB9vI+uaoaGhNuc+xjH+U+6a5mKqaz579kwz94murpk+ffpIu6bleGveNTNmzBjjXdP8OMVk1zQ/xp9i17Qcby27poeHh1O6Zo4cOXR3TfPrCXq6pq+vr+n7Za9r3r9/XzP3efHihenP/Zhd89WrV1Humh8+fNDs3hCdXTNbtmxImTJlhP/OH6trZs+eHblz5440az73seyaxYoVizD7MbqmcbzV0zWNcx/jzza9XfPcuXOac/FT7JqW4/yn0DUzZ86MqlWrRnoumu+SbN41M2XK9FG7pr3r7DHZNc2PcWRd0zLraNc0PxdjW9dMnz49smbNGqWumTFjxih1TfP5i96uaf4zNSpd0/jfZWRd8+HDh5odkWJD1wwODrY79/kcu6b5ePv8+XPT9zpr1qx2u2Zk421Uuqb53CemumZsuK9pOX7o7ZrmO9BZzn0c6Zp16tSJ8Bj7+flZXWc3n/tEtWsa/9uMrGtafq+d1TXNr+1lz54dnp6eEWYt5z7R1TUzZ84c6XX2T7VrZsuWTVfXvHr1qmnsiGrXNB7jmOyaqvc1nzx5Euncx1ld08PDI9K5j+XOrHq6Jn2GomP14ef+AXcc/CxcunRJ3N3dTU8v2dslzNzz588lefLkUqFCBeUnt40CAwMle/bsUqxYMeVdwozCwsKkUqVKpl3C9uzZY3c1vbl27dqZdgnbsmWL3dX05kaOHKnr6SVzixYtkqRJk8pXX32l9PSSuf3794u7u7vy00vm7ty5IwkTJjQ9vWRvNb05Pz8/SZMmjenpJT2r6UNCQqRAgQKmp5dUntw2V69ePdPTSypPbpvr2bOnrl3CzE2ePNn05PaKFSvsPr1kbu3atZI4cWL58ssvlZ5eMnf69Glxd3c3Pb1k78ltc48ePZIkSZLIF198ofz0klFAQIBkzpxZ8/SSnnOxVKlSup5eMte8eXPJmjWr9OzZU+nJbXODBw82Pb2k8uS2uVmzZpmeXlJ5ctvcjh07TE8vzZo1S3x9fZWzV69eFXd3d6lRo4ZMmTLF7tNL5l6+fCkpUqQw7RKm8vSSUXBwsOTKlUvX00vmqlWrJrlz51Z+eslcp06ddD29ZG706NGap5fsPbltbvny5Zqnl+w9uW3u8OHDmqeX7D25be7+/fuSKFEiqVKlitIuYeb8/f0lffr0Urp0aRk1apScPn1a+RiHhoZK4cKFpWDBgjJo0CA5ePCgrvG2YcOGpl3Ctm/frmu87d27t6RPn146deqktFOGuWnTpkmKFCmkVatWSjtlmNu4caOunTLMnT9/Xtzd3U07Zdh7ctvc06dPJWnSpKadMlSe3Db68OGDZM2a1bRThsqT20ZhYWFSvnx5004ZKk9um2vdurVkyZJFevToIf/++6+u8XbYsGG6dgkzN3/+fEmaNKk0a9ZMFi9erGvus2fPHtOO1Co7ZZi7efOmJEiQQKpVq6a0U4a5169fS6pUqXTtlGEUEhIinp6eUrhwYRk6dKjSk9vmatWqpdkpQ8+52K1bN9NOGSpPbpsbP368aacMlSe3za1atUoSJ04sTZo0kfnz5+ua+5w4cULc3d2Vdwkz9+DBA0mcOLFpR2p7O2WYe//+vWTMmFFKliypvFOGUVhYmBQvXlzy58+vvFOGuSZNmki2bNmUd8ow179/f0mXLp1ppwx7T26bmzFjhiRPnty0U4a9J7fNbd26VRImTCgNGzaU2bNn65r7OKtrBgUFSY4cOXTtSG3kaNds3769U7rm4sWLNV3T3pPb5g4cOOC0rpk2bVqndM369evr2iXMnLO65rp16yRRokRxqmuWLl3a1DVVdgkz56yuOXv2bF27hJnbsWOHrh2pzV27dk3c3d1NO1LHZNfMnTt3lLtm9erVndI1x4wZ45SueeTIEVPXVNklzFx0dE3jjtR6u2aRIkVMO1I72jX1zH369OnjlK65adMmTde0t2uNuQsXLjilawYGBpq6puouYUbmXVN1lzBzbdq0Me0SFhe7pr1dwsy9fv1aUqdO7ZSuWbt2bVPXVNklzFz37t117RJmbvz48bp2CTO3evVqzY7UMdU1fX19P5muqedcbNq0abR0TZVdwsz9+eefpq6pskuYOUe65uXLl03X2VV2CTPnzK5ZuXJlp3TNUaNGSerUqZ3eNe3tEmbu7t27pq6pskuYOfOuqXeXsNDQUClYsKAUKlRIeUdqc450ze++++6T6Jp6rrOfOXMm2rqmyo7URgEBAeLh4WHqmio7Uhs52jVbtGhhus6ut2sOGTJE147U5hzpmjt37oy2rqnnOvurV68kZcqUTu+aKjtSm+vcubNkypRJunXrprQjNX06PsaOg05flBcbPlw4+Hm4c+eOrkmiuYcPH+qaJJp7+fKlrkmiuYCAAF2TRHNhYWG6ioClCxcu6Jokmrty5YquSaK5Gzdu6Jokmrt3756uC2TmHj9+rGuSaO7Nmze6LpCZCwoK0jVJNGc8xnomEOYuXryoa5Jo7urVq7omieZu3bqla5Jo7sGDB7omieaeP3+ua5Jozt/fX9ck0VxoaKjD52JUj/Hly5d1TRLNXb9+XdcFMnN3797VdUPC3KNHj3TdkDD36tUrXTckzH348EHXBTJzYWFhuoqApYsXLzo03uq5QGbu5s2bui6Qmbt//76uC2Tmnj59quuGhDk/Pz9dizHMhYSE6LohYen8+fNRPhcvXboU5XPx2rVrUR5vb9++HeW5j6+vr64bEuZevHgR5Tnz+/fvdd2QMBcd421Uz8XLly87NPdxZLzVc4HM3KNHj3TdkDD3+vVrXRfIzAUGBupajGEuOsZbR+Y+UR1vb926FeXx1sfHJ8rj7bNnz3TdkDDn7++v64aEuZCQEKfNfRwZb69fvx7lC2RxsWs6ci7Gta755MkTp3TN4OBgdk0dHjx4EOW5jyNd8927d+yaOjiza+pZjGEuMDCQXVMHdk19HO2aUZ37xLWu6czr7LGxaz5+/NgpXTMoKMihrhlb5z6OdM2oXmd3Ztd0ZLx15tzHka4Z1bmPM7umnoX/5pw994nqeHvz5s0od8379+/Hqa4p4tjcx1nj7e3bt9k1dXB07sOuqcaZXZOc62MsHDSIiK2NCMmMwWDwAOADhG8hHdk2t0RERERERERERERERERERERERETR5cGDB8iSJYvxL7OIyANHf0/bLz0nIiIiIiIiIiIiIiIiIiIiIiIios8SFw4SERERERERERERERERERERERERxSFcOEhEREREREREREREREREREREREQUh3DhIBEREREREREREREREREREREREVEcwoWDRERERERERERERERERERERERERHEIFw4SERERERERERERERERERERERERxSFcOEhEREREREREREREREREREREREQUh3DhIBEREREREREREREREREREREREVEcwoWDFGccO3YMmzdvRkBAgO7stWvXsGrVKrx580Z39unTp1i4cCGePn2qO/vhwwfMmjUL9+/f150VEcydOxdXr16FiOjOL1++HKdPn45SduPGjTh48CBCQ0N1Z/fu3Yvt27cjMDBQd/bMmTNYv3493r17pzt7584dLF++HK9evdKdff36NebOnYtHjx7pzgYHB2P27Nm4c+eO7qyIYMGCBbh06VKUjtPq1atx/PhxhIWF6c5u3boVe/fuRUhIiO7soUOH8O+//+LDhw+6s5cuXcI///wDPz8/3VlfX18sXrwYz58/15199+4dZs+ejQcPHujOhoWFYc6cObhx44buLAAsXboU586di9IxXr9+PY4cORKlc3HXrl3YtWsXgoKCdGdPnDiBTZs24f3797qzN27cwMqVK/H69Wvd2efPn2PBggV48uSJ7mxgYCBmzZqFe/fu6c6KCObNm4crV65E6TitXLkSp06dilJ28+bNOHDgQJTOxf379+O///6L0nh77tw5rFu3Dv7+/rqz9+7dw7Jly/DixQvdWT8/P8yZMwcPHz7UnQ0JCcGsWbNw69Yt3VkAWLRoES5cuBCl4/TPP//g2LFjURpv//vvP+zZswfBwcG6s0eOHMGWLVuiNPe5cuUKVq9eHaXx9vHjx1i0aBGePXumOxsQEIDZs2fDx8dHdzYsLAxz587F9evXdWcBYNmyZThz5kyUjvGGDRtw6NChKI23u3fvxo4dO6I03p46dQobNmyI0tzn1q1bWLFiRZTmPi9fvsS8efPw+PFj3dmgoCDMmjULd+/e1Z0VEcyfPx+XL1+O0nFatWoVTp48GaVz8d9//8X+/fujNN4ePHgQW7dujdLc58KFC1i7di3evn2rO+vj44MlS5ZEabz19/fH7Nmz4evrqzsbGhqK2bNn4+bNm7qzALB48WKcP38+Ssd47dq1OHr0aJSO8Y4dO7B79+4ojbfO7JoLFiyIctecPXt2rOuamzZtYtdUZJz73L59W3dWRLBw4UKndM1t27Zh7969UToXDx8+zK6pgyNdc926dTh8+LBTuubGjRud0jXnz58fpa5pnPuwa6pxpGvev38/znXNNWvWOKVrHj16NE51TRHBnDlzcO3aNd1ZwHldc8+ePXGqawYHBzvcNaM693G0a+7bt88pXXPNmjVO6Zpz5sxxStdcsmSJw10zKudidHTNqMx9nNk1nXVfc8WKFU7pmvv27XO4a0Zl7hMbuyYALFy4EBcvXmTXVPDw4cNY2zXPnj0b5fuajnTNnTt3smsqcLRr0mdIRPix8wHgAUAAiI+Pj1Ds9Pz5c0mSJIkkTJhQvLy8ZNasWeLr66uUDQwMlOzZs0u8ePGkevXqMmXKFLl586ZSNiwsTCpVqiQGg0HKlSsnY8aMkfPnz0tYWJhSvl27dgJAihQpIj/++KMcPXpUQkNDlbIjR44UAJI7d2754YcfZPfu3RIUFKSUXbRokQCQzJkzS7du3WTz5s3y/v17pez+/fsFgKROnVq+/vprWbVqlbx+/Vope+fOHYkXL54kSZJEmjZtKgsXLpSnT58qZf38/CRVqlTi7u4u9erVkxkzZsj9+/eVsiEhIVKgQAFxdXWVKlWqyMSJE+Xq1atKWRGRevXqCQApVaqUjBo1Sk6fPq18jHv27CkApECBAjJo0CA5ePCghISEKGUnTZokACRHjhzSq1cv2b59uwQGBipl165dKwAkQ4YM0qlTJ1m/fr34+/srZU+fPi0AJEWKFNKqVStZvny5vHz5Uin76NEjSZAggSRKlEgaNWokc+fOlUePHillAwICJFOmTOLm5ia1atWS33//XW7fvq2UDQsLk1KlSomLi4tUrFhRxo0bJxcvXlQ+Ts2bNxcAUrx4cfnpp5/k+PHjyufi4MGDBYB4enpKv379ZO/evRIcHKyUnTVrlgCQLFmyyLfffiv//vuvBAQEKGV37NghACRt2rTSvn17+eeff8TPz08pe/XqVXFxcZFkyZJJs2bNZPHixfL8+XOl7MuXLyVZsmSSIEECadCggfz111/y4MEDpWxwcLDkypVL4sWLJ9WqVZPffvtNbty4oZQVEalWrZoYDAYpW7asjB49Ws6dO6d8jDt16iQApHDhwjJ06FA5fPiw8rk4evRoASC5cuWSPn36yM6dO5XH2+XLlwsAyZQpk3Tt2lU2btwo7969U8oePnxYAEiqVKmkTZs2snLlSuXx9v79++Lm5iaJEyeWxo0by/z58+XJkydKWX9/f0mbNq3Ejx9f6tSpI3/88Yfcu3dPKRsaGiqFCxcWFxcXqVSpkkyYMEGuXLmifJwaNmwoAKRkyZIycuRIOXXqlHK2d+/eAkDy588vAwcOlAMHDiifi9OmTRMAkj17dvnuu+/kv//+kw8fPihlN27cKAAkffr08s0338i6devk7du3Stnz58+bxtuWLVvKsmXL5MWLF0rZp0+fSqJEiSRhwoTSsGFDmT17tjx8+FAp++HDB8mSJYu4ublJjRo1ZOrUqXLr1i2lbFhYmJQvX14MBoOUL19exo4dKxcuXFA+Tq1btxYAUrRoURk2bJgcO3ZMebwdNmyYAJA8efJI3759Zc+ePcrn4vz58wWAeHh4SPfu3WXLli3K4+2ePXsEgKRJk0batWsnq1evljdv3ihlb968Ka6urpI0aVL56quvZNGiRcpzn9evX0uKFCnE3d1d6tevLzNnzlTuKyEhIZI3b15xdXWVqlWryuTJk+XatWtKWRGRWrVqCQApU6aM/Pzzz3LmzBnlY9ytWzcBIIUKFZLBgwfLoUOHlMfb8ePHCwDJmTOnfP/997Jjxw7luc+qVasEgGTMmFE6d+4sGzZsUB5vT5w4IQAkZcqU0rp1a1mxYoW8evVKKfvgwQNxd3eXxIkTy5dffinz5s2Tx48fK2Xfv38vGTJkkPjx40vt2rVl+vTpcvfuXaVsWFiYFCtWTFxcXOSLL76Q8ePHy+XLl5WPU5MmTQSAlChRQkaMGCEnTpxQPhf79+8vACRfvnwyYMAA2bdvn/J4O2PGDAEgWbNmlR49esjWrVuVx9utW7cKAEmXLp106NBB1qxZozzeXrp0SQwGgyRLlkyaN28uS5YsUZ77ONI1g4KCnNY127dv75SuuXjxYk3X3LRpU5S75t9//x3lrrlgwQJdXTN16tTi7u4udevWlRkzZijPfcy7ZuXKlXV3zfr16zula06ePDnKXXPdunVO65oJEyaMlq45bdo0XV2zdOnSpq7566+/RrlrDh8+PMa65uzZs53SNa9du/bJdM3r168rZUVEqlevrumaZ8+ejVLXHDJkiK6uOWbMGFPX7N27t+zcuVP5XDTvml26dNHVNY8cOfLJdE3VuU9oaKgUKVLEKV2zT58+mq65f/9+3V0zW7Zs8t1338m2bduU5z6bNm3SdM21a9fq7prJkyeXli1bytKlS6PUNb29vXV1zcDAQKd1zTZt2nwyXVN17hOdXVPPdfbXr19LypQpTV3zzz//1HWd3bxrTpo0SVfXrF27tsNds2DBglHumjly5NDdNVevXu2Urunr62vVNVXnPra65p07d5SyYWFhUrx4cU3XvHTpkvJxatq0abR0zf79++vqmn/++adV11Sd+xi7Ztq0aXV3zcuXL8fKrlm5cmVN19Rznd2yax45ckT5GI8aNUrTNXft2hUjXfPAgQNR7pp37941dc0mTZrEWNcMDQ11Wtf87rvvHO6a2bNnN3VN1bmPI13zzJkzmq65bNmyKHfNOXPm6OqamTNndqhrGgwGqVChgu6u2aJFCwEgxYoVi3LXzJs3b4x2zZ07d0Zr13z27JlS9tWrV5I8eXJN11S9zu7Mrtm5c2eHu2bOnDl1d01yLh8fHzGuXwPgIdGxJi46fpPP/cOFg5+HGTNmSNq0ac1PIs3FoJMnT0Y4CK9Zs0ayZs1qlc2fP78MGDAg0otBhw4dknz58llls2XLJj179oz0YtCtW7ekePHiVtl06dJJx44dI70Y5O/vLxUrVrTKJk+eXFq0aGH3YpDxRqH5R/ViUK9evcTNzU2TjRcvntLFoLFjx0ry5Mk1WdWLQfPnz5cMGTJYfd3Gi0GR3Qj7999/JWfOnFZZ48WgyG6EnT59WgoWLGiVNV4MimzRpa+vr5QuXdoqa77oMqKLQcbyZplVvRhkXJRq/jEuurR3MWjQoEGSMGFCTda46NLexaApU6ZIqlSprP7s0qVL270YtGLFCvHw8LDKqlwM2rNnj+TJk8cqq3Ix6PLly1K0aFGrbIYMGaRz586RlpNXr15J+fLlrbLmF4MiKycNGjSwyhovBtm7Eda9e3dxdXXVZM0XXUZ2MWjkyJGSJEkSTdZ4MWjcuHGRXgz666+/JF26dFZft3HRZWQXg9avXy/ZsmWzynp6etq9GHTkyBHJnz+/VVblYtDdu3elZMmSVlnzi0ERlZMPHz7IF198YZVVvRhkvFFo/kmQIIHpYlBkN8J++OEHiR8/vtV4a7wYFNmiy/Hjx0uKFCmsxtty5crZXXS5aNEiyZgxo9XXrXIx6L///pNcuXJZZXPnzi19+vSJ9GLQuXPnpHDhwlZZ46LLyC4GPXnyRMqUKWOVTZUqlbRt29buxaDq1atbZc0vBkV2I6xjx45iMBisxluVi0FDhw6VRIkSWY23xotBkd0I+/333yV16tRWX7fxYlBkN8JWrVolWbJkscoaLwYdOHAgwvF2//794unpaZVVWXR5/fp1KVasmM3xtlOnTrJu3boIx1s/Pz+pUKGCVdZ80WVk422jRo2ssokSJZKGDRvKnDlzIp379OzZU+LFi2c13tasWdPuxaBffvlFkiZNanUuqlwMmjNnjqRPn97q61a5GLRp0ybJkSOHVdZ4MWjPnj0RjrcnTpyQAgUKWGVVLgb5+PhIqVKlrLJp0qSR9u3bR3ojLDg4WCpVqmRzvFW5GGS8UWg53jZo0MDuosv+/fuLu7u71bloXHQZ2cWgSZMmScqUKa3+7DJlysgvv/wS6cWgpUuXSubMma2yhQoVsnsxaOfOnZI7d26rrMrFoIsXL0qRIkWsshkzZrS78OD58+dStmxZm+NtmzZt7N4Iq1OnjlXWfOFBZIsuu3TpIi4uLpqsceGBvUWXw4cPl8SJE2uy5gsPIlt0GVnXHDFixGfXNd+9e+dQ1zTeKDT/mHfNyG6Eff/99x+ta0a26DKyrmlv0eXH6JoqD/g9fPjQoa5ZpUoVq2zSpEmVHvD7VLtmZDfCPmbXjGzR5ZUrVz5a17S36NJW11RddPkxuqbxAb9PsWsePXr0k+ya9hZdGm8Umn+io2vae8DvY3RN4wN+Uemaxgf8PtWuWaNGDavsp941p0+f/lG6pvEBv5jsmuYP+H1uXXP06NEfrWtGtujyY3bNyB7wc6RrhoSE2Oya5g/4RaVrqjzgN2DAAHZNqHXNFy9efLSuae8Bv4/RNVUe8PsYXdP4gN/H6pq3b9/+qF0zsrnPx+yakS26dKRrLliw4KN0TXsP+J05c8YpXVNEPtmuGdmiy6lTp360rhnZosu9e/d+lK5pb9Glo13Ty8vLKhsTXXPUqFFO6ZobNmz4aF0zsuvsjnTNwMBAh7omORcXDnLhIDnA+KS9rU/SpEmlWbNmsmvXLptZ49MPtj7Gm42rV6+2+cPGuKubrY+rq6tUq1ZNZs+ebfMHxtmzZyPMGleeT5w40ebk7c2bNxFmgfALbsOHD4/wB7utiz/GT86cOaVPnz4RXmC0VdCNH2MBvHz5ss2srQU05hOSNm3ayJEjR2xmjU8/2PoYC+C///5rM2vc1c3Wx1gAly1bZvMYG5+0t/Ux3mycMWOGzQn6zZs3Iz1OJUuWlLFjx9qcvIWFhUWazZ8/vwwePDjCixrZs2ePMJs1a1b57rvvIpyAVatWLcKssQCePXvWZtb4pL2tj7EA7tu3z2bWuKubrY+xAK5bt87mcTI+aW/rYyyACxYssDlBNz5pH9G5WL58eZkyZYrNsvzkyZNIj1PRokVl1KhRERYpy4sK5p88efJI//79I5xkFypUKMJs5syZpXv37hFefDI+aW/rkzp1amnXrp2cOHHCZta4q5utj/GC2/bt221mjU/a2/oYn3L++++/bR5j465utj7GC25//fWXzfH24sWLkR6n0qVLy/jx421euHr//n2k2YIFC8qwYcMivIFu60Ks8ZMjRw7p3bt3hIXXVnkzfow3Gy9dumQza9zVzdbHWAAPHTpkM2t80t7WJ1GiRPLll1/K5s2bbWaNT9rb+ri5uUnt2rVl8eLFNkuY8Ul7Wx/jBbfff//dZlm+d+9epMepRIkSMnr06AiLlOXFQfNPvnz5ZODAgRHe0LF1MdX4yZIli/Ts2TPChQ7GXd1sfYwF8MyZMzazxiftbX2MBXD37t02s8Yn7W19jDcb165da/NcNO7qZutjvNk4d+5cm+PtyZMnI8wabzZOnjzZZll+8eJFpMe4SJEiMmLEiAgvIlte4DP/5M6dW/r27RvhBUZbF0SNH+PNxoguPtl6WMP4Md5sPHbsmM2s8Ul7Wx/jzcZt27bZzBp3dbP1iR8/vtStW1dWrFhh8xgbn7S39THebJw5c6bNuc/Vq1cjPU6lSpWScePG2Rxvg4KCIs0WKFBAhg4dGuFFDVsX6Ywf41POEd1ctXUTyfhJnz69dOrUSS5cuGAza3zS3tbH+JTzgQMHbGaNu7rZ+hgvuG3YsMHmcTI+aW/rY7zZuHDhQpvj7cGDByM9FytUqCDTpk2zOffx9fWN9DgVK1ZMfv755wjnPpY3zcw/efPmlQEDBkR4Q8fWjQ3jx8PDQ7799tsIL/Ybn7S39THebDx16pTNrLO6pvFJ+4jOxY/VNf38/CI9xoUKFXK4a0Z07cXWzQnj51PtmsYn7W19zLumrXNRpWv+8ccfNsfbW7duRXqcoqNrRnRDx5GuaethDeMnOrrm3r17bWaNT9rb+nzMrnn06NFIz0Vnds1+/fpFuJjF1gIr4+djdk3jrm62PsbdRKPaNevVqxdh1zTu6mbrY7zZGFHXvHTpUqTH6WN2TVs3oY2fj9k1bS2gMX6io2tu2rTJ5nFypGvu3bs3wqzxZmNUu2bx4sUj7ZqWN0bNP56enh+taxp3dbP1sdc1u3fvHmE2OrrmmjVrbB5j465utj4fs2u+fPky0mNcpEgR+emnn6LUNXPlyvXRuqatBTTGz8fsmsZd3Wx9PmbXvHbtWqTHKbKuGRwcHGk2OrpmRAvLbG0MYPwYF7ZGpWsadxPdv3+/zaxxVzdbH+ObKz61rvnw4cNIj9PH7Jq2FnUYP9HRNU+ePGkza9zVzdbH2DV37txpM6vSNVetWhWlrlm1atUIu+a5c+ciPU5lypT5aF0zTZo0EWY/Zte09bCG8WOvaw4ZMiTCbHR0zaVLl9o8F427utn6REfXHDNmTIQLRCPLfqpd07irm63Px+yaK1asiDAbHV3zt99+sznePn36NNLjVLRoURk5cmSED8dYLt4z/+TOnduhrtmtW7cIHyi09bCG8WNc2Poxuubvv/8eYfZT7ZoBAQGRZu11TXIuLhzkwkFywP379zVPXujZcv7Jkyeam4XGC2QbNmywuwXyq1evpGXLlqasni3n379/rynpxgtkKq83CwkJkSlTppiyerecX7NmjWaSqOf1ZseOHdM8mWPccv7kyZN2t0C+ceOGZnKv8vSTka+vr2ahVNasWaVnz55KW84/e/ZM88SZcZIY2Wp8Iz8/P/nmm29MWT1bzn/48EF++uknq0miypbzYWFhmgWPerec/++//zSTRD2vNzt37pzmqWQ9rze7e/eu5mKKntebPXr0SPMUt55Xab98+VIaN25sNUlUeZW2v7+/9OrVy2qSuHDhQruv2wkKCpJx48ZZTRJVt5w3vwmld8v5AwcOaC5Aly5dWnnL+atXr2p2CNCz5byPj4/mKSjzLeftjbdPnz6VqlWrmrLGxRgqW86/fv1a2rZta8rqeb3Z+/fvZdCgQZrxVvX1ZqGhoZpioPdV2hs2bNCMt3pepX3y5EnNLhB6Xm9269YtzaJF49NPKlvOP3z4UPOkvp4t558/f67Z3cR4gUxly/m3b99K165dTVnjBTKVLecDAwM1F0X1vt5s3rx5mvFWz6u0d+7cadoFQu+rtC9cuKC5qWu+04a9c/HevXuaJ93MX6Vt71x8/PixZkcFlSe/jV69eiXNmjUzZY03JFauXGl37vPu3TtNSVfdZUwk/EL/xIkTNXMfPa83M1/wqPf1ZocPH9bsAqHn9WbXr1/XPLFq/ipte8f4wYMHmovXxtebqbxK+9mzZ1KzZk3N3Ef1Vdpv3rzR3KDQ83qzgIAAGTp0qGbuY9xpQ2XuY34TynhDQvX1Zv/++69m7qPn9WanT5+WBAkSmPJ6Xm92584dzc45el5v9ujRI82To3peb/bixQvN4gzjYgyV15u9fftWevTooRlvVV+lHRQUpLkoav4qbZXXm5nfhNL7erO9e/dqFnobd9pQeb3Z5cuXJVmyZKasnldpO6trvn79Wlq1auX0rmlcjKHaNc0frouurqnyejNndc3nz59L3bp1TVmVJ7+N/Pz8NIvhHOmaqruMicTNrvn48WPNDjaZMmVSfr3Zy5cvNQ8CREfXtLfLmMin1TX1vN7Mka754MEDyZs3r82uaW/u8/TpU81DkDHVNQMCAjSLj81fb2bv1a6hoaEyffr0KHdN84fr9L5K++TJk5oFFo50TT2vN3Nm1zR/8Epv1/z555+j3DXNFzwaF/6rvt5s165dUe6aFy9e1NzUNXZNldeb3b9/X3PjXs/rzaKzaxoXY6h2zR9++CHKXXPSpEmfTddUmft8jK6p8irtN2/eSIcOHaLcNX/88UdN11TZZUzEumuq7jJm5EjXPHPmjENdM1OmTNHSNY0L/1W7pvniDGd3TdVXaUdn11R5e5KRI13Tx8dHs5tubO+a9q6zh4SEyNSpU6O9a6q8StuRrnnz5k3NzpB6XqXt6+urWSiVJUsW5Vdpx8auKaJd8Kj69iQjZ3ZN8x2T9bxKOzq7puqO1iKOdc3g4GDNwx7Ghf+qXdN8waPernnw4EF2TSd1TeOO1irX2cm5PsbCwXggiiOuXLmCjBkzomvXrvD29kb+/PlhMBiUsi9evMD79+/x008/wdvbGyVKlICLi4tSNiQkBDdv3kT//v3h7e2NChUqIF48tVPP1dUVx48fR48ePeDl5YVq1aohQYIESlkXFxccOHAAHTp0gLe3N2rVqoWkSZMqZQFg7969aN68Oby8vFCvXj2kSZNGObtnzx7UqVMHXl5e8PLyQubMmZWzJ06cQOHCheHt7Q1vb2/kzp1bOXv37l0kTpwYo0ePhre3NwoXLqx8jP39/fHs2TMMHToU3t7eKFOmjPIxBoBLly6hT58+8Pb2RqVKleDm5qaUixcvHg4fPmz677J69epIlCiRUtZgMODAgQNo27YtvL29UadOHSRPnlz5a969ezeaNGkCLy8vNGjQAOnSpVPO7t+/H5UrV4a3tzcaNGiAbNmyKWfPnTuHnDlz4vvvv4e3tzc8PT2Vj9Pjx48hIhg5ciS8vb1RvHhx5WxgYCDu37+PgQMHwtvbG+XLl4erq6tS1tXVFadOncJ3330Hb29vVKlSBe7u7krZePHi4eDBg/jmm2/g7e2NmjVrIkmSJEpZIPxcbNmyJby9vVG3bl2kSpVKObt79240aNDAdJwyZsyonD1y5AhKlSoFb29veHl5IWfOnMrZa9euIW3atKZ/5wIFCigfp1evXuHt27cYPnw4vLy8UKpUKeVzMTQ0FNeuXUO/fv3g5eWFihUrKp+Lbm5uOHbsGLp37w5vb29Uq1YNCRMmVMq6uLjg4MGDaNeuHby9vVG7dm0kS5ZMKQuEj5lfffUVvL29Ub9+fV3j7d69e1GzZk3TcfLw8FDOnjx5Evnz5zedE3ny5FHO3r9/H/Hjx8cvv/wCb29vFClSRPkYv3//Ho8fP8aQIUPg5eWFsmXLKp+LBoMB58+fR+/evU3jbfz48ZWyxvG2S5cu8PLyQs2aNZXHWyB83GvTpg28vLxQt25dpEiRQjm7Z88eNGrUyHQupk+fXjl78OBBfPHFF6afqdmzZ1fOXrx4EVmyZEGPHj3g7e2NfPnyKR+nZ8+eISgoCCNGjDCNt6rnYlBQEG7fvo0BAwaYxls9c5+TJ0+iZ8+epvFWde7j6uqKgwcPomPHjqa5j97xtkWLFqbxNnXq1Lqy9erVMx2nTJkyKWePHj2K4sWLw8vLC97e3siVK5dy9tatW0iePDnGjBkDb29vFCpUSPkYv3nzBq9evcKPP/4Ib29vlC5dWvkYiwguX76MH374Ad7e3vjiiy90zX2OHj2Kbt26meY+quOtce7z9ddfm8ZbvXOfpk2bwtvbG/Xq1dM996lWrZppvM2SJYty9syZM8ibN6/p55Onp6dy1tfXF66urvj555/h5eWFYsWKKR/jgIAA+Pr6YtCgQfD29ka5cuV0zX3OnDmDXr16mc5FPePtwYMH0alTJ9PcJ3HixEpZANi3bx9atWplOhdTpkypnN29e7epRzRo0AAZMmRQzh46dAhly5Y1HeMcOXIoZz+Frmmc+8Rk12zfvr3pXNTTNffs2RPlrrl3717Url3bdJxiQ9d8+/atpmuWLl1a+VwEwn+eR7VrHjlyJNZ1zQMHDqBSpUqmYxyTXTM0NDTKXfPevXtR7pqnT5+OdV1zz549pq5Zv359XXMfR7tmmjRpTNe6ChYsqKtr+vn5RalrhoWF4dq1a+jbty+8vb11dU3j3CeqXfPAgQNO65o1atSIUtc8deqUqWt6eXkhb968yllnds1z586Zxo/KlSvrmvscOnTIoa7ZunVr07mop2vu3r3boa5ZoUIF0zHW2zU9PDzw7bffxmjXDA4Oxp07d6LcNU+cOOFw1/Ty8orSdXZndM1jx46hWLFiprlPbOmaly5dilLXdHNzw5EjR6LcNQ8ePOjUrmk8xlmzZlXOnjlzBnny5EHfvn2j1DVdXFwwatQoeHt76+6aDx48cErXPHTokFO65p49e5zWNTNkyGD6GaPnOruzuma8ePFw/Phx088IvV1z//79DnXNZs2amc7FmOyahQoVinLXTJQokVO7ppeXl+7r7FHtmgBMXdPLywt16tTRPfdxRtc8f/48smfPbhq7PveuaZz7ONo1jdd9onpfU2/XPHr0KEqVKmW6zh5TXfP169fw8/PDsGHD4O3tHSe6Jn1+DBK+ox5FwmAweADwAQAfHx9dF0ro0xEaGqprwvSpZF1cXJR/MJkTEYSFhcXKf+fYmI3qcQoLC4PBYOAxjgVZR44xAF0LUS3/7Nj4/YqNWY63sSPLc/HzzzpyLooIj3EMZaN6nDjexp4sx9vPP8tzMXZk2TU//yzH288/y/E2dmR5Ln7+WXbN2JFl1/z8sxxvP/8sz8XYkXVG1zT+2bHx+xUbsxxvP/+ss8Zbcq4HDx6Yb2yQRUQeOPp7cuGgAi4cJCIiIiIiIiIiIiIiIiIiIiIiImf4GAsHo7ZMmIiIiIiIiIiIiIiIiIiIiIiIiIhiJS4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQiIiIiIiIiIiIiIiIiIiIiIiIKA7hwkEiIiIiIiIiIiIiIiIiIiIiIiKiOIQLB4mIiIiIiIiIiIiIiIiIiIiIiIjiEC4cJCIiIiIiIiIiIiIiIiIiIiIiIopDuHCQ4ox37945lBWRKGUDAgIQGhoapWxwcDCCgoKilBURh/+dY2M2qsfp/fv3CAsLi1L2w4cPCAkJiVI2JCQEHz58iFKWx1gfR87FoKAgBAcHRykbFhaG9+/fRykLxL3j9P79+yhnP3z44NB4GxgYGKUsz0V9HBlvAwMDo3wuhoaGRnm8BWLvcXIk66zxNqpzH463+jhz7sPxVl82No63AQEBUcoCsfc4OZJl14wd2dg43rJr6suya8aOrLO6ZlTPRXZN/dnYOPdh19SXjW1dU0Q43urArhl7srFxvGXX1Jd1VtfkuagvGxvHW8599GXZNWNHNqrHyZFsbO2a9PnhwkGKM06ePIm8efOiX79+2Lt3r64flk+ePEGuXLnw7bff4t9//9VVToKDg1GgQAG0b98e//zzD/z8/JSzLi4uqFSpEpo1a4ZFixbh2bNnylmDwYA2bdqgQYMGmDlzJnx8fJSzADBkyBBUq1YNkydPxvXr13VlZ86cibJly+KXX37B2bNndf2w3LZtGwoVKoQhQ4bg8OHDuiZE165dQ+7cudG7d2/s3LlT18WgN2/eIE+ePOjSpQs2btyoa0IkIihWrBjatGmDlStX4vXr18pZV1dX1KlTB40bN8b8+fPx+PFj5azBYEC3bt1Qp04d/PHHH7h7965yFgBGjx6NSpUqYfz48bh8+bKu47R06VKULFkSI0eOxMmTJ3WVk0OHDiF//vwYMGAA9u/fr2tC5OPjg1y5cqFnz57Ytm2brnISEBCAfPnyoWPHjli7di38/f2VswaDAWXLlkWLFi2wdOlSvHjxQjnr4uKCr776Ct7e3pg9ezYePnyonAWAvn37okaNGpg6dSpu3bqlKzt16lSUL18eY8eOxYULF3Qd4/Xr16No0aIYNmwYjh49qusYnz17Fnnz5kXfvn2xe/duXePts2fPkCtXLnTv3h2bN2/WNd6GhISgUKFCaNeuHVatWoU3b94oZ11dXVGtWjU0bdoUCxcu1D3edujQAfXq1cOff/6J+/fvK2cBYPjw4ahSpQomTZqEa9eu6crOnTsXpUuXxs8//4wzZ87oOsY7d+5EwYIFMXjwYBw6dEjXeHvz5k3kzp0b33//PXbs2KGrnLx9+xZ58uRB586dsX79et3lpGTJkmjdujVWrFiBV69eKedcXFzQoEEDfPnll5g7d66u8RYAevTogdq1a+P333/HnTt3dGXHjRuHihUrYty4cbh06ZKu47RixQoUL14cP/30E06cOKHrXDx27Bg8PT3Rv39/7Nu3T9d4++jRI+TKlQs9evTA1q1bdY23gYGByJ8/Pzp06IA1a9bg7du3ylkXFxdUrFgRzZs3x5IlS/D8+XNd2RYtWsDLywuzZs3CgwcPlLMAMHDgQFSvXh1TpkzBjRs3dGX/+OMPlCtXDqNHj8a5c+d0HePNmzejSJEiGDp0KI4cOaLrXLx06RLy5MmDPn36YNeuXbrmPi9fvkTu3LnRtWtXbNq0SdfcJywsDEWKFEHbtm3x999/6xpvXVxcUKNGDTRp0gQLFizA06dPlbMGgwGdOnVC3bp1MWPGDNy7d085CwCjRo1C5cqVMXHiRFy5ckXXcVq4cCFKlSqFUaNG4fTp07qy+/btQ4ECBTBo0CAcOHBA17l4584d5MqVC7169cJ///2na7x9//498ubNi2+++Qbr1q3TPfcpXbo0WrZsiWXLluHly5fKWRcXFzRq1AgNGzbEnDlz8OjRI+UsAHz//feoWbMmpk2bhtu3b+vKTpo0CRUqVMCvv/6Kixcv6jpO//zzD4oVK4bhw4fj+PHjusZbZ3bNggULon379li9enWMds22bduifv36Ue6aVatWjVLX/Ouvv1CmTJlY3TX1zH0su6aeuY+rqyvq1q3rlK45ZswYh7pmiRIlMGLEiFjbNfXMfQwGA8qVKxfruua0adNMXfP8+fMx1jXPnTuHvHnz4ocffohy1+zWrVuUumbhwoXx9ddfO9w19c59HOmaP/30k1O65q5du6Kla27fvl3X3Mff3x958+Z1qGu2atUKy5cvj9Gu2bNnT9SqVSvGu+bKlSvZNRUZDAa0bNkSXl5e+Ouvv6LcNX/77TfdXXPGjBlR7ppbtmxB4cKFY7xrvnr1yild09XVFTVr1ox1XXPRokUoVaoURo4ciVOnTkWpaw4cOFB317x79y5y5cqF7777jl1TweTJk6Olax47dkzXeHvq1ClT19yzZ0+Uu+aWLVtitGtWqVIFX331VYx3zaFDhzqla/7333+xrmsCQPHixdGmTRvd19nNu+a8efN0z326d++OOnXqYPr06THaNZctWxblrnn48GHky5cvznZNX19f5Szw/11zypQpuHnzpq6sI11zw4YNKFq0KH788ccY7ZovXryIlV2zY8eOUe6a9BkSEX7sfAB4ABAA4uPjIxR7VatWTYzHMkWKFNKyZUtZtmyZvHz50m72m2++MWUTJUokDRs2lDlz5sjDhw/tZkePHm3Kurm5Sc2aNWXatGly+/Ztu9nly5ebsgaDQSpUqCC//vqrXLx4UcLCwiLNHj582JQFIMWKFZPhw4fL8ePHJTQ0NNLs/fv3xc3NzZTNmzev9OvXT/bu3SvBwcGRZv39/SVNmjSmbJYsWeTbb7+VLVu2SEBAQKTZ0NBQKVy4sCmbJk0aad++vfzzzz/i5+cXaVZEpGHDhqZssmTJpFmzZrJo0SJ59uyZ3Wzv3r1N2QQJEkiDBg1k5syZSuf9tGnTTFlXV1epWrWqTJ48Wa5fv243u3HjRs1xKlOmjPzyyy9y9uxZu8f4/PnzmmyhQoVkyJAhcvjwYQkJCYk0++TJE0mUKJEpmzNnTundu7fs3LlTAgMDI81++PBBsmTJYspmzJhRunTpIhs3bpR3795Fmg0LC5Py5cubsqlSpZI2bdrIypUr5dWrV5FmRURat25tyiZOnFgaN24s8+bNk8ePH9vNDhs2zJSNHz++1KlTR/744w+5e/eu3ey8efNMWRcXF6lUqZKMHz9eLl++bPc47dmzR3OcSpYsKSNGjJCTJ0/azd68eVNcXV1N2Xz58smAAQNk//79ds/F169fS4oUKUzZbNmySc+ePWXbtm3y4cOHSLMhISGSN29eUzZdunTSsWNHWbt2rbx9+zbSrIhIrVq1TNnkyZNLixYtZOnSpfLixQu72W7dupmyCRMmFG9vb5k9e7bSeDtu3DhTNl68eFKjRg2ZOnWq3Lx502521apVmvG2fPnyMnbsWLlw4YLd43TixAnNMS5atKgMGzZMjh49ane8ffDggbi7u5uyefLkkR9++EF2794tQUFBkWbfv38vGTJkMGUzZ84s3bp1k82bN8v79+8jzYaFhUmxYsVM2dSpU8vXX38tq1atkjdv3kSaFRFp0qSJKZs0aVJp2rSpLFy4UJ4+fWo3269fP1PW3d1d6tWrJ3/++afc/z/2zjK6iqvr4ztKcAgOCe7u7i5BirQUKFZogeLFgru7OxR3d0hwgrsHjRASQoh7Zj8fumaeM3NHzty5ySXl/NfaH553vf+GZjqH89uzxcdH07tq1SrRedugQQNcuHAhvnr1StN7+vRp0XOqVq0aTp8+HR88eKD5jJ89e4Y2NjaCt0yZMjhu3Di8du2a5nkbHByMGTJkELyFChXCoUOH4vnz5zXP27i4OCxYsKDgzZ07N/br1w+PHDmCkZGRql6O47BevXqCN2vWrNitWzfctWsX1d2nV69eortP+/btcePGjRgQEKDpnTp1qui8bd68OS5fvhzfv3+v6d22bZvovK1Tpw7OnTsXnz17pvmcrly5InrGlSpVwsmTJ+OdO3c038X379+jvb294C1RogSOGjUKL1++rHnehoeHo7Ozs+DNnz8/Dho0CE+fPq1590lMTMTSpUsL3hw5cmDv3r3x4MGDVHef1q1bi+4+P//8M27fvh2Dg4M1vX/99Zfo7uPm5oZr165FPz8/Te+iRYtE523jxo1x8eLF6O3trek9dOiQ6LytUaMGzpw5Ex89eqT5jO/fvy96xuXLl8fx48ejl5eX5jMOCAjAtGnTCt4iRYrg8OHD0cPDQ/O8jYmJwbx58wrevHnz4h9//IHHjx+nOm+rVasmuvv06NED9+7di6GhoapeRMSff/5Z8GbIkAE7duyIW7ZswcDAQE3vuHHjROdty5YtcdWqVfjx40dN77p160Tnbf369XHBggX44sULzed0/vx50XOqWrUqTps2De/du6fpffXqFdra2gre0qVL45gxY/Dq1aua521ISAhmypRJ8BYsWBAHDx6MZ8+e1bz7JCQkYJEiRQRvrly5sG/fvnj48GHN8xbRGGv+/vvvovNWD2vOmjVL8KYka3p5eYmesSVY8+LFi1SsmSNHDsFrlDV79uyJ+/fvp7r7GGHN4cOHi87b1q1bpwhrHj9+XPScUoo1g4KCUiVrdu/eXfAaZc3mzZvjihUrqFhz8+bNoruPEdasXLlyirFm1qxZBW9Ksmbz5s0Fr6VY09/fX9M7b9480d3HKGvOmjULHz9+nKys6e/vbzXWrFSpkuA1wpoZMmTQxZqjRo0S3X30sObq1atF521Ksebz588typpDhgzBc+fOaZ638fHxFmPNLFmy4K+//poirDlt2jTR3adZs2YpwppXr14VPeOUZM1s2bIJXj2smZSUJMuatHl2I6w5ePBg0d3HCGs2atSImjUPHz4sOm+NsGa5cuVSjDXz5csneFOSNX/55RfReWsuazo6OmLLli1x5cqVVKy5fv160XlrlDWnTp2a7Kz57ds3zJw5s+BNSdZs3Lix6LxNDay5e/du0bvIsyZNnl2ONSdOnIi3bt2iYk1HR0fBa4Q1XVxccMCAAdSsWb58ecFrhDUzZsyInTt3ThHWXL58uehdTCnWfPLkichrCdakzbMbYc3atWsL3qxZs2L37t1x9+7dyc6akyZNEp23Rlizbt26/3nWLFGihOC1BGvS3n0GDBggeC3BmkuWLKFizf3794vOWz2seffuXdEzLl++PE6YMIGKNZmsK19fX/LZuaAlauIs8Q/5rwewwsH/hGbPno158uQRHYDkhUgtGbRt2zYsUKCArBfg/8mg+/fvmxzCHh4eooSoNNSSQS9fvsSyZcsqetWSQREREVihQgURCJGRO3du/P333xWTQQ0aNBDBLhlayaBu3bqJIIoMrWTQ6NGjRZdzMrSSQcuWLUMXFxdZr1Yy6MCBA1i4cGHF37VaMsjLywtLliyp6FVLBvn4+IiAQhqurq44aNAgPHXqlAmccByHFSpUEH10I0MrGdSqVStMnz69rJf/ELZt2zbZC1G/fv1EFzcytJJBU6dOFSWfydBKBm3YsAHz588v69VKBp06dQqLFi2q+LtWSwY9evRIlGiThloy6OvXr1ihQgVREpgMrWRQzZo1RYl+MrSSQZ06dcKMGTPKerWSQcOGDRMVAJOhlQyaP3++qLhC+i7Wq1cP58+fL5sM2rlzpyhxLQ21ZNClS5dUz9tSpUopJoPevHkj+pAsDbVkUExMDFaoUEEEQmRoJYMaN26set7yySC5D2E9e/YUFYdKz1u1ZNC4ceMwZ86ciuctnwx6+/atiXflypWK561WMujIkSOiZJk01JJBd+7cwVKlSil61ZJBnz59Uj1vtZJBlSpVUjxvtZJBbdu2FX3MIUMrGfTnn3+KCtKk561aMmjGjBmK561WMmjLli2qdx+1ZNDZs2exWLFiil61ZNCzZ8+wTJkyil61ZFBoaKjq3SdPnjzYr18/PHr0qGwyqG7duujk5CTr1UoG/fLLL6JiJTLSp0+PHTp0UEwGjRw5UvW8VUsGLV68WPSBQXreqiWD9uzZg4UKFVL8XZPJIOm7eO3aNVESRhpqyaD379+rnrf58+dXTAbFx8djhQoVRB/dyNBKBjVv3lyUXCRDKxnUp08fxbuPVjJo0qRJmCtXLlmvVjJozZo1oqSm9LytWbOmYjLo+PHjquetWjLowYMHqnefokWLKhYeBAYGqp63WoUH1apVEyX6ydAqPOjQoYPq3Uet8OCvv/4SfZQlQ6vwgIY1FyxYgC9fvjTxbtu2TfXuo8aanp6emqw5duxYi7NmZGQkY03JeWsJ1pQruqRhTaUGP19f32RlTbUGPyOs2b9/f1XWbNOmTapmTem7+PjxY9W7jyVYU+lDmBHW7Ny5s+Ldh2fNzZs3m8WafINfSrNmlSpVFFnz8uXLqnef75U1mzRponj3McKaadOmxXbt2ik2+Lm7uycrayo1+CUnaxYrVgxHjhyJFy9eNHkXjbJm5cqVFe8+ycmaAwYMMJs1Z86cScWacnl2I6x57tw5Kta8fv26Wayp1OAXFhaWrKzZrVu3ZGHNv//+W/Huk5ysuXfv3mRnTbk8+4cPH1TfRTXWTEhIoGLNgwcPWpw1+/btq8qabm5uuG7dOrNYs3HjxoqsuXbt2lTHmkFBQVZjzZ9++ilZWXPVqlWyrDlnzpxkY02+wc/SrPnq1SursWbDhg2twppjxowxmzWXL19OxZpyDX5GWPPmzZvJypoDBw6UZU1ETJWsOW3aNKuw5unTp5OdNS9cuGBx1qxVq5Yqa/INfpZmzeHDh1uFNXft2pUirCl9F42wZmxsLDVr0hRdMqWsWOEgKxxkMiByoopauLq64rJly0SHL9nlphY5cuTASZMmif6SJCeqqEWmTJnwr7/+EiXrHj58SOV1cnLC7t27i8AiLCyMymtvb4+tW7fGp0+fin5fSiAjvdDUq1cPr1+/LvJWrVqV6mdXqFABjx49KvpLkpyoohZFihTBTZs2iS67ZJebWuTNmxfnzZsnghJyoopaODs745gxY0QXVmmXm1JkyJAB+/fvL7rMvHnzhsrr6OiInTt3FiVVOY6j8trZ2WGzZs3wwYMHouekdokho2bNmujp6SnykhNV1KJMmTK4f/9+0TMmu9zUomDBgrh69WrRZZec3qkWuXLlwmnTpomghJyoohaZM2fGYcOGiZJ10i43pUibNi327NlTlMgJDAyk8jo4OGC7du1MIF8JgsiwsbHBhg0b4s2bN0VeNUAno3Llynjq1CmRl+xyU4sSJUrg9u3bRc+YnN6pFi4uLrh48WIRlJATVdQie/bsOGHCBNF5K53eqRQZM2bEgQMHihLnT58+pfI6OTlh165dRWARHR1N5bWzs8OWLVvi48ePRb9rpQSfNGrXro2XL18WecmJKmpRvnx5PHz4sOg5kdM71aJw4cK4YcMG0XlLTlRRizx58uCcOXNEUEJ2ualF1qxZcdSoUaJknbTLTSnSp0+Pv//+uyhx/vHjRyqvo6MjdurUySSpqpSwIsPW1habNGmCd+/eFXnV4J6M6tWr4/nz50VecnqnWpQqVQp3794tesbkRBW1yJ8/P65YsUJ09yG73NQiZ86cOGXKFFFClpyoohaZM2fGIUOGiJJ10i43pUibNi326NFDdDf/+vUrldfe3h7btm2Lz58/F/2ulZKDZNjY2GD9+vXxxo0bIi85UUUtKlWqhCdOnBB5yYkqalGsWDHcunWr6F0kJ6qoRb58+XDBggWi85ac3qkW2bJlw3HjxokSBNKJKkqRIUMG/OOPP0SJ85cvX1J506RJgz///LMoqRofH0/ltbOzwxYtWuDDhw9Fv2ulRKw0atWqhZcuXRJ5yYkqalG2bFk8ePCg6F0kJ6qoRaFChXDdunWiuw85vVMtcufOjTNnzhTdfciJKmqRNWtWHDlypChZd+3aNSpvunTpsHfv3qKiAX9/fyqvg4MDdujQwaR4WSmxSIatrS02atQIb9++LfKqJb3JqFq1Kp45c0bkJSeqqEXJkiVx586domdsLdYkJ6qohaVZMzw8nMprlDXr1q2LV69eFXnJiSpq8T2xJjlRRS2Msma/fv1ErPn27VsqrxHWtLW1tThrkhNV1KJMmTK4d+9ei7EmOVFFLSzNmjdv3qTyfm+sqfZxggyjrLlt2zbRMyYnqqiFUdYcP3686GO0dKKKUsix5rNnz6i8adKkwV9++UVUwGOUNZU+bkrD0qxJTlRRi++JNS9dukTlTZ8+Pfbt29eirKn0sY4Mo6xZrVo1PHfunMhLTlRRCznWJCeqqIWlWZOcqKIWlmbNkJAQKu/3xpqdOnWi8hYtWhS3bNliMdYkp3eqhaVZ89WrV1ReOdZMSEig8iYHa9avX5/KW7ZsWTxw4IBZrFmwYEFcs2aN6O5DTu9UCyOsmSVLFhwxYoTFWPPTp09UXp41pcXLRlhTrbicDEuzJjm9Uy2+J9Z89OgRldfJyQm7detmUdZUKhgiIzlYk5zeqRZyrOnu7k7ltTRrXrhwgcpradZERCqvUdasUaMGenh4iLxGWLNfv35U3gIFCuCqVassxprk9E61sDRrBgUFUXmVWFOpsYWM5GDN9u3bU3mNsuaiRYtEdx9yeqdaGGXNAQMGWIw1Y2JiqLxKrMlkXbHCQVY4yGRAhw4dwho1asj+xaQ1sv7SpUuKyRS+ml9phPLjx48VP1CQ1fxyI5T9/f2xf//+sl6tEcoxMTE4fPhw2eQTPzVHbV3PpEmTZJMa/AjlzZs3K45QXrJkiWz3BM1q2G3btsl2qmhV8yMinjx5UvGjrlo1P+K/hWFubm6yXrXOccR/kxJKSdECBQqojqz/8uULDho0SNabM2dO7Nu3r+LUHI7jcOTIkbJdcpkzZ8auXbuqruuZNWuWbBcUzQjlNWvWyCYn+c7xpUuXynaOI/7bdSpXXEqzGvb8+fOKl3t+XY/SyPr79+8rFmeodY4j/tux2qdPH8VLIt85LtfJGB4ejkOHDpXtzMmWLZvmyHp3d3fZSzbZOa60rmfBggWy3cFp0qQROseV1vVs3rxZtvuT7xxXW9dz5MgRxY8M1atXV13Xc+XKFWzZsqWst2zZsjhu3DjZznHEf4v/lCBdazVsQECAYpEVv67n6NGjsp2M8fHxOGLECNmuZK3OccR/i0LkOt3SpUsndI4rretZvny5LCw7ODgIneNK63p27NiBFSpUkD1v+c5xpXU9p0+fxgYNGsj+vvjOcaV1Pbdu3VL8WFiyZEnVdT1v3rzB3377TdbLd44rresJCQlRTLbRrIYdNWqU7IQAmnU9c+bMkS0Q5Se0rlu3TnFdz7p162Q7fMnOcaV1Pfv375dNeml1jiP+21msVLSoNbL+4cOH2LlzZ1mvWuc44r/Ao/TRP2/evPjnn38qTmiNiorCYcOGyRZ58p3jaut6JkyYINs9zneOq63rWbx4seyHAn5Cq9pq2K1bt8oWepPreuQ6xxH/LZiuU6eO7O9LrXMcEfH69euKyevSpUsrdo4jIr548UKx+LhgwYJC57jc3ScwMFDxQ2OuXLlUO8cTExNxxIgRsl3JNOvRpk+fLluwxHeOq63rWblypWwXN9k5rrSuZ/fu3Vi5cmXZ87ZOnTqqq2HPnj2r2LBRqVIl1dWwd+/exQ4dOsh6+Qmtcp3jiIjv3r1T/Ajl4uKi2jkeGhqKQ4YMkfVmz55dtXMcEXHs2LGy0zoyZswodI4rreuZN2+e7DQGsnNciek3btwoW3hoZ2cndI4rreuhYU2ldT2XLl3CFi1ayP6+tFjzyZMniqyptRo2tbLm0qVLZacUpXbWVFrXQ8OaSut6goOD/1OsSbMa1ghrXrhwAZs0aSL7+7IWa+bLl++7Zc2FCxeqsqbaatjkYk2t1bBqrMlvA1FizWfPnmHXrl1lvVqs+fnzZ6uyptxEueRmzZ07d2LFihVlz9vvmTV79uwp6+UntDLW/L8OHDigyZpKeXYjrPno0SNN1lRaDUvLmnJ3HzXWpFkNq8aaWqthFy9eLDsV7ntnzTZt2sh6k5M1g4KCcODAgbJeS7Cm0oRWRGOsuWrVKtnpfVoTWhGVWZPcBqLEmufOnVNkzYoVK36XrBkWFkbFmkp3n9TKmjVr1pR9xjVq1FBdDavFmmqrYVMra06ePFl2YnJys+b27duTlTWVVsMaYc3Xr19jjx49ZL1qE1oRtVlTazXsyJEjZQt5+QmtycmacpOLaVhz3759/0nWVJrQGhERocmaShNaERHHjx8vy5paE1oRk4811TZPIhpjzatXr2KrVq1kvamdNZXy7EzWFSscZIWDTAaUkJAgAJjWGH85NWzYULgkaiXIpOrbt69wSVQb4y8ncsKa2hh/Oe3cuVPwqq2Mk9ONGzdkL4lywCbVx48fBcimuSSSioyMFLqCyEuiUoKMVFJSktCJwF8Slcb4y6lt27aiS6LSGH858RPWaIoxpFq6dKnokqiWIJOKnLCmVYwhFdn5pTXGX6rAwEABsskx/koJMlKxsbFCwou8JColyEhxHCeAstbKODnxiSfykqiUIJNqwoQJJpdEpQSZVJs2bRJdEtUSZFKRE9bIBJncJVEqb29vAbK1EmRShYaGCpBNU4xBKiEhQUg+a43xlxOfQKYpxpDqjz/+EM5btZVxcpo7d67wu1ZbTy4ncsIav55cKUEm1e3btwWv2so4Ofn5+QmQTVOMQSoqKkr4wMB/kFBLkJHiOE74EKQ1xl9OP/30k3Deqo3xl9Pff/8tnLdahf9SkRPW1Mb4y+nUqVOCV21lnJyePXsmQDa5nlwuQSbVly9fBMim+SBBKi4uTvjYlz59etUx/lJxHCckrWgSZFLxH91sbW2xfv36qgkyqcgJa1rFGFL9888/gler8F+qK1euCF6twn+p3r17J0A2X4xBO8Y/PDxc+KDLF2OofZAglZiYKCRD+JVxGzZsoL778AkNmg8SUvET1rRWxslp4cKFwu+a/yChlCCTipzmrZUgk+r+/fuCV6vwX6qAgADhg67WyjipYmJihFUXWivjpOI4TkhMkoX/tFzKJ/q1VsbJaezYscLvi18Zp5Qgk4qc5q22Mk5O5IQ1rQSZVC9fvhQ+6PIfJJRWxkkVEhIirEKhKcYgZZQ1+Q925rAm/wE8pVmTnLCWkqzp4+NjwppqxRikrMmafCGL1so4ORlhTXLCmlYxhlRGWPPx48epkjX5jwTkyjilYgypjLAmOWGtWrVqqsUYUlmLNd+8eWMV1kxMTLQaa/IfZLRWxslJyppqxRhSGWHNO3fuiFhTrRhDKiOsGR0dLUw7pCnGIGWUNfkPq+awJj9hLaVZk5ywptVkLpUR1gwODjZhTbViDFJS1tQqxiBllDX5giOaYgypjLAmOWEtJVnz/fv3hliTL2ajKfwnZZQ1+SY1miZzqYywJjlhTasYQyprsia/WpWm8J+UUdbkC4BpmsylMsKa5DRvo6ypVowhlRHWfPXqlcCaWsUYUlmKNcnC/++dNckJa1qF/1IZYU1yc5RWk7lURlmTL2ajKfwnRbImTeG/VEZYk5+wltKsSU5YS0nWDAoKMps14+LiTFhTrfCflFHW5JsJaQr/pTLCmuQ0b63Cf6mUWJPm7mOUNfkhHSnNmvwAqpRmTXKat17WJKd5axX+M31fYoWDrHCQyYDOnTun2h2qpidPnmh2hyopMDAQu3fvTn1JJBUTE4M9e/bUlSDjxXEc/vXXX6rdoWqaPHmyrgQZqRUrVggJMpq/mEjt379fVzEGqWvXrulKkJHip1jRFmOQ+vbtG3bv3p36kkgqPj4e+/btq+uSyIufArFgwQLqBBmp2bNn60qQkdq4cSOOHTuWOkFG6sSJE7oSZKTu3r2rK0FGys/PD7t3705djEEqMjISe/ToododqqSkpCT8888/dRVjkHJ3d1ftDlXT4sWLdV0SSe3cuRP//vtv6gQZKQ8PD10fJEi9ePECe/XqRZ0gI/Xlyxfs1q0bdYKMVGxsLPbq1UtXMQYvjuNwyJAhuGjRIsXuUDVNmzZNtTtUTWvWrFHtDlXToUOHVLtD1eTl5aXaHaqm9+/fY48ePagTZKTCwsKwR48e1B8kSCUmJuLvv/+uK0FG6u+//9aVICM1b948oRhDr3fLli26EmSkTp8+rdodqqaHDx/qKvwnFRAQgN27d6f+IEEqOjoae/bsqdodqqSkpCQcOHCganeomiZOnIizZ8+mTpCRWrZsma4EGak9e/boSpCRunTpkq4EGalXr14JCTK95+3Xr1+xe/fuqt2hSoqLi8PevXvrKvznxXEcDhs2TLU7VE0zZ87UVfhPav369bo+SJA6evQoDh06lLoYg9Tt27exX79+1AkyUj4+Pti9e3fqBBmpiIgI7N69u64EGa/ExETs37+/rgQZqbFjx+oq/Ce1cOFCXYX/pLZt26Y6iUhNRljz6dOnhlmTthiDlFHWHDRokK5iDFJGWHPlypWpjjXfvn1rFdZMSEgQWJO2GIOXtVlTTzEGKSOsee/ePauwZlRUFP7222+pjjWXLFmiq/CflFHW1FOMQcparBkXF8dYU4esyZrdu3fXVYzByyhrjho1yiqsuXXrVouwpt67j6VYU2+e3QhrchyHAwcO1FWMQcparLl3716rsObr1691FWOQMsKa8fHx2KdPH8OsSVuMQcooa+opxiBllDX1FGOQMsqaPXr0YKxJqfPnz+tqMif1I7LmlClTrMKaBw4cSHWsGRoait27d6duMidlhDUR/504qKfwn5QR1ty0aZPZrHny5EmrsKa/v3+qZU09hf+kjLDmrl27dBX+kzLKmnoK/0lZkzWHDh2qq/Cf6ftRchQO2uC/hXFMKrKxsXEBAF8AAF9fX3BxcbHyn4iJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYnpR5Cfnx+4urry/9MVEf2M/jNtjf4DmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYUo9Y4SATExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMT0w8kVjjIxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExPQDiRUOMjExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTH9QGKFg0xMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMP5BY4SATExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMT0w8kVjjI9MPo4sWLMHfuXHj27Bkgoi7vs2fPYPLkyXDnzh3gOE6XNygoCMaMGQOXL1+GxMREXd7Y2FgYPXo0nDp1CmJjY3V5EREmT54MBw8ehIiICF1eAIBFixbBtm3bIDg4WLd3y5YtsHbtWvDz89PtPX78OCxevBi8vb11e728vGDmzJnw6NEj3c/47du3MH78ePDy8oKkpCRd3tDQUBg1ahR4eHhAfHy8Lm9CQgKMHTsWjh8/DtHR0bq8iAgzZsyAvXv3QmhoqC4vAMDKlSth8+bNEBgYqNu7e/duWLVqFXz8+FG399y5czB//nx48eKF7uf04MEDmDp1Kty7d0+319/fH8aOHQtXr17V/S5GRUXBqFGj4OzZsxAXF6fLy3EcjB8/Hg4fPgyRkZG6vAAA8+bNg507d0JISIhu74YNG2DDhg0QEBCg23vo0CFYtmwZvH37Vrf3ypUrMGfOHHj69Knu5/Ty5UuYNGkS3Lp1S/d5GxwcDKNHj4aLFy9CQkKCLm9cXByMHj0aTp48CTExMbq8iAhTpkyB/fv3Q3h4uC4vAMDSpUvhn3/+gS9fvuj2btu2DdasWQO+vr66vSdPnoRFixbB69evdXtv374NM2bMgIcPH+p+xh8+fAB3d3e4fv267vM2PDwcRo0aBRcuXNB93iYlJcG4cePg6NGjEBUVpcsLADBr1izYvXs3fPv2Tbd39erVsGnTJvj8+bNu7969e2HFihXw4cMH3V4PDw+YN28ePH/+XPdzevz4MUyZMgXu3r2r+10MCAiAMWPGwJUrV3SftzExMTB69Gg4c+aM7rsPx3EwceJEOHTokFl3n4ULF8KOHTvg69evur2bNm2CdevWgb+/v27vkSNHYMmSJfDmzRvd3uvXr8OsWbPg8ePHup/x69evYcKECXDz5k3dzzgkJARGjRoFnp6eus/b+Ph4GDNmDJw4ccKs83batGmwb98+CAsL0+UFAFi+fDls3boVgoKCdHt37NgBq1evBh8fH93eM2fOwMKFC+Hly5e6n9O9e/dg+vTpcP/+fd1eX19fGDt2LFy7dk33eRsZGQmjRo2Cc+fO6b77JCUlgbu7Oxw5csSs83bu3Lmwa9cus87bdevWwcaNG826+xw4cACWL18O79+/1+21JmuOHj0aLl26lOKsOWnSJDhw4IBZdx8jrLl169ZUx5rv3r2zCmsmJibCuHHjUh1r7tq1C1auXJnirPnw4cMfjjXnz59vmDU/ffqk22uUNWfPng1PnjxJcdYcNWqUWawZHx//w7HmqVOnUi1rnj9/nrEmhazFmp8/f7YKayIiTJw40ew8+4/Gmt7e3lZhTT7PntpYc+fOnbBq1SqrsOa0adMYa1LKWqx56dIlmDt3rll59h+RNRcvXpzqWPPmzZtWYc2wsDCz8+xGWBMAYMaMGbBnzx6rfNc0lzXPnz9vFdb89OmT1VhzwoQJhr5rmnv3McqaS5cutQprTpw40SqsOWbMGKuwJtN/UIjIQiMAwAUAEADQ19cXmVKnoqOjMXfu3AgAWKhQIRwyZAieO3cO4+LiNL0cx2GlSpUQADB37tz4+++/45EjRzAyMpLqZ3fq1AkBALNkyYK//vor7tq1C0NCQqi8o0ePRgDAdOnSYfv27XHjxo0YEBBA5V29ejUCADo4OGCzZs1w+fLl+P79eyrvmTNnEADQ1tYW69Spg3PnzsWnT58ix3Ga3ufPn6ONjQ0CAFaqVAknT56Md+7cwaSkJE1vcHAwZsyYEQEAS5QogaNGjcJLly5hQkKCpjc+Ph4LFSqEAICurq44cOBAPHXqFMbExGh6OY7D+vXrIwBgjhw5sHfv3njgwAEMDw/X9CIi9u7dGwEAM2XKhF26dMFt27ZhcHAwlXfatGkIAOjk5IRt2rTBtWvXop+fH5V3+/btCABob2+PjRo1wsWLF6O3tzeV9+rVqwgAaGNjgzVq1MCZM2fio0ePqJ7xhw8f0N7eHgEAy5Urh+PHj0cvLy9MTEzU9EZERGC2bNkQALBIkSI4fPhwvHDhAsbHx2t6k5KSsHTp0ggAmDdvXvzjjz/w+PHjGBUVRfXv3KZNGwQAdHZ2xh49euCePXswNDSUyjt48GAEAMyQIQN27NgRt2zZgoGBgVTexYsXIwCgo6MjtmzZEleuXIkfP36k8h4+fFh4F+vVq4fz58/HFy9eUD2nBw8eIP/3V5UqVXDq1Kl47949Ku/nz58xbdq0CABYqlQpHDNmDF69epXqGcfExGC+fPkQALBgwYI4ePBgPHv2LMbGxmp6OY7D6tWrIwBgrly5sG/fvnj48GGMiIjQ9CIi/vLLL8J527VrV9y5cyf1eevu7i6ct+3atcMNGzbgp0+fqLwbNmwQztumTZvi0qVL8e3bt1TeCxcuCO9i7dq1cc6cOfjkyROq5/T69Wu0tbVFAMCKFSvixIkT8datW1Tn7bdv3zBz5swIAFi8eHEcOXIkXrx4kepdTEhIwKJFiyIAoIuLCw4YMABPnjxJdd4iIjZu3BgBALNnz449e/bE/fv3Y1hYGJW3X79+CACYMWNG7Ny5M/7zzz/45csXKu/s2bOF87Z169a4Zs0a6rvd7t27EQDQzs4OGzZsiIsWLcLXr19TeW/evCm8i9WrV8cZM2bggwcPqJ6xj48POjo6IgBg2bJl0d3dHa9fv071LkZGRmLOnDkRALBw4cI4bNgwPH/+PNXdJykpCStUqIAAgHny5MF+/frh0aNHqc/b9u3bIwBg1qxZsVu3brh792789u0blXfEiBEIAJg+fXrs0KEDbtq0CT9//kzlXb58uXDeNm/eHFesWIEfPnyg8p44cUI4b+vWrYvz5s3D58+fUz2nJ0+eCM+4cuXKOGXKFOq7T1BQEKZPnx4BAEuWLImjR4/GK1euUN194uLiMH/+/AgAmD9/fvzrr7/w9OnT1Odt7dq1EQAwZ86c2KdPHzx48CD1edujRw8EAMycOTP+8ssvuH37duq7z6RJkxAAMG3atNi2bVtct24d+vv7U3m3bNki3H0aN26MS5YswTdv3lB5L126JJy3NWvWxFmzZuHjx4+pnvHbt2/Rzs4OAQDLly+PEyZMwJs3b1I947CwMMyaNSsCABYtWhRHjBiBnp6eVOdtYmIilihRAgEA8+XLh3/++SeeOHECo6Ojqf6dW7RogQCA2bJlw99++w337dtHffcZMGCAcPfp1KkTbtmyBYOCgqi88+fPRwDANGnSYKtWrXD16tXo4+ND5T1w4IBw3jZo0AAXLFiAL1++pPLevXtXeBerVauG06ZNw/v371M940+fPqGTkxMCAJYuXRrHjh2L165dozpvjbJm5cqVUx1rrlmzxoQ13717R+U1wpovXrwwYc3bt29/16yJiNigQQOBNXv16pVirDl9+nSrsOa1a9csypo3btxIEdYsU6aMiDWPHTuWIqw5ZMgQ4e7z008/4ebNm1OENY8cOWI2az58+NAqrBkbG2s11uzatasJa379+pXKy7Nm2rRpsV27drh+/foUYU0PDw/hXaxVqxbOnj07xVmzWLFiKcqaTZo0MZs1+/fvb8KatHcfI6y5Z88eE9Z89eoVldcIa/r6+opYc9y4cWaz5tChQ1OMNTt06GAV1lyxYoXVWJO/+1iCNS9fvpwirFmnTh2BNXv37p1irDl58mThvHVzc0s1rMnffVKaNUuWLClizePHj6cIaw4cONAirNmyZUtctWoV9d3HCGveu3dPOG+rVq2aoqyZJ08eq7Bm586dzWbNMWPGWIU1z549K2LNOXPmpAhrfv36VcSaf//9d6pgzT59+liFNXfs2GHCmrR5dqOs6eDgYDZrZs+eXWDNYcOG4YULF6jvPkZY083NTWDN7t27pxhrLlmyRLj7tGjRAleuXEl997EWawYGBpqwJm2e3Shr1qhRQ8Sahw4dShHWHD9+vEVYs0mTJrpYk8m68vX1Fd4TAHBBS9TEWeIf8l8PYIWD/xktXbqUfIlEyaCtW7eqwsnRo0dNvLQfwh49emTi5eFk4cKFqsmgwMBATJcunYm/WrVqOH36dNVkUGxsLLq4uJh4y5Qpo5kM4jgOa9asaeItVKgQVTLo119/NfHSJoMmTJhg4iWTQWpwsmnTJhMvnwzSghNPT08TL5kMUiu69Pb2Fj4m88Eng+bOnYvPnj1TfE7fvn3DLFmymPzsypUraxZdJiQkYPHixU28/IcwrWRQ06ZNTbz58+fHQYMG4enTp1Xh5I8//jDx8kWXBw8eVIWTuXPnmngzZcqEP//8s2YyaO/evSZe2mTQ7du3TbxkMkjtQ5ifn5+QUOWDTAapwUlUVBTmypXL5GfzySAvLy/FZ8xxHFasWNHEW7RoURw+fDh6eHioJoN++uknEy9ZdKmWDPr7779NvPyHsL1796rCycqVK028tEWXp06dkj1vaZJBT58+FQCfPG/r16+vmQz68uULZsiQweRn0ySD4uLisGDBgiZePhmk9iGM4zisW7euibdgwYI4ZMgQTTjp2bOniZdPBh0+fFg1GTRlyhQTL58M0iq6/Oeff0y8tEWXly9fNvHyH8KWLVummgx69+6dkFAl30W+6FItGRQeHo7Ozs4mP7tixYo4adIk1WRQYmIilipVysRbvHhxqmRQq1atTLy0yaBBgwbJnrc0yaCFCxfKnrd8Mkit6PLQoUMmXj4ZpPUh7P79+7LnbaNGjTSLLgMCAoSEKhn8h7CHDx8qPuOYmBghoUpGuXLl0N3dXTUZxHEcVq1a1cTLF11qJYO6dOli4s2TJw/2799fMxk0duxY2fOWJhm0bt06Ey+ZDFL7EHbu3DkTL20y6OXLl8LHZD7IZJDah7CvX79ipkyZTH42nwy6e/euojchIQGLFCli4i1VqhRV0WWjRo1MvAUKFMC//voLz5w5o3re9u3b18TLF11qJYNmzpxp4uU/hO3YsUM1GbRz504TL190qZUMunHjhuy7SJMM+vjxo5BQJc9bmsKDyMhIIaFKRoUKFXDixImqH8KSkpKwXLlyJl6+8EDrQ1jbtm1NvHzhgVbR5bBhw0y85IcwtcIDI6x57NgxE29qYE1XV1cTb0qwZrdu3Uy8uXPnxn79+ml+CLMWa168eNHES9vgZ4Q1Q0NDZVmTpsHPKGs2a9bMxPu9s+a+fftMvE5OTgJrqn0IM8qaadKkMTlva9asqfkhzJqs2bFjRxNvSrDmqlWrTLwpwZrPnj1TZU21D2FarKn2Icwoa9arV8/ES/shzAhrTp061cRL2+BnhDWvXLkie97SsOb79++txpp8kywZPGtevHgx2Vjzr7/+MvFmz54de/XqpVl0qcaaWg1+lmZN2gY/o6yZN29eEy/f4JecrPnzzz+beC3BmlpFl0ZY8/z58yZenjW1ii6NsGZISIgia06ZMsUs1qRt8DPCmr///ruJNyVYc9euXSZekjXV8uxGWNPHx0eVNdWKLq3Jmu3atTPx0jb4GWHNZcuWmXgzZsyInTp1SlbWfPz4sex5S8OaQUFBqqyplmc3ypq1atUy8fKsqVV0aYQ1J06caOLlWVOr6FKONWmLLo2w5ps3b2RZk2/wSy7WTExMtBpr/vnnnyZeWtacN2+eiZdnTa2iSyOseefOHdnztnHjxpoNfkZYk2ySJYMcJqOXNfkGv+RkzVGjRpl4U4I1T58+LXveJjdrBgcHJwtr6mnwY0p5scJBVjjIZECjRo0SOj6UQmna08qVK4VOWbXgk0FkB+7x48dlL0/SkJv29OTJE8ySJYsJKEtDrgM3LCwMs2TJYgJg0lDqwC1cuLDJZUIaStOeGjVqJFT0K4VSB26fPn2ETkilUEoGTZ06VTYxIA25DtwtW7ZQPWO5aU8XL17ELFmymPylLg25aU/v3r3DLFmymFzOpcEng8iiS47jqJ6xUgdu+fLlZZNlZPDJIGkHbtu2bWXBjwylDtwhQ4bIXmLIUOrAXbhwIdUz5jtwyWTQ/v37qd5FuWTQ7du3qd5FuWRQUFAQZsmSxST5LA2laU/58uUzKViUBpkMIuGkdu3ams9YadrTr7/+qvkuKnXgjhs3juq8rVWrlkkH7tq1a6neRbkO3NOnT1M942LFipl04D5//pzqXZRLBkVHR1O9i0oduMWLF9c8b/kOXGkyqHnz5prnrVIyqF+/fprvIpkMIosuZ86cSfUuyk172rFjB9Vz4pNBZAfu1atXqc5buQ5cHx8fqndRqQPX2dlZ811U6sCtXLmy5ruolAz66aefNM9bpWTQiBEjqM5buWlPS5cupXoX5TpwDx8+TPWM5aY9PXjwgOq8lfsQFhISQvWMlSYL58+fX/NdVOrArV+/PtXdR64D97fffqM6b+WmPU2aNInqvJXrwN24cSPVM5abLHz+/Hmqd1Fu2tPr16+pzlu5ycLx8fFU563StKcyZcpoPmOlDtxWrVpR3X3kpj0NHDiQ6l2U68CdO3cu1Xkr14G7Z88eqndRbtqTl5cX1bsoV3jw6dMnqndRadpTrly5qM5buQ7c6tWrU523coUHP//8M9V5KzftKaVYUzrt6cSJE1ZhzfDwcKuxZuPGjVMda27dupXqOclNezLCmu/fv6dmTWmDX0qxpty0p3bt2lmFNRctWqSLNckPYUZY886dO1Tvoty0p5RkTWnRZe3atTXfRaUGPyOs6e7uTnXeyk17MsKaZ86coXrGctOeXrx4YTXWLFGiBDVrSqc9GWHN/v37U7OmtMEvJVhTbtrTtWvXrMaa2bJlswprduzYURdrkkWXI0eOtAprHjlyhJo1pQ1+RliTb/qmYU25Bj9rsWbPnj11sSZ590lJ1iSLLo2wpre3ty7WJIsuExISrMaarVu3prr7yDX4GWHNefPmpTrWDAgIsBpr1qhRgyrPLjftyQhrjh49mjrPLm3wSwnWlJss/PTpU92syd99jLJmkSJFdLEmefcxwpp9+/bVxZpk0eW0adOswpqXLl2iZk1pg58R1kREzJIli+a7+L2x5tChQ3WxJll0aYQ1Dxw4oIs1yaJLI6z55csXataUmyzs4uJiFdbs1q2bVVhz3bp1qYI1yaLLmJgYXaypVXTJlLJihYOscJDJgOQ6KLWiWbNm+PLlS1y0aJFub5UqVfDmzZuyHZRaUaRIETx58qRoHC9t5MyZE//55x8MDQ3V7c2YMSMuWrQI4+PjhfU+tOHg4IDu7u4YGRkp20Gp9Rdt//798cuXL7IdlFrx008/4YcPH3DcuHG6vfXq1cPHjx/LdlBqRbly5fDy5cuyHZRakT9/fjx06BB6e3vr9mbLlg3Xr1+PiYmJur3p0qXDWbNmYWxsrGwXgVrY2dnhyJEjMSwsTLaDUit+++03DAgIkO2g1IpWrVqht7e3bAelVtSoUQPv3r0r20GpFSVKlMBz586hl5eXbm/evHlx9+7d+PnzZ93ezJkz44oVKzAhIUHzkiuNNGnS4JQpUzA6OhrLli2ry2tra4uDBg3CkJAQ2Q5KrejSpQv6+vrKdlBqRePGjfHZs2eyHZRaUbFiRbx+/bpsB6VWFCpUCI8fP45Pnz7V7c2RIwdu2bIFIyMjdXvTp0+PCxYswLi4ONkJIWrh4OCAY8eOxYiICNkOSq34/fffMSgoSLaDUivat2+P7969k+2g1Io6dergw4cPcfPmzbq9ZcqUwYsXL8p2UGqFq6sr7t+/Hz98+KDbmzVrVlyzZg0mJiZqArY00qZNizNmzMCYmBhh1RZt2NnZ4bBhwzA0NFS2g1Irunfvjp8+fZLtoNSKFi1a4KtXr2Q7KLWiatWqePv2bdkOSq0oVqwYnjlzRrRmlDZy584tJBj0ejNlyoRLly7FhIQEKrgnw9HRESdMmIBRUVFYqVIlXV4bGxv8888/MTg4WLaDUis6deqEHz9+lO2g1IoGDRrgkydPZDsotaJ8+fJ49epV2Q5KrShYsCAePXoUX7x4odubPXt23LRpE8bGxur2pk+fHufOnYtxcXGyk7jVwt7eHv/++28MDw+XndajFb1798bPnz9jr169dHvbtGmDb968kZ3WoxU1a9bEe/fu4bZt23R7S5YsiRcuXBBWv+iJfPny4d69e9HPz0+3N0uWLLhq1SpMTEzUTPJLw8nJCadNm4YxMTHCqi3asLW1xSFDhuC3b9+wdevWuv/cXbt2RT8/vxRnzcqVK6OXlxcePnxYt9cSrBkWFqbbmyFDBouwZrVq1XR5vwfWXL9+vW5v2bJlDbPmmzdvdHudnZ1x3bp1mJCQoNtrlDVHjBiBYWFh2LhxY90/2xKsOWvWLN3e6tWr4507dwyxJrlmlDby5MmDu3btsgprTp48GaOiomSn9aiFjY0NDhw4EL9+/WqINYcPH67b26hRI8Osefz4cd3eQoUK4bFjx/DZs2e6vZZiTbkJIWphb2+PY8aMMcya3bt31+1t166dVVizdOnS6OnpKawZ1RMuLi4WYU2tD33ScHJysghrNm/eXPefm2fNAQMG6PZagjX379+v21u0aFE8ffq0Idb8+vWrbm/GjBlxyZIlVmXNTp066f5zW4I1V69erdtrCdZ8+fKlbm/27Nlx48aNGBcXp9trKdasX7++7p/dq1cvw6w5bdo03V5rs6a/v79ur6VYU24LiVrY2tri4MGDMSQkxBBrDh48WLe3SZMm+OLFC6uw5okTJ2Sn4muFpVhTbhqlWliKNX/55Rfdf26eNd3d3XV7LcGaFy5c0O11dXXFgwcPGmJNc75rpk2b1uqs2a9fP93eVq1a4evXrw2x5u7du3V7ixcvbpg1AwMDdXszZ86My5Ytw4SEBM0iS2lYijXbt2+v+8/dpUsX9PHxMcSay5cv1+21NmtGRUXp9qZPnx7nz59PtaKbKXmVHIWD9sDE9IMoXbp0kClTJggPD1f8/7G1tYXatWtD27ZtoW3btlCyZEmwsbEBDw8PyJo1K3z79k31Z1SuXFnwVq5cGWxsbODkyZPg7OwMISEhqt6SJUsK3lq1aoG9vT08ffoUnJ2dISwsDJKSkhS9+fPnF7wNGjQAJycniIiIAGdnZ4iIiICEhARFb86cOaFNmzbQtm1baNasGWTIkAEAALJmzQpRUVEQGxur6M2cOTO0bNkS2rZtCy1btoRs2bIJ//d06dJBdHS0ojdt2rTQtGlTaNu2LbRp0wby5s0LAAAZMmSAjBkzQkREhKLX3t4eGjRoAG5ubtC2bVsoUqQIAPz7jDNnzgxhYWGKXhsbG6hRo4bw+ypbtizY2NjA/fv3qZ5xhQoVhJ9brVo1sLW1hcuXL4OzszN8+/aNLzaWVdGiRYWfW7duXXBwcID379+Ds7MzhIeHQ2JioqI3X758ws9t3LgxpE2bFhARnJ2dITIyEuLj4xW92bJlg9atW0Pbtm2hefPmkDlzZgAAyJIlC6RNmxZiYmIUvRkyZIAWLVpA27ZtoXXr1pAjRw4AAMiUKROkT58eoqKiFL1p0qSBxo0bQ9u2bcHNzQ1cXV0BACB9+vSa76KdnR3UrVtX8JYoUQIA/v3vJkuWLBAaGqroBQCoVq2a4K1YsSLY2NjAhw8fqN7FMmXKCL/rmjVrgp2dHdy9execnZ0hNDQUOI5T9BYqVEj4uQ0aNABHR0f48uUL1buYK1cu4ec2bdoU0qdPDwAAzs7OkJiYCHFxcYreLFmyQKtWrYR3MWvWrABA9y6mS5cOmjVrJryLuXPnBgCAjBkzQoYMGSAyMlLR6+DgAA0bNhT+nQsVKiT8M7XeRVtbW6hVq5bwTpQqVQpsbGzg2rVrVO9ipUqVROetra0tnDlzhupdLFGihOCtXbs22Nvbw8uXL6nOW1dXV+Hft1GjRuDk5AQxMTFU72L27NmF87Z58+aQMWNGAPj3vA0LC1M9bzNlygQtW7YENzc3aNWqFWTPnl34v2u9i05OTtCkSRPhz50vXz4AoD9v69WrJ/y+ihYtCgB076KNjQ1Ur15d8JYrVw5sbGzg2bNnVO9iuXLlBG/16tXB1tYWrl27RvUuFilSRPDWq1cPHBwcwM/Pj+q8zZs3r+i8TZcuHQCA8B6rvYvOzs7CeduiRQtd52369OmhRYsW4ObmBm3atIGcOXMCwL/votYzdnR0FM7bNm3aQIECBYR/Js3dp27dusK/c4kSJcDGxgacnJyo3sUqVaoIv+tKlSqBjY0NfPr0ieoZlypVSnT3sbOzg4cPH1K9iwUKFBDdfdKkSQPfvn2jPm/5d7Fp06aiu09sbKzqM86cObPovHV2dhb+7zR3H/K8zZMnDwD8+y7SnLcNGjQQ3uPChQsDAP3dp1atWsIzLlOmDNjY2MCtW7eonnHFihWFn1u1alWwtbUFDw8PqvO2WLFiwnOqU6cOODg4gLe3N9UzdnFxEf7MjRo1grRp00JCQgL1eUvefTJlygQA/76LwcHBqudtxowZRXcfPedtmjRpROeti4sLAPz7Lmqdt3Z2dsJ56+bmBsWLFwcA+rsPed6WL18ebGxshN+11rtYtmxZ4efWqFED7Ozs4NatW1TnbeHChUXnraOjIwQEBFCdt3ny5AE3Nzdwc3ODpk2bis7bkJAQ1Xcxa9asoncxS5YsAPDvu0hz3pLvYq5cuQCA7u7j6OgouvsULFgQAFKeNStVqgS2traphjXd3NygWbNmoruPuayZKVMmatbk//uyNms+ePCA6hmXL19e8FqCNXn+SQ2s2apVK+HukxpYk/998az58eNHs1nz3r17VOdtwYIFRe8iY0061nRzc4PSpUsbZs2zZ8/qYk03NzeoU6cO2Nvbw6tXr6zKmqGhoZp3H/68/RFZs1q1amBnZwfXr1/XxZpubm7C3ccSrBkeHk7Fmm5ubtCiRQvh7mOUNWnuPo0aNRL+na3Nmvw9M6VZMzQ0lPruQ5631mDN1q1bi+4+tKzJ/7ktwZq3b9+mzrPzv2tLsOabN2/MZs3ExMRUw5pt2rQR3X1SijXd3NygQoUKKcaafJ69bdu2UL9+fXB0dITPnz9/16yZLl06aN68+XfDmp6enlZhTf7vY1rWdHNzg4YNG1qMNSMjI6ny7PzdJyVZs379+sLvi2fNtGnT/lCsCQCpgjX5Z5w/f34AoGfNOnXqCL8vS7Cmj48P1btYunRp4edagjWDg4MNs2ZCQsIPw5rXr1+nZk3+91WlSpUUZU3y7uPk5ASxsbGGWJPpPyhLVB/+1wPYxMH/jJYsWWJSHZ0pUyb8+eefTUbhSnXkyBETr5OTkzAKl1wDIJXcNAdyFC65ck6qwMBAk5G85Chccg2AVLGxsZgvXz6Tn82PwvXy8hJG4UrFcRzWqFHDxMuvAfDw8BBG4cqpa9euJt68efMKo3DJsdRSjR8/3sTLrwHQGoW7ceNGE2+GDBmwY8eOuGXLFtEaAKk8PDxMvPzKuVWrVolWzknl7e1t0iFsZ2eH9evXF9auKD2nb9++yXaeVq1a1WTtilQJCQlYrFgxEy+/doVcAyCnJk2amHgLFiyIQ4YMEa0BkFP//v1NvLly5cLff//dZA2AVHPmzDHxZs6cWXYNgFR79uwx8fJrV6Qr56S6deuWiZdfA7Bs2TLRGgCpfH19TUZrkyvnyLUrUkVFRWHOnDlNfja/3pxcuyJVUlISVqhQwcRbvHhxk7UrcurQoYOJ18XFxWTtipxGjhxp4s2ePTv26tXLZA2AVCtWrDDxZsyYUVi7Qq6ck+rkyZOy522bNm1M1gBI9eTJE5Px+nZ2drJrV6T68uWLydQNfu3KjBkz8OHDh4rPOC4uDgsUKGDy5+bXm5NrV6TiOA7r1Klj4uVXzl24cEG1g+e3334z8fLrzcm1K3KaPHmyiTdr1qzYvXt33LNnj2gNgFRbt2418ZJrV8g1AFLJTXNQWrsi1du3b01G5JNrV8iVc1KFhYWhs7Ozyc+uUqWKyXpzqRITE2UnWfFrV8iVc3Jq2bKliZdfA0CuN5fTwIEDTbz8yrlDhw6pnrcLFiyQPW/59eZq5+3BgwdNvPx68/Xr14vWAEh17949E6+9vT02adIEly5dKloDINWnT59MVk6Qa1fINQBSRUdHY548eUx+doUKFUzWrkjFcRxWqVLFxMuvXSHXAMipc+fOJt58+fLhgAEDRCvn5DRmzBgTb7Zs2bBnz564b98+1fN27dq1Jl6l9eZSnT171sSrtHJOqhcvXphM4iTXm5NrV6T6+vWr7OqHatWq4fTp00VrV6SKj4/HwoULm3j59ebk2hU5NWzY0MRbqFAhHDp0qGjlnJz69Olj4s2dO7ewdoVcOSfVjBkzZM/bbt26mayck2rHjh0m3nTp0glrV8iVc1Jdv37dxOvg4IDNmzc3WTkn1YcPH0zWVZAr58i1K1JFRETIdvrzK+fItStSJSUlyU5N5tebk2tX5OTm5mbidXV1xUGDBuHp06dV7z5Dhw418fLrzQ8ePChaOSeVEdY8evSoiTc1sKbcZJXy5csL682TizV//fVXE6/cenM5WYs1PT09Tbwka6rdfYyyptzKG541yZVzUhllzaZNm5p4jbKm3Mo5qYyw5t69e028/Mq55GRNPz8/q7Amx3FYsWJFEy/Jmmrv4k8//WTi5VmTXDknJyOsuXLlShMvz5rS9eZSGWHNp0+fyrKm3HpzqeRYE+D/K+eSkzXr1q1r4k0J1pwyZYqJNyVY8/Lly7LnLc+a79+/V/S+e/dOkTWl682lMsqacpOs5Naby8kIaw4aNMjE+72z5v379028KcGaMTExqqxJrpyTyihrdunSxcQrt95cTkqsKbfeXCojrHnu3DkTb0qxptw6yO+dNfv27Wvi5VlTut5cKiOsuXPnThOv0npzqYyw5sePH1Mla7Zt29bEmxKsuXTpUhMvyZpqdx8jrCk3OZBnzcWLF2uypnQlrNJ6c6mMsmbNmjVNvCnBmhMmTDDxpkbWtLW1FViTXG8ulVHWLF68uIm3dOnSJuvN5WSENf/44w8TLy1rzp0718SbEqx5+/Zt2fM2JVhTblsWz5paeXY11iTXm8vJCGv+/fffJl6l9eZSGWHNU6dOmXjTpEkju95cKqOsKTfhMblZk8m6YquKWeEgkwFFR0cLKzr4S6JWgowXx3HCWgDaBBkpfgUdf0nUSpCR4tcC0CbISPEr6GiLMUjxawHIYgy1SyKpZ8+eCX/BValSBadOnap6SSQVHBws/AXHF2NoXRJ5xcfHC2OqCxQogIMHD9a8JPLiOE5YQZczZ06qSyIpfi0Af0nUSpCR4lfQkZdEtQQZKX4tAH9JXLp0qeolkdTVq1eFSyKfIHvy5AnVc3r//r2QTKUpxiAVHh4urCfjE2Ral0ReiYmJWLp0aeGSOGDAAM1LIil+LQBfjKF1SSTFr6DLmDEjdu7cWfOSSIpfC0BeEtUSZKT4def8JVErQUaKTKbyl0S1BBmpgIAA4UNy2bJlqRJkvGJiYjBv3rwI8P8E2fnz56nPW34tAG0xBil+BR2fINu9ezf1ecuvoCOLMWjPW34tAJ8gW7FiheoHCVL8CjpbW1usW7eu5gcJUq9evRKSqZUrV8YpU6aoJshIhYSECMlU2g8SvBISErBIkSII8P8PEloJMlL8unPaBBkpfgUdbTEGKX4tAG2CjBS/go4sxlD7IEGKX3dOFmOofZAg5ePjIyRT+cJ/tQ8SpCIjIzFHjhwI8O96phEjRmh+kOCVlJSE5cuXFxJkfOE/7XnLr6Cj/SBBil8LwH+Q0EqQkeJX0PEfJLQK/0nxawGkxRg0evz4sUmCTK3wn1RQUJCQTOWLMa5du0Z13sbFxaGrq6soQXbu3Dnquw+/go4v/Nf6IEGKX0GXJUsW/PXXXzU/SJDiV9DRfpAgxa+gc3BwwGbNmml+kCDFrzvnP0hoJchIvXnzRkimVqpUSbMYg1RoaChmzZpVlCDTKvznlZiYKCRTXV1dqQr/SfEr6PhijAMHDlCft/y6c9rCf1L8Cjq+GGPt2rXU5y2/go628J/UnTt3hPOW5oMEKX9/f2F1Vbly5XD8+PHUCbLvgTVpizFIGWFNfgVdSrPm8+fPUyVr8ivoeNbUKsYgZYQ1+RV0tMUYpH401kxKShJYky/8TynW5FfQkaypVoxByghr8ivozGHNBw8eCHcfmmIMUkZZk2+QTWnW5FfQWYo1ae8+RliTX0FHsqZaMQYpI6xJNsiWLFmSqhiDl1HW5FfQmcOa/Aq6lGZNfgUdbeE/KaOsyX9ItgRrahVj8DLKmvwKOtpiDFJGWJNfQUfbZE7KCGs+efIkVbJm7dq1rcKakyZNErGmVjEGKZI1aYoxSBlhzbdv3wqsSVP4T8ooa5YoUULIs6cka/Lrzi3FmrTfbY2wJr/unLbJnJSlWJO28J+XUdbk152bw5qjR4+2CmueOXPGaqzJN8jSNpnzIlmTtvCfl1HW7N27t8CaNIX/pIyw5vbt24W7D03hPykjrPnhwwezWTMiIsJqrNmmTRsRa2o1mZMywpqLFy8WsaZW4T8pkjVpCv9JGWHNz58/C6xJW/jPyyhrVq9e3Sqsya87twRrLl++nJo1mawrtqqYicmAbt26BSNGjBCN6qbV8+fPoV27drBhwwZhVDetgoKCoGjRonDlyhVhVDetYmNjhfWb/FooWiEiBAYGwqFDh0QriGn1/Plz2L59u2hUN61u374Na9euFY3qptWNGzdgxowZolHdtLp37x70799fNKqbVu/evYP69evDggULhFHdtAoNDYWcOXOCp6enMKqbVgkJCRAbGwsnTpwQjeqmESLCx48fYd++faJR3bR69OgRbNmyBVq3bi2M6qaVl5cXLF++HNq0aSOM6qbVzZs3Ydy4caJR3bR6/Pgx/PLLL6JR3bTy9/eHcuXKwfjx44VR3bSKioqCdOnSwblz54RR3bTiOA5CQkLgyJEjolHdtPL29oZdu3aJRnXT6u7du7Bx40bRqG5a3bhxA+bNmyca1U2r27dvw9ChQ6Ft2/+vIKbVq1evoFWrVrBq1SphVDetgoODoWDBgnD58mVhBTGt4uLigOM4OHXqlDCqm1aICP7+/nDgwAGzRnU/ffoUtm3bJloLRatbt27B6tWrRWuhaHXjxg2YOnWqaC0Ure7fvw99+vQRrYWi1YcPH6BWrVowe/ZsYS0UrcLDw8HZ2Rk8PDyEFcS0SkpKgsjISDh27Bg0adJEWFNCq/fv38PevXtFK4hp9eDBA9i8ebNoLRStbty4AUuWLBGthaLVzZs3YfTo0aK1ULR6+vQpdOzYEbZs2SKshaJVQEAAlCpVCkaPHi2shaJVTEwMODg4wNmzZ4W1ULTiOA6+fPkChw8fFq2FotWrV69g586dorVQtLpz5w6sX78e2rRpo/vuc/36dZg9e7ZoLZSenztw4EDRWihaeXt7Q5MmTWDp0qXCWihahYSEQN68eeHixYvCWihaxcfHQ0JCApw8eVJYC0UrRARfX1/Yv3+/aC0UrZ48eQL//POPaC0UrW7evAkrV64UrSCmlZeXF0ycOFG0FopWDx8+hN9++020gphWvr6+ULlyZZgyZYqwFopWkZGRkClTJjh//rywFopWSUlJEBoaCkePHhWthaLVmzdvYPfu3aK1ULS6d+8ebNq0SbQWilY3btyAhQsXitZC0crarGnO3ccoa37+/BkOHjwoWgtFKyOseevWrVTHmu/fv4d69erB/PnzU5Q1ExMTISYmJlWy5rJly0RroWiVWlkzbdq0VmHN169fp0rWHDx4MLRt21ZYC0Uro6yZP39+uHTpkrAWilbx8fE/JGtOmTLFKqxZs2ZNmDVrllmsmSVLFrhw4YKwgphWRlnz3bt3sGfPHtEKYloZYU0vLy9YvHixWax569Ytq7Dm58+foWTJkjBq1KgUZU1EtBpr3r5922zWvHHjhlVY882bN9C4cWNYsmRJirJmQkICxMfHm82afn5+VmFNLy8vWLFiBbi5uQkriPV4jbBm9+7doW3btsIKYloZZc2MGTOazZphYWFw9OhRaNKkie67D2NNfaxZpEgRs1kTAOD06dPCCmJapVbW9PLygunTp6cq1gwLC4McOXKkOGsC/HtnMzfPboQ1b9y4YTZrenl5WYU1P336BOXKlQN3d/cUZ82vX7+myu+ac+fOhbZt26Y4a7Zo0QJWrlyZ4qyZlJRkNmt++vTJbNZk+u/JBv+dqMekIhsbGxcA8AX490Ks90MRExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE5M58vPzIxtOXBHRz+g/k77clYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJKdWLFQ4yMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMf1AYoWDTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTEw/kFjhIBMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExPTDyRWOMj0wyg4OBiSkpLM8n779g3i4+PN8kZEREB0dLRZ3ri4OAgLCzPLi4jw5csXs7wAAEFBQYa8iGiW98uXL2Z7v379ComJiWZ5w8LCIC4uzixvVFQUREZGmuVNSEiAkJAQs7yIaPg5GfEaecYcx5nlDQkJgYSEBLO84eHhEBMTY5Y3JiYGwsPDzfJyHAfBwcFmeQGMPydzZeRdNHLehoaGmn3eRkZGmn3exsfHQ2hoqFneH/VdNHLexsbGmuWNjo42+7xNTEyEr1+/muUFsN67aOQZBwcHm/2Mv337ZvZ5GxERYfZ5Gxsba/bdh+M4q959zJXRu4+R89bI3ScqKsosb0JCAnz79s0sLztv9Sk8PNzs8zYmJgYiIiLM8iYlJbG7jw4ZYU0jdx+jrJla38UfiTUTExMZa+qQtVgzNjaWsaYOGb37GDlvzb37xMfHs7uPDlmTNY3cfRhr0is1sqa18+zmirEmvVLreWvkXWSsmXLeH5E1jeTZ2XdNehlhTaN5dnNZE+DHu/sw1kxZL2NNOhm9+zD998QKB5l+GL179w7y5s0Lffr0gUOHDumCk6ioKHB1dYVffvkFduzYoSsZZGdnB2XKlIG2bdvC+vXrwd/fn9rr4OAATZs2hSZNmsCSJUvgzZs31F4bGxsYMGAA1KpVC2bNmgWPHz/W9ZflvHnzoHz58jBhwgS4efOmrgvRvn37oHjx4jBixAjw9PTUdSG6c+cOuLi4wJ9//gknTpzQdSEKCAiAPHnywG+//Qb79u3TlQxKSEiAQoUKQadOnWDr1q26/rJ0cHCAKlWqQKtWrWD16tXg4+ND7bW3t4eOHTtCgwYNYOHChfDy5Uvq52RjYwOjR4+GatWqwfTp0+H+/fu6nvGqVaugTJkyMHbsWLh27ZquC9Hp06ehcOHCMGTIEDh37pwuOHn+/DnkzZsXfv/9dzhy5IiuC1FoaCjky5cPfv31V9i1a5fuC1GJEiWgffv2sHHjRggICKD2OTo6Qr169aBZs2awfPlyeP/+PbXX1tYWevXqBXXq1IG5c+fCs2fPdD2nqVOnQqVKlWDy5Mlw584dXe/itm3boESJEjBq1Ci4dOmSLgC9cuUKFChQAAYNGgSnTp3SlQzy8fGBPHnyQO/eveHAgQO64CQmJgby588PXbp0gW3btumCEzs7OyhXrhy4ubnB2rVrwc/Pj9rr4OAArVq1gkaNGsHixYvB29ub2mtjYwODBw+GGjVqwMyZM+HRo0e6nvGiRYugXLlyMH78ePDy8tL1Lh4+fBiKFi0Kw4cPBw8PD11w8uDBA3BxcYE//vgDjh8/risZFBQUBHnz5oUePXrAnj17dCWDkpKSoEiRItCxY0fYvHkzBAYGUnsdHBygevXq0LJlS1i5ciV8/PiR2mtvbw8///wz1KtXD+bPnw8vXrzQ9Zzc3d2hatWqMHXqVLh3754u7/r166FUqVIwZswYuHr1qq538fz581CoUCEYPHgwnD17Vtd5+/r1a8iTJw/07dsXDh8+rCsZFB4eDvny5YOuXbvCzp07dd19bGxsoGTJktCuXTvYsGEDfPr0idrr6OgIjRo1gqZNm8KyZcvg7du31F5bW1vo168f1K5dG+bMmQNPnjzR9ZxmzZoFFStWhIkTJ8KtW7d0nbe7du2C4sWLw8iRI+HixYu67j5eXl7g6uoKAwYMgJMnT+q6+/j5+UGePHmgZ8+esH//fl3nbXx8PBQoUAA6d+4M//zzj67ErL29PVSqVAlat24Na9asAV9fX13etm3bQsOGDWHRokXw+vVraq+NjQ2MGDECqlevDjNmzIAHDx7oesbLli2DsmXLgru7O1y/fl3XeXv8+HEoUqQIDBs2DM6fP6/rvH3y5Anky5cP+vXrB0ePHtV19wkJCYG8efNC9+7dYffu3bruPhzHQdGiRaFDhw6wadMm+Pz5M7XXwcEBateuDc2bN4cVK1bAhw8fqL12dnbQo0cPqFu3LsybNw+eP3+u6zlNnDgRKleuDFOmTIG7d+/qehc3b94MJUuWhNGjR8OVK1d0nbcXL16EggULwl9//QWnT5/WdfcxwprR0dECa27fvl3XeWtrayuw5rp163SxpqOjIzRr1sxs1hw4cCDUrFkzxVlz//79UKxYsRRnzc+fP0PevHnNZs2CBQuazZpVq1Y1izXt7OygU6dO0KBBA1iwYEGKsubq1autwpovXrxIdazp4OAA9evXF1jz3bt31F6jrDlt2jSBNW/fvm0Wa/79999w6dIlXe/i1atXzWbNjx8/Qp48eaBXr14pypr29vZQoUIFaNOmjVms2bp1a7NZc8iQIRZhzRs3bqQYaz58+FBgzWPHjqUa1qxRowa0aNFCN2va2dnBL7/8Yog1q1SpkuKseeHCBauwZkREhEVYc/369bpZs3Hjxmaxpo2NDfTv3x9q164Ns2fPTlHW3L17t1VY09/fP1WyZrt27QTWfPXqFbXXKGsuX77cMGsOHTrUKqzZrVu3H4Y1J02aZBHWvHz5coqx5vv37wXWPHjwYIqyZtmyZcHNzc0s1mzevDk0btzY6qyp5100wpp3794Vsaaeu49R1jT3u6a9vb3AmqtWrUox1gQAGDNmDFStWhWmTZuWoqx55swZq3zXDAsLS5Ws2bt3b4E1nz59ahZrTpo0STdrbt++3WzWvHbtGuTPnx8GDhxo9ndNc1gzNjbWaqzZpk0bq7Am039QiMhCIwDABQAQANDX1xeZUq9at26N/LN0dHTE5s2b44oVK/DDhw+a3r/++kvw2traYt26dXHevHn4/Plz5DhO1bto0SLBCwBYuXJlnDJlCt69exeTkpJUvYcOHRJ5S5YsiaNHj8bLly9jQkKCqvf+/fsib/78+fGvv/7CM2fOYGxsrKo3ICAA06ZNK3hz5syJffr0wYMHD2JERISqNyYmBvPmzSt4M2fOjL/88gtu374dg4ODVb0cx2G1atUEb9q0adHNzQ3XrVuH/v7+ql5ExJ9//lnw2tvbY+PGjXHJkiX45s0bTe+4ceMEr42NDdasWRNnzZqFjx8/1nzG69atE/2uy5cvjxMmTMCbN29qPuPz58+LvEWLFsURI0agp6cnxsfHq3pfvXqFtra2gjdfvnz4559/4okTJzA6OlrVGxISgpkyZRK82bJlw99++w337duHoaGhqt6EhAQsUqSI4M2QIQN26tQJt27dikFBQapeRMRGjRoJ3jRp0mCrVq1w1apV6OPjo+n9/fffBa+dnR02aNAAFyxYgC9fvtT0zpo1S/S7rlq1Kk6bNg3v37+v+Yx37dol8pYpUwbHjh2L165dw8TERFWvl5eXyFuoUCEcMmQInjt3DuPi4lS9Pj4+6ODgIHhz586Nv//+Ox45cgQjIyNVvZGRkZgjRw7BmyVLFvz1119x165dGBISoupNSkrCcuXKCd506dJh+/btcePGjRgQEKDqRURs166d4HVwcMBmzZrh8uXL8f3795re4cOHi87bOnXq4Ny5c/Hp06eaz2nZsmWi33WlSpVw8uTJePv2bc138fjx4yJviRIl8O+//8ZLly5pnrePHz8WeV1dXXHgwIF46tQpjImJUfUGBQVhunTpBG+OHDmwV69eeODAAQwPD1f1xsXFoaurq+DNlCkTdunSBbdt20Z13taqVUvwOjk5YZs2bXDt2rXo5+en6kVE7N69u+i8bdSoES5evBi9vb01vRMnThSdtzVq1MCZM2fio0ePNJ/x5s2bRb/rcuXK4fjx49HLy0vzXbx48aLIW6RIERw+fDheuHBB87x98+YN2tnZCd68efPiH3/8gceOHcOoqChVb2hoKGbNmlXwOjs7Y/fu3XHPnj2a521iYiIWL15cdN527NgRN2/ejIGBgapeRMTmzZuL7j4tWrTAlStX4sePHzW9f/75p+hdrFevHs6fPx9fvHih+ZzmzZsn+l1XqVIFp06divfu3dP07tu3T+QtVaoUjhkzBq9evar5Lt65c0fkLViwIA4ePBjPnj2reffx9/fHNGnSCN5cuXJh37598fDhw5p3n+joaMydO7fovO3atSvu3LkTv379qurlOA4rVaokuvu0a9cO169fj58+fVL1IiJ27NhRdN42adIEly5dim/fvtX0jho1SvQu1q5dG2fPno1PnjzRfE6rV68W/a4rVKiAEydOxFu3bmmet6dPnxZ5ixUrhiNHjsSLFy9qvovPnz9HGxsbwevi4oIDBgzAkydPap63wcHBmCFDBsGbPXt27NmzJ+7fvx/DwsJUvfHx8ViwYEHBmzFjRuzcuTP+888/+OXLF1Uvx3FYr1490d2ndevWuGbNGiq+7NWrl+ju07BhQ1y0aBG+evVK0ztt2jTR77p69eo4ffp0fPDggeYz3rZtm8hbtmxZHDduHF6/fl3zvL169arIW7hwYRw6dCieP39e8+7z/v17tLe3F7x58uTBfv364dGjRzXP2/DwcMyWLZvgzZo1K3br1g13796N3759U/UmJSVh6dKlBW/69OmxQ4cOuGnTJvz8+bOqF9EYaw4ePFh03lqCNe/cuaP5Lh4+fFjkNcqagwYNwtOnTyc7a+bLl0909/n5559ThDV/+eUX0d0npVhz/fr1ot+1Hta8cOGCyJtSrPnt2zfMnDmz4OVZc+/evWaz5pYtW6hYs3HjxqLz1ghr1q9fP0VYc/fu3SJv6dKlU4w1HR0dBW9Ksmb58uUFryVYc9myZfju3TtNrxHWXL58ueh3XalSJZw0aVKys+aTJ09E3tTCmrVr1xa8KcmakyZNEp23PGs+fPjQbNa8ceNGirNm//79U4Q1S5QoIbr7/PTTT4ZZk+buM2DAANG7mFKsuX//fpFXD2vevXtX5C1QoAAOHjyYKs9uSdbMnDkzdu3aFXfs2JHsrNmpUyfReWuENWvVqpUirHnmzBmR11KsqXX3CQ4OxowZMwpeS7AmTZ6d4zisX7++6O6jhzV79+4tuvs0bNgQFy5cmOysuX37dpG3TJkyKcKaHz58SJWs2aZNG9F5y7MmTZ7dCGsuXrxY9Ls2ypqjRo2iYs0HDx6IvEZYM0eOHNi7d+8UYc3q1auLztuUYk13d3fReWsJ1vTy8kpW1nz9+rUsax4/fjzZWbNo0aKCl8+zm8uaLVu2xFWrVlHl2fv16yc6b1MDa968eVPkLViwoMCaWu+iUdbMmTOn4LUEa27YsIGKNdu3by+6++hhzREjRojexdq1a+OcOXOSnTVPnDgh8hYvXjxFWJPJuvL19SWfnQtaoibOEv+Q/3oAKxz8z+jWrVuiA5CMcuXKobu7u2IyyNfXV/SXnBROhg0bhhcuXJCFk6ioKNFfcmRoJYOSkpKwQoUKsl6aZFCHDh1kvTTJoJEjR8p6aZJBK1askPXSJINOnjyp+Jy0kkFPnjwRAT4ZfDLoypUrsn9ZfvnyBdOnTy/r1UoGxcXFYf78+WW9/IewQ4cOycIJx3FYp04dWS9NMui3336T9aZNmxbbtm2rmgyaPHmyrNfe3l4zGbR161ZZL00y6NKlS4rPWCsZ9PbtWxHgk6GVDAoLC0NnZ2dZr1YyKDExEUuWLCnrpUkGtWzZUtZLkwwaOHCgrJf/ELZ69WrFD2ELFiyQ9dIkgw4cOKD4nKpVq6aaDLp3756iVysZ9OnTJ3RycpL1FipUSDUZFB0djXny5JH1aiWDOI7DKlWqyHppkkGdO3dWPG/5ZJASnIwZM0bxvNVKBq1du1bxvK1bty7OnTsXnz17Jvuczp49q/ictJJBL168EAE+GVrJoK9fv4oSqmSQySA5OImPj8fChQvLemmSQQ0aNJD10iSD+vTpo3jeaiWDZsyYoXjeaiWDduzYoXjeaiWDrl+/rviMtZJBHz58EBUuk1G0aFEcPnw4enh4yJ63ERERmD17dlmvVjIoKSkJy5QpI+t1dnbGHj16qCaD3NzcZL00yaChQ4cqnrdayaAlS5YonrdayaCjR48qPietZNDDhw8VvVrJoMDAQFFClQytZFBsbCy6uLjIevlk0OHDh2WTQRzHYY0aNWS9NMmgX3/9VdZLkwwaP368rNfBwQGbNm2qmgzauHGj4ruolQzy8PBQfE4VK1ZUTQZ5e3uLPiaToZUM+vbtG2bJkkXWq5UMSkhIwGLFisl6s2fPrll40LRpU8Xzli88UCq67N+/v6yXLzxQ+xA2Z84cxfOWLzx4/fq1rHfv3r2Kz7hGjRo4Y8YMxcIDI6zp5+eXLKyZJ08eVdbkOA4rVqyoeN5+r6y5cuVKWS/Jmkofwoyw5tOnT5ONNdUa/OLi4rBAgQKyXhrWrFu3rqyXb/BLLtacMmWK4ruYnKx5+fJlxWdsCdZU+hBmlDVLlSqleN727NkT9+3blyysOWjQIFmvUdZs0KCBKmsePHhQ8Tl9r6wZExOjyJq5c+cWWFPp7qPFmmp3ny5duiiet0ZZU63Bzwhrnjt3TvE58Q1+ycWaZJMsGZZiTaW7T8OGDWW9RljTyclJYE2loksjrLlz507F85ZnTaUGPy3W5Bv85J7xx48fk4U1+QY/NdYsW7asrJeGNdu2bSvrJVlT6e5jhDWXLl2qeN5agjWV7j6PHj1S9FqCNZUa/IyyZs2aNWW9ZIOfOazZrl073LBhg+LdZ8KECbLe5GZNT09Pxef0PbMm2SRLhiVYU63B748//lA8b81lTbLBLzlY8/bt24rPuGzZssnKmrly5ZL1Woo1lfLsP/30k6z3e2bNU6dOKT6nKlWqCMNk9LIm3+CnxppkkywZ3zNr9uzZU9ab3Kz5zz//KL6LlmBNpQa/d+/eJQtrajX4GWXNVq1ayXozZsyoOUzGCGsuXLhQ8bxNTtaUNsmSocWaAQEBVmPNqlWrynqNsKbeBj+mlBUrHGSFg0wGRE4M1AppMkg6xUEtpMkg6cRAtZAmg9Q+BMtdiBo3bix04IaFhVF7+WQQOe2J7J7SCnLaU1JSkuJfUHIhTQaREwO1QpoMIqc4aIU0GSSdGKgW0mSQdGKgWkiTQW/evKH2ksmgFy9eYFJSErUXwDQZRHYyakXp0qWFDtzExETRxECtkE57Iqc4aAXZgRsZGYkzZ86k9kqTQdKJgWohTQZJpziohTQZFBgYSO2VSwYpfWCUC2kySCkZKhd8MujixYuYkJAgmuKgFXwyiJ/2NGzYMGovnwziiy6lEwPVQjrt6dixY9ReaTLo6dOn1F5pMig6OpraC/BvBy6ZDFJKwMiFNBlETgzUCmkyqFu3btReaTKInBioFXwyiC+6lE5xUAs+GcR34EqnOKgFnwzipz19/PiR2ivXgav04UoupMkgspNRK6TJoGbNmlF7pckgcmKgVkiTQdIpDmpBJoOCg4NNJgaqBZkM8vf3N5nioBZkMujNmzf49etXai+ZDOKLLsluVa2oUKGCaNoTOcVBK4oVKybqwCUnBmqFNBlETnHQCnKycFhYGK5atYraK00GSScGqoU0GfTy5UtqrzQZFB8fT+0F+H8yiC+6VPr4JBd8Moj/EEZODNQKPhnET3siJwZqhbQDd+rUqdReaTJIOjFQLaTJoGvXrlF7pZOF/f39qb3ktCe+8ICcxqIV0sIDpSYPuShRooSo8ICcGKgVfOEB/yEspVmTn/YkneKgFjxr8tOejLBmeHg4tVdusrAR1iQnBmoFP+3J2qwpneKgFpZkzbdv31J7edbkG/ysyZrkFAetsCRrSqc4qIUlWVM6xUEtSNZ8+/atVViTL7okp9NrRfHixUUNfkZYk5wYqBXSBj8jrCmdGKgWTk5OomlPz549o/ZamjXJKWVawbMm/yHMCGuSEwO1gmdNvsHPWqyp1uAqDelkYaOsqVS0IxfkFhujrElODNQKKWuSEwO1wpKsKZ0YqBY8a/INfkZYMyQkhNrLsybZ4Gct1iQnBmqFJVlTOjFQLaRbbIyw5qtXr6i9JGu+fPkSExISqL0AlmVNcmKgVkgnCxthTenEQLWQNvhZizU/ffpE7bU0ayoV3sgFz5p80aUR1iQnBmoFz5p80WVKsiY5WVit6Fga0snCRllTqbBcLqRbbIywJjkxUCtI1oyKihJNDNQKS7KmdGKgWjg6OmLLli2FLTZGWJPjOGovgGmDn7VYk5wYqBWWZE3pxEC1sCRrBgUFUXtJ1uSLLpWKWeWiYsWKogY/I6xJTgzUCukWGyOsKZ0YqBbfC2vGxMRQewFMWZPJumKFg6xwkMmA9HzMIcPR0VHXX1Jk2Nraikbi6g09RT9yf1ma6y1QoICuBDIZOXPmFK0p1hOZM2dWnGqiFWnTplWcTqQV9vb2Zj8nGxsbs//7AADRiHq9oSc5KI18+fIpdqhoRbZs2RS7kLQiQ4YMuj7okpEmTRqz3wk7OzurvYvm/vsC/JsM0pPQICN37ty6CtLIyJIli2g9mJ5Ily6d2f9dOzg4mP2cUut56+rqqjh5Tyty5MihKzFJRqZMmcz+czs5OZn9+0qt522RIkUUuz61Im/evLqSVmQ4OzvrSoaQkT59erPPn9R69yHXbOmNggULKk5D0IpcuXIpdgRqRZYsWcz++9zI3cfBwcHsZ2zNd9HceyLAv8kgpWkIWpE9e3bFydJakTFjRrP/2zR691GaWk4TRp6xng8q0ihcuLBiB7ZW5MmTR7Q2U09kzZpVccKQVqRPn97sf+fUet4aufvkz5/fEGuSq6P0RKZMmRhr6gjGmvTxo7KmnoI0MoyyppG7j7VY08i7aJQ1lSbvaQVjzZR7xkWKFNHVpEZG3rx5dRXjk2GUNX+0u4+R89ZarJk5c2bGmjriR2RNc3/XdnZ2hp6TEa+Rd9EoaypNedcKo6xp7n/X1jxvzT0/AIy9i/nz59dVrERGjhw5rMaaP9rdx8gzzps3L2NNHcFYkz6s9V0ztb6Lrq6uuGLFCs1VyEzJJ1Y4yAoHmQxIb+EguZpWTyckwL8fNPr27YuHDh1SXPmgFORqWrWxx3JBTu3RM80FwLSTUk/iSTrCWc/EQQDxuiClkbhqf7Hx3QSjR4/W5c2XL5/QTaC0WlkpsmXLJnQTHDlyRJeXXBekttJMLtKkSSN0E+jpaAYwXU2rN0FIjnDWM3EQQDzCuW/fvrq85AhnPZ2QAOIRzno6zwHEq2nV1rnKRbp06YR1QU+ePNHldXBwEK2m1fNhlexcf/bsmW4wIFfTKq1fUQpyXdCQIUN0eV1dXYV1QUojyJWCnNqjtPJBKcgJsXq6XQHEE2K9vb11ecl1Qd7e3roKPKWrafVMgQAQr6ZVWr+iFEWLFsURI0agh4eHrk5IgH+hnl9Nu2bNGl1espNST/cVgLiTUm2lmVzwnZT81B49H3Ok64L0JuvJ1bR6Jg4CiNcFKa1fUQpyNa2eTkiAfz9o8OuC9HSeA/y/c33nzp2q61zlglxNq6fDDuD/net8J6WeKRDSqT16pkAAiCfEKq1fUQpyXZDS+hWlcHFxEdYFKa27UgpyXZDayge5yJgxo7CaVs8UXwBx5/q7d+90ee3s7ESrafV8AJeuC9IzcRBAvJpWaf2KUpBTeyZNmqTLS06I3bBhgy5v1qxZhXVBeiZ9AIjXBemZZAdgui5IT3JRui5Ib2KT71y/e/eurikQAOLVtAMHDtTlNcqa/NQePVPOAMRTe4ywpp5pLgCWZU09UyAArM+aJ06cUFx3pRQ8a+7bt88Qa6qtNJMLcmqPNVlTzxQIAMux5vTp03V5LcWaautc5cLarMlP7dH7cYOc2mOENZVWfSrF98Caautc5cKSrKnno5t0Na0R1tQz3R5APLXHWqx54sQJXV5LsqaeiYOWZE09EwcB/s+aV69e1TXdHkC8mtYIa27fvl2Xl8+zG2XN58+f6/JKp/ZYizX1TLcHsBxr6pnwCiDeRmKENfVMVgIQbyN5//69Li/PmvzUHiOsqWfiIIB4G4kR1pw8ebIu7/fAmnom2QFYljX1FkyT20iMsKbSqk+lyJ8/vzAh1lqseeXKFV1eS7KmnuZt6TYSI6ypZ7o9gHg17ZgxY3R5LcWaaqvs5YKcEGuENX18fHR5pdtIrMWaeqbbA1iONbds2aLLS24jsQZrLl++HN+9e6eriFc6IdYIa+qZbg8g3kZihDX1THgF+D5YU89GRABT1mSyrljhICscZDKgV69eqX7IlhZjkGNWfXx88Pjx4+jo6Kjo5xNk/BoBXkFBQXjhwgXVwhC+GINfI8ArIiICPT09VSvVpWsEeCUkJKCnpye2bNlS0UuuEQgNDRX9vq5evYp9+vRR9JKXxMDAQJH3zp07OH78eEWv9JJI6unTp6pFfNI1AqTevHmDe/fuVZ0KJV0jwMvf3x/PnDmjepkpU6aMUIyRmJgoeL9+/YoeHh6q3SpkMUZcXJzgjY6ORk9PT6xZs6ail0+Q8WsEeHEch56enqoFB9I1AqRu3LihCp7SNQKk7t+/jzNmzFD0kmsE3r17J/K+ePECN27cqOglL4n8CiVe79+/xyNHjqh2B0rXCPD6/Pkznj9/XrUjSbpGgFdoaCh6enqqfozmL4n8GgFecXFx6OnpqQolZDFGeHi46Pd1+fJl1aR7pkyZhATZly9fRN5bt26prhaRrhEg9fjxY9UPK9I1AqRev36tWjQtt0aAl6+vL548eRKdnJwU/dI1Ary+fPmCHh4eqt3Y0jUCvCIjI9HT0xMrV66s6JWuEeCVmJiInp6e2KZNG0Uv/0Fiz549+O3bQTY6lAABAABJREFUN9Hv69q1a6qj7tOnT48dO3bEzZs3m5y3d+/eVS0qkSbISD179kx1fYytra3JGgFeb9++xQMHDqgW00nXCPD69OkTnj17VnXSIp8g49cI8AoJCUFPT0/VTl2+GINfI8ArJiYGPT09sU6dOopevvD/8OHDGBERIfp9eXp6YufOnRW95AeJr1+/irxeXl6q4Jk2bVphjYC/v7/I++DBA5w9e7aiV/pBgtTLly9Vkwv8Bwm+GIN8Th8/fsRjx46hg4ODop9MkJHnLb/uQi1ZRxZjkO9ieHg4enp6qnYnk2sEyLtPfHw8enp6qhZbStcIkLpy5Ypq0l26RoDU7du3cezYsYpesvBfyhNPnjxRLeIj1wi8evVK5PX29tZcWcGvEXjw4IHoGfv5+eHp06cxXbp0il7pyjpewcHB6OHhga6uropeMkFG3n2ioqLQ09NTNSErXVnHKykpCT09PVWTQGQxhvS8vX79uupHzvTp0wsJss+fP4u89+7dU10bTK6se//+vcj7/PlzXLdunaJXbmUdr3fv3uGhQ4dUPyiTK+vIdzEgIADPnTunOv1CurKOF3/3Ues+5T9InD59WnT3iY2NRU9PT2zQoIGil/8gwa/rJXXp0iXVNT9kgiw4OFjkvXnzJo4YMULRK11ZR+rRo0c4f/58RS+ZIHvz5o3Ia5Q1T5w4ofoRKzlZU20yZWpmTb4Yg5RR1ty3b58ma/LFGHpZkyz8tzRrqhX/JCdrqjVvqrHmgwcPrMKaHz58oGJNvhjDUqwZFhaGnp6eqh+j+XW9ycGaaitlyWIMS7Om2oeV75k11TZs8KzJr+vlpYc1jx07luKsyRdjSO8+RllTrYiPLMZIDtZUm7SoxJrfvn0zzJp169ZV9Kqx5sWLF6lYc8eOHRZlzYcPH+KcOXMUvTxrLl269D/FmmpNtkZYk2wytxZrSvPsRllzz549il4A46zJF2NYmjWrV6+u6CWLMci7jyVYU22FN1mMoZc1pYX/pJ4/f666qlSNNd+/f0/NmtI8uyVYU206bXKyZteuXRW9RliTLMaQ3n2MsqZa0XRysqaHh0eysSZZ+G8N1uTX9ZIyyppqRXzSwn9SNKxJFv5bizXJu48R1kT8N8+uVtyenKw5c+ZMRW9qZU2y8J+xpjprSpvMSRllzVOnTqlOmeZZ88aNGxZnzSpVqih6ycJ/vaxJFv5L7z5M1hUrHGSFg0wGJb1MkN2h0kuiVNICGml3qJoOHTpkcoHgL4nSBJlU9+/fNzmoq1atKpsgkyogIMAkIUp2h5J/MUkVExNj8peUUoJMKo7jTKYO5sqVSzFBJpW0O0etGEMqaSKFTJB9+vRJ1Sv9oKtWjCGVtHND2h2q9pxevnxpkhAlu0PJS6JUISEhJglR/pIoTZBJlZCQYDK2mewOJS+JcpJOHSS7Q6UJMqmkkyDUEmRSSS/2asUYUkk75cgEmfSSKNWNGzdM3kU+Qfbw4UPVZ+zj42OSECW7Q9XexcjISJOEKNkdSl4SpUpKSjLpzlG6JMpJOgmCvyTKJcikGjZsmMir9kFCKmlnMv9BQi5BJtWxY8dMztt69erJJsikevz4sckzJosx1LyBgYEmCVGlBJlUsbGxJglRsjtU67yVAjrZHap13kqLUsnuUK3zduLEiSbnLd8dKv0gIdWmTZtEXml3qJouXrxoct6S3aFqz8nb29skIVqhQgXZBJlUoaGhJglRpQSZVImJiSYJUaViDDlJP06QCTKt81ZaJEUWYwQFBal6586da3LeKhX+S7Vv3z6T85bsDlWTXNeqUuG/VH5+fiYJUbI7VO28jY6ONpnKwn+QkBZjSMVxHFasWFHk5T9IyCXIpJImy9QSZFL9/fffIq9agkyqVatWmdx9lBJkUkmnBEi7Q9We07Nnz0wSokqF/1IFBwebJETJ7lC18zYuLs6kM5nsDlW7+3AcZzJ1kOwOlSbIpJJ+KOQ/SMglyKSSfkTiP0jIJcikkhazqRVjSCWdEsB/kJBLkEn1/v17k4QoWYyh9ozDw8NNEqJKhf9SJSYmmqzpUCr8l5N0EgQ5iUj6QUIqI6wpTWqSrCktxpDqe2JNpWIMqYyyprTwOKVYc9y4cSZ3n5RgzfPnz5u8i7Ss+erVK0XWlBZjSJUcrClXjCEnI6wpnQSRGlhTbhpvSrGmdMW7JVhTWvgvJ2lhhlHWVCrGkMoIa0qnn6sVY0hlhDWDgoKSjTW17j5GWFP6oZBkTWkxhlRGWFM6AZRnTbliDKmMsOabN29SJWtKpw6qFWNIZYQ1pVOwLMWa0mIMqe7cuWPyLtKypr+/vyxryhVjSGWUNaVTB9WKMaQywprSj/apgTWfP39uFdaMj49XZE2tPLsca6oVY0jVq1cvkVcPa0q3+6gVY0hlhDWvXr1qct4qFWNIZZQ1pdPPUwNrDh482OTuo9RkLpUR1jx8+LDJu6jUZC6VHGsqFf5LFRAQYFJ8kxpYU9oAmVKsKS0etgRryhX+S2WENb99+2YyjVep8F8qo6wpLYRTazKXyghrSicuW4o1tfLsRllTOlBJqclcKqOsKR2oZJQ1lQr/pRo+fLjJeUvLmsuXLzc5b5UK/6Uywppy0yGVmsylMsKaTNYVKxxkhYNMBuTr64uOjo6itVBql0RSkZGRmDNnTtEKYq1LIq+kpCSsUKGCaneomtq3b68rQUZqxIgRuooxSK1YscJkLZTaX0yk+PUeSt2hanry5Ana2NhQXxJJBQUFYfr06UUriLUuibzi4uIwf/78qt2hSuI4DmvXri1aC6WVICPVo0cP1e5QNU2ePNlkLRSt+M5gclQ37TO+dOkSAtAXY5B6+/Yt2tnZKXaHqiksLAyzZs2q2B2qpsTERCxZsqTokqiVICPVokULUXeoVoKM1MCBA1W7Q9U0f/58kxXEtM/pwIEDokuiVoKM1N27d4VLIk2CjNSnT5/QycmJuhiDVHR0NObJk0dXMQYvjuOwcuXKqt2haurcubNqd6iaRo8ebfao7jVr1qh2h6qJX6NNroWifcYvXrxAGxsb0Qpi2vP269evmDFjRlF3qBaw8YqPj8dChQrpSpCRatCgga5iDFK9e/fWVfhPavr06ardoWrasWMHAih3h6qJX6Ot1B2qpg8fPqCDg4Nid6iaIiIiMFu2bKK1UHruPmXKlBGtINZz92nTpo1oLZRWgozUkCFDTFYQ02rJkiW6ijFI8askaQv/SfFrXZW6Q9X0+fNnTJs2ra7Cf16xsbGYL18+XR8keHEchzVq1FDtDlVT165dRR8k9DDW+PHjVbtD1bRhwwaTtVC0z5hfbUauIKZ9F1+/fo22trbUCTJSfDJVT+E/r4SEBCxWrJjZ3aFNmjTRVfhPqn///qqTiNQ0e/Zsk7VQtM+Jn4pCriCm9d66dUv0QUJPgswIa0ZFRQmsSVuMwYtkTdrCf1IdOnRIdax58uRJq7Dmly9fRKxJU4zBS8qaNIX/vDiOwzp16pjNmr/99puuYgxSRlhz69atVmNNe3v7VMeaLVu2tAprLliwwGQFsV7WpC3GIMWvdU1trFmlShWrsOaYMWMsxppaxRikjLKmra0tdTEGKaOsWbhwYauwZp8+fSzKmrTPyQhr8qvNaJvMSUlZU6sYg1RERARmz57dEGvqKcYg5ebmZjZrDh06VFcxBikjrMmvkkxp1gwMDLQYa+rNsxthzV9//VW0gthc1qQp/Ce1ceNGw6xJW/hPim+QNZc1s2TJYhXWbNq0qVVYc86cORZhTZrCf1JGWNPPzw8dHR2pm8xJGWFNvkHWGqw5cuRIi7Gmnjy7EdZ8+vSpiDW1Cv9JGWXNAgUKGGJNPYX/pIyw5pQpU3Q1mZMywpqXL1+2Gms6OztbhDVpCv9JGWHNQYMGmawgphXPmrSF/6QOHjxomDVpC/9JGWHNmJgYq7Fmly5drMKaTNYVKxxkhYNMBvT48WNdl0RSb9++1ewOVVJQUJCuSyKpmJgYXcVvpDiOwxMnTuhKkJE6e/asrgQZqcuXL+tKkJG6c+eOrmIMUs+fP9eVICPl4+OjqxiD1Ldv3zS7Q5UUHx+Px48fp74kkuI4Dk+dOqXrkkjqwoULui6JpK5fv67rkkjqwYMHuhJkpF6/fq0rQUYqICBAV4KMVGRkpK4EGamkpCQ8fvw49SVRqjNnzuhKkJG6ePGirksiqZs3b5p9SXzy5ImuDxKk3r9/b7IWilb8OhNzztvY2Fg8ceIEdYKMFMdxePz4cbNHdZ87d87s8/bq1au6EmSk7t69q9kdqqQXL15odocqydfXV9cHCVJhYWG6PkiQSkxMxOPHj1MnyKQ6deqUrgQZKQ8PD10JMlI3btzQ9UGC1MOHD3UVY5B68+aNrgQZqc+fP+sqxiAVHR2Np06dMuvuw5+3tAkyqc6ePWv2eXvp0iVdCTJSt2/f1pUgI/X06VNdCTJSHz580JUgIxUSEqIrQUYqLi5O1wdgUhzH4cmTJ80+b8+fP6/rgwSpa9eu6SrGIHX//n1dHyRIvXr1SrM7VEn+/v66EmSkIiIidCXISPHnrbl3n9OnT+tKkJHy9PQ0+7z18vLS9UGC1I/ImsePH7cKa165coWxJqUSEhLwxIkTVmFNDw8PxpqUioqKSpWseenSJbNZ89atW4ZYU08xBimjrKmnGINUXFycIdY8ceKEIdY09+5jhDXv3btnFdb08/MzxJp6ijFIMdbUJyOsGRgYaBXW5N9Fxpp0shZrxsfHG7r7GGHNCxcupErW1FOMQepHZU1z7z4/ImvqKX4jxVhTnyzBmubcfYywJuK/RZqMNenEWFOfbt68qavwn5RR1tRT+E8qtbImk3WVHIWDNvhvYRyTimxsbFwAwBcAwNfXF1xcXKz8J2JiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmL6EeTn5weurq78/3RFRD+j/0xbo/8AJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiam1CNWOMjExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE9AOJFQ4yMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMf1AYoWDTD+MHjx4ALdv3waO43R737x5A5cuXYKEhATd3qCgIDh16hTExsbq9sbGxsLBgwchPDxctxcR4eDBgxAcHKzbCwBw4sQJ8PMzbx26p6cnvH792izvzZs34eHDh4CIur1Pnz6FGzduQFJSkm7vx48f4cKFCxAfH6/bGxoaCseOHYPo6Gjd3oSEBDhw4ACEhobq9iIiHD58GAIDA3V7AQDOnDkDHz58MMt75coVePHihVnP6e7du3D37l2z3sVXr17BlStXIDExUbc3ICAAzpw5A3Fxcbq9UVFRcPjwYYiMjNTt5TgODhw4AF+/ftXtBQA4duwYfPr0ySzv+fPn4e3bt2Z5b9y4AU+ePDHrGT969Ahu3bpl1jN+9+4dXLx40azzNjg4GE6ePAkxMTG6vXFxcXDgwAEICwvT7eXP2y9fvuj2AgCcOnUKfH19zfJevHgRXr16ZZb39u3b8ODBA7Oe8fPnz+H69etmnbe+vr5w/vx5s97F8PBwOHr0KERFRen2JiUlwYEDB+Dbt2+6vQAAR44cgc+fP5vlPXv2LLx//94s79WrV+HZs2dmPaf79+/DnTt3zHoXvb294fLly2adt4GBgXD69Gmz7j4xMTFw6NAhiIiI0O3lOA4OHjxo9nl74sQJ8Pf3N8t74cIF8Pb2Nsvr5eUFjx49MusZP3nyBLy8vMx6Fz98+AAeHh5mnbchISFw/Phxs+4+8fHxhs7bQ4cOQVBQkG4vAMDp06fh48ePZnkvXboEL1++NOs53blzB+7fv2+W9+XLl3Dt2jWz3kV/f384e/asWedtZGSk2Xcf/rwNCQnR7QUAOHr0KAQEBJjlPXfuHLx7984s77Vr1+Dp06dmPaeHDx9ahTW/fPkCp06dMuvuYwnWNPfu86Oxpo+Pj1VYMzEx0RBrHjlyxGqs+fz5c7Oe07179xhr6tDx48fNZs0LFy5YjTVv3rxpFdY8ceKEWeetJe4+RljTx8fHLO+PyJpHjhxhrEmpH401EREOHDhgKM/+I7KmOXcfI6zJ59nNPW8PHz5sNdY0kmc3lzVfvHgBV69e/aFY89ixYz8Ua759+/aHY82TJ0+anWe3Fms+e/bMqqxpzt0nMTERDh48aBZrAgAcPnzY7LvPj8qa5tx9rP1d08jdxwhrPn782Cqs6enpmSpZ09y7D9N/UIjIQiMAwAUAEADQ19cXmVKn/P39MU2aNJg7d278/fff8fDhwxgZGUnljY6Oxty5c2OWLFmwa9euuHPnTgwJCaHychyHlStXxnTp0mH79u1xw4YNGBAQQP3n7tSpEzo4OGDTpk1x2bJl+O7dO2rv6NGj0cbGBmvXro1z5szBp0+fIsdxVN7Vq1cjAGDFihVx0qRJePv2bUxKSqLynjlzBgEAixcvjn///TdeunQJExISqLzPnz9HGxsbdHV1xYEDB+KpU6cwJiaGyhscHIwZM2bE7NmzY69evfDAgQMYHh5O5Y2Pj8dChQphpkyZsEuXLrht2zb88uULlZfjOKxfvz46OTlhmzZtcO3atejn50flRUTs3bs32tvbY6NGjXDx4sX4+vVrau+0adPQxsYGa9SogTNmzMCHDx9SP+Pt27cjAGDZsmXR3d0db9y4gYmJiVTea9euIQBg4cKFcdiwYXjhwgWMi4uj8n748AHt7e0xT5482L9/fzx27BhGRUVReSMiIjBbtmzo7OyM3bt3xz179mBoaCiVNykpCUuXLo3p06fHn376CTdv3oyBgYFUXkTENm3aoKOjI7Zo0QJXrlyJHz58oPYOHjwYbW1tsV69ejh//nx8/vw59XNavHgxAgBWqVIFp06dinfv3qX2HjlyBAEAS5UqhWPGjMErV65Qv4sPHjxAAMACBQrgX3/9hWfOnMHY2Fgq7+fPnzFt2rSYM2dO7NOnDx46dAgjIiKovDExMZgvXz7MnDkz/vLLL7hjxw78+vUrlZfjOKxevTqmTZsW27Zti+vXr8dPnz5ReRERu3btivb29tikSRNcunQpvn37ltrr7u6ONjY2WKtWLZw9ezY+efKE+jlt2LABAQArVKiAEydOxFu3blGftxcuXEAAwGLFiuHIkSPx4sWLGB8fT+V9/fo12traoouLCw4YMABPnjyJ0dHRVN5v375h5syZMXv27NizZ0/ct28fhoWFUXkTEhKwaNGimDFjRuzUqRNu3boVg4KCqLyIiE2aNME0adJgq1atcPXq1ejj40Pt7devH9rZ2WGDBg1w4cKF+OrVK2rv7NmzEQCwWrVqOH36dHzw4AH1M969ezcCAJYpUwbHjRuH169fpz5vb968iQCAhQoVwqFDh+L58+epz1tfX190dHTE3LlzY79+/fDo0aPUd5/IyEjMmTMnZs2aFbt164a7d+/Gb9++UXmTkpKwQoUKmD59euzQoQNu2rRJ192nffv26OjoiM2bN8fly5fj+/fvqb0jRoxAW1tbrFu3Ls6dOxefPXtG/ZyWL1+OAICVKlXCyZMn4507d6jfxRMnTiAAYIkSJXDUqFF4+fJl6vP2yZMnaGNjg/nz58dBgwbh6dOnqe8+QUFBmD59esyRIwf27t0bDx48SH3exsXFYf78+TFTpkz4888/4/bt2zE4OJjKy3Ec1q5dG52cnNDNzQ3XrVun6+7To0cPtLe3x8aNG+OSJUvwzZs31N5JkyahjY0N1qxZE2fNmoWPHj2ifsZbtmxBAMDy5cvj+PHj0cvLi/oZX7p0CQEAixYtisOHD0cPDw/q8/bt27doZ2eHefPmxT/++AOPHz9Ofd6GhYVh1qxZ0dnZGXv06IF79+6lvvskJiZiiRIlMEOGDNixY0fcsmWLrrtPixYtME2aNNiyZUtctWoVfvz4kdo7cOBAtLOzw/r16+OCBQvw5cuX1N758+cjAGDVqlVx2rRpeP/+fepnfODAAQQALF26NI4dOxavXbtGfd7evXsXAQALFiyIQ4YMwXPnzlHffT59+oROTk5WZc127drpZs3OnTtbhTXXrFljFdZ88eKF2az59etXi7HmP//8Q82aiIgNGjQQWHPNmjW68lK9e/dGOzs7bNiwIS5atEgXa06fPj1VsqaDg4NVWLNMmTJWYc0hQ4aYzZpLliwRWHPKlClmsWbJkiVx9OjRuljz4cOHVmHN2NjYVMma48ePtwprenh4iFjT09NTN2vmy5cP//zzTzxx4sR/njX79+9vFdbcs2dPqmPNqKgoEWvu2rWL+u7DsyafZ9+4caOuu0+HDh0Ms2adOnV0s+aKFStSHWt++fLFhDVp7z5GWbNOnToWYc3Fixejt7c3tXfy5MnC3WfmzJm6WHPr1q2GWbNIkSJmsaa9vb1VWLNkyZKpjjUXLFggYs179+6ZzZpXr16lPm/v3bsnYs2zZ8/qZs1cuXJh3759dbNmnjx5zGbNKlWqiFhTz93HCGuOGTPGKqx59uxZi7HmyZMnzWLNnj174v79+3WxZuHChQ2zZuvWrXWzZp8+fQyxJgBg9erVdbPmjh07zGbN69evW401s2fPLmJNPXl2I6zp5uZmEdacN2+eWaxZuXJl3ax59OhRq7BmYGCg1VizRo0aFmNNPXl2KWs+fvyY+jkxWVe+vr7I168BgAtaoibOEv+Q/3qwwsH/joYOHUq+RLqSQUuXLhV59SSDjh07JvLqSQY9evTIxEubDAoMDMR06dKJvLTJoNjYWHRxcRF5+WTQkSNHVOGE4zisWbOmyKsnGfTrr7+KvHqSQRMmTBB59SSDNm3aJPLqSQZ5enqaPCfaZJC3tzfa2dmJvLTJoG/fvmGWLFlEXtpkUEJCAhYvXlzk1ZMMatasmcirJxn0xx9/iLx6kkFz584VefUkg/bu3Svy6ik8uH37tskzpk0G+fn5oaOjo8hLmwyKiorCXLlyiby0ySCO47BixYoir55k0E8//STy6kkG/f333ybnLW0yaOXKlSbnLZ8MevHihepzOnXqlMlzok0GPXv2DG1sbETe0qVL45gxYzSTQV++fMEMGTKIvLTJoLi4OCxYsKDIS5sM4jgO69atK/LqSQb17NnT5LylTQZNmTJF5NWTDPrnn39M3kXaZNCVK1dMnjFtMujdu3dob28v8tImg8LDw9HZ2VnkpU0GJSYmYqlSpUReMhmk9SGsVatWJuctbTLor7/+MjlvaZNBCxcuNHkXaZNBhw4dMnlOtMmg+/fvm3hpk0EBAQHo5OQk8tImg2JiYjBPnjwiL20yiOM4rFq1qsl5S5sM+vnnn0VePhm0adMm/Pz5s6p37NixJncf2mTQunXrTO4+tMmgc+fOmTwn2mTQy5cv0dbWVuSlTQZ9/foVM2XKJPLSJoMSEhKwSJEiIq+eZFCjRo1EXj3JoL59+4q8epJBM2fONLn70CaDdu7caXLe1qpVC2fNmqWZDLpx44bJM+YLD27evKl63vr4+KCDg4PIW6xYMRwxYoRm4UFkZCRmz55d5KUtPEhKSsJy5cqJvNmyZcPffvuNqvCgbdu2Iq+ewoNhw4aZ3H2+d9Z8/PixiZdnTa2iS6Os6erqKvIaYc0sWbLgr7/+SsWa3bp1M7n70LLmxIkTTe4+zZo1S3bWvHjxoslzSgnWDA0NTRbWpCm6NMKaf/75p8ndx83NjarBzwhr7tu3z+S8pS08kGPNcuXKUbNmmjRpRF5a1uQLl0lvSrFmx44dRd6UYs1Vq1aZnLdGWXPq1KnJyprBwcGyrDl48OBkZ8169eqZnLcpwZpTp041OW8twZpaRZdGWPP9+/eKrHnx4sVkZc3SpUuLvEZYM2PGjNi5c+dkZ81FixaZvIv/ddbMmzevyGuENbNmzYrdu3enavAzwprjxo0Tefk8+4oVK5KVNc+fP2/ynFKCNUNCQlIla/7+++8iL8ma/v7+ql4jrLlr1y6T89YIa5YvXx4nTJiQ7KyZI0cOkTelWLNdu3Ymd5+UYM1ly5aZnLe0rHn8+HGT58SzplaDnxHWDAoKkmVNvsEvOVmzVq1aJnef7501N2/ebHLepgRrvnnzxqKs6erqioMGDdJs8EtMTDTEms2bNxd5yWEyycma8+bNMzlv+WEyycmad+7cMXnGqYE1K1WqJPKmFGuOGjXK5O7TsmVLXLlyZbKy5unTp02ekxHW5IfJJCdrMllXrHCQFQ4yGRDHcbJ/yZFRsWJF2Q5cjuMwKirK5C85MpSSQRzHYVJSElauXFnRS057Ii9EHMchx3Emf8mRoZQM4r3Sv+TIUEsGcRxn8pec9EKklAziOE72LznyL0ulZBDHcbJ/yZGhlAziOE6YOqjkVUoGcRyHcXFxWKhQIUUvnwySfgjjn3H9+vUVvUrJIP459erVS9GrlAzivdKEKhnktCdpMojjONy2bZuiVy0ZxHGcMAlCLvhpT3LJII7jZBOqZCglgziOw/DwcMyWLZuiVykZxHGcbEKVDKVkEP+7bt26taJXKRnEe6UJVTL4ZJDchzCO40wSqmSoJYM4jsPDhw8revlkkNy0J47jZBOqfKglgziOw4CAAEybNq2iXykZxHEcRkdHY758+RS9RYsWlU0G8e9i9erVFb1KySD+Of3yyy+KXqVkEO+VJlTJUEsGcRyH69evV/SqJYM4jpNNqPKhlgziOA5fvXplklAlQykZxHEchoSEYObMmRW9ZcqUkZ32xHEcxsfHY9GiRRW9Sskg/nfduHFjRS8/7UmaDOK90oQqGWrJII7jcNasWYpetWQQx3EmCVUy1JJBHMehl5eXolctGcRxHPr4+JgULpPBJ4OkH8I4jsOIiAjMmTOnolcpGcSftxUqVFD0KiWD+OckTaiSoZQM4r3Dhw9X9KolgziOM0mokqE2WZjjONmEKh9qySCO44RJEHJetWQQx3EYGBiI6dOnV/zZSskgjuMwNjYW8+fPr+hVSgbx523t2rUVvXwySOnu0717d0WvUjKI90oTqmTwySC5DlyO40wSqmSoJYM4jhMmQSi9i/y0J2kyiOM42YQqGUrJII7jMDQ0FLNmzaroVUoGcRyHCQkJWKJECUWvUjKI/11LE6pkKBUe8N4BAwYoesnCA+mHMI7jTBKqZKgVHnAch/v371f0koUH0mlPHMfJJlTJd1Gp8IDjOPT39zf5mEyGEdZUmixsCdbs1KmTojc5WZOfcC8XlmJNubsPP+FeyW8J1pQ2+BllTY7jNFmTn/ZkadacNm2aovd7Zk3px2QySNaUvotGWbNMmTKK3vz58xtmTelkYd47ePBgRa8Wa/IT7uUibdq0QoOfpVmTn3AvF2SDn6VZk59wr+T9XlnT3d1d0ZucrMlPuJcLnjXlpj3RsKbSZOHUzJr9+vVT9CYna/IT7uXCUqwpbfAzypr8hHslb4kSJWQb/CzBmu3bt1f05siRQ3aysCVYk59wLxffK2vyE+6VfjbJmtJ30Shr1qlTR9FrlDXlJgvz3kmTJil6tViTn3AvF2SDn6VZk586qOTnt9gkB2uWLFlS0Wsp1pS7+xhhTX7CvVykTZsW27VrJ9vgZ5Q1+Qn3Su9i7dq1ZScL07Cm0mRhnjWlTbJkaLFmlSpVFL3JyZqjR49W9CYna/IT7uXCEqwp1+BnCdYsXLiwordw4cKyDX6WYM3evXsretW22BhlTX7CvVxosSY/dVAukps1pU2yZPCsqZRnN8Kabdq0UfQaYU21Bj+jrMlPuJcLtS02RlmTn3Cv5E9O1qxRo4ai1xKsqZRnN5c1mawrVjjICgeZDEitaEcuyGTQnDlzdHnJZJBaslwuyGSQWoJOLshkkFxHj1pIk0FqyXK5qFSpktCBK+2C1AoyGdSlSxddXnLNlNqHK7kgk0FqhQJyQSaDDh48qMtLJoPUPojIhXSlsR4vmQx6+PChSde5VpDJoIYNG+ry8smgCxcuYJ8+fXR5yWSQdMKZVpDJoI0bN+ryksmgkydP6vKSySB+FQFtSJNBagk6uSCTQWXLltXlJZNB0ok7WkEmg9RgQi7IZJBa8kYuMmfOjF27dsUdO3aYTFXSCjIZdFGmu04tHBwchA7cZ8+e6fJKk0HSiZJaQSaDpF2QWkEmg7p27arLSyaD1Iok5YJMBqkVpcsFmQxSA0a5SJMmjZAM4tcw0YY0GaT20UsuyGSQ2ocruSAnCzdt2lSXl0wGqX24kgsyGTRjxgxdXjIZpJYslwsyGcSvBaENMhnEryKgDWkySO3jpFzwyaA7d+6YdEFqBZkMkk531Qpy2tOIESN0eclkkFryRi7IZJB0gq9WkMmgy5cv6/KSyaAXL17o8kqTQdJp2lpBJoOkE3e0gkwG/fbbb7q8ZDJIOk1bK8hk0Nq1a3V5yQ5ctY+TcsEXHqxatUp2cpZaSNdMqTV6yQVZeKD24UouyJXG0ok7WkEWHqh9uJILS7GmWrJcLizBmsuWLbMqa1arVk2Xl5wsbC3WVCsUkAtLsabaBxG5sDZr8g1+0ok7WmGUNfkGP7WGPLkwwprkmim5KXZqQbKm2gdoubAka0on7miFEdYsUKAADh48GM+cOYNDhgzR5bUUa6o1AckF2eCnVgwiF0ZZk1xprFaULheWYk3pJhGtIFlTOk1bKyzBmlu3brUKa/INfmrNJXJhKdaUTnfVCnKycP/+/XV5LcWa/DpY2vhRWZNv8FMbRiAXRliT3GLDryekDUuxptzUULUgWfPly5e6vJZiTS8vL9WiHbmwBGseP35ctSFPLqzJmvxkYWuypnSTiFYYYU1+i825c+dw4MCBurw8ax4+fNgqrLlhwwb08PDQ5TXCmtItNmqFWXJhKdaUTnfVCpI11Yok5eJHZU2+wS8lWZOcLCzdJKIVlmJN6fYCrbAUaxr5rvn8+XOTKXZaYQnWvHLliuowArkwwprkMJkFCxbo8lqLNcnJws+fP9fllbImWXTJlPJKjsJBG/y3MI5JRTY2Ni4A4AsA4OvrCy4uLlb+EzGZo8GDB8OqVavM8trZ2UFSUpJZXltbW+A4ziyvNWXkz21vbw+JiYlmeR0cHCAhISHFvUaesY2NDaTGs9TIv7O1npOR/7ZS67to5L+vH+1dTK3P2MifOzW+i0aecWpVanwXf8Tzlt196MXuPinn/RHfRXb3oVdqfcap8e7Dzlt9Yudt6hA7b+mVWp/xj/YuMtbUp9T4jFPru8hYk17s7pNy3h/xXWR3H3ql1mecGlnTWncfdt6mnJedt/qUGs/bH/EZFyxYENq1awejR49mtVNWkJ+fH7i6uvL/0xUR/Yz+M22N/gOYmP7rKlOmDDRo0MAsb6FChaBVq1ZmeXPnzg0//fSTWd6sWbNCly5dzPKmS5cOOnToAOnSpdPtdXBwgObNm0PevHl1e21tbaFu3bpQqlQp3V4AgEqVKkH16tXN8pYoUQIaN25sltfV1RXc3NzM8ubIkQM6duxoljdTpkxmP2MnJydwc3ODLFmy6Pba29tD48aNoUCBArq9NjY2ULNmTShfvrxuLwBA+fLloU6dOmZ5ixQpAs2bNzfLmzdvXmjfvr1ZXmdnZ+jcubNZ3gwZMkDHjh3B0dFRt9fR0RFatmwJOXPm1O21s7OD+vXrQ7FixXR7AQCqVq0KVapUMctbunRpaNiwoVneggULQuvWrc3y5sqVy+x3MXPmzGY/47Rp00K7du0gQ4YMur0ODg7QtGlTyJcvn26vjY0N1K5dG0qXLq3bCwBQsWJFqFmzplne4sWLQ9OmTc3yuri4QLt27czyZs+eHTp16mSWN2PGjNClSxewsbHR7XVycoI2bdpA1qxZdXvt7OygYcOGUKhQId1eGxsbqFGjBlSsWFG3FwCgbNmyUK9ePbO8hQsXhpYtW5rlzZMnD3To0MEsb9asWc1+F9OnTw8//fQTpEmTRrfX0dERWrRoAblz59bttbW1hXr16kGJEiV0ewEAqlSpAlWrVjXLW6pUKWjUqJFZ3vz580ObNm3M8ubMmdPQeWvu3Sdt2rTQtm1byJQpk26vvb09NGnShARxatnY2ECtWrWgXLlyur0AABUqVIDatWub5S1WrJjZd598+fKZfffJli2b2edthgwZoFOnTmBnZ6fbmyZNGmjVqhVky5ZNt9fOzg4aNGgARYoU0e0FAKhWrRpUqlTJLC9jTXrxrJknTx7dXltbW6hTp47VWLNJkyZmeY2yprnvorVZs2DBgrq9qZk1zb37pEbWtLW1/SFZ09zzNjWzZpkyZXR7AazLmubefSzBmra2+j/RpEmTBlq3bp3irAkAUL16dcaalEqtrFm5cmWzWbNkyZKMNSnFs2b+/Pl1e63JmkWLFoVmzZqZ5U3NrJk9e3bdXkuwZuXKlc3ypkbWzJIli9nnbbp06aB9+/Zms2azZs2sxpo1atQwy2uUNdu2bWuW1yhr/vzzz2Z5rcmaNWrUMJs1y5UrZ4g1W7RoYZbX2qxp7t3HKGsWL15ctxfAOGuae94WKFDA7PPWKGsaufu0a9cOJkyYAOPGjWNFg/8lWWJs4X89gK0q/k/o6NGjOG7cOM1x5OS633fv3iEi4tWrV9Hd3V1znaR0BRPHcfj06VN0d3fHEiVKaI55JcdiJyUl4adPn9Dd3R2rV6+u6SXX/SYkJGBMTAy6u7tj8+bNNb3kWOyYmBhERJwxYwbVeO3s2bMLY7HDw8MREXHlypX4xx9/aHozZswojMX+8uULIiLu2rULR40ahTY2Nqpeciy2n58fIiKeOXMGx40bhxkzZtQcxUuOxUZEvHXrFrq7u6Orq6vmKF5+BdOjR4+Q4zj09vZGd3d3qrWw/LrfGzduYGJiIgYHB6O7uzvWrVtX00uuYIqLi0OO49Dd3R3d3Nw0vXny5BHGYkdFRSEi4vz586nWGWTNmlUYi/3t2zdERNywYQPVOlpyLPbnz58REfHgwYM4duxYtLe3V/WSY7E/fPiAiIienp7o7u6uud5MuoKJ4zh8+PAhuru7Y+HChTX/3ORYbI7j8OPHj+ju7o6VK1fW9JIrmBITEzEiIgLd3d2xcePGml5+LPbZs2cxNjYWERGnTJmCnTp10vTmzJkT+/bti4cOHcKIiAhERFy6dCn+/vvvml5yLPbXr18REXHbtm1Ua0nIdb/+/v6IiHj8+HEcN24cpk2bVtXr4OCATZs2xaVLl+Lbt28REfH69evo7u6uuVJJbiz28+fP0d3dnWpNIbmCKSkpCT9//ozu7u5U65jIFUzx8fEYHx+P7u7uVGsnyBVM0dHRiIg4a9YsqlVO2bJlE1YwhYWFISLimjVrqFZWkOt+g4KCEBFxz549OHr0aM0VvOQKJh8fH0REPHfuHLq7u2OmTJlUvdIVTIiId+/eRXd3dyxQoIDmn5tcwcRxHL59+xbd3d2xQoUKmt6yZcsKK5gSExPx27dv6O7ujg0aNND0kiuY4uLiEBFx/Pjx2L59e01v7ty5hRVMkZGRiIi4cOFC7NWrl6aXXMHEn7ebNm3CoUOHanrTpUsnrGDiz9vDhw/j2LFj0dHRUfNd5FcwvX//HhERL1++jO7u7pgjRw5VL7mC6dmzZ8hxHD5+/Bjd3d2xWLFimn9ucgVTUlIS+vn5obu7O9V6EHLdb0JCAkZFRaG7uzvVyq38+fPjX3/9hadPnxbuPtOmTaNaY0muYOLvPitWrKBa10WuYAoODkZExB07duDff/9NdffhVzDxd59Tp07huHHjNFcNkiuYvL29ERHRy8sL3d3dMV++fKpe6QomjuPw1atX6O7ujmXKlNH8dybX/SYlJWFQUBC6u7tjnTp1NL3kCqb4+HhMTExEd3d3bNOmjaY3b968wgom/rydO3cudu/eXdNLrmAKDQ1FRMR169bhX3/9penNkCEDdurUCbds2YKBgYGIiLh//34cM2aM5ho6ct3vx48fERHxwoUL6O7ujlmzZlX1SlcwISLev38f3d3dsVChQpp/bnIFE8dx+OHDB3R3d6dajUauYEpMTMSwsDB0d3enWgFDrmDi7z6TJk2iWuGdK1cuYd0vf94uXryYalUpuYIpJCQEERG3bt2Kw4cP1/SS634/ffqU4qzJr2DiOA6fPXtmmDVr1Kih6SVXMCUkJGBsbCy6u7tjixYtNL1KrPnLL79oeuVYc9WqVfjnn39qeq3FmnZ2diasefv2bd2s+fDhQxFr0qzqkbLm169f0d3dnWrVuhJr0qyUtTRrbty4kWpFkBprOjg4qHrlWPPixYuGWbNIkSKaf24pa/r4+KC7uztWqVJF00uuYEpISBBYs0mTJppeS7PmsmXLUoQ1+RVMPGueOHGCijXJFUxv3rwRsWaePHk030Upa7548QLd3d2p1hRKWTMwMDBFWDNfvnwmrDl79myrsObevXt1sebq1atNWFNrtatR1qxWrZqINd+9e0fNmuS6X0uw5oQJE6zCmps3b9bNmgEBAVZlzSdPnqQYa/LrfhMSEjA6OpqaNV1dXYV1vz8qa968edMqrPnlyxfdrOnh4WGINfm7Dy1rOjs7Y48ePcxmTX7dr17WdHR0FNb98qzp4eHBWFMhLMGaO3fuFO4+ellzw4YNAmseO3YMx40bh05OTqpePs++bNkyIc+eUqxZsWJFq7Cmi4vLd8Oau3fv1s2afL3BmTNn0N3dPUVYk1/3aw5r8ut+9bImue6Xv/sw1lR+Fy3Bmnfv3jXMmpGRkdSsyefZz5w5YxZr8ut+zWHNX375xYQ1R44cqellrGkea544cUJgTSbrKjlWFVu9KC81BLDCwf+Mjh49KnvgZc+e3SRBJtWjR49kvWSCjL8kShUYGCj7Fw1ZjKH031ZsbCy6uLiYePkE2aJFi4RLolQcxylezqtXry66JMpJKblYtmxZ0SVRTuPHj5f1yl0Spdq4caOsl78kHj16VLgkSuXp6Snr5S+JZIJMKm9vb1nI5i+JZDGGVN++fcMsWbKYePlLIpkgkyohIUE24cVfEufNm4fPnz9XfE5NmzaV/XfmE2R3797FpKQkWa9SgSdfjMFfEuU0Z84cWa/cJVGqvXv3ynrlLolS3bp1S9ZLXhL5BJlUfn5+sklNuUuiVFFRUZgzZ06qS6JUHMdhxYoVFS+JZIJMTkoJjQoVKogSZHJSuiRLizHktHLlSsVL4p9//ql6STx58qSsly/G2Ldvn5Agk+rp06eykM0XY2zdulX4ICHVly9fZJOafDEG+UFCqri4ONkPDHZ2dtigQQNcuHChkCCTiuM4xQJg/oMEnyCTkxLs8h8k+ASZnKZMmSLr5T9InDt3TvG83bp1q6yX/yBBJsikunz5sqxXrhhDqnfv3skWD5PFGPwHCanCwsLQ2dnZxCtXjCFVYmKiLICRhf/8Bwk5tWzZUvbfuVKlSjh58mThg4ScBg0aJOstUaIEjho1SkiQyWnBggWyXrkPElIdPHhQ1st/kCATZFLdv39f1st/kCATZFJ9+vRJNqnJf5AgizGkiomJkYVssvCf/yAhFcdxsskQucJ/OSl9zOGLMby8vBSf8dixY2W9fDEG/0FCTmvXrpX15s2bF//44w/RBwmpzp07J+uV+yAh1YsXL2Q/6Mp9kJDq69evssXD/AcJMkEmVXx8vGwhv62trfBBgk+Qyalhw4ay/85Vq1YVFWPIqW/fvrJeaeG/nGbMmCHrlSvGkGrnzp2y3ly5cmHfvn3x8OHDinef69evy3r5Ygzyg4RUHz9+lE1q8oX/GzZsULz7REZGYvbs2WXPW+kHCamSkpJkm2psbGywdu3aOGfOHCFBJielBDL/QYJPkMlJ6QM4/0GCT5DJaenSpbJeucJ/qazJmunSpTPxWoo1+WIMqTiOw5o1a8r+uZObNSdMmCDr5VmTLMaQ6ntkTWnhv1RqrCktxpAqISEBixcvLnve8sUY3yNrzp07V9ZLsqbS3YeGNZXuPrdv31Y8b5ObNeU+6PKsuWTJkhRnTWkxhpz+/vtvWW9ys+apU6dkvSnBmhkyZJA9b3nW5IsxpIqLi8OCBQvKnrfJzZo9e/aU9ZYpU0ZUjCEnJdYkizGUztt//vlH1itXjCGVtVgzPDzcaqyp9MEuuVlz4cKFsl6eNcliDKkOHTok65UrxpBKjTWlxRhSBQQEKLKmtPBfKqOsWbVqVdnz9ntgTaV3cd26dbJeS7AmWYwh1cuXL2VZM3369NixY0fcvHlzsrBmQkKCbHGFXDGGnJQK0qSF/3IywpozZ86U9SY3a964cUPW+72zplyhE8+aZDGGnNRYkyzGkNOwYcNkvdJiDDkZYc1jx44pnrffM2vKFbNZijX5wn85devWTdbLsyZf+C8nI6y5adMmWa9c4b9UFy9elPXKFf5LZYQ1Q0NDrcaaSsX41mZNtTz7vn37ZL08a5KF/1JpsSZZ+C+Vn5+fbKMqz5rr1q1LcdaUFv7LqWPHjrL/zsnNmqtWrZL1JjdrPnv2TJM1le4+ycmaZOG/VBzHKRYAV6tWTVT4z/R9iRUOssJBJgPiOE7UxSTtDtUSWRkv1x2qplGjRum6JJJavXq17CVRKUFG6vTp04JXrjtUTc+fPxf+gpPrDlVTcHCw8BecXHeomuLj40V/wUm7Q9XEcRzWr19fdEkku0O1RHbo0hRjkJo2bZrglesOVdO2bdsEr1x3qJquXr0qeOW6Q9X04cMHIZkq1x2qpvDwcKE7hvaSyCspKQlLly5tcklUS5CRat26tcklUa0YgxQ5JVGuO1RNixYtMrkkqhVjkDp8+LDokqhVjEHqwYMHImCTdoeqKSAgQChalusOVVNMTIyoM1jaHaomjuNEHdzS7lAtkV2Bct2haho3bpzgpfkgQWr9+vWCV647VE0XLlwQnbfS7lA1vXr1Skim8h8k1BJkpL59+yZMYiCLMfjuUDVJk6nSSURaIqdoSrtDtdSvXz/BK9cdqqZZs2YJXpoPEqR2794teOW6Q9Xk5eUlOm+l3aFq8vHxET4ky3WHqikyMlKYxCA3iUhNSUlJWL58eeHPLe0O1RI59YKm8J8U2Ukt1x2qpuXLl4vuPtLuUDUdP35c8Mp1h6rpyZMnovNW2h2qpqCgIKFomfwgoZYg4xUXFydKpkq7Q9XEcRzWrl1b8Eq7Q7VETkTgP0ioFf6TmjRpkuClKfwntXnzZsErN4lITWQylaYYg9Tbt2+FZCpN4T+p0NBQYRKDXHeomhITE0Vd+tLuUC2RE8RpPkiQGjBggChBpqc7dP78+aK7T8+ePXHfvn2KHyRI7d+/X3Tedu7cWbUYg9Tdu3dlE2RKhf+k/P39hWSq3CQiNUVHR4smHksnEanJmqw5evRoq7DmmTNnrMaa/CQGnjW1ijF4WZM1e/fubRXW3L59e6pjzYiICFnWVCvG4GWUNckpQzSF/6SMsObixYsFL03hPylrsebnz58VWVPrORllTXIrB8+aasUYpIywpru7uwlrqhVjkNqwYYPJ3SclWPP169ci1tQqxiBllDWLFi0q/Lmlk4i0ZC3WnD17tglrqhVjkDLCmjdv3jRhTbViDFJGWZNvkJWbRKSmpKQk0XRGmsJ/UkZYk5xYmpKseeLEiVTJmvnz5xexJl+Mkdys2aNHD8FL02ROyghrbtmyRXTeSicRqenSpUtWYc2wsDBZ1qTJsxtlTXKqG8+aasUYpKzFmgcOHBDdfbQK/0kZYU2yQZYs/E8J1iS3IKUW1lyzZo0Ja6oV/pMywpovXrwwYU21wn9SRlmTnMBJU/hPipxazBf+pwRrTp8+3Sqsee3atVTJmuQ03PLly2sW/pMywprklESawn9SRljzyJEjZrPmw4cPZVmT5u5jhDVjY2NlWVOt8J+XUdbs2rWrCWuqFf6TshZrenh4iO4+fOE/DWsyWVescJAVDjIZ0OnTpzW7Q5X09OlTrFevnmgFMa0CAwOxbt26ui6JvGJjY7FZs2aa3aFy4jgOu3TpotkdqqShQ4fqKsYgNW/ePM1JRErauXOnZneokq5evarZHaqkt2/fYp06dTS7Q+UUGhqK9evXFy6JNBcIXgkJCdiqVStdl0RSvXr10nVJJOXu7q7ZHaqkFStWaHaHKunIkSO6EmSk7t27h/Xr19fsDpWTv78/1qlTR7M7VE5RUVHYqFEjze5QOXEchx06dNDsDlXSgAEDNLtDlTR9+nRdl0RSmzdv1uwOVdL58+d1fZAg9eLFC6xbty51MQap4OBgrFevnuYkIjnFxcVhs2bNdBVj8OI4Dn/99VfN7lAljRw5UrM7VEmLFi3S7A5V0p49ezS7Q5V048YNze5QJX348AHr1Kmj2R0qp/DwcGzQoIFmd6icEhMTsU2bNroSZKT69u2rOYlISRMnTtTsDlXSmjVrNLtDlXTixAldxRikHj16RDX1Vk4BAQFYp04dze5QOcXExGCTJk00u0PlxHEcdurUSXMSkZIGDx6s2R2qpNmzZ+tKkJHatm2bZneoki5evCgkyGg+SJB6/fo11qlTh7rwn1RISAjWq1dPsztUTvHx8diiRQvN7lAl9ejRQ7M7VEljxozR7A5V0tKlSzW7Q5V08OBBkxXEtLp9+7bmJCIl+fj4YJ06dczqDo2MjMSGDRvqKvznlZSUhO3atdOcRKSk/v376yr8JzVlyhTNSURK2rBhg+YkIiVZizWDgoKwbt26uooxeBllzZ9//llXMQYpo6yppxiD1I/Imq1btxatINYja7HmypUrdRVjkDLCmvfv32esqUMzZszQVfhPyghrXrhwAZs2bYpLly5NcdasW7eurmIMXnFxcdi8efMfijX37t0rsCZNMQYpa7OmnmIMXpZgTT3FGKR+NNb8/Pkz1q1bl7rwn5SlWJO2GIOUNVlTTzEGKSOs6e3tbRXWTEhIwJYtWxpmzePHj6coay5btgw7depEXYxByihr6mkyJ/W9sKbeu48R1pw6dapVWPPMmTOpkjWbNm2qq/Cfl1HWHDZsmFVYc9euXRZhTZrCf1JGWbNBgwY4fvx46sJ/XpZgTT2F/6SsxZpHjx794Vjzp59+Mps1Bw4ciH379qUu/CdlhDW3bNmiq/CflBHWfPnyJdapU+eHYk0m6yo5Cgdt8N/COCYV2djYuACALwCAr68vuLi4WPlPxGSOEBFsbGx+KC8ApMo/94/mBTDvObFnnHq8AOw5/de9AOwZpwYvAHtO/3UvAHvGqcELwO4+/3UvAHtO/3UvAHvGqcELwM7b/7oXgD2n/7oXgD3j1OAFYM/pv+4FYM84NXgB2N3nv+4FYM/pv+4FYM84NXgB2HP6r3sB2DP+r3sBzH/GTNaVn58fuLq68v/TFRH9jP4z7Y3+A5iYUouMHHw/mteaP5t5U8ZrzZ/NvKnjZzNvynit+bOZN3X8bOZNGa81fzbzpozXmj+beVPHz2belPFa82czb8p4rfmzmTd1/GzmTRmvNX8286aOn828KeO15s9m3pTxWvNnM2/q+NnMmzJea/5s5k0dP5t5U8ZrzZ/NvCnjZfpvytbafwAmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJqaUEyscZGJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmL6gcQKB5l+GF29ehU2btwIAQEBur3Pnz+H5cuXw/v373V7g4KCYO7cufDs2TNhXzytYmNjYfbs2XDnzh3gOE6XFxFhwYIFcPnyZUhMTNTlBQBYu3YtnDp1CmJjY3V7d+/eDQcOHICIiAjd3jNnzsC2bdsgODhYt/f27duwdu1a8PPTv8b97du3sHjxYvD29tbtDQ0NhdmzZ8OjR490P+OEhASYPXs2eHl5QVJSki4vIsLSpUvBw8MD4uPjdXkBADZv3gzHjh2D6Oho3d5Dhw7B3r17ITQ0VLf34sWLsHnzZggMDNTtffToEaxcuRI+fvyo2+vv7w/z58+HFy9e6H5OUVFRMGvWLLh3755uL8dxMG/ePLh69apZ7+KqVavg7NmzEBcXp9u7Y8cOOHz4MERGRur2njhxAnbu3AkhISG6vTdu3IANGzaYdd6+evUKli1bBm/fvtXtDQ4Ohrlz58LTp091P6e4uDiYNWsW3Lp1y6zzduHChXDx4kVISEjQ5QUAWL9+PZw8eRJiYmJ0e/ft2wf79++H8PBw3d5z587BP//8A1++fNHtvXfvHqxZswZ8fX11ez98+ACLFi2C169f6/aGh4fD7Nmz4eHDh7qfcVJSEsyZMweuX7+u+7wFAFi2bBmcP3/erPN269atcPToUYiKitLtPXLkCOzevRu+ffum23v58mXYtGkTfP78Wbf36dOnsGLFCvjw4YNub0BAAMybNw+eP3+u+znFxMTArFmz4O7du7rfRY7jYP78+XDlyhWzzts1a9bAmTNnzLr77Nq1Cw4ePGjW3efUqVOwfft2+Pr1q27vzZs3Yd26deDv76/b6+3tDUuWLIE3b97o9oaEhMDs2bPh8ePHup9xfHw8zJ49G27evGnWebt48WLw9PQ067zduHEjnDhxwqzz9sCBA7Bv3z4ICwvT7fXw8ICtW7dCUFCQbu+DBw9g9erV4OPjo9vr6+sLCxYsgJcvX+p+TpGRkTBr1iy4f/++Weft3Llz4dq1a2adtytWrIBz586ZdffZtm0bHDlyxKzz9tixY7Br1y6zzltrs6Y5dx9LsOalS5dSnDX37NkDBw4cMOvuYy3WfPfunVVYMzExEebMmZMqWXPPnj0pzpqPHz9mrKlD1mTN9evXw6dPn3R7jbLmnDlz4MmTJ2bdfazFmhs2bLAKa54/fz5VsuasWbPgwYMHKc6ay5cvZ6xJqc+fP1uFNRER5s+fb3ae/UdjzTdv3liFNfk8uzVYc9OmTYZYc+/evVZhzVWrVjHWpJS1WPPatWupkjVnzZoFt2/fTnHWXLdunVVY8+zZs2az5p07d6zCmmFhYVZhTQCApUuXwoULF1IVa166dMkqrPnp06dUy5pnzpxJcdY8efIk7Nixw6y7j1HWXLp0aapjzUWLFpnNmkz/QSEiC40AABcAQABAX19fZEqdCg8PR2dnZwQArFatGk6fPh3v37+PHMdpehMTE7FUqVIIAFimTBkcO3YsXrt2DRMTE6l+dqtWrRAAsFChQjhkyBA8d+4cxsXFUXn/+usvBADMnTs3/v7773jkyBGMjIyk8i5cuBABALNkyYK//vor7tq1C0NCQqi8hw4dQgDAdOnSYfv27XHjxo0YEBBA5b1//z4CADo4OGCzZs1w+fLl+P79eypvQEAAOjk5oa2tLdapUwfnzp2Lz549o3pOMTExmCdPHgQArFSpEk6ePBlv376NSUlJml6O47Bq1aoIAFiiRAkcNWoUXr58GRMSEqj+3D///DMCALq6uuKgQYPw1KlTGBMTQ+UdO3YsAgDmyJEDe/fujQcOHMDw8HAq77p16xAAMFOmTNilSxfctm0bBgcHU3nPnTuHAIBOTk7Ypk0bXLt2Lfr5+VF5X758iba2tmhvb4+NGjXCxYsXo7e3N5U3JCQEM2XKhDY2NlijRg2cOXMmPnr0iOoZJyQkYJEiRRAAsFy5cjh+/Hj08vKiesaIiI0aNUIAwCJFiuDw4cPRw8MD4+Pjqbx9+/ZFAMC8efPiH3/8gcePH8fo6Ggq78yZMxEA0NnZGXv06IF79+7F0NBQKu/OnTsRADBDhgzYsWNH3Lx5MwYGBlJ5b9y4gQCAjo6O2LJlS1y5ciV+/PiRyuvj44MODg5oa2uL9erVw/nz5+OLFy+onlNkZCRmz54dAQCrVq2KU6dOxXv37lF5k5KSsFy5cggAWKpUKRwzZgxevXqV+rxt27YtAgAWLFgQBw8ejGfPnsXY2Fgq77BhwxAAMFeuXNi3b188fPgw9Xm7bNky4bzt2rUr7ty5E79+/UrlPXbsmHDetmvXDjds2ICfPn2i8j5+/Fg4b5s2bYrLli3Dt2/fUnkDAwMxXbp0aGNjg7Vr18Y5c+bgkydPqJ5TbGwsurq6IgBgxYoVceLEiXjr1i3q87ZmzZoIAFisWDEcOXIkXrx4kfpd7NatGwIAuri44IABA/DkyZPU5+3EiRMRADB79uzYs2dP3L9/P4aFhf2PvbMOi2rr/vgaGkWxEwwsxBZbx24Y9Xq9dnd3d3crFnZ3d2IXNoJdoCIWSNes3x/v3fPbw6l95gAj1/N9nv28r8qXGdx3b9dnnbXWMHk3bNiAAIAZMmTAVq1a4ZYtW/Dr169M3kuXLhnu26ZNm+Lq1auZY8qXL1+ipaUlWlpaYu3atXHRokX44sULJm9oaChmypQJAQArVaqEM2bMwIcPHzLHPkWLFkUAwJIlS+K4cePw+vXrzGexQYMGCADo4uKCQ4YMwXPnzjHHPn369EEAwNy5c2PPnj3xyJEjGBkZyeSdO3cuAgBmzpwZO3TogLt27cKfP38yeffu3YsAgOnTp8cWLVrghg0bMDg4mMl7584dw33bsGFDXLFiBb57947JGxQUhLa2tmhhYYE1atTAefPmob+/P9M+RUVFYa5cuRAAsHz58jhlyhT09fVlPotly5ZFAEBXV1ccNWoUXrlyhTn2admyJQIA5suXDwcMGICnT59mvm9HjBiBAIA5cuTAbt264cGDBzE8PJzJ6+XlhQCAjo6O2KZNG9y2bRtz7HPy5EkEALS3t0dPT09cu3Ytfvz4kcn79OlT1Gg0aGVlhfXq1cMlS5bgq1evmLzfvn1DBwcH1Gg0WKVKFZw1axY+fvyYaY9jY2OxQIECCABYunRpnDBhAt66dYt5j7VaLQIAFi5cGIcNG4YXL15kvm87d+6MAIB58+bFPn364PHjx5ljn6lTpyIAYNasWbFTp064d+9e5vt269athtjn77//xs2bN2NISAiT98qVKwgAaGtri02aNMFVq1bhhw8fmLxv375FKysrtLS0xFq1auGCBQvw2bNnTF6lrOnm5pbmWHPRokV/HGvmyZPHZNasWLGigTVHjBiBPj4+qcKaY8eONbBmly5dUo01z507959hTdazqIQ1e/ToYcSaR48eZY59lLDmzp07TWbNmzdvGmKfRo0apSprZs+eHQEA3d3dU5U1mzVrlqysyRr7KGHNY8eOGWKfZs2a4bp161KFNUNCQoxYc/bs2anGmlWrVjWZNTt06GAW1ty4caNZWPPVq1cc1nz+/DmTNylrTp8+HR88eJAqrNmwYUMDaw4ePDjVWHPevHkG1mzfvn2qsebdu3fTJGuWK1fOiDXl5NmVsObIkSONWPPAgQOyWTNjxozYunVrWax56tQpk1nT39/fwJp169ZNNdaMi4szG2t26dIl2VhTTuyjhDWvXr1qxJpeXl6pxppZs2Y15NmnTZuWaqzZtGlTk1lz4MCBZmHNQ4cOmY017e3tjVjTz8/PJNacNGlSqrFmmzZtDKzZr1+/VGPNdevWmYU1nz9/bjJr/vz5Ex0dHY1YkzXPrpQ169ata8Sa58+fTxXWnDVrloE1O3TogLt375bNmunTp8e//vorVVnTxsbGLKxZunRpDmuynkUlrDl06FDFrOno6Iht27bF7du3M7OmKvMqMDAQSf0aADhhctTEJcc3+a8vUAsH/zOaPXs2fYhkJYN27drF8bImg27dusXxsiaDAgMD0cbGxshra2vLlAyKiIjAHDlyGHlZk0GJiYlYpkwZzvtmTQY1b96c42VNBg0bNozjZU0GLV++nONlTQYdP36c42VNBj158gQ1Go2RlzUZFBISgunTpzfysiaDYmNjMV++fEZe1mSQXq/HatWqcX5mkgy6e/euKJx07NiR42VNBk2ePJnjzZcvH/bv3x9PnTolGhBt2rSJ42VNBvn4+HC8rMmg169fo6WlpZGXNRkUFhaGmTNnNvKyJoMSEhKwWLFiRl45yaBGjRpxfmbWZFC/fv04XtZk0Pz58zle1mTQ/v37OV7WZJCvry/Hy5oM+vTpE9rZ2XHuW5ZkUFRUlKFwmb5va9asKZkM0uv1WL58ec77Zk0GtWrViuN1c3NjSgaNGjWK42VNBq1evZrjZU0GnT59muNlTQYFBARw7lvWZND3798xQ4YMRl6SDFq2bBm+efNG0BsXF4cFCxbk3LesyaBatWpxfmbWZFDXrl05XtZk0PTp0zle1mTQ9u3bOV7WZNC1a9d471uWZNC7d+/Q2trayMuaDAoPDzckVOn7liUZlJiYiCVKlODct6zJIA8PD87PXKpUKRw3bhzeuHFD9CwOGjSI42VNBi1ZsoTjzZMnD/bq1UsyGXT48GGOlzUZ9PDhQ46XNRkUHByM9vb2Rl7WZFBMTAzmzZuXcxZZkkF6vR4rVarEed+syaC2bdtyvKzJoPHjx3O8+fPnx4EDB0o+CPP29uZ4WZNBFy5c4HhZk0EvXrxACwsLI6+9vT3qdDrJwgOSUE1639arVw+XLl0qWngQHx+PRYoU4ZzFqlWrMhUe1KtXj/MzlylThqnwoFevXhwva+GBEtbcvXs3x5scrCkV+yhhzcjISEHWXLhwYYqyZosWLTjeEiVK4NixY1OUNVesWMHxsrLmiRMnON7UYM2vX7+KsqbYgzClrFm9enXOz6yUNVka/JSw5ubNmzle0uCX0qxpZWXFuW9TgzVdXV059y0razZu3JjzMxPWlGrwU8KaCxYs4HgJa0o1+ClhzXv37nG8pOhy06ZNJrFm48aN0cvLSzT2Ucqa7u7unPedGqw5evRojrdAgQIG1hQ7i0pY88yZMxyvHNZMGvsQ1vT29k5R1nRxceGcRdLgl5Ks2a1bN463aNGivzVrXr9+nfe+JawplmdXypqkSZa+bwlrijX4KWVNT09Pzs+shDVJg9/58+dFYx8lrHnkyBGONzVY88uXL6KsKZZnl2JNqdincuXKnPfNyprt2rXjeAlrSjX4KWHN9evXc7ysDX5KWJM0ydJeJaxJGvxSmjXr16/P+ZlTgzXnzJnD8dKsKRb7KGHN27dvc7ysrBkUFMTLmiwNfkpYk26SpRdp8EtJ1hw+fDjHW7BgQZNZM1euXAbWFIt9lLCmn5+fKGuKxT5KWTN//vyc+7ZGjRqSDX5KWbNTp04cLytrTpkyheOlWVMs9lHCmpcvX+Z4U4s1SZMsfd8mB2tKNfgpYc3+/ftzvIULF2Zq8FPCmgcOHOB4WRv80iJrqjKv1MJBtXBQlULRkyD4lti0J3rqIN+iO3D5kkFkEgTfkkoGkUkQQqts2bKCySAydVBoiSWDyCQIoSWWDCLdOUJLLBlEJkEIecWSQfTUQb5FkkF8D8LoqYN8iySDhKY9kUkQQkts2hOZOii0xJJBZBKE0BJLBpGpg0Ird+7cgskgMglCyCuWDCKTIIS8dDIo6YMwujuHb0klg8gkCL4llQwiUweFFkkG+fr6crxkEoTQKl68uOC0JzJ1UGjlz59fsAOXTB0UWmLJIDIJQshLpj3xJYPoqYN8SywZRE+CEDqLYskgMnWQb0klg8gkCKFFkkF8RZekO0dokWQQ34MwMnVQaJFkEF/RJZkEIbTEpj2RqYNCXrFkED0Jgm+JJYPoqYN8i3TgCiWDyNRBoSWWDCKTIISWWDKITB0UWmLJIDIJQmiRZBDfgzC+hCq96GRQ0gdh9CQIvkWSQXxFl/QkCL5FkkFCHbhk6iDfkkoGkUkQQotMe+JLBpGpg0JLbLIwmQQhtMSSQWTqoNCik0FJYx8yCULIK5YMoidB8C07OztDMijpgzChhCpZdDKIr+iSTILgWyQZJDTtiUwdFFpiySAyCUJoiSWDyNRBoSU2WZhMHRTyiiWDyCQIIS+dDEr6IIyeOsi3xJJB9CQIvkUng/iKLsnUQaFFCg/4HoSRSRBCixQe8E17IpMghJZYBy6ZOii0SOEB32RhMglCyEtPe0p63yplTTIJgm/9rqxJJkEILcKaly5dSlXWzJYtG3bp0oX3QZhS1iSTIPiWFGuSSRBCZ1FssrAS1iSTIIQWafBLbtYkkyCEVnKxZtIHYanBmkINfkpYk0yCEFru7u6GaU/JyZpkEoTQEmNNMglCaKUka5JJEHyLZs2kD8KUsiaZBMG3aNbkK7o0F2uSqYNCS6zBTwlrkqmDQt4MGTIINvgpZU0ydZBvSbEmmTootFKKNcnUQaFFWJOvwU8Ja5Kpg0Jewpp8RZdSrCnW4CfFmlLTnsjUQb4lNVlYCWuSqYNCK6VYk0wdFFq/K2uSqYN8i7CmUIOfEtYkUweFltin2EixpthkYTJ1UGiJsSaZOijkTSnWpKcO8q2UZE0ydVBoKWVNocnCSliTTB0UWmKfYqOUNZM2ydIrJVmTTB0UOotirEmmDgqtlGJNMnVQaBHW5GvwU8qaSQuX6SU2TIaFNYUa/JSyJpk6KLRSijXJ1EGhlVKsSaYOCnkJa/IVXfIVLtOLsCZfg59S1iRTB/mWVIOfEtYkUweFltin2JiTNZMWLtOLZs2ksY9S1iRTB/kWzZp8RZdKWJNMHRRaZcqUERwmw8KacicLq0p5qYWDauGgKgUaPHiwaFKSb5Fk0IgRI9Da2loU3pIukgyaPXu24SNYWL1k2tOaNWvQ2tpaNIGTdJEHYTt37pTtpTtwc+bMKQoySRedDHJ3d5f1d00ng5o1aybLSyeDevfuLXuPSTJowoQJsveYJIMWL14se4/Jx0xt2LBB9j6RZNC+ffvQ2tpa1j7RD8JcXFxkeUkyaM2aNVizZk1Zf9d0B26bNm1keekOXHKO5ewTSQbNmDFD9j6RZNDKlStle0kyaNu2bbL3mE4GOTo6ytonOhlUsmRJWX/X9EcaN27cWPZZJA/CunbtKvssko80Hj16tOw9Jh24c+fOlb1PJBm0bt062ftEkkG7d+826b4lyaA8efLIvm9JMqhy5cqy71uSDGrRooXss0iSQf369ZO9T+RjpiZPnizbS5JBS5Yskb3HpOhy06ZNsveJ7sC1tbWVtU90Mqho0aKy/q7pZFCdOnVkeelkUPv27WWfRZIMGjZsmOx9IsmgmTNnyt4nkgxatWqVbC+Z9rR9+3bZe0x/pHHWrFll7THdgVu2bFnZ9y3pwPXw8JB935JkUM+ePWXvMenAHTt2rOw9JsmghQsXyt4n8jFT3t7esveJJIP27t0rO/ahP9I4f/78srx0MqhatWqyYx/ykcatWrWSfd+SDtwBAwbI3idSdDl16lTZXjLtafny5bL3mBQebNmyRfYe04UHDg4OsmMfUnhQvHhxWX/XdOFBgwYNZN+35GOmOnXqlOqsOWbMGJwzZ45ZWHPXrl1mY80KFSqYlTXl7JNS1hwxYgQuWrQo1VmTPAhLbdYk055q1ar1R7Gml5eXyay5detWs7Dmxo0bsVSpUmZhzW7dusm+b0mDnxLWnDdvXppkzbx588qOfchHGithzb/++ssk1pw9e3aqsyYpuly6dKnZWNPOzs4srFm3bl2TWbNDhw5pijUHDx6siDV37NhhEmuSBj9zsaanp6dZWHPcuHEms+aCBQtMZs3169enKdYkRZfVq1eXHfuQBj8lrDlw4MA0x5qmxD7JxZpubm4msaaXl5ci1uzcubNJefZp06aZjTXXrl1rNtbMlSuXWVizefPmJrNmnz59zMKapj7X7NevnyLW3L9/f5pkzbZt26Y51jTHc03S4JcpU6ZUZU0yTKZJkyZmYc0xY8akOdbcs2ePItZUP9LYvEqJwkEN/q8wTpWINBqNEwAEAgAEBgaCk5OTmd+RKlM0cOBA8PLyMvfbUKVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqUqTcnS0hKqV68OOp0O2rRpA87OzuZ+S3+UgoKC6L9zZ0QMUvo9LZR+A1Wq/gTZ2tqa7LWysjLZa2FhviNqaWlpslfJ35ednZ1ZvDY2NiZ7leyxRqMx2atU1tbWJnvNtcdKXlfJz6vkPCiVkntAyX/Xf9pZNOd9q+R9p8WzqGSPlZxF9b5NvddV71t5+tPuW3OexT/tvk2rZ1HJfyNKfmZznUWVNeVJZU12qbFP6r1uWr1v1diHXWn1vv3TYh+VNeUpLcY+6n0rT3/afauyZuq9blo9i0r+G0mLZ1FlTXlKi3v8J963KmuyS419Us/7J7Kmq6srVK1aFapWrQp58uQx2/tQlXxSCwdV/TEqVKgQaLVayJAhA9PXFyxYEAYPHgznzp2DDRs2gFarhezZszN5c+XKBT179oQjR47A8ePHQavVMldaZ86cGdq3bw+7du2CO3fugFarhSJFijB506VLBy1atID169fD69evQavVQqlSpZi81tbW0LBhQ1i+fDm8ffsWmjRpAhUrVmTyWlhYQPXq1WHu3Lnw9OlT6NSpE9SoUYPJCwBQvnx5mDx5Mty9exdGjRoFWq2W+R/oYsWKwciRI+Hy5cuwaNEi0Gq1kClTJiavs7Mz9O/fH06dOgU7duwArVYLuXLlYvJmz54dunbtCgcOHIDz58+DVquFAgUKMHkzZswIrVu3hm3btsHjx49Bq9WCq6srk9fOzg48PT1h7dq1EBgYCFqtFsqWLcvktbKygrp168KSJUvg5cuX8Ndff0GVKlWYvBqNBqpUqQKzZs2CR48eQZ8+fUCr1TIHJaVLl4bx48fDzZs3YcqUKaDVaiF9+vRM3kKFCsHQoUPhwoULsGrVKtBqtZA1a1Ymb548eaB3795w7NgxOHjwIGi1WsibNy+TN0uWLNCxY0fYs2cPXLt2DbRaLRQqVIjJ6+DgAC1btoRNmzbB8+fPQavVQokSJZi8NjY20LhxY/Dy8oL3799D/fr1wd3dnclraWkJNWvWhAULFsCzZ8+gXbt2UL16dSYvAECFChVg2rRpcP/+fRgyZAhotVrmgNfNzQ3GjBkDV69ehTlz5oBWq4WMGTMyeQsUKACDBg2CM2fOwObNm0Gr1UKOHDmYvDlz5oTu3bvDoUOH4OTJk6DVaiFfvnxM3kyZMkG7du1gx44d4OvrC1qtFooWLcrktbe3h2bNmoG3tze8ffsWtFotlC5dmslrbW0N9evXh2XLlsHr16/Bw8MDKlWqxOTVaDRQrVo1mDNnDvj5+UHXrl2hRo0azLBetmxZmDRpEty5cwfGjh0LWq0W7O3tmbxFixaFESNGgI+PDyxbtgy0Wi1kzpyZyevk5AT9+vWDkydPwp49e0Cr1ULu3LmZvNmyZYMuXbrA/v374dKlS6DVaqFgwYJM3gwZMsA///wDW7ZsAT8/P9BqtVC8eHEmr62tLTRt2hRWr14NgYGBUKtWLShXrhyT19LSEurUqQOLFi2CFy9eQKtWraBq1apMXgCASpUqwYwZM+Dhw4fQv39/0Gq1zKBfsmRJGDduHNy4cQOmTZsGWq0WHBwcmLwuLi4wZMgQOH/+PKxbtw60Wi1ky5aNyZs7d27o1asXHD16FI4cOQJarZZ5SnfmzJmhQ4cOsHv3brh58yZotVooXLgwkzd9+vTw119/wcaNG+Hly5eg1WqhZMmSTF4bGxto1KgRrFy5Et69eweNGjWCChUqMHktLCxAq9XCvHnzwN/fHzp06CAr9nF3d4epU6eCr68vDB8+HLRaLXMSqXjx4jBq1Ci4cuUKzJ8/H7RaLTg6OjJ58+XLBwMGDIDTp0/Dtm3bQKvVQs6cOZm8OXLkgG7dusHBgwfh7NmzoNVqIX/+/ExeR0dHaNOmDWzfvh0ePnwIWq0WihUrxuS1t7cHnU4H69atg/fv34NWq4UyZcowea2srKBevXqwdOlSePXqFTRr1gwqV67M5NVoNFC1alWYPXs2PHnyBHr06AE1atRgjn3KlCkDEydOhFu3bsHEiRNBq9VCunTpmLyFCxeGYcOGwcWLF2HlypWg1WohS5YsTN68efNC37594fjx47B//37QarXMyZusWbNCp06dYO/evXD16lXQarXg4uLC5HVwcIC///4bNm/eDAEBAaDVasHNzY3Ja2trC02aNIFVq1bBhw8foG7dulC+fHkmr6WlJdSqVQsWLlwIz58/hzZt2kC1atWYvAAAFStWhOnTp8ODBw9g4MCBoNVqmZOyJUqUgLFjx8L169dh5syZqc6ahw8fhhMnTqQZ1mzQoAEsX74c3rx5k6qsWa5cObOz5s6dO9MUa65ZsyZZWJM19iGsOXPmTLOy5urVq83CmtevX08TrGlhYWFgzYCAALOx5ty5c2WxZv78+WHgwIGKWfPUqVOyWNPR0RHatm0LO3bsgHv37pmVNeXEPsnFmuPGjTOJNS9dumQW1ty3bx/4+PiYjTVr164tizVr166dLKzZr18/0Gq1zA8radacPn26WVjz6NGjJrHmrl27FLHmq1evTGLNFStWwNu3b1OVNcuXLw9TpkwBX19fGDFihFlYc/v27WZhzUePHpmVNeXk2QlrPn78GHr27CmbNSdMmKCYNb28vGSzZp8+fczKms+ePTMba7Zu3dok1rx//74i1pw1a5ZJrHn27NlUZU2SZ9+5cyfcvXvXrKzJmmdPypqdO3c2mTVHjx5tMmsuXrzYLKx54cIFk1hz69atilgzKCgItFotc+xjZWUFderUgcWLFycba7Lm2UuVKmVgzalTp5qFNQ8dOmQW1nzx4oXJrPnu3btUZ82pU6fCvXv3YOjQobJYs3jx4jB69GjFrLlly5Y/jjX9/Pxg7ty5UL16dbMWqapKRiXH5x3/1xcAOMG/nxEdGBjI9sHSqn5LffjwAW1sbAQ/x7569eo4Z84c9PPzQ71eb+SNiIjA7NmzC36ue7ly5XDSpEl4584dTExMNPImJiZi6dKlBb1FixbFESNGoI+PD8bHx3Ped/PmzQW9Tk5O2K9fPzx58iRGR0dzvEOHDhX0ZsuWDbt06YL79+/HX79+cbzLly8X9GbIkAH/+ecf3Lp1K379+pXjPXbsmKDXzs4OPTw8cM2aNRgUFMTxPnnyRNBraWmJderUwcWLF+OLFy843pCQEEyXLh2vV6PRYOXKlXHmzJn46NEjzh7Hxsais7Oz4GuXKlUKx48fjzdu3MCEhAQjr16vx2rVqgl6XVxccMiQIXj+/HmMjY3lvO8OHToIenPnzo29evXCo0ePYmRkJMc7adIkQW/mzJmxQ4cOuHv3bvz58yfHu3HjRkFv+vTp8a+//sKNGzdicHAwx3vp0iVBr42NDTZq1AhXrlyJ796943hfv36NlpaWgmdRq9Xi/PnzMSAggLNPoaGhmDlzZsHXdnd3x6lTp+K9e/c43oSEBCxWrJigt3jx4jh69Gi8cuUK71ls2LChoDd//vw4cOBAPHPmDMbExHC8ffv2FfTmyJEDu3fvjgcPHsTw8HCOd968eYJeR0dHbNu2LW7fvh2/f//O8e7bt0/Qa29vjzqdDtetW4cfP37keH19fQW9VlZWWK9ePVy6dCm+evWK4/348SPa2toKnsWqVavi7Nmz8cmTJ5x9ioqKwly5cgm+dpkyZXDixIl4+/Ztzn2r1+uxXLlygt4iRYrg8OHD8dKlSxgXF8d533///begN2/evNi3b188ceIERkVFcbyjRo0S9GbNmhU7d+6M+/btw7CwMI531apVgt4MGTJgq1atcMuWLRgSEsLxnj59WtBra2uLTZs2xVWrVuGHDx84Xn9/f9RoNLxeS0tLrF27Ni5cuBCfP3/O8X779g0zZMgg+NoVK1bE6dOn44MHDzh7HBcXhwUKFBD0lixZEseOHYvXr1/nvW9r1qwp6C1YsCAOHjwYz507x3vfdu3aVdCbK1cu7NmzJx45cgQjIiI43mnTpgl6M2fOjO3bt8ddu3bx3rfbtm0T9KZLlw5btGiBGzZswM+fP3O8V69eFfRaW1tjw4YNccWKFfj27VuO9927d2hlZcXrtbCwwBo1auC8efPw6dOnnH0KDw/HrFmzCr52+fLlccqUKXj37l3e2MfNzU3Q6+rqiiNHjsTLly/z3rceHh6CXmdnZ+zfvz+eOnWKN/YZOHCgoDd79uzYtWtXPHDgAG/ss3jxYkFvxowZsXXr1rht2zb89u0bx3vo0CFBr52dHXp6euLatWt5Y58HDx4Ieq2srLBu3bq4ZMkSfPnyJccbHByM9vb2vF6NRoNVqlTBWbNm8cY+0dHRmDdvXsHXLl26NE6YMAFv3brFe99WqlRJ0Fu4cGEcNmwYXrhwgfe+bdOmjaA3T5482KdPHzx27BjvfTtu3DhBb5YsWbBjx464Z88eDA0N5XjXrVsn6HVwcMC///4bN23ahF++fOF4z58/L+i1sbHBxo0bo5eXF75//57jffHiBVpYWPB6LS0tsWbNmrhgwQJ89uwZx/vz5090dHQUfO0KFSrgtGnT8P79+5w9jo+Px8KFCwt63dzccMyYMXjt2jXOfYuIWLduXUFvgQIFcNCgQXj27Fne2Kdnz56C3pw5c2KPHj3w8OHDvPft7NmzBb2ZMmXCdu3a4Y4dO3hjn127dgl606VLh82bN0dvb2/89OkTx3vr1i1Br7W1NdavXx+XLVuGr1+/5niVsmaOHDkEX7ts2bK/JWsOGzZM0EuzJl/so4Q1jx8/LuilWZMvf6OUNdOnT8/rJaw5Y8YMfPjwIS9r5suXT/C1S5YsiePGjUsR1uzYsaOgNyVZc9OmTYLe35U1w8LCmFjT19c32VmzUaNGgt58+fLhgAED8PTp08nOmvPnzxf0Ojo6Yps2bQRZc//+/YLelGTNT58+oZ2dneBZTEnWLF++vKDX3Ky5d+9e3vt29erVgl4S+2zevDnZWTMgIECUNWvVqpVirFmwYEFBb4kSJQRZExGxVq1agt6UZM3p06cLemnW/PHjB8erhDWvXbsm6CWsuXz5crOw5uTJkwVZs0SJEoLeYsWKpRhrDho0SNCbkqx5+PBhQe/vypoxMTGSrDl+/Hi8efNmsrNm27ZtBb158uTB3r1747Fjx3hjHyWs6e3tLeh1cHDAli1bCrLmhQsXBL3/VdasV6+eoJewplCe3VysuXv3bkGvvb09NmvWLEVYMzAwUJA1NRoNVqtWLcVYs0yZMoJeKdZs0aKFoDclWXPFihWCXsKaW7ZsSRHWFIt96tSpg4sWLfrtWLN69eqC3pRkzcmTJwt6U5I1fXx8BL0srCkW+6Qka7q6ugp6ixcvjqNGjUoR1uzXr5+gN0eOHNitW7ffjjXv3bsn6E1p1sydO7fgaxPWFMqzK2HNVq1aCXoJax4/fjzZWVOV+RQYGEjvlRMmR01ccnyT//oCtXDwP6P+/fsbXXh0MQZfkEhrwYIFRl6SIFu9erXkfxcHDhww8pJijEWLFvEmyGjdv3+fc1FXqlQJZ8yYwZsgo8X3DxwJEoUSZETR0dGcf+CkEmREer0e3d3deYPEI0eO8AaJtP755x9OkChWjEFr9OjRnCCRJMj4gkRaa9as4QSJYsUYtM6ePcsJEkmCzN/fX3SfAgICOHBPijF8fX05AQSt79+/Y8aMGY28rq6uokEiUVxcHLq4uAgGiXzARqt27dq8QaJQgoxW9+7djbxSCTJaM2bM4A0S165dyxsk0tqxYwcnSCQJMr4gkdb169c5QSJJkD1+/Fh0j9+/f4/W1tZGfrFiDFrh4eGYLVs2Iy9JkF28eJE3SCRKTEzEkiVLcoLEPn36CAaJtHQ6HSdI7NSpE+7du5c3QUZr8ODBRl76gQRfgozW0qVLOfdtkyZNBBNktI4cOcK5b8kDCb4EGa1Hjx5x7tuKFSsKJshoffnyhVO0XKJECdEEGVFMTAw6OTkZeeliDKn7tkqVKkZeqQQZrXbt2hl5SYJs586dvA8kaE2YMMHIS4ox1q9fz/tAgtb69euNvNbW1tigQQNcvnw5vnnzRtR78eJFzn1bvXp1nDt3Lm+CjNbLly85D5LFCv9p/fz5EzNlymTkJQ8khBJkRPHx8Vi0aFEjr7Ozs2iCjFb9+vWNvFKF/7R69+7NiX3EijFozZ0718grVfhPa8+ePZz7lhRj8D2QoHXnzh3OfStW+E8rKCiIk0wlhf83b94UPYuRkZGYM2dOI2+hQoVw6NChggkyIr1ej2XLljXySj2QoPXXX38ZeckDCaEEGa0RI0ZwYh+xBBmtlStXcmIfsQQZrZMnT3LOoliCjJafnx8nmSpW+E/r69ev6ODgYOQlxRhXr14V3ePY2FjMnz+/kVeq8J9Ir9djjRo1OLFP9+7d8dChQ7wJMlqdO3c28koV/tOaMmUKJ/YhDySkYp8tW7Zw7tv69evj0qVLeR9I0Lp8+TLnLFarVk0wQUbrzZs3nGSqWDEGrV+/fmGWLFmMvFIJMqKEhAQsXry4kdfJyUm0GINWkyZNOLGPWOE/LSWsuXDhQk7sQ1iTrxiDlrlY8/Pnz7ysKVaMQaSUNStUqGDklSrGoKWENceMGcOJfVhZc+3atZyzmBqs+ezZM0HW5CvGoKWENePj47FQoUJGXsKaQsUYtMzFmjNnzuTEPmLFGLSUsOaNGzc4921qsGZERIQi1ixVqpSRN7VYc8iQIUZeqcJ/WkpY8+jRo5z7VqwYg1Zys6ZUMQZRTEwMp0FWqvCfSClrtm/f3sibWqy5YcMGzn3LyppJi5ZTizVDQ0M5rClVjEGklDUbNGhg5E0LrLl3717OWRQr/KellDWTNsiKNZnTSm7WlCrGoGUu1vTy8jLyphZrPn361GysmbRBVg5rarVaTuwjVvhPSwlrTp061cgrVYxBSwlrXrlyhXMWxYoxaJmTNZM2yEoV/tNSwpoDBgzg3LdiTea0lLDmwYMHOfetWJM5LXOyZp48eYy8qcWarVu3NvKmBdY8d+4c574VK/ynpYQ1f/z4wcuaYoX/REpZs06dOkZeqcJ/Wj169DDyphZr7ty508grVfhPSwlrfvjw4bdhTakmc1rNmjXjjX2ECv9pKWHNZcuWcWIfscJ/WkpY8/Hjx5z7Vqzwn5YS1lRlXqmFg2rhoCoFIhMgSJAoVYxBi0wbJEEiS4KMiEyAIEEiS4KMVvPmzWUlyGgNHTrUqDtUKkFGa/ny5UYJMqkgkRaZNliuXDnB7lAhkQkQUt2hfCLTBqW6Q/lEpg3KCRKJyAQIOkiUSpDR6tChg6wgkdakSZMMQSJLMQatjRs3GoJElgQZLZJMFesOFRKZAEESZELdoXwi0wblFGMQkQkQcoJEWg0bNpTsDhVS3759jYJEqQQZrXnz5qGFhYUhSJRKkNEi0wZJkCiVIKNFJkC4ubkxJchokWmDUt2hfCITIHLmzMlcjEFEpg2SBJlQd6iQ/v77b8nuUCGNGjVKsjtUSKtWrZLsDhUSmQBBukOlEmS0yLRB+oEE61kkEyBIdyhLgoyITBskDyRYEmREZNqgVHeokLp27Sqr8J/WtGnTjIoxpB5I0CITIEiCjK87VEhk2qBYd6iQyAQIqe5QPpEJEHIeSBCRaYNS3aFC8vDwMDyQYEmQ0Ro4cKDRAwmpBBmtxYsXGx5IsBRj0CLTBunCf1YvmQDBWoxBi0yAkOoO5ROZNijVHconMgGC7g6VSpDRatOmjawHErTGjRsn2R0qpHXr1hk9kJBKkNEi0wbFukOFRCZAsCbIaJEJEHKKMYjIBAg5xRi06tatKzmJSEg9e/Y0FGMITSIS0uzZs2UV/tMi0wbFJhEJiUyAIJOI5CTIlLJmjhw5FLGmnGIMWkpYc9iwYbKKMWgpYU0yAcIcrJk+fXqTWTNfvnwG1mQpxiBSypodO3Y0sCZLMQYtJay5adMmWcUYtAhr0oX/qcGaZAKEOVizUaNGZmHN+fPnm8yaZAJEhQoVmIoxaClhTdIgy1qMQUspa5YvXz7Nsebq1auNWFOqGIOWEtYk0wYJa0oVY9BSypoFCxbEbNmyMRdj0KpVq5aswn9aSlhz+vTpsgr/aSlhTTJt0NysydJkTkSmDRLWZCnGoKWENQcNGiSryZyWEtYk0wZZm8xpmYs1ybRBmjXlxD5KWLNt27bJwposhf+0vL29DazJUoxBi0wbZC3GoJVWWbNevXppjjXJtEHCmlLFGLSUsCaZNsjaZE5LKWuWKVPGZNZs0aKFWVhzxYoVZmNNjUbD3GROKylrshT+EyllzerVq2PGjBmZC/9pKWHNyZMny2oyp6WENcm0QVNZ08rKyiys6erqKqvwn5YS1uzXr5+BNVkK/2nRrMlS+E9LCWuSaYOshf+0lLJm7ty5zcKarVq1ktVkTksJa6oyr/4zhYMAMD9J5WttBk9jADgIAEEAEPvv/x4EgMap8H7VwsH/gB4/fiyrGIPW69evJbtDhRQSEiIrSKQVHR0t64EELb1ejydOnGAOEpPq3LlzsoJEWlevXpUVJNLy9fWVVYxBy9/fX1aCjNaHDx9kJcho/fz5U1aCjFZcXByeOHGCOUikpdfr8dSpU7KCRFoXL16UlSCjdePGDVlBIq2HDx/KSpDRevHihaxiDFqfP3+WlSCjFRERIStBRisxMRFPnDjBHCQm1ZkzZ2QFibQuX74sK0ikdefOHVkJMlp+fn6yHkjQevv2rawHErS+ffsm64EErZiYGDx58iRzgowWuW9NHdV9/vx5WQkyWteuXZOVIKN17949WQ8kaD179kxWMQatoKAgye5QIYWFhUl2hwopISEBT5w4wZwgS6rTp08rum/lJMho3bx5U9YDCVqPHj2SlSCj9erVK1kJMlrBwcGyijFoRUVFMU295RO5b02Nfc6ePSvrgQSty5cvmxz73L17V1aCjNbTp09lJchovXv3TlaCjNaPHz9kJchoxcbGynoATEuv1+PJkydlPZCgdeHCBVkJMlrXr1+X7A4V0oMHD2Q9kKD1/PlzWQ8kaH38+FFWgoxWeHi4rAQZrYSEBDx+/Lii+9bU2OfSpUuyijFo3bp1y+QEmRLWfPPmTZplTVNjH6WsaWpe5k9jzfj4eJU1Zejly5dmYc3IyEiVNWXInKwppxiDVmxsrMqaMmRO1pRTjEFLKWueOnVKVjEGrT+NNb98+WIW1lSaZ1fCmleuXElzrPn+/XuzsKbSPPufyJpyijFomZs1TY19lLCmj4+PWVjzyZMnZmHNr1+/KmJNOcVvtP5E1gwICDALa4aGhpqFNRFRZU0ZUllTnszJmnIK/2mlVdZUZV6lROGgBv9XGJdq0mg0ZQDAFwCsqN+ug4g+Al+vAYA1ANBb5NuuA4C+mEI/jEajcQKAQACAwMBAcHJySomXUaVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqowUFBQEzs7O5JfOiBik9HtaKP0GcqTRaCwAwBv+VzQYwmibCf9fNPgAANoBQKV///fBv7/fGwBmJN87VaVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqv6bStXCQQAYDAAVAeAZAGyQ+mKNRlMYAEb/+0tfAKiOiLsR8S4i7gaAGv/+PgDAGI1GUygF3rMqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVL1n1GqFQ5qNBpn+P+pgP0AII7BNgz+/yONByFiNP2HiBgFAIP+/aUVAAxV/k5V/Vd14cIFmDhxIty+fRv0er0sr5+fHwwfPhwuXboE8fHxsrwhISEwYMAAOHHiBERHR0sbKMXExMCAAQNg7969EBYWJsuLiDB69GjYsmULfP36VZYXAGDOnDmwatUqCAwMlO1dt24dLFy4EJ4/fy7be+jQIZg+fTo8ePAA5H76+I0bN2Ds2LFw/fp1SExMlOV9/fo1DB48GM6dOwdxcSzX0/8rNDQU+vfvD0eOHIHIyEhZ3vj4eBg8eDDs2rULfv78KcuLiDBx4kTYsGEDBAcHy/ICACxZsgRWrFgBb9++le3dtm0bzJs3D54+fSp7n06dOgWTJ0+Gu3fvyj6L9+/fh5EjR8Lly5chISFBlvfjx48wYMAAOHXqFMTExMjyRkZGQv/+/eHAgQMQHh4uy6vX62H48OGwbds2+P79uywvAMCMGTNg7dq18PHjR9neVatWwZIlS+DVq1eyvfv27YNZs2bBo0ePZO+xj48PTJgwAW7duiX7LAYEBMCwYcPgwoULsu/bb9++Qf/+/eHYsWMQFRUlyxsbGwsDBw6EPXv2mHTfjhkzBjZt2gQhIawDlf9f8+fPBy8vL/jw4YNs78aNG2HBggXw7Nkz2ft09OhRmDZtGty/f1+29/bt2zBmzBi4du2a7LP47t07GDRoEJw9exZiY2NleX/9+gX9+/eHw4cPQ0REhCxvYmIiDB06FHbs2AE/fvyQ5QUAmDx5Mnh7e8Pnz59le5ctWwbLli2DN2/eyPbu2LED5syZA35+frL36dy5czBp0iS4c+eO7Pv20aNHMGLECPDx8ZF9Fj9//gwDBgyAkydPyr5vo6OjYcCAAbB//3749euXLK9er4eRI0fC1q1b4du3b7K8AACzZs2CNWvWQFCQ/Knua9asgUWLFsGLFy9kew8cOAAzZsyAhw8fyt7jq1evwrhx4+DGjRuy79sXL17AkCFD4Pz587Jjnx8/fkD//v3h6NGjsu/buLg4GDRoEOzevRtCQ0NleRERxo8fDxs3boQvX77I8gIALFy4EFauXAnv37+X7d28eTPMnz8fAgICZO/TiRMnYOrUqeDr6yv7LN69exdGjx4NV65ckX3fBgYGwsCBA+H06dOy79uIiAjo378/HDx40KT7dtiwYbB9+3aTYp+pU6fCunXr4NOnT7K9K1asgKVLl8Lr169le3fv3g2zZ8+GJ0+eyN5jc7Jm//794fjx4yax5sCBAxWx5ubNm1OdNb29vdM0a8o9i0pYMyEhAYYMGWI21ly+fLlJrLl161aYO3euSax5+vRpk1nzwYMHZmPNAQMGqKzJKB8fHxg/fjzcvHkzzbBmXFycItYcO3asYtY0JfZRwprHjh0zK2ueOXPGJNbs168fHDp0SGVNBilhzcePH5vMmsHBwQbWlBv7KGFNRISRI0eanGdXwppr165Nc6z58uVLs7AmybObgzUXLVoEK1euhHfv3sn2bt68GebNmwf+/v6pypq+vr4watSoP4o1p02bZjJrrly50iysefHiRZg4cSLcunUrTbGm0ueaprLm3LlzYdWqVSbl2ZWw5uHDh83Cmm/evFHMmocPH05V1gQAmDhxIqxfvz7VWXPbtm1pjjU/ffpkNtYcMWIEbNu2zaQ8O2FNU2Kf1atXw5IlS+Dly5eyvfv27YOZM2emOms+e/YMhg4dChcuXJAd+yhlzUGDBpmFNVX9B4WIqbIA4BgAIABs/vfXU//9NQJAbZ6v1wBA0L9/HiDxvZ/9+3WBAKBJgffuRN5rYGAgqkqbiomJQScnJwQAzJEjB3br1g0PHjyI4eHhkl69Xo+VK1dGAEBHR0ds27Ytbt++Hb9//8702u3atUMAQHt7e9TpdLhu3Tr89OkTk3f8+PEIAGhlZYX16tXDpUuX4uvXr5m869evRwBAjUaDVatWxdmzZ+OTJ09Qr9dLei9evEjOJ5YpUwYnTpyIt2/fxsTEREnvy5cv0dLSEgEAixQpgsOHD8dLly5hXFycpPfnz5+YKVMmBAB0cnLCvn374okTJzAqKkrSGx8fj0WKFEEAwGzZsmHnzp1x3759GBYWJulFRKxfvz4CAGbIkAFbtWqFmzdvxpCQECZv7969EQDQ1tYWmzRpgqtWrcIPHz4weefMmYMAgJaWlli7dm1cuHAhPn/+nMm7Z88ewz5VrFgRp0+fjg8ePGDa49u3bxu8JUqUwLFjx+L169cxISFB0hsUFIQ2NjYIAFiwYEEcPHgwnjt3DmNjYyW9kZGRmCNHDgQAzJUrF/bs2ROPHDmCERERkl69Xo9ly5ZFAMDMmTNj+/btcdeuXfjz509JLyLiX3/9hQCA6dOnxxYtWuCGDRvw8+fPTN7hw4cjAKCNjQ02bNgQV6xYgW/fvmXyrly5EgEALSwssEaNGjh37lx8+vQp0z6dOHHCsE/ly5fHKVOm4N27d5nOop+fH2o0GgQAdHV1xZEjR+Lly5cxPj5e0vv161d0cHBAAMB8+fJh//798dSpUxgdHS3pjY2Nxfz58yMAYPbs2bFr16544MAB5vu2Ro0aCACYMWNGbN26NW7btg2/ffsm6UVE7NSpk+G+9fT0xLVr1+LHjx+ZvFOmTDHct3Xr1sUlS5bgq1evmLybN2823LdVqlTBWbNm4aNHj5j2+PLly4Y9Ll26NE6YMAFv3rzJtMdv3rxBKysrBAAsXLgwDh06FC9cuMB034aFhWGWLFkQADBv3rzYp08fPHbsGNN9m5CQgMWLF0cAwCxZsmDHjh1xz549GBoaKulFRGzcuDECADo4OGDLli1x06ZNzPdt//79Dfdt48aN0cvLC9+/f8/kXbhwoeG+rVmzJi5YsACfPXvG5D1w4IBhnypUqIDTpk3D+/fvM+3x/fv3DV43NzccM2YMXrt2jem+/fTpE9rZ2SEAYIECBXDQoEF49uxZjImJkfRGR0dj7ty5Dfdtjx498NChQ8z3rbu7OwIAZsqUCdu1a4c7d+7EHz9+SHoREf/55x8EAEyXLh02b94cvb29me/bMWPGIACgtbU11q9fH5ctW4Zv3rxh8q5Zs8ZwFqtVq4Zz5sxBPz8/pn06e/asYZ/Kli2LkyZNwjt37jCdxYCAALSwsEAAwKJFi+KIESPQx8eH6b79/v07ZsyYEQEAnZ2dsV+/fnjy5Emm+zYuLg5dXFwMsU+XLl1w//79+OvXL0kvImLt2rUN9+0///yDW7duxa9fvzJ5u3fvjgCAdnZ26OHhgatXr2ZmpRkzZhju2zp16uDixYvxxYsXTN4dO3YY9rhy5co4Y8YMfPjwIdMeX79+3bDHpUqVwnHjxuGNGzeYzuL79+/R2toaAQBdXFxwyJAheP78eabYJyIiArNly4YAgLlz58ZevXrh0aNHMTIyUtKbmJiIJUuWNNy3HTp0wN27dzPftzqdzhD7/PXXX7hx40b88uULk3fw4MGG2KdRo0a4cuVKfPfuHZN36dKlhthHq9Xi/Pnz0d/fn2mfjhw5Ytgnd3d3nDJlCvr6+jJ5Hz16ZPAWL14cR48ejVeuXGE6i1++fMF06dIhAGD+/PlxwIABePr0aab7VilrVqlSxcCabdq0STXWnDBhgsmsuWHDht+GNS9evJgqrFm0aFEj1ty7d69JrPn333+nGmvOnTvXEPvUqlUr1Vjzzp07ZmPNnDlzJhtryol9lLDmiBEjjFhz+fLlqcKaJ0+eNOxTuXLlcPLkyWmCNQsUKMBhTZbYRylrdu7c2RD7ENYMCgpi8iphzS1btiQba44fPz5VWPPXr18G1syTJw/27t071VizSZMmHNZkjX3MxZoHDx7ksOa9e/dSnDU/f/7MYc0zZ86kCmtWqFDBwJpt27bFHTt2mMSazZo1Q29vb+bYRwlrrl271iys+ezZM7OwZnx8PBYqVMhk1qxTp44Ra27ZsiVVWHPmzJlGefZFixalCmveuHHDsMclS5ZMM6xZqlQpDmuy5tmVsOaQIUPMwppHjx41mTUfP35s8Lq6uuKoUaNSjTWdnZ3Nwprt27dPc6x56dIlDmveunUrxVkzNDTUwJokz378+PFUYc0GDRqkOdbcu3ev2VjT1tY2zbFmy5YtjfLs69evTxXW9PLyMty31atXTzXWfPr0qYE1ixUrlmZYU6vVmoU1p06dasSaixcvxpcvXzJ5lbCmKvMqMDDQcMYAwAmToyYuOb6J5IsAtP73TX8HgOzIVjjoQv35Gonvv5b62oIp8P7VwsH/iFatWkUfIlnJoFOnTnG8rMkgf39/wz9y9GJJBn379s3wjxy93NzccPTo0Xj16lXBgCguLs7wjxy9WJJBer0ea9asyfHmzJkTu3fvLpkM6tKlC8fLmgyaNm0ax8uaDNq6dSvHy5oMunr1KsfLmgx69+6dIaFKL5Zk0K9fvzBr1qwcL0syKDExEd3c3Dhekgw6ceKEaEDUtGlTjpc1GTRw4ECOlzUZtGjRIo7Xzs4OmzZtKpkMOnToEO9ZZEkGPXjwgOMFAKxUqZJkMujz589ob2/P8bIkg6KjozFv3rwcL0sySK/XY8WKFTle1mRQmzZtOF7WZNC4ceM4XpIM2rBhAwYHBwt6161bx/GyJoPOnz/P8ZJk0Lx580STQc+fPzckVOnFkgz6+fMnOjo6crwsySA6oUov1mRQ3bp1OV7WZFDPnj05XtZk0KxZszhe1mTQrl27OF46GST2IOzmzZu89y1LMujDhw+Gh8n0YkkGRUREGAqX6VWkSBEcNmyYaDIoMTERS5cuzfGyJoOaN2/O8WbNmhU7deokmQwaOnQox8uaDFq+fDnHy5oMOnbsGO99y5IMevLkCe99y5IMCgkJwfTp03O8JBkk9iAsNjbWkFClF0sySK/XY7Vq1Thekgw6fPiwaOzToUMHjpc1GTRp0iSOlzUZtHHjRo7X2toaGzRoIJkMohOq9H3Lkgx6/fq1IaFKL5ZkUGhoKGbOnJnjZUkGJSQkYLFixThe1mRQw4YNOV7WZFDfvn05XtZk0Pz58zlekgxas2aNaDJo3759vPctSzLI19eX976tXLkyzpw5UzQZ9PHjR0NClV4shQdRUVGYK1cujrdQoUKShQd6vR7LlSvH8bIWHvz9998cL2vhwahRozhe1sIDJax5+vRp3vuWsGZAQIDgPillzQwZMnC8rKxZsGBBjrdAgQI4cODAFGXNrl27crypwZrbtm3jvW+TgzXFYh8lrBkeHi7KmpcuXUox1vTw8OB4WRv8lLDm4sWLee9bFtY8fPgw71lMadYMDg42G2tWqlSJ4/3dWdPb25vjpRv8Uoo1X7x4wcuapMEvJVmzcOHCHO/vzpqzZ8/meGnWFGvwU8Kat27d4r1vq1atirNmzcLHjx//lqxZpkwZjjc1WHPYsGEcr4ODQ4qz5vHjx3nv2+RgTbEGP6WsmS9fPo63YMGChga/lGLNjh07crysDX5KWHPTpk0cLytr+vj48N63Kc2aYWFhZmPNRo0acbyENaXy7EKsSRr8Uoo19+/fz3vfkga/lGJNukmWXqVKlUpx1ixfvjzHy8qarVq14nhTgzVXr17N8drY2GDjxo1x5cqVKcaaAQEBgqw5derU35I1ERFr1arF8aYGa06fPp33vk1p1rx27RrvWVTKmlINfkpZs0SJEhwv3eCXUqw5aNAgjpcMk/ldWfPhw4ccL0DKs2ZMTIwoa0rl2ZWwZtu2bTnezJkzY4cOHSSHyQixJmnwSynWvHDhAsdLGvz+q6ypynxKk4WDAJAJAD7/+6Z7Ur8/lfph+AoHPag/HyrxGsOor22aAj+DWjj4HxE9CUJokWlPSZNB9NRBoSWWDCKTIISWWDKITB0UWmLJIDJ1UGiJJYPoSRB8SywZRHfn8C2xZBA9CUJoCSWD6KmDQkssGUQmQQgtsWQQ6c4RWqQDly8ZRKYOCi2xZBA9CYJviSWD6KmDfEssGURPguBbYskgeuqg0CLJoKQPwujuHKEllgwikyCElrOzM/bv35+3A5dMHRRaYskgMglCaIklg+ipg3xLLBlET4LgW2LJILo7h2+JJYPoqYNCSygZRE+CEFpiySAydVBoiSWDyCQIoSWWDCJTB4UWSQbxdeDSkyD4llgyiJ4EIXQWSQdu0mQQPXVQaAklg+hJEEKLTHviSwaRqYNCSywZRCZBCC2xZBCZBCG06GRQ0gdh9NRBviWWDKInQfAtOhmUtANXKKFKn0WhZBA9CUJoCSWD6KmDQkssGUQmQQgtsWQQmQQhtMSSQWTqoNASSwbRkyD4llgyiJ46yLfEkkH0JAihJZQMoqcOCi2SDOLrwCVTB4WWWDKITIIQWrlz5zZ04CZNBpGpg0JLLBlEJkEILbFkED11kG+JJYPoSRB8SywZRE+CEFp0Mog+i/TUQaEllgwikyCEVr58+QSTQWTqoNASKzwgkyCEFik84Cu6pKcO8i2xycL01EG+RQoP+KY90ZMg+BbdgZu08EApa5JJEEKrcOHCKcKaZBKE0BJjTTIJQmiZmzX5GvyUsiaZBCG0SpQoITjtyVysSSZBCK2UYk16EgTfSknWJJMghJZS1hRq8FPCmmQShNDKnj27YIOfEtakJ0HwLTLt6XdjTb4mWXrRrEmfRaWsSSZBCC3CmnwPwpSwJpkEIbSUsiZp8EtO1qSnDgotd3f3FGFNMnVQaP2OrElPHeRb9vb22KxZM94GPyWsSU8dFDqL1apV423wU8qaZOqg0BL7FBtzsSaZOii0Uoo16amDfItmzaR5diWsKdQkSy8x1iRTB4WWi4uLYIOfEtYkUweFltin2ChhTXrqIN/6XVmTTB0UWoQ1+fLsSliTTB0UWoQ1+T7FRglr0lMH+ZYYa9JTB/mW2GRhpazJ1yRLr5RiTTJ1UGj9jqzJ1yRLL8KaXl5eycqa9NRBoSX0KTZKWZNMHRRavyNr0lMH+VZKsiZfkyxZNGsmHSZjTtYkUweFlthkYSWsSaYOCq2UYk166iDfSi7WTBr7KGVNMnVQaBHWPH/+fLKyJpk6KLTEPsVGCWuqMp9SonBQg/8rjEsxaTSadQDQCwBuAEAN/PcFNRrNVACY8u+X1UFEnyS+vgCw+t9f/oOI+0VeoxUA7Pv3l30Rca3M9+gk8SW5AOAuAEBgYCA4OUl9uarfUaNHj4b169dDREQExMfHM3ly5swJHh4eYGVlBfv27YOoqCiIjY1l8mbKlAkaN24MefPmhQ0bNkBcXBzzZ9Pb29tDgwYNoFy5crBs2TJISEiAiIgIJq+1tTXUrFkTGjRoAHPmzAFEhF+/fjF5NRoNVK1aFTw9PWH16tUQHh4OoaGhTF4AgDJlyoBOp4PTp0/D69evITQ0FFjvmCJFioBOpwN/f3+4ffs2/Pr1CxITE5m8Tk5O4OnpCeHh4XDy5EmIjIyEuLg4Jm+2bNmgadOmkCFDBtixYwfExMRATEwMkzdDhgzQqFEjKFy4MKxZswbi4+MhMjKSyWtrawv16tWDqlWrwsKFC0Gv10N4eDiT19LSErRaLXh6esKMGTMAACAsLIzJCwBQqVIl8PT0hO3bt8PXr1/h58+fzN6SJUuCTqeDq1evwtOnTyEsLAz0ej2T18XFBTw9PeHDhw9w+fJlCA8Ph4SEBCZv7ty5wcPDAxITE+Hw4cOyzmLmzJmhSZMmkCNHDti8eTPExsZCdHQ0kzd9+vTQoEEDKFmyJKxcuVLWHtvY2EDt2rWhdu3aMG/ePFln0cLCAqpVqwY6nQ6WLFkCMTExss5i+fLlQafTwaFDhyAwMFDWWXR1dQWdTgcPHjyAe/fuyTqL+fLlA09PT/j+/TucPXtW1n2bI0cO8PDwABsbG9i7dy9ER0czn8WMGTNC48aNIX/+/ODt7S37vq1Xrx5UrFgRlixZIuu+tbKygpo1a0KjRo1g9uzZAMB+FjUaDVSuXBl0Oh14e3tDWFiYrLNYunRp0Ol0cP78eXjx4oWsPS5cuDDodDp48eIF3LhxQ9ZZzJs3L3h6ekJ0dDQcO3ZM1n2bNWtWaNq0KTg6OsL27dtl3bcODg7QqFEjKFasGKxatUr2fVu3bl2oXr06LFiwQPZ9W716ddDpdDBr1iwAAFlnsUKFCqDT6WD37t0QHBwsa4/d3NxAp9PBrVu34PHjx7Lu24IFC4Knpyd8/PgRLl26JOss5sqVCzw8PECj0cCBAwdkxz5NmjSBXLlywaZNm2Tdt+nSpYMGDRpAmTJlYPny5bJjn9q1a0PdunVh7ty5su/bqlWrgk6ng+XLl0NUVJSsPS5Xrhx4enrCiRMn4O3bt7LOYrFixcDT0xP8/Pzgzp07su5bZ2dn8PT0hNDQUDh9+rSsPc6ePTs0bdoU0qVLB7t27ZJ1FjNmzAiNGjUCFxcXWLt2raz71s7ODurVqweVKlWCxYsXyzqLVlZWoNVqoWnTpjBz5kwAkHffVqpUCXQ6HWzatAl+/Pgh6yyWKlUKdDod+Pj4QEBAgKyzWKhQIdDpdPDmzRu4evWqrPs2T5484OHhAXFxcXD06FFZ922WLFmgSZMmkDVrVti6davs2Kdhw4bg5uYGXl5esmOfOnXqQM2aNWH+/PmyzyK5b+fPnw8JCQmyzqK7uzvodDrYv38/fPz4UdYeFy9eHHQ6Hfj6+sKDBw9kncX8+fODTqeD4OBguHDhQqqxpqOjIzRp0iTNsWaVKlVAp9MpYs0zZ87Aq1ev0hRrZsyYUXbsQ1izUKFCsHbtWpNYs1q1aibFPlqtFjw8PGTftwDKWLNEiRKg0+ng+vXr4Ofnl+qsqdfr4dChQ6nOmqVKlYIVK1akOdY8fPgwfPjwIU2wZvbs2cHDwwNsbW3/ONZcv349hIaGpjprvnz5Eq5fv24Sa0ZFRcHx48cVsaacs+jg4AANGzYEV1dXs7Hm7NmzARFTnTVv374Njx49knXfFihQAHQ6HXz69AkuXryY6qyZO3du2Lhxo0msWbp0aVixYkWqsSbJs+t0OlixYkWqsmbRokVBp9MlC2vKOYvmZs3KlSvDokWL0hRrenp6wuXLl2WzpouLC+h0Onj79u0fxZq1atUyKfZJDtY8cOAABAUFmcSad+/ehYcPH5rEml++fIHz58+blGe3srKC/fv3pypr1q9fH9zd3WHp0qVmYc01a9ZAeHi4rH1KDtYMCAiAW7duyTqLhDUjIiLgxIkTqc6apj7XrFu3LlSrVi3Vn2tWrFgRdDpdqrNmwYIFQafTmY01c+bMKTvPnhysWadOHZPy7NWqVQNPT09YunRpqrOmp6cnPHr0CHx9fVXWFBFhzcaNGxueeZnCmjqdDkqWLAkajYbJqyp5FRQUBM7OzuSXzogYpPR7pmjhoEajqQEAVwAgEQDKI+IT6s+mgnjh4CgAmP/vL5sg4mmR12kCACf//eVIRFwk830y/yWohYNpVwMHDgQvLy9zvw1VqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqtKc8ufPD56enqDT6aB27dpga2tr7rf0xyglCgctlH4DIWk0GhsAWAcAGgBYQhcNMsqO+v9SJfZ0eba9zNdRpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlUiio6OhqioKIiMjGSe0qjq91WKFQ4CwHgAKA4AHwBgmgl+eo6njcTX0uWrbHNajeUssSqa8D1V/WaysrICGxsbWSNTHR0doU2bNtCxY0ewsbEBCwv2I2Nvbw86nQ769+8PNjY2YGlpKeu91qtXD0aPHg3W1tZgZWXF7CUfgzB58mSwtrYGa2trZi/A/8ZyT5w4EbJlywY2NlJHz1hFihSB4cOHg5ubm2xv3rx5oW/fvlCrVi3Z3qxZs0Lnzp2hZcuWsvfYwcEB/v77b+jWrZvsPba1tYUmTZrA4MGDZe+xpaUl1KpVC8aOHSt7jwH+N5Z72rRpJu1xiRIlYOzYseDs7Cz777pgwYIwePBgcHd3l+3NlSsX9OzZExo1aiR7nzJnzgzt27eHtm3byt6ndOnSQYsWLaBPnz6y98na2hoaNmwIw4cPBxsbG1n7ZGFhATVq1ICJEyeatE/lypWDyZMnQ8aMGWV7ixUrBiNHjoQiRYrI3idnZ2fo378/VK9eXbY3e/bs0LVrV9DpdLL3OGPGjNC6dWvo3Lmz7D22s7MDT09PGDhwoEn3bd26dWHMmDEm3bdVqlSBqVOnmrTHpUuXhvHjx0POnDll/10XKlQIhg4dCqVLl5btzZMnD/Tu3Rvq1q0re5+yZMkCHTt2hFatWsneJwcHB2jZsiX06NFDttfGxgYaN24MQ4cONem+rVmzJowfP96k+7ZChQowbdo0sLW1lb3Hbm5uMGbMGMifP7/sfSpQoAAMGjQIKlWqJNubM2dO6NGjBzRp0sSk2Kdt27bQvn17k2KfZs2aQd++fU26b+vXrw8jR46Ufd9qNBqoVq0aTJo0yaSzWLZsWZg0aRJkzpxZ9t910aJFYcSIEVC8eHHZXicnJ+jXrx9otVrZ3mzZskGXLl2gefPmsvc4Q4YM8M8//0CXLl1Mum89PDxg0KBBJp3F2rVrmxT7kI9BMPW+LVmyJIwbNw7y5Mkj++/axcUFhgwZAuXKlZPtzZ07N/Tq1QsaNGhgUuzToUMHaN26tex9Sp8+Pfz111/Qq1cv2ftkY2MDjRo1MsQ+crwWFhag1WphwoQJJt237u7uMGXKFEifPr3sPXZ1dYVRo0aBi4uL7H3Kly8fDBgwAKpUqSLbmyNHDujWrRt4eHj8Uaw5ZcoUs7FmiRIlTGLNPn36/HGsOW7cuDTJmhUqVEhTrNm8eXPo3bu3yaw5YsQIk1izevXqZmXNokWLmoU1mzVr9kexpqn3LWHNXLlyqawpISWsaWFhYVbWHD16tFlYs3v37tC0aVOzsGa/fv3Mwpqm5tnNzZo1a9Y0C2t27drVpNinadOmqc6aAACVKlVKs6xZv359k1mzTZs2ZmVNubGPEtYsX768YtYsVKiQWVjT09NTZU0GEdbMnj277L/rwoULw7BhwxSxZu3atWXvU9asWaFTp05mY80hQ4aYhTWnT5+eJlmzcePGsvcpU6ZM0K5dO0WsaepzzQYNGpiVNR0dHdMca5rrueaAAQNSnTUrV65s8n1bqlQpGD9+PNy8eRM+f/4MGzduhJYtW4KDg4Os76PqNxQiJvsCAFf43xRABIBmAl8z9d8/RwCozfPnfak/byXxeq2or+2TAj+PE/n+gYGBqCrtKjY2FgsUKIDUfy+cVbhwYRw2bBhevHgR4+LiDF69Xo81atQQ9ebNmxf79OmDx48fx6ioKKPX7ty5s6g3a9as2KlTJ9y7dy+GhoYaeadMmSLqdXBwwL///hs3bdqEX758MfJu2bJF1Gtra4tNmjRBLy8vfP/+vZH3ypUrol5LS0usWbMmLliwAJ89e2bkffPmDVpZWYn6K1asiNOmTcP79++jXq83eH/9+oVZsmQR9bq5ueGYMWPw2rVrmJCQYPAmJCRg8eLFRb0FChTAQYMG4dmzZzEmJsbofTdp0kTUmzNnTuzRowcePnwYIyIijLwDBgwQ9WbKlAnbtWuHO3fuxB8/fhh5Fy5cKOpNly4dNm/eHNevX4+fP3828h48eFDUa21tjQ0aNMDly5fjmzdvjLz3798X9VpYWGD16tVx7ty56OfnZ7RPnz9/Rjs7O1F/uXLlcNKkSXjnzh1MTEw0eKOjozF37tyi3qJFi+KIESPQx8cH4+PjDV69Xo8VKlQQ9To7O2O/fv3w5MmTGB0dbfQzt27dWtSbLVs27NKlC+7fvx9//fpl5B0zZoyoN0OGDPjPP//g1q1b8evXr0betWvXinrt7OzQw8MD16xZg0FBQUbes2fPinqtrKywTp06uHjxYnzx4oWR99mzZ2hhYSHo1Wg0WLlyZZw5cyY+evTIaI9//PiBGTNmFH3tUqVK4fjx4/HGjRtGZzE+Ph4LFSok6i1UqBAOHToUz58/j7GxsUbvu06dOqLe3LlzY69evfDo0aMYGRlp5O3evbuoN0uWLNixY0fcvXs3/vz508g7c+ZMUW/69Onxr7/+wo0bN2JwcLCRd8eOHaJeGxsbbNSoEa5cuRLfvXtn5L1x44bkWdRqtTh//nwMCAgw2qcPHz6gtbW1qN/d3R2nTp2K9+7dM/JGRERgtmzZRL3FixfH0aNH49WrV432ODExEUuVKiXqzZ8/Pw4cOBDPnDnDuW91Op2oN0eOHNi9e3c8ePAghoeHG3mHDBki6nV0dMS2bdvi9u3b8fv370beZcuWiXrt7e1Rp9PhunXr8OPHj0beo0ePinqtra2xfv36uHTpUnz9+rWR9/Hjx6JejUaDVatWxdmzZ+OTJ0+M9unLly+YLl06UX+ZMmVw4sSJePv2baP7NiYmBp2dnUW9RYoUweHDh+OlS5c4sU+VKlVEvU5OTti3b188ceIEJ/Zp3769qDdr1qzYuXNn3LdvH4aFhRl5J06cKOrNkCEDtmrVCrds2YIhISFG3g0bNoh6bW1tsWnTprh69Wr88OGDkffSpUuiXktLS6xduzYuXLgQnz9/buR9+fIlWlpaivorVaqE06dPxwcPHhjtcWhoKGbKlEnUW7JkSRw7dixev36dc98WLVpU1FuwYEEcPHgwnjt3jnPfNmjQQNSbK1cu7NmzJx45coQT+/Tp00fUmzlzZmzfvj3u2rWLc9/OnTtX1JsuXTps0aIFbtiwgXPf7t27V/IsNmzYEFesWIFv37418t65c0fUa2FhgTVq1MB58+bh06dPjfYpKCgIbW1tRf3ly5fHKVOm4N27d43OYlRUFObKlUvU6+rqiiNHjsTLly9zYp+yZcuKevPly4cDBgzAU6dOcWKfli1binqzZ8+OXbt2xQMHDnBinxEjRoh6M2bMiK1bt8Zt27bht2/fjLxeXl6iXjs7O/T09MS1a9dyYp+TJ0+Keq2srLBu3bq4ZMkSfPnypZH36dOnqNFoBL0ajQarVKmCs2bNwsePHxvt8bdv39DBwUH0tUuXLo0TJkzAW7duGe2xUtbUarWi3jx58mCfPn3w2LFjJrPmnj17OKw5depUUa8Ya27dulXUa2Njg40bN0521nz79q0ka1aoUCFFWNPNzU3U+zuy5qJFi0S9hDW9vb3x06dPRt7UYM05c+YkO2vmyZNH1CvGmhUrVhT1Ojk5pQhrjh07VtSbUqx57tw5ybOYHKz58OHDVGVNFxcXHDJkSLKzZo8ePUS9mTNnxg4dOiQ7a+7cuVPU+7uyZvbs2UW9hDWvXLlidBaVsmazZs1Evb8jax47dkzUa2VlhfXq1cOlS5fiq1evjLxKWDMkJMRsrFm1alVRb968eRWz5t69e5OVNTdu3CjqJay5atWqZGXNV69eSbJmxYoVTWbNEiVK8LJmQkKCItZs2LChqDelWHPevHmiXpo1k+bZlbDm3bt3Rb3JwZqTJ09OdtYsV66cqNfZ2Rn79++f7Kw5cuRIUW9KseapU6dEvWKs6e/vz8yaSfPsSlgzLi6OmTUvXLiQrKzZpUsXUS/Js5vKmi1btkx21rx69aqoNyVZM2vWrKLelGLNpk2binqTgzV37NjBiX2UsOahQ4dEvSTPvmzZMk6eXSlr2tvbi/rLli3727FmmzZtRL00ayaNfZSw5rp160S9NGsmraFRwprPnz9nYs0ZM2aYxJolS5bEcePGJTtr1q1bV9SbUqw5a9YsUW9KsaYq8ykwMJDeJydMjpq45PgmnG8KsPbfN/kaANoKrP3UDzOd+v30/34PT+rPh0q83jDqa5umwM+jFg7+R+Tt7c0bQJAgMWmCjNb58+d5L8wKFSrwJshovXjxgvcfODc3N95iDFo/f/5ER0dHjlcsQUYUHx+PhQsX5nhz5syJ3bt3x0OHDnESZLTq1avH8ZIEGV+QSKtnz54cr729PTZr1ow3SKQ1e/ZsjlcsSKS1a9cu3gCiWrVqvEEirVu3bvHuMQkSkybIaAUGBqKNjQ3HS4LEpAkyWhEREZgjRw6OlwSJfAkyosTERCxTpgzHmy1bNsFiDFrNmzfneOkEWdIgkdawYcM4XroYQ+y+XL58OcdLEmSLFi3iJMhoHT9+nHefKlWqxBsk0nry5Akv3AsFibRCQkIwffr0soJEotjYWMyXL59gkHjkyBFOkEik1+uxWrVqgkEiX4KMVseOHQWDRL5iDFqTJ0/mDRKFEmS0Nm3axHvfarVanDdvHvr7+wvuk4+PD+8ek2IMX19fwbP4+vVr3mSqq6srjho1ivNAglZYWBhmzpyZ4yXFGKdPnxa8bxMSErBYsWIcb44cObBbt2548OBBToKMVqNGjXjv2zZt2uD27ds5CTJa/fr1471vhR5I0Jo/fz7HK/ZAgtb+/ft579uqVavyFmPQ8vX15d3jMmXK8CbIaH369In3QbJQMQatqKgo3qJlscJ/Ir1ej+XLl+d4xQr/abVq1YrjJcUYmzdv5jyQoDVq1Cje+7ZJkya8DyRorV69mve+rVWrFi5cuJCTIKN1+vRp3n0iDySSJshoBQQE8N635IFE0gQZre/fv2OGDBk4XjpBJnTfxsXFYcGCBTle8kCCL0FGq1atWhyvWDEGra5du3K8YoX/tKZPn87xihVj0Nq2bRvvfUsK/5M+kKB17do13j0uV64c7wMJWu/eveN9kFysWDEcOXIkJ0FGKzw8nDeZKvZAgigxMRFLlCjB8ZIHEnzFGLQ8PDw4XvJAgi9BRmvQoEEcL3kgwVeMQWvJkiW89y1JkCV9IEHr8OHDvPetUOE/rYcPH/LuMSnGuHnzpuAeBwcH8yZTSeF/0gcStGJiYjBv3rwcb548ebB379547Ngx0dinUqVKHK9Y4T+ttm3b8t63Qg8kaI0fP57jJQ8kpBJkSljzwoULvPukhDWFCv9pKWXNIkWKcLypwZq9evXieGnWFIt9lLDm7t27ec8iYc2kxRi0bt++zbvHZcuW5S3GoKWENSMjIwVZU6gYg0gpa7Zo0YLjTQ3WXLFiBcfLyponTpzg3SfCmkmLMWgpYc2vX7+KsiZfMQaRUtasXr06x6uUNYUK/2kpYc3Nmzfz3rekGCMlWZPvQXJysaZQ7JOQkICurq4cb3KwJl8xBi0lrLlgwQKOl7DmkiVLUow17927x7vHQsUYtMzJmu7u7hxvarDm6NGjee9bwppJizFoKWHNM2fO8O6TUtbkK8agpZQ1XVxcOF6xYgxaSlizW7duHG9qsOb27dt571sW1rx+/TrvHhPWTFqMQUspa/I1yBLW5CvGIBJiTbHCf1qenp4cb8aMGQWLMWgJsaZQ4T8tJax55MgR3vs2pVnzy5cvkqwpdBZjYmLQycmJ42VlzcqVK3O8rKzZrl07jjd9+vTYsmVL3mIMWkpYc/369bxnUajwn5YS1hRqkP3dWbN+/focb2qw5pw5c3jvW6WsyVf4TyslWFOo8J+WEtYUapBNDdYcPnw4x/u7s6afn58oayYt/KellDXz58/P8YoV/hOJsaZQ4T+tTp068d63vzNrXr58mXePU4M1+RpkxZrMiaRYk6/wX9XvobRUOLiZ72AwrgL/fg8X6vfWSLzeWuprC6bAz6MWDv4HRE+AoIsxxIJEIrorhzVBRotMgGAtxqBFunLEukOFRE8bFOoOFRI9AYIlSKRFTxsU6w7lEz0BQqw7lE90Vw5rgowWmQAh1h0qJNKVQyfIxIJEWvS0QaHuUCHREyCEukOFRHfliHWH8omeAMESJNKiu3LoIFEsQUZETxsU6w4VEpkAQbpDly9fLhok0iLTBsW6Q4VET4AQ6g4VEt2VQxJkSbtDhURPgGApxqBFd+WIdYfyie7KEesOFRKZACHWHSokMm1QrDtUSGQChFh3qJDorpzSpUtLJsho0RMghLpDhURPgGBJkNGipw2KdYfyiZ4AwVqMQYtMgBDrDhUSmQAh1h0qJHoChFB3qJDoaYNC3aFCoidAkAcSYgkyWvS0QdYHEkT0BAix7lA+0RMgWAv/aZEJEKwJMlpkAgRr4T8tetqgUHeokOgJEELdoUKiJ0CIdYfyiZ4AIdYdyid6AgTpDpVKkNEi0wbFukOFRCZAkO7QRYsWcbpDhUSmDYp1hwqJngDBUoxBi54AwVL4T4ueACHWHconegKEWHcon+hkqlh3qJDIBAhTukPJBAjWwn9a9AQIMonI19eXyUtPgChevLhkgowWPW2QpfCfFj0Bgi7GEHsgQWRO1iQTIFKbNekJEIQ1xYoxaClhTXoCBGFNsWIMWuZkTTIBgrXwn5YS1qQnQKQl1iQPklkL/4mUsiaZAEFYU6oYg5YS1iQTIFiLMWiZizXpCRB/CmuSCRCmsCaZAEFYU6oYg5YS1rx586bBy1L4T0spa5Jpg2mJNYcOHWo4iyyF/7SUsCY9bZCwplgxBi0lrElPG2QtxiCKjY01sCZrMQaRUtbs0KGDWViTnjaYlliTFC0T1pQqxiBSyppk2iBrMQYtJaxJTxtkaTKntW/fPrOw5sePH83GmmTaYFpizVWrVhnFPqQYI6VZk542mJqsSU8bTEusOW3aNA5rihX+01LCmvS0QZbCf1pKWZM0yNKF/yz3bWJiotlYc+DAgWZhTXraYFpiTdIgy1r4T6SUNcm0QdbCf1pKWJOeNsjSZE6LHsaUmqxJFy2nNmuSaYOsTea0zMWa9DAmlsJ/Vb+P/rTCQQ0AfPz39wIkXi/g368LAgBNCvw8auHgf0Dnzp2TFSTSevLkieCobil9+fIFu3XrJtkdyqfo6Gjs0aOHrAQZkV6vx8GDB8tKkNGaNm2arGIMWl5eXrISZLT2798vqxiD1rVr1wRHdUvp1atXsooxaP38+RO7devGHCTSiouLw969e8sKEon0ej2OGjVKVpBIa968ebISZLQ2btwoK0FG68SJE7ISZLTu3bsnK0FGKygoCLt16ybZHcqniIgI7Natm2R3KJ8SExNxwIABsoJEWpMmTeId1c2iZcuWyQoSae3atYv3Y6FYdPHiRcGPIJaSv7+/rAQZra9fv2LXrl2ZE2S0YmJisGfPnrISZER6vR6HDh1q8qjumTNnSnaHCmnt2rWS3aFCOnTokGR3qJBu3rwp2R0qpLdv3wp+LJSUwsLCsFu3bswJMlrx8fHYp08fWQkyWmPGjOH9CGIWLViwQFYxBq0tW7bIKvyndfr0aVnFGLQePnwoq/Cf1qdPn7Bbt27MDyRoRUVFYY8ePXg/FkpKiYmJOGjQIN6PIGbRlClTZCXIaK1cuVJWgozWnj17ZCXIaF2+fFlWgozW8+fPZRX+0/r+/Tt27dpVsjuUT7GxsdirVy/J7lA+6fV6HDFihGR3qJDmzJkjq/Cf1vr163k/gphFR48elZUgo3Xnzh3J7lAhffjwweTu0PDwcOzWrZusBBlRQkIC9uvXT1YxBq3x48fLSpDRWrx4seQkIiFt375dchKRkMzJml27dmUuxqCVVllz1apVaY41X79+bRbWjI+Px969e8sqxiAyJ2tu2rTpj2PN7t27p0nWlFOMQUspa8opxqBlLtaMjY3941jz8OHDvB9BzCJzsmbXrl3Nwppjx46VVYxBy1yseebMGbOw5ufPnw159tRkTb1ej4MGDZJVjEHLXKy5d+9es7DmixcvzMKacXFxBtY0Jc8+YsQIWYX/tJSyppxiDFpKWVNOMQYtc7Jm//79zcKaS5YskdVkTis5WJO18J/Wn8ia06dPNwtrHjhwwGTWvH79uqzCf1pKWDM0NBS7du3KXPhPSwlrIv7v03XkFP7TMhdrnjx50iys+fHjRwNryo19kos1TamNmTRpkqzCf1pKWVNO4T8tJawZEBCQJllz2LBh6kcQp1GlROGgBv9XGJfq0mg0UwFgyr+/rIOIPjxfswoA+v37y6qIeIvna6oAwM1/f7kKEQekwHt1AoBAAIDAwEBwcnJK7pdQpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqOAoKCgJnZ2fyS2dEDFL6PS2UfoMU1lIASPj3/6/QaDT29B/+++sV//4y4d+vV6VKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlQJ6LcuHETEFwCw8N9fVgCA6xqNpo1Go6mg0WjaAMD1f38fAGABIr40x/tUpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWq0op+68LBfzUBADb++//LAcBuALj77/+W+/f3NwDAxNR/a6rSks6fPw+jRo2CK1euQEJCgrSBkp+fHwwYMABOnz4NMTExsrwhISHQs2dPOHjwIISHh8vyxsTEQO/evWHbtm3w/ft3WV5EhGHDhsG6devg48ePsrwAADNnzoQlS5bAq1evZHvXrFkDs2bNgsePH4Pcj0M/ePAgTJgwAW7dugV6vV6W9/r16zBs2DC4ePEixMfHy/K+fv0a+vTpA8ePH4fo6GhZ3tDQUOjZsyfs3bsXwsLCZHnj4+OhX79+sHnzZggJCZHlRUQYO3YsrFq1Cj58+CDLCwCwYMECWLBgATx79kz2Pm3evBmmT58O9+/fl+09efIkjBkzBq5duwaJiYmyvPfu3YNBgwbB2bNnITY2Vpb348eP0KtXLzh8+DBERkbK8kZGRkLPnj1h586d8PPnT1levV4PgwYNgvXr18Pnz59leQEApkyZAsuXL4e3b9/K9q5YsQLmzp0LT58+lb1Pe/bsgcmTJ8Pdu3dln8VLly7ByJEj4fLly7Lv24CAAOjfvz+cPHlS9n377ds36NmzJ+zfv1/2fRsbGwt9+vSBrVu3wrdv32R5ERFGjBgBa9asgaAg+dOgZ8+eDYsXL4aXL+X3P3h7e8PMmTPh0aNHsvf48OHDMH78eLh586bss3jr1i0YOnQoXLhwAeLi4mR53717B71794ajR49CVFSULO+vX7+gZ8+esGfPHggNDZXlTUxMhAEDBsDGjRvhy5cvsrwAAOPHj4eVK1fC+/fvZXsXL14M8+fPh4CAANn7tHXrVpg6dSrcu3dPtvfMmTMwevRouHr1quyz+OjRIxg4cCCcOXNG9n37+fNn6NmzJxw6dAgiIiJkeaOjo6F3796wY8cO+PHjhyyvXq+HIUOGgLe3t0n37fTp02HZsmXw+vVr2d5Vq1bB7Nmz4cmTJ7L3ad++fTBx4kS4ffu27Pv2ypUrMHz4cLh06ZLs2OfFixfQt29fOHHihOzY58ePH9CzZ0/Yt28f/Pr1S5Y3Li4O+vbtC1u2bIGvX7/K8iIijBo1ClavXg2BgYGyvAAA8+bNg0WLFsGLFy9kezds2AAzZsyAhw8fyt7j48ePw7hx4+D69euy79u7d+/CkCFD4Pz587Lv28DAQOjVqxccOXJEduwTEREBPXv2hF27dsmOfRITE2HgwIGwYcMGCA4OluUFAJg0aRKsWLEC3r17J9u7dOlSmDdvHvj7+8vep507d8KUKVPA19dX9lk0N2seOHDALKy5du1alTUZ9ObNG7OwZkJCAvTv3z9Nsua0adNSnTXv379vNtbs1atXmmPNlStXwty5c8HPzy/VWXPEiBHg4+NjNtY0JfYxF2vOmTPHLKx55MiRNMuau3fv/mNYc9u2bSaz5tmzZ83CmsHBwdCrV69UZ01EhCFDhsC6devg06dPsrwA5mPN/fv3m4U1X758aRbWjI+PV8Sao0ePNgtrbty4EaZPnw4PHjxIddYcPHgwnDt3TmVNBi1btswsrHnhwgWVNWUoLbLmjRs3zMKaYWFhhjx7arImAMDYsWPBy8srTbHmqVOnzMKanz59MhtrDh48WBFrLlu2DN68eSPbq5Q1J02aBHfu3ElV1nz27Bn069cvzbHmyJEjTWZNVf9BIaJZFgBMBQD8d9Vm+PqmAHAYAD4CQOy//3sYAJqkwnt1Iu81MDAQVaVNxcbGYr58+RAAMHPmzNi+fXvctWsX/vz5U9Kr1+uxevXqCACYPn16bNGiBW7YsAGDg4OZXrtjx44IAGhjY4MNGzbEFStW4Lt375i8kydPRgBACwsLrFGjBs6bNw/9/f1Rr9dLejdt2kTOGJYvXx6nTJmCvr6+TF4fHx+D19XVFUeNGoVXrlzB+Ph4Se/r16/R0tISAQDz58+PAwYMwNOnT2NMTIykNywsDDNnzowAgDly5MBu3brhgQMHMDw8XNKbkJCArq6uCADo6OiIbdq0wW3btuG3b98kvYiIjRo1QgBAe3t71Ol0uHbtWvz48SOTt1+/fggAaGVlhXXr1sUlS5bgq1evmLzz589HAECNRoNVq1bFWbNm4ePHj5n2af/+/YZ9Kl26NE6YMAFv3bqFiYmJkt579+4ZvIULF8Zhw4bhxYsXMS4uTtL76dMntLOzQwDAvHnzYp8+ffD48eMYFRUl6Y2KisLcuXMjAGDWrFmxU6dOuHfvXgwNDZX06vV6LF++PAIAOjg44N9//42bN2/GkJAQSS8iYqtWrRAA0NbWFps0aYKrVq3CDx8+MHlHjRqFAICWlpZYq1YtXLhwIT579ozJu3r1asPfdcWKFXHatGl4//59pj0+c+aMwevm5oZjxozBa9euYUJCgqQ3ICAANRoNAgAWLFgQBw0ahGfPnsXY2FhJ7/fv3zFDhgwIAJgrVy7s0aMHHj58GCMiIiS9cXFxWLBgQQQAzJQpE7Zr1w537tyJP378kPQiItaqVQsBANOlS4fNmzfH9evX4+fPn5m8Xbt2RQBAa2trbNCgAS5fvhzfvn3L5J0+fbrhvq1evTrOnTsX/fz8mPZp+/bthn0qV64cTp48Ge/cucN0Fq9du2bwFitWDEeOHIk+Pj5M9+27d+/Q2toaAQCdnZ2xX79+ePLkSYyOjpb0hoeHY9asWREAMHv27Ni1a1fcv38//vr1S9KbmJiIJUqUQADAjBkz4j///INbt25lvm89PT0RANDOzg49PDxwzZo1GBQUxOQdNGiQ4b6tU6cOLl68GF++fMnkXbJkieG+rVy5Ms6cORMfPXrEtMeHDx827FOpUqVw/PjxePPmTaaz+PDhQ4O3UKFCOHToUDx//jzTfRscHIz29vYIAJgnTx7s3bs3Hjt2DCMjIyW9MTExmDdvXgQAzJIlC3bs2BF3797NfN9WrlzZEPv89ddfuHHjRvzy5YukFxGxbdu2htincePGuHLlSnz//j2Td/z48YazqNVqcf78+RgQEMC0T97e3oa/a3d3d5w6dSreu3ePyXvhwgWDt3jx4jh69Gi8evUq0x6/fPnSEPsUKFAABw4ciGfOnGGKfX7+/ImOjo4IAJgzZ07s3r07Hjp0iCn2iY+PxyJFihju27Zt2+KOHTvw+/fvkl5ExHr16hnu22bNmqG3tzd++vSJydurVy/DfVu/fn1cunQpvn79msk7e/Zsw1msVq0azpkzB588ecK0T7t37zbsU9myZXHixIl4+/Ztpvv29u3bBm+RIkVw+PDheOnSJaazGBgYiDY2NggA6OTkhH379sUTJ04w3beRkZGYI0cOBADMli0bdu7cGfft24dhYWGS3sTERCxTpgwCAGbIkAFbtWqFW7Zswa9fv0p6ERFbtGhhuG+bNm2Kq1evZmba4cOHG2Kf2rVr46JFi/D58+dM3hUrVhj+ritVqoQzZszABw8eMO3xiRMnDN6SJUvi2LFj8fr160xn8cmTJ4bYx8XFBYcMGYLnzp1jin2+fv2K6dOnRwDA3LlzY8+ePfHIkSNM9605WbNTp05mYc3NmzdzWPPu3btMZ1Epa1pZWSEAYL58+XDAgAF46tSp3541GzdubGBNT0/PVGPNBQsWGO7bKlWqqKwpIr1ej+7u7kasuWnTplRhzdGjRxux5oIFC9IEa1pYWJiFNV1cXMzCmt26deOw5ps3b5i8M2bMMAtrXr9+3Yg1R4wYkWqsmS1bNgNrdunSJU2w5uDBgzms+eLFCyavEtY8cuQIhzVv3LiR4qz55csXDmsePXqUmTWdnJwMrNmhQ4dUY8127doZYp9GjRrhypUrmWMfJay5fv36NMmamTJlMmLNgwcPpgpr1q9f3xD7NGvWDNetW5cqrDlnzhyjPPvs2bOZWXPPnj2GfSpTpkyqsWZQUBAva7LEPkpYU6/XY9myZTmsyRr7mIs1V65cacSa06dPTxXW9PPzM2LNwYMHpxpr5s+fP82x5pQpUzis+fTp0xRnzcuXL3NY8/Lly6nCmlmyZDGwZteuXWWxZvHixQ2xT+vWrVONNfv3728W1jxw4MBvw5rHjh1jum+jo6M5rLlnz55UYc1//vnHwJqNGzdGLy8v5jy7EtZcs2aN4e+6QoUKsljz7NmzZmPNjBkzmoU1a9eu/Vuw5pw5c5hZc8eOHUZ59kmTJjGzpirzKjAw0LB3AOCEyVETlxzf5L++QC0c/M9o7dq19CGSlQw6d+4cx0sngx4+fCh4CT979szwjxy9SpUqhePGjRNNBv348cPwjxy9yIOw8+fPC/5jGR8fj4UKFeJ48+TJg7169ZJMBtWpU4fjZU0Gde/eneNlTQbNnDmT42VNBu3cuZPjpZNBYg/Cbty4wfGyJoM+fPhgSKjSiySDxB6ERUREGBKq9MqfPz8OHDhQtOgyMTERS5UqxfGSB2FSyaBmzZpxvORB2Pbt20WTQUOGDOF4SdGlVDJo2bJlvGexXr16ksmgo0eP8p5FlmTQ48ePefeYJRn05csXTJcuHcfLkgyKiYlBZ2dnjpclGaTX67Fq1aocL0kG7d27VzQZ1L59e46XJIOkii4nTpzI8bI+CNuwYQPHS5JBCxcuFE0GXbp0iXefKlasKJkMohOq9CpRooRkMig0NNSQUKVXwYIFJZNBCQkJWLRoUY43V65chmSQGJw0aNCA42VNBvXp04f3viXJIDE4mTt3Lu99S5JBYkWXe/fu5b1va9SogXPnzhVNBt29e5d3j8uXL4+TJ08WTQYFBQWhra0tx+vq6oojR44UTQZFRUVhrly5ON58+fJh//798dSpU4IPwuiEKr1I0aVUMqhly5YcL2syaMSIEbz3LUsyyMvLi/e+ZUkGnTp1ive+JckgsQdhT58+NSRU6UWSQTdv3hTc42/fvqGDgwPHW7hwYRw6dCheuHBB8L6NjY3FAgUKcLwsySC9Xo9arZbjJUWXUsmgLl26cLwODg7YsmVL3LRpk2jsM3XqVN77liUZtHXrVt77tmbNmpLJoCtXrvCeRZZk0Nu3bw0JVXqxJIN+/fplSKjSq0CBAoZkkFDsk5CQgG5ubrz3bY8ePfDQoUOi923Tpk05XvpBmFgyaMCAARwvSQZ5e3uL3reLFi3ieMmDsGXLlokmgw4ePMh7FknRpVgy6P79+7x7zJIM+vz5s+FhMr2KFi0qWXgQHR2NefLk4XhZCg/0ej1WrFiR482WLRtT4UHr1q1571tSeCBWdDl27FiOlxQeSD0ISynWnDFjhihrPn/+nJc1S5YsaRbWzJ07d4qzZo8ePTje3501b968yXsW3d3dJRv8lLJm9uzZOV6WBj9zsubQoUM53tRgzWPHjvGexZRmzZCQEFHWFHsQZk7W7NChA8ebIUMGpgY/Jay5ceNGjpdu8Esp1nz16pUi1iSFy/RKDdZs2LAhx0tYU+pBmBLWnDdvHu9927BhQ8kGv5RgTVJ0KcaaHz9+5GVN0uCXkqxZrlw5jpdmTbHYRwlrjhw5kuO1s7MzsKZY0eWqVat471vCmmINfkpY09/fX5A1SYNfSrBmXFwcL2vSDX6/I2tOmzaN975Nada8evUq71kkrCmWZ1fKmqRJll6ENcWKLhMTE83GmgMHDuR4WRv8lLDmoUOHeM/i786apEmWXqnBmm3atOG9b//55x/JBj8lrLlu3Tres0iKLn9H1qSbZOmVGqxZt25d3vuWsKZYnl0Ja86aNYvjZWXNXbt2cbypxZqkcJleLA1+SlmzdOnSHO/vzprLly/neGnWFMuzK2HNJ0+e8O4xYU2xokslrBkbG8vLmiwNfnq9HqtVq8bx0g1+KcWakyZN4nhV1hRmzWLFinG8hDVZiy5Vpb7UwkG1cFCVQtGTIISWUDKI7s4RWmLJIDJ1UGiJJYPIJAihRZJBfB249NRBviWWDKInQfAtkgzim/ZETx3kWyQZxNeBS0+CEFr0tCc6IKInQQgt0oHLlwwiUweFllgyiEyCEFpiySAydVBoiSWD6EkQfEssGUR35/AtOhmUtAOX7s4RWkLJIHoShNByc3Pj7cClpw4KLbEOXDIJQmjR056SBkRk6qDQEksG0ZMg+JZYMoieBMG36GRQ0gdh9NRBobMolAyiJ0EILZIMSvogjJ46KLRIMujSpUscACWTIIQWSQbxTXsiUweFFkkG8XXgkqmDQkts2hM9CYJviXXg0lMHhc6iUDKIngQhtMi0p6TJIHrqoNASSgbRkyCEllgyiEyCEFpiySAydVBokWQQX9ElmQQhtEgyiK8Dl546yLdIMoivA5eeBMG3xKY90VMHhZZQMoieOii0hJJB9CQIoSWWDCJTB4WWWDKITIIQWnQyKGnsQ08d5Ft0Mihp0SU9CYJviSWDhAqXyRKbLCyUUKVXmTJleDtw6UkQQqtIkSKCHbhk6qDQEksGkUkQQkssGUSmDgotsWQQPXWQb4klg+hJEHxLbLIwPXVQaJFkUNKiS3oShNAiyaCkD8LoqYNCiySD+DpwySQIoSXWgUsmQQgtsQ5ceuog3xLrwKUnQfAtscnC9NRBvkVPe0paeEBPghBaQoUHqcWafA/CyCQIoSU2WVgJa9KTIPiW2LQnpazJ9zCZLLFpT+ZkTTIJQmiJTRZWwppkEoTQMjdr8k17YmVNvgY/paxJJkEIrZRiTTIJQmj9rqzJ9zCZPotCk4WVsiaZBCG0ihYtKtjgp4Q1ySQIoSU27YlMghBaKcWa9NRBobOYUqzJ1yRLL8KaSR+EpRZr8k17IlMHhZZYg58S1qSnDvItsWlPSliTnjootIQ+xYaeOii0Uoo1ydRBoSU2WVgJa9JTB/mW2KfYmJM1+Zpk6SU07Ukpa5Kpg0IrpViTTB0UWmKfYkNPHeRbKcWa9NRBoSU0WVgJawo1ydJLbNqTuViTnjrIt1KKNempg3xLbLKwUtYkUweFltCn2JiTNcnUQaElNllYCWvSUwf5ltin2ChlTb4mWXoJfYoNPXVQaKUUa5Kpg0JL7FNslLAmPXWQb4l9ik1Ks6bQMBl66qDQEposrJQ1ydRBoSX2KTZKWJOeOsi3xFiTnjrIt1KSNfmaZOkl9Ck2SlmTTB0UWmKfYmMu1qSnDvItUyYLq0p5pUThoAb/VxinSkQajcYJAAIBAAIDA8HJycnM70iVKZo2bRrs2LEDgoODITw8nMmTOXNmaNKkCTg4OMCFCxfg58+f8OPHDyZv+vTpoUGDBuDi4gKHDx+GyMhI+PLlC5PXxsYGateuDRUrVoSdO3dCfHw88+fLW1hYQLVq1aBhw4awYcMGsLCwgLdv3zJ5AQDKly8POp0O9u/fD3FxcfDy5Utmr6urK+h0Orh9+zZ8/vwZ3r17B/Hx8UzefPnygU6ng48fP4Kfnx98+vQJoqKimLw5cuQADw8P0Ov1cO3aNfj27RuEhYUxeTNmzAiNGzeG7Nmzw6lTp+DXr1/w7ds3Jq+9vT3Uq1cP3NzcYN++fRATEwOfP39m8lpZWUHNmjWhRo0asHXrVtDr9fDhwwcmr0ajgcqVK4Onpyd4e3uDlZUVvH79mskLAFC6dGnQ6XRw+vRp+PXrF7x+/Rr0ej2Tt3DhwqDT6cDPzw/evn0LgYGBEBsby+TNmzcveHp6ws+fP+H+/fsQHBwMERERTN6sWbNC06ZNwcbGBnx8fODHjx/w8+dPJq+DgwM0atQInJ2d4ejRoxAREQEhISFMXltbW6hbty6UKVMG9uzZA3FxcfDx40cmr6WlJdSoUQPq1KkDmzZtAo1GA+/evWPyAgBUqFABdDod7NixA/R6Pbx69YrZ6+bmBjqdDq5evQpfv36Ft2/fQkJCApO3YMGC4OnpCW/fvoVnz57Bx48fITo6msmbK1cu8PDwgJiYGLh9+zaEhITAr1+/mLyZMmWCJk2agKOjI5w7dw5CQ0Ph+/fvTN506dJBgwYNoHDhwnDo0CGIioqC4OBgJq+1tTXUrl0bKleuDNu3b4fExEQIDAxk8lpYWEDVqlWhcePGsH79erC0tIQ3b94weQEAypUrB56ennD48GGIiYmBV69eAWtcVqxYMfD09IT79+9DUFAQvH//HuLi4pi8zs7O4OnpCcHBwfDkyRP4/PkzREZGMnmzZ88OTZs2BY1GA1evXoXv379DaGgokzdjxozQqFEjyJUrF5w4cQLCw8Ph69evTF47OzuoV68elCxZEvbu3QuxsbHw6dMnJq+VlRVotVqoWbMmbNmyBRAR3r9/z+TVaDRQqVIl0Ol0sH79erCyspJ1FkuVKgU6nc7w3/SbN28gMTGRyVuoUCHQ6XQQEBAAr1+/hqCgIIiJiWHy5smTBzw9PSEsLAzu3bsHX758YY59smTJAk2aNIF06dLBxYsXZcc+DRs2hPz588PRo0dlxz516tQBd3d32LVrl+zYp3r16lC/fn3YuHGj7NjH3d0ddDod7N69GxISEmTtcfHixUGn08GNGzfgy5cvsmKfAgUKgKenJ7x//x4CAgJkxT45c+YEDw8PiI+Phxs3bsiKfRwdHaFJkyaQOXNmOHv2LISFhcmKfRo0aABFixaFgwcPQnR0NHPsY21tDTVr1oSqVavC9u3bZcc+VatWhSZNmph035YpUwZ0Oh0cP34cIiMjZcU+RYoUAZ1OBw8fPoQPHz7Iin2cnJzA09MTvn79Co8ePZJ132bLlg2aNm0KVlZWcPnyZVn3bYYMGaBRo0aQJ08eOH78uKz71tbWFurVqwelS5eGPXv2yLpvLS0tQavVQu3atWHz5s2y7lsAgEqVKoGnpyds2bIFNBqNrLNYokQJ0Ol0cOnSJfjx44es+9bFxQU8PT3h5cuX8PLlS1n3be7cucHDwwMiIyPh7t27su7b34E1d+zYAQkJCX8Ea3p6esLHjx/h6dOnKmuK6HdgzadPn8KbN29SnTVtbW0Nd4gc1mzYsCE4OzvDsWPHTGLNsmXLwu7du2WzZvXq1aFu3bppijULFCgAOp0uTbJmkSJF4ODBg2mONY8cOQLR0dGyWLNo0aKg0+kUseaXL1/g8ePHKmuKiGbNDRs2gKWlpWzW9PT0hPPnz6c6a3p4eEB4eDj4+vqmOmsWKFAAjhw5orKmhPLnzw86nQ4+fPgA/v7+JsU+8fHxcPPmTZNYM0uWLHDmzBnZrFm/fn0oVqyYyaxZrVo12LZtm+zYp0qVKtC0aVND3kdO7JMcrPno0SN4//69ItaUE/skZU05sQ9hzdy5c8OJEydkxz5KWbNWrVqwZcsWAABZsU9ysKaPjw98//5d1n1bsGBB0Ol0KmsyiLBmgwYNTLpvlbKmp6cn3LlzJ1VZM3v27ODh4QGI+Eexpk6ng3Xr1v0RrJklSxZo2rQp2NnZmcya+fLlM+m5Zp06daBcuXIms2a9evVg48aNJrPmzp07ITEx8Y9hzUyZMsHZs2fTxHNNpXn2smXLgk6nA51OB+7u7mBhYcHsVZV8CgoKAmdnZ/JLZ0Rk+wdXRGrhIIPUwsH/hgYOHAheXl7mfhuqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKU55cqVCzw9PcHT0xPq168P6dOnN/db+mOUEoWDVkq/gSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSp+m8rODgYjh07Boho+KQijUZj7relykSpsyNVqZJQ5syZoVy5ciZ506VLB5UqVTLJa21tDVWrVjXJa2FhAVWqVDHJC/C/sd729vYmeV1dXSFnzpwmefPlyweFCxc2yZs9e3YoVaqUSd6MGTOCu7u7SV47OzuoXLmySV4rKyuT94mM9TZVpUuXBkdHR5O8hQsXpqvYZSlPnjzg6upqkjdLlixQpkwZk7wODg4mn0UbGxuT98nS0lLRWaxQoQLY2NiY5HVzc4Ns2bKZ5C1QoAAULFjQJG/OnDmhRIkSJnkzZcoE5cuXN8mbLl06k8+EOe/bsmXLmtyFU7RoUcidO7dJXicnJyhSpIhJ3mzZskHp0qVN8mbIkAEqVKhgktfOzk7RWTR1j8l9ayrwlCpVCjJnzmyS18XFBfLly2eSN3fu3Cbft5kzZ4ayZcua5E2fPr1Z7lulZ9Hd3R1sbW1N8hYvXhxy5Mhhkjd//vzg4uJikjdHjhxQsmRJk7yOjo4m37f29vZpMvYpU6YMZMiQwSRvkSJFIG/evCZ58+bNC0WLFjXJmzVrVpNjnwwZMkDFihVN8tra2prlvgUAqFixIlhZmdbfWKJECciaNatJ3oIFC0KBAgVM8ubKlQvc3NxM8qqsKU+urq6QK1cuk7zOzs5QqFAhk7xplTWVxj6mKq2ypqmxj4ODg8n3bVpmzezZs5vk/RNZ01zxbdmyZcHBwcEkr8qa7EoO1jT1471KlixpNtYsXry4SV6VNeVJCWvmy5fP5NhHKWuaGvsoZU0lZ1HJHv9prOng4GDyfauUNZXsk8qa7DInayrhkPLly0O6dOlM8hYrVkwRa6bF55qmnidz3rcqa7JLZU15UsqaSmIfJfetkjy7UtacNGkS3LlzBz59+gTr16+Hhg0bqkWDaV2IqC6JBQBOAIAAgIGBgagqberz58/o7++PpUqVQrKfQqtYsWI4cuRI9PHxwfj4ePz27Rv6+/tjkyZNJL3Ozs7Yv39/PHnyJEZHR+OvX7/Q398fe/fuLenNnj07du3aFffv34+/fv3C6Oho9Pf3x+nTp0t6M2bMiP/88w9u3boVv379igkJCejv748bN26U9NrZ2aGnpyeuWbMGg4KCEBHx+fPnePr0aUmvlZUV1qlTBxcvXowvX75ERMQ3b97g3bt3MV26dKJejUaDlStXxpkzZ+KjR49Qr9djYGAg+vn5obOzs+RrlypVCsePH483b97ExMRE/PLlC/r7+2OVKlUkvYUKFcKhQ4fihQsXMDY2Fn/8+IH+/v7YqlUrSW+ePHmwd+/eeOzYMYyMjMSIiAj09/fHoUOHSnqzZMmCHTt2xN27d+PPnz8xNjYW/f39ceHChZJeBwcHbNmyJW7atAm/fPmCer0e/f39cffu3ZJeGxsbbNy4Ma5cuRLfvXuHiIgvX75EHx8ftLS0FPVaWFhgzZo1cf78+RgQEIB6vR7fvXuHDx48wEyZMkm+doUKFXDq1Kl479491Ov1+OnTJ3z69CkWLVpU0lu8eHEcPXo0Xr16FRMSEvDr16/o7++P9erVk/Tmz58fBw4ciGfOnMGYmBgMDQ1Ff39/7Ny5s6Q3Z86c2L17dzx06BCGh4djVFQU+vv744QJEyS9jo6O2LZtW9yxYwd+//4d4+Pj0d/fH1evXi3ptbe3x2bNmqG3tzd+/PgREREDAgLw6NGjkl5ra2usX78+Llu2DF+/fo2IiK9fv8abN2+ira2t5FmsVq0azpkzB588eYJ6vR4/fPiAjx8/xpw5c0q+dtmyZXHixIl4+/ZtTExMNNy35cqVk/QWLVoUR4wYgZcuXcK4uDj8/v07+vv7o06nk/Q6OTlh37598cSJExgVFWW4b/v16yfpzZYtG3bu3Bn37duHYWFhGBMTg/7+/jhr1ixJb4YMGbBVq1a4ZcsW/Pr1KyYmJqK/vz9u2bJF0mtra4tNmzbF1atXG2KK58+f47lz51Cj0Yh6LS0tsXbt2rho0SJ8/vw5IiK+ffsWfX190cHBQfK1K1WqhDNmzMAHDx6gXq/HoKAgfPr0KRYoUEDSW7JkSRw3bhzeuHEDExISMCQkBP39/bF69eqSXhcXFxwyZAieO3cOY2Nj8efPn+jv749t27aV9ObOnRt79eqFR44cMbpvR44cKenNnDkzdujQAXft2oU/f/7EuLg49Pf3x6VLl0p606dPjy1atMANGzZgcHAwIiL6+/vj/v37Jb02NjbYsGFDXLFiBb59+9Zw3165cgWtrKxEvRYWFlijRg2cN28e+vv7o16vx/fv3+PDhw8xa9askq9dvnx5nDJlCvr6+mJiYqLhvi1evLik19XVFUeNGoVXrlwxin0aNmwo6c2XLx8OGDAAT506hdHR0RgWFob+/v7YvXt3SW+OHDmwW7duePDgQfz165fhvp08ebKk19HREdu0aYPbtm3Db9++GWIfb29vSa+9vT3qdDpct26d4b599uwZnjhxQtJrZWWF9erVwyVLluCrV68Msc/t27fR3t5e1KvRaLBKlSo4a9YsfPz4sSH2efLkCebNm1fytUuXLo0TJkzAW7duYWJiIgYHB6O/vz9WqFBB0lu4cGEcNmwYXrx4EePi4gyxz19//SXpzZs3L/bp0wePHz+OUVFRGB4ejv7+/jho0CBJb9asWbFTp064d+9eDA0NNdy38+bNk/Q6ODjg33//jZs3b8aQkBBD7LNjxw5Jr62tLTZp0gRXrVqF79+/R0TEFy9e4MWLF9HCwkLUa2lpibVq1cIFCxbgs2fPDPft/fv3MWPGjJKvXbFiRZw+fTrev38f9Xo9fvz4EZ8+fYqFChWS9JYoUQLHjBmD165dM7pva9WqJektUKAADho0CM+ePYuxsbGG2KdDhw6S3pw5c2KPHj3w8OHDGBERgZGRkejv749jxoyR9GbKlAnbtWuHO3fuxB8/fhju2xUrVkh606VLh82bN8f169fj58+fDbHPoUOHJL3W1tbYoEEDXL58Ob558wYREV+9eoXXr19HGxsbUa+FhQVWr14d586di0+fPjWKfbJnzy752uXKlcPJkyfjnTt3jGKf0qVLS3rNxZrZsmXDLl26mIU1PTw8OKx55swZSe+fzJpHjx41in2GDRsm6VXCmunTp8eWLVvixo0bMTg42HDf7tmzR9KrlDW1Wq3JrOnu7s7LmsWKFZP0pgRrdunSRdL7p7Lm7NmzjVjzyZMnmCtXLsnXTsqaJPZhYc0iRYrg8OHDfxvWnD17tqRXiDW3bt0q6eVjzRcvXihizXv37qUaa16/ft0o9qlRo4akVwlr5sqVC3v27IlHjhzBiIgI2azZvn17DmsuW7ZM0psSrHn16lWzsaabm5uk19yseeDAASPWnDJliqRXCWuSPPvatWsNsc+zZ8/w5MmTkt7fkTUrVqwo6U3rrEnn2Xfu3CnpJazp5eWVLKz57t07ZtasUKECTps2jcOahQsXlvQmF2vSsU/Hjh0lvSnBmitXrpT0CrHm4cOHJb3JxZp+fn5GrJkjRw7J11bKmiNGjOCwZtOmTSW95mLNDBky8LLmpk2bJL3JxZovXrwwYs306dOLevlYMygoSDZrkjy7Kax5/vx5I9b8559/JL1KWJPk2ZOy5qJFiyS9SVmTxD6srNmoUSMOa16+fDnNsGZ8fHyqsWaOHDmwe/fuePDgQSPWnDhxoqQ3OVgzaZ792LFjkl7CmkuXLk111ixTpgwva5YvX17SmxKs2b9/f0lvcrFmSEiIyaz54cMHvjIcVamswMBAeo+cMDlq4pLjm/zXF6iFg/8ZXbp0iffCs7S0xDp16uCiRYsMQWJSvX79mjcQIUHijBkz8OHDh6jX6znesLAwzJw5M+9rJy3GSKqEhATBQIQkyEiQyKdGjRrxekkxBgkS+dS3b19eb9IgkU/z58/n9aZPnx7/+usvoyAxqfbt28fr5QsSk8rX15fXS4JEOkGWVJ8+fUI7OztePwkSfX19eb1RUVGCgUjx4sWNEmRJpdfrBQMRkiA7ffo0xsTE8P7Mf//9N6+XLsYIDw/n9Y4aNYrXSxJk27dvx+/fv/N6V61axevlK8ZIKqGiVJIgW7p0qSFBllQBAQG8SW+NRoNVq1Y1ChKT6tu3b5ghQwbe1yZBIkmQJVVcXBwWLFiQ15s0SEwqvV6PNWvW5PXmzZsX+/bta0iQ8alr1668XjpBFhYWxusVAvSkxRh82rZtm2CQSIoxhILEa9euCd63tWrVwoULFxoeSCTVu3fvBJPepBiDPJBIqvDwcMGkd4kSJXDs2LGGBxJJlZiYKJj0LliwIA4ePNjwQIJPHh4evF7yQIIkyPgklBClH0j8+PGD17t48WJeb7p06bBFixZGCbKkEkqWWVtbY8OGDXH58uWGBxJJ9eDBA8H7NmkxRlIFBwcLJr1Jguzu3bu8ZzEmJkYw6U2KMS5fvix431aqVInXSxJk5IEEn4QeQJHCf/JAgk/jxo3j9WbMmBFbt25teCDBJ6GHE3wPJJLq/Pnzgvdt3bp1ccmSJYZijKR68eIFb9KbPJCgE2RJ9fPnT3R0dOR97dKlSxsVYyRVfHy8YNKbLsbgu28RUTAJk7Twn089e/bk9ZJijD179mBoaCivVwjQkxb+80moCYAUY9APJJLq1q1bgmexZs2auGDBAkOCLKkCAwMFk95JH0gkVUREhGDS283NDceMGWMoxkiqxMRELFOmDK+XPJAgCTI+NW/enNebtBiDT0IJ0aQJMj4JFcLRxRifPn3i9R4/flzwvk1ajJFUT548EYx9SOE/eSCRVCEhIYJJ77Jly+KkSZMMDySSKjY2FvPly8frJYX/Pj4+grFPtWrVeL1OTk7Yr18/wwMJPgk9gCIPJEiCjE9ChcfkgQQpxuCT0MMJvmKMpPLx8eH1KmFNgP8vxkgp1nR1deX1pjRrChXfpDRrChVmmJM16WIMIdbMnTs3rzelWVOo2DGlWVPo4QQLawo9KEwu1iTFGEn1/fv3FGHNpMUYfBJ64P87s+b27dsF79uUZk1ra2tef0qzZokSJXi9hDVJ4T+fPD09eb1KWDNpMQaflixZwutVyppJizGS6uHDh4L37e/MmpUrV+b1pjRrjh8/ntebHKxJF2Mk1YULFwTv27p16xoV/idVSrFm0sL/pIqPj8ciRYrwelOaNXv16sXr/R1YUyj2uX37tuBZVMqadDFGUkVGRqYIayYtxuBTixYteL2/M2sKNUCmNGt+/fo1RVlTLM8u1MhMWJMUY/CpU6dOvF6lrEkX/vNp8+bNvF6lrEkK/8VYUyjP/juzZuPGjXm9ycGapPCfTwsWLOD1Jgdr0oX/SXXv3j3B+9ZcrJm08D+p9Ho9uru783pTmjVHjx4teN+akzXpwv+kCggIEIx9lLImXfifVHFxceji4sLrVcqadOE/n7p168brTVr4zydzseb169cF79vkYE2hPHt4eDhmy5aN12su1kxa+K/q95JaOKgWDqpSqNq1axsFiXR3qJToTkaSIKO7Q8U0Y8YMoyAxaXeomOiJKnR3qFCCjNaNGzcEg0S+AILW+/fvjf6BI0GiUIKMVtJ/4JJ2h4opMTERS5YsyQkSxRJktOhqfpYEGa3BgwcbvCzFGLToCVYsxRi0jhw5YhQkJu0OFdOjR4+M9jhpd6iYvnz5YjSpgyVIJIqJiUEnJydZQSKRXq836p4iQaJYgoxWu3bteINEoQQZLXqKA193qJjWr1/PCRLp7lAxXbx40WifpIoxaL18+dLoQTJJkJHuUDH9/PnTqHsqaXeomOLj442mQsoNEuvXr2/wsjyQoEV3MtLdoUIJMlpz5swxeFkeSNCiu9z4ukPFdOfOHaM9LleunGiCjFZQUJBR91TS7lAxRUZGGk2FdHZ2lizGINLr9Vi2bFmDN2l3qJTozvGk3aFSGjFihNF9m7Q7VEx0VzFfd6iY6A5/ujtUKEFGy8/PzyiZmrQ7VExfv341mtSRtDtUTLGxsZg/f36DN2l3qJj0er3RpA6WYgxa9IRWlgQZLXqKA0sxBi16eidfd6iYrly5YnQWk3aHiunNmzdGydSk3aFi+vXrF2bJksXgZXkgQZSQkGA0FTJpd6iU6Cll5IGEWIKMFt3JyNcdKiZ6ghVLMQatAwcOGJ3FpN2hYrp//77RHiftDhXT58+fjZKpUoX/tKKjozFPnjwGb9LuUDHp9XqjqZBZs2Y16g6VEt05nrQ7VEr0FAe53aFr1641in1q164tmiCjdfbsWaN9qlSpkmgxBq1nz54ZJVOlEmS0fvz4YTSpg6Xwnyg+Pt5oKmTSSURSSgnWFCrGoDVz5kyj2MfcrClUjEFLCWtGREQYsSZLMQaROVlzyJAhRrFParEmPU3ud2BNsWIMopiYGKNJHXny5ME+ffrgsWPHUpw127dvb/CyFGPQUsKaGzZsMLpvSTHG78yaoaGhZmPNBg0aGLyENcWKMWgpYc25c+ca3bcNGjQQLcagtXfvXqP7tnr16qLFGLSSkzXpwv8/jTVZcvpeXl5GZzG1WPPp06cc1hQrxqCllDXpqZAsxRhEer0etVqtUeyTWqw5depUg/d3YE2hYgxaKcGaYsUYRAkJCUYNsizFGLSUsOaAAQMMXpZiDFpKWPPgwYNGZ1GqyZzW78KaLIX/REpZs3Xr1kb3batWrUSLMWiZizXPnTtntE9Shf+00ipr1qlTx+i+lWoyp2Uu1qSndxLWFCv8p6WENT98+MBhTbHCf1oRERFGn0AglzXpT7tjKfyn1axZM4M3NVmTnpacmqz5+PFjoz0mrClU+E8rpViTJfapWrWqwctS+E9LCWvSEwNZmsxpKWHNpMOY5LDmq1evzMKaCQkJvKwpVvhPSwlr9unTx+i+bd68uWjhP63kYk2Wwn9ad+/eNdpjqcJ/Vb+P1MJBtXBQlQL5+PhIdocK6fXr1+ji4mI0qptVoaGhWKxYMVlBIlFCQgJWqlQJW7duzZwgo9W8eXPJ7lAhDRo0iPOxUKxasGCBZHeokPbt2yfZHSokX19fLFy4sGR3KJ8+fvyILi4ukt2hfIqKisKSJUvKChKJyCQ6OUEirfbt20t2hwpp7NixnI8gZtXq1aslu0OFdPr0ac7HQrHK398fXVxcmIsxaH379g2LFCki2R3Kp7i4OCxXrpxkdyif9Ho9Nm7cWLI7VEi9e/eW7A4V0owZM2QFibS2bdtmCBJZEmS0rl69KtkdKqR3796hi4sLczEGrV+/fqGrq6tkdyifEhMTsWrVqpLdoUL6+++/JbtDhTR06FDJ7lAhLVmyRLI7VEiHDh2S7A4V0oMHD7BQoUKS3aF8Cg4OxkKFChl9BDGroqOjsVSpUpLdoXzS6/VYt25dWYX/tDp37izZHSqkiRMncj4WilXe3t6S3aFCOn/+vGR3qJBevHiBLi4uhu5QObHPz58/sWjRorIeSBDFx8djhQoVDN2hLAkyWp6enrIeSNDq16+fZHeokObOnSsrQUZr165dkt2hQrp165aswn9aHz58QBcXF+bCf1oRERHo5uYm2R3Kp8TERKxevbpkd6iQ2rRpI9kdKqRRo0YZukNZEmS0VqxYIdkdKqTjx49zPhaKVU+ePMFChQpJdofyKSQkBAsXLmxSd2hsbCyWLVtWVuE/kV6vxwYNGnA+FopV3bt3l1X4T2vq1KmSk4iEtGnTJslJREIyF2uGhYVhsWLFZBVjECllzRYtWsgq/KelhDUXLlzI+VgoVpmLNT99+oSFChUyC2vWqlXL8LFQaYU116xZI6vwn5YS1gwICDAba5YvXz7NsebMmTNlFf7TUsKa165dk1WMQUsJa4aHh6Orq6usYgwic7LmsGHDOB9BzColrHn48GHORxCzylysGRMTg6VLl5ZV+E+klDW7dOkiqxiDlhLWXL9+vawmc1oXLlwwO2vKzbMrZU2dToc6nQ7Xrl2bZlhz9+7dsgr/aSlhzcDAQLOxZo0aNWQ1mdNq27atrMJ/WkpYc+XKlVixYkXmYgxaSlnTxcXFUIyRVlizYcOGZmHNadOmyWoyp6WENS9fvmxgTZbCf1rmZM3KlSvLKvynpYQ1Bw8ebBbW3L9/vxFryjmL9+7dM7Cm3NgnuViTtfCfSClrdujQQVbhPy1zseaZM2fMwprfv383C2si/q+BgLCm3NinT58+nI8gZpUS1ty+fbuswn9afyJrtmrVSv0I4jSqlCgc1OD/CuNUiUij0TgBQCAAQGBgIDg5OZn5HakyRZGRkZA+fXqTvFFRUWBvbw8ajUa2NyYmBqytrcHS0lK2Nz4+HhARbGxsZHsREaKjoyFdunSyvQDK/r7M6U2XLp1J+6Rkj2NjY8HS0hKsrKxkexMSEiAxMRFsbW1lexERoqKi0uQ+mWOPo6OjwdbWFiwsLGR74+LiQKPRgLW1tWyvXq+H2NhYsLe3l+0FSLv7pN637EqL+2Sus6jkvk1MTIT4+Hiws7OT7QVIu/tkjrOo3rep6zVH7KPkvlVjH3ky11mMjY0FCwsLk86iet/Kkxr7pB2vyprsSot7rMY+/32vet+mHa/Kmv9tb1q8b9WzKE8qa6Ydr7nuWyWsGRcXp8Y+jFJjn7Tj/ZNYEyDt7tOfFPuorClPf+J9q8q8CgoKAmdnZ/JLZ0QMUvo91cJBBqmFg6pUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlyhxKicJB+eXJqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlSpVqlSpUqVKlao0K7VwUNUfo6tXr4K3tzd8/vxZttff3x+WLVsGb968ke0NCQmBOXPmgJ+fH8id8BkTEwOzZs2CO3fugF6vl+VFRJg/fz74+PhAfHy8LC8AwJo1a+DEiRMQHR0t27tr1y7Yt28f/Pr1S7b39OnTsGXLFvj69ats7507d2D16tUQGBgo2/v69WtYtGgRvHjxQrY3NDQUZs2aBQ8fPpS9x/Hx8TBr1iy4ceMGJCYmyvIiIixZsgTOnz8PcXFxsrwAABs3boSjR49CZGSkbO+BAwdg9+7d8PPnT9neS5cuwYYNGyA4OFi299GjR7BixQp49+6dbO/Hjx9h3rx54O/vL3ufIiMjYebMmeDr6yv7LOr1epg7dy5cuXIFEhISZHkBAFauXAmnT5+GmJgY2d5t27bBwYMHITw8XLb3+PHjsH37dvj+/bts7/Xr12HdunXw6dMn2d5nz57B0qVL4dWrV7K93759g9mzZ8Pjx49l73FsbCzMnDkTbt26ZdJ9u2DBArh48aJJ9+3atWvh+PHjJt23e/bsgb1790JYWJhs79mzZ2Hz5s0QEhIi2+vr6wurVq2CDx8+yPa+e/cOFi5cCM+fP5ft/fXrF8yaNQsePHgge48TExNh9uzZcO3aNdn3LQDA0qVL4ezZsxAbGyvbu2nTJjh8+LBJ9+2hQ4dg586dJt23ly9fhvXr15sU+/j5+cHy5cvh7du3sr2fP3+GuXPnwtOnT2XvU3R0NMycORPu3r1r0n07b948uHz5skn37apVq+DUqVMm3bc7duyA/fv3m3Tfnjx5ErZu3Qrfvn2T7b116xasWbMGgoLkN5S9fPkSFi9eDC9fvpTt/fHjB8yaNQsePXoke4/j4uJg1qxZcPPmTZNin0WLFsGFCxdMin3Wr18Px44dg6ioKNneffv2wZ49e0y6by9cuACbNm0y6b598OABeHl5wfv372V7P3z4APPnz4eAgADZ+xQREQEzZ86Ee/fumXTfzpkzB65evWrSWVyxYgWcOXPGpPt2y5YtcOjQIYiIiJDtPXr0KOzYsQN+/Pgh22tu1nzy5IlJrDlz5ky4ffu2yax56dIllTUZ9ObNG7OwZkJCAsyePTvNsebBgwdh165dKmsyyJysuX37drOw5o0bN2Dt2rXw8eNH2V5zsWZcXJzZWHPdunV/JGs+e/ZM9j79+vULZs6cCffv30911ly2bJlZWPPw4cNpjjWDg4PNwpok9jEna5oS+/xprEny7Kay5uLFi83Cmvv374fdu3dDaGiobC9hzS9fvsj2PnjwAFauXKmyJqO2bt1qFta8du2aypoylBZZ8+7du2ZhzbCwMLOwJgDAkiVL4Ny5cybdtxs2bIAjR478Maz56dOnNMmaXl5eZmPNbdu2pTprPn/+HJYsWZLmWHPhwoUms6aq/6AQUV0SCwCcAAABAAMDA1FV2tSvX78wS5YsCABYoUIFnDZtGt67dw/1er2kNyEhAd3c3BAA0M3NDUePHo1Xr17FhIQEptdu0qQJAgAWKFAABw4ciGfOnMGYmBgm74ABAxAAMGfOnNi9e3c8dOgQRkREMHkXLlyIAICZMmXCtm3b4o4dO/DHjx9M3oMHDyIAYLp06bBZs2bo7e2Nnz59YvLev38fAQCtra2xfv36uGzZMnzz5g2T9/Pnz2hnZ4cajQarVauGc+bMwSdPnjDtU3R0NObJkwcBAMuWLYuTJk3C27dvY2JioqRXr9djhQoVEACwaNGiOGLECLx06RLGx8czve/WrVsjAKCzszP269cPT5w4gdHR0UzeMWPGIABgtmzZsHPnzrhv3z4MCwtj8q5duxYBADNkyICtWrXCLVu24NevX5m8586dQwBAOzs7bNq0Ka5evZr5jnv27BlaWFigpaUl1q5dGxctWoQvXrxg8v748QMzZsyIAICVKlXCGTNm4MOHD5n2OD4+HgsVKoQAgCVLlsRx48bhjRs3mM9inTp1EADQxcUFhwwZgufPn8fY2Fgmb/fu3REAMHfu3NirVy88evQoRkZGMnlnzpyJAICZM2fGDh064K5du/Dnz59M3p07dyIAYPr06fGvv/7CDRs2YHBwMJP3xo0bCABoY2ODDRs2xBUrVuC7d++YvB8+fEBra2u0sLDAGjVq4Lx589Df359pnyIiIjBbtmwIAFi+fHmcMmUK+vr6MnkTExOxVKlSCADo6uqKo0aNwitXrjCfRZ1OhwCA+fPnxwEDBuDp06eZ79shQ4YgAGCOHDmwW7duePDgQQwPD2fyLlu2DAEAHR0dsU2bNrh9+3b89u0bk/fo0aMIAGhvb486nQ7XrVuHHz9+ZPI+fvwYAQCtrKywXr16uHTpUnz16hWT98uXL5guXTrUaDRYtWpVnDVrFj5+/Jhpn2JiYtDZ2RkBAMuUKYMTJkzAW7duMd+3VatWRQDAIkWK4LBhw/DixYsYFxfH9L7bt2+PAIB58+bFPn364PHjxzEqKorJO3HiRAQAzJo1K3bq1An37t3LfN9u2LABAQAdHBzw77//xs2bN2NISAiT99KlSwgAaGtri02aNMFVq1bhhw8fmLwvX75ES0tLtLS0xFq1auHChQvx+fPnTN7Q0FDMlCkTAgBWrFgRp0+fjvfv32eOfYoWLYoAgCVKlMCxY8fitWvXmO/bBg0aIABgwYIFcdCgQXj27Fnm+7ZPnz4IAJgrVy7s0aMHHj58mDn2mTt3riH2adeuHe7cuZM59tm7d68h9mnevDmuX78eP3/+zOS9e/euIfZp0KABLl++HN++fcvkDQoKQltbW7SwsMDq1avj3Llz8enTp0z7FBUVhbly5UIAwHLlyuHkyZPx7t27zGexbNmyCABYrFgxHDlyJF6+fJn5vm3ZsiUCAObLlw/79++PJ0+eZI59RowYgQCA2bNnx65du+L+/fvx169fTF4vLy8EAMyYMSP+888/uHXrVub79tSpU4bYx8PDA9esWYNBQUFM3qdPn6JGo0ErKyusU6cOLl68GF++fMnk/fbtGzo4OKBGo8HKlSvjzJkz8dGjR0x7HBsbiwUKFEAAwFKlSuH48ePx5s2bzHus1WoRALBQoUI4dOhQvHDhAvN926VLFwQAzJMnD/bu3RuPHTvGHPtMnToVAQCzZMmCHTt2xD179mBoaCiTd+vWrYb7tmXLlrhp0yb88uULk/fKlSuG2Kdx48a4cuVKfP/+PZP37du3aGVlhZaWllizZk2cP38+BgQEMO1TUtacOnWqSaxZvHhx2azZtGlTs7DmokWLfhvWfP36NZM3OVlz4sSJslizYsWKBtYcPnw4Xrp0ifksEtZ0cnLCvn37ymLNsWPHpjnWfP78+W/DmtevXzeZNc+dO8cc+/To0cOINY8cOZLqrNmiRQtZrHnz5k2zsWb27NnNwprNmjUzmTWHDh1qxJoHDhwwmTW3bdvGHPscO3bMiDXXrl1rMmsuWbKEmTVDQkKShTVLly5tMmsWLlxYNmt26NDBLKy5ceNGs7Dmq1evOKz57NkzJm9oaChmzpzZwJrTpk0zmTXHjBkjizUbNmxoFtacN29emmPNjx8/cljTz8/PZNa8c+cO81ksV66cEWv6+PjIZk1nZ2fZrDly5EiTWXPVqlVmYU1/f3+zsGZcXBwva7KcRXOy5rRp04xYc/fu3Saz5saNG5lZ8+rVq4pZ08LCArVarWzWzJo1KwIAuru7pxnWHDhwIIc1WWMfPtb8/v07k/fQoUNmY017e3uTWTNv3ryKWbNIkSKyWbNNmzZmYc1169b9NqzJmmf/+fMnOjo6GrHmgwcPUoU169atmyys2bNnT1msOWvWLANrtm/fXhZr7tq1y2ysaWNjk6ysyXIWExMTsXTp0opZM1++fKnKmsuXLzeZNVWZV4GBgQgAZDlhctTEJcc3+a8vUAsH/zOaPXs2fYhkJYPIP3L0IskgqQdht27d4nhZk0GBgYFoY2Nj5CXJIC8vL9FkUEREBObIkcPIS5JBCxYsEE0GJSYmYpkyZTjvmxRdSiWDmjdvzvGyJoOGDRvG8bImg1asWMHxsiaDjh8/zvGyJoOePHmCGo3GyMuaDAoJCcH06dMbeVmTQbGxsZgvXz4jL2sySK/XY7Vq1Tg/c7ly5XDSpEmSyaCOHTtyvMWKFcMRI0ZIJoMmT57M8ZKiS6lk0KZNmzje7NmzY5cuXSSTQT4+PhwvazLo9evXaGlpaeRlTQaFhYUZEqpksSaDEhIS0NXV1chLJ4OkHoQ1atSI8zOzJoP69evH8ZJk0Pnz50UBdP78+RwvSQZJFV3u37+f482SJQt26NBBMhnk6+vLe9+yJIM+ffqEdnZ2Rl4bGxts1KiRZDIoKioKc+fOzTmLLMkgvV6P5cuX57xv1mRQq1atOF46GSR2FkeNGsXxsiaDVq9ezfGyJoPOnDnD8To6OmLbtm1x+/btosmggIAAzn1rb2+PzZo1w3Xr1okmg75//44ZMmTg3Lek6FIsGRQXF4cFCxbknMVq1arh7NmzJZNBtWrV4vzMZcqUYUoGde3aleNlTQZNnz6d42VNBm3fvp3jZU0GXbt2jeNlTQa9e/cOra2tjby2trZMyaDw8HBDQpUs1mRQYmIilihRgvO+K1WqhNOnT5dMBnl4eHC8pOhSKhk0aNAgjtfFxQUHDx4smQxasmQJx8uaDDp8+DDHy5oMevjwIcfLmgwKDg5Ge3t7zn3LkgyKiYkxJFTp+5YlGaTX67Fy5cqc902SQVJFl23btuV4STJIquhy/PjxHC8pujx16pTofevt7c3xsiaDLly4wPFmzJgRW7duLZkMevHiBVpYWHDuW09PT8nCAzqhSpaVlRXWrVtXsvAgPj4eixQpwrlvq1SpwlR4UK9ePc7PzFp40KtXL46XtfBACWvu3r2b42Vlzdu3b3O8dNFlSrFmZGQkL2vWrFkzxVmzRYsWHK+bm9tvzZonTpzgeFODNb9+/SrImlINfkpZs3r16pyfmZU1O3XqxPGSBr+UZM3NmzdzvKnFmlZWVkbetMCajRs35vzMpUqVYmrwU8KaCxYs4Hjz5MnD1OCnhDXv3bvH8ZIGP6WsKRb7KGVNd3d3zvtODdYcPXo0x5s/f34cOHCg5IMwc7ImX+xDGvxSkjVdXFw4Z7Fq1aopzprdunXjeJOLNcViHyWsef36dY6XsKZUnl0pa5ImWbIIa0o1+CllTU9PT46XlTUHDx7M8RYsWDDFWfPIkSMcb2qw5pcvX0RZUyzPHhMTg05OTpz7tkaNGpINfkpZs127dhyvq6srU4OfEtZcv349x0uKLlOSNUmTbNL7lpU1SZMsWanFmvXr1+f8zIQ1pRr8lLDmnDlzOF7CmseOHfstWTMoKIiXNRs3boxeXl6ieXYlrEk3ydIrNVhz+PDhHG+BAgUMrCl2FsVYU6rBTwlr+vn5CbKmt7d3irJm/vz5/4+9s46O4u7+/40nBAgSPMHdXYq7ZWlLW0qBQktxKVKgWJHFirst7q6BBUJCcCeEOIEIcXeXvb8/vmf2NzM7n52ZnSTbPMz7nPvHc87zpmE/zCf3defeuzrPItV0+V9lzZUrV+p4S4I1Hz16xHnfUqypr84ulTWpIVn6fUuxpr4BP32sKWTATwprzpgxQ8crdJmMFNa8cuWKjve/zprZ2dl6WVNo06WskpfcOCg3DsqSKPomCK7QVwwqKCjAZs2aEb30bU9cxSBq6yBX8BWDqE0QpNBXDKK2DpJCXzGI2gRBCn3FIGo6hxRUMYhrApfaBEHy6isG0TdBcIW+CVz61kGu4Nv2RG2CIAW17YmrGERtHSSFvmIQtQmCFPqKQS4uLnq91atX1xaD2HBCbR0keenFIDac0DdBcAW9GMSGE/p0DlfwFYOoTRBcwVcMorYOkqJ9+/bEbU/UJghS6Nv2RG2CIAW9GMSGE2rrICnoxSA2nFCbIEhefcUg+tZBrtBXDKJvguAKvmIQtXWQK+jFIK4JXGrrICn0FYOoTRCkaNiwIXECl9o6SAr6BC77vqU2QZBC37Ynausgyatv2xN9EwRX6CsG0TdBcAVfMYjaOkgKfcUgahMEKfQVg6itg6SgikFcTZfUJghS6CsGcRVU6UEVg7i2PdG3DnKFvglc+iYIruDbLExtHSQ9i/qKQdQmCFJQm4W5ikHU1kFS6CsGUZsgSKGvGPT69Wu9Xnt7e2IxiNo6SPLqKwbRN0FwBVUM4noRRiqoUkEVg0jbnqhNEKQz1lcMorYOkkJfMYjaOkgKfcUgahMEKfRtFqa2DpK8+opB1CYIkldfMYi+dZAr9BWD6JsguIKvGDR+/Hi9n1eHDh2I256orYOkaNasGXECl9oEQQp9256orYOk0LdZmNoEQfLSNwuzGw+ksia1CYL0LOpjTWoTBOlZLArW5Gq6pDZBkIJiTa4XYUJZk6vpsrSyJrUJgiuKkzWpTRCkKC7WpDZBkEIfa1KbIEheijW5XoQJZU2upkuhrEka8JPCmtQmCFLo2yxsLNakNkGQojhZk9oEwRXW1tZa1mS/CBPDmlxNl9QmCK4oCtYkbRaWwprU1kFSFBdrUlsHSd7/AmtyNV1SWwdJoe9bbISyJte2J2rrICmKizWprYMkr77NwsZkTWrrIOlZLC7WpLYOkqK4WJPaOkgKijW5mi6prYMkL8WaXAN+UlmT2jpIehb1bRbWx5oA+jcLU1sHSaHvW2yMxZrU1kGSl86a7KZLMazJbrqkbx3kiuJkTWrrICn0sSa1dZAU+rY9SWFNausgKYqTNdlDsvT4L7AmV9MltXWQFMXFmtTWQVLoG/DjY019m4WprYMkb7ly5YjLZIzJmtTWQVIUF2tSWwdJURSsyTXgJ4U1uYZk6aFvwI+PNfmWyVBbB7mC71tspLAmtXWQFP9V1mQ3LtOjOFmT2jrIFRRrkgb8hLAmabMwtXWQFPq+xYbaOkgKQzYLyyp+FUfjoAn+X2OcLD0yMTFxAIBwAIDw8HBwcHAw8k8kyxDt27cPnJ2dwdPTE2JiYgR5OnbsCAqFAsqUKQNubm7w8eNHCAkJEeRt3rw5ODk5Qd26deHGjRsQEREBvr6+grx169YFJycn6NixI5w9exaSk5PhzZs3grzVqlWD4cOHw8CBA+Ho0aOQm5sLjx8/FuStUKECDBkyBBQKBVy6dAmysrLAxcVFkLdMmTIwYMAAUCgU8OLFC4iKioKHDx9CTk4Or9fCwgJ69+4NCoUCwsPDwcfHB16/fg1JSUm8XhMTE+jWrRsoFArIz8+H58+fg4+PD0RERAj6udu2bQsKhQIqV64Md+7cgeDgYPj06ZMgb+PGjUGhUECTJk3gypUrEBMTAx8+fBDkdXR0BCcnJ+jWrRucPn0a0tLS4OXLl4K89vb2MGzYMHBycgKVSgUajQYePHggyFu+fHkYPHgwODk5gVqthpSUFHB1dYXCwkJer7W1NfTr1w8UCgV4e3tDcHAwPH36FDIyMni9ZmZm0LNnT1AoFJCYmAgeHh7g4eEBcXFxgn7uzp07g0KhAAsLC3j48CH4+/vDly9fBHlbtmwJCoUCatWqBc7OzhAWFgb+/v6CvPXr1weFQgGtW7eGCxcuQEJCAnh4eAjy1qhRA5ycnKBv375w7NgxyM7OhqdPnwryVqxYUXvGp0+fhry8PLh//74gr62tLQwaNAicnJzg0aNHEBcXBw8ePIC8vDxer6WlJfTp0wcUCgUEBQVBQEAAvHz5ElJSUni9pqam0L17d3BycoKsrCx49eoVfPjwAaKjowX93O3btweFQgHlypUDV1dX+PTpEwQFBQnyNm3aFBQKBdSvXx+uX78OkZGR4OPjI8hbp04dcHJygs6dO8OZM2cgJSUFXr9+LchbtWpVGD58OAwZMgQOHz4M+fn58PDhQ0FeOzs77X177do1yMjIABcXFxCSl9nY2Gjv2zdv3kB4eDg8fvwYsrKyeL3m5uba+zYqKgq8vLzgzZs3kJiYyOs1MTGBrl27gpOTEyAiPH36FHx9fSE8PFzQ37lNmzagUCigSpUqoFarITQ0FD5+/CjI26hRI3BycoLmzZvD5cuXITY2Fjw9PQV5a9WqBU5OTtCzZ084ceIEZGZmwvPnzwV5K1euDMOGDQOFQgGHDx+GwsJCcHNzE+QtW7YsDB48GBQKBbi4uEBSUhK4urpCQUEBr9fKykp73/r5+cHnz5/h2bNnkJ6ezus1MzODHj16gEKhgJSUFHj79i28f/8eYmNjBf3cnTp1AoVCAVZWVuDu7i4q92nRogUoFApwdHSEmzdvQnh4OPj5+Qny1qtXD5ycnKB9+/Zw7tw5SEpKgrdv3wryVq9eHZycnKB///5w9OhRyMnJgSdPngjyVqhQAYYOHQoKhQLOnTsHubm5onKfgQMHgkKhgGfPnkF0dDS4u7tDbm4ur9fCwkJ734aGhoKfnx+8evUKkpOTeb2mpqba3Cc3NxdevHgB3t7eEBkZKejnbteuHSgUCqhQoQLcu3cPgoKC4PPnz4K8TZo0AYVCAY0aNYKrV69CdHQ0eHl5CfLWrl0bnJycoGvXrnD69GlITU2FV69eCfJWqVIFhg8fDkOHDoVDhw5BYWEhuLu7C/JSuY9CoQBnZ2dIS0uD+/fvg0aj4fVaW1vDgAEDwMnJCd6/fw9fvnyBJ0+eQGZmJq/X3Nxcm/vExcWBp6cnvHv3DuLj43m9JiYm2tzH1NQUHj9+DH5+fhAWFibo79yqVStQKBRQvXp1uH37Nnz58gUCAgIEeRs0aAAKhQJatWoFFy9ehLi4OHj//r0gb82aNcHJyQl69+4Nx48fh6ysLHj27Jkgb6VKlbT37bFjx6CgoABcXV0FecuWLQuDBg0ChUIBbm5ukJCQAG5ubpCfn8/rtbS0hH79+oGTkxMEBgZCYGAgvHjxAlJTU3m9ZmZm0L17d1AoFJCWlgZv3rwRzZpOTk5ga2sLbm5uEBgYCMHBwYK8zZo1A4VCYTTWHDRoEBw5cgTy8vLg0aNHgrxFxZovX76EyMhIePToEWRnZ/N6jc2aTk5OULlyZbh7926JsaaDgwM4OTlB9+7d4dSpU5Ceng4vXrwQ5JXCmuXKldPetzJr8ovNmomJifDu3TtBXmOyJpX7lDRrfvPNN6BQKIzGmg0aNIBr165BVFQUeHt7C/IamzWdnJzg2rVrkJmZWaKs6eTkpM0RS4o1W7duDQqFAqpWrSqaNRs2bAgKhUJmTZGsmZqaCm/evClR1nRycoLatWuXOGsOHz4cBgwYUCpZ88uXL+Dr61virGlnZwcuLi4lxpqOjo6gUChKHWv2798fFAoFeHp6QmhoqMyaekSxZp8+feDYsWMlzppOTk7g7u4O8fHxJcKaVJ1doVBAenp6qWPNTp06wZkzZ4zCmpcvX4asrCy4d++eIO9/gTULCgrg2bNnJcaajRo1AoVCAc2aNYPLly+XOGsqFAo4ePCgzJo8MiZrDh8+HPr27QvHjx83mDXPnDkDubm5Jc6awcHB4O/vX+KsWb58eXBxcYHPnz+XCGvWrl0bFAqFJNYcPHgwHDlyxGDWHDp0KFSuXFmQT1bRKyIiAhwdHan/6YiIwn6B6JHcOChAcuPg/4ZmzZoFe/fuNfaPIUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUtWqRK9yZ0afDUxMTH2j/XVqDgaB02l/gGyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJet/VxqNBp48eQLLli2DOXPmCN70Kuu/K7lxUJYsHpmamkK9evUM9tevX99gb926dQ32StmMWbVqVbCysjLIa2dnBxUrVjTIa2NjAzVr1jTIa25uDnXq1DHIa2JiIumcpPz7MPRnBgCDPyuA//tKFFtbW4O8ZcuWhSpVqhjktbKyMvjfppmZmaRnwlhnTOv4F61q1aqBubm5Qd4KFSqAnZ2dQd4yZcpA9erVDfJaWFhA7dq1DfKW1vu2Vq1aBnurVKkC1tbWBnnLly9v8Cpwa2vrr+6+NfTfJcD/3beGTktVqlQJypUrZ5C3bNmyULVqVYO8lpaWBt8/pqamRrtvjZX7VKtWDSwtLQ3ySs19atSoYZDXwsJC0rP4td239vb2UKZMGYO85cqVA3t7e4O8VlZWBv/cpTX3kXLfVq9eHczMzAzyVqxYEcqXL2+Q19bWFqpVq2aQV+p9WxqfRWOyZqVKlQzyGpM1pZyxzJrCJbOmOMmsKU6lNfexsbExyCuzpjiVRta0tbWVWVOEZNYULqnPohSvlNxHZk1xKo33rcya4lQa71tjsaYxc5/SyJpS7luZNcXJmKxpYWFhkFdmTXEy1n1rb28PEyZMgMuXL0NiYiLcu3cPhgwZYvCfJ+s/IkSUgycAwAEAEAAwPDwcZZVO+fj4oFqtxhYtWiB1nqQoX748jho1Ck+dOoUJCQkYHByMarUa+/Xrx+u1trZGJycnPHjwIEZERGB0dDSq1WocO3Ysr9fc3Bz79euH27dvx0+fPmFqaiqq1Wr866+/eL0mJibYtWtXXLduHX748AHz8vJQrVbj5s2beb0AgK1bt8alS5fiixcvsLCwEO/fv48nTpwQ5G3YsCHOmzcP3dzcMC8vD589e4bXr19HGxsbXm/NmjVxypQp6OzsjJmZmejh4YG3b99GBwcHXm+lSpVw3LhxeOHCBUxJScGAgABUq9XYsWNHXm/ZsmVx5MiReOzYMYyNjcUvX76gWq1GJycnXq+lpSUOGTIE9+7di1++fMH4+HhUq9U4adIkXq+ZmRn26tULN2/ejAEBAZiZmYlqtRqXL18u6LPu2LEjrl69Gj08PLCwsBDVajXu2bNHkLd58+b4999/49OnT7GgoADd3d3x3LlzaGpqyuutW7cuzp49G+/du4c5OTn48uVLdHZ2Rjs7O15vtWrVcOLEiXjt2jVMT09HLy8vVKvV2KhRI15vhQoV8JdffsEzZ85gYmIifvr0CdVqNfbs2ZPXa2NjgyNGjMBDhw5hVFQURkZGolqtxp9++onXa2FhgQMGDMCdO3diUFAQJicno1qtxtmzZwt6Fr/55hvcsGED+vj4YHZ2NqrValy3bp2gc2rbti3+888/+Pr1aywsLMR79+7hkSNHBHkbN26Mf/31F6ttKhEAAQAASURBVD58+BDz8/Px8ePHeOXKFbS0tOT1Ojg44PTp01GtVmN2dja+ffsWb9++jdWqVeP12tvb44QJE/Dy5cuYmpqKvr6+qFarsXXr1rzecuXK4U8//YQnTpzA+Ph4DAkJQbVajYMGDeL1Wltb4/Dhw/HAgQMYHh6OsbGxqFarcfz48YKexb59++LWrVsxMDAQ09LSUK1W46JFiwR91p07d8Y1a9agp6cn5ufno1qtxm3btgnytmzZEpcsWYLPnz/HgoICdHV1xVOnTqGJiQmvt379+jhnzhx0dXXF3NxcfP78Od64cQPLli3L661RowZOnjwZb968iZmZmfj+/Xu8ffs21qlTh9dbsWJFHDt2LJ4/fx6Tk5Px48ePqFarsUuXLrxeW1tb/P777/Ho0aMYExOD4eHhqFar8dtvv+X1Wlpa4uDBg3HPnj0YGhqKCQkJqFarcerUqbxeU1NT7NmzJ27cuBH9/Py09+3KlSsFnVOHDh1w1apV+PbtW9RoNKhWq3H//v2CvM2aNcOFCxfi48ePMT8/Hx8+fIgXL15Ec3NzXm/t2rVx5syZePfuXczJycFXr17hrVu3sFKlSrzeqlWr4u+//45Xr17F9PR09Pb2RrVajU2bNuX12tnZ4c8//4ynT5/GxMREDAoKQrVajX369OH12tjYoEKhQJVKhZGRkRgVFYVqtRpHjx7N6zU3N8f+/fvjjh078PPnz5iSkoJqtRrnzp3L6zUxMcFu3brh+vXr0dvbG3NyclCtVuO///4r6JzatGmDy5cvx5cvX2JhYSG6uLjgsWPHBHkbNWqE8+fPR3d3d8zLy8OnT5/i1atX0dramtdbq1YtnDZtGt66dQuzsrLw3bt3ePv2baxRowavt3Llyvjrr7/ixYsXMTU1Ff39/VGtVmO7du14vWXLlsUffvgBjx8/jnFxcRgaGopqtRqHDh3K67WyssKhQ4fivn37MCwsDOPi4lCtVuPvv//O6zUzM8PevXvjli1b8OPHj5ieno5qtRqXLFki6LPu1KkTKpVKfP/+PRYUFKBarcadO3cK8rZo0QIXL16Mz549w4KCAnzw4AGePXtWUO5Tr149/PPPP/H+/fuYm5uLL168wJs3b2K5cuV4vdWrV8dJkybh9evXMSMjAz98+IBqtRrr16/P661YsSKOGTMGz507h0lJSRgYGIhqtRq/+eYbXm+ZMmXwu+++w8OHD2N0dDRGRESgWq3GkSNH8notLCxw0KBBuGvXLgwJCcGkpCRUq9U4Y8YMXq+pqSl2794d//33X/T19cWsrCxUq9WoVCoFnVO7du1wxYoV+ObNGywsLMS7d++iSqUS5G3SpAkuWLAAHz16hPn5+fjo0SO8dOkSWlhY8HodHR1xxowZeOfOHczOzsY3b97grVu30N7entdbpUoV/O233/DKlSuYlpZWJKzZv39/Xi/FmgcOHMCIiAiMiYkpUdZcu3ZtibNmgwYNcO7cuTqsWaZMGV7vf4U1w8LCSoQ1TU1Ntazp7++PGRkZJc6aT5480bLm+fPn0czMjNfLZs1Xr16hs7MzVqhQgdcrhTXt7Oxw9OjRWtb8/PmzzJp6gmJNKvd58uQJXrlyBa2srHi9RcGaly5dwtTUVPTz8ysR1rSyssJhw4bh/v37JbMmlfsYgzXd3Nzw9OnTJc6anp6eqFarSwVr7t69G0NCQjAxMRHVajVOmzaN1yuVNdu3b48rV67UsuadO3eMwpqvX78udaxJ1dl/+eUXXm9RsaaXlxfm5uaWGGtSdfYHDx5oWfPatWuCWXPq1Kk6rFmzZk1eb1GyJlVnHzZsGK+3KFmTyn1KC2u6uLgwWLN8+fK8XimsSdXZz549i0lJSdo6e/fu3Xm9Ullz4MCBuGvXLgwODi4S1lyzZo2gcypq1rx8+XKJsyZVZ2/ZsiWv15is2bdvX9y2bRuDNRcsWMDrlcqarVq10mHNkydPCvIWJWtSdXZHR0de73+BNUNDQ7WsOXnyZEHPolTWXLVqFb57905bZ9+7d68grxTWrFOnDs6aNatIWbNx48a83uJgzVGjRvF6i5I1qTr7+vXrBZ2TMVlz2rRpePv2bczKyipR1vzxxx91WHPw4MG8Xqms2adPHx3W/PvvvwV91lysuX37dkFeNmvKMq7Cw8Pp5+OARdETVxR/yP96gNw4+D8jDw8P4oVHJYlUgYytqKgoIqCzC2RsZWdnE18GswtkbGk0GmLCyC6QcYlUuGY3Y3CJ9IuGKpBt2rQJ/f39UaPR6HgPHDhA/KypZgwqSWTLxcWF6G3WrBkuWrRIWyBjKyAggAjo7CSRrcTERCKgV61aFSdOnKgtkLGVn5+PDRo04PRSSSJVIOMSqVjGLpBxaeLEiZxeKkncsWMHBgUFcXpJkM1uxuA6pzNnzhDPiSqQvXr1CgsLC3W8z58/J3rZzRhsffnyhQjoVDMGlSSylZGRQQT0ypUr4/jx47VJIluFhYVEQKcniXFxcZyftUKh4PRSSSJVIOPSnDlzOL1UkkgVyLi0Y8cO4mdNL5BxnfHNmzf1Jon0AhlbHz58IHrZzRhsxcbGEgGdKpDduHEDMzIydLw5OTnEl8H0ZgzSfdu1a1dOL1UgO3LkCEZHR3N+1mPGjCE+i4MGDdK+kODSsmXLiPdtjx49cOPGjejr68t5TvoAjHohQRXI2Hrw4AHR27RpU0aBjK1Pnz4RAZ16IUEVyNhKSUkhAjq7QMZWfn4+EdDZBTIuDRw4kNPLbvzn0pQpUzi97GYMLpFeMNAb/728vDjP+MKFC8Rzat26NS5btkz7QoKt169fE73sxn+2IiIiiIBes2ZNnDp1Kjo7O3Pet5mZmURAZxfI2NJoNNi2bVtOL/VCgiqQcen777/n9LKbMbhEaqBhN/5zSV9zBb0Zg+uM1Wo10ctu/GfL19eX+DKYasZwcXHhzH3i4+OJL4OrVauGf/zxh/aFBFu5ublYt25dTi/7hQRbGo0Ge/ToQbxvv/32W22BjEukQgq7QMalVatWEe/b7t27awtkXOekr9GJXSBj6/Hjx0Qvu/GfreDgYOLLYHYzBltpaWnEl8H0xn+u+7agoACbNWvG6aWaMU6ePInx8fGcnzWpKZXd+M+lmTNnEp9F6oVEYGAgp3fLli3E+7ZLly7aAhnXGV+9epV4TtQLCVKBTB9rspsx2IqOjpbEmqSXwcXNmqTCdXGz5sGDB4mftbFYk92MwVZSUlKxsSa9GYNLffv25fRKYU12MwaX1q5dS3wW+Vjz7NmzxHMqTtYMCwsrVtakmjHYKiwsxFatWhHvW2OxJr0Zg0v6miuksCa7GYMtLy8vore4WZP0MtjYrEk1/nOJ9EK3KFiT3ozBlru7O9ErhTXZzRhsSWHNgoICo7EmaTiuqFjzw4cPnGd88eJF4jkZkzXpzRhsZWVlYfXq1Tm9UlmT3ozBJVKTVHGzpr7mCj7WvHPnDtFbFKxJqrMnJCQUK2tSzRhsaTQaYmOGsViT3YzBdU76Gp2KkzVDQkKKnTW5cp+CggJs3rw5p1cIa5KaUouCNalmDC5t3bqVeMZSWJOvGaO0smanTp04vcXNmosXL+b0FhVrUo3/bN2/f5/oNSZr0hv/2TIma/7xxx+c3v8Ca5JynxcvXhC9RcGaVOM/WxkZGVilShVOrxTWZDf+c2nEiBGc3v8yazo7OxO9xcmacXFxxc6apDp7t27dOL3sxn8ukRrEhbCmLONJbhyUGwdlSRR94pReIPPz8+P85UIXexqRPh3KlUDQtWvXLoa3adOmjOlQfbp16xYxSeQCNrq8vb2JSSJXgYyuuLg4tLW15UwSSQUySrm5uYxfcEKSREoajYaxUYVKErdv305MEukaN24cI0nka8ag659//mF8XnwFMrrYU6Ps6VB9YhdT2dOh+hQUFMQoptKnQ7kKZHSlpqZixYoVOZNEUoGMUkFBATZp0oSRJFLToaQCGV30qQt6kkgqkNHFnv6mkkRSgYyuTZs26SSJ+gpkdF26dInhpTdjcCWJdL19+5bh5SuQ0cVuWuZrxqCLXUylCmT6kkRKGo0G27dvz0gS6dOhfPrhhx8Y9y19OpTvnBYuXMj4vNjTofq0b98+hpeaDiUVyOi6e/cuw0u9kCAVyOjy9/dnFFP5mjHoSkhIYGywKl++PG+BjFJeXh7Wq1dP66UXyEgvJChpNBrs1asX476lT4fy6bfffmPct126dNFOh/KdMXsLFX06lO9ZPHXqFMNLnw7lexafPn3K8PK9kKArNDSUUUylXkiQCmR0paenY+XKlbVeW1tbHDlyJB49epT3vi0sLGQUU6kXEvoKZHQNHz6c8SzyFcjoYk8j8jVj0MXeikIVyKjpUH26fv06w8vX+E/X+/fvde5b+nSoPsXExDC2JbOnQ/UpJycHa9Wqxch9qOlQIblP586dGfct3wsJuuibHakXEvoKZHSxNzG0bdtWbzMGXYcOHWJ4+QpkdLm6ujK87OlQfQoMDGQUU+3t7fU2/tOVnJzM2JbMng7Vp/z8fGzYsCEj96FPh/KJPuFPnw4lFcjoYm8ao6ZDSQUyutiTwdQLCVKBjK5z584xvHwFMrpevnzJ8PIVyOgKDw9nbEvma8agKyMjA6tWrcq4b6lmDNILCUqFhYXYpk0bxn3L1/hPlxTWnDdvHuPzEsOau3fvZniLgjVJzRh0eXt7M3IfijVJzRh0kVhTXzMGpdzcXKxduzbjvlUoFHjw4MH/NGuuWLGC8VmXFGs+fPiQ4S0trEnfYEWxpr5mDLq4WFNfMwZd06dPZ3xenTp10tuMQZcU1rx8+TLDW1pYkz4gW5Ks+eOPPzLuW4o1Sc0YdJFYk9SMQRd7I5xU1tTXjEGXFNZMTExksKaQZgxKUlgTEbF3796M+9bYrClkM8bp06cZXr4hc7pIrElqxqArNDSU8SK5qFhTSO5D35YspBmDLmOxJnsrSkmxpqenJ8NLNf4bizWF1tnp2zuFDJnTJYU1ly5dyvi8+Br/6ZLCmm5ubgyvFNbkGzKnSx9rkpoxKOXn5zO2JdNZk9SMQZcU1mRvGisp1jx//jzDK4Y1X716xfCWFGtmZmYyWJPe+F/crPndd98x7ltjsyap8Z+u27dvM7wlxZrx8fEM1hTS+E+JzZpCGv8paTQaxvZOeuP/f5k1jx8/zvCWJGvS6+ylhTWHDBnCuG/5Gv/pYrMmX+M/XewNnHyN/3TpY02+3Ofdu3cM73+BNUmN/5Q0Gg126NCBkfuUFGuyN8y3a9dOb+M/XVysqa/xn6579+4xvGJZk11nF8qasowruXFQbhyUJUEeHh5oZ2cnOEmkKzo6GitVqsRY1S1U2dnZWKdOHd7pUC5RL5Lpq7r5fjHR9dNPP+l8LZRQ/f333zqruoXqwIEDopox6HJxceGdDiUpICAA7ezseKdDuZSYmIhVqlThnQ7lErX9ir6qW8w59e3bV1SSSNfEiRN1VnUL1dq1a0UVyOg6c+aMqGYMup4/f44VKlQQXCCj68uXL1ihQgXGqm6hysjIwFq1aolqxqBEwT3fdChJCoWCdzqUpDlz5uis6haqHTt28E6HknTz5k2dVd1C9eHDB7Szs2N8LZRQxcbGYuXKlUU1Y1DKycnBevXq8U6Hcol6kUxf1S3mjMeMGWPwqu5ly5bxToeSdOTIEd7pUJIePHjAOx1K0qdPn9DOzo53OpRLKSkpWK1aNcbXQglVfn4+NmvWjPG1UGLOadCgQTpfCyVUU6ZM0flaKKH6999/eadDSbpw4QLvdChJr1+/FjQdyqWIiAisWLGi4MZ/ujIzM9HR0ZF3OpRLFNzTvxZKzDl9//33vNOhJP3111+iCmR07d27V1SBjC61Wq3ztVBC5evri3Z2drzToVyKj49He3t7xtdCCVVubi42bNiQdzqUS9QGCL7pUJLGjx/POx1K0qpVq3S+FkqoTpw4ofO1UEL1+PFjUQUyuoKDg7FChQq806FcSktLwxo1aogqkFEqKCjAVq1aiWr8p2vo0KGiGv/pmjlzps7XQgnVli1beDcRkXT16lXeTUQkGZs1xTRjUJLKmqNGjdL5WiihksKaBw8eLHWsmZSUhFWrVmV8LZRQSWXNfv366XwtlFAZizXPnj1rFNYMCwszGmu2bdu21LHmzp07RTVj0CWFNb28vNDOzk5w4z9dRcGa9K+FEipjsuby5cuNwpru7u5a1hTSjEGXsViT2n4lphmDLimsOXXqVFGN/3RJYc2LFy8azJpv3rwRNWROlxTWzMrK0rKm0GYMSlJZc+TIkdimTRvBzRh0GYs179y5I6oZgy4prJmQkGA01uzVq5eoIXO6JkyYIKrxny4prHny5ElRzRh0SWHNkJAQrFChguDGf7qMyZrDhg0zCmtu3bpV1JA5XUXFmkIa/+kyJmt26dJFVOM/XVJYc/HixUZhzfv37xvMmh8/ftSyppAhc7qksmaTJk2wV69eghv/6ZLCmn/88Yeoxn+6jMWaL168+OpYc8SIEVrWFNL4T9fcuXNFNf7TJYU1nZ2dRQ2Z0yWFNePi4kola44dO1ZU47+s/46Ko3HQBP+vMU6WHpmYmDgAQDgAQHh4ODg4OBj5J5JliKKjo6Fy5cpgaWkp2puQkABlypSBMmXKiPampqYCIkKFChVEe3NzcyElJQWqVasm2ouIEBERAY6OjqK9AABhYWHg6OgIJiYmor3Uc2KINzIyEqpVqwbm5uaivbGxsVChQgWwsrIS7U1KSgJLS0soW7asaG9GRgbk5eVBpUqVRHvz8/MhPj4eatasKdqLiBAeHg61a9cW7QWQdsYRERFQs2ZNMDU1Fe2NioqCKlWqgIWFhWhvXFwclCtXDmxsbER7U1JSwNTUFMqXLy/am52dDRkZGVClShXRXo1GA1FRUQb/7ggLCzP4jKU+i9WrVwczMzPR3piYGKhUqZJB921iYiJYW1uDra2taG9aWhpoNBqD79vk5GSoXr26aK8xn8Xw8HCoVauWwc9i1apVDbpv4+LioHz58mBtbS3am5ycDObm5lCuXDnR3szMTMjJyYHKlSuL9hYWFkJMTAzUqlVLtBdA2rNorPs2Ojoa7O3tDbpv4+PjwdbW1uDcBwDAzs5OtDcnJwfS0tKgatWqor0ajQYiIyMl5T6l8b6tWLGiQbmPlPs2PT0d8vPzDcp98vLyIDExEWrUqCHaW5pzH2Pdt2ZmZgblPllZWZCVlQX29vaivYWFhRAdHV3qcp+IiAioUaOGQc+isVhTau4js6ZwlUbWLCgogLi4OJk1BSo+Ph7Kli0rs6ZAfY2sWVhYCBUrVhTtzcvLg6SkJJk1BUpmTfFemTWFSQprFkXuUxrvWymsaWVlZVDuI4U18/PzISEhodSxZmm9b2XWFC4prCkl95FZU5xk1hQuKawJ8HXmPjJrCpfMmsJlTNaUZVyxflc6ImKE1D9TbhwUILlxUJYsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkGUPF0TgovqValixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJklVqJTcOyvpq5OnpCW/fvgWNRiPaGxQUBI8fP4aCggLR3ri4OLh79y7k5OSI9ubk5MD169chPT1dtBcR4dq1a5CYmCjaCwCgVqshMjLSIK+7uzt8/vzZIO+rV6/Ay8sLDNmG6uvrCy9fvjTojMPCwuDBgweQn58v2puSkgK3bt2C7Oxs0d78/Hy4evWq9qs2xAgR4caNGxAXFyfaCwBw7949CAsLM8j75MkT+Pjxo0Hed+/egYeHh0Fn/PHjR3j69CkUFhaK9kZHR4OLiwvk5uaK9mZmZsL169chMzNTtFej0cDVq1chOTlZtBcA4NatWxAdHW2Q183NDUJCQgzyvnjxAnx9fQ06Jy8vL3jz5o1Bz2JISAg8evTIoPs2ISEB7ty5Y9B9m5ubC1evXpV03yYkJIj2AgDcuXMHIiIMGwZ5+PAhfPr0ySDv69ev4cOHDwadsZ+fH7x48cKgZzE8PBzc3NwgLy9PtDctLQ2cnZ0hKytLtLewsBCuXr0KKSkpor0AADdv3jT4vnVxcYEvX74Y5H369Cn4+/sbdE7v37+Hd+/eGeT99OkTPHnyxKBnMTY2Fu7du2fQfZudnQ3Xr1+HjIwM0V7qvk1KShLtBQC4ffu2pPs2KCjIIO/Lly/B29vboHPy9vaGV69eGXTfhoaGgru7u0G5T1JSEty+fdug3CcvLw+uXr0KaWlpor2ICNevX4f4+HjRXgCAu3fvQnh4uEHeR48eQWBgoEHet2/fgqenp0FnHBAQAM+fPzfovo2MjIT79+8bdN9mZGTAjRs3DMp9qPvW0NzH2dkZYmJiDPLev38fQkNDDfI+e/YM/Pz8DDonY7FmfHy80Vjz6tWrMmsKlLFYs6CgoNSyZkBAgEHnJIU1AwMDjcaaht63Xytrvn79usRZMzExEdRqtUH3rdTcpzSy5ps3b4zCmhEREZJY8+bNm0ZjzdjYWIO8MmsKlxTWpJ5FY7DmgwcPZNYUKKrOXhpZ09A6u1TWfPbsmcyaAuXq6moU1vzw4UOpZM1r1659Vaz5+vXrUseaqampRmFNACiVrOnh4SGzpggZkzV9fHyMwpoPHz4sdax5/fp1g1lT1v+gEFEOngAABwBAAMDw8HCUVToVGRmJVlZWWKNGDZw8eTLeuHEDMzMzBXmzsrKwevXqWLFiRRwzZgyeO3cOk5OTBXk1Gg22a9cObW1t8fvvv8cjR45gTEyM4J/7hx9+QEtLSxw0aBDu3r0bQ0NDBXsXLFiApqam2KNHD9y4cSP6+fmhRqMR5N23bx8CALZv3x5XrlyJb9++Fey9c+cOAgA2bdoUFy5ciI8fP8b8/HxBXj8/PzQxMcE6dergzJkz8e7du5iTkyPIm5CQgOXKlcOqVavi77//jleuXMH09HRB3ry8PKxbty7a2dnhzz//jKdPn8aEhARBXo1Gg7169UIbGxtUKBR48OBBjIyMFORFRJwwYQKam5tj//79cceOHfj582fB3tWrV6OJiQl269YN161bh15eXoLP6eTJkwgA2Lp1a1y2bBm+fPkSCwsLBXmfPHmCAICNGjXCefPm4YMHDzAvL0+QNzQ0FM3NzbFWrVo4depUvHXrFmZlZQnypqWlYeXKlbFy5cr466+/4sWLFzE1NVWQt7CwEJs3b45ly5bFH374AY8fP45xcXGCvIiIw4YNQysrKxw6dCju27cPw8LCBHtnzZqFZmZm2Lt3b9yyZQsGBAQI9m7btg0BADt16oSrV69GDw8PwWd87do1BABs0aIFLl68GJ8+fYoFBQWCvO/fv0cAwHr16uHs2bPRxcUFc3NzBXmjo6PRxsYGq1evjn/88Qdev34dMzIyBHmzs7OxVq1aWKFCBfzll1/w7NmzmJSUJMir0WiwU6dOWKZMGfz222/x8OHDGB0dLciLiPjzzz+jhYUFDhw4EHft2oUhISGCvUuWLEFTU1Ps3r07/vvvv+jj4yP4nFQqFQIAtmvXDlesWIFv3rwR/Cy6uroiAGCTJk1wwYIF+PDhQ8H37cePH9HU1BRr166NM2bMQLVajdnZ2YK8ycnJaGdnh1WqVMHffvsNL1++jGlpaYK8+fn52KBBAyxfvjz+9NNPePLkScH3LSJiv3790NraGocPH44HDhzAiIgIwd5Jkyahubk59u3bF7dt24afPn0S7F23bh2amJhgly5dcO3atfjhwwfBZ3zu3DkEAGzVqhUuXboUX7x4IfhZfPHiBQIANmjQAOfOnYtubm6C79uwsDC0tLTEmjVr4pQpU9DZ2Vlw7pORkYFVq1bFSpUq4bhx4/D8+fOYkpIiyFtYWIitW7fGsmXL4siRI/HYsWMYGxsryIuI+O2336KlpSUOGTIE9+zZg1++fBHsnTt3LpqZmWGvXr1w06ZN6O/vL/icdu3ahQCAHTp0wFWrVuG7d+8Ee52dnREAsFmzZrho0SJ88uSJ4DP29vZGAMC6devirFmz8N69e4Jzn7i4OLS1tcVq1arhxIkT8dq1a4Jzn9zcXHR0dMQKFSrg6NGj8cyZM6Lu22+++QbLlCmDI0aMwEOHDmFUVJQgLyLi2LFj0cLCAgcMGIA7d+7EoKAgwd5//vkHTUxM8JtvvsENGzagt7e34HM6duwYAgC2bdsWly9fjq9evRJ837q7uyMAYOPGjXH+/Pno7u4u+FkMCgpCMzMzdHBwwGnTpuHt27cF37cpKSlYsWJFtLe3x/Hjx+OlS5cE5z4FBQXYpEkTLFeuHP7444944sQJjI+PF+RFRBw0aBBaW1vjsGHDcP/+/aJYeNq0aWhmZoZ9+vTBrVu3YmBgoGDvpk2bEACwc+fOuGbNGnz//r3gM7506RICALZs2RKXLFmCz549E/wsvn37FgEA69evj3PmzMH79+8Lzn2MyZrt27dHW1tb/O6770qUNRcuXGgU1rx7926pZM169eppWfPUqVMlxpq//fYbmpubY79+/XD79u0lxpqnTp2SzJoNGzYsUdZMT0/XYU0xuY8U1hw+fHipY83r168jAGDz5s3x77//LjHWjImJMRprdu7cuchYMzg4WLBXCmseOnSIwZqvX78uEdYMDAxEU1NTdHR0xOnTp5coazZs2NBg1uzfv79RWHP9+vVGYc2XL18yWNPV1dVg1rx582aJsWabNm20dfajR4+WGGvOmzcPTU1NsWfPniXKmrdu3ZLEmiYmJkZhzdq1azNYMzExUZBXKmuOGzdOy5o7duwwiDW7deuG69evLzHWfPjwobbOXpKsmZqaajTWHDx4cJGx5sePHwV7pbDm5cuXtay5ePHiEmPNqKgotLa2xho1auCkSZNKDWv++OOPRmHN/fv3M1hTTJ1dCmv6+/ujiYkJ1q5dG2fOnIl37twxiDV/++23EmNNRMTevXujjY0NOjk5lShrKpVKNDExwa5du5Yoaz59+lQSa1pYWGhZ09nZucRYs0WLFlrWPHbsWImx5uzZs7WsuXnzZoNYs2PHjiXKmp6enkZhzZycHKOx5ujRow1mzaVLl2pZc8OGDaJYU5ZxFR4ejlT/GgA4YFH0xBXFH/K/HnLj4P+O/vzzT/pDxCgG8Z3t9u3bGV6qGCTkRdiNGzcYXnoxyNPTU+8l/OHDB4aXKgYtWbIEnz9/rveXZWxsLNrY2DC8DRo0wDlz5qCrq6veX5Y5OTno4ODA8NasWRMnT57MWwzSaDTYpUsXhrdSpUo4duxYQcWgX375heEVUwxatmwZw2tpaYmDBw/GPXv28MLJ4cOHGV4xxaAHDx7onBNVDOJ7Efbp0yc0MzNjeKliEB+cJCcnY4UKFRjeOnXq4KxZs3hfhOXn52OjRo0YXupF2NWrV3nhZMCAAQwvvemSrxg0ZcoUhpd6EaZSqXiLQRs2bGB4LSwstE2XfMWgCxcu6DyLQotBr1690jnjNm3aCCoGRUREoKWlJcMrtBiUmZmJ1apVY3ipYhDfizCNRoNt27ZleKlikJCmy++//57hpYpBQl6EzZ8/n+G1srLCYcOGCYKTPXv2MLz0F2F8xaDbt2/rnFPnzp1RqVTyFoN8fHzQxMSE4aWaLvmKQfHx8Vi2bFmGt169evjnn3/yFoNyc3OxTp06DK/QYpBGo8EePXowvPRiEB+c/Prrrzr3LVUM4oOTlStX6ty3VDGIr+ny+PHjOvdtjx498N9//0VfX1+95/To0SOdM27fvr2gpsvg4GA0NzdneKkXYY8ePdJ736ampmKlSpUYXqrp8s6dO3oLswUFBdisWTOGl3oRduXKFd4XYUOGDGF4y5cvj6NGjRJUDJoxY4bOfSu0GLRlyxad3IcqBvG9CLty5YrOfUsVg/hehHl4eOicMVUMevHihd4zpgqqdC9VDOJruszOzsYaNWro5D5U0yXffduhQwed3GfcuHF44cIF3tznp59+YnjFNF3+/fffOvftkCFDcO/evbwvwg4cOKBz3/bq1UtQMcjFxUXnnIQWg/z9/dHU1JThFVoMSkxMxPLlyzO8devWxdmzZ/O+CKMal+leqhh07do13mJQnz59GF6qGCSk6XLixIkMr5gXYWvWrNHJfQYOHIg7d+7kLQadOXNG51mkmi75ikHPnj3TOeO2bdviP//8w9t48OXLF7SwsGB4GzdujH/99Rdv40FGRgba29szvEIbDwoLC7Fly5Y69+2ECRMENR4oFAqd+5ZqPOB7ESaFNXfs2KFz3wplzZs3b3LmPmvWrCl21ixTpgzDS70IK27W7Nq1q859+19nzSNHjujkPhRr8r0IKw7WFPIiTCprNm7cmOEtDaz577//6jyLJcGar1+/1jljijX5XoT9l1hTzICfFNb866+/dHIfoS/CpLCmWq3WOadOnTr951mzbt26OrnPpEmTeF+ESWXN8ePH69y33333naAXYVJY88SJEzr3rVDWfPz4sc4ZCx3wk8KaaWlpRmPNoUOH6uQ+hrKmtbW1ljX5mi6lsObVq1d17tuuXbsKarqUwprR0dGcrClkwE8qa3bs2FEn9xHKmqNGjWJ4S4o1Dx48qHPfUqzJV2eXwpoBAQFE1uRruiSxppCmS6ms2bdvX4ZXzICfFNZcu3Ytw0sf8CtO1nz+/LnOGRcFa7q7uxcra7Zq1Yrhtbe3xwkTJghqupTCmnPmzNG5b4cPHy6o6dJYrOnl5aXjpQb8ips1HR0dGV5qwK+4WXPMmDE6uQ/FmnxNlyTWFNJ0KYU1qSFZenTo0EHQgJ8U1kxJSeFkTSEDflJZc+DAgQyvGNacOnUqw0tnTb46uxTWvHjxos59S7EmX9OlVNa0srJieCnW5Gu65GJNoQN+Ullz5MiRDG+5cuUED/hJYc29e/fq5D4lwZq+vr4Gs2ZCQgKRNcU0XcoqecmNg3LjoCyJojZBsC9fKvQVg6jpHJJX3wQutXWQ5OXb9vTDDz8QvXwTuAsWLCB6qWIQaQKX2gTBFXwTuNTWQa6gikGkCVxqEwSXl28Cl5rOIf239U3gUlsHSV59256oTRAkL9+2pwkTJhC9fMWg1atXE718xSBq6yBX8E3gUpsguIJv2xO1CYLk1zeBS20dJHmbN29OnMClNkGQvHzFoGHDhhG99AlcrmLQrFmziF6+YhA1ncMVfMUgausgV/Bte6I2QZCeRX3bnqitgyQ/VQziarqkNkGQvPq2PVFbB0leqhhEmsD9+eefiV6+CdwlS5YQvXwTuNTWQa7gm8ClNkGQnkV9256orYMkv75iELUJguTVt+2Jq6BKD74J3H79+hG9fNueJk2aRPTyTeCuW7eO6OXbLExtguAKvglcausgV/BN4FKbIEh+fdueqE0QJK++CVxq6yDJy1cM+vbbb4levm1Pc+fOJXr5NgtTmyC4gm/bE7V1kCv4JnCprYNcwbftidoEQfLrm8Cltg6SvPo2C1ObIEhevmLQ2LFjiV6+YtA///xD9PJte6I2QXAFXzGIq6BKBd+2J2oTBMmvb9sTtXWQ5NW3WZjaBEHy8k3gDho0iOjlm8CdNm0a0cs3gUttguAKvglcausgV/BtFqY2QXAF37YnY7Jm+/btiV6+F2FSWHPhwoVEL9+2JymsSW2C4Aq+bU/GZM169eoRvfq2PUllzd9++43o5dv2JIU1qU0QXCGFNfkG/KSwJrUJguTVt+1JKmsOHz6c6OXb9mQs1qQ2QXAF37YnKaxJbYIg+fVte5LKmp07dyZ6+bY9GYs1qa2DXFGcrEltHST59W17ksqaDRs2JHr5WLN///5EL9+AnxTWXL9+PdHLt+1JCmtSWwe5oqhYkyv3kcqabdq0IXr5tj1JYc158+YRvXzbnqSwJrV1kCuEsKa+3EfftieprFm7dm2iV9+2J6msOW7cOKKXb9uTENYkbXuSwprU1kGu4Nv2JIU1qa2DJK++AT+prDl48GCi97/KmtTWQa7g2/YkhTW5hmTpoW+zsDFZ88cffyR6+Qb8pLAmtXWQK4qTNamtg1zeomJNrqZLKayJ+H9bB0levs3CUlhTqVQSvXwDflJYk9o6SHoW+ViT3bhMj+JkzRYtWhC9xcmas2fPJnr5NgvrY00bGxscMWIEccBPCmtSWwdJz6K+AT8prEltHSR59Q34SWXN0aNHE718rLl06VKil86aYjZdyip+FUfjoAn+X2OcLD0yMTFxAIBwAIDw8HBwcHAw8k8kyxBdvnwZnj59CtevX4cvX77w/v9r1KgBw4cPB4VCARYWFnDv3j1wd3cHLy8vXm/FihVh6NChoFAowMHBAS5fvgweHh7w5MkTXq+trS0MHDgQFAoFtG/fHo4fPw5BQUFw69YtXq+lpSX06dMHFAoFDBw4EPbv3w/x8fFw9uxZXq+pqSl88803oFAoQKFQwKlTpyA5ORkOHDjA6wUAaN++PSgUCnBycoKHDx9CeHg4qFQqyMnJ4fU2bdpU6/306RN4e3vDuXPnIC4ujtdbu3ZtcHJyAoVCAdnZ2fDo0SNQq9Xw6dMnXm+VKlW0Z1y+fHm4desWPH36FN69e8frLV++PAwZMgQUCgU0bNgQzp8/D97e3vDgwQNer42NDfTv3x8UCgV88803cPjwYQgLC4Nr167xes3NzaFXr17az2vPnj2QmpoKx48f5/WamJhAly5dtGd89epViI+Ph3379oGQ3wWtW7fW/nffvn0Lnz9/hqNHj0J6ejqvt2HDhtr/bmRkJLx9+xauXLkCERERvN5atWqBk5MTODk5ASKCm5sb3L9/H/z8/Hi9lStXhmHDhoGTkxNUq1YNrl27Bq9fv4YXL17wesuWLQuDBg0ChUIBrVq1glOnTsHHjx/h7t27vF4rKyvo27cvKBQK6NOnD6hUKoiOjoaLFy/yes3MzKB79+7az+vIkSOQkpIChw4d4vUCAHTs2FHrvXfvHkRHR8P+/fshPz+f19u8eXOt19fXF/z8/OD06dOQmJjI661bt67Wm5ycDM+fP4ebN29CSEgIr7d69eraZ9Ha2hru3LkDjx49Ak9PT15vhQoVtPdt7dq14dKlS/D+/Xt4/Pgxr7dMmTLa+7Zjx45w7NgxCA4OBmdnZ16vhYUF9OnTB5ycnGDw4MGwf/9+SExMhNOnT/N6TUxMoFu3btrP69y5c5CUlAT79+/n9QIAtGvXTnvvPX36FEJDQ+HQoUOQnZ3N623cuLH2vxsSEgKenp5w4cIFiImJ4fU6Ojpq/7u5ubnw8OFDuHv3Lnz8+JHXW6VKFRg2bBgoFAqoWLEi3Lx5E54/fw5v3rzh9ZYvXx4GDx4MCoUCmjRpAmfPngVfX19wdXXl9VpbW2vv2x49esChQ4cgIiICrly5wus1NzeHnj17au+9ffv2QWpqKhw7dozXa2JiAp07d9Z6b968CXFxcbB//34oLCzk9bdq1Ur7WXt4eMCnT5/g+PHjkJqayutt0KCB1hsbGwuvX7+Ga9euQVhYGK+3Zs2a2mfR1NQU7t+/D25ubuDj48PrrVSpkvZZrFmzJly5cgXevn0Lz5494/Xa2tpq79u2bdvCiRMn4NOnT6BWq3m9lpaW2vu2X79+cPDgQYiNjYXz58/zek1NTRn37fHjxyElJQUOHjzI6wUA6NChg9br5uYGERERcODAAcjLy+P1NmvWTPvvIyAgAHx9feHMmTOQkJDA661Tp47Wm56eDk+fPoVbt25BUFAQr7dq1araM7a1tQW1Wg1PnjwBDw8PXq+dnR0MHToUnJycoH79+nDhwgXw8vICd3d3Xq+NjQ0MGDAAFAoFdO3aFY4cOQKhoaFw48YNXq+FhYU29xk2bBjs3bsXkpOT4eTJk7xeExMT6Nq1q/acLl26BImJiYJznzZt2mi9L168gJCQEDh8+DBkZmbyehs1aqT1hoWFgYeHB1y6dAmioqJ4vQ4ODtrnOD8/H9zd3cHFxQX8/f15vfb29trcx97eHm7cuAEvX76EV69e8XrLlSsHgwcPBicnJ2jevDmcOXMG/P39wcXFhddrZWUF/fr1A4VCAb169YJDhw5BVFQUXLp0iddrZmYGPXv21P6dVSoVpKamwuHDh3m9AACdOnXSftZqtRpiYmJg//79UFBQwOtt0aKF1uvl5QUBAQFw8uRJSE5O5vXWq1dP601ISICXL1+WOGs6OjrCpUuXDGLNdu3awYkTJ0qUNakzPn36tGjWpLyPHj2CsLAwUaxJeaWwZlZWFjx+/Ngg1rSzswNnZ2d49uwZvH37ltdb2lnTyckJrl27BvHx8bB//37QaDS8fqmsSZ1TVFSUwawJAODq6gqurq7g6+vL661UqZI2v5XCmq1bt4aTJ0/KrKlHXKzp7OwMwcHBvF6KNZ2cnMDGxsYg1nRycoK6devCxYsXwdPTEx49esTrpVjTyckJOnfuDEePHhXFmr179waFQiGZNc+fPw+JiYmCWbNt27Zab2lmzRcvXsDr1695vVys6efnB/fv3+f1Uqzp5OQEPXr0gMOHDxvMmvv374fU1FQ4evQor5diTerzKknWrF+/vvaM4+Li4NWrV4JZs0aNGtr/bmlkzf79+8OBAwcgLi4Ozp07x+uls6aTkxOcOHHCINZ0cnKCBw8eGMyaHz9+BB8fHzh79izEx8fzeuvUqaM9p5JmTSr3KUnWNDc31963xmTNly9fQnBwMBw5cgQyMjJ4vRRrOjk5QXh4uMGsWVBQAA8ePPifZ80ePXpoP+vSyJqJiYnw4sULuHHjBoSGhvJ6q1evrj1jc3NzcHFxKXHWNPS9ppOTEwwaNKhEWbNdu3baz1osazZp0kTr/fz5M3h5ecH58+chNjaW11tUrEm91zSENRs1agTnzp0DHx8fcHNz4/VaW1tr79tu3brBkSNHDGJNhUIBu3fv/p9nzZo1a2q9ANJZ882bN/D8+XNeb1G91+zbty8cPHgQYmJi4MKFC7xeNmsePXoUkpOTRbOmk5MTuLi4GMyafn5+4OvrK5o1nZycICUlpURZk3oWDWFN6lns1KkTHDt2DEJCQuDmzZu8XjprDhkyBPbt2wdJSUlw6tQpXi+bNZs3bw4mJia8PlnFo4iICHB0dKT+pyMi8l9MPJIbBwVIbhz839CsWbNg7969BnnNzc0FwQCXTE1NBSUv/zVJ+bktLCwE/TLnkqWlpaAiSFH/d83MzAQV2LhkYmIiqCDwX5OUv7OUz1qK92t8FqX8+5LyeRnrjKX8uyytZ2ysZ1HKfSvl39bXeN+Wxmfxa7xvjZX7yGdcciqNuY+xfqcaU19b7vM1PosyawpXac19SuN9+zU+i1/bfSuzpjjJrFk6VBqfxa/xvpVZU7hK6xmXxtxHZk1xku/b0qGv7b79GnOf0njffo3PonzfCldpPeN69eppm2N79+4NlpaWxv6RvirJjYNGktw4+L8hKY2DsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJAujXrx9s374dWrdubewf5atRcTQOmkr9A2TJ+hpUrVo1g71VqlQx2FupUiWDvXZ2dgZ7y5QpY3BnuIWFBZQvX94gr6mpKVSuXNkgL4C0czLWGVesWNFgb9myZQ32Wltbg42NjUFec3NzqFChgkFeExMTSZ+XlHOqWrWqwV57e3uDvVKeRVtbWzAzMzPIa2lpafC/EVNTU0n3j5TPujTet4beeQD/95UqVlZWBnktLCwM/vdlYmIi6d+1lDM21rMo5b4tV66cwV4rKysoU6aMQV4zMzNJP3dpvG+l5AFScx9zc3ODvJaWlgb/G5Ga+3xt962UZ9Ha2hqsra0N8pqbmxvtvi2NuY/U/NbU1LAyhZWVFdja2hrkNTMzk/Rv01j3rcyawiWzpjjJrClOMmsKl8ya4mQs1jRm7mMs1pRyxobeWwD/l98a+hVfxmRNYz2LXxtrWlhYfHWsWRrrPlJZU0ruUxpZU8q/y6+RNb+23Kc0sqaJiYnRWNNYuY8x71tDWdPMzOyrY01j5T62traS6uxSWLM05j6llTUVCgWoVCqIjIwENzc3uWnwf0GIKAdPAIADACAAYHh4OMoqnXr69CmqVCps1KgRUudJCgsLCxwwYADu3LkTg4KC0MvLC1UqFXbr1o3Xa2Jigt988w1u2LABfXx8MDg4GFUqFY4YMYLXCwDYtm1b/Oeff/D169cYFxeHKpUKJ06cKMjbuHFj/Ouvv9Dd3R0zMjJQpVLhokWLBHkdHBxw+vTpqFarMTs7G0+cOIGbNm0S5LW3t8cJEybgpUuXMDU1Fa9evYr79u1DKysrXm+5cuXwxx9/xBMnTmB8fDy6urqiSqXCGjVq8HqtrKxw2LBhuH//fgwPD8dXr16hSqXCVq1a8XrNzMywT58+uHXrVgwMDEQ/Pz9UqVTYt29fQX/nzp0745o1a9DT0xPDw8NRpVLhqFGjBHlbtmyJS5YswefPn2NSUhKqVCqcMWOGIG/9+vVxzpw56Orqijk5OahSqXDFihWCvDVq1MDJkyfjzZs3MTMzE8+dO4fbt29HExMTXm/FihVx7NixeO7cOUxOTsZbt27hgQMHsFy5crxeW1tb/P777/Ho0aMYExODjx49QpVKhXXr1uX1Wlpa4uDBg3H37t0YEhKCHh4eqFKpsGPHjrxeU1NT7NmzJ27cuBH9/PwwMDAQVSoVDh06VNDn1b59e1y5ciW+ffsWo6OjUaVS4a+//irI27RpU1y4cCE+fvwY09LSUKVS4fz58wV5a9eujTNnzsS7d+9iTk4OHj16FNevXy/IW7VqVfz999/x6tWrmJ6ejpcuXcI9e/aghYUFr9fOzg5//vlnPH36NCYmJuK9e/fw4MGDaG9vz+u1sbFBhUKBKpUKIyMj8fnz56hSqbBp06a8XnNzc+zfvz/u2LEDP3/+jN7e3qhSqbBHjx68XhMTE+zWrRuuX78evby8MCQkBFUqFX733XeCPq82bdrgsmXL8OXLl5iQkIAqlQonT54syNuwYUOcN28ePnjwALOyslClUuGSJUsEeWvVqoVTp07FW7duYVZWFp46dQq3bNkiyFu5cmX89ddf8eLFi5iamorXr1/H/fv3o42NDa+3bNmy+MMPP+Dx48cxLi4O3dzcUKVSYa1atXi9VlZWOHToUNy3bx+GhYXhmzdvUKVSYdu2bXm9ZmZm2Lt3b9yyZQt+/PgRAwICUKVS4YABAwT9nTt16oRKpRI9PDwwIiICVSoVjh49WpC3RYsWuHjxYnz27BmmpKSgSqXC2bNnC/LWq1cP//zzT3RxccHc3Fw8dOgQrl69WpC3evXqOGnSJLx+/TpmZGTg+fPncefOnWhqasrrrVChAv7yyy949uxZTEpKwtu3b+PBgwfRzs6O11umTBn89ttv8fDhwxgdHY1PnjxBlUqFDRo04PVaWFjgwIEDcdeuXRgcHIyenp6oUqmwS5cuvF5TU1Ps3r07/vvvv+jr64ufP39GlUqFw4cPF/R5tWvXDlesWIFv3rzBmJgYVKlU+NtvvwnyNmnSBBcsWICPHj3C9PR0VKlUuGDBAkFeR0dHnDFjhjb3OX78OP7777+CvFWqVMHffvsNr1y5gmlpaXjlyhXcu3cvWlpa8nrLly+Po0aNwpMnT2J8fDy6uLigSqXCqlWr8nqtra3RyckJDxw4gBEREfjy5UtUqVTYokULXq+5uTn27dsXt23bhp8+fUJfX19UqVTYu3dvXq+JiQl27doV165dix8+fMAvX76gSqXCH374QdDn1apVK1y6dCm+ePECExMTUaVS4dSpUwV5GzRogHPnzkU3Nzdt7rN8+XJB3po1a+KUKVPQ2dkZMzMz8cyZM7ht2zZBuU+lSpVw3LhxeOHCBUxJScGbN2/igQMH0NbWltdbtmxZHDlyJB47dgxjY2PR3d0dVSoV1q5dm9draWmJQ4YMwb1792JoaCi+ffsWVSoVtm/fXtCz2KtXL9y0aRP6+/vjx48fUaVS4eDBgwV9Xh07dsRVq1bhu3fvMCoqClUqFY4dO1aQt1mzZrho0SJ88uQJpqamokqlwjlz5gjy1qlTB2fNmoX37t3DnJwcPHLkCK5du1aQt1q1ajhx4kS8du0apqen48WLF3H37t1oZmbG67Wzs8PRo0fjmTNnMDExEe/cuYMHDx7ESpUq8XptbGxwxIgReOjQIYyKiioS1vzmm28EPYtFwZqvXr0qEtb8+++/BXkdHBxw2rRpePv2bczKyhLNmuPHj9ey5rVr13Dfvn1obW3N6/2vsKa/vz+qVCrs16+foL9zaWbNGzduaFlzx44dgnIfqaz53Xff4ZEjR4qMNTt16sTrNTU1xR49ehQJa1K5z/jx4wV5i4o1s7OzJbHm5cuXDWLNhISEEmfN7du3G8SaXbt2xXXr1qGXlxeGhoaiSqXC77//XtDnVdpZMyUlRRJrPnjwAFUqFTo4OPB6i4o1AwICJLFmZGQkqlQq/OWXXwR5W7RogX///Tc+ffq0RFmzWrVq+McffxQJa6rV6lLLmk5OToI+r6JiTSr3WbhwoSCvFNak6uyXL1+WzJr3799HlUqF1apV4/VaW1vj8OHDjcKaXbp0KVLWnDZtmiDvf401y5Yty+u1tbXFkSNH4tGjRyWz5rt371ClUmGHDh0EPYtSWLNDhw5FwppU7mNM1jQ3N+f1FiVrPnv2DFUqFTZu3JjXWxSsuX79evT29i4S1vzjjz8EeRs1aoTz588vEtY8efJkqWPN169fG8SaHz9+NAprPnv2TBJr5ubmokqlwpUrVwrySmXNMWPGMFjz4MGDklizXr16vF5LS0scNGhQkbDmp0+fUKVS4bBhwwR9XlzvNY3BmseOHRPNmlSdvaRZ8+DBg0XGmj179uT1SmXN1q1bFylrLl26VJCXzZqyjKvw8HD6+ThgUfTEFcUf8r8eIDcO/s/I19eXCG+VK1fG8ePHa5sx2IqPjyfCG7tAxlZubi6xcE0liVSBjC2NRkP8RcNuxuCSvoSAKpC9f/8eNRqNjnfVqlVEL70Zo6CgQMd74sQJopcqkN2/fx9zc3N1vI8fPyZ6qWaMGzduYEZGho43JCSECG/0JDEpKUnHm5aWRoS3MmXKaJPE6OhoHW9BQQE2b96c02thYYGDBg3CXbt2YUhICOc5kV4wsAtkXOc0c+ZM4ufVvn17bYGssLBQx6uvgEwvkOXn5+t4r169SvRSBbI7d+5gdna2jtfDw4PoZTdjsBUdHU2EN6pAdurUKUxISNDxZmdnY82aNTm9VDPGwYMHMSIiQser0WiIDYvm5ubYr18/3L59O3769InzjEkARk8SP3z4wHnGixcvJn5erVu31hbIuM744MGDRC+VJLq5uWFeXp6O9/79+0Qvu0DGVkBAABHe2AUytpKSkrB8+fLE+5bejMFWfn4+sXBNL5B9+fKF85xIzcNmZmbYq1cv3Lx5MwYEBHB69RVDOnbsiKtXr0YPDw/OM9ZXtGrevLn2hQTXfXv27Fmit27dujh79mxtgYyt58+fE73sAhlbYWFhRHijXkhQBTK2MjIyiPDGLpCxVVhYSCyksAtkXCIVvNjNGFznpK8wSW/853oWd+7cSfRSzRgPHz7kvG9v3rxJ9LIb/9ny8vIieukvJLhyn7i4OCxTpgynt1y5cvjTTz9pC2Rs5eTkoKOjI/G+pV5IcOXWGo2GOKxhZmaGffv21TZjcGnMmDHEvzO9QMZ1xvpeEtCbMbiexSNHjhC97AIZW+7u7kQvu/Gfrc+fPxObpKhmjPPnz2NycrKONyUlBStUqMDpZTf+s1VQUEAsXFPNGHv27MHQ0FDOcxo4cCCnl934z3VO+poOqRcSb9++5fRu3LiR6G3WrJm2QMb1LF68eJHoZTf+s/XmzRuil92MwVZERARxIIfd+M9WVlYWVq9enXjf0psx2NJoNMSX9uzGfy6NHDmSeN9Sjf/e3t6c56SvAbhNmza4fPlyfPnyJed9u3fvXqKX/kKCK/e5c+cO0VurVi2cNm0asUDGx5r0xn+2EhISDGbNvLw8vaxJb8bgOmMprDlhwgTi51WcrHny5EmityhYk2rGYEsqa1auXJnTS7Em1YzBllTWJL1gkMqa9GYMrmdx69atRO9/mTVJTVLFzZqkl0hFwZpUM0ZRs6ZKpSJ66c0YRc2aHz9+/J9iTaoZY/Pmzejv7895TlJYc926dUQvxZpPnjwpctZ88eIF0SuFNdnNGGxlZGRglSpVOL1CWLN169bE+7Y4WXPu3LnEz6soWJOU+zg7OxO9RcGaVDMGW1JYMzc3l8ia7GYMtqSypr5Gp+JkzaNHjxK9/2XWrFixIqe3KFiTasbg0qBBg4j3rRTWpDdjFDVrXrp0iegtTtaMjIw0Gmu2a9eO01tUrOnl5VXkrLlv3z6il96MUdSs6efnVypZs1evXsT7tjhZU18zflGwJtX4z9aTJ0+IXimsyW78Z0sKaxYWFuplTXrjP5eksOasWbOIn1dxsua1a9eIXj7WfP/+PdFb3KxJWv7AHjJni4816Y3/XPr555+J960U1qQ3/hc1a7q6uhK9xcmaycnJxIGcomJNUp2d1DwshDUnTZpE/LzoQ+ZcXlnGk9w4KDcOypIo9oYivmYMutjTvVSBzMXFhRPY6Dp06BDDy54O1Sc3NzdRSSJdgYGBjF9w7OlQfWL/ghOSJFLKz8/Hhg0bciaJpAIZXf3799dJEvUVyOhid9XzNWPQxZ5+cHR01Fsgo+v8+fMML3s6VJ9evnzJ8FIFMmo6VJ/Cw8MZE6fs6VB9yszMZGw3ogpk27ZtIxbIKBUWFmKbNm0YSSJ9OpTvjNkb4agkkVQgo2vevHmcSSKpQEbX7t27GV6+Ahldt27dYnj5CmR0eXt7M+Cer0BGV3x8PGO7kZBmDEq5ubmMiVOqQEZNh+o7J41Gg927d2f8nenToXxnPG7cOIaXPh3Kd8bszSbs6VB9OnbsGMNbtWpVnDhxIrFARtfDhw8ZXuqFBKlARldQUBAD7vkKZHSlpqYyiqnUC4kdO3YQX0hQKigoYExACWnGoIs9GUwVyF69esV7306fPp3h5WvGoIs9+UkVyKjpUH26fPkyw0s1/pNeSND17t07nfuWmg7lKpDRFRUVxWhapr+Q4CqQ0ZWVlcWYOKWmQ/UVyChpNBqdTWOdO3fWWyCj68cff2R4W7ZsqbdARhd7azFfMwZd+/fvZ3j5Gv/punfvns59S58O1Sd/f3/GfcvX+E9XYmIiY+KUasbQ90KCUl5eHmPilD4dSiqQ0cXexEC9kCAVyOj6/fffGd6mTZvqLZDRpVQqGV7qhQSpQEbX6dOnGV6+AhldT58+ZXj5CmR0hYaGMl4k8zVj0JWens5oWhbSjEGpsLCQsW2DPR3Kd8bsrSj06VC+M2Zvr+Fr/Kdr+/btDG/NmjVx6tSp6OzszHvfXr9+neHlK5DR5enpyfBSLyRIBTK6YmNjGcVUIc0YlHJychjFVCGN/5Q0Go3O5hu+Zgy6pLAme7pXDGsePnyY4S0p1vz06RPjRTLFmqRmDLpIrKmvGYNSfn4+Y7MjxZr6mjHoMhZrbtiwgeHla8agSwprvnr1Sif3KQrW5KuNFQdr6mvGoEsKa7K3KfA1Y9AlhTVv376tk/uUBtasU6cO41ksKdZkfxMAxZqkZgy6SKxJasag6/jx4wyvGNZ89OgRw8vXjEGXVNakD8gKacagJJU1hwwZwvg7lxRrbt68meEVw5pXrlxhePmGzOkqDtYkNWPQJZU12ZvG+Jox6GKzJl8zBl1SWPPAgQMMb0myJrvOXlKsWb9+fcZ9K4Y1+/Tpw/g78w2Z0yWFNdesWcPw8jVj0CWFNZ89e8bwimHNL1++GI01W7Zsybhv+YbM6ZLCmn/++SfDW1SsyZf73Lhxg+EVw5ofPnxgePmaMeiSypr0TbolyZrsbbilgTUfPHjA8PINmdMllTXpA7JCGv8psVlTSOM/XeyNx3yN/3QZizUvXLjA8PINmdMlhTUjIiKMwprsAVmxrMneCMfX+E+XFNbcs2cPw1tSrOnj41MqWZO9YZ5vyJwuKazJ3qLJ1/hPFxdr6mv8p0sKawYHBxvMmrKMK7lxUG4clCVBvr6+aGVlJThJpCshIQHt7OwYq7qFdlZT2wbpq7r5kkRK1AYIMQUyusaPH6+zqluoVq1apbOqW6hOnDihs6pbqB4/fsw7HUpSSEgI2tjYMFZ1C1VaWhra29vzTodyidoAQV/VzZck0jV06FBRSSJdM2fO1FnVLVRbt24VVSCj6+rVqzqruoXKw8MDraysBBfI6IqOjsayZcsyVnULPSdqKoc+HSrmWezYsSNjVTdfkkjXqFGjdFZ1C9XixYt1VnULFfWVM/RV3UJ1//59nVXdQhUQEIBWVlaMVd1ClZSUhBUqVBDVjEGJmsqhfy2U0DNG/L8NEHzToST98ccfBq/qXrt2rc7XQgnV2bNnGdOhfAUyup4/f847HUpSWFgYlilThvG1UEKVkZGB1apVw06dOgkukFGitg3SvxZKzH07YsQIRoFMzH07Z84cUQUyunbu3CmqGYOumzdvimr8p8vLywutrKwEN/7TFRcXh+XKlRPV+E8pJycHa9euzTsdyiVqAwQ1HSqkQEbXmDFjdL4WSqiWL18uqhmDrqNHj4oqkNHl7u4uqvGfrs+fP6O1tTXvdCiXUlJSsFKlSqIa/ykVFBRgkyZNGNOhYp7FgQMH8k6HkjR16lTe6VCSNm7cqH0hIaRARtfFixd1vhZKqN68eYNWVlaCC2R0RUREoK2tLeNroYSeE/UiWUwzBiVqA4SYxn+6Ro4cKarxn64FCxZomzFIm4hI2rt3L+8mIpLu3LnD2EQkJvcxFmtSTctimjEoSWXNCRMmGIU1T548WSpZs0qVKlrWFNKMQUkqaw4bNkxUMwZdxmLNa9euMZoxvgbW7NSpU6ljTZVKJaoZgy4prPnx40e0srLSNmOUJGs2bNhQVDMGXf369TMKa65bt84orPnixQstawppxqDLmKzZunVrUc0YdElhzblz5xqFNZ2dnQ1mTW9vb6OwJjUgK6bxn5JU1hw7dqyoIXO6vkbWrFy5slFYc9CgQaKGzOmaNm2aqGYMuqSw5qVLl0Q1Y9AlhTUjIyPR1tZWcDMGXcZkzR9++MEorLlv3z5RQ+Z0SWFNPz8/LWsKGTKny5is2atXL6Ow5urVq0UNmdMlhTWfPHkiasicrtDQUC1rCmn8p0sKa1IDsmKGzOmSwpqzZs0S1fhPl7FY8/3790ZjTQcHB1FD5pSksubPP/8sasicriVLlohq/KdLCmu6urqKavynSwprJicnY8WKFUsda06aNEnUkLms/47kxkG5cVCWBIWEhIhKEumKiorinQ4lKSkpSVSSSFd2draoJJEujUYjCgTY8vb2FpUk0uXv7y8qSaTr06dPopJEur58+SKqQEZXTEyMqAIZXampqaIKZHTl5eUJmg7lEnXGYhIIunx8fEQliXQFBASIShLpCgoKEpUk0hURESEqSaQrISFBVJJIV0ZGhqgCGV2FhYWSn0VDz9jPz09UkkhXYGCgqAIZXaGhoaJeSNAVHR0t6oUEXcnJyaJeSNCVk5MjqkBGl0ajEQUCbPn4+Ei6b8UUyOj6/PmzqAIZXWFhYaIKZHTFxcXxToeSlJaWJqpARldBQYGoFxJseXl5Gfws+vr6Gvwsfvz40eD7Njg42ODcJzIyUlSBjK7ExESDc+asrCze6VCSiuK+NfRZ9PPzk5T7SLlvxRTI6IqOjhZVIKMrJSVFVIGMrtzcXFEFMrqK4r6VkvsYet8GBQUZfN+Gh4cbfN/Gx8cbPB2akZEhqkBGV0FBgdFyHyn3bWBgoMEFsq+RNaU8i18ba8bGxhqFNfPz82XWFKGIiAiDcx8prJmZmSmzpggZkzXFNGPQlZubK7OmCMmsKU5SWdPQ3OdrY01j1tlLI2vGxMQYhTXz8vIksWZpzX2ksKahdXZjsqaU+9aYuY8U1jQ09zEma4pp/KfL2LmPofft58+fDWbNsLCwr4o1EaXlPsa6b4ODg2XWFCGpuY/MmsJkTNaUZVwVR+OgCf5fY5wsPTIxMXEAgHAAgPDwcHBwcDDyTyRLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsr4GRUREgKOjI/U/HRExQuqfaSr1D5AlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJklR7JjYOyvhrFxsZCfn6+Qd7ExETIzs42yJuWlgZpaWkGeXNzcyE+Pt4gLyJCZGSkQV6A/+tUNlSRkZFg6DbT6OhoKCwsNMgbFxcHeXl5BnmTkpIgMzPTIG9GRgYkJycb5M3Pz4eYmBiDvIgo6ZwiIiIMPqfIyEjQaDQGeWNiYqCgoMAgb3x8POTk5BjkTUlJgfT0dIO82dnZkJiYaJBXo9FAVFSUQV4A4z2LUVFRBp+xse7b9PR0SE1NNcibl5cHcXFxBnmN/Swa677Nzc01yJucnGzwfZuZmWnwfVtYWAjR0dEGeQGkPYul8b5NSEgw+L5NTU01OPfJycmBhIQEg7wajcZouY+UM46KijL4WYyNjZWU+2RlZRnkzcjIgJSUFIO8eXl5EBsba5C3tN63UnMfQ+/blJQUyMjIMMiblZVlcO5TWFhotNxH6rNY2nIfmTXF6WtjzYKCApk1RUhK7iOzpjiVxvtWZk1xKq2smZSUZJC3tLKmlGcxJibG4GexNLJmac19vjbWzM/PL7Wsaaw6u8yawvW15T4ya4qTsVjTWHV2KawJINfZxSg1NVVmTRGSmvtIuW8NzX1KK2vK+t+T3Dgo66tRZGQkVK1aFX755Rc4e/asqGJQXl4eODg4wLfffguHDh0SVQyysLCA1q1bw8CBA2HXrl0QHBws2GtpaQnDhw+H7t27w4YNG8DHx0fwL0sTExOYO3cutGvXDv755x94/fq1qIRo9+7d0LhxY/jrr7/g4cOHon5ZOjs7Q+3atWH69OmgVqtFJUTe3t5QvXp1mDBhAly+fFkUnCQlJUG1atXgp59+gpMnT4ouBtWvXx+GDx8OBw4cEPXL0srKCrp16wZ9+/aFbdu2QWBgoGCvhYUF/PLLL9ClSxdYu3YtfPjwQdQZr1ixAlq1agVLly6F58+fi0qIjh07Bg0bNoQ5c+aAq6urKDh5+PAhODg4wOTJk+HmzZuiEqKgoCCoWrUqjB07Fs6fPy+qGJSVlQU1a9aE77//Ho4ePSqqGGRubg7NmjWDwYMHw549e+DLly+CvVZWVtC/f3/o2bMnbNq0Cfz9/QWfk6mpKUybNg06dOgAq1atgnfv3ol6Fjdt2gTNmjWDRYsWwePHj0XByaVLl6Bu3bowa9YsuHfvnqhi0Nu3b6FGjRowceJEuHr1qqhiUExMDFStWhVGjx4Np0+fFgUnhYWFULt2bVAoFKBSqUTBiaWlJbRr1w4GDBgAO3bsgKCgIMFeCwsL+O6776Bbt26wfv168Pb2FvUsLly4ENq0aQPLly+HV69eiTrj/fv3Q+PGjWH+/Png7u4u6r69e/cuODo6wrRp0+D27duiikH+/v5QrVo1GD9+PFy6dEnUfZuWlgbVq1eHH3/8EU6cOCGqGGRiYgINGjSAYcOGwb59+yA8PFyw18rKCrp37w59+vSBLVu2wMePHwV7zczMYMKECdCpUydQKpXw/v17UQCqVCqhZcuWsHjxYnj27Jmo+/b06dPQoEED+PPPP+H+/fui7tunT59CrVq1YNKkSXDjxg1RxaCwsDCoWrUqjBkzBs6dOyeqGJSTkwO1atWC7777Do4cOSKqGGRhYQEtW7aEQYMGwe7duyE0NFSw18rKCoYMGQI9evSAjRs3gq+vr6j7dtasWdC+fXtYuXIlvHnzRtSzuH37dmjatCksWLAAHj16JOq+vX79OtSpUwdmzJgBd+7cEZX7eHp6Qo0aNeC3336DK1euiCoGxcfHQ7Vq1WDUqFFw6tQpUfetRqOBunXrgpOTExw8eFBUYdbS0hI6deoE/fr1g+3bt8Pnz58Fey0sLOCnn36Crl27wrp168DLy0vUfbt06VJo3bo1LFu2DF6+fCnqWTx06BA0atQI5s2bB25ubqLuW1dXV3BwcICpU6eCs7OzqNwnMDAQqlWrBuPGjYMLFy6IKgalp6dDjRo14IcffoBjx46JKgaZmppC48aNYciQIbB3714ICwsT7LWysoI+ffpAr169YPPmzRAQECD4nMzMzGDSpEnQsWNHWL16NXh4eIi6b9evXw/NmzeHv//+G54+fSrqWTx//jzUr18fZs+eDS4uLqJyn5cvX0LNmjXhjz/+gOvXr4vKfaSypqOjoyTWHDBgAOzcuVM0azo5ORnMmvPmzYO2bduWOGveunVLZk2BMjc3hzFjxkCXLl1gzZo14OnpWWKsefz4caOwZnBwcKlkzQEDBhiFNTdv3iyZNWfOnAl3794tMdaMjY2FqlWrws8//1zirNm+fXvo379/ibPmokWLSh1rBgQEaFnz4sWLonIfqazZsGFDg1mzR48e0Lt37xJnzTVr1kCLFi1KHWtWq1bNINbMzc0tEtbctWsXhISECPZKYU0TExOYPXs2tG/fHlasWPFVsGZCQkKpY01zc3MYNWqUljXF1tkp1ly6dCm8ePFC1LN4+PBhSazp6OgIU6ZMKVHWzMjIgBo1asDIkSNLnDX79u1rFNbcsGGDJNasV68ezJ49W3SdXQprRkVFaVnzzJkzJcaalpaWklnzm2++KXHW3LNnj1FY08fHp0hYU2zug4hFwppbt24tMdYEAFi5ciW0bNkSlixZUqKs+ejRo1LJms2bN9eyptg6uxTWnD59upY13759axBrLly4UDRrXr58WTJr/v777yXOmnXq1DEKa37//fdFwpovX740uLFW1v+IEFEOngAABwBAAMDw8HCUVXo1YsQIpM7SzMwMe/XqhZs3b8aAgABe75w5c7ReAMCOHTvi6tWr0cPDAzUajV7vzp07Gd7mzZvj33//jU+fPsWCggK93ps3bzK8devWxdmzZ+O9e/cwJydHr9fLy4vhrV69Ov7xxx94/fp1zMjI0OuNi4vDMmXKaL0VKlTAX375Bc+cOYNJSUl6vTk5Oejo6Kj1lilTBr/99ls8fPgwRkdH6/VqNBrs1q2b1mthYYEDBw7EnTt3YnBwsF4vIuKYMWO0XhMTE/zmm29ww4YN6OPjw3tOy5cvZ3xebdu2xX/++Qdfv36NhYWFer1Hjx5leBs3box//fUXPnz4EPPz8/V63d3dGV5HR0ecPn06qtVqzM7O1uv9/PkzmpmZab1VqlTBCRMm4OXLlzEtLU2vNyUlBStUqKD1li9fHn/66Sc8efIkxsfH6/UWFBRg48aNtV5ra2scPnw4HjhwQNA9OXDgQK3X3Nwc+/bti1u3bsXAwEBe79SpUxln3KVLF1y7di16enrynvHGjRsZn3WrVq1wyZIl+Pz5c95n8eLFiwxvgwYNcM6cOejq6oq5ubl6vW/evGF4a9asiZMnT8abN29iZmamXm9ERARaWVlpvZUqVcKxY8fi+fPnMSUlRa83KysLq1evrvXa2tri999/j0ePHsXY2Fi9Xo1Gg+3atdN6LS0tcfDgwbhnzx4MDQ3V60VEHDlypNZramqKPXv2xE2bNqG/vz/vOS1YsIDxeXXo0AFXrVqFb9++5fXu3buX4W3WrBkuWrQIHz9+zPss3rlzh+GtU6cOzpo1C+/evct73/r6+qKJiYnWW7VqVfz999/x6tWrmJ6ertebkJCAZcuW1Xrt7Ozw559/xtOnT2NiYqJeb15eHtatW1frtbGxQYVCgSqVCqOiovR6NRoN9uzZk3Hf9u/fH3fs2IFBQUF6vYiIEyZMYDyL3bp1w/Xr16O3tzfvOa1atYrxWbdp0waXL1+OL1++5L1vT548yfA2atQI58+fj+7u7piXl6fX++TJE4bXwcEBp02bhrdu3cKsrCy93pCQEDQ3N9d67e3tcfz48Xjx4kVMTU3V601LS8PKlStrveXKlcMff/wRjx8/jnFxcXq9BQUF2Lx5c63XysoKhw0bhvv27cOwsDC9XkTEYcOGMXKf3r1745YtW/Djx4+83pkzZzI+r06dOqFSqcT379/znvHWrVsZ3hYtWuDixYvx2bNnvPfttWvXGN569erhn3/+iffv3+e9bz08PBjeGjVq4KRJk/DGjRu89210dDTa2NhovRUrVsQxY8bguXPneHOf7OxsrFmzJuO+/e677wTnPp06dWLct4MGDcLdu3djSEiIXi8i4qhRoxj3bY8ePfDff/9FX19f3nNavHgx4/Nq3749rlixAt+8ecP7LKpUKoa3SZMmuGDBAnz06BHvfXv//n2Gt3bt2jhjxgy8c+cOb+7z8eNHNDU1ZeQ+v/32G165coU390lKSsLy5cszcp9Ro0bhqVOnMCEhQa83Pz8fGzRowLhvnZyc8ODBgxgZGanXi4jYr18/Ru7Tr18/3L59O3769InX+8cffzDu265du+K6devww4cPvGe8bt06xmfdunVrXLZsGb548YL3jM+ePcvwNmzYEOfOnYtubm689+2LFy90cp8pU6ags7Mz730bFhaGFhYWjNxn3LhxeOHCBd7cJyMjA6tUqaL1li1bFkeOHInHjh3jzX0KCwuxdevWjPt2yJAhuHfvXvzy5YteL6I01pw7dy7j8yoK1nzy5Anvfevs7MzwimFNb29vhpdizWvXrhUra+bm5uqw5ogRI/DQoUOCch8prDl27FjGsyizJlkpKSlYsWJFxn0rlTX3798viDUHDRrEuG/FsOa0adMYn1fnzp1xzZo1xc6aly5dYnjr169fIqwZGRlZLKwZExOj1yuVNX/44QdG7kOxpp+fX7Gy5r59+xjeZs2a4cKFCw1mzZkzZwpiTT8/v1LJmr169WI8iyXFmqtXr2Z81kXBmg8ePChW1gwNDWWwZuXKlfHXX38tdtYsLCzUYc2hQ4eWCGvOmjWL8XmVBtZ8//69Tu4zadIkQXV2qaxZq1Ytxn1rKGtSuc+uXbsEsebPP//MuG/FsOaSJUsYn1e7du1KhDVdXV0Z3pJizeTkZLSzs2PkPoayprW1tZY1IyIi9HoRpbHmpEmTGPdt165dce3atcXOmufOnWN4S5I1LS0tGbmPGNasWrWq1luSrPntt98y7luKNYXU2aWw5q5duxheqaw5a9asEmFNW1tbrbdChQo4evToEmHNb775hnHfDhgwoERY859//mF8XmJY89ixYwwvxZru7u7FyppBQUEM1rS3t8cJEybgpUuXeHMfqazZpEkTxn1rKGuamZlhnz59SoQ1N23axPC2bNmyRFjz7du3DG+NGjUks+a5c+cwOTlZr7c4WHP37t3FzpoLFy5kfF4dOnTAlStXFjtr3r17l+EtKdaUZVyFh4fTz90Bi6Inrij+kP/1ALlx8H9G7969Y1ye9GjUqBHOmzePWAyKiopCa2trTm+tWrVw6tSpxGJQVlYW1qhRg9PLVwzSaDTYvn17Tm/ZsmXxhx9+0FsM+vHHHzm9QopBixYt4vTSi0GkF2H79+8nftZUMYgEJ/fu3SN6qWIQqenS39+f8UuOHvXq1cPZs2eji4sLZ0KUmJiI5cqV4/TyNV3m5eVh/fr1Ob3Ui7CzZ88S4aR3796cXiFNl7///junV0gxSKlUcnpNTU2xe/fueotBp0+fJp4TXzHo6dOnRC9VDCK9CAsNDWW8TKYHVQwiwUl6ejra29tzeqliEOlFWGFhIbZo0YLTSxWDTp48SSwGOTk5cXrpTZekYtDs2bM5vdSLsG3bthGLQdu3b+f00psuScWgGzduEM+pVatWuHTpUnzx4gXns+jp6Un0NmjQQG8xKDY2llFQpQe9GMQFJzk5OYyCKj34ikEajQa7dOlCvG/5ikGjR4/m9FpaWuKQIUNwz549xGLQ0qVLifdtr1699DZdHj58mPhZUy/C3r17x+l1c3Mjeps3b46LFi0iFoM+ffrEAHx68BWD2AVVelSrVg0nTpxILAbl5+djo0aNiPctXzFowIABxPuWrxg0efJk4n1LFYNIL8I2bNhAfBapYhDpRdj58+eJ50QVg169esV537569Yrobdy4sd6my/DwcEZBlR7Ui7Dbt29z3reZmZmMgio9qKZLUjFIo9Fg27ZtOb3Ui7ATJ04Qi0Hfffcd8b4dNmyY3mLQ/Pnzic8iXzFo9+7dxM+arxh0+/ZtopcqBpFehHl7exNzH6oYRHoRFh8fzyio0oMqBpGaLnNzc7FOnTqcXvqLMK5ikEajwe7du3N6qWLQkSNHiMWgX3/9lXjfUk2XpGLQihUrOL3Ui7CNGzcSi0HHjx8nnlP79u31FoMePXpE9DZt2lRvMSgoKIjxMpkefMWg1NRUrFSpEqeXKgZduXKFsxhUUFCATZs25fRSjQf6XoQNGTKE00s1Huhrupw+fTqnl/4i7PPnz5zezZs3E+/bbt264bp169DLy4vznK5cuUI8J+pFGKnxoLSyZocOHTi9Qljzp59+4vQWN2seOHCA+Fl36tRJ74swqaxJf5lMj/8ya/bp04fTW9ysuWbNGuJ9S7Em6UWYENYkvQh79uwZ0cvHml++fCGyJt+LMKms2bJlS04v/UVYcbDmn3/+Sbxv/6us+eHDB6KXYk1XV9diYU0HBwdOL8WapKZLIaypb8Dvl19+4fRKYU0hA35SWPPBgwdELzXgV1ysSR+SpQedNblyH6GsSWq6lMKaU6ZMId63AwYM0Nt0KYU1L1y4QDyntm3b4vLlyw1iTb4Bv4iIiFLJmt9//z3xvi1O1tyzZw/xs6ZYk9R0KYU1fXx8JLEmvXGZHnwDflJZs0ePHpxequmyuFhz5cqVxPu2KFiTVGeXwprBwcFE1qxduzbOnDkT79y5Uyys2axZM06vVNbkG/CbMWMGp1cIa27ZsoV431IDfsXBmuwhWXo0bNiw2FgzOztbEGuSch8+1jx27FixsObff/9NvG979+6td8BPCmu6uLgQvXzLZKSyJn1Ilh58rMluXKZHcbPmxIkTOb101iQ1XUphzTNnzhDPSSpr6hvwk8KaGRkZellT34CfVNZUKBSc3uJmzR07dhDv26JgTVLTpVTWpA/J0oNiTVLTpVTW7Nq1K6dXyDIZfaxJDfgJaXKXVbKSGwflxkFZEvT06VNUqVRE6KSHnZ0djh49WjuB6+XlhSqVipjo0sPGxgZHjBihncANCQlBlUpFhBl2QkSfwE1ISECVSoXjxo3j9bIncHNyclClUulMFJGCmsClikEnTpzQmRojBbsYdPXqVdy9ezcROunBLga5urriwYMHGdOypGAXg169eoUqlYqxnYAU7AlcPz8/VKlUxJfY9KC2PVHFoIiICFSpVMRGBXpQxSBqAjc1NRVVKhVjuk9fdO7cWTuBW1hYiCqVSmdbECnYE7jnzp0jvlhlR/369RkTuLdu3cL9+/cTC+70YBeDHj16hCqVirGZiRTsYpCHhweqVCrGhB4p2MWgT58+oUqlwv79+/N62dueYmJiUKVSMSZtScEuBmVmZqJKpdLZ3EUKdjHo6NGjxMITO6hiEDWBe+nSJdy5cycROulBn8DNycnBe/fu4cGDB4nNXfSgT+Cmp6fj8+fPUaVSEV9w0oM9gevt7Y0qlQo7d+7M62UXg0JDQ1GlUjGm3knBLgYlJSWhSqVibDYgBbsYlJeXhyqVCv/66y9B58SewD116hSx0M8OdjHo+vXruHfvXmLBnR5UMYiawHVzc8ODBw8yNjORgioGUU2Xb968QZVKRSzy0YPedBkXF4cBAQGoUqkY2w5JQRWD9u7di2FhYRgZGYkqlYqx0ZIU7G1P6enpqFKpGFtL9QV7AvfQoUO4bNkyQV52Mej8+fM6WxFIQW17cnFxwZycHLx9+zbu37+fCJ30YBeDnjx5giqVijEtSwp2McjT0xNVKhVjQo8UVDHo0KFDGB0djUFBQahSqRjbZUnB3vYUFxeHKpWKsUFY37NIn8DNyspClUpFLEqwo127dowJ3OPHjxMb6tnB3vZ05coV3LVrF/EFJz3YxSAXFxc8ePAgY1qWFOxi0MuXL1GlUmHDhg15vewJXF9fX1SpVIztW6RgF4PCwsJQpVIRi0f0oBeDAgMDMTk5GVUqFbEZhX3G9M3CBQUFqFKpiA1H7GBvezpz5ozORihSsCdwb968ifv27WNMy5KCve3J3d0dVSoVY1qWFOxtT2/fvkWVSkUs8tGDXQwKDAxElUpFLOTSg73tKTo6GlUqFXEIiR7sxgPqviU1/7GD3Xhw5MgRnYl5UrA3C1+8eBG3b99OfMFJD/Zm4Tt37uCBAweIzV30YE/gFgVrduzYkdfL3vZkbNacN2+eoHMqSta8du0a7tmzRzRrZmVlFQlr0rcTkILNmv7+/qJYk/4irCRZk77tqShYk/RilR3sbU/GZs02bdrweumsGR0dLYk1Y2NjUaVSEYeQ6MHe9lQUrMneBE6Kpk2bMrY9Xb582SDWzM7OLpWs+eXLF1SpVDh8+HBeb2lmTfqAnxTWfPDgAR48eJDY3EUP9oBfUbAmfdshKdjbnqKior461lSr1XjgwAHiIBE92NueSgtr0rc9SWHN7OxsVKlUOt9IRAr2tidjseb9+/clsyapmZYeRcGaVJ1dCmumpKSgSqUiNqOwz7hLly7aAb+iYE32RihSSGFN9rYnKaz57t07VKlU2KpVK15vcbAmqTGMHuxtTxkZGZJZkzRMyA6prEkf8JPCms+ePUOVSsXYAkwK9mbhkmJN9mZhY7LmyZMnRbMmVWcvadakBvxev34tmTVJDdP0kMqa9M3CUlhTo9GgSqXS2UxLCmOxJrVZ+MaNG5iRkWEQa1K5jxTW/Pz5M6pUKuKACj0o1qQG/IqCNdlboknBXiZz7NixUsWaaWlpRcKapGExerA3CxuDNT98+CCZNWUZV3LjoNw4KEuChBZS2WFmZibolwQpSNMaQkLKf7d27doGe6tXry4IVLmiQoUKxEkzvihTpoygpIsrLCwsBMETV5iYmBjtjA39mQGAOH0gJOzt7YlTn3xRvnx5QY1GXGFtbS2oqMgVZmZmWK9ePaOck5R/H0JeIJOiRo0agkCVKypVqiQoOeYKW1tbQQUnrrC0tDT4/jE1NS2V962h/6YB/q8YJARUucLOzk5QMYIrbGxsiJsZ+cLc3FzSfSvlnIx139aqVUtQYZArKleuLKgwyBXlypUT9LKNK6ysrL66+1Zq7iPkpShXVKxYUdCLGK6wtbUlTm/zhYWFhcG/Y4x530r5tyXlvq1SpYqgBlyuKF++PHGyly+sra0NztnMzc0N/ryk3rdS/n1IuW9r1qwp6KUoV1SqVIk4Zc8XZcuWxWrVqhnktbKyMvj++RpZs1q1al8da5bG3MdYrFmuXDmZNUWEMVmTtNGNL6Syppz7CA+ZNUvujGXWFB6l9b4tjaxZpkwZmTVFhDFZU0ruYyzWlHLGxsp9pLKmoXV2mTXFhVTWJG1X5AuZNcWFlNxHyn0rs6a4MCZrkrYr8oVU1jQ09ymt7zWl/NuSct/KX2lsfBVH46AJ/l9jnCw9MjExcQCAcACA8PBwcHBwMPJPJMsQzZo1C/bu3WvsH0OWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWrFIpKysrmD9/PixbtgxsbW2N/eN8NYqIiABHR0fqfzoiYoTUP9NU6h8gS9bXoCpVqhjsrVy5ssHeihUrGuwtV66cwV5ra2uwsLAwyGtubm7wf9vExAQqVapkkBdA2jkZ64zt7OwM9kr5BWxpaQk2NjYGeU1NTSX93Pb29gZ7pZyTlP+usZ5FGxsbMDMzM8hrYWFh8L8RExMTSX9nY52xlGexQoUKBnvLli1rsNfKygosLS0N8pqZmUH58uUN/m9L+byMdd9K+R1hzPu2TJkyBnlNTU0l/duU71vhsrGxAXNzc4O8xsx9vrb7VsqzaGVlBdbW1gZ5zczMJN0hxrpvjfUsSvndVKZMGTA1NaxMISX3MTU1/epyH5k1xelrY01DcxcAmTXFSsq/S2OypqEMJJU1S+OzaEzWtLKyMsgrs6Y4SWVNExMTg7wya4qTsfJba2trmTVFSGZNcZJZU7hk1hSn0pj7WFtbG1xnl1lTnKQ8i/J7zZL775bW95pSWFPOfYRLKmsOGzYM9u/fD58/f4b169fLTYP/CyqKtYX/6wHyVxX/T0itVqNSqRS0TtjMzAz79u2LW7duxcDAQHzx4gUqlUps3bo1r9fExAS7dOmCa9asQU9PT/Tz80OlUom9e/cWtN61ZcuWuGTJEnz+/DlGRkaiUqnE7777TpC3fv36OGfOHHR1dcW0tDRUKpU4ceJEQd4aNWrg5MmT8ebNm5iZmYmbN28W/L32FStWxLFjx+L58+cxOTkZDx06hCtWrBD0tTe2trb4/fff49GjRzEmJgYvX76MSqVS0FpwS0tLHDx4MO7ZswdDQ0PRzc0NlUqloLW+pqam2LNnT9y4cSP6+fnh27dvUalUYqdOnQT9nTt06ICrVq3Ct2/f4ufPn1GpVOKgQYMEeZs1a4YLFy7Ex48fY2xsLCqVSvz5558FeWvXro0zZ87Eu3fvYnZ2NiqVSpw2bZpBq4N37dqFixcvFuS1s7PDn3/+GU+fPo2JiYl48uRJXL16taCvvbGxsUGFQoEqlQojIyPx5s2bqFQqBa2MNjc3x/79++OOHTvw8+fP+PjxY1Qqldi8eXNer4mJCXbr1g3Xr1+P3t7e6OXlhUqlErt37y7o79ymTRtcvnw5vnz5Er98+YJKpRKdnJwEeRs1aoTz589Hd3d3TE5ORqVSiePHjxfkrVWrFk6bNg1v3bqFWVlZuGHDBpwzZ44gb+XKlXH8+PF48eJFTE1Nxf379+Py5cvR1NSU11u2bFn84Ycf8Pjx4xgXF4fnz5/H1atXC/rKPysrKxw6dCju27cPw8LC8O7du6hUKgWtMzczM8PevXvjli1b8OPHj/jq1StUKpXYrl07QX/nTp06oVKpxPfv32NAQAAqlUrs16+fIG+LFi1w8eLF+OzZM4yOjkalUok//PCDIG+9evXwzz//xPv372NGRgYqlUqcNGmSIG/16tVx0qRJeP36dczIyMCtW7fiwoULBXkrVqyIY8aMwXPnzmFSUhIePXoUV65cKehrb8qUKYPfffcdHj58GKOjo/Hq1auoVCoFrei3sLDAQYMG4a5duzAkJATd3d1RqVRi48aNeb2mpqbYvXt3/Pfff9HX1xc9PDxQqVRily5dBP2d27dvjytWrMA3b95gUFAQKpVKHDJkiCBvkyZNcMGCBfjo0SNMSEhApVKJY8aMEeR1dHTEGTNm4J07dzA7OxvXrFmDM2bMEOStUqUK/vbbb3jlyhVMS0vDPXv24NKlSwV5y5cvj6NGjcJTp05hQkICnj59GlevXi3oa2+sra3RyckJDx48iBEREXjr1i1UKpWCvirM3Nwc+/Xrh9u3b8dPnz7hs2fPUKlUYsuWLXm9JiYm2LVrV1y7di1++PABfXx8UKlUYs+ePQX9nVu3bo1Lly7FFy9eYEREBCqVSvz2228FeRs0aIBz585FNzc3TE1NRaVSib/99psgb82aNXHKlCno7OyMmZmZuHHjRpw3b54gb6VKlXDcuHF44cIFTElJQZVKhStWrBD0tTdly5bFkSNH4rFjxzA2NhYvXryISqVS0NcwWFpa4pAhQ3Dv3r345csXvH//PiqVSkFfS2Bqaoq9evXCzZs3o7+/P75+/RqVSiV26NBB0N+5Y8eOuHr1avTw8MDAwEBUKpU4YMAAQd7mzZvj33//jU+ePMGYmBhUKpX4008/CfLWrVsXZ8+ejffu3cPMzExUKpU4ZcoUQd5q1arhxIkT8dq1a5ieno47duzAv//+W5DXzs4OR48ejWfOnMHExEQ8fvw4rlq1StBXrNrY2OCIESPw0KFDGBUVhdevX0elUino64ksLCxwwIABuHPnTgwKCsKHDx+iUqnEpk2b8npNTEzwm2++wQ0bNqCPjw96enqiUqnEbt26Cfo7t23bFv/55x98/fo1hoaGolKpxGHDhgnyNm7cGP/66y98+PAhJiUloVKpxHHjxgnyOjg44PTp01GtVmN2djauW7cOZ8+eLchrb2+PEyZMwEuXLmFqairu27cPly1bJugr/8qVK4c//fQTnjhxAuPj4/Hs2bO4evVqQV97Y2VlhcOGDcP9+/djeHh4kbBmmzZtBP2dO3fuXKSs+f333wvy/ldY8/Dhw7hy5UqjsWbDhg15vVJZs3379rhy5UrJrBkXF4dKpRJHjx4tyFvUrLlkyRJB3v8Kaz558gSVSiW2aNGC10tnTS8vL0msGRYWhkqlEhUKhSBvw4YNcd68efjgwYMSZ81ff/1Vy5oHDhwwCmveu3cPlUqloK9Hk1kzA7dt2yaYNStUqIC//PILnj17tsRZc+DAgbhr1y4MDg4uUdZs166dljWDg4ONypozZ84U5C0O1rS1teX1Uqx54MABjIiIwNu3b0tmzVatWvF6pbJmq1atvmrWvHTpkmTWFPLVe0XBmqtWrcJ3795JYk2qzi6UNevUqYOzZs3Ce/fuYVZW1lfHmo8ePTIqaw4fPlyQl2JNd3d3TExMNCprLl++XDBr/vjjj0XCmnfu3EGlUinoKyXNzMywT58+Rcqaffr0EeT9r7Dmli1bRLPmuXPniow1K1euzOulWHP37t0YEhJiNNak6uyDBw8W5G3atGmRsGZOTg4qlUqcPn26IO9/hTWdnZ1Fs+b27dsls6a3tzcqlUrs0aOHoL9zmzZtcNmyZUZhzalTp2pZ899//5XEmv/8849BrHnhwoVSxZoeHh5GYU0XFxdtnd1Q1pRlXBXHVxUbvSmvNATIjYP/M/L39ycm9vRmjOTkZB1vQkIClitXjtNLFciOHDmCMTExOt68vDziC11LS0scNGiQNklkS6PRYK9evTi9pqam2KNHD9y4cSP6+vqiRqPR8esraNCTxMLCQh2vUqkkeqkk8dGjR5ifn6/jPXXqFNFLJYlUgYytp0+fEr1UkkgVyNgKDQ0lJvbsAhlb6enpxMSe3YzBVmFhITHpYxfIuEQCZapAtm7dOvTy8uI8Y32w27p1a22SyHXG27ZtI3rpSWJeXp6O9/r160QvO0lk6/3790QvlSRSBTK2YmJiiIk9PUmMjY3V8ebk5BCLmlSSSBXI2NJoNNi5c2dOL5Ukbt68GQMCAjjPWB9E0ZsxuM5YHwhRBbKnT59iQUGBjvfQoUNEL9WM4eLigjk5OTpeNzc3ordatWr4xx9/EJPEwMBAYmLPfiHBVnJyMtrZ2RHv22+//RYPHz6MUVFROt78/HwiZLNfSHCpf//+xPuWeiHh4+PDeU76Eux27dppC2Rcz+L69euJ3iZNmmibMbju2/PnzxO9jo6OjAIZWy9fviR6qQLZ5cuXOe/b8PBw4kskqhnj5MmTGB8fr+PNyMjAqlWrEu/b4cOHa19IsFVYWEgseJmbm2Pfvn1x27ZtGBgYyHnGpGZ8qvF/7dq16OnpyXnG+gr91AuJ58+fcz6Lu3fvJnqpFxKurq6Ym5ur47116xbRS72QoApkbHl7e+vNfejNGGzFxcURXyKxC2Rs5ebmEoua7GYMtjQaDfHFO1Ug27RpE/r7+3Oek74CMtX4/+7dO07vihUriN5mzZrhokWL8MmTJ5zP4rFjx4he+gsJrvv24cOHRG/VqlVx4sSJ2gIZW0FBQcSXSNQLCapAxlZqaipWrFiR00u9kKAKZGwVFBQQXzCwmzG4RCpMUi8kqMZ/rnPSV1ykmjFevXrFed9u2rSJ6KU3/nPlPpcvXyZ6HRwccNq0aXj79m3O3Ofdu3dEL9X4T72QYCsqKgqtra2J9y31QiIuLk7Hm5WVRSxq0l9IhIWF6Xg1Gg22b9+e00u9kKAKZFz68ccfiX/nzp07a5sxuM5YX5MDvUDGdd/u37+f6KU3Y3Ddt/fu3SN6qQLZjRs3OHMfKayZmJgoiDWjo6N1vPpYk2r8J7EmIhKbDoWw5u+//078vCjWfPPmTZGz5unTp4ledjMGW1JZ08LCgtP7X2ZN0vBTcbPm9u3biV6KNd3c3ESzZs2aNXHq1Kno7OzMed96enrqvW/1sWZsbKxe1qQ3Y7AllTVJjU5mZmbaZoziYE19DUf/Vdb89OkTMfehWJNqxmBLKms2atSIeN8OHDhQ24zBJT7WpJoxuM5p8uTJxM9LCmvSG/+LmjVfvXpF9BYna2ZmZgpiTa4avz7WpBr/i4s158+fT/y8WrVqpW3GKGrWvH37NtHLbsZgSwprxsfHl0rW/PXXX4mfF33IvKhZ8/jx40QvxZpUMwZbUlmTVGcXwpqkYQ12MwZbUlmT1ADMHjIvatbcvHkz0SuFNdmN/2wVN2tSzRhsSWVNUmOpVNakN/5znfGiRYuIXj7WPHDgANFb3KxJqrOzh8zZksqapObhomBNqvG/qFlzzZo1RG/Tpk21jf9FzZrPnj0jetmN/2xJZU17e3tOrxDWJA2NFzdr/vnnn8TPi2LNFy9eFDlr3rhxg+ilsyZX7qOPNdmN/2xJZU0HBwdOL7vxny2prPnLL78Q/87FyZqHDx8meouCNanGf7aksiZpWINiTarxny2prEkauGA3/otlTXrjP9ezKMt4khsH5cZBWRLFnvykT4dyJYl0LVu2TFSSSNeRI0dEJYl0PXjwgJgkchXI6GL/guNLEulKSUlh/IKjksRt27YRk0RK+fn5jMlgepL44cMHzl9MdA0cOFAnSaSmQ/l+MbGnAunToVxJIl3//vuvTpJInw7Vp4sXL4pKEul6/fq1qCSRroiICMY0Ij1J5CqQ0ZWZmcmYRmRPh+o7J41Gg23btuVMEknNGHSxp82aN2+uLZBxJYl0sSfG6JuIuJJEuvbu3auTJNKnQ/VJrVYzvOzpUH3y9fVlFFPZ06H6FB8fz5hGZE+H6lNubi5jOkZIkkhJo9HoTHBTSSKpQEYXexKJ/kKC71lctWoVw0tNh5KaMeg6ceIEw8ueDtWnx48fM7zsTUT6FBwczCimsqdD9SktLY1RTGVPh+pTQUGBzgZO+nQo37M4dOhQhpc+Hcr3LLI3ItCnQ7kKZHRt2bKF4aVeSNy4cYP3vr169SrDy/dCgi4PDw+Gl3ohQWr8pys6OppRTKW/kCAVyChlZ2djzZo1GfctfTqU71ns2LEj4+fu0KGDtvGf74xHjRrF8NKnQ/lyH/a0PHs6VJ8OHjzI8LKnQ/Xp/v37OvctNR3KVSCjKyAggFFM5XshQVdSUhJjGlHICwlK+fn5jI3H1AsJfQUyuvr27cv4O9M3EfHdt+wpbL7Gf7rWrl3L8PI1/tN19uxZhpc+HcqX+zx//lwn96FPh+pTWFgYo5jKng7Vp4yMDEYxlT4dSiqQUSosLNTZisL3QoKuESNGMLzUCwlSgYwu9oQufTqU777duXMnwytmOvTmzZsML1/jP11eXl4ML70Zg+uFBF2xsbGMLatCGv8p5eTkMLb+sTcR8d237I0Z9E1EfM+iFNZcvnw5w1sUrElqxqDL3d2d4RXDmp8/f+ZkTVLjP11SWLOgoECHNalmjOJmzalTpzK8pYE137x5o3PflgRrZmVlYfXq1RnPolTW1Nf4T9fIkSMZXjGsuWDBAoaXr/GfLimseefOHZ3cpyRYMyEhoVhYk9SMQUkqa06YMIHhpW8iKk7WPHnyJMNrb2+vtxmDLi7WpG8i0qeQkJBiYU1SMwYlqazJ3lpcUqy5detWhrcoWJPU+E+XVNakv0jmGzKnSyprsjcU8Q2Z0yWFNdnfgFJUrMmX+0hhzY8fP/5PsCZf4z9df/zxB8MrhjXXrVvH8JYUa7548UIn9ykK1uRqxqArIyODsWW1qFiT1IxBlxTWnDt3LsNLb8YoTtZ0dnZmeEuKNePi4gxmzdzcXKOx5tixYxleijVJjf90SWHNo0ePMrxSWVNf4z9dUlmTPiBLHzIvbtZkb4mnb72Vwpp8z+LGjRsZXjGseenSJYaXYk0hdXYprBkZGcnJmqTGf7qksiZ7I5wU1qQ3/hcna+7bt4/hLSnW9PPzI7ImX+4jhTXz8vKKnDX1Nf7TJYU1V69ezfDyDZnTJYU1nzx5wvCWFGvKMq7kxkG5cVCWBPn7+6OlpSXvdCiXEhIS0M7OjvEVxHwJBCVqAwTfJiIuUdsGxRTI6Prtt994p0NJUiqVopox6Dp16hTvdChJT58+5Z0OJSk0NBStra15p0O5lJ6ejlWqVOHdRMQlagMElSQKKZDRNXz4cFFJIl2zZ8/mnQ4ladu2bTqruoXq+vXrogpkdL1//x4tLS0FF8joiomJwbJly/JOh3KJmsrhmw7lErVtkG86lKTRo0drp0OFJIl0LVmyROcriIXq0KFDvJuISHJzc9MmiUKaMegKDAxEKysr3ulQLiUnJ2PFihVFNWNQorYNtmzZUu90KEn9+/fnnQ4ladKkSbzToSStX7+edxMRSefPn+edDiXp5cuXol5I0BUeHo42Nja8m4i4lJGRgdWqVWN8BbHQZ5HaAME3HUrSd999J6pARte8efNENf7TtXv3bt7pUJJu3bolqvGfLm9vb7S0tOSdDuVSXFwclitXTlTjP6Xc3FysU6eOqBcSlKgNEHzToSSNGzeOdxMRSStWrBDVjEHXsWPHRBXI6Hr48CHvdChJQUFBaGVlxTsdyqXU1FSsXLky73Qol6gNEHzToSQNHjyYdzqUpOnTp/NuIiJp06ZNvNOhJF2+fJl3OpSkd+/eoaWlpeACGV1RUVFoa2vLu4mIS1lZWVizZk2DpkOpbYN8m4hI+vHHH3W+FkqoFi5cyNhEJCb32b9/P+8mIpLu3bvHu4mIJCmsmZiYKJk1xTRj0NW7d2+DWfP33383CmuePn261LOmkMZ/SlJZ08nJSVQzBl1SWHP79u1GYU1PT0+DWTM2NtZorNmlSxejsObSpUslsaaYZgy6pLDmp0+f0MrKivG1UEIllTUbNWrEu4mIJCmsOXny5CJjTb5mDLqksOarV6+0rLlr164SY01qQFYKa4pp/KdLCmvOnz/fKKx5+/Zto7BmfHx8kbCm0GYMSlJZ89dffxXVjEGXFNY8fvy40VjT2tq61LHmkCFDRA2Z00WxptBmDLo2b94siTXFNP7TVRSsKXTInC6prNmhQwejsOaiRYsMZs0DBw6IGjKnq6hYU8iQOV1SWbN+/fqljjXXrFljFNZ89uxZkbCmkMZ/uqSyZsuWLbFZs2aCG//pksKaf/75p6ghc7qksOaNGzdKJWs6OjqKGjKnJJU1f/nlF96ttyRRrEn/CmKhOnz4sGTWFDpkTldpZc0BAwYUCWvKX0FcuiQ3DsqNg7IkKDg4WFSSSFdkZKSoJJGuxMREUQUyurKzs0UliXRpNBr09PQ0eHXshw8fRCWJdPn6+ooCNroCAwNFFcjoCg0NFVUgoysmJkZUkkhXamqqqCSRrry8PFFJIl1Sz9jLy0tUkkiXv7+/qCSRrs+fP4sqkNEVHh4uqkBGV3x8vKgCGV0ZGRmiCmR0FRYWioJytj58+CAqSaTLx8dHVJJI18ePHw1OEkNCQkS9kKArKipK1AsJupKSkninQ0nKyckRVSCjS6PR4Pv37yU9i4bet35+fgbft58+fTL4vv3y5YuoAhldsbGxol5I0JWWlibqhQRdBQUFgqbxSfL09DT4WfT29jb4WfT39xdVIKMrKCjI4NwnIiLC4NwnISFBVIGMrqysLFHNGHQZ+74VUyCj6+PHj6IKZHSFhISIKpDRFR0dbXDuk5KSIuqFBF25ubmlMvfx8/OTlPuIKZDRFRYWZvB9GxcXJ6pARld6erqoAhldBQUFol4As2Ws+zYgIMDg3EdmTXH6GlnT0NxHCmvm5+eXyvv2a2PNzMzMUsuaUnKf0saaycnJBrNmbm6uJNaU+izKrClMaWlpopox6JJZU5xKI2tSz2JpvG+/JtYsrXV2Y7KmmGYMuqSwZkZGRqlkTSl19tLImklJSZJYU0zjP10ya4qTVNY0tM4uhTURUWZNETImaxrzvi2NrCmm8Z+u0sqasoyr4mgcNMH/a4yTpUcmJiYOABAOABAeHg4ODg5G/olkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS9bXoIiICHB0dKT+pyMiRkj9M02l/gGyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWrNIjuXFQlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJ+ookNw7K+mrk6uoKixYtgidPnkBBQYEor4+PD8yaNQvu3bsHubm5orxxcXEwefJkuHbtGmRkZIjy5uTkwNSpU+H06dOQmJgoyouIMH/+fDh06BBERUWJ8gIArF27Fnbs2AFBQUGivQcOHID169eDt7c3iP069KtXr8Ly5cvh1atXoNFoRHmfPXsG8+fPB3d3d8jPzxflDQoKgmnTpsHt27chOztblDclJQUmT54Mly5dgrS0NFHe/Px8mDFjBpw4cQLi4+NFeRERFi9eDPv374fw8HBRXgCALVu2wNatW+Hjx4+ivSdOnIA1a9bA+/fvRZ+xWq2GxYsXw7Nnz6CwsFCU18PDA/7880+4f/8+5OXlifJGRkbClClT4MaNG5CZmSnKm5mZCZMnT4Zz585BcnKyKK9Go4E///wTjhw5AjExMaK8AAArV66E3bt3Q2hoqGjv7t27YePGjeDn5yf6nC5cuAArV66EN2/eiH4W3d3dYeHChfD48WPR962/vz/MnDkT7ty5Azk5OaK8CQkJMHnyZLhy5Qqkp6eL8ubm5sK0adPg1KlTBt23f/31Fxw8eBAiIyNFeQEANmzYANu3b4fPnz+L9h46dAjWrVsHXl5eos/4xo0bsGzZMnj58qXoM3758iXMmzcPHjx4IPq+DQ0NhWnTpsGtW7dE37dpaWkwefJkuHjxIqSmporyFhYWwsyZM+HYsWMQFxcnygsAsHTpUti7dy+EhYWJ9m7btg02b94MAQEBos/p1KlTsHr1avDw8BDtdXFxgb///huePn0q+r798OEDzJ49G1xcXETnPtHR0TB58mS4fv266Ps2OzsbpkyZAmfPnoWkpCRRXo1GA3PnzoXDhw9DdHS0KC8AgFKphF27dkFwcLBo7759+2DDhg3g4+Mj+pwuXboE//zzD7x+/Vr0s/j48WP466+/4OHDh6KfxcDAQJg+fTqo1WrR921SUhJMmjQJLl++LDr3ycvLg+nTp8PJkychISFBlBcRYdGiRXDgwAGIiBC/fX/jxo2wbds2CAwMFO09evQorF27Fj58+CD6jG/dugVLly6F58+fi34W37x5A3PnzgVXV1fRuU9YWBhMmTIFbt68CVlZWaK8GRkZMHnyZDh//jykpKSI8hYWFsLs2bPh6NGjEBsbK8oLAPDPP//Anj174MuXL6K9O3fuhE2bNoG/v7/oczp79iysWrUK3r17J/pZNDZrXr16tcRZc968eaBSqWTWFCBjsWZBQYHRWHPz5s2wZcsWg1lTqVQaxJp37tyRWVOEVq1aZTBr7tmzBzZu3Ai+vr4lzpoLFiyAR48elThrTpo0ySDWzMvLk8SaCxYsKNWsKfZZlMqaU6dOBWdnZ9G5T1paGkyaNAkuXLhgEGvOmjXLYNZctmyZzJoCFRMTo2VNsblPdnY2TJ061SDWRESYO3cuHDp0qFSx5uXLl43Cmp8+fZLEmpMnTzaINfPz843Gmps2bZLEmmvWrAFPT88SZ805c+YYxJrh4eEya4qQFNZ0c3ODRYsWGVRnL62sOX/+fINZc926dQaz5sGDB43Cms+fPzeYNYODgyWx5qRJkwyqsxcUFMDMmTMNYk0AgMWLF8O+ffsMfq9Z2ljz/fv3BrNmVFSUJNacMmWKwaw5Z84cyawZEhIi2iuVNVesWGEQaz58+FASa86YMaPE32sakzVl/Q8KEeXgCQBwAAAEAAwPD0dZpVO5ubno6OiIAICVKlXCsWPH4vnz5zElJYXXq9Fo8JtvvkEAwLJly+LIkSPx6NGjGBsbK+i/PW7cOAQAtLS0xMGDB+OePXvwy5cvgrz//PMPAgCamppiz549cdOmTejv748ajYbXe+zYMaT+7Xbo0AFXrVqF7969E+R1d3fXeps1a4aLFi3CJ0+eYH5+Pq83KCgIzczMEACwbt26OGvWLLx37x7m5OTwelNTU7FixYoIAFitWjWcOHEiXrt2DdPT03m9BQUF2KRJEwQAtLOzw9GjR+Pp06cxMTGR14uIOHjwYAQAtLGxwREjRqBKpcKoqChB3mnTpiEAoIWFBfbv3x937NiBQUFBgrybNm1CAEATExP85ptvcP369ejt7S3onC5duqQ9pzZt2uDy5cvx1atXWFhYyOt9+/at1tuoUSOcP38+uru7Y15eHq83KioKra2tEQDQwcEBp02bhrdv38bs7Gxeb1ZWFlavXh0BAO3t7XH8+PF46dIlTE1N5fVqNBps3749AgCWK1cOf/zxRzxx4gTGx8fzehERf/jhBwQAtLKywmHDhuH+/fsF3+sLFy5EAEAzMzPs06cPbt26FT9+/CjIu2/fPu1n3blzZ1Qqlfj+/XtBZ3z37l2tt0WLFrh48WJ89uwZFhQU8Hr9/f3RxMQEAQDr16+Pf/75J96/fx9zc3N5vQkJCViuXDkEAKxRowZOmjQJb9y4gZmZmbzevLw8rFevHgIAVqxYEceMGYPnzp3D5ORkXq9Go8FevXohAKCtrS1+9913eOTIEYyJieH1IiL+9ttv2vt20KBBuHv3bgwNDRXkVSqV2vu2R48euHHjRvTz8xN0TqdOndKeU/v27XHlypX45s0bQc/i06dPtd6mTZviwoUL8dGjR4Lu29DQUDQ3N0cAwNq1a+OMGTPwzp07gu7b9PR0rFy5MgIAVq1aFX///Xe8cuWKoPu2sLAQmzdvjgCA5cuXx1GjRuGpU6cwISGB14uIOHz4cO196+TkhAcPHsTIyEhB3tmzZyMAoLm5Ofbr1w+3b9+Onz9/FuTdtm2b9r7t2rUrrlu3Dr28vASd8fXr17Xn1Lp1a1y2bBm+fPlS0Bm/f/9e623YsCHOmzcPHzx4IOi+jYmJQRsbGwQArFWrFk6dOhVv3bqFWVlZvN6cnBysVasWAgBWrlwZf/31V7xw4YLg3Kdz586M3OfYsWMYFxfH60VEHD16tPa+HTp0KO7duxfDwsIEeZcsWaK9b3v16oWbN2/GgIAAQd5Dhw5pP+uOHTvi6tWr0cPDQ9AZu7q6ar3NmzfHv//+G58+fSrovg0MDERTU1MEAKxXrx7Onj0bXVxcBN23ycnJaGdnhwCA1atXxz/++AOvX7+OGRkZvN78/Hxs2LAhAgBWqFABf/nlFzx79iwmJSXxehER+/fvjwCAZcqUwW+//RYPHz6M0dHRgryTJk3S5j4DBw7EnTt3YnBwsCDv+vXrtfdt9+7d8d9//0UfHx9B53T+/HntObVr1w7/+ecffP36taBn8eXLl1pv48aN8a+//sKHDx8Kum/Dw8PR0tISAQAdHR1x+vTpqFarBeU+GRkZWLVqVQQArFKlCk6YMAEvX76MaWlpvN7CwkJs06aN9r796aef8OTJk4Lv22+//RYBAK2trXH48OF44MABjIiIEOSdN2+e9r7t27cvbtu2DT99+iTIu3v3bu1926VLF1y7di16enoKOuNbt25pz6lVq1a4ZMkSfP78uaBn0dvbW5v7NGjQAOfOnYuurq6C7tu4uDi0tbVFAMCaNWvi5MmT8ebNm4Jyn9zcXKxdu7bBrNm9e3dt7vP9999LZk2huc+KFSuMwpoPHz4sEtasU6cOzpo1C+/evVsirNm0adMiYU2FQiGKNadPn14krNmtWzdRrHn58uVSyZo1atQoMtY8fvy44Nznxx9/LDLW3LJli2DW3L9/v8Gsee/evSJhzXr16olizcTERKOwJiJi7969i5Q1Q0JCBHmlsObp06eLjDUXLFggijUtLCwks2aVKlXwt99+E8WaLVq0MJg1nZycjMKa27dvL1LWfPHihaAz9vT0LFLWdHZ2LhHW7NKlS5Gw5pAhQ3Dv3r2C6+xLly41Cmu6ubkZzJqfPn1i1Nkp1hTyLHKx5rVr1wSzZqNGjYqMNQ8dOiSYNSdPniyZNak6+4YNG0qENV+9emUU1szMzCxy1hRaZ//uu++KlDUDAwMFeaWw5u3bt4uENevXr49z5sxBV1dXQblPfHx8qWTNX3/9tUhZU2juc/z48SJlzcePHwtmTarOLoU1qTr71atXS4Q1hwwZIpk1zc3NRbPm5s2bjcKa7969K3LWFJL7cLHmxYsXBbNmhw4dioQ1hw4divv27RNcZ1+0aFGRsGanTp1KlDXpdXZDWbN69epa1hSS++Tl5WH9+vWLlDWF5j6///67way5Zs0aBmv++++/6OvrK5o127VrhytWrBDMmrKMq/DwcO3ZAYADFkVPXFH8If/rAXLj4P+MDhw4QH+IRBWDXFxcdLxCi0EBAQHaX3L0EFIMSkxMxPLly+t4GzZsiHPnzkU3NzdiQpSfn48NGjTQ8QotBvXp00fHW6lSJRw3bhxvMWjixIk6XqHFoLVr1+p4hRaDzpw5o+MVWgx6/vy5jldoMejLly/agio9hBSDMjIy0N7eXscrpBhUWFiILVu21PEKLQYpFAodr9Bi0Jw5c3S8QotBO3bs0PFaWFjggAEDeItBN2/e5HwWhRSDPnz4wHnGbdu25S0GxcbGYpkyZXS8QopBOTk56ODgoOMVUgzSaDTYtWtXHa+9vb2gYtCYMWN0vEKLQcuWLdPxUsUgvhdhR44c4bxvhRSDHjx4wHnGXbp0wTVr1ugtBtELqvQQUgxKSUnBChUq6HiFFIPy8/OxcePGOt4aNWoIKgYNHDiQ874VUgyaMmWKjldoMejff//V8QotBl24cEHHK7QY9Pr1a85nUUgxKCIiAq2srHS8QopBmZmZWK1aNR1vnTp1cObMmXqLQRqNBtu2bavjFVoM+v7773W8dnZ2+PPPP/MWg/766y8dr9Bi0N69ezmfRSHFILVazfksCikG+fr6aguq9BBSDIqPj8eyZcvqeKlikL4XYbm5uVi3bl0dr5BikEajwR49enDet0KKQePHj9fxCi0GrVq1SscrtBh04sQJHa+ZmRn27t2btxj0+PFjzmdRSDEoODhYW1Clh5BiUFpaGlaqVEnHK6QYVFBQoG1cpofQYtDQoUN1vFQxiC/3mTlzJud9K6QYtGXLFs77dtCgQbhr1y69xaCrV69y3rdCikEeHh6cZyykGBQdHa0tqNJDSONBdnY21qxZU8dLbzzQl/t07NhRx0tvPNCX+4waNUrHK7Tx4O+//9bxWltbaxsP9L0IO3jwIOd9K4Q179+/z3nfUqz54cMHg1hz6dKlelkzKSmpyFmzZs2aOGXKFF7W7Nu3r463qFhTX+4jhTXPnj3Led8WBWvqy33CwsKKjTX1DfgVFhZiq1atOO9bKaw5evRoPHPmTLGx5s6dO3W8JcGaXl5enGdcEqxJDcnSQyhrduvWTcdbFKzJN+C3fPlyzvvWUNakD/jpY036kCz9jKWwZsuWLYuVNQsKCoqVNfW9CJs6daqOtyRY8+LFizpeoaz55s0bzmexQ4cOuHLlSnz79q1o1qQG/PSxJn1Ilh4lwZojR47U8f7XWfPOnTucz2JRsKa+Ab+EhIQiZ00hA34ajQZ79uzJed8KYc0JEyboeMuVK4c//PBDsbLmyZMnOe/b4mbNkJCQUsmaw4YN0/FKYU2hA35bt27lvG+lsCY14FfSrNmkSZNiZ81OnTrpeEuCNRcvXqzjLQrW5Bvwk8KaHz9+LHLWpAb8/qus+ccff+h4/+us+eLFC85nUSprUgN++lizSpUqOl4prEkf8NN3344YMULHK5Q1586dy3nfjhgxAg8dOqQ395HCms7OzpzPYnGzZlxcXLGxpr4BP6msOXbsWM77VgprChnwO3r0KOezaChrAvzfgB8fa37+/FkSa1KNy/QoCdaUZTzJjYNy46AsCYqKikIPDw/Oy5MeXMWg+Ph49Pb21m6zIwVXMSg1NRV9fHy0U3ak4CoGZWdno4+PD2dxgB5cxaCCggL08fHhbPyhB6kY5O/vz9iSxhX0YhD9Rdjnz585C+7shIirGBQWFobPnz/nBEd6cBWDYmJi8MOHD5yFOno0atRIZwI3MTERfXx8tBsGSMFVDEpPT0cfHx/OFyP0oCZw6cWg3Nxc9PHx0U72kIKrGKTRaNDHxwfXrVun10sqBn38+JGz2YCdEHEVg0JCQvD+/fuchTp6cBWDIiIi8M2bN9qpD1JQxSD6i7C4uDj09vbWbhggBVcxKCUlBX18fDibQuhBFYPo254yMzPRx8dHO9VMCq5iUH5+Pvr4+HAWY+lBKgb5+flxNlrSg5rAZReDPn36xJje4gpSMejLly/4+PFjzkIdPbiKQVFRUfj+/XvthgFScBWDEhIS0Nvbm7NQRw+uYlBaWhr6+PjgoEGD9Hq5ikHUfctVHKAHVzGosLAQfXx8tJOUpKCKQewJ3ICAAMbkOleQikFBQUGMaVmuoE/g0otB4eHh+PLlS+2GAVJwFYNiYmLQy8tLu2GAFFzFoKSkJPTx8eEs1NGDqxiUkZGBPj4+nE149OAqBlH3LbVFghSkYpCPjw9u3LhRr5dUDAoMDGRMb3EFvRhE3/YUEhKCbm5unIU6enAVgyIjI/Hdu3faDQOk4CoGUbkPtc2OFFybhan7lmsAgR5cxaCsrCz08fHhLA7Qg6sYRN23XMVYepCKQX5+ftrJdVKQikGfP3/Ga9eu8T6LXMWgL1++4NOnT7UbBkjBVQyKjo5GT09P7YYBUlDFIHd3d+19S+U+rVu31uvlKgZR9y3XixF6cG17ysnJQR8fH86mZ3pwFYOo3Ifa2kMKUjEoICCAswDEfha5ikHBwcF49+5d3tyHqxgUERGBr1690m4YIAVXMSg2Nha9vLy0GwZIwVUMSk5ORh8fH84BBHpwFYOo3Oenn37S6+VqPMjLy0MfHx/tFglSUI0H7G1Pvr6+nI2W9CBtFg4MDORsbKcH1XjA3vYUGhqK7u7unIU6elDbnuiNB0XBmtSGAVKUdtakb3vy9/dnTK5zBYk1g4KCBLMme8CvKFiT2jBACi7WpHIfKazJ9WKEHlJYs2zZskTWpLb2kOJrZU32ZuGSYE2uAT8q91mwYIFerz7W5Hr5RY/iZE2ul5T0KA7W9PHx0W6zI0VRsCb9RVhRsObKlSv1eqWyJtdm4ZJgzVatWhULa1Kb00lRXKz5559/6vVKYU1LS0scMmSIzrfYBAYGcg5R06MoWJM94FcUrEltsyNFcbEmta2ZFFysSeU+Ulhzz549er36WJO+lZL0LFKsya6zC2VN9oBfSbAm12Zh6r6lvqmCFFJYk+tbbIqCNekbuUnPYnGw5uvXr0uENel1doo1uZpC6CGFNStWrIhjx45lbHsqCtbkarSkB4k1P336JIg1uTYLh4aG4sOHD3nr7P9F1hwwYIBeb1GwJj33oe5brsYfehQFa7IH/IKCgjibu+ghlTW5vsWmKFiT2mZHiuJizRkzZuj1crEmIkpmTa7GdnrwsSZf7kOxJn2ZjBjWZA/4UaxJbbMjhVTWZH+LDXXf/vLLL3q9/0XWvHLlil5vUbEmvc5OsSbX8CU9pLCmo6MjzpgxgzHgR+U+1DdVkEIfa1LfDEQKrm+xEcOaYjcLyyp+yY2DcuOgLAnimtriC6oYRK3kFhNUMWjWrFmivVQxiK8YQfpl2bNnT17IJQVVDOIr/HAFte2JD0S4gioGUV9RKiaoYhDXhC1fUMUgvgIuV1DFID5Q5QqqGER9FbWYoH+lsSFnTBWD+ECEK6hiULt27UR7qWIQX6GdK6hiEN/LFK6gikHU10mLCaoYRH11lJigikFck71CgioG8RXauYIqBvGBCFdQxSC+wg9XUF8zxddEyxVUMYivoMAV1LYnvoYwrqCKQdTX1YgJqhjENU0oJKhiEN9LL66gikF8IMIVtWvXxpkzZ3JOX/IFVQyi1uOLCaoYRH3ljJigikF8DbhcQRWD+Bo7uYI+gctXUOAKqhjEtXGUL6ivmeIr/HAFVQyivqpCTFDFIL7GPa6gikF8RSOuoIpBhuQ+VDFo9erVor0A/78YxLV5gi+oYhDXZB5fUMUgvsIPV1DFIOqrgcQEVQyivgJBTFDFIK7pXL6gikF8jUZcQRWD+IYlSEEVg/heenFFkyZN8K+//uJ96cUVVDGIr9DOFdTXTHFtNOALqhjEtSWIL6hiEF9hkCuoxgO+ghNX0BsP+F5scgXVeFDn/7F3lmFVbN8f37QCikiXXWCheOzuLkS99rXr2IV97e7u7m6xu7sDQUCQku5zzvq/+D1z/nuGmTMFHI/u7/PsF/fF9+Jl7izXZ81aexUtKtpLNR5QK/PEHKrxgK+Jlu3okzVbtGihF9akbhaWw5qenp6ivYbImvnz54f27dtLjrdyWVNqvJXDmtRtT/piTb6PKWwnJ1iTWh0l5vwOrMl2CwzfKVGiBIwaNUovrNmjRw9ZrMnXEMZ2CGuK8+qTNdu2bSuZNRs3biybNfmGFthOTrAm2w3PfIdiTbZbvPlOTrCmlPo+xZpsN0vzHbmsSQ34EdbkPznBmnyNRmznd2BNal2wmEMN+MlhzW7duon26ps1peQ+OcWabDeO8h2KNfka2tkOxZp8TbRshxrw0xdr+vv7i/bmFGuy3fDMd3KCNakVpWIOxZq+vr6ivTnBmlK/azZp0kRSvJX7XZMa8NMXa/I1dbGdnGBNvkFAtmNhYSGbNaXmPtWrV4c5c+aw3nLId3KCNWvXri3aS1hT3KFYk6w01q9yo3HQCP7XGEekQ0ZGRu4IoVCEEAoNDUXu7u56/hMRSdHIkSPR+vXr9f3HICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI4ubi4oF69eqHp06ejggUL6vuP81cpLCwMeXh4UP/oAQBhcv+dxnL/BUREf7ry58+PypcvL8lrZmaGKlWqJMlrZGSEKleuLMmLEEIVK1aU7C1TpgzKly+fJK+7uztycHCQ5LW3t0dFixaV5C1QoAAqW7asJK+FhQWqUKGCJK+JiYnkZ4wQkuWV+v8lQgiVKFFC8l/iLi4uyMXFRZLX1tYWlSxZUpLXysoKeXp6SvKam5tLfieMjY1lPSc572K5cuWQmZmZJG+RIkVQ4cKFJXkdHR3xhEOUbGxsUOnSpSV55cRbU1NTvcVbqfEDIYRKlSqFLC0tJXnd3NyQk5OTJK+dnR0qVqyYJK+1tTUqV66cJK+FhYXkd8LExETWc5Ibb42MjCR5ixUrhmxsbCR5nZyckKurqyRvoUKFUKlSpSR5LS0tkZeXlySvnNzH2NhYb7lP2bJlkYWFhSSvh4cHsre3l+S1t7dHRYoUkeQtWLAgKlOmjCRvvnz59BZv5byLcuJtyZIlkbW1tSSvq6srcnZ2luQtXLgwKlGihCTv35j7eHp6IhMTE0neokWLIltbW0leJycnyQOC+sp9DJU1S5cuTVhToP5G1nR2dpac+xgqa+rrXZTLmnZ2dpK8cllTX7mP1Oekz9xHn6xZvHhxSV5DZU0576I+WdPNzU2Sl7CmOOmTNeXkPnLirdTY9beyppw6+9/GmnK8+mJNR0dHwpoiJOddLF26NMqfP78kr1zWlFpn1ydr6qvOLucZFy9e3OBY09LSkrCmCMllTTl1dqnx9m+ss5cqVQqNHTsW7du3D82fP580Df4pyolrC//0g8iq4j9Cp0+fBn9/f0FXVbu5ucHQoUPh3LlzkJqaCnfu3AF/f38oXrw4r9fOzg769OkDR44cgYSEBHj79i34+/sLugKZWruwa9cuiIqKgvDwcPD39xe04oNau7BhwwYICQmBtLQ08Pf3F7RWgFq7sGzZMvj06RMAAMydOxf69esn6FpaasXfixcvQKPRwLp16wSvFShfvjxMmTIF7t27ByqVCg4cOABTpkwBCwsLXm/x4sVh1KhRcOXKFcjIyIBLly6Bv78/ODk58XqdnZ1h4MCBcOrUKUhOToZHjx6Bv78/lC1bltdLXT188OBB+PXrF3z58gX8/f0FXTlvaWkJHTt2hG3btkFERATExMSAv7+/oJVKZmZm0Lx5c1izZg0EBQWBRqMBf39/QSvsqLULixYtgnfv3oFGo4ElS5YIXitArV2grh7eunUrTJgwAYyMjHi9ZcuWhQkTJsCtW7cgKysLjh8/DlOmTIECBQrweqkVfxcvXoS0tDS4fv06+Pv7g4eHB6/XwcEB+vXrB8ePH4fExER4+fIl+Pv7Q4UKFXi9BQsWhK5du8LevXshJiYGvn//Dv7+/oJWfOTLlw/atm0LmzdvhrCwMEhKSgJ/f39o27Ytr5dac7Ny5Ur48uULAADMmjVL0FoBas3NvHnz4NWrV6DRaGDVqlWC1wpUqlQJpk6dCg8ePAC1Wg179uyByZMng6mpKa+XWrtw7do1yMzMhLNnz4K/v7+gtUjU2oWzZ89CSkoK3Lt3T/CaZWrF3+HDhyE+Ph7ev38P/v7+ULVqVV4vtXZh586dEBkZCT9//gR/f39o0qQJr5daJ79+/Xr4/v07ZGZmgr+/v6C1AsbGxlC/fn1YunQpfPjwATQaDcyfP1/wWgFqzc3z589Bo9HAxo0bBa8V8PLygsmTJ8OdO3dApVLBoUOHYMqUKYJWlBUrVgyUSiVcvnwZ0tPTISAgAPz9/cHZ2ZnXS61dOHnyJCQlJcHTp0/B399f0PoHGxsb6N69O+zfvx9iY2MhMDAQ/P39Ba03o9YubN26FcLDwyEuLg78/f0FrVSiVvytXr0aAgMDAQBg6tSpgtYKUGsXFi5cCG/fvgWNRgPLli0TvFbA29sbZsyYAY8fPwa1Wg3bt2+HiRMnClqVTK2Tv3nzJmRlZcHJkyfB399f0EpId3d3GDZsGFy4cAHS0tLg1q1b4O/vL2jtp729PfTt2xeOHj0KCQkJ8Pr1a/D39xe0bqdAgQLg5+cHu3fvhujoaAgLCwN/f39BKz6otQsbN26E0NBQSElJAX9/f+jQoQOv18TEBBo1agTLly+Hz58/AwDAf//9J3itALXi7+XLl6DRaGDt2rWC1wpQaxfu378PKpUK9u3bB5MnTxa0ModaJ3/16lXIyMiACxcugL+/Pzg4OPB6XVxcYNCgQXDmzBlISUmBBw8egL+/P5QuXZrXS62TP3ToEMTFxcGnT5/A398fFAoFr9fKygo6deoEO3bsgJ8/f0JUVBT4+/tDs2bNeL3Umpt169ZBcHAwqFQq8Pf3Bz8/P14vteZm8eLF8P79e9BoNLBo0SLBK+yotQtPnz4FjUYDmzdvhvHjxwvKfTw9PWHixIlw+/ZtyMrKgqNHj8KUKVPAysqK10ut+Lt06RKkp6fD1atXwd/fH9zc3Hi91Iq/EydOQFJSEjx//hz8/f0FrRqkVvzt27cPYmNjITg4GPz9/aFOnTq8Xmqd/JYtW+DHjx+QkJAA/v7+glYqUevkV61aBV+/fgUAgBkzZghaYWdkZAS1atWCBQsWwOvXr0Gj0cCKFSsEr7Cj1tw8fPgQ1Go17Nq1CyZNmiRoXSC14u/69euQmZmpZU1bW1ter1zW7N27t5Y13717pxfWTE9PB39/f+jUqROvl4s1ha6wY7Lm+vXrDY41Hz9+LJg1qRV/Bw4coLGmkFXaTNaMjY0Ff39/QSuVqBV/a9asgW/fvmlZU8gKu5xmzW3btumFNW/cuCGbNStWrMjrZbJmSEgI+Pv7Q7169Xi9FGtu2rSJxppCVirlNGuuXr0alEqloGdMrfhjsqaZmRmvl8ma586dk82aQlZfMVnzw4cP4O/vDz4+PrxeJmtGRkZKYs3g4GDZrLlgwQJRrDl79mx49uyZbNY8fPiwYNYsWrQojBw5MhtrCllDl5Os+e3bN72x5rRp0/TCmjt27BDNmjdu3IDMzExJrHn+/HlITU2VxZpv3rwRxZpdunTJEdZMTU0VxZoNGzb8q1nz4cOHolnz4MGDslkzOjpaNGuuXbsWgoKCDIY1qXXyOcGa165dI6zJcXKCNadNm5YjrHnmzBlRrDlkyBDCmiJZk6qzy2HNgwcPwpQpUyBfvny8Xoo1AwICDIo1O3TokCOsCQB6Z00huQ8ba/r7+4tiTarOntesuWfPHoiOjpbFmsnJyaJYs1GjRrBixQpJrEmtkyes+fuz5pIlS7SsSaRf5caqYr035RnCQaRx8I/RvXv3OIMesxmDqe/fv3P+RUMVyO7evQsqlSqbNykpCezt7Vm9VDNGQEAApKenZ/Oq1WrORicnJycYMGCANklkE1ezEjNJZBNXUQJPEsPDw1m9K1euZPWyJYlMnT59mvMvJipJpApkTL169YrzGVepUoVWIGMqMjKSs6hZtmxZWjMGU+np6eDu7s7q9fDwoDVjMKXRaDiTc6pAduzYMUhMTGT9fXEVF6lmDCpJZNO0adNYvfny5YM2bdpok0Q2bdu2jdWLJ4lUgYyp69evs3rxJJEqkDH15csXTsimkkSqQMZUXFwcZ/MwlSRSBTKmsrKyOAteVJJIFcjY1LRpU1YvsxmDTYMHD2b1MgtkbFq4cCFnkog3Y7Dp8OHDnO9ivXr1dCaJjx494nwXfXx8aB8kmAoLC+Msanp6esKkSZPgzp07rO9iSkoKODo6snqZHySY0mg04O3tzep1dHSE/v37awtkbOIqaFAfJKgCGZvGjRvH6qU+SFAFMjatW7eO811kFsiYOn/+POe7WLt2bViwYAG8efOG9Tm9ffuWs6hJNWM8evSINd5GR0eDtbU1q7d06dIwbtw47QcJpjIyMjg/MLi7u8PQoUO1HySY0mg0nA3AVOM/9UGCTVywi3+QiIqKYvXOmjWL1Yt/kAgJCWH17tq1i9WLf5CgCmRM3bp1i/NdrF69Oq0Zg6lv375xNg8zC2RMJSQkQOHChVm9zGYMplQqFefHPqpAdvr0ac7cp2XLlpzxlmr854q3w4cPZ/VSzRjbt2+HiIgIVu+yZctYvVTjP/VBgk3Hjx/njLd169aFxYsXawtkTD1//pzzGVMfJKgCGVPh4eGcRU3qgwRVIGMqLS2N84MusxmDKY1Gw1kMoT5IUAUyNnF9zGE2Y7Bp8uTJrF5m4z+bNm3axBlvmc0YTAUEBHDG25o1a8L8+fO1HySY+vDhA2dRs1KlSrQPEkzFxsZCwYIFWb3UBwmqQMZUVlYWZ8HL1dUVhgwZAmfPnmWNtwAADRs25Iy3vXv31hbI2NS/f39WL7NAxqa5c+dyxttWrVppG//ZtH//fs54SzVjfPz4kdWrL9ZMTk7WG2tyFZAp1qSaMdgkhzVXrVrFGW+bNWtGa8ZgSp+saWlpyeplNv4zJZc1a9asyer9HViTq8a2fft2zndRn6yJN2MwJZc1y5Qpw+plNmOwSV+suWjRIlZvbrPm48ePOd9FijWpZgym5LIm1wddijWpZgym9Mma48ePZ/UymzHYJIc1L1y4wPkuUs0YvyNrFitWjNXLbPxnSi5r9unThzPedunSRduMwSY5rLl7927OeNuwYUNaMwZTt2/f5nwXmY3/TMlhzcTERL2xJldzKHPInE36Ys0TJ05wxtu6devSmjGYksOaEREROlkTb8ZgSi5rVqtWjdXLbMZgE9eAfm6z5ubNmznjbW6y5sePH3lZk2rGYCovWJMr9+FqSGM2Y7BJDmvOmzeP1cscMmeTHNa8f/8+57v4O7MmV6MTxZpU4z+b5LDm6NGjOeNthw4dtI3/bJLDmmfOnOF8F5mN/0y9fv2a8xkzG/+ZksuaXM1szCFzpuSyZo8ePVi9vzNr3rhxg/MZ16hRg9b4z5Qc1oyPj+dkTWbjP1NyWZOrGV8Ia3I1eOY2ax45coTVi7Mm1fjPlFzW5BpUpViTavxnKjdZE2/8Z1Pnzp1ZvczGf6LfS6RxkDQOEskUfqsbczqUT0OHDqUliczpUF1avHixqCQR19GjR1mTRK4CGa4nT56wJolcBTJcP378oP0Fx9eMgSs1NZV2CxVzOlSXNBoNbYqJOR3KJ7wznjkdyqcJEybQkkTmdKgubdiwgfa7Zk6H6tLFixdpXuZ0qC69f/+eVkzlSxJxxcTE0KZjqCTx9OnTnEkipczMTFoxlTkdqksajQbq169PSxKpAhlXkogLn9BlTofy6b///qMliVQzBleSiGvPnj2058ScDtWlO3fu0LzM6VBdCg4OphVT8elQNmDDlZiYSJuOEZIkUlKr1eDl5cWaJHIVyHC1bt2aFm/5Pkjgwm9JpD5IrFy5kvODBK7ly5fT4i1zOlSXTp48SXtOzOlQXXrx4gXNy5wO1aWIiAha0zJzOlSX0tLSaJPB+HQoV4GMkkajoU1wM6dD+YRPBTKnQ/nk7+9Pi7fUdChXgQzXli1baL9r5nSoLl29epXmLV++vM4CGa5Pnz7RiqnM6VBdiouLo93EIKQZgxKzmCqk8R9X48aNtV7mdCifBg4cSMt9+Br/cc2fP58Wb5nTobp08OBB2nNiTofq0oMHD2he5nSoLoWEhNA+JDOnQ3UpOTmZ1rRMfZDQVSCjpFaroVKlSlovczqUT/itF0Ia/3Hhk9Rs06G6tGbNGlq8ZU6H6tLZs2dpz4k5HapLb968oXmZ06G6FBUVRbuJgTkdqksZGRm0YqqQDxKUNBoN1K5dm5b7dO7cGXbs2MH5QQIXfiMCczqUTzNmzKC9i2KmQ3fu3En7XTNvItIlZjEVb8bgi7eBgYG0Yipf4z+u+Ph42k0MzJuIdEmlUtGm9Jk3EfFJX6y5ZMkS2rvI1/iPSw5rPn36lObla8bAldOsydeMQUmfrDlx4kRa7sPX+I9LDmteunSJ5qVYk6sZA5c+WRO/FSUvWRPfumBubs7bjIFLDmvu3buX9pxw1uR7F/XFmklJSaysqasZg5Jc1sRvGaJYc/PmzbnOmitWrKDFW75mDFynTp2iPSe+xn9ccljz58+femNNfCsHzppCch99sebWrVtpv2uFQqGzGQOXHNb8/PkzjTXxZozcZs1SpUppvWJZE7/ZJC9Zc8GCBbR4y9f4j0sOaz58+JDmpViTqxkDV06yppBmDEpqtZp2O6OQZgxcclgTv7E0L1nz3LlztOeEsybfu/jmzRta7oOzJt+7KJc1ixQpovVSrKmrGYOSXNbs1asXLffha8bAlZOsyTdkjuvmzZs0b16xZkJCAo01qcb/vGBN/FY3nDWF5D76Ys1jx47RnhNf4z8uOazJHJDNS9bEtyCJZc0uXbrQcp+8Ys2NGzfSftcUa3I1/uOSw5ofPnygxVu+xn9cOc2afEPmuPBbi/HG/9xmzTlz5tDibV6x5t27d2lesayJNy1TrMnV+I9LLmvit+EKafzHJYc18VsS8cb/35k1X758SfOKYU0i/Yo0DpLGQSIZunfvnjZJFFIgw/X9+3dwdXWlrSAWqqSkJChRogTvdCib1Go1KBQKUQUyXB07duSdDuXS6NGjeadDubRy5Ure6VAunT59WlSSiOvVq1fg6urKOx3KpsjISHB3d+edDmVTeno6lCtXjnc6lE3Uhw0xSSKuXr168U6Hcmn69OlQtWpVwQUyXNu2beOdDuXS9evXeadDufTlyxdwcXHhnQ5lU1xcHBQtWlRUkkgpKysLKleuzDsdyqVWrVrxTodyaejQodokUUiBDNfChQt5p0O5dPjwYVHNGLgePXqk/SAhpECGKywsDFxdXQU3Y+BKSUmBkiVL8k6Hsom6+ZNvOpRLfn5+tOlQMc9p/PjxvNOhXFq3bl22tVBCdf78ed7pUC69ffsWXFxceKdD2RQdHQ0eHh6806FsysjIAC8vL97pUDZpNBpo3LixqAIZrr59+4pq/Mc1a9Ys3ulQLu3atYt3OpRLt27d4p0O5dK3b9/AxcVFcOM/roSEBChWrJioDxKUVCoVVK1aFdq0aSO4QIarbdu2vNOhXBo5ciTvdCiXli1bJqrxH9fx48dFNWPgev78Obi6uvJOh7IpPDwc3NzceKdD2ZSWlgZlypThnQ5lk0ajgTp16oj6IIGre/fuvNOhXJoyZQr4+PgIbvzHtWnTJt7pUC4FBARkWwslVB8+fAAXFxfBjf+4YmNjoUiRIpKmQ7OysqBixYqiGv9xNWvWjPcmIi4NHDhQVOM/rrlz54r6IIFr//792g8SYgtk+mLN5ORkKFGihKjGf0pyWbNTp07Z1kIJlRzWXLVqlUGzptBmDEpyWbNBgwbQvHlzwc0YuOSw5rRp00Q1Y+Davn27qMZ/XIQ18441Fy1aBJUqVRLc+I9LDms+fvxYVDMGLrmsWapUKcmsWbNmTb2w5oQJE7SsKaQZA5cc1rxw4YKWNYU0Y+DKCdYU04xBiWJNMY3/lOSyZr9+/fTCmrt376axpph38fbt23phzcTERChevDj4+fkJbsagJJc127VrJ2rIHJe+WPPEiRN6Yc2IiIjfgjXF1tn/+eefbCuIhUoOa27evFlUMwYuOaz58eNHg2TN5s2b64U1582bp2VNIc0YuOSw5v3790U1/uP6G1lzzJgxemHNM2fOiBoyx/X69Wstawpp/MeVE6wppvGfklzW7N27t6ghc1z6Ys0bN27ohTXj4+NprCkm95HLmq1bt4bGjRsLbvzHNWzYMKhZs6bgxn9ccljzyJEjfzVriq2z46xJVhAblnKjcdAI/tcYR6RDRkZG7gihUIQQCg0NRe7u7nr+ExFJUXx8PLKxsUFGRkaivYmJicjKygqZmJiI9qakpCAzMzNkbm4u2puZmYmysrKQlZWVaC8AoISEBFSoUCHRXoQQiouLQ7a2tnrxFipUSNJzio+PRwULFkTGxsaivUlJSSh//vzI1NRUtDctLQ0ZGRmhfPnyifaqVCqUlpaGChQoINoLACg+Pl5vz0kfzzghIQFZW1tLeheTk5ORubm5pHcxPT0daTQaZGlpKdqr0WhQUlISsrGxEe1FyDCfkz7jrampKbKwsBDtzczMRJmZmcja2lq09298F+XG23z58iEzMzPR3rS0NIQQQvnz5xftVavVKCUlBRUsWFC0FyH9Pqe/Kd5mZGQglUolKffRaDQoMTGR5D4ClZiYiCwtLSXlPqmpqcjY2FhS7pOVlYXS09NJ7iNQCQkJqECBApKecXJyMrKwsJAUb9PT0xEASI63ycnJBpn7SPUaau4jhzX/tneRsKY4GeIzJqyZt17CmsL0N76LhDUNwyvnXZQTb+XU2eWwJqmzixNhzbz1EtYUrr8t3hLWzFsvYU3hMsR38W9kzb+xzi4n3krNfQyVNYn0q7CwMOTh4UH9owcAhMn9d5LGQQEijYNERERERERERERERERERERERERERERERERERERERERERERERERE+lBuNA6Kb18nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyWJHGQSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiv0ikcZDor9Hbt2/Rp0+fJHmDgoLQixcvkJTV3tHR0ejevXtIrVaL9qanp6MrV66gjIwM0V4AQJcvX0YpKSmivQghdP36dRQXFyfJe//+ffTz509J3ufPn6OgoCBJ3o8fP6J3795Jek6hoaHoyZMnSKPRiPbGx8ejW7duIZVKJdqblZWFLl++jNLT00V7AQBduXIFJSUlifYihNCtW7dQTEyMJO+jR4/Qjx8/JHlfv36Nvnz5Isn79etX9OrVK0nP+OfPn+jBgweS3sWUlBR07do1lJWVJdqr0WjQ5cuXUWpqqmgvQghdu3YNJSQkSPLevXsXRUVFSfI+ffoUff/+XZL3/fv36OPHj5Ke0/fv39Hz588leWNjY9Hdu3clvYsZGRkoICBAVrxNTk4W7UUIoRs3bqBfv35J8j548ABFRERI8r548QJ9+/ZNkvfz58/o7du3kp7Tjx8/0OPHjyXF28TERHTz5k1J76JarUaXL19GaWlpor0IIXTlyhWUmJgoyXv79m0UHR0tyfv48WMUFibtlvE3b96gz58/S/J++/YNvXz5UtIzjoqKQvfv35cUb9PS0tDVq1dRZmamaK/ceHv9+nUUHx8vyXvv3j3Juc+zZ89QcHCwJO+HDx/Q+/fvJT2nkJAQ9PTpU0nvYlxcHLp9+7akeJuZmSkr3gYEBEiOt7du3UKxsbGSvA8fPkTh4eGSvK9evUKBgYGSvF++fEFv3ryR9IwjIiLQw4cPJT3j5ORkdP36db3E26tXr0rOfe7cuSM53j558gSFhIRI8uqLNWNiYghripC+WDMsLEwvrKlSqVBAQIBBsqbU3EcOawYGBuqVNfWR+xgqa3748EEvrHnnzh295D5yWPPmzZt6Yc2XL18aJGveuHHjr2PN0NBQSd63b9/+VayZE7mPPljz+fPnfxVrZmVlycp9AgICZOU+clhTap1dLmu+fv2asKZA3blzR3LuI4c13717R1hThG7cuKEX1nzx4oVk1vz06ZNeWDMhIUEvrIkQIqwpQpGRkQbLmlJzH0NlzWfPnhkca8qpsxP9eSKNg0R/jQoUKIAqVqyIypQpg8aPHy+qGOTg4ICaN2+OPDw80NChQ9H58+cFw4mdnR0aMmQIcnZ2Rn379kVHjx4VXAzKly8fWrNmDXJwcEBdunRBu3fvFlwMMjIyQufPn0d2dnaodevWaOPGjaKKQa9fv0YODg6oYcOGaPny5aKKQdHR0cjFxQVVr14dzZ07V1QxyMTEBJUoUQJVqFAB+fv7iyoGFS5cGCkUClSyZEk0evRoUcUgR0dH1KlTJ+Tm5oYGDRqEzpw5IxhObGxs0OTJk5GjoyPq2bMnOnjwoGA4MTMzQ7t27UL29vaoU6dOaMeOHYLhxMjICN28eRPZ29ujFi1aoLVr14oqBn39+hU5OTmhunXrosWLF4sqBqWkpCB3d3dUtWpVNGvWLFHFIEtLS+Tp6YnKlSuHJk6cKKoYZG9vjxo0aICKFSuGRowYgS5duiQYTuzt7VHfvn2Ri4sL+vfff9GJEycEw4mVlRVauHAhsre3R926dUP79u0TXAwyNjZGx48fR3Z2dqhdu3Zoy5YtoopBT548Qfb29qhJkyZo5cqV6OvXr4K9P378QM7OzqhWrVpowYIFoopBGo0GFStWDFWuXBlNmzZNVDGoYMGCqHLlyqhMmTJo7NixoopBDg4OqFWrVsjd3R0NGTIEnTt3TnC8tbW1RSNHjkROTk6od+/e6MiRI4KLQRYWFmjjxo3I3t4e+fr6ol27dgmGEyMjIxQQEIDs7e1Rq1at0IYNG0QVg969e4ccHR1RgwYN0LJly0QVg+Li4pCrqytSKBRozpw5oj6EmZmZoVKlSqHy5cujKVOmiCoGFS5cGNWsWROVKFECjRo1ShScODg4oK5duyJXV1c0YMAAdOrUKcHxtkCBAmj69OnI0dER/fPPP+jAgQOC462JiQnav38/sre3Rx06dEDbtm0T9SHs7t27yN7eHjVr1gytWbNGVDEoKCgIOTk5oTp16qBFixaJKgalpaUhDw8PVKVKFTRz5kxRxSArKytUvnx5VLZsWTRhwgRRxSAq7hQtWhQNHz4cXbhwQXC8tbOzQwMGDEDOzs6oX79+6Pjx44Ljbf78+dHy5cu1/5/s2bNHcDHI2NgYnT59GtnZ2aG2bduiTZs2iSoGPX/+HNnb26NGjRqhFStWiCoGRUZGIhcXF1SjRg00b948UcUgIyMjVLx4cVSxYkU0depUUcWgQoUKIR8fH1SqVCk0ZswYUcUgBwcH1L59e+Tu7o4GDx6Mzp49K7gYVKhQITRu3Djk5OSEevXqhQ4fPiy4GGRubo62bt2K7OzsUOfOndHOnTtFxdtr164hOzs71LJlS7R+/XpRxaCPHz8iR0dHVL9+fbRkyRJRxaDExETk5uaGqlWrhmbPni2qGGRhYYHKlCmDPD090aRJk0QVg+zs7FCdOnVQ8eLF0ciRI9Hly5cFx1t7e3vUs2dP5OLigvr3749OnjwpuBhkbW2N5s6dixwcHFD37t3R/v37BTcemJiYoMOHDyM7OzvUvn17tHXrVlHx9uHDh8je3h41bdoUrV69WtSHsJCQEOTk5IRq166NFi5cKKrxICsrCxUtWhR5e3ujGTNmoEePHgmOt/pizcKFC6OhQ4ciJycn1KdPnzxlzQsXLuiFNWNiYgyONR0cHFDnzp21rHn69Ok8YU1TU1O0a9cuZGdnhzp27Ii2b99uEKyZmpqKPDw88pw17ezsUMOGDfXCmosWLUIODg4GxZrh4eHI2dkZ1axZE82fPz/PWNPGxgZ5e3uj0qVL5ylrFi5cGI0aNUoSa5qbm6NNmzb9FqwpZsAvp1hz8uTJ6O7duwbBmjNnztQLa967d08vrJmeno6KFCmSI6x58+bNPGPNgQMHauvsx44dE5z7yGFNIyMjdObMGWRvb4/atGlDWJNHjo6OemFNMzMztG3bNmRvb486d+6MduzYgSIjIwV5jYyM0PXr17W5z7p16/KMNZOSkpC7uzvy8fHJc9asV6+ewbHmkSNHaKwpZsBPDmuGhoYiZ2dnVLt2bbRgwQJRA345xZrjxo0zGNZcu3Ytsre3/2tZU0yd3dbWFlWvXh2VLFkSjRo1Cl25ciVPWLNgwYJoypQpyMHBAfXo0SPPWBOh/zX/2dnZoebNmxPWFODt16+fljXF1NnlsuaJEye0rLl582ZRrPn06VPk4OCAGjdunKesCQCoWLFiqFKlSnnOmm3atDFI1rSzs0OtWrVC69evl9zkTvSHCADI4TkIIXeEECCEIDQ0FIgMV0OGDAHqWSKEoFChQtC9e3fYv38//Pr1S6d30aJFNK+lpSW0b98etm7dCuHh4Tq9R44coXnNzMygadOmsHr1avj27ZtO75MnT2heIyMjqF27NixcuBDevHkDGo2G0xsWFgYWFhY0v7e3N8yYMQMePXoEarWa05uamgpOTk40b5kyZWD8+PFw48YNyMrK4vRqNBrw9vameT08PGDYsGFw/vx5SEtL0/nf3LlzZ5rX3t4e+vTpA0ePHoWEhASd3vHjx9O8BQoUgC5dusDu3bshOjpap3f9+vU0b758+aB169awceNG3nf/woULNK+JiQk0bNgQli9fDp8/f9bpfffuHRgZGdH81atXh7lz58LLly91PuOYmBiwtrameStUqAD+/v5w//59UKlUnN7MzEwoVqwYzVuiRAkYPXo0XLlyBTIyMji9Go0G6tWrR/O6uLjAoEGD4MyZM5CSkqLzv7lPnz40r62tLfTs2RMOHjwIcXFxOr2zZ8+mea2srKBTp06wfft2+Pnzp07v7t27aV5zc3No3rw5rF27FoKDg3V6b9++TfMaGxtD3bp1YfHixfD+/XudzykoKAhMTU1p/qpVq8KsWbPg6dOnOr2JiYlQuHBhmrdcuXIwceJEuH37ts53UaVSgZeXF81btGhRGDFiBFy6dAnS09N1/je3atWK5nV0dIR///0XTpw4AUlJSTq9I0aMoHltbGygW7dusG/fPoiJidHpXb58Oc2bP39+aNeuHWzZsgV+/Pih03vixAma19TUFJo0aQKrVq2Cr1+/6vQ+f/48W7ytVasWzJ8/H16/fq3zOUVEREC+fPlo/kqVKsG0adPg4cOHOuNtWloauLq60rylS5eGsWPHwvXr1yEzM5PTq9FooFq1ajSvm5sbDBkyBM6dOwepqak6/5u7du1K89rZ2UHv3r3hyJEjvPF2ypQpNK+1tTX4+vrCrl27ICoqSqd38+bNNK+FhQW0atUKNmzYACEhITq9V65cyRZvGzRoAMuWLYNPnz7p9H769AmMjY1pfoVCAXPmzIHnz5/rfMa/fv2CggUL0rzly5eHKVOmwN27d3XG26ysLChZsiTNW7x4cVAqlRAQEKAz3gIANGrUiOZ1dnaGAQMGwKlTpyA5OVmnd8CAAdlyn3/++QcOHDjAm/vMmzcvW+7ToUMH2LZtG0REROj0HjhwIFvu06xZM1izZg0EBQXp9D548CBbvK1Tpw4sWrQI3r17p/M5hYSEgJmZGc1fpUoVmDlzJjx58kTnu5icnAwODg40b9myZWHChAlw69YtnfFWrVZDxYoVs+U+w4cPhwsXLvDmPu3bt6d5HRwcoF+/fnDs2DFITEzU6R09ejTNW7BgQfDz84M9e/bwxtvVq1dny33atGkDmzZtgrCwMJ3eM2fOZIu3jRo1ghUrVsCXL190el+/fp0t3taoUQPmzZsHr1690vmMo6KiwNLSkuavWLEiTJ06FR48eKDzGWdkZICHhwfNW7JkSRgzZgxcu3aNN97WqlWL5nV1dYXBgwfD2bNneeNtjx49aN7ChQtDr1694PDhwxAfH6/TO3369GzxtnPnzrBz506IjIzU6d2xY0e23Kdly5awbt06+P79u07vjRs3sr2L9erVgyVLlsCHDx90PqevX7+CiYkJzV+tWjWYPXs2PHv2TKc3Pj4eChUqRPN6enrCpEmT4M6dOzrjrUqlgjJlytC8xYoVg5EjR8Lly5d5c59mzZrRvE5OTtC/f384efIkb7yVw5qLFy/OFm9zgjUDAwN1euWw5o8fP1hZc/r06YJY09nZmeYtU6YMjBs3Dm7cuMH7LlapUoXmdXd3h6FDh+Y6a06YMIHmzSvWvHjxYrbcRyhrvn//PldY8969e3nOmgMHDoTTp0/zsmbfvn1pXrms2bFjR0GsuWfPnmzxVihr3rlzJ1u8zSvWtLOzo3mFsqZarc7GmkWKFBHMmq1bt6Z5c4I19+7dK5k1N2/ezMuaJ0+ezJb7NGnSBFauXMnLmi9evMgWb2vWrCmYNfPnz0/zy2HNUqVKCWZNhUJB8xoCa27ZsoXmzQnWXLp0KXz8+FGnNzdYc/LkybnOmo0bN6Z584o158+fny330Tdrvn37VjJrPn78WDJr3rx5kzfeVqpUieaVy5p9+/YVxJpjxoyhefOKNc+ePZst3gplzTdv3mSLtznFmrrexdxiTSF19p49e9K8OcGaO3bs+G1ZMzAwMBtr+vj4CGZNW1tbmlcMa5YtW5bmFcOazZs3p3lx1uTLfYYOHZot3lKsGRsbq9MrhzWPHj2aLd4KZc2nT59mexdr164NCxYsyHPWLF26dJ6wpq+vL82bV6y5YcOGbPE2J1iTr86uizVfvHjx27Jm/fr1aV65rNmjRw9BrPnff//RvIbAmsHBwTpZU9e7mJSUxMmaQursucGax48f5423I0eOpHnlsmbbtm0ls2bjxo1znTV//vwpmTWJ9KvQ0FD8ublDTvTE5cS/5E8/iDQO/jEKDg7OBvh4QqSrGMT2lxx+qlWrBv/99x9rMUitVkP58uU5vXzFoDZt2nB6+YpBSqWS08tXDFqxYgWnl68YdOrUKU4vXzHo5cuXnF6+YhDbX3J4QqSrGJSeng5ubm6cP1tXMUij0UD16tU5vWXLloXx48dzFoO6d+/O6aWaLrmKQVOnTuX08hWDtm7dyunlKwZdu3aN08tXDPr8+XO2giqeEOkqBsXFxYGNjQ2rFy8GsX0Iy8rKglKlSnH+ufmKQU2aNOH0UsWgq1evsgLooEGDOL18xaAFCxZwegsXLgw9e/aEQ4cOsRaDDh06xOnlKwY9fPiQ02tubg4tWrTgLAaFhoaCubk557uoqxiUkpICjo6OnD9bVzFIrVZD5cqVOb14MYjtXezYsSOnl68YNHbsWE4vXzFo7dq1nF6+YtC5c+c4vfnz54f27dvDli1bWItBb968yQb41DEzM9M2XbIVg6Kjo8HKyorzXdRVDMrIyIAiRYpw/rkrV67MWQzSaDRQp04dTi9fMahXr16cXr5i0MyZMzm9fMWgXbt2cXr5ikE3b97k9FpYWOgsBgUGBmYDfOrwFYMSEhKyFVTxU716dZgzZw5rMUilUkG5cuU4vXzFoBYtWnB6S5QoAaNGjeIsBg0bNozTy1cMWrp0KaeXrxh07NgxTi9fMejZs2ecXr5iUHh4eLbGZerwFYNSU1PBxcWF82dTxSC2pkuNRgNVq1bl9PIVg7p06cLpLVKkCAwfPhwuXrzIGm8nTZrE6eUrBm3cuJHTW7BgQejatStnMejy5cucXr5i0IcPHzjjLV8xKDY2FgoUKMDq5SsGZWZmQokSJTj/3HzFoAYNGnB6+RoP/v33X04vX+PBnDlzOL1U4wHXh7B9+/ZxevGmS7bGg7t373J6qcaD9evXszYe8LFm/fr1dbKmvb0958+Ww5peXl46WbNt27ac3txkzZUrV3J6+Vjz9OnTnN6cYE2uAb/IyMhcZc0ZM2ZwsmaNGjU4vb8ra27bto3Tm5us+eXLl2wfk6mT26xZunRpzj93xYoVdQ74NW3alNMrlzV1DfgtXLiQ0yuHNakBPy7WfPToEaf3d2VNtiFZ/MhhzaJFi8LIkSM5P4SNGzeO0yuHNW1sbKB79+6wb98+VtY8f/48pxcf8Mtr1qxVq5ZO1ixatCjnnzs3WbN3796cXn2zJlfT5a1btzi9OcGaXAN+CQkJ2YZk8SOHNakBPy7WbNmyJae3ePHivyVrHj9+nNObU6zJVmfXJ2v6+PhwesuVK6dzwM/Pz4/TK4c1qQE/LtbctGkTpze3WVNXnV3frMk14NewYUNOb06wJteA39y5czm9ucma9+7d4/RaWFhAy5YtYf369ay5z/fv3/XGmhUqVOD0ymHNYsWKaVmT7V0cNWoUp1ffrLl161ZW1nz16hWnVw5r4gN+XKzp7u7O+bPlsCZ1mQwXa/7zzz+c3t+BNdnq7NevX+f05hRrsg34xcXFZRuSxZ+xvliTarq8evUqa+4zePBgTm9usubhw4c5vTnFmmx19rCwMEGsyZb75AVrcg34derUidMrhzXFDPgR5a1I4yBpHCSSoXHjxoG1tTVn0Yp58GLQypUrwdramhPAmIcqBp07dw6OHj0K1tbWnIUU5qGKQUeOHIH79++DtbU1519SzIMXgwIDA8Ha2poT7pmHOYFbpEgRzkSVeZi3PdWvX5+zwMd2qAncFy9eQJ8+fbJNmug6eDFo+vTpop4xXgzasmULWFtbcyZ9zIMXgy5cuADW1tac8MY8eDHo+fPnop4xXgwKDw8X9YyZxaDy5ctnm6LkOlQxiLrtqXXr1qKecdWqVbW3PQ0bNkzUM8Zve1q0aJGodxEvBu3bt0/Uu4gXg65fvy7qGePFoI8fP4K1tXW2KTmuwywGOTk5CX4X8WLQly9foHr16oKfE14MevXqFXTt2lXUc8KLQRMnThT1LpYqVUo7gbt27VpR7yJ+29OJEydEPWN8AvfRo0ei3kW8GBQcHCw63uLFoBIlSoiKt3gxqEmTJqLeRbwY9O+//4p6xngxaPbs2aLeRaoYdPnyZdi+fbuoZ0wVg06ePAmXL18W9S5SxaD9+/fD69evRb2LzAncggULCn7GzJuFK1euLDjeMotB7du3F/WcqJuFHz9+DEqlUtS7iBeDli5dKuoZ48WgQ4cOiY63VDHozp07ot5FvBj0+fNnUc+YKgZRH8Lc3NxExdtGjRppb3uqU6eOqHcRv+2pR48eop4xXgzy9/cX9YzxYtCGDRtE5z5UMejMmTOi3kW8GPT06VPRuQ9VDAoLCxOd++DFoLJly4rKffBiUPPmzUU9Y6oY9PTpUxg8eLCoZ+zp6am97WnevHmi3kX8ZuHdu3eLehfxYtDVq1dFPWP8ZuF3796Jzn3wxgM7OztR7yLeeFC1alVR8RZvPPD19RX1nKjGg4cPH8LYsWMlseb169dlseaxY8dEPWP8tic5rPnt2ze9sWaDBg0MjjW3bt0qOvcZOHAgnDp1Cs6fPy+ZNV+8eCGJNbdt2yaZNakBPzms2aZNG1HPGL9ZWA5rLl68WC+seePGjTxjzXz58mlZMywsTBZr1qhRQzRrUrc9yWHNSZMm6YU1T548KZk1Hz9+rDfWLFmypCTW/PDhg2TWfPbsGfTv318Sa965c0dvrBkQECCaNakBP7msaWNjoxfW7NChg2TWHDVqlCTWvHHjhizWPHz4sOg6e9++feHo0aNw+/ZtSay5e/du+PLlS56xJvNmYTms2bNnT1HPGN9iI4c1N27c+NewJjXgJ4c1W7RoIZo1qdue5LDm/PnzDY41379/L5k1f/z4IYs1fXx8JLHm69evZbGm1O+aUlgTH/CTw5oPHjwQzZrUzcJyWbNo0aJ6Yc2+fftKZs0ZM2ZIYs2AgABZrCn1u+aBAwdEsyZzwE/MM2ZeJiOWNfEtNnJYc/jw4Xphzf379+uFNT99+iSLNZ2dnUWzJjXgJ4c1u3XrJrrOTl0mI5Y18ZuF161bZ3Cs+f37d1msSaRf5UbjoBH8rzGOSIeMjIzcEUKhCCEUGhqK3N3d9fwnIpKikSNHovXr10vy5suXD6Wnp0vympubo8zMTEleU1NTpFKpJHnlysTEBKnVakleCwsLlJGRIcmbP39+lJaWludeOX9mMzMzlJWVJclrbGyMNBqNJK9cyflzy3kn5DwnOT9XzjOW8y4aGRkhOX/Xyvl/xBDfRX3FWzkxT67k/P+lr3eRxFtxkvP/piHGW33lPnLj7d+W+8h5xnLeRX3GW0PMffQVb/X5Lsrxy4k/hvguEtYUJ0N8Fw019zHEeEtYU5wM8V0krClOf1vuY6jxluQ+wkVYM++8hDXF6W+Lt4Q1885riPFWrv62ePs35j6GGG8Ja4qTIb6LfyNrVqpUCbVr1w6NGDECubi46OXP8DcrLCwMeXh4UP/oAQBhcv+dxnL/BUREf7qKFy+OqlWrJsnr7OyM6tevL8lra2uLmjVrJslraWmJ2rRpI8lrZmaGmjdvjvLlyyfaa2xsjOrWrYscHBwk/eyqVauiEiVKSPKWK1cOVapUSZK3SJEiqFatWpK8jo6OqHHjxpK8BQsWRC1btpTkzZcvn+RnbGpqiho3bowKFCgg2mtkZIRq1qyJXF1dJf3sSpUqoTJlykjylipVClWtWlWS19XVFdWtW1eS187ODjVt2lSS19raGrVu3VqS18LCArVq1QqZmpqK9pqYmKD69esjW1tbST9boVCgIkWKSPJ6eXkhLy8vSd5ixYqh6tWrS/I6OTmhBg0aSPIWKlQItWjRQpLX0tIStW3bVpLXzMwMNWvWDOXPn1+019jYGNWpUwc5OjpK+tlVqlRBJUuWlOQtU6YMqly5siSvh4cHql27tiSvvb295HhboEAB1KpVK0leKt4aGRmJ9pqYmKBGjRqhggULivYaGRmhGjVqIDc3N9FehBCqWLEiKleunCRvyZIlJec+Li4uqF69epK8hQsXlpz7WFlZSY635ubmqEWLFsjc3Fy019jYGNWrVw/Z2dlJ+tk+Pj6oWLFikryenp6oQoUKkrxFixZFNWrUkOR1dHREjRo1kuS1sbGRHG/z588vK79t2rQpsrKyEu01MjJCtWrVQs7OzpJ+duXKlVHp0qUleUuXLo28vb0led3c3FCdOnUkeeXkPgUKFJCV+7Ru3RqZmJiI9pqYmKCGDRuiQoUKSfrZCoVC8oBghQoVkKenpyQvYU3h0jdrVqxYUZJXDms6ODhIjreENcWpVKlSyMfHR5JXDmsWLlxYL6xpbm6OWrZsqRfWrFatmizWLF++vCTv38qalpaWor1yWdPb21svrOnu7m6wrGlsLP4TjaGyZokSJSTHWzmsaWtrKzneEtYUp7+NNU1NTVGTJk0IawoUYU1xKl++PGFNgaJYU2qd3RC/a3p4eBgka0rNb/XNmmXLlpXk/VtZ08zMTLQ3J1izaNGikryENYWLqrMPGDAA9e/fnzQN/knKiWsL//SDyKriP0JHjhyBkSNH8l6ry7y6WKPRwLVr10CpVIKDgwPvVa341cVqtRpevnwJSqUSSpYsyevFry7OysqCsLAwUCqVULVqVV6vh4cHDB8+HC5cuABpaWmQlpYGSqUSGjZsyOulri4+duwYJCYmAgDAlClToEOHDrxe6uriPXv2QHR0NAAALF26FHr37s3rpa4u3rRpE4SFhQEAwI4dO2DYsGG8VwFTKwKpq4sBAM6cOaNdy6jLa2RkBDVq1NBeXazRaODu3bugVCrB1dWV98+NX12sVqvh48ePoFQqwdPTk9eLX12cmZkJ0dHRoFQqoUaNGrxe/OrilJQU0Gg0oFQqoXnz5rxe/Ori+Ph4AACYNWsWdOnShddrZWUFnTt3hh07dkBkZCQAAKxZswb69+/P6zU3N9deXRwcHAwAAAcOHIARI0bwXrtsbGwM9evXhyVLlsCHDx9Ao9HApUuXQKlUgq2tLe/PrlatGsyePRuePXsGGo0Gnj59CkqlEooVK8br9fT0hEmTJsGdO3dApVJBUFAQKJVKqFSpEq+3aNGiMHLkSLh8+TKkp6dDYmIiKJVKqFevHq/XyckJ+vfvDydPnoSkpCQAABg/fjy0adOG12tjY6NdkxMbGwsAAAsWLIAePXrwevPnz09bkwMAsGXLFhgyZAivF1+TExgYCAAAx44dg5EjR/JecY2vyXnz5g1oNBq4efMmKJVKcHJy4v3Z1JqcR48egVqthjdv3oBSqYTSpUvzevE1OZmZmRAeHg5KpRKqVavG66VWBJ4/fx5SU1MhIyMDlEolNG7cmNdLraM/evQoJCQkAADA1KlToVOnTrxeakXg7t27tfF2xYoV0LdvX16vhYUFtG7dWrsmBwBg165dMHz4cN4r8vE1OZ8+fQIAgHPnzoFSqYSCBQvy/mx8TY5Go4EHDx6AUqkEd3d3Xi+1JufevXugUqng8+fPoFQqoXz58rxefE1ORkYGxMbGglKphFq1avF6qTU5p0+fhpSUFAAAGDVqFLRs2ZLXa2trCz179oSDBw9CXFwcAADMmTMHunbtyuvF19H//PkTAADWrVsHAwcO5PUy19EDABw6dAhGjhzJe1U9tSJw8eLF8P79e9BoNHDlyhVQKpVgZ2fH+7OrVq2qXZOjVqvh+fPnoFQqoUSJErzecuXKadfkZGVlwffv30GpVIK3tzevt0iRIto1OWlpaZCcnAxKpRIaNGjA68XX5FC5z6RJk6Bdu3a8XnxNTkxMDAAALF68GHr16sXrpdbkUOvoAQC2bdsGQ4cO5fVSa3JWrlwJX79+BQCAkydPglKp5F3Rga+jf/36NWg0Grh9+zYolUpwcXHh/dnUisCHDx+CWq2Gd+/egVKphLJly/J6S5UqBWPHjoXr169DZmYm/Pz5E5RKJVSvXp3Xi6/JSU1NBZVKBUqlEpo2bcrrxdfkULnPjBkzwNfXl9drbW2tXZND5T6rVq2Cf//9l9fLXJMDALB3714YMWIE77oKfE3Ox48fAQDgwoULoFQqoVChQrw/m1qT8/z5c9BoNPDo0SNQKpVQpEgRXm/58uW16+hVKhUEBgaCUqmEihUr8nqpFYEBAQGQkZEB8fHxoFQqoU6dOrxeJycnGDBgAJw6dQqSk5MBAGDs2LHQqlUrXi+1jv7AgQPw69cvAACYN28edO/endfLXJMDALBx40YYPHgwrxdfk/Pt2ze9suarV69AqVRCqVKleL0Ua968eTNPWZNaESiVNal19FJYs02bNr8Fa967dw+USiW4ubnx/rlx1lSpVAbFmocOHdLmPnJYc+3atTBgwABeL3MdvVzWvHz5MiiVSihcuDDvz6bW0ecka1auXJnX+zux5sKFC0WzJpX7yGHN48ePw8iRI3nXXlGsSa2jl8Ka06dPz8aaZcqU4fVSKwIp1oyIiNAba06bNk0vrLl79+48Zc0XL17QWNPDw4PXy2TNL1++CGZNfB19TrDm6NGjBbMmtY4+J1hz/fr1emVNe3t73p/NZM0XL17kKWtevHgR0tLSICUlRTRrHj9+XDJr7t27N89Zk1pHz2RNvlWBbKx5584dvbBmZGTkX8Ga+IpAOax58eJFUaz533///RGs2bp1a17v78SaR48eFc2ab9++lcyajx8/znPWpNbR46zZqFEjXq8c1ixQoECOsubOnTv/Ctak6uwUa9asWZPXS7HmmTNntLlPXrMmlfvIZc2RI0cKYk1qHb0hs2ZSUpJg1nR0dMzGmhMmTIC2bdvyeinW3Ldvn15Yk1pHn5esSa2j1zdrZmZmglKphCZNmvB67ezssrEmkX6VG6uK9d6UZwgHkcbBP0YXLlxgDXhUkogXyJh69+4da9LHViBjKjo6mjXpMzExgUaNGsHy5cvh8+fPrN6MjAzOhIDZjMGURqOBunXrsnqpAtn9+/dBpVKx/uw+ffqwepnNGGyaNWsWq5cqkOFJIlO7d+9m9VLNGHiSyNTt27dZvVZWVtCpUydaksjUt2/fWJM+tiSRqcTERNakj0oS8QIZUyqVijM5p5LEp0+fsnoBgPPDqqenJ61AxqYRI0awevFmjPT0dFbvsmXLWL14MwaVJDJ14sQJVi/ejEEliUw9f/6c1UsVyLZs2aJNEpmKiIhgbWajmjFWrVqlLZAxlZaWxlrwMjIyglq1atGSRKY0Gg1n4kYliVSBjE1cRWBmgYxNkydPZvW6ubnB0KFDtQUyNm3evJkzSaQKZFxJYkBAAKsXL5BFRUWxej9+/Mj6gYGtGYOp2NhY1g8MeIGM+iDBVFZWFmeTN9WMQX2QYBNXQaN8+fIwZcoU7QcJNnE14jI/SLBp3rx5rF5nZ2cYOHAgrUDG1P79+znjLfVBgiqQMXX//n1Wr6WlJXTs2JFWIGMqJCQEzMzMsnnZCmRMJScns35gYGvGYEqtVnMWJpnNGGziKvQzG//ZNHr0aFYv1YxBfZBg06pVq1i9VOM//kGCqTNnzrB6qcZ//IMEU69fv2b1sjX+MxUZGcnazIZ/kKAKZEylp6ezfuyjPkjgBTKmNBoNZ9GqUqVKtMZ/NnEVJZjNGGyaPn06q5fZjMGm7du3s3rZGv+ZunHjBme87dy5M+zcuVP7QYKpL1++sH5gwBv/qQ8STMXHx7N+YKCaMZYuXaotkDGVlZXFWQypVq0a7YMEm5o1a8bq9fLygsmTJ2sLZGziKh4xC2RsWrRoEauXrRmDqSNHjrB62ZoxmHr8+DGrl63xn6mwsDDWDwxszRhMpaamgrOzM+u7SDX+Ux8kmNJoNJwfZanGf+qDBJs6d+7M6mU2/rNp/PjxrF53d3faBwk2rV+/ntVLfZDQVSDTF2vGxMRwsibVjJFbrMlVQM5t1pw9ezar93dmzaCgIJ2siTdjMCWXNb28vFj/3Hgzxu/GmsuXL2f1/smsyTbEiLMm1YzBlD5Zc8qUKaxeZjMGm+Sw5pUrV1i9uc2av379ylXW1JX7yGFNro+jFGtSzRhsksOaBw4cYPWyNWMwpU/WZGuuyAvWbN++Pas3t1lz9erVrF4hrHn27FlWL9uQOVNyWDMqKoqTNZnNGEzJZU2u5lDmkDmb9MWaO3bsYPXmNmt+/fqVlzW56uxyWFOlUulkTbwZg01cjSzMZgw2yWHNxYsXs3pzmzWfPHnC6v3dWbNKlSqsf27mkDmb5LDmhAkTWL3MZgw2yWHNixcvsnrZGv+Z0hdrZmZm6o01uQYfcps19+zZw+plGzJn6s6dO6xetsZ/puSyJtvQOFvjP1NyWZOriZfZ+M8mfbHmyZMnOeMtc8icKbmsydbMxjZkzpRc1lQoFKx/7sqVK9Ma/9nUrVs3Vm9us+aWLVtYvWyN/0zJYc1Pnz4ZJGtyDakxG/+Jfi+RxkHSOEgkQxqNhjZtJqQZAxc+TUQVyE6fPs1ZIMPl7+9PSxKZ06G6tHXrVq2XKpBt376ds0CG6+rVq1qvmZlZtulQXfr8+bP2Lzg8SeQqkOGKi4sDGxubbEmirgIZpaysLNoUE5Uk6iqQ4cI744UUyHDhU7Zs06G6tGDBAq1XSDMGroMHD2q9VIFs8+bNnAUyXA8fPqQliXzNGLhCQ0O1k8Fs06G6lJycDI6OjtqfzZwO1SW1Wk2bcKGSRF0FMlz4xJirqysMGTIEzp49y5kk4ho7dmy2JFFXgQzXmjVrsiWJugpkuM6dO5ctSdTVjIHrzZs3Wrg3MTHRFsio6VBdioqKok0GC2nGoJSRkUGbGqWaMYQkiRqNBmrXrq314tOhXMCGC5+kZpsO1aUZM2ZovUI+SODauXMnLd5S06FcBTJcN2/epMXbZs2a6SyQ4QoMDNQWU9mmQ3UpISGBdgNnlSpVeJsxKKlUKtoEN1Ugo6ZD+dSiRQtavOVrxsA1bNgwrZdtOlSXlixZovWyTYfq0rFjx2jxlpoOFZLfPX36lAZs1AcJrgIZrvDwcO2HZHw6lKtAhotZTKU+SOgqkFHSaDS06V7mdCif8OlNIQUyXBMnTqTlPnzNGLg2btyo9QppxsB16dIlrVdI4z+uDx8+aOMt23SoLsXGxkKBAgW0P1tI4z+lzMxMKF68uNaLf5AQ8i7it15QHyR0Fchw9evXj5b79O/fX2eBDNecOXO0XrbpUF3au3ev1iukQIbr7t27tNyHrxkDV3BwsPZDspDGf1xJSUm0YipzOlSX1Go17fYa5nQon/DboKjGf10fJHAplUpa7iNmOnTlypW0eNulSxedBTJcp06douU+1AcJrgIZrpcvX9LibcOGDXUWyHD9/PmTVkwV0vhPKT09nTalL6QZg5I+WXPq1KmsrCkk95HDmteuXfsjWJOvGQOXHNYcNGiQ1iukGQOXHNY8dOiQwbFmSkoKK2vqasagJJc1O3bsyMqaQnIfnDWFNGPgWrt2LY01+ZoxcOGsKaTxH5cc1oyOjtYba+K3DOUla86cOTMba+pqxsC1a9eubKypqxkDl1zWpD4kC2nGwMVkTSGN/5RUKhWUK1cuR1hTSOM/LjmsuXTpUr2w5rNnz3KUNXU1Y+BKTU2lDchWrFiRtxmDkkajAR8fH61XSDMGLjmsOWnSJL2w5uXLlw2SNfHbGSnW1NWMgUsOa+I36AlpxsDFZE2+xn9c+/btk8ya9+7d0xtr4gOyecma+G1QQobMcbGxpq7Gf1xyWPP06dM01uRrxsAlhzUjIyP1xpr4DeKGwprbtm3TC2viA7IUa+pq/MfFxpp8jf+UsrKyaFuQxLImfttpXrLmwoUL9cKajx49ynHW5Gr8xyWHNZkDskIa/3HJYc1x48bphTXPnz8vmTXfvn3LyZp8z0kuaxYtWjQba+pq/KfExZq6Gv9x4TeWUqypq/Efl75Y89atW7R4y9f4T/T7iDQOksZBIhm6fPky73Qol96/fw8+Pj6Ck0Rc0dHRUK1aNVFJIqWMjAyoX78+bS2UUGk0GujcuXO2FcRCpVQqeadDubRo0SLe6VAuHThwgHc6lEv37t3LdlW3UAUFBUHVqlV5p0PZlJiYCDVq1BCVJFJSqVTQtGlT3ulQLvXq1UtUkohr8uTJ2dZCCdXatWt5p0O5dPr06WxroYTqxYsXoFAoeKdD2RQREQE+Pj6806FsSktLg9q1a/NOh7JJo9FA27ZteadDuTR48GDe6VAu/ffff7zToVzauXOn5CTx6tWr2VYQC9WnT5/Ax8eHdzqUTbGxsaBQKHinQ9mUlZUFDRs2FNWMgatr166Sr+oeM2YM73Qol5YtW8Y7Hcqlw4cPZ1sLJVQPHz7knQ7lUkhICPj4+NDWQglVcnIy1KxZU9QHCUpqtRpatGiRbS2UUPXt25d3OpRL06ZN450O5dLGjRtFFchwnT9/nnc6lEtv3ryBatWq0dZCCVVkZCT4+PjwToeyKT09HerWrUtbQSxUGo0GOnTokG0FsVANHz6cdzqUSwsWLMi2Fkqo9uzZwzsdyqVbt26JasbA9fXrV6hatargxn9c8fHxoFAoeKdD2ZSVlQWNGzfmnQ7l0j///MM7HcqlCRMmZFsLJVSrVq0S9UEC14kTJ7KthRKqp0+fQvXq1XmnQ9kUFhYGPj4+kqZDU1NToVatWrS1UEKl0WigVatWopoxcA0YMEBU4z+umTNnZlsLJVRbt27lvYmIS/pizZiYGFAoFLS1UEKVE6wpphkDl1KpFNWMgWvx4sXZ1kIJlT5Z08fHh7YWSqjksmazZs1ks6bQZgxcclhz3bp1opoxcMlhzZcvXwq6iYhNclmzTp06Bseac+bMybYWSqjksOa1a9eyrYUSKoo1hTZj4Pr16xcoFApRzRiU9MmaY8eO1QtrHjlyJEdYU0gzBq6cYE0xzRiU5LJmv379RA2Z45LDmps2bZLMmhcuXNALa0ZFRUG1atVks6bQZgxKGo0GOnbsKGrIHBfFmkKbMXDJYc29e/dmW0EsVHJZ08fHJ89ZU6VSyWLNHj166IU1V69eLWrIHJdc1mSuIBYqfbJm69at9cKas2bN0gtrBgQEiBoyx4WzppDGf1xyWDMzMxPq168vqvGfkqGy5sGDBw2aNcXW2XHWFNr4j6t37945wppicx85rHnmzBlRjf+4DJU127VrJ5k1hwwZImrIHJcc1ty1a1e2FcRCJYc1P3/+/NexJpF+lRuNg0bwv8Y4Ih0yMjJyRwiFIoRQaGgocnd31/OfiEiK1Go1MjExMTivsbExMjIyEu0FAKTRaAzyv9kQvVKfk0ajQUZGRuQZG4BXzjNGCCFjY2PJP9sQf1+G6CXx1jC85F38871y3kUAIM84j7xSnxOJt4bjJfH2z/eSd9EwvIQ1/3wvibd/vpfEW8Pwknfxz/cS1jQML2HNP99L4u2f7yXvomF49cGa1M82xN+XIXpJvP3zvfqKt0T6VVhYGPLw8KD+0QMAwuT+O0njoACRxkEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIifSg3GgeltQkTEREREREREREREREREREREREREREREREREREREREREREREREREREZpEjjIBERERERERERERERERERERERERERERERERERERERERERERERERHRXyTSOEj01yg6Ohqp1WpJ3l+/fqHMzExJ3qSkJJSSkiLJm5GRgeLi4iR5AQBFRkZK8iKEZHulrkGPiopCGo1GkjcmJgapVCpJ3vj4eJSeni7Jm5KSgpKSkiR5s7KyUGxsrCSvoT5jOe9ibGwsysrKkuRNTExEqampkrxpaWkoISFBklej0aCoqChJXoT0+y5K9cbExEh+xnFxcSgjI0OSNzk5WXK8zczMRL9+/ZLkNdR3UU68lfMuJiQkSI63qampKDExUZJXrVajmJgYSV6E5D8nOV59xFs5uY+ceJueno7i4+MleQ013kZGRuol95Ebb5OTkyV5/9bcR1/xNi0tTZJXTu6jVqtRdHS0JC9Cf1+8jYuLI6wp0ktYU5hUKtVfGW/l5D6ENcV59cGa0dHRBpf7ENYUJ8Kaees1NNZMSkrSC2sCgMHGW33lPoQ1xXkJawoTYU1xIqwp3muI8dbQWBOhv+9dJKwp3iunzk5YU5jkxluiP0+kcZDor1FwcDBydnZGffv2RceOHRNVDEpLS0Pu7u7Iz88P7d69WxScmJiYoAoVKqA2bdqgTZs2obAw4SvGzc3NUYsWLVCjRo3Q8uXL0efPnwV7jYyM0PDhw1GNGjXQ3Llz0cuXL0X9Zbl06VJUoUIF5O/vj+7fvy8qITp27BgqVaoUGj16NLp69aooOHn27Blyd3dHgwYNQmfOnBGVEEVFRSFnZ2fUs2dPdOjQIVHFIJVKhYoXL446deqEduzYIeovSzMzM6RQKFCLFi3QunXrUHBwsGCvqakp8vX1RfXq1UNLlixBHz58EPycjIyM0OTJk5GPjw+aPXs2evr0qSg42bhxI/L09EQTJ05Et2/fFpUQXb58GRUrVgyNGDECXbp0SVRC9PHjR+Ti4oL+/fdfdOLECVEJUWJiInJ1dUXdunVD+/btEwUnRkZGqGzZsqhdu3Zoy5YtKDw8XLDX3Nwc1a9fHzVp0gStWrUKBQYGCvYaGxuj/v37o1q1aqEFCxagN2/eiHoX586diypXroymT5+OHj58KOoZ79u3D5UpUwaNGzcO3bhxQxSc3Lt3D3l4eKChQ4eic+fOiSoGhYaGImdnZ9SnTx905MgRUXCSkZGBihQpgnx9fdGuXbtExVtTU1NUqVIl1Lp1a7RhwwYUGhoq2GtmZobatGmDGjRogJYtW4Y+ffok2GtkZIRGjx6NFAoFmjNnDnrx4oWoZ7xy5UpUvnx5NGXKFHTv3j1R8fb06dOoRIkSaNSoUejKlSui3sVXr14hNzc3NHDgQHT69GlRxaCYmBjk4uKCevTogQ4ePCiqGKTRaFCJEiVQx44d0bZt29DPnz8Fe83NzVHNmjVR8+bN0Zo1a1BQUJBgr4mJCerevTuqU6cOWrRoEXr37p2o5zR16lRUtWpVNHPmTPTkyRNR7+K2bdtQ2bJl0YQJE9CtW7dExdtr166hokWLouHDh6OLFy+KKgZ9/foVubi4oH79+qHjx4+LKgalpKQgNzc31LVrV7R3715RH8JMTEyQp6cnatu2Ldq8eTP68eOHYK+5uTlq0qQJaty4MVq5ciX68uWLYK+xsTEaPHgwqlmzJpo/fz569eqVqGe8cOFCVKlSJTR16lT04MEDUe/i4cOHUalSpdCYMWPQtWvXROU+jx8/Rh4eHmjw4MHo7NmzonKfiIgI5OzsjHr16oUOHz4sKt5mZWWhokWLos6dO6OdO3eKKgaZmZmhKlWqoJYtW6L169ej79+/C/aampqijh07ovr166OlS5eijx8/isp9xo8fj6pVq4b+++8/9Pz5c1HPeN26dcjLywtNnjwZ3blzR9S7eP78eVS8eHGkVCrR5cuXRcXbd+/eIRcXF9S/f3908uRJUblPXFwccnV1Rf/88w/av3+/6GJQ6dKlUfv27dHWrVtRRESEYJ+ZmRmqW7cuatq0KVq9ejX69u2bYK+JiQnq3bs3ql27Nlq4cCF6+/atqOc0a9Ys5O3tjWbMmIEeP34sKt7u2rULlSlTBo0fPx7dvHlTVO5z+/ZtVKRIETRs2DB04cIFUbmPHNZMTU2VzJqmpqaoQoUKqHXr1mjjxo2ich+5rDlixAhUvXr1PGfN48ePo5IlSxoUa6rVahprisl95LCmiYkJ6tKlC6pXrx5avHgxev/+fZ6x5qZNmySzZkBAAI01xeQ+hsqaDRo0MDjW3L9/PypTpgwaO3Ysun79ep6xZlhYGHJxcUG9e/fOc9asXLkyatWqFdqwYQMKCQkR7DUzM0Nt27bVC2uuWrVKL6z5+vVrLWueOnXKYFizVq1aqFmzZnnOmtOmTUNVqlTJc9a8fv26wbGmsbGxljWl1NmlsqaRkREaMmQIqlmzJpo3b55Bsaa7u/tfy5pi6+wUa86ePRs9e/Ysz1jzwoULqHjx4mjkyJF5yprx8fHI1dUVde/ePU9Z09zcXBZr9unTRy+suXv3bi1riq2zy2HN79+/a1nz6NGjBsOaLVu2RA0bNsxz1ly2bJleWPP58+fIzc1Ny5picp/o6Ggta4rNfeSwprm5uZY1165dm2esiRBCU6ZMQVWrVkWzZs0yGNb89OkTjTXF5D5yWbNcuXJa1hRbZ5fDmgMGDNCy5uvXryWx5rRp0/KUNR88eIDc3d3RkCFD9MqaYnIffbLmmDFjtKwpts5O9AcKAMjhOQghd4QQIIQgNDQUiAxXbdq0AepZmpmZQdOmTWH16tXw7ds3Xu/IkSO1XiMjI6hduzYsXLgQ3r59CxqNRqd3xYoVWi9CCLy9vWHGjBnw+PFjUKvVOr2nTp2iecuUKQPjx4+HmzdvQlZWlk7vixcvaF4PDw8YNmwYXLhwAdLS0nR6f/78Cfnz59d67e3toW/fvnDs2DFITEzU6U1LSwM3Nzett2DBguDn5wd79uyB6OhonV6NRgPVq1fXevPlywdt2rSBjRs3Cnr/unfvrvWamJhAw4YNYfny5fD582der7+/P+33Vb16dZg7dy68fPmS9xlv3bqV5q1QoQL4+/vD/fv3QaVS6fRevXqV5i1RogSMHj0arl69ChkZGTq9nz9/BmNjY63XxcUFBg0aBGfOnIGUlBSd3ri4OLCxsdF6CxcuDD179oRDhw5BXFycTm9WVhaUKlVK67WysoJOnTrBjh074OfPnzq9AABNmjTRes3NzaFFixawbt06CA4O5vUOHDhQ6zU2NoZ69erBkiVL4P3797zPacGCBbTftY+PD8yaNQuePn3K6z148CDN6+npCRMnToTbt2/zvosPHz6keYsWLQojRoyAS5cuQXp6uk5vaGgomJuba72Ojo7w77//wokTJyApKUmnNzk5GRwdHbVeGxsb6NatG+zbtw9iY2N1etVqNVSuXFnrzZ8/P7Rr1w62bNkC4eHhOr0AAB06dNB6TU1NoUmTJrBq1SoIDAzk9Y4dO5YWb2vVqgULFiyAN2/e8D6nNWvW0H7XlStXhunTp8PDhw954+25c+do3tKlS8O4cePg+vXrkJmZqdP75s0bMDIy0nrd3NxgyJAhcO7cOUhNTdXpjYqKAisrK63Xzs4OevfuDUeOHIGEhASd3oyMDChSpIjWW6BAAfD19YVdu3ZBVFSUTq9Go4HatWtrvRYWFtCqVSvYsGEDhISE6PQCAPTq1YsWbxs0aADLli2DT58+8XpnzpxJ+10rFAqYM2cOvHjxgvcZ79y5k+YtX748TJkyBe7du8cbb2/evEnzFi9eHEaNGgVXrlzhjbeBgYFgYmKi9To7O8PAgQPh1KlTkJycrNObkJAAtra2Wq+trS306NEDDhw4AL9+/dLpValUULZsWVq87dixI2zbtg0iIiJ0egEAWrRoQct9mjVrBmvWrIGgoCBe77Bhw2jxtk6dOrBo0SJ49+4d73NasmQJ7XddpUoVmDlzJjx58oT3XTx27BjNW7ZsWZgwYQLcunWLN94+ffqU5i1SpAgMHz4cLl68yJv7hIeHQ758+bReBwcH6NevHxw/fpw390lNTQUXFxda7tO1a1fYu3cvxMTE6PRqNBqoWrUqLfdp27YtbN68GcLCwnR6AQC6dOlCi7eNGzeGFStWwJcvX3i9EydOpMXbmjVrwrx58+DVq1e8z3jjxo2033WlSpVg6tSp8ODBA95nfOnSJZq3VKlSMGbMGLh27RpvvP3w4QMt3rq6usLgwYPh7NmzvPE2NjYWChQoQMt9evXqBYcPH4b4+Hid3szMTChevLjWa21tDZ07d4adO3dCZGSkTi8AQIMGDWjxtmXLlrB+/Xr4/v07r7dfv360eFu/fn1YunQpfPjwgfc5zZkzh/a7rlatGvz333/w7NkzXu/evXtpXi8vL5g0aRLcuXOHN97evXuX5i1WrBiMHDkSLl++zJv7BAcHg5mZmdbr5OQE/fv3h5MnT/LG26SkJLCzs9N6CxUqBN27d4f9+/fzxlu1Wg3ly5fXei0tLaF9+/awdetWQbmPHNZUKpW0d1EMa65cuZL2u84J1rxx4wZvvH358iXNS7Hm+fPnJbPm0aNHeXOf9PR0VtbcvXv3b82aU6dOpf2+8oo1r127RvPqmzUPHjwoiDVLly5Ny306deoE27dvl8yaa9euFcSagwYNouU+9erVg8WLF+c6ax46dIjmLVeu3G/PmikpKbnCmj9+/NDpBQDo2LEjLfehWPPr16+8Xi7WfP36Ne9zWrt2Le13XblyZZg2bZog1jx//jzNW7p0aRg7dmyus2Z0dLTeWLNOnTq03EffrPn8+XPeZ7xr1y6al2LNu3fvSmbNgIAAQaxpamqq9eYla5YrV46W+3To0OG3Z82lS5fSftd5xZrPnj2jefXNmnv27BHEmj4+PrTcp23btrBp06ZcZ81JkybR4m2NGjUks2bFihUFs+bly5dp3pIlSxoEa5YoUULrzUvW/Pfff2nxNq9Yc9++fTSvGNa8d+8ezZuXrGlvb6/15iVrtm3blhZv9c2ajx494n0XT58+TfPmFWtGRkZmY80+ffpIYs0CBQpAly5dBLNmjRo1aPG2devWglnzn3/+ob2LecWa27Zto3nzijW/fPlCq7MbCms2bdpU6zU3N4fmzZtLZs26desKZs2FCxfSftdVq1bNE9Z89OgRzfs7sKaQ3Mfb21vrzUvWHDduHC3e1qpVC+bPn/9bs+bbt28lsyaRfhUaGoo/d3fIiZ64nPiX/OkHkcbBP0aPHz+mBU/8lC9fHiZPnsxZDAoLC6P9JYef4sWLg1Kp5CwGpaSkgJOTE6vX2dkZBgwYwFkMYv4lh59ChQrBP//8o7MY1KlTJ1avkGLQ+PHjWb1CikHr1q1j9QopBl24cIHzOVHFIK4PYe/evaP9JYcfvmJQdHQ0WFtbs3o9PDxg+PDhnE2XGRkZUKxYMVYvVQziarrUaDRQt25dVi/edMmVEPXp04fVS30I01UMmjVrFqvX1NQUGjVqpLMYtHv3blavkGLQ7du3OZ8xXzHo27dvtIIqfviKQYmJiVC4cGFWL18xSKVSgaenJ6tXSDGoVatWrF6qGLRjxw7OYtCIESNYvebm5tCyZUtYt24dZzFo2bJlnO8i1XTJVQw6ceIE53OqVq0azJ49m7MY9Pz5c06vp6enzmJQREQEraCKH75iUFpaGq2gih++YpBGo4Fq1apxxluqGMT1Iaxr166c8ZavGDR58mTOeEsVg7iaLjdv3sz5LlLFIK6my4CAAM7n5O3tDdOnT+csBn38+JH2MRk/VNPljRs3WN/FX79+QcGCBVm97u7uMHToUM5iUFZWFpQsWZLVK6QY1KhRI1avkGJQ//79OeMtXzFo3rx5rF4hxaD9+/dzPie+YtD9+/c5vVQxiKvpMiQkhFZQxQ9VDOJqukxOTqYVVPHj4uICAwcOhNOnT7MWg9RqNVSsWJHVa2try1sMateuHauXarrUVQwaPXo0Z7zlKwatXr2aM97yFYPOnDnD+ZzwYhDbu/j69WtOL18xKDIyEiwtLVm9RYoU0VkMSk9PBw8PD1YvXzFIo9FAzZo1Wb1UMUhX02WPHj1Yvfnz59c2XXIVg6ZPn87qpYpBK1eu5CwGbd++nTPe1qxZU2cx6MaNG5zPqVKlSjqLQcyCKn5KlSqlsxgUHx8PhQoVYvXyFYOysrKgTJkyrF4hjQfNmjVj9VpbW/M2HgwZMoTVK6TxYNGiRZzxtkGDBrB06VL4+PEjq/fIkSOcz4mv8UAua1pYWLB6+VgzNTUVnJ2dWb25zZqdO3dm9eY2a65fv54z3uqTNXUN+MXExOQaa+oa8NNoNFCvXj1Wb26z5uzZsznjLR9r7tmzhzPe5hRrsr2LQUFBucqaXB/CVCoVeHl5sXr1yZrUgB8Xay5fvpzzXZTDmj4+Pr8ta7q6urJ6cdbkyn0UCgVnvJXKmvnz54f27dvrHPCbMmUKZ7yVy5q6BvyuXLnC+ZwIa2bXgAEDOONtTrAmV9PlgQMHOJ9T9erVdQ745SZr6hrwS05OBgcHB1avXNbs0aOHTtZs3749q/d3Zs2zZ89yPqecYE2uOntUVFSusubx48c5422tWrVYvUIG/HKLNRs3bqyTNXfs2MEZb3OTNb9+/aoX1lSpVLysqSv3ad68Oas3J1hz/fr1nKy5ePFizngrhzWppksu1nzy5Amn93dmzSpVqrB6c5s1J0yYwOrNKdbkarq8ePEi53OqUqWKzgG/9+/f5xpr6rpMJjMzU2+s2bdvX1bv78CaXHX2O3fucD7jnGDNq1evcrImPiSLH7msSV0mwxVvW7duzerFL5P53Vjz5MmTnM8pp1iT7V2MiIigNS7jR1+saWNjA927d9c54NetWzdWrxDWJNKfSOMgaRwkkqElS5aAQqHg/IsZP8xi0P79+0GhUNCmdLkOsxh048YNUCgUnAVk/FhYWNCKQZ8+fQKFQsHZBIMfZjEoKSkJFAoFZ9LHPMxiUNOmTWk3HOk6zGJQnz59oFKlSoK8zGKQv78/Z+MO8zCLQevWrQOFQsEJQvhhFoNOnDgBCoWCs7iIH2Yx6NGjR6BQKDiLVvhhFoNCQ0NBoVCAu7s7r5dZDFKr1aBQKDiLmsxDFYOoCdwOHTpwJozMwywGDRs2jBP8mAefwE1PT4e5c+eCQqHgLALjh1kM2r59OygUCs7kCz/MYtClS5dAoVBwFjTwwywGvX79GhQKBWcDMH6YxaDY2FhQKBS0SX2uw1YMql+/PmchhXmYxaDu3btzFkSZh1kMGj9+PG0qWddhFoOWL18OCoWCswiMH2Yx6NChQ6BQKDhhFz/MYtDt27dBoVBwQhR+mMWgwMBAUCgUnMk5fvAJ3I8fP0JaWhooFAraTVS6DrMY1KJFC9qUv67j5eVFKwb179+fdluHrsMsBk2fPl1wvGUWgzZu3Cg43jKLQWfOnAGFQkGbDOQ6zGLQ06dPQaFQ0CbOuA5VDKImcCMiIkChUHAWn/HDVgyqUaMG7aZVXYdZDOrcuTNtsljXYRaDRo4cSbuNTtdhFoMWLlwICoWCswiMH2YxaPfu3aBQKDgL/fhhFoOuXLkCCoWCdvMF12EWg96/fw8KhYKzMIkfZjEoPj4eFAoFFC1alNfLVgxq1KiR4HhbsWJF2gRur169BOc+zGLQpEmTBL+Lrq6utAnc1atXg0Kh4BxuwQ+zGHT06FFQKBS0WxG4DrMYdP/+fVAoFJzNofhhFoOCg4NBoVDQprh1vYt4MSgzMxMUCgXtNgZdh1kMatOmDecQAPMwi0GDBg3ibLBinqJFi8LIkSO1H8Jmz54NCoWCswiMH2YxaMuWLaBQKDibHPDDLAadP39ecLxl3iz88uVLUfEWv1k4KipKVO7DvFm4Tp06tAlwXYe6WZhqPPDz84MKFSoI8jIbD8aMGSM492E2HuQ1a1K5T16zJnXbU3Jycp6xJvNm4b59+xoca548eTLPWTMoKAjCwsIMhjXxAb+8Yk38tqekpCTYsWOHXljzzZs3BsWa1IDfP//8k6esSQ34rVixIs9Yk7rtKSoqCu7cuSOKNfHbnvTJmi1btswT1ixWrJiWNdPT02HGjBlQrVo1QbmPvllz69atEBERAc+ePcsT1mS77almzZp5wprMLTZKpdKgWDM6OhquXr2a56z5+fNnSEhIEJz76JM1mbc9TZ48WS+seezYsTxnzeCVmOwOAAEAAElEQVTgYPj+/bsk1nz//r1eWJMa8Bs8eHCesCZzwG/r1q2Cc5/cYE2huQ/OmtHR0Xpjza5du+Y5a6ampsLSpUsNgjXxAb/Pnz/nGWsyt9g0a9ZMcO4jhzWZW2ymTp0qqs5OsWZycjKsX78+z1kzIiICHj9+nKesiQ/4GRprpqWlwbx58/TCmpcvXxac++Qka/769UtUnZ1iTWrAr0GDBnnGmviA34QJEwS/i3JYkzngZ4ismZ6eLos1ifQr0jhIGgeJZIirs53vmJmZCYYJtr8shX4QYTtyvEKTLrbj4eEh6OMk23FwcBD0lxvbKViwoKBEk+3ky5dP8n+zqamp3p6T0MSJ7Qj9y5ztuLi4CEpg2E7hwoUFJZpsx8rKSlCiyXbMzc0FF1KZx9jYWG/PWGr8QOh/xSAhRQG24+joKOjDFduxsbERlGiynfz580v+f9PU1FTyO2Go8dbd3V0QMLIdOzs7QWDPdgoUKCDoowbbsbCwkPzfbGJiYpDvYvHixQUVYdmOs7OzoOIN27G1tRX0UYPtWFlZCS6yMY+c3MfY2FhwgS6nn7HUvyMQ+l8xSMgHEbbj4OAgqJDKdgoWLCjoowbbyZcvn+CPGswjN97KecZych858dbV1VVQsZztFC5cWNBHZLZjbW0t6KMG27GwsJD8/7WhxttixYoJ+gDNdpydnQV9uGI7hQoVEvRRg+1YWlrqJd7qM/eRE2/lsKa9vb3BsaaJiYmsuEdYU/iRy5pych85z0nO36n6ZE0hH67YjqGypr7yWzm5j5ubm6DGLLZDWFPc+dtYU1+5jz5re4bKmnJyn7+NNaX+9yJEWFPsMUTWdHJyklxnl8uaUnMfwprijhzWLFCgAGFNEUdOvCWsKe7I+TtVzrtYtGhRQc13bEcua0qtsxPWFHfwy2T4VpMT5Y5yo3HQGBEREelU4cKFka2trSSvjY0NcnBwkOS1tLRELi4ukrxmZmaoSJEikrzGxsaoSJEiyNhYWnhwd3dHFhYWkrwuLi7IyspKktfBwQEVLFhQktfW1hYVLlxYkrdgwYLIyclJkjdfvnzIzc1NktfU1BQVLVpUktfIyAgVKVIEmZqaSvK7ubmhfPnySfI6Ozsja2trSV57e3tUqFAhSd5ChQohe3t7SV5ra2vJ76K5uTlyd3eX5JX7LhYpUgSZm5tL8rq6uiJLS0tJXkdHR8nvop2dneR4W7BgQeTo6CjJmz9/fr3EW+pdNDExkeT38PDQW7y1sbGR5LW1tUV2dnaSvAUKFJAcby0sLCS/iyYmJpLjLUJIb/HWyclJcry1s7OTHG9tbGwkx1srKytZ8dbDw0OSV2689fDwMLh4W7hwYVm5j5x4Kyf3kRtvpb6LcvJbubmP1HgrN/dxdnaW5M2JeGtkZCTJ7+HhgczMzCR53dzcUP78+SV5HR0dUYECBSR55bKm1HdRLmvqM94aImtKzX0Ia4qTIbKmlZWV5HirT9aUE28NlTWl1vby58+PXF1dJXnlsmbRokX1wprOzs4GyZqGmPvIjbdScx8nJyfJuY9c1pT6LhLWFCe5rCkn95Ga3+bLl09yvNU3a/5NuQ9hTXEirClcVLzVR+7j6upqcKwpp87+t7Km1HdRTryVW2eXw5py30V9xFtXV1dZ8VZfdXZ9sKapqankZ0yxJnWkPi+i31A50X34px9Ebhz8I7R161bo3LmzoIlqb29v2tqHM2fOgK+vr6AbLJhrHx4+fAi+vr6CJqrd3d1pax+CgoLA19dXUKe6vb29du1DQkICpKSkgK+vr6Br7gsUKAB+fn7a9coAAP369YO6devyevG1D9T7MWnSJGjevDmv18TEBBo1agTLly+Hz58/AwDA8uXLoWPHjoI62qtXrw5z587Vrn3Yt28f+Pr6Crq9i1qvTK19CAgIAF9fX0FrEJhrH169egW+vr6CJk5cXFxoax8iIiLA19dX0CoDW1tb7dqHuLg40Gg04OvrCwqFgteLr334+fMnAAAMGzYMGjRowOtlrn0AAJg1axa0adOG10utfaBWXmk0GtiwYQN07txZ0JXe1NqHp0+fgkajgWPHjoGvr6+gVReenp4wceJE7dqHO3fugK+vr6CJ6iJFisCIESO0ax8+ffoEvr6+giYwmGsf4uPjwdfXV9A19zY2NtCtWzft2gcAgJ49e0KtWrV4vfjahx8/fgAAwNixY6Fp06a8Xnztw9evXwEAYNGiRdChQwdeL9vahx07doCvr6+giWpq7QO1Xvn8+fPg6+sraKqIufbhyZMn4OvrK2jCz83NDYYOHapdrxwSEgK+vr6CJnSolVdHjhyBhIQESE9PB19fX0ErfpjrlQEABgwYAPXq1eP1Mtc+AAD4+/tDy5Yteb0mJibQoEED7doHAIBVq1ZBp06deL0IZV/7cODAAfD19RV0gwVz7cO1a9fA19dX0A0WzLUPb9++BV9fX0G3G1BrH6iVV1FRUeDr6ytojRO+9uHXr18AAODn5wfVq1fn9VpaWkLHjh2165UB/nfrcaNGjXi9ZmZm0Lx5c1izZg0EBQUBAMCcOXOgbdu2vF58vTK19mHTpk3QuXNnQRPVVapUgZkzZ2rXPpw8eRJ8fX0F3WBRtmxZ2tqHe/fuga+vr6CJag8PD9rah69fv4Kvr6+gqUZ87UNiYiIkJiaCr6+voJVqzLUPAAC9e/eG2rVr83rz5csHbdu21a68AgCYMGECNGvWjNeLr3348uULAAAsWbJEcLytWbMmzJs3T7v2Yffu3eDr6ytonUmlSpVg6tSp2rUPFy9eBF9fX0E3WFDrlam1D8+fPwdfX19Bt8m4urrC4MGD4ezZs5CSkgJhYWHg6+sraJqSufYhKysLfH19Ba34wdc+REZGAgDA4MGDoX79+rxec3Nz2toHAIDp06dDq1atBL2L1NqHDx8+gEajgbVr10Lnzp0F3SbDXPtw+PBh8PX1FXSDBbVi8M6dO6BSqeDmzZvg6+sr6AYLauXV5cuXIT09HT58+AC+vr6Cpm2Z65VjY2PB19dX0BonauXV/v37tblP9+7doWbNmrze/PnzQ/v27WHr1q0QHh4OAACjRo2Cxo0b83rNzMygadOmsHr1aggMDAQAgPnz50O7du0EvYvMFYM5wZpCbrCgWJPKfR49egS+vr6CJqpzgjWplVepqang6+sraMWPHNZkrlcGAJg8eTK0aNGC1/s7seaVK1f0wpo/f/4EX19fQWuccoM1GzZsyOulWJNaeQUAMHv27DxhTWrlFcWax48f1wtrfv78mbAmx8FZk1qvnFesyVyvLJY1qdsX/nbWFJL76Js1AwIC8pQ1meuV85I1mzVrBmvWrIFv377JZs3NmzfrhTXv37+vF9ZMSkoyCNak1itTrLl06VJBuY9c1qxYsSKNNS9dugS+vr6Cbu/KSdb88eOH4Do7kzVVKlWesyZVZ58xYwa0bt1a0LsolzXx9cpHjhwBX19fQbd35QZrCrl1jMmav379Al9fX0ErLHOaNUePHg1NmjTh9eY0a27btg06d+4s6PYufbImvl45ODg4z1izS5cuNNb8999/84Q1GzZsSGPNFStWENbkOBRrUuuVAcAgWLNu3bqsrCkk95HDmuXKlTNo1qRyn7xkTWq9cl6z5rRp0wyWNePj4yEjI0MWaxLpV2RVMWkcJJKpq1evsgY8KknEC2RMffr0ibX4TCWJeIGMqbi4OM6mQ2aBjKmsrCzOgkaFChVoBTI2cX04YzZjsGngwIGsXqpAdvr0aUhOTmb1zp8/n9WLN2NQSSJTBw8eZPVSBbLt27drC2RMPXz4kNVLNWPgSSJTISEhrAkBniRSBTKmkpOTOUGZShKpAhlTarWaM/kqV64crUDGJq4kiFkgY9OYMWNYvcwCGZvWrFnD6mUrkDF17tw5Vi9VINu8ebO2QMbUmzdvWL1szRhMRUVFsX54pwpk8+fP1yaJTGVkZHAWrSpVqkRLEpnSaDScBUIqSaQKZGzq1asXq9fV1RWGDBkCZ8+ehdTUVFbvjBkzWL3MAhmbdu7cqTNJxAtkTN24cYPVy9aMwVRgYCArgJmYmGgLZB8/fmT1xsfHcybnzGYMplQqFWeCTRXI7t69yxlvuQoLxYoVA6VSCQEBAZCens7qHTp0KKvXyckJBgwYoP0gwaYlS5awetk+SDB19OhRznjboUMHWoGMqadPn3LGW2aBjKnw8HDW1RHUBwm8QMZUamoqJygzC2RMaTQaThBiNv6zydfXl9XLbMZg08SJE1m9eOM/V7zdsGEDq5dqxtizZ4+2QMbUpUuXOOMts/GfqQ8fPrAWn6lmjBUrVmgLZEzFxMSwFkOMjIygRo0atAIZU5mZmZzNStQHCapAxpRGo+Es1jMLZGzq168fq5dZIGPTnDlzWL3MZgw27d27l9XLViBj6u7du5zxltn4z1RwcDBroxPVjLFkyRLtBwmmkpKSOD8EUY3/1AcJptRqNWdx0dPTEyZNmqQtkLGJq8jHLJCxSalUsnodHR2hf//+2gIZm1asWMHqZWvGYOrUqVOsXrYCGVMvXrxg9bI1YzD18+dP1uIzW+M/U2lpaZwfCahmjEePHnHGW64P4MzGfzZ1796d1Us1/lMfJNjk7+/P6rWzs4M+ffpomzHYtHXrVs54S32Q4CqQyWHNz58/c7ImsxmDqdxiTWYzBpu4PpzlNmsuWLCAM97qkzXxxn+mQkNDc4018WYMptRqNWeTQ26z5tixY1m9Qlhz7dq1rN68YE223CenWJNqxmAqIyODc9WgPlkTb8Zg08yZM1m9clmT2YzB1M2bN1m9uc2aCQkJsliTa2giJ1iTasZg07Bhw1i9OcGaeDMGU8eOHeOMt/pgTbZmDKZSU1M5G9JymzW7dOnC6s0p1uTKfTZu3MjqZWv8Zyo3WRNvxmAqNjY2V1iT2YzBJq4B7N+ZNfft28fqzQvWZGt0yinWpJoxmFKr1ZxNvMzGfzblFmvizRhsWrlyJas3t1nz5cuXrN7cZs309HRe1tSV+9SoUYPVmxOsSTVjsGnq1KmsXjmsKaQZ49q1a6ze3501udaz5jZrDho0iNWbU6zJVWc/dOgQq5et8Z+pR48esXrlsiaz8Z+plJSUXGFNZuM/m7gaLX9n1jx//jyrN7dZMzo6OtdYE2/8Z0qj0UCdOnVYvczGfzbpizV37drFGW9zmzXZ6uy/A2tSjf9s4hoWE8KaRPoTaRwkjYNEMqTRaGiTJkIKZLh69+6t9QppxsA1a9YsWpLYoUMHnUkirt27d9OSROZ0qC7dunVLVJKI69u3b7S/4JjTobqUkJBAu72GShJ1FcgoqVQq2lQglSTqKpDhwm+CEdKMgWv48OG0JJGvGQPXsmXLaEkiVSDjShJxHT9+nJYkMqdDden58+e0JLFGjRq06VBdYhZT8elQrgSCUlpaGq2YiieJXMBGSaPRQLVq1UQlibj8/PyyJYm6CmS4Jk+erPVaWVlB586dYceOHZxJIq5NmzZlSxJ1FchwBQQE0N5FvgIZro8fP9Lgnq8ZA1dsbCxtgptqxtCVJFLKysqiTSIxp0P5hE99MadD+dS/f3+tl206VJfmzp2r9eLToVwFMlz79++nxVu+DxK47t+/T3sXa9eurbNAhuv79++0Yqq3t7fOZgxcycnJtIlCIQUySmq1mnYbFHM6lE/4pKy9vT306dNHOx3Kp9GjR2u9bNOhurRq1Sqtl206VJfOnDlDAzZqOpSrQIbr1atXNHCipkO5CmS4IiMjaTdmUB8kdBXIKKWnp9OmzagPEroKZJQ0Gg1tklpIgQxXjx49tF4hzRi4pk2bRou3VDMG1wcJXNu3b6fFW77Gf1zXr1+nxVvmdKguffnyhfYhGZ8O5XsX4+PjaRPczOlQXcrKyqJNYVMfJHQVyHDht09QHyR0FchwDR48mBZvu3XrprNAhmvRokW0eNuuXTvYvHmzoHh7+PBhWu7DnA7VpcePH9PiLV/jP66wsDDajRl8zRi4UlJSwMnJSetlTofqkkajod0CzpwO5RN+OyxzOpRP48eP13rxDxJCcp9169bR4m2rVq10FshwXbhwgRZvGzRooLNAhuvdu3e0YqpCodBZIMMVHR1NuzGjfPnyvM0YlDIyMmi3DOGN/0LirRzW7NOnj2TWnD17tl5Y8/bt26ysydWMgYuLNbmaMXAlJiYaJGuOGDGClvvkFWueOHFCL6wZERHBypq6mjEopaWl0TY2UKypqxmDEhdr6mrGwNW1a9ccZ00huc/mzZtpuQ9fMwYufbHmr1+/9Maa+O1qVON/XrDmvHnzsrGmrmYMXAcOHMjGmqtWrcp11gwJCaGxJl/jPy65rInfBvU7sKaQmzFWr17NyppczRi45LDm69ev9caa+ICskGYMSvpkzenTp9Nyn7xiTXxA9ndgTV3NGJRUKpXeWHPIkCFar5BmDFw4awppxsB15MgRWu7D14yBS1+syRyQzUvW7Ny5s15Yc/369ZJZ8+LFi7R4y9eMgYvJmnzNGLhiYmJorCmk8Z+SLtbky300Gg3t9uDfgTW5Gv9x7dmzRy+sGRQUlI01dTX+42JjTb7Gf0oqlYo2IOvh4cHb+I8Lv3U0L1lz+fLlOc6aXI3/uAyVNfFbEoU0/uPCWVNI4z+uKVOm0FiTr/EflxzWvHLlym/HmkLq7DnNmroa/3ENGDAgG2vqavzHlVOsKaTxH9eDBw9o7yJf4z/R7yPSOEgaB4lk6OrVq7zToVz69OkTeHl50a7qFqq4uDioUKGCqCSRUlZWFtSuXZt2VbcYdezYkXc6lEsjR44U1YyBa/HixbzToVw6dOhQtqu6herhw4eCpkPZFBISAp6enrzToWxKTk4Gb29vUUkiJbVaDY0aNRKVJOLq2bOnqCQRF3X1utACGa7169dnWwslVOfPn892VbdQvXnzBry8vAQ3Y+CKiooCLy8v3ulQNmVkZIBCoeCdDmWTRqOB1q1b806Hcmnw4MG806FcmjNnjqgkEdfu3buzXdUtVDdv3uSdDuVSYGAgeHp6Ci6Q4YqPj4eKFSvyToeySaVSQZ06dWhrocSoS5cukq/qHjNmTLa1UEK1YsUK3ulQLh07dox3OpRLT58+FXTrLZvCw8PBy8uLthZKqFJTU6Fq1aq0tVBCpdFooGnTpqIKZLj69OnDOx3KpWnTpokqkOHavHmzqMZ/XJcuXRLV+I/rw4cP4OXlxTsdyqaYmBgoX74873QomzIzM6FGjRq806Fs0mg00K5dO1EfJHANGzYs21oooVq4cKGoZgxc+/fvz7YWSqju3buXbS2UUAUHB4OnpyfvdCibkpKSoHLlyqIa/ymp1WqoX78+73Qol7p37847HcqlCRMmZFsLJVSrV6/OthZKqE6fPp1tLZRQvXjxQtv8JqQZA9fPnz/By8tLVIGMUlpaGvj4+IhqxqCk0WigRYsWopoxcPXv3z/bWiihmjVrlqjGf1zbt2/nvYmIS3JY8/Pnz7JZU0wzBiW5rNmpUydRjf+45LDmkiVLsq2FEip9sWZoaKjeWVNoMwYuOaw5ZcoUyay5YcMGUc0YuAhr5h1rzp07V1TjPy45rHnr1q1sa6GESg5rJiQkQMWKFUU1Y1BSqVRQt25dUc0YuOSw5tixY/XCmsePH9eyppBmDFz6Zk0xzRiU5LJm3759RTX+45LDmlu2bDE41oyNjYUKFSqIavynJIc1AQDat28PXbt2FdyMgUtfrHngwAFRzRi4DJU1GzRoIJk1u3XrJmrIHJcc1lyzZg3Ur19fcDMGLjms+fLlS/Dy8hLc+I9LDmump6cbJGvOnj1bL6x57do1LWsKafzHpW/WFNP4j0sOayqVSr2w5uHDhyWz5qNHj0Q1/uOSw5opKSlQpUoVGDRoEJw+fTpPWbNXr16iGv9x6Ys1L1y4IKrxH5cc1oyOjoby5ctrWVNM7iOXNdu0aZNtBbFQUawpdMgclxzW3LNnj6jGf1x/I2v6+fmJavwn+n2UG42DRvC/xjgiHTIyMnJHCIUihFBoaChyd3fX85+ISIoyMjKQhYVFnnszMzORmZkZMjIyEu1VqVTIyMgImZiYiPYCAMrKykLm5uaivQjp7/elT6+5ubmk55SZmYlMTU2RsbGxaK9arUYAgExNTUV7AQBlZmYa5O/a0N7FrKwsZGJiIukZazQapFarkZmZmWgvQob5uzbEZyw33pJ3UZxXaryV8y7KibcIGe7v2tDexaysLGRsbCzpXdRoNEilUpHcR4RXTu4jJ94ihEjuk0defcRbkvvknZewpuF4CWv+2V7Cmn++l7Cm4XgJa/7ZXn2xJsl9xHsJa/75XsKaf7aXsKbheA2NNREy3N+1ob2LJN7mrVdfuY++WJNIvwoLC0MeHh7UP3oAQJjcfydpHBQg0jhIREREREREREREREREREREREREREREREREREREREREREREREREpA/lRuOg+BZjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIigxVpHCQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi+otEGgeJ/hplZGTI8kpd6y3Hq1KpkFqtluQFANn/zX+bV+pzyszMRBqNRpJXrVYjlUolyUuesXiv1GeclZUl+V3UaDQoMzNTkhchw/1dy/HKeRflxFvyLuadV1/xNisrS5IXIcP9XevLS+KtYXj18S6SeJu3Xn28iyTeivcS1vzzvYaW+5BnLN5Lch/D8JLc58/3Glq8Rchwf9f68uoj3gIAibcivSTe/vlefeU+JN6K8+qLNcm7mHdekvv8+V7Cmobh/dtyH6I/T6RxkOiv0d27d1HlypXR9OnT0aNHj0QF4ZCQEOTl5YXGjRuHrl+/LiohSktLQxUrVkRDhw5F586dQ2lpaaL+3HXr1kV9+vRBR44cQQkJCYJ9RkZGqFu3bqhLly5o165dKDo6WtTPnTBhAmrVqhXasGEDCgkJEeVdvXo1atiwIVq2bBn69OmTKO+pU6eQQqFAc+bMQS9evBD1F+3Lly9R+fLl0ZQpU9C9e/dEJURRUVHIy8sLjRo1Cl25ckVUQpSVlYWqVq2KBg4ciE6fPo1SUlIEe42MjFCzZs1Qjx490MGDB1FcXJwob//+/VHHjh3R9u3b0c+fPwV7EUJo1qxZqHnz5mjNmjUoKChIlHf79u2obt26aNGiRejdu3eintPVq1dRlSpV0MyZM9GTJ09EvYtfvnxBnp6eaMKECejWrVuiEqLExERUvnx5NHz4cHTx4kWUnp4u2AsAqGbNmqhfv37o+PHjKCkpSbDXyMgIdezYEXXt2hXt3bsXxcbGCvYihJBSqURt27ZFmzdvRmFhYaK8S5YsQY0bN0YrV65EX758EeU9fPgwqlmzJpo/fz569eqVqGf88OFDVKlSJTRt2jT04MEDUe/ijx8/kKenJxozZgy6du2aqHcxLS0NVapUCQ0ZMgSdPXsWpaamCvYaGRmhBg0aoF69eqHDhw+Ljrc9e/ZEnTt3Rjt37kRRUVGCvQghNHnyZNSyZUu0fv169P37d1He9evXo/r166OlS5eijx8/inpO586dQ9WqVUP//fcfev78uSjv27dvUfny5dHkyZPRnTt3RL2Lv379Ql5eXkipVKLLly+LghO1Wo18fHzQgAED0MmTJ1FycrJgr7GxMWrVqhXq3r072r9/P/r165dgL0IIDRo0CHXo0AFt3boVRUREiPLOnTsXNW3aFK1evRp9+/ZNlHfXrl2odu3aaOHChejt27eintPNmzeRt7c3mjFjBnr8+LGoeBsUFIQ8PT3R+PHj0c2bN0XlPsnJyahChQpo2LBh6MKFC6Jzn9q1a6O+ffuio0ePosTERME+IyMj5Ovri/z8/NCePXtE5z5jxoxBbdq0QRs3bkShoaGivCtWrEANGzZEy5cvR58/fxblPXbsGKpRowaaO3cuevnypahn/OzZM1ShQgXk7++P7t+/Lyre/vz5E3l5eaHRo0ejq1evioq3mZmZyNvbGw0aNAidOXNGVLw1NjZGjRs3Rj179kSHDh1C8fHxgr1GRkaob9++qFOnTmjHjh2ic5/p06ejFi1aoHXr1qHg4GBR3s2bN6N69eqhJUuWoPfv34t6TpcvX0Y+Pj5o1qxZ6OnTp6LexQ8fPiAvLy80adIkdPv2bVHxNj4+Hnl5eaERI0agS5cuicp9NBoNql69Ovr333/RiRMnROU+xsbGqG3btqhbt25o3759onOf4cOHo3bt2qEtW7ag8PBwUd4FCxagJk2aoFWrVqHAwEBR3v3796NatWqhBQsWoNevX4t6xvpmzSFDhuQ5a3bv3h35+vqiXbt2ic595LDmmjVrUIMGDQyKNaOjo7WsGRAQICr3kcuazZs3Rz169EAHDhwwKNasU6cOYU0B0idrLl26FDVu3BitWLEiT1nz0aNHqFKlSmjq1Kl5yprp6emocuXKaPDgwZJYs2HDhnphzSlTpuiFNc+fP69lzWfPnhkMa1arVg31798/z1lz8ODBqH379nnOmrt375bMmrdu3dKyptjcRw5rpqSkaFnz/PnzecqaXbp0QX5+fmj37t0Gw5rHjx9H1atX/6tYs0mTJlrWFJv79OvXD3Xq1ElS7iOHNbds2YLq1auHFi9enKes+fHjR+Tp6YkmTpxoMKxpZGSE2rVrpxfWXLhwoZY1v379KsorhzXv3bunZc2HDx8aDGvWr18f9e7dO89Zc+LEiXphzdOnT0tmzVevXmlZ8+7du3nGmiqVSsuap06dyjPWRAihAQMGoA4dOqBt27aJzn30xZrXrl3TC2smJSXpjTU7deqkZc2YmBjBXoQQGjVqFGrbti3atGlTnrNmjRo10Lx58/KcNb28vAyONXv16qVlzcjISMFeoj9UAEAOz0EIuSOEACEEoaGhQGSY0mg0ULduXaCepaOjI/z7779w4sQJSEpK4vX36dNH67WxsYFu3brBvn37IDY2ltc7a9YsrTd//vzQrl072LJlC/z48YPXu3v3bq3X1NQUmjRpAqtWrYKvX7/yem/duqX1GhkZQa1atWDBggXw+vVr0Gg0Or3fvn0DU1NTrb9y5cowffp0ePjwIajVap3ehIQEKFy4sNZbunRpGDduHFy/fh0yMzN1elUqFXh6emq9bm5uMGTIEDh37hykpqby/je3atVK67Wzs4PevXvDkSNHICEhgdc7fPhwrbdAgQLg6+sLu3btgqioKF7vsmXLtF4LCwto1aoVbNiwAUJCQni9x48f13pNTEygQYMGsGzZMvj06ROv9/nz51ovQggUCgXMmTMHnj9/zvuMIyIiIF++fFpv+fLlYcqUKXD37l1QqVQ6vWlpaeDi4qL1Fi9eHEaNGgUBAQGQkZGh06vRaKBatWpar7OzMwwcOBBOnToFycnJvP/Nfn5+Wq+trS306NEDDhw4AL9+/eL1Tp48Weu1tLSEDh06wLZt2yAiIoLXu2nTJq3XzMwMmjVrBmvWrIGgoCBeb0BAgNZrbGwMderUgUWLFsG7d+94n9PHjx/B2NhY669SpQrMnDkTnjx5wvsuxsbGQsGCBbXesmXLwoQJE+DWrVuQlZWl05uVlQUlS5bUeosUKQLDhw+HixcvQlpaGu9/c8OGDbVeBwcH6NevHxw/fhwSExN5vf3799d6CxYsCF27doW9e/dCTEwMr3fu3Llab758+aBt27awefNmCAsL4/Xu37+fFm8bN24MK1asgC9fvvB679+/T4u3NWrUgHnz5sGrV694n/H379/BzMxM669YsSJMnToVHjx4wPuMk5OTwd7eXustWbIkjBkzBq5du8Ybb9VqNVSoUEHrdXV1hcGDB8PZs2cFxdt27dppvYULF4ZevXrB4cOHIT4+ntc7evRordfa2ho6d+4MO3fuhMjISF7vqlWraPG2ZcuWsH79evj+/Tuv98yZM7R4W79+fVi6dCl8+PCB9zm9evWKFm+rVasG//33Hzx79ozXGxkZCZaWllqvl5cXTJo0Ce7cucMbb9PT08Hd3V3rLVasGIwcORIuX74M6enpOr0ajQZq1qyp9To5OUH//v3h5MmTguJtjx49tN5ChQpB9+7dYf/+/YLi7bRp02jxtn379rB161YIDw/n9W7fvp0Wb5s2bQqrV6+Gb9++8XqvX79Oexdr164NCxcuhLdv3/I+py9fvoCJiYnW7+3tDTNmzIBHjx7xvovx8fFQqFAhrbdMmTIwfvx4uHHjhqB4W6ZMGa3Xw8MDhg0bBufPnxcUb5s1a6b12tvbQ58+feDo0aOCcp/BgwfTcp8uXbrA7t27ITo6mte7aNEiWrxt3bo1bNy4URAvHT58mPYuNmzYEJYvXw6fP3/m9T5+/Jj2LlavXh3mzp0LL1++5H3GYWFhYGFhofVWqFAB/P394f79+7zvYkpKCjg5OWm9JUqUgNGjR8PVq1cF5T7e3t5ar4uLCwwaNAjOnDkDKSkpvP/NnTp1osXbnj17wsGDByEuLo7XO378eK3XysoKOnXqBNu3b4efP3/yetevX6/1mpubQ/PmzWHt2rUQHBzM671w4QIt96lbty4sXrwY3r9/z/uc3r17B0ZGRlp/1apVYdasWfD06VNeb3R0NFhbW2u95cqVg4kTJ8Lt27d538WMjAwoVqyY1lu0aFEYMWIEXLp0SVC8zQ3WFJL7zJ49Wy+sefv27WysOX/+fMmsOW3aNEGsmZiYmI01x44d+9uz5ogRI2i5T16x5okTJwySNV1dXWmsqVQqJbPmgAEDBLNm165dabnPP//8kyesuXnzZoNjzV+/fuU4a164cEFQ7tOoUaNsrHns2DHJrLlnzx5B8XbevHm03KdNmzawadMmQax54MABWrxt1KhRnrBmSEiI3lizYsWKBseaq1evpuU+LVu2hHXr1klmzSVLlghizdevX2djzdmzZ+cJa3p4eEhmzVq1aumFNadPn57jrBkYGMjrvXHjBitrvnnzJs9Zc9y4cXDjxg1BuQ/Omu7u7jB06NA8Yc0hQ4bohTWPHDkimTWfPHmS46x579493ncxNTUVnJ2ds7HmlStXJLPm6dOnBbFm586dtV5bW1uDYM2LFy/qhTVjYmL0xpr16tX7bVhz8+bNglhzz5492Vhz5cqVuc6aQUFBNNasVKlSnrGml5eXZNZs3bq1Xlhz+fLlOc6aHz9+5PUaKmsqFAq9sOaUKVP0wppXrlxhZU0hdfZPnz6xsubjx48ls+bNmzdFs6aHh0eeseaAAQNorOnn5/fbs+aDBw8ksyaRfhUaGorHUXfIiZ64nPiX/OkHkcbBP0ZXr16lJSM4nLRo0UJnMejz58+0v+Twvyzr1aunsxgUFxcHNjY2rD/bx8dHZzEoKysLSpUqxer19PTkLQY1btyY1SukGDRw4EBWL14M4oKT+fPns3rxYhBX0+XBgwdZvfnz54f27dvDli1bOItBDx8+ZPVSxaBVq1ZxFoNCQkLA3Nw8m5cqBi1YsICzGJScnAyOjo6sP9vb2xumT5/OWQxSq9VQqVIlVi/VdKmrGNShQwdWr5Bi0NixY1m9QopBa9asYfUKKQadO3eO1SukGPTmzRtWL14M4voQFhUVBVZWVqx+qhj04sUL1meckZFBK6jih68YpNFooHbt2qzeEiVKwKhRo3QWg3r16sXqdXFxgYEDB+osBs2YMYPVSzVd6ioG7dy5k9VrZWUFHTt21FkMwguqzHjLVwwKDAykFVTxeMtXDIqPjwdbW1vWn40Xg9jeRZVKBWXLlmX1UsUgXR/CWrRoweotUqQIjBgxAi5evMgZb4cOHcrqpYpBx48f54y3S5YsYfVSxSBdTZdHjx7ljLdU0yVXMejp06esXqrpUlcxKDw8nAb4eLytWbOmzmIQs6CKH75ikEajgapVq7J6S5UqxVsM8vX1ZfUKKQZNnDiR1YsXg7g+hG3YsIHVK6QYdOnSJVYvVQxav349ZzHow4cPtIIqHm8bNGgAS5cu5SwGxcTEQIECBVh/NtV0yVUMyszMhOLFi7N6vby8YPLkyZzFII1GA/Xr12f1CikG9evXj9UrpBg0Z84cVq+QYtDevXtZvUKKQXfv3mX14sUgrqbL4OBgWkEVj7d8xaCkpCSws7Nj/dl8xSC1Wk0rqOKnbNmyMH78eJ3FoDZt2rB6qaZLXcUgpVLJ6nVwcIC+ffvqLAatWLGC1SukGHTq1ClWr5Bi0IsXLzjjLV8x6OfPn5A/f37WeEsVg7g+hKWnp4Obmxvrz6YaD7iaLjUaDVSvXp3VSzUeXL16lTPedu/endVLNR7oarr09/dn9VJNl4cOHeKMt1u3bmX1Uh/CduzYwdl48CezJte72KRJE1ZvbrPmggULOOOtvliTarrkYs3Q0FBO1qQG/KSwJjXgp4s1K1euzOr9nVlz7dq1rF6cNblyHy7WtLCwEMSaXLmPXNacM2eOTtYsUqQIq7dChQowZcqU35I1Z86cyerNbda8efMmZ7zNTdZMSEjgZU2upkuVSgXlypVj9cplTWrAjyveDhs2jNXr6OioHfATy5pCBvyOHTvGGW9/Z9bEh2Txk9us2aVLF1YvxZq6mi75WFNX0+XGjRtZvXjTJVe8vXz5Mme85Rvw08Wa1IAfF2vGxsbqhTUBABo0aMDq/Z1Zc9++fazenGBNXQN+wcHBtMZlPN7WqVNH54AfH2vOmDFDJ2uWL1+e1SuENdu2bcvqzW3WXLlyJWe8zU3WfPnyJWe8pViTq+kyN1lT14CfRqOBGjVqsHpLlizJO+CnizX5BvymTp3K6s1t1rx27RqrF2dNrtxHn6xZunRpVi/FmrqaLrlYs2jRojBy5EidTZeDBg1i9VKsqavpkos1bWxsoHv37jovkzl06BCrFx/w42LNR48eccbb3GTNlJQUvbFmx44dWb04a3LlPrnJmrrq7OfPn2f1Uqypq+mSjzV1DfhFR0fnCmtSTZe6WLNOnTqsXuoyGV2s2bt3b1ZvbrPmrl27OOMtxZpcuY8Q1uRqugwMDOSss1OsyTXgl5usyTfg17JlS1av2MtkiPJWpHGQNA4SydC2bdugS5curMDKPFQxiJrAPXv2LPj5+dGm+7hOqVKlaBO4jx49Aj8/P04Qwg9zAjcoKAj8/Pw4G1nww5zATUlJAT8/P86iFX7YJnD79+9Pm2TiOmzFoClTpnD+RcNMiJjFoBUrVtAm3XQdZjFo//794OfnxwqszMMsBl25cgX8/Pxo09Rcp1ixYqBUKrUfwl69egV+fn60qTGuQxWDqAnciIgI8PPz4yxo4IcqBlETuBqNBvz8/Dg/yuKHbQJ3+PDhnI2l+GG77Wn27Nm0CXCuw3bb08aNG6FLly6sxXrmoSZwqWLQ8ePHwc/Pj7NAiB/qtieqGHTnzh3w8/PjLALjh1kM+vTpE/j5+XF+WMUPsxgUHx8Pfn5+nBCFH7wYRDVd9urVi/NDEH6oYhD+IWzcuHHQvHlzXi9VDMIncBcvXky74UjXM65RowZtAnfnzp3g5+fHCqzMwywGnT9/Hvz8/DiTZPwwb3t68uQJ+Pn5cTZ44odZDAoJCQE/Pz/OBBs/zGJQRkYG+Pn5gY+PD6+XrRg0cOBAzuIzftiKQdOmTaNNJHIdvBhEfQhbvXo1+Pr6sgIr81DFIGoC99ChQ+Dn50e72YDreHp60iZwr1+/Dn5+fpxFCfwwJ3Dfvn0Lfn5+nIV+/DAncKOjo8HPz492yyLXYbtZuGvXrrTb+7gOWzFIqVRyFryY7yKzGDR37lxo3769oHeRWQzasmULdOnShRVYmYd5s/CpU6fAz8+Ps0CIH+bNwvfv3wc/Pz/aBCfXoYpBVNNlYGAg+Pn5cRYX8UMVg6gJ3KSkJPDz84MqVarwetmKQX379qXdGMZ12CZwJ02axPlBFz9stz0tW7ZMcO5DTeBSxaA9e/aAn58f68dR5mEWgy5dugR+fn6cH2TwwywGvXjxAvz8/DgLT/ihbhY+ffo0JCcnw48fP8DPz4+zcRA/eDHo169fkJWVBX5+frQJX65DFYPwD2FDhw6l3YjLdahiED6BO3PmTM6GRfxQxSD8tqd169ZBly5dWIv1zMO87enIkSPg5+dHu9mA6zBve7p16xb4+fnRbkrkOsxi0IcPH8DPz482pct1mDcLx8bGgp+fH+dgDH7YGg969OhBu8GG67DdLDxmzBho2rQprxdvPKCaLhcsWMDZJIUfvPGAmsDVN2viN9NynZxkzdTUVL2yJn7zH9f5HViTGvCjWNPBwYHXm5Os+fPnT1Gsid/2pE/W/O+///4q1vz8+bNg1rS3t89x1uT6EIQfNtYcP368INZku+1JKGsilP22p127dglmTebNwhRr4jfJcB0maz59+lQwazJvFg4NDZXEmnFxcVrWxG/S5Do4a1JNl4MGDdILa65Zs0YUa+K3PVGsyfVxFD85yZrv3r2TzZr4LYtch401u3XrphfWnDdvnmjWpJou9cWaDx48EMyazAE/MazJvO1JLGsyB/z+Nta8fPlynrIm1XQphTWppkuVSiWYNdmaLoWyJtttTzNnzuRsWMQP283Ccljz6NGjBseav3790itr4rdwch22LTYLFizgbJLCD8Wa+G1P27dvF8Wa+M3C+mLN4ODgv4Y1qabLlStXimZNqunywIEDolgTv0xGLGviA36vX78WzJrMm4XlsCYAGCRrbtq0STZr4rfocR3mFpu7d++KZk1qwE8Ka1JNlwkJCYJZk+0ymd69ewtmTeaAnxzWXLJkiWzWxG8Q5jpM1rxw4YLBsCbVdCmFNYXeLEyU+yKNg6RxkEiG8OuaxRxHR0dBwMh2bGxsBP3FyHby58/PeWMO3zE1NRVUGGQ7VDFISDMI26lcubKgBIbtlC5dmrY+Qcxxc3OjXcsv5tjZ2XFOqfEda2trQYUftmNhYSH5GVNwIsWL0P+KQUKAke2UL19eUPGG7RQvXlxQ8YbtODs7C2rMYjuFChUSVBRgO5aWloJgk+2YmZlJfhepYpCQDyJsp0qVKoKK5WynbNmygoo3bKdIkSKCijdsx8HBQRAwsp2CBQtKfhfz5csn+TmZmppKfheppkshBTq2U7FiRUFN6WynZMmSgoo3bMfV1VVQsZztFC5cWPK7aG1tLfldNDc3l/yMqXgr5KMX26lWrZogYGQ7Xl5egoo3bKdYsWKCijdsx8nJSRAwsp1ChQoJanZmO5aWlpLfJznxlioGCfkgwna8vb05b8HkO2XKlBH04YrtuLu7CyresB17e3vJ8bZAgQKy4q2+cp/q1asLKtCxnQoVKggq3rCdEiVK0FajijkuLi6CiuVsx9bWVnK8tbKykhVvpT4nqulSyAdotlO1alVBQ0Bsp1y5clCiRAlJ3qJFiwpqFGA7hDXFnUqVKhkkawppBmE7cllTbu4jxYuQfNYsWrSoJC9hTeHHUFnTw8NDb6wpNd7KyX0MmTWFfLhiO38ba1JNl0IaftiOHNb09PSUxZpCBvLYjlzWlPou/o2sWbp0ab2xptQ6O2FNcedvZE058dYQWbNIkSKENQUequlSH6xZqlQpg2RNqe+iXNaU6kXo72RNOXV2wprCD2FN4YesNP49lBuNg6aIiIhIp2JiYpC1tbUkb0JCAvr586ckb1paGgoLC5PkValU6Nu3b5K8AIC+ffuG1Gq1JH9wcDAyMTGR5A0LC0O2traSvFFRUcjMzEyS99evXyg6OlqSNzk5GUVEREjyZmRkoJCQEEletVqNAgMDJXkRQigoKAipVCpJ3pCQEJQvXz5J3vDwcOTg4CDJGx0djfLnzy/JGx8fj6KioiR5U1NT0Y8fPyR5s7KyUHBwsCSvRqNB3759QxqNRpI/ODhYsjcsLAwVKFBAkldqzEMIodjYWMk/NzExEYWHh0vypqenS34X5cbboKAgyfE2JCQEmZpKS+XCw8NR4cKFJXmjoqKQubm5JG9cXJzkdzE5OVnyM87MzJT8LuZEvM3KypLkDQkJQZaWlpK8ERERyNHRUZI3JiZG8s+Nj49HkZGRkrypqamSc5+srCwUFBQkyUvlPnLirZGRkSRvWFgYsrGxkeSNjIyUnHP9+vULFSxYUJI3KSlJcu6Tnp6OQkNDJXnVarXkeIuQ/NxHatwLDw9H9vb2krzR0dHIwsJCklfOu5iSkiI598nMzETfv3+X5KVyH/jf8J5oBQcHS37GYWFhyMrKSpI3IiJC8p9Zn6wp9V3UJ2t+//6dsKZAZWRkSH4XCWuK09/KmlLjnhzWjIyMlJxzyWVNqfFWTu5DWFOc5LKmnNxH7rso9X2Sw5qhoaEGyZpS30W5rCnnXQwMDNQLa/748YOwpkDJZc1v374R1hQouaypr3gbHBws+e/U0NBQycwnp87+N7JmUFCQ5HgrhzV//PhhkKwptc7+t7Km1NxHLmvKqbPrizUDAwNlxVvCmsIklzXlfEsJCgpCgYGB6OvXr6hMmTKS3y2i30w50X34px9Ebhz8I7Rw4ULw9vYWNFXEXBuxZ88e8Pb2FjStgq+N+PHjB1y7dg28vb0Frd3E10Z8/foVPn78CN7e3oKufGeuKExMTARvb2/BN8NRayMePXoEarUaGjZsKOj6YoT+f23EjRs3IDMzE3r06CF4+sLNzQ2GDh0K58+fh9TUVJg0aZLgiUY7OzvaisLVq1eDt7e3oEkGa2tr2tqIY8eOgbe3t6C1RBYWFtC6dWvt2oiHDx+Ct7e3oPULzLURISEh4O3tLWjFBkL0tRFqtRq8vb0FTwgz10a0bt1a8CQUc23EoEGDBE+7MVcUzp49G7y9vQVNVDNXFG7duhW8vb0FXdtuaWkJHTt2hO3bt0NERARcvHgRvL29Ba1CMTMzo60ofPXqFXh7ewuadKEmGBcvXgzv3r2DmJgY8Pb2FnStP0L/m2DE10bUqlVL8FQic21Ely5dBE+eenh40NZGjB49WvC7yFwbsWTJEvD29ha0QoG5NuLAgQPg7e0taC0Rc23EzZs3wdvbW9DEPXNF4devXwVPcjNXFKampoqKt8y1EU2aNBE8BV6qVCkYO3asdm1Enz59BN8qh6+NSElJAX9/f6hcubKgm/SYayPWr18P3t7egq5tZ66NOHXqFHh7ewuaxjY3N6etjXjy5Al4e3sLmvJlrigMDw8XFW+ZKwqrVq0qaG0VQv+/ovDu3bugUqmgXbt2gm94ZK4oHDp0qOBpNycnJxgwYIB2Tc+8efPA29tb0AqFQoUKwT///AP79++H2NhY2Llzp6jcB18bERAQAN7e3oImQPG1EYGBgfDu3TvB8Za5NiIuLg68vb0FT+sz10bUrVtX8FQic0Vh9+7dBec+7u7utBWF48ePFxxv8RWFCQkJsGLFCsHxtkCBAuDn56ddG3H48GHw9vYWdBMNtaJw06ZNEBoaCnfv3hUcb01MTKBRo0batRFBQUHg7e0taJKbmmCk1kZkZGSAt7e34Alh5tqIFi1aCM59mGsj+vfvL/hmFebaiBkzZoC3t7egeGtra0tbUbhp0ybw9vYWdEsJc0Xh2bNnRcVbfEXhixcvwNvbW9C6G+q2nMWLF8P79+/h58+f4O3tLfimIh8fH5g9e7Z2RWH16tUF5z7MFYWdOnUSfMtRkSJFaCsKR44cKTjeMlcU6os1r1+/rhfWTEpKksSa1IpCOazZs2dP0axJrSjUF2seP35cFGviKwrlsGZoaKhBsubgwYNFsyaV+8hhzW3btolmTWpFoRzWfP36tSjWxFcU5gRrCs19mKzp5+enF9ZcunSpXljz1q1bklkzMDBQNGtStzdQrCk092GyZtOmTQWzZsmSJWkrCuWw5tSpUw2ONZ8+fSqYNY2NjWkrCn/8+CEq92Gypo+Pj2jWpFYUymHNYcOGiWJNakVhUlKSKNa0sbHRriiUy5pXrlyRzZpCcx+cNePj4/8a1qRWFFKsKST3YbLmkSNHBLMmVWenVhRSrCk098FZMzg4WDBrIkRfUZiZmWnQrCk098FZc/PmzQbHmpGRkaLibdWqVWHWrFkGzZqLFi0yONb89OmTJNZ8/fp1nrImVWe/fv26ljWF5j5M1pw8ebIo1uzdu7eWNdesWfNXsaZGo5HNmkJzn5xkzf/++09wvKXq7AcOHMhz1mzWrBmsWbMGvn37Jos1Y2NjRbFmlSpVaKxZu3ZtvbDmmDFjDIY1N23apFfWTEtLE5X7VKxYkcaaRPoVWVVMGgeJZOrZs2ecAY+ZJDIVHh7OCVGurq4wZMgQOHv2LKSmpmbzpqWlcQIrniTGx8dn81IFJDYvlSRSBTI2+fn5sXqpJJEqkLFp0qRJrF5mMwabNm3axPm7VigUtAIZU5cvX+b0MpsxmPrw4QNn4kYVyAICAiA9PT2bNzY2lhN2mc0YTGVmZnJCJzNJZFPDhg1ZvZaWltChQwdtksimf//9l9XLTBLZNHfuXFYvlSRSBTK257R//37O51SlShVagYype/fucXqZBTKmvn//zpm4eXh40ApkTCUlJXEWgfFmjMTExGxetVrNWcShCmR79uyB6Oho1t9127ZtWb14M0ZYWBird9SoUZzvYqNGjWDFihXw+fNnVu+qVatYvUKukz59+jRvkkgVyJh69eoVp5f6IEEVyJiKjIzkhChmgYyp9PR0TpihPkhQBTKmNBoN5/X+zAIZm/755x9WL7NAxqZp06Zxvov16tWDJUuWwIcPH1if07Zt2zh/11QzxrNnz1i9169f5/R6enrCpEmTtB8kmPry5QvnR4KiRYvCyJEjtR8kmIqLi+Ms9Ds6OkL//v21BTKmsrKyOIux1AcJqkDGpqZNm7J6mQUyNg0ePJgz3jZt2hRWrVoFgYGBrN6FCxdyvot4Mwbbczp8+DDnc2I2/jP1+PFjTi+zGYOpsLAwzqIVs/GfqZSUFM4CIdWMQX2QYIoqIHHF2y5dusDu3bshKiqK9XfdqVMnVi/+QSIkJITVO27cOM5427BhQ22BjE3r1q3j/F0zC2RMXbhwgdNboUIFWoGMqbdv33J+lGUWyJiKjo7m/JjDbPxnKiMjg7OwgDdjcMVbrhVUeOM/V7zt3bs357vYvHlzWLt2LQQFBbF6Z82axRlv8cZ/tue0e/duzudEfZCgCmRM3bp1i9Nbrlw5WoGMqW/fvnF+JKA+SFAFMqYSEhI4C0/MAhlTKpWKs1DHLJCxqVWrVqxeZjMGm4YPH87qZRbI2LRs2TLOeEs1/r9+/Zr1GR8/fpzzOVWqVAmmTZum/SDB1PPnzzm9+mJNZjMGUxqNhnNdoBzWZDZjsGny5Mmc8VYOazKbMZgKCAjg9PKx5sePH/XCmllZWZwF95xgTaoZg039+/fnjLf6Yk1mMwZT9+/f5/TKYU1mMwZTycnJemPNdu3accZbPtYcPXo057solzWpZgy2Z3zmzBnO5ySHNZnNGExFRkZyfjyXw5rMZgym5LJmjx49OONtbrLm9u3bOX/XOcGaVDMGU78ra+LNGGxq1qwZq1cOazKbMdi0aNEiznfxd2ZNrubQnGBNqhmDqdxmTaoZg03jx4/njLf6Yk1mMwZT79690xtrcjWU5BRrctXZ+/Tpw+plNv6zafbs2ZzxVi5r4s0YTN2+fZvTK4c1mc0YTCUmJhoka44YMYIz3uYEa3LV2U+cOMH5nHKCNanGf6YiIiJksSZXY5hc1sQb/9nUtWtXVm9us+bmzZs5f9f6Zk2u3OfXr1+5yppU4z+bGjVqxBlv5bAm3vjPpnnz5nHG29+VNUNCQnKdNdlyH7VazdksmVOsydU7w8eaVOM/m1avXs0Zb+WwJrPxn6nXr19zenObNbkGVH5n1iTSn0jjIGkcJJKp9u3b0xKI+vXr6yyQ4RozZgwtYPIVyHCtWbOG5uVrxsB19uxZmpevQIbrzZs32ZJEfDpUl6Kiomh/wTGnQ3UpIyOD9hccczpUlzQaDdSqVUtUkoirZ8+etASidu3aOgtkuGbMmMGaJHIVyHDt2LGD5uUrkOG6ceNGtiRRV4EM19evX2nFVHt7e53NGLji4+NpE2N4gYwrSaSkUqloUz3M6VA+NW/enJYkNmzYEJYvX85ZIMM1dOhQ2u8Lnw7le8aLFy9mTRK5CmS4jh49KipJxPXkyRPWJPH06dOsSSKuHz9+0IqpfAUyXKmpqbRJEysrK95mDEoajQaqVKlCSxL5mjFw+fr60uItVSB7//4973OaMGEC7feFT4fyvYsbNmygecuVK0ebDtWlS5cu0bz4dCgbsOF6//49rZhKTYdyFchwxcTE0KYC8Q8SXAUySpmZmbRiKvVBYvPmzZwfJChpNBqoX7++1kt9kFi5ciXnBwlcffv2pcVbvmYMXP/99x/td81XIMO1d+9empevGQPXnTt3aF43NzcYMmSIdjpUl4KDg2nFVL7Gf1yJiYm06U18OpSrQEZJrVbTbhdgTofyqU2bNrR4S02HchXIcI0cOZL2++Jr/Me1YsUKmrd8+fI6C2S4Tp48SfPizRh88fbFixfZch9dBTJcERERtKZlIc0YlNLS0mgT70Ia/ylRU+947sPXjIGrW7dutHhLTYdyFchw+fv7035fzOlQXdqyZQvNS02HchXIcF29epXmpT5IcBXIcH369IlWTOVrxsAVFxdHm9AVUiCjlJWVRZtaF9KMgatx48a0eEs1Y3B9kMA1cOBAWrzla/zHNX/+fNrvGp8O5XsXDx48SPPyNf7jevjwIc3LvIlIl0JCQmhNy3yN/7iSk5Npk9RWVlbQuXNn2LFjh6B4i98CIbZA1qFDB9q7aAisee7cOZpXDmtSzRhCWROfws4p1hSS+9SuXZsWb8WwZq9evWjvohzW5GvGwLVz506aN69YMzAw8LdjTSG5T4sWLWi5T06wJlczBq4lS5bQvHJYk68ZA9fTp09pXjGsyWxalsOaQhr/KVG3eePxNq9Yc+LEibTfl75Zk6sZA9eHDx9yjDWFNGNQyszMpN2CJ5c1qWYMIazZr18/Wrw1BNa8e/cuzZtXrJmUlJTjrKmrGQMXkzX5mjFwKZVK2u9LDmvyNWPgOnXqFM2bV6z58+dPg2TN7t270+KtXNbU1YyBa+vWrTSvXNbU1YyB6/PnzwbJmk2aNKHF27xizQULFtB+1/piTb5mDFyhoaE5ypp8zRiU1Go17QYsuazJ1/iPa+zYsbTflxjWXLt2Lc2bl6zJzH3ksqauxn9KGRkZtJsOc4I1dQ2Z42KyJl/jP66ZM2fSftd5xZo3b96keeWwJt+QOa6EhITfijV1Nf7jGjZsGO33JZc1dTX+4zp27BjNK4c1+Rr/ccllTXxAVg5rChkyx9WlSxdavM0J1hRSZ9+4cSPNqy/W5Gv8J/p9RBoHSeMgkQw9e/ZM0HQom8LDw6Fw4cK806FsSktLg6JFi/JOh7KJgnv8qm6+v5hw+fn5ZbuqW6gmTZokqkCGa9OmTdmu6haqy5cvZ7uqW6g+fPgANjY2tKu6hSo2NhYcHR1FNWNQyszMhDJlytCu6hajRo0a8U6Hcunff//lnQ7l0ty5c7VJopACGa79+/dnu6pbqO7duyeqQIbr+/fvYGtrS7uqW6iSkpLAzc1NVIGMEgX3+FXdYp5T27ZtRTVj4Bo1alS2q7qFatWqVbzToVw6ffq05CTx1atXYGNjI/iDBK7IyEiws7OjXdUtVOnp6VC8eHHe6VA2UXCPX9Ut5hn/888/kq/qnjZtWra1UEK1bds2Uc0YuK5fv847HcqlL1++QKFChXinQ9kUFxcHTk5O2ulQMdNKWVlZ4OXlRVsLJeY5NWvWDKpVqya4QIZr8ODB2dZCCdXChQtFFchwHT58WFTjP67Hjx9DoUKFBDdj4AoLCwNbW1vBjf+4UlJSwMPDQ1QzBiUK7vG1UGKeU6dOnXinQ7k0btw47XSokAIZrnXr1okqkOG6cOFCtrVQQvX27VuwsbERXCDDFR0dDQ4ODqIa/yllZGRAqVKltM0YXNOhbNJoNFCvXj1Rjf+4evfuzTsdyqVZs2aJavzHtXv3blEfJHDdunVLOx0qpECG69u3b1CoUCHBHyRwJSQkgIuLC7Ro0UJwgYySSqWCChUqiCqQ4WrdunW2tVBCNXz4cFEFMlzLli3LthZKqI4fP55tLZRQPX/+HAoVKqRX1hTajEEpp1hTaDMGrsmTJ8tmTaHNGLgCAgIks+bHjx/1wppZWVlQtmzZHGFNIc0YuPr376831hTTjIHr/v37slizUKFCgpsxcCUnJ+uNNdu1ayeZNUePHp0jrCmkGQPXmTNncoQ1hTRj4IqMjAR7e3tZrCmmGYMSxZpimjFw9ejRQy+suX379r+ONT09PUU1/uNq3ry5LNYU04yBa9GiRQbJmoULF9YLa/r4+OQIawppxsA1fvx4vbKm0GYMXO/evZPFmvb29gbHmn369BHV+I9r9uzZOcKaQhr/cd2+fVs2awptxsCVmJj427CmmHdxxIgROcaaYnKfEydO5BhriqmzR0REgJ2dnWTWLFasmCzWFNP4j6tr1656Yc3NmzfnGGuKyX2YrCkm9/n161eOsaaQxn9cjRs3ls2aQhv/cc2bN8/gWDMkJARsbW31wpre3t56Z00hjf+4Vq9eLYs1xTT+43r9+jUUKlRIMmva2dmJavynlJ6eDiVKlPgtWFPMu0ikX+VG46AR/K8xjkiHjIyM3BFCoQghFBoaitzd3fX8JyKSop8/fyI7OztkZmYm2hsTE4MsLS2RpaWlaG9iYiICAGRjYyPam5GRgRISEpCjo6NoLwCgHz9+SP7/NTQ0FHl4eEjyhoWFITc3N2RkZCTaGx4ejpycnJCJiYlob2RkJCpUqBCysLAQ7f316xeysLBAVlZWor3JyckoMzMTFS5cWLQ3KysLxcTEIBcXF9FeAEBhYWGSnxMVz6Q8px8/fiAXFxdkbGws2hsREYHs7e0lvYvR0dGoQIECKF++fKK98fHxyNjYGBUsWFC0Ny0tDaWkpCB7e3vRXo1GgyIiIpCbm5toL0L6exd//PiBnJ2dJb2LP3/+RIULF0bm5uaivbGxsSh//vyS4m1SUhJSq9WoUKFCor2ZmZkoLi4OOTk5ifbq812UG28dHR2RqampaG9UVBSysbGRFG/j4uKQmZkZsra2Fu1NSUlBGRkZkuKtSqVCUVFRyNXVVbQXIXnvoiHG25iYGGRlZYXy588v2puQkICMjIwkxdv09HSUlJSEHBwcRHs1Gg0KDw//63IfW1tbyfE2X758knKfpKQkpFKpkK2trWhvVlYWio2NRc7OzqK9+o63rq6ukt9FBwcHSfFWbu5jYmKCChQoINqbmpqK0tLSkJ2dnWivWq1GP3/+1Evuo694+zeyptx30RDjrRzWNDc3l5T7yGFNlUqFoqOjDY415cZbwprCRVhTuBITE5FGoyGsKVCGyprp6emSc5/IyMi/ijXl5j6Gxpp/a52dsKZwGSJrRkVFoYIFCxLWFOE1xHhriKwpN97qK/chrClc+noXCWsK19/ImnJzn7/tuyaRfsV4dh4AECb330kaBwWINA4SERERERERERERERERERERERERERERERERERERERERERERERER6UO50TgovqWaiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIYEUaB4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI/iKRxkGiv0YZGRl68WZmZiKpK8FVKtX/sXfWYVF1XRtfQ4qNLWFgC6LYYmB3i93YMraM3Z2M3Qp2YHdiF3YXFlgIAtI16/vjfc58+8ycnAOMo+e+rnW9j8/jjTj7PZv1W3utfSAtLc0gLyJCcnKyQV4A431exvQauk7Jycmg0WgM8qalpUFqaqpBXkQ02c/aGF4pz2JKSorBa6zRaCAlJcUgL4BpftamuMbyfpt5XmM9i1L2WwDT/KxNdY0NfRY1Go38LIr0Ssl9pOy3cu6TeV459/m7vXLuYzpemTX/bq/Mmn+/V95vTcMrs+bf7zUWa8rPonivzJp/v1fOff5ur5z7mI5Xzn3+bq/MmqbjNVbuY6z9VtbfJ7lxUNY/o2vXroGbmxtMnz4dgoKCRP2w/PTpEzg7O8P48ePh8uXLohKiuLg4cHV1heHDh8OpU6cgMTFR1Pddt25d6Nu3LwQEBMDv378F+xQKBXTt2hW6dOkC27dvh/DwcFF/7vjx46FVq1awfv16CA0V91p0tVoNDRo0gOXLl8Pbt29FeQ8fPgw1atSAuXPnwuPHj0X9sHz06BFUqFABJk+eDLdu3RL1wzIsLAycnZ1h9OjRcPHiRVE/LFNSUqBKlSowePBgOH78OMTHxwv2KhQKaNKkCfTq1Qv27dsHUVFRorxeXl7QsWNH2Lp1K/z48UOwFwBgxowZ0KxZM1i9ejV8+vRJlHfz5s1Qr149WLx4Mbx8+VLUOl24cAGqVKkCM2fOhPv374vyvnnzBpydnUGlUsG1a9dEPYvR0dHg4uICSqUSzp49KyoJ1Gg0UKNGDfDy8oLDhw9DbGysYK9CoYB27dpBt27dYNeuXfDr1y/BXgCAESNGQNu2bWHTpk3w9etXUd5FixZB48aNYcWKFRAcHCzKu3fvXnB3d4f58+fD06dPRa3TrVu3oFKlSjBt2jS4c+eOqP02NDQUypcvD2PHjoXAwEBRcJKQkAAVK1aEoUOHwsmTJyEhIUGwV6FQgIeHB/Tp0wcOHDgger/t0aMHeHp6gr+/P/z8+VOwFwBgwoQJ0LJlS1i3bh2EhISI8q5Zswbq168Py5Ytgzdv3ojyHj9+HKpXrw5z5syBR48eiVrjp0+fQoUKFWDSpElw48YNUftteHg4ODs7w8iRI+H8+fOi9tvU1FSoWrUqDBo0CI4ePQpxcXGCvWZmZtC8eXPo0aMH7NmzByIjIwV7AQAGDRoE7du3hy1btsD3799FeWfPng1NmzaFVatWwcePH0V5/fz8oE6dOrBo0SJ48eKFqHUKDAyEypUrw4wZM+DevXuinsX379+Ds7Mz+Pj4wNWrV0XttzExMVChQgXw9vaGM2fOiM59ateuDf3794eDBw9CTEyMYJ9CoYBOnTpB165dYefOnRARESHqzx09ejS0adMGNmzYAF++fBHlXb58OTRs2BB8fX3h3bt3orwBAQFQs2ZNmDdvHjx58kTUGt+7dw9cXV1hypQpcPv2bVFr/O3bN3B2doYxY8bApUuXRO23SUlJUKlSJRgyZAicOHFC9H7bsGFD6N27N+zfvx+io6NFefv27QudOnUCPz8/CAsLE+wFAJgyZQq0aNEC1qxZA58/fxbl3bBhA3h4eMDSpUvh1atXotbpzJkzUK1aNZg1axY8ePBAlPfly5fg4uICEyZMgOvXr4vabyMjI8HFxQVGjBgB586dE5X7pKWlQfXq1WHAgAFw5MgRUfutQqGA1q1bQ/fu3WH37t2i99vhw4dDu3btYPPmzfDt2zdR3vnz50OTJk1g5cqV8OHDB1HenTt3Qu3atWHhwoXw7NkzUetkLNaMj48HV1dXGDZsmFFYs3PnzpnOmitWrDBp1rxw4UKmsmbTpk2hV69esHfvXpNhzS1btkDdunUznTXfvn1rFNZERKhZs6bJsebixYuhcePGoFarM5U1b9++DRUrVoSpU6eaFGvWr1/fKKw5ceJEo7DmiRMntKz58OFDk2LNgQMHZjprDh482Cis6e/vbzBrXr58WcuaYnMfqazp6uoK3t7ecPr06UxjTQAAT09P6NKlC+zYscNkWPPgwYNGYc3v378bhTXNzMygUaNGBrNmv379oFOnTrBt27ZMZ8169erBkiVLMp01nZ2dTY4127Rpo2VNsbmPFNZcsGCBljXfv38vyiuFNa9fvw5ubm4wbdo0uHv3rsyaPPLx8TEKax45ciRdWPPmzZuZxprJyclQpUoVGDRoEBw7dizTWBMAYMCAAdChQweTYs2LFy/SWFPMsyiVNStUqGAU1mzfvj1069bNoDr7yJEjoU2bNrBx48ZMZc19+/ZBrVq1Mp01v3z5As7OzibHmj179jSYNWX9hUJEOXgCABwAAAEAQ0JCUJZpSqPRYO3atZFay0KFCuGAAQPwyJEjGBsby+vv3bu31ps7d27s3r077t69G3/9+sXrnT59utabNWtWbNeuHW7evBm/ffvG6/Xz89N6LS0tsUmTJrhy5Up8//49r/fy5ctar5mZGdauXRsXLlyIz549Q41Gw+kNDg5GCwsLrd/NzQ2nT5+Od+/exbS0NE5vdHQ05smTR+stU6YMjh8/Hi9fvowpKSmc3tTUVCxbtqzW6+joiMOGDcNTp05hQkIC79+5efPmWm/+/Pmxb9++GBAQgL9//+b1Dhs2TOvNmTMndu7cGbdv347h4eG83iVLlmi9WbJkwVatWuH69esxNDSU1xsQEKD1WlhYYIMGDXD58uX49u1bXu/9+/e1XoVCgTVq1MC5c+fi48ePedf469evmCVLFq2/QoUKOHnyZLx58yampqZyeuPj47Fw4cJab4kSJXD06NF44cIFTE5O5vRqNBqsUqWK1mtnZ4eDBw/GY8eOYVxcHO/f2dPTU+vNkycP9urVC/fu3YtRUVG8XpVKpfVmy5YNO3TogFu3bsUfP37wetetW6f1WllZYfPmzXH16tX46dMnXu/Zs2dpz2LdunVx8eLF+PLlS951evnyJZqZmWn9VapUwZkzZ+L9+/d5vREREZgjRw6tt1y5cqhSqfDatWu8a5ycnIxOTk5ab7FixVCpVOLZs2cxMTGR9+/s4eGh9RYsWBC9vLzw8OHDGBMTw+vt378/bb/t1q0b7tq1CyMiIni9s2fPpu23bdu2xU2bNuHXr195vTt37qTtt40bN0a1Wo3BwcG83hs3btCexVq1auH8+fPx6dOnvOv08eNHtLS01PorVaqEU6dOxTt37vDutzExMZgvXz6tt1SpUjh27FgMDAzkfRbT0tLQxcVF63VwcMChQ4fiyZMnBe23rVu31nrz5cuHffr0wQMHDmB0dDSvd+TIkVpvjhw50NPTE/39/TEsLIzX6+vrS9tvW7ZsievWrROUox09elTrNTc3x/r16+OyZcvw9evXvN5Hjx5pvQCA1atXxzlz5uDDhw951/jHjx9oY2Oj9bq4uODEiRPxxo0bvM9iYmIiOjg4aL1OTk44atQoPH/+PCYlJXF6NRoN1qhRQ+stXLgwDhw4EI8ePSpov+3evbvWa2triz169MA9e/ZgZGQkr3fy5Mm0/bZ9+/a4ZcsW/P79O6938+bNtP22adOmuGrVKvz48SOv9+LFi7T9tk6dOrho0SJ88eIF7zq9ffsWzc3Ntf7KlSvjjBkzMCgoiPdZjIyMxNy5c2u9ZcuWRR8fH7xy5Qpv7pOSkoKlSpXSeosUKYLe3t54+vRpQftt48aNtd4CBQpgv3798ODBg4L220GDBmm9uXLlwq5du+KOHTsE5T4LFizQem1sbLB169a4YcMG/PLlC6937969tNynYcOG6Ovri+/eveP13rlzh7bf1qxZE+fNm4dPnjzhXePQ0FC0srLS+l1dXXHKlCl4+/Zt3jWOi4vDAgUKaL0lS5bEMWPG4KVLlwTlPpUqVdJ67e3tcciQIXj8+HGMj4/n/Tu3b99e682bNy/27t0b9+/fLyj3GTt2rNabPXt27NSpE27btk3Qfrt69Wqt19raGps3b45r1qwRlPucPHmStt96eHjgkiVL8NWrV7zeZ8+eoUKh0PqrVq2Ks2bNwgcPHvCu8c+fPzFbtmxab/ny5XHChAl4/fp13v02KSkJixYtqvUWL14cR4wYgefOnRO03xqLNWfMmGEU1rxy5Yoeay5YsMAorDlu3DjBrFmuXDmjsObw4cONwpoHDx5kZM03b97weo3FmgkJCXqsOWrUKLxw4YKgZ1EKa3bu3JnGmj179swU1ly/fj0t92nWrBmuXr1aUO5jTNbMmTOnHmtevXqV91mUypr169fXY81Dhw5lOGvOmTOHlvu0bdsWN27cKIg1d+3aRdtvGzVqlCms+enTJxprVqxY0eisKST3MRZrqtVqWu7TsmVLXLt2LX7+/JnXK4U1Hz9+rMeas2fPFsyaWbNmTTfWHDlypGDWrFmzplFYc8qUKYysKST3kcKaly5dYmTN58+f/9GsWbp0aRprDh8+HE+fPi0o95HCmoMHD6blPl26dMkU1ty3b5/BrHn37l1G1hSS+0hlzYIFC+qx5sWLFzOcNTt06KDHmvv27fujWfPUqVO0/bZevXqZxprZs2c3CmvWqVPH5FjT399fjzVXrFiR4az5/v17GmtWqlQJp02b9sezZosWLYzCmkuXLmVkTSF1dims+eDBA0bWfPTo0R/NmlWrVqWx5qBBgzKFNSdMmGAU1jx37pzBrPnq1StG1rx3716GsmZKSgqWKFFC6y1atCgqlUo8c+ZMhrOml5eX1kvV2Xfu3PlHs+bNmzcNZk1ZxlVISAjJkA6YHj1x6fFF/vYAuXHwr9H58+dphRgSTlq0aMFZDHr9+jXthxwJJx4eHrh06VLWYtCvX79oP+TIqFatGmcxSPeHHBnOzs68xaAGDRoweosXL85bDBowYACjt1ChQtpiEBuczJs3j9FLFoPY4GT37t2MXiHFoFu3bjF6qWLQypUr8cOHD4zez58/0wqqZEJUp04dXLhwIWsxKDY2FvPnz8/4Z1MHYWzFoLS0NKxQoQKjl2q65CoGtW3bltErpBg0evRoRm/+/Pm1xSA2OFmxYgWjV0gx6Pjx44zeLFmyaItBbAdhT548YfSSxSC2psuwsDBaQZVMiPiKQUlJSejo6Mj4Z1PFoFu3bjGusUajwVq1ajF6S5YsiaNHj+YsBvXs2ZPRSx2EcRWDpk6dyuilmi65ikFbt25l9GbPnh07duyI27ZtY4WTwMBA1v2Wrxj07t07WkGV3G/5ikFRUVFoa2vL+GfzFYNSU1NpBVUyqGIQV9Nl06ZNGb3FihXDESNGcB6EDRkyhHW/HTBgAB4+fJh1v120aBGjlzwIY9tvDxw4wOgV0nQZFBTE6KWaLrmKQV++fEFra2vGZ9Hd3Z2zGBQfH4+FChVi/LP5ikEajQbd3NwYvaVLl+YtBnXs2JHRK6QYNH78eEZvvnz5eItBa9euZd1vqWLQz58/Gb2nT59m3W9btWrF2XT54sULWkGVfBapgzC2YlB4eDitoEoG1XTJVgxKTk7GYsWKMXpdXFxw0qRJrMUgjUaD9erVY/RSTZdcxaC+ffsyegsXLsxbDJo1axbrfksVg9gOwrZv387oJYtBbE2X165dY/QKKQZ9+PCBVlClgiwGsTVd/v79G/Pmzcv4Z1epUgVnzJjBWgxKS0vD8uXLM3rLlSuHPj4+nMWgli1bMnqLFi2K3t7enMUgpVLJ6C1QoAD279+fsxi0bNkyRq+QYtDhw4cZvTY2NtimTRvOYtDDhw8ZvRYWFrzFoG/fvtEal8n9lq8YlJCQgPb29ox/NtV4wHYQptFosFq1aoxeqvGAq+mya9eujF7qIOzEiROsuc/EiRMZvWTTJVvjwcaNGxm9OXLkwE6dOqGfnx/rQdiFCxcYvRnNmpGRkZgrVy7GPzujWbNhw4aM3vRgTa6DMD7W5DoI27NnD+t+2759e86DMDbWJJsuuViTPEwm91tqwC+jWNPV1ZXRK4Q127Vrx+jNaNZcuXIlozejWfPp06es+23Dhg05B/z4WJOr6ZKPNSdPnszJmu7u7ozejGbNadOmMXr/ZNYMDg7mZU22gzAhrMnWdJmamoplypRh9JYvX553wI+LNfmaLocOHcroJQf8/jTWvHfvHut+a8qsGRgYyLrfdurUidFLsSbXgJ+Pjw+jl2JNrqZLPtb09/dnZc0zZ86w7rd8A35SWZMckiXjT2bNfv36MXozmjV37NjB6KVYk2vAj481uZouP378yMmaXAN+GcWaVNMlF2u2atWK0ZvRrLl8+XJGb3qxJlvTpRDWZGu6/P79Oy9rsg34SWXN6tWrM3pLlSrFO+AnhTUnTZrE6P2TWfPNmzdGY82SJUsyeinW5Gq65GNNrqbLgQMHMnqFsOb8+fMZvVJYU0jT5e3btxm9mcGa5JAsGX8ya44ZM4bRm9GseeLECUYvxZpcA35SWZMckiX3W74Bv6SkJCxSpAjjn001XRrCmtRlMlys2atXL0ZvRrPmtm3bGL1/MmtGR0cbjTWbNWvG6BU74CcrcyU3DsqNg7IkaP/+/ejt7c0IM7pBFYOoCdyLFy+iUqmkTX6xRenSpWkTuI8ePUKlUkm7SYYtdG97Cg0NRaVSSZtiYAvdCdz4+HhUKpWsCTYZ5AQuVQyaMGEC7XYTtmAqBi1evJj14F33h6VuMWjLli04bNgwRpjRDd1i0NGjR1GpVLI2aZJBFYOog7Dr16+jUqmkTdqyhe5tTy9fvkSlUonOzs68XqoYRE3ghoWFoVKpZG0qI8PW1hZ79uypncDVaDSoVCpZf6iTwVQMmj59Onbp0oXXyzSBu2LFCtbDPjKYbnvatWsXent7M8KMblATuFQx6MyZM6hUKlmLR2ToFoOCgoJQqVTSbjZgC91i0Pv371GpVNImONlCtxj0+/dvVCqVrMVFMshiEAUnY8eOxTZt2vB6qWIQOYE7b9481oMgMqhiEDmBu2HDBtZmNjKoYhB521NAQAAqlUrGgzPd0J3ADQwMRKVSSZv8YgvdYtCTJ09QqVSyJslk6BaDvn79ikqlkrXJgQzdYlBSUhIqlUraJDZbUBO4ZDFo0qRJrA1pZDAVg5YtW8ZafCaDLAZRTZd+fn44fPhwRpjRDaoYRDVdHj9+HJVKJW3qnS10i0G3bt1CpVLJCqxk6E7gvnnzBpVKJe32CrbQncCNiIhApVJJuxGKLZgmcEeMGEGb/mQLpmLQrFmzWAuTZDAVg1avXk27FY4tmIpBe/bsQW9vb8aDM93QLQadP38elUola6MCGbo3Cz948ACVSiVrMwoZjo6OOHz4cG3T5adPn1CpVGLlypV5vVQxiGq6jI2NRaVSSZsMZAumCVwfHx/WZnwymG57WrhwIW2Kmy2YbhbetGkTDh06lPHgjAymYtDhw4dRqVSyNmmSQRaDUlNT8erVq6hUKtHOzo7Xq1sMev78OSqVSto0NVuQxaC4uDj8/v07KpVK2m2YbKFbDEpNTUWlUolNmjTh9TIVg6ZOnUq7uZgtmG4W9vX1pU2Ocj2LuhO4O3bsQG9vb8aDM93Qve3p1KlTqFQqaVPvbKF7s/CdO3dQqVSyHo6SoVsMCg4ORqVSyVoEJkP3ZuGoqChUKpW0WxHYgum2p9GjR7Me2JHB1HgwZ84c2g02bEE2HlBNl+vWraPdjML1LFKNB1TTpVjWJG97ksKajx8/NgprJiQkGI01lyxZYnKseePGDVQqlayNYWRIZU3ytqefP3+KYk3ytieKNclbFtmC6WZhKay5cuVK1sM+MtKTNdPS0rSsSd6wxhZSWJO6WZhizQ8fPohmTeq2J4o1ydve2YLpZmEprDl//nzBrKl725MY1tS9WZhiTaaDM92Qwpq6Nws/ffpUMmuyNTmQoXuzsFTWnDx5cqaxJjngJ5Y1yQE/saxJ3vaUHqzJNthLRnqz5siRIyWxZrdu3Xi96cWaVNPl3r170dvbm3bjD1vo3iwsljXJAT+KNdmaUcjQHfATy5rkgF9cXJxk1mRrkCAjvVlz8+bNRmVNtsYwMnTfYmMIa1JNlz9+/BDNmtRtTxRrsjVqk8F025MY1qQG/CjWVKvVMmuyBBtr1q1bl9crhTWZbnuaO3euKNYkB/zEsiY54JdZrKl7s7CpsubEiRMzlTWppsutW7eKZk2q6fLYsWOiWJMc8BPLmuSA36tXr4zCmoj4z7AmVWc3hDWppst79+6JZk3qLTYUa7INt5CR3qw5btw4waype7OwVNYUmvukJ2tevnxZMmuSb2Nki/RkzeTkZNGsKfRmYVkZL7lxUG4clCVB3t7evBsfUxQqVEjQhssUuXPnFnRgxhRZs2YVVIxgCktLS9abBvmCKgYJafhhCjc3N0E/GJmiTJkyrLd98YWjo6Og5Icp8ufPLyjBZYqcOXMKaghjiixZshi8xhYWFgZ7qWKQkCIsU1SoUIF2tb6YKFGihCAQYQo7OztBsMkUefLkEVTAZYps2bIJSo6ZwsrKyuB1oopBQkCEKapUqcI6LcYX5cqVE1SEZYqiRYtixYoVDfIWLFhQUHGPKXLlyiWoaMQUNjY2kvZbKc9irVq1BBVhmaJixYqCmp2ZolSpUoJAhCkcHBwEFdqZIl++fKxTanyRI0cOg/dba2trg38uUsUgPthki+rVqwsqwjKFs7OzoCIsUzg5OQlqsGSKwoULC2qiZQpbW1uDc59s2bIZ/DxZWVlJyn3q1Kkj6NCLKSpXrsx6MwlflC1bVlARlimKFCkiqMmAKfLnz097tZiYyJkzp1H2W6m5T82aNVkn5fnC1dVVUBGWKUqWLMl64wVf2Nvb0165KSby5s1rcO6TPXt2g3Mfa2trg9eJmsAVcujFFFWrVhVUhGWK8uXLCyrCMkWxYsUENRkwhVTWNPRZNBZrUgdhhrJmpUqVBDU7M0Xp0qX/OdY0dJ1MlTWdnJxk1hQY/yJrFihQwORYU+qzWKtWLdZb2fjiX2RNY+U+Hh4egpoMmKJatWqSWLN48eIGeYsXLy4p95FZU3jIrCk8TJk1hTQ7M0XJkiUFNVgyhZ2dncGsmSdPHoP3W1NmTSHNzkwhlTWFNFgyhamyppRn0d3dXVDDD1NIZU0hwyVMIYU18+XLZ5KsKaWeYIqsWbhwYZNkTSm5j8yawsOUWVN+pbFxlRGNgwr8X2OcLA4pFAoHAAgBAAgJCQEHBwcjf0eyDJFSqYQ1a9YY5DU3N4e0tDSDvGZmZqDRaAzyGlNSvm8LCwtITU01yGtpaQkpKSmZ/udKWWOFQgGmuJdK+TtLWSdjrbGpPotS/v8lP4umIXm//ftlrHWS4pVzH3H6155FU91v5dzHNGSKuY+834qTvN8Kl7zfZp5X3m/FSX4WTUNS/s6muMam+ixKkZz7mIb+tdxHyt/3X9xv5dwn82SKuY+834rTv7bf/ot19n9tvzXVn4umuN/KrClORYsWhTZt2sDQoUPB2dnZ2N/OP6fQ0FBwdHSkfumIiKFSv6aZ1C8gS5apyMzMDCwsLAT//oIFC4KXlxccPnwY5s2bJ8qbK1cu6NatG+zatQv8/PzAwsICFAqFIK+NjQ20bdsWNm3aBOfPnxfltbS0hMaNG8OKFSvg0aNHYGFhAWZmwh5zhUIB7u7usGDBAnj27Bnkz58fzM3NBXkBACpVqgTTpk2Du3fvQpUqVUR5S5cuDePGjYPLly9Dx44dRX3WDg4OMGzYMDh16hSMHTtWlDdfvnzQt29fOHDgACxfvlyUN0eOHNC5c2fw9/eHgIAAUetkbW0NLVu2hHXr1sG1a9dErZO5uTnUr18fli1bBq9fvxblBQCoXr06zJkzBx49egTFixcXtU4uLi4wadIkuHnzJtSrV0/U5+Xk5ASjRo2CCxcuQJ8+fUR5CxcuDIMGDYJjx47B1KlTRXltbW2hZ8+esHfvXti4caOodcqWLRt06NABtm7dCqdOnRLltbKygmbNmsHq1ashKChI1DqZmZlB3bp1YdGiRfDixQvImTOnqHWqXLkyzJgxA+7duwcuLi6ivGXLlgUfHx+4evUqtGrVStRnXaRIEfD29oYzZ87A8OHDRXkLFCgA/fv3h0OHDsGiRYtE77ddu3aFnTt3wq5du0Tvt23atIGNGzfCpUuXRK2ThYUFNGrUCNRqNTx79kz0flurVi2YP38+PHnyBAoXLixqnSpWrAhTp06F27dvQ82aNUV5S5YsCWPGjIFLly5Bly5dRH3W9vb2MGTIEDhx4gT4+PiI8ubNmxd69+4N+/fvh1WrVonyZs+eHTp16gR+fn5w5MgR0fttixYtYO3atXDr1i3R+62HhwcsXboUXr9+DVZWVqL222rVqsHs2bPh4cOHULJkSVHr5OzsDBMnToQbN25Aw4YNRX1exYsXh5EjR8K5c+egf//+oryFChWCgQMHwpEjR2D27NmivLlz54bu3bvD7t27YcuWLaLWKWvWrNCuXTvYvHkznDlzRnTu06RJE1i5ciU8ePBA9H5bu3ZtWLhwITx//hxsbW1FrZObmxtMnz4dgoKCwM3NTZS3TJkyMH78eLhy5Qq0a9dO1Gft6OgIw4cPh9OnT8PIkSNFefPnzw/9+vWDgwcPwtKlS0V5c+bMCV26dIEdO3bA3r17Ra1TlixZoHXr1rB+/Xq4cuWK6P22YcOGsHz5cnjx4oXo/bZmzZowd+5cePz4MTg6OopapwoVKsDkyZPh1q1bULt2bVGfV4kSJWD06NFw8eJF6NmzpyivnZ0dDB48GI4fPw6TJk0S5c2TJw/06tUL9u3bB+vWrRO1TtmzZ4eOHTvCtm3b4MSJE6Jzn+bNm8OaNWvgzp07op/FevXqwZIlS+Dly5eQNWtWUetUtWpVmDlzJty/fx/Kli0rylu+fHlQqVRw7do1aNasmajPumjRoqBUKuHs2bMwaNAgo7Cmv7+/UVjz8ePHRmHNO3fuQNWqVQ1izcDAQINZ8+TJkzBmzBjRrNmnTx84cOAA+Pr6imZNT09Pyax5/fp1k2RNDw+PTGfNo0ePwrRp0wxizT179hjMmlu2bDGYNVetWmVU1qxQoYJRWNPb29vkWDMwMNAg1vT19TWYNefNm2cwa06ZMkUya3bt2tXkWPPo0aNGYc1Xr16BtbW1Qaz54MEDg1nz+vXr0KhRI4NZ08vLS3TuM2DAAMmsuXXrVqOw5sOHD02SNdu3b28Qa546dcpg1gwICBBdZ6dYc/v27ZJY8+rVq6L32wYNGsDy5cvh5cuXovfbGjVqpAtr1qlTxyisOXnyZJNjzbt37xrEmosXL5bMmuXKlRPlLVeuXLqw5uDBg02ONS9cuGAU1nz69CkUKFDAKKzZqVMn0aw5dOhQOHnypEHnmunBmocOHZJZk0cka/bt29corLl582bRrNm+fXuDWbNp06awatUquHfvnuj9tk6dOlrWzJUrl1FYs3Xr1v/UuaYU1nz+/LlBdXaKNT98+ACrVq2Smwb/JqXHtYV/e4D8quK/Rl+/fuV8NUDFihVx6tSpeOfOHUxLS6N54+PjOV/BW6pUKRw7diwGBgZicnIyzavRaDhftWFvb49Dhw7FkydPYnx8vN737enpyerNmzcv9unTBw8cOIDR0dF6Xh8fH1Zvjhw50NPTE/39/RnfSb9u3TpWr7W1NbZs2RLXrVuHnz9/1vOePXuW1Uu99nHp0qX4+vVrPe/Lly85XwlZvXp1nD17Nj58+FDvCtyIiAjOV7E4OzvjxIkT8caNG5iamkrzJicnc76mo3jx4jhy5Eg8f/48JiUl6X3fXNc+FypUCAcOHIhHjx7F2NhYPW+/fv1Yvba2ttijRw/cs2cPRkZG6nlnz57N6s2aNSu2b98et2zZgt++fdPz7ty5k9VraWmJTZs2xVWrVuGHDx/0vNevX2f1Uq/iWLRoET5//lxvnT5+/IiWlpas/sqVK+OMGTMwKChI71mMiYnBvHnzsnrLli2L48ePxytXrmBKSgrNm5aWxnmluKOjIw4fPhxPnz6NCQkJen/n1q1bs3rz58+P/fr1w4MHD+Lv37/1vCNGjGD15syZE7t06YI7duzA8PBwPa+vry+rN0uWLNi6dWvcsGEDhoaG6nmPHDnC6rWwsMCGDRuir68vvn37Vs/76NEjVi/1Ko558+bhkydP9Nb4+/fvaGNjw+p3dXXFKVOm4O3bt/XWODExEe3t7Vm9JUuWxDFjxuDFixcZ91uua8Ht7OxwyJAhePz4ccb9tlu3bqzePHnyYK9evXDfvn0YFRWl5508eTKrN3v27NixY0fctm0b/vjxQ8+7adMmVq+VlRU2b94c16xZg58+fdLzXrx4kdVLvYpjyZIl+OrVKz3v27dv0dzcnNVftWpVnDVrFj548EBvjSMjIzlfxVK+fHmcMGECXr9+XW+/TUlJ4XxlTrFixXDEiBF47tw5TExM1Pu+GzVqxOotWLAgDhgwAI8cOcK43w4aNIjVmzt3buzevTvu2rULIyIi9Lzz589n9WbNmhXbtWuHmzZtwq9fv+p59+7dy+q1tLTEJk2a4IoVKzA4OFjPe+fOHVavmZkZ1q5dGxcsWIDPnj3TW6eQkBDOVwO4ubnhtGnT8O7du3rPYlxcHOerAUqXLo3jxo3Dy5cvM+63XNf7Ozg44LBhw/DUqVOM+2379u1Zvfny5cO+fftiQEAA4347duxYVm+OHDmwc+fOuH37dvz586eed9WqVazeLFmyYKtWrXD9+vWMTHDy5EnOZ7FBgwa4fPlyfPPmjZ736dOnrLkP9SqOOXPm4KNHj/TW+OfPn5yvYqlQoQJOmjQJb968qfcsJiUlcb4WycnJCUeNGoUXLlzQy300Gg3n6zIKFy6MgwYNwmPHjmFcXJze37l3796sXltbW+zZsyfu3buXMfeZPn06qzdbtmzYoUMH3Lp1K37//l3P6+fnx+q1srLCZs2a4erVq/Hjx4963suXL3M+i3Xr1sXFixfjy5cv9dYpODiY87VIVapUwZkzZ+K9e/f0vNHR0ZyvoStXrhyqVCq8evWq3rOYmprK+brAokWLolKpxDNnzjDut82bN2f1FihQAPv374+HDh3CmJgYPe+wYcNYvbly5cKuXbvizp07GffbJUuWsHptbGywTZs2uHHjRvzy5YueNyAggNVrYWGBjRo1QrVaje/evdPz3r9/n9XL9yoOY7Im12vGKNY8ceKEway5f/9+RtZUqVSsXoo1/fz8DGbNtWvXZghrcr0Sslq1ahnGmlyvKMtI1uzfvz+rl2TNX79+6XnnzJnD6s1I1rxx4warl2LNhQsXGsya06dPZ2VNrlee/6msOXLkSFZvRrLm0aNHWb3pxZqPHz/WW+MfP34IYs1bt24xsibXK3jTizWZcp/u3buzejOSNTdv3szq/ZNZk+s1dBnJmo0bN2b1Uqx5+PBhxtxHCmsuWLCA1cvHmvv27WP1WlpaYuPGjQ1iTeq1j2ysGRoaysmalSpVyhDW1Gg0nK/RTS/WZMp9pLDm6tWrWb0ZyZrPnj3LMNZ0cXHhZE2uV0L+qaw5Y8YMVm9GsuaVK1dYvSRrvnjx4o9iTa5XJRcpUgS9vb0zhDWHDx/O6s1I1jx48CCr909lzYSEBKOxZufOnVm9Ulgze/bs2KlTJ1bWXL9+PavX2toaW7Rowcqa586dY/Wam5ujh4dHhrFmzpw5Wb0ZyZpcryv9U1lz165drF6KNVeuXJnurPnp0ydO1nRzczOYNcuUKcPJmi4uLqxePtZs06YNqzcjWVOtVrN6M5I1Hz9+zOpND9acPHmyQaxZokQJHD16NCtr1qxZk9VrZ2eHgwcPzhDWnDJlCquXjzVlGU8Z8apiozflmUKA3Dj412jUqFG0DY8vSSS1YsUKmpdMEpkKZKSOHTumt9lSSSJTgYzUkydP9LzOzs6sBTJSP378wKxZs9K8ZIGMKUmklJiYiI6OjjQvXzMGJaYfcFSBbPfu3YxJIqkePXroJYnt2rXDzZs3MyaJpKZOnaqXJDZp0gRXrlyJ79+/5/Ru2bJFL0msXbs2a5JIKjAwUFSSSIqpmEoliUwFMlJRUVF6xVQqSWQrkFFKTU3F0qVL07x8zRikmjRpopckchXISA0ZMkQvSaQKZExJIqmFCxfqJYlUgYwpSSS1f/9+vSSxRo0aOHfuXMYkkdTdu3f11rhChQqsSSKp0NBQtLa2FpwkkoqPj8dChQqJShIpMRVTqSSRrUBGqmPHjjRvtmzZsGPHjrh161beJHHcuHE0L3UgwVYgI7VmzRq9Z7FevXqszRikTp06pbdOVatWxZkzZ+L9+/c5vc+fP9crplIFsmvXrnHut+Hh4Zg9e3aal2rGOHv2LGOBjFJSUhIWK1ZMb7/18vJiPZCgpNFosG7dujRvrly5sFu3bqwHEqT69OlD89rY2GDbtm1x06ZNjAUyUjNnztTbb7kOJEht375d71l0d3dnLZCRunr1qt4aV6pUibVARurDhw96xVSuAhmp379/6xVTHRwcOBv/KaWmpmL58uX19luuxn9SLVq0oHnJxn++/dbb21sv96Ea//ny2mXLlunlPvXr18dly5YxFshIHTp0SG+dqlevjnPmzGEskJF68OCBnpc6kGAqkJH69u2bHtxTBxJsBTJKCQkJaGdnR/NSBxJHjx7l3W+rVatG8/I1/pPq0qWL3n5LFciYDiRITZw4UW+/5WrGILVhwwa9/ZZq/Gc6kCB1/vx5vXWiGv/v3bvH+Sy+evVKr5hatmxZ9PHxYTyQIPXr1y+9Yip5IMGV+6SkpGCJEiVoXupAgq1ARqpBgwZ6+23Xrl1ZC2SkBgwYoLfftmnTBjds2MC7386dO1cv92nUqBH6+voyHkiQ2r17t95+y9X4T+rWrVt6a8zV+E/q8+fPesVUqhnj0qVLnPttbGws5s+fn+a1t7fHIUOGsB5IUEpLS8MKFSrQvHnz5sXevXvj/v37GQtkpNq2bUvzkgcSfLkPF2syNWOQksKax48f11unatWqsTZjkJLCmmFhYUZjzVq1atG8psCaW7du1dtvKdZkasYgxcWaTM0YpN69e2eSrNm0aVO93CczWHPRokV6+21msGZQUJDeGpOsyfUs8rEm17MolTXd3Nxo3vRiTb7cZ/z48Xq5D1czBikm1uRq/Cd1+vRpvXWimjH4WPPFixdGYc3k5GQ91ixQoECmsGbfvn31cp8/nTWvXbumt8ZczRikpLKm7oBsZrFmy5Yt9fZboaypVCr1ch+uIXNSUljz8OHDeutkLNbka8agxMSafM0YlKSyZteuXfVyn8xgzY0bN+rtt5nBmq9fvzaYNZkGZCnWZGvGoCSVNRs2bEjz8jVjkNJlTb5mDFLz5s3Ty32oZow/mTV1m5YzizVdXV1p3sxizdGjR+vtty1atGBt/CfFxppsjf+kpLDm06dP9bxcjf+k+FiTr85uLNbs2bOn3n4rlDWnTZuml/sYkzXZGv9JsbEmW+M/qaioKLS1taV5HR0dORv/KaWmpmKZMmX0cp/MYM2hQ4fq7bfpwZpMjf+kDhw4oLffpgdrMjX+k/ry5QsrazI1/pNiYk2+xn9KTKzJ1/hPqlOnTjQvX+M/KSmsuXbtWr1n0RRYU3dAVihryjKu5MZBuXFQlgRRUzl806FMom6AEFMgo0TdNsg3HcomT09PUQUyUj4+PrzToWyiboDgmg5l05kzZxCAezqUTdRtg3zToUyiboCgkkQhBTJK1G2DYpJEUh4eHtokUUgzBql+/frxToeyafbs2bzToWyiboDgmg5lE3XbINd0KJuoGyCEJomkqNsGxSSJlKgbIMQkiaRatWolKkkkNWLECN7pUDZRN0BUqVJFWyAT6qVuG+SaDmUTdQME33Qok6jbBvmmQ5lE3TbINx3KJI1Gg9WrV+edDmVTt27deKdD2TR58mTadChfgYwUddug0AMJUtQNENSBBF+BjNSbN2/QzMyMdzqUSVQxlW86lEnUDRB806FsatSokajGf1KDBg3inQ5lE3XbINd0KJuo2wa5pkPZdPv2bQQQfiBBirptUOiBBCnqBgjqQEJIgYwSddsg33Qom9q3b0+bDuUrkJEaM2YM73Qom6jbBoU2/pOiboDgmg5lE3XbIN90KJOoGyD4pkOZRN02KOZAghJ1A4SYAwlSvXr14p0OZdP06dN5p0PZRN0AwTUdyibqtkGhjf+kqBsghDZjkIqOjkZbW1ve6VAmUbcNGjod2rx5c9pNRGJyn2HDhundRCR0nagbIKibiPgKZKSo2wapAwm+Ahkp6gYI6kBCTIHMmKxZpUoVWjNGZrGmSqUyCmtStw2SrCn0WTQmazo5OWlZU0gzBikprNm/f39aM4YpsCZ1A4QxWDNfvnxGYc3WrVvTWJOvGYOUsViTugFCaDMGKSmsSd0AYQzWrFGjhsGs2b17d6OwJnXbIMWafM0YpKSwJjUgK7QZg5QxWbNx48ZGYU3qtsHMZk3qtkGKNfka/0lRtw1SrMnXjEFKCmtSA7JimjFISWHNsWPHihoyJ2Us1qRuGzQGaxYtWpTGmkJzH6ms2bt3by1rCmn8JzVjxgxRzRikpLAmddugMVgzT548Jseaw4cP1w6ZL1myhLcZg5QU1qRuGyxfvrygZgxS6cWaQhr/SRmTNTt37mwU1qRuG6RYU0ydXSprmpmZaVmTr/GfFHXboJjGf0pSWbN+/fqihsxJSWFN6rZBqvHfFFiTum1Q6JA5Kams6eLiomVNIY3/pKSw5siRI7WsKaTxnxR126DQxn9SUliTum3QGKzp4OBAY00xdXZjseaUKVO0rCmk8V/WnyO5cVBuHJQlQQ8fPhSVJJJ6+/Yt73Qom378+CEqSSSVkJCABw8eFJwkktJoNBgQECAqSSR1/PhxUQUyUhcuXBBVICN169YtUQUyUk+fPhVVICP18eNHUc0YpCIjI0U1Y5BKTk7GAwcOCE4SSWk0Gjx8+LCoJJHU6dOnRSWJpK5cuSIqSSR17949UQUyUq9evRJVICP19etXUQUyUrGxsXjo0CHBBTJSaWlpeODAAcFJoq6OHj0qqkBG6ty5c6KSRFI3btwwOEl89OiRqAMJUsHBwaIOJEj9/PlT1IEEqcTERDxw4IDgAhkpjUaDBw8eNPiq7hMnTvBOh7Lp0qVLvNOhbLpz5w7vdCibnj9/zjsdyqbPnz/zToeyKTo6WtSBBKnU1FQ8cOCA4AMJXR0+fFjUgQSpM2fOiDqQIHX16lVRBTJS9+/fF9WMQerNmzeiGv9Jff/+XVQzBqn4+HhRBxKk0tLSJOU+x44dM3i/PX/+vKgCGambN2+KKpCRevLkiagCGakPHz6IKpCRioiIENWMQSopKUlS7nPo0CGDc59Tp06JOpAgFRgYKOpAgtTdu3dFHUiQevHihagDCVKhoaGiCmSkYmJiRBXISFH7rdADCV0dOXJEVIGM1NmzZ0UdSJC6du0a701EbDIWa4aFhRmVNcU0Y5CSwpoXL140Odb89OmTUVgzJSUFAwICTJI1xTRjkJJZU5yksOb58+dFNWOQksqaYpoxSEllzePHjxu03yYlJWFAQIBRWPPkyZMyawpUdHQ0Hj582GisKaYZg5TMmsIlhTWl1tll1hQuKayZnJwsKfcxJmsaWmeXwpovX74U1YxB6l9lTUPr7P8ia7K98p1PUlnzxIkTRmHN27dvG8yaz549MwprRkVFGYU1Ef/3phpD6+wyawqXVNYMCAgwmDWl5j5SWFNM4z8pqawppvGflKmypizjKiMaBxX4v8a4dJdCocgJAC0BoBoAVAUAewDIDwA2ABAFAC8A4BQAbEHECAFfrzkADAaA6v99nZ8AcBcANiLimQz4K5B/tgMAhAAAhISEgIODQ0b+cbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlSxYAAISGhoKjoyP1S0dEDJX6NS2kfgEOVQeAPSz/LT8AePwXPgqFohcinmX6jQqFQgEA6+F/TYOk7AGgAwB0UCgUGwFgKGZUF6QsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZL1lygjGwcB/ndLXyAA3P/vn78BgBn879W/ngDQEQDyAcAxhUJRDRGfMHyNufD/TYMPAWAxAAQDQAkAUAGA23///ScATM2wv4ksWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZL1F8gsA792ICIWQcS+iLgSEQ8j4m1EvImI+xGxC/yveRAAwAoAZuh+AYVCURL+1xwIAHAPAGoj4l5EDELEvQBQ579/DwAwQaFQlMjAv48sE9ePHz8gNTXVIG9ERAQkJiYa5P39+zf8/v3bIG9SUhKEh4cb5EVE+Pr1q0FeAIAvX74Y7P369SsYegHot2/fIC0tzSBvWFgYJCcnG+SNjIyE+Ph4g7yxsbEQFRVlkDclJQV+/PhhkBcRJa3Tly9fDF4nKWv8/ft3g5/F8PBwSEpKMsgbHR0NsbGxBnkTEhLg169fBnk1Gg18+/bNIC+AtGdRyhp/+/YNNBqNQd4fP35ASkqKQd5fv35BQkKCQd6YmBiD99vk5GT4+fOnQd70eBYNlbH2258/f0rab+Pi4gzyxsXFQWRkpEHetLQ0+P79u0FeAOM9i1+/fjX4WZS63xqa+0RHR0NMTIxB3sTERIiIiDDIq9FoTDb3MXSNw8LCJO23UnKf6Ohog7zJyckQFhZmkNeUcx8p+62huU9UVJTB+218fLzBuU9aWppJ5j5S9tt/kTWNlftIzW//JdZMTU01WdY0Vu5jLNaUkvuY4n5rzNxHCmtKyX3+NdaUmvvIrCnOa2q5jxTW/P37t1FY81+ts5saa6akpMisKUIya4r3Gmu/NfRZNCZrmmLu86+xZlxcnFFYE8A0n0WZNcVJZk3hMlXWlPX3KcMaBxGR9yckIh4BgFf//bIew28ZA/9/K+IIRKQ9cYgYDwAj/vulBQCMNuR7lfVvKDQ0FAoUKAA9evSAPXv2iCoGJScng4ODA7Rv3x62bNkiqhhkaWkJrq6u0LRpU1i1ahV8+PBBsNfKygpatmwJderUgYULF8Lz588F/7BUKBQwcuRIqFy5MsyYMQOCgoJE/bBcsWIFlC1bFsaPHw9XrlwRlRAdPXoUihYtCsOHD4fTp0+LgpMnT55A4cKFoV+/fnDw4EFRxaBfv35BoUKFoEuXLrBjxw5RCZFGo4HixYtD69atYcOGDaJ+WFpbW0ONGjWgYcOG4OvrC2/fvhXstbCwgG7dukHNmjVh3rx58OTJE1FrPHXqVHB1dYUpU6bArVu3RMHJ1q1boVSpUjBmzBi4ePGiqITo0qVL4ODgAEOGDIHjx4+LgpPg4GAoWLAg9OrVC/bt2ycqIYqLi4PChQtDx44dYdu2baKKQebm5lC2bFlo3rw5rFmzBj59+iTYa21tDQ0aNIB69erBkiVL4NWrV4LXyczMDAYPHgxVq1aFWbNmwYMHD0QlvYsWLYLy5cvDhAkT4Pr166Kexf3794OTkxOMGDECzp07JwpO7t69C3Z2djBgwAA4fPiwKDj59u0bFCxYELp37w67d+8WVQxKSUmBIkWKQLt27WDTpk2i4MTS0hIqVaoETZo0gRUrVsD79+9Fedu1awfu7u6wYMECePbsmahncfz48VCpUiWYNm0a3L17V9R+u2bNGihdujSMGzcOLl++LOpZPHXqFBQpUgSGDRsGp06dEgUnL168gEKFCkHfvn0hICBAVDEoKioKChUqBJ07d4bt27eLghOFQgElS5aEVq1awfr16yE0NFSw19raGmrXrg0NGjSA5cuXw5s3bwR7zc3NoXfv3lCjRg2YM2cOPHr0SNSzOHPmTKhQoQJMmjQJbt68KWq/3b59O5QsWRJGjRoFFy5cEFUMunr1Kjg4OMCgQYPg2LFjovbbT58+QYECBaBnz56wd+9eUcWgxMREsLe3hw4dOsDWrVtF5T4WFhbg7OwMzZo1g9WrV4vab62srKBp06ZQt25dWLx4Mbx48ULUfuvt7Q1VqlSBmTNnwr1790Q9i8uWLYNy5cqBSqWCq1evitpvDx06BMWKFQNvb284c+aMqP32wYMHULhwYejfvz8cOnRI1H4bFhYGBQoUgK5du8LOnTtF5T5paWlQrFgxaNOmDWzcuFHUQZiVlRVUrVoVGjVqBGq1GoKDgwV7LS0toVOnTlCrVi2YP38+PH36VNR+O3HiRKhYsSJMnToV7ty5I2qNN27cCKVLl4axY8fCpUuXRO23586dA0dHRxg6dCicOHFC1H77+vVrKFiwIPTp0wf2798vKveJiYmBwoULg6enJ/j5+Ynab83MzKBUqVLQokULWLt2LXz+/Fmw19raGjw8PMDDwwOWLl0Kr1+/Fuw1NzcHLy8vqFatGsyePRsePnwoar+dN28eODs7w8SJE+HGjRui9tvdu3dDiRIlYOTIkXD+/HlR++2tW7fA3t4eBg4cCEePHhV1EPYnsObKlSszlTVHjx4Nbm5uMH369ExlzePHj5scayIiODk5aVlTbO4jhTW7d++uZc3Hjx9nOmuOHj0aLl68KOpZDAwMBEdHRxg8eHCms6adnZ1RWLNRo0ZGZ81r166JehYPHDgAxYsXhxEjRsDZs2cznTW7desGu3btyjTWtLKyAjc3N2jcuLFJsebatWuNzpoHDhwwCmuuW7cOQkJCBHsp1qxfvz4sW7YsU1lz1qxZ4OLikumsee3aNZNnzY8fPwr2SmFNhUIBSqUSqlSpAjNmzDAqa4rJfR4+fGgU1tRoNEZhTQsLC/D09NSyptg6+6RJk7Ssefv27UxjzfPnz2vr7MZgzU6dOoGfn5+o3MeYrDlgwACjsOaePXvAyckJRo4cKbrOLoU1v3z5AgULFoQePXrA7t27TYY1W7duDbVr18501ly5ciWUKVMm01nz6dOn6caaYgb8pLCmlZUV1KxZExo2bAjLly/PNNYEAJg2bRq4urrC5MmTTYY1379/bzTWLFeunFFYc8iQIVrWvH//vqg1Xrx4sVFYMygoCAoXLgxeXl6ZypqpqalQpEgRaNu2rUmxpo+Pj8GsKesvFCIaNeB/NwYiAMTo/HsFAIT+999e8nyNV//9vhAAUGTA9+jw39fHkJAQlGW6atOmDVJraW5ujh4eHrh06VJ8/fo1r3fUqFFaLwBgtWrVcPbs2fjw4UPUaDScXrVaTfM6OzvjxIkT8caNG5iamsrpPXbsGM1bvHhxHDlyJJ4/fx6TkpI4vY8fP6Z5CxUqhAMHDsSjR49ibGwsp/fHjx+YNWtWrdfW1hZ79OiBu3fvxl+/fnF6ExMT0dHRUevNli0btm/fHrds2YLfvn3j9Go0GqxZs6bWa2VlhU2bNsWVK1fihw8fOL2IiD169NB6zczMsHbt2rhw4UJ8/vw57zpNmTKF9nm5ubnh9OnTMSgoCNPS0ji9W7ZsoXnLlCmD48ePxytXrmBKSgqn99KlSzRvkSJFcPjw4Xj69GlMSEjg9L59+xbNzc213vz582O/fv3w4MGD+Pv3b05vVFQU5s6dW+vNmTMndunSBXfs2IHh4eGc3pSUFCxdurTWmyVLFmzdujVu2LABQ0NDOb2IiE2aNNF6LSwssGHDhrh8+XJ8+/Ytr3fw4MFar0KhwJo1a+K8efPw8ePHvGu8cOFC2mft6uqKkydPxlu3bvGu8b59+2jekiVL4ujRo/HixYuYnJzM6b179y7Na2dnh4MHD8bjx49jfHw8pzc0NBStra213jx58mCvXr1w3759GBUVxemNi4vDggULar3Zs2fHjh074rZt2/DHjx+cXo1Gg5UqVdJ6ra2tsXnz5rhmzRr89OkTpxcRsUOHDrT9tl69erhkyRJ89eoVr3fcuHG0z6tq1ao4a9YsvH//Pu8ar169muYtX748TpgwAa9fv8673546dYrmLVasGI4YMQLPnj2LiYmJnN7nz5+jQqHQegsWLIheXl54+PBh3v3258+fmD17dq03d+7c2K1bN9y1axfvfpuUlITFihXTerNmzYpt27bFTZs24devXzm9Go0G69Spo/VaWlpi48aNccWKFfj+/XtOLyJinz59aM+iu7s7LliwAJ89e8a7TjNnzqR91pUqVcJp06bh3bt3eZ9Ff39/mrd06dI4btw4vHz5Mu9+e/XqVZrX0dERhw0bhidPnuTdb9+/f48WFhZab758+bBv374YEBDAu9/+/v0b8+TJQ9tvO3fujP7+/vjz509Ob2pqKpYrV46237Zq1QrXrVsnKC9t0aIF7VmsX78+Llu2DN+8ecPr9fb2pn1e1atXxzlz5uCjR49413jp0qU0r4uLC06aNAlv3rzJ+yweOnSI5nVycsJRo0bhhQsXeHOfBw8e0LyFCxfGQYMG4bFjxzAuLo7T++3bN8ySJQttv+3Zsyfu3bsXIyMjOb0JCQloZ2dHy306dOiAW7duFbTfVq1alZb7NGvWDFevXo0fP37k9CIidunShZb71K1bFxctWoQvXrzgXacJEybQPq8qVargjBkz8N69e7zeDRs20Lxly5ZFHx8fvHr1Ku+zeO7cOZq3aNGi6O3tjWfOnOHdb1+9eoVmZmZab4ECBbB///546NAhjImJ4fT++vULc+bMqfXmypULu3btijt37sSIiAhOb0pKCpYoUULrtbGxwTZt2uDGjRt591tExAYNGtByn0aNGqFarcZ3797xer28vGj7ba1atXD+/Pn49OlT3nWaO3cu7bOuWLEiTp06FW/fvs273+7evZvmLVWqFI4dOxYvXbrEm/vcvHmT5rW3t8chQ4bgiRMneHOfz58/o6WlpdabN29e7N27N+7fvx+jo6M5vbGxsZgvXz6tN0eOHNipUyf08/PDsLAwTm9aWhpWqFCBlvu0aNEC165di58/f+b0IhqPNVesWEHzZhZrPnnyhOalWPPIkSOZyppZs2bFdu3a4ebNm/9o1pw6dSrt88os1gwMDKR5xbDmu3fvjMKaqampRmPNIUOG0PbbGjVq4Ny5czOcNffv30/zlihR4o9nzfj4eCxUqJDWm5ms2bFjR9p+S7Hmy5cveddJCmuuWbOG5i1fvjyqVCq8du0a7357+vRpmjezWDM8PNxorFm3bl2t11RYc/v27TQvxZqBgYEZypofPnzQY80+ffrggQMHeHOf379/Y968eWn7rRjWLF++PG2/bdmypWDWbNmyJe1ZzCzWXLZsGc1rKqxpY2ND22+lsuaWLVvw+/fvnF6NRoPVqlWj5T6ZxZoTJ06kfV6VK1fOFNY8f/48zSuGNV+/fv3HseaXL184vYjSWHPAgAG0/bZWrVo4b948fPLkSaaz5pgxYwSx5q1bt2jezGTN/Pnz03IfMazp6upKy33EsGbbtm1p+62xWVNInf348eM0b/HixXHEiBF47ty5DGXNsLAwGmvmzp0bu3fvnimsWatWLVru06RJE8Gs2bNnT9p+m1msuXXrVprX2KwppM6eEay5fv16QazZtGlT2n7boEGDTGHNRYsW0T7rChUqZAprBgUF0bxiWPPLly9GY003Nzda7tO8eXNcvXp1hrPm+PHjaZ9X1apVcebMmUZhTaVSKYg1X7x4YTBryjKuQkJCyHV3wPToiUuPL2LwHw5QDgBS//sLBen8NyfiL7ue5+tsIH5v8Qz4PuXGwb9E9+7do22eZPAVg75+/Uo7TCaDrxik+0OODL5ikEajwcqVKzN6c+TIgZ6enpzFoE6dOjF6hRSDfHx8GL1CikHr1q1j/az5ikFnzpxh9fIVg16+fEn7IUcGVQxiOwgLDw/HHDlyMHr5ikHJyclYvHhxRq+trS327NkT9+zZw1oM8vDwYPQKKQb169eP0UsdhK1atYq1GDR79mxGr5Bi0I4dO1jXia8YdP36dVYvXzHo48ePtIIqGXzFoJiYGFpBlQy+YlBaWho6OzszeoUUg1q1asXoFVIMGjFiBKNXSDFo+fLljF4hxaAjR46wrpOrqytOmTKFtRj06NEjVi9fMej79++0gioZfMWgxMREtLe3Z/TyFYM0Gg1Wr16d0SukGNStWzdGr5Bi0KRJk1j3W75i0KZNm1g/a6oY9ODBA8Y1vnjxIquXrxj05s0bWkGVDL5iUGRkJObKlYvRy1cMSklJwZIlSzJ6hRSDGjVqxOgVUgwaOHAgo1dIMWj+/Pms+y1fMWjv3r2s68RXDLp9+zarl68YFBISglZWVoxeR0dHHD58OJ46dYox94mNjcUCBQowevmKQWlpaVixYkVGL3UQtn37dtZiUPv27Rm9QopBY8aMYd1v+YpBq1atYt1v+YpBJ06cYF0nvmLQ06dPWXMfvmJQWFgYZsuWjdHLVwxKSkrCIkWKMHr5ikEajQZr167Nut/yFYN69erF6BVSDJo+fTrrs1i3bl1cvHgxazFo27ZtrOvEVwy6fPkyq7dcuXKcxaDg4GDW3IevGBQdHY22traMXr5iUGpqKpYtW5Z1v+VrPGjWrBnrfsvXeDBs2DDW/ZZqPAgODmb0Ll68mPVZpBoP2JouAwICWNepUqVKOHXqVLxz5w7js3j//n1WrxTWdHBwwKFDh3KyZuHChRm9Gc2anp6erPstH2uqVCpGb0az5tmzZ1m9GcmaERERnKxJDfhlNmtSA35srNm/f3/W/VYKa9apU4eTNXfu3Mm6ThnNmuRhMhlFihThZU2ycZmM9GBNroOw1q1bM3rTgzV9fX1ZWdPX15d1v6UG/DKbNUuWLMnJmj9+/DAaa9aoUYPRm9GsOXnyZNb91sPDg3PALyNZk2vAT3dIlgyprDlgwABO1ixVqhSjN6NZc9CgQYxeIay5YMEC1v02PViTrenyzp07rN6MZM24uDhO1uQa8MtI1mzVqhUna44dO5Z1v81I1jx58iTrOmUka/78+ZOXNdnq7ElJSVi0aFFGb3qwJteAX+/evRm9Gc2afn5+rOtUpUqVP5Y1ySFZMtKLNdnq7M2bN2fdbzOSNZcsWcL6LLq7u3MO+B08eJB1naSwJjXgFxgYyPgsGpM1q1Spwuj9E1iTrc6+fv161s86PViTbcDv5cuXrHX2jGZNJycnRi814PcnsuacOXNY99v0Yk2mZ/HGjRusXoo12XKfjGbNgwcPsrKmi4sLo1cqa1IDfmysOXLkSEZvRrPm0aNHWdfpT2ZNBwcHRm9Gs2b37t0ZvWKb3GVlrv6KxkEAyAoApQBgLAB8J/5CvXR+Xyviv43m+ZpjiN/b0oDvyYEnqlJfX24cNF0dPnwYVSoVa9MQGbrFoCtXrqBKpaJNfrGFbjHo6dOnqFKpWA9kyNAtBn358gVVKhU2bNiQ10sWg549e4bx8fGoUqlot35xhW4xaObMmayJm26UKVOGdtvTypUr9SaZ2EK3GLRz50708fFh/eFKhm4x6NSpU6hSqVhhhgzdYtDt27dRpVKxAisZusWgN2/eoEqlot1ewRa6xaDw8HBUqVSssEuGbjEoLS0NVSoVdu3aVdBnTRaDUlNTccGCBbQpF67QLQZt2LABx44dy1rIJUO3GHTgwAFUqVSshVwyyAncqKgovHjxIqpUKtbiERm6xaCHDx+iSqWiTfexBTmB++nTJ/z06ROqVCqsV6+eoGeRLAb9/v0bVSoVbTKQK3SLQVOnTmUtWumGbjFo+fLlqFQqBXl1i0F+fn7o4+PDWsglgywGxcTE4NGjR1GlUtGmMNlCtxh0/fp1VKlUrMV6MmxsbLBt27ba256eP3+OKpWKdnMXW+gWg759+4YqlQobN24s6Fkki0FJSUmoUqlYCxq6QU3gUsWg2bNn0yZ8uUK3GLRmzRocM2YMayGXDN1i0O7du9HHx4d2AwVb6BaDzpw5gyqVivXgjAzdYlBQUBCqVCrWw1EydItB7969Q5VKhe7u7rxe3WLQr1+/UKVS0W5F4Irq1avTJnAnTJjAClG6oVsMWrRoEWthUjecnJxotz1t2rQJx40bx1rIJUO3GHTw4EFUqVSsTUNk6BaDAgMDUaVSsTYqkKFbDHr8+DGqVCraTTJsoVsMCgkJQZVKhfXr1+f16haDYmNjUaVSsR7m6IZuMWj69OnYt29fQV7dYpBarWYthuiGbjFo+/bt6OPjw1rIJUO3GHTixAlUqVS022XZQncC9+bNm6hSqWiTtmyhWwx69eoVqlQq1mZrMqjbnqhiUFhYGKpUKtqULlvoFoNSUlJQpVJh586dBX3WusWgefPmsR7K6oZuMWjdunU4duxY1kIuGbrFoH379qFKpWIt5JJBFYOog7Dz58+jSqWiTb2zhW4x6P79+6hSqWi36LEFVQxas2YNfv78GT98+IAqlYp2My1b6DYeREdHo0qlYi0u6gZ12xPVeDB58mTatD1X6N4svGTJEr0bbNhCt/Fg69atOH78eNZCLhm6jQfGYs1nz56hSqViPZAhIz1ZMyEhAVUqFW0Smyvc3Nxotz3NnDmTdpMmV0hlzWHDhumxJnkDBVtkBGuSNwizxZ/Amo8ePdKyJluzkm6kB2teuHBBy5rjxo37o1lT92ZhijXZmlHI+BtYMyUlBZcvX87adKgbRYsWRaVSqc19pLDmsWPHBLNmrly5sFu3btoBPyms+eLFC1GsSQ34BQcH4/fv343GmnPmzDEKa+7Zs+ePZ01ra2saawYHB4tmTWrATyprTpw4kXarLVfo3ixsLNY8dOgQqlQq1qYhMtKTNZ88eYIqlYp2kwxbkKz54cMHo7AmNeA3ffp01sFv3ZDKmtRtT38Ca5YpU4bXy8aabAfgZGQEa5K3LHKFsVmTGvDLTNakBvwymzXJt9gYkzWXLl0qmDWpm4XPnTuHiYmJkljzyJEjJsOa1M3CX79+FcyaujcLS2XNWbNmCWZN3bfYrFy5EkePHi3Iq8uau3btMpg1T58+bRTWfPv2LapUKtpNiWxBsuabN28ksaZGoxHNmuSA34IFC3Do0KGCvFJZk7xMJiAgAFUqFe22Q7b4E1jz48ePWtZka/AkIyNYk7xFnCsygjXJ2w7ZQnfALzNZk3yLDcWa5C3RbCGVNcm32EhlTVnGlck2DgJAP57/sy0BnVcMA8BQ4r978nx9T+L3DjHg+xP0QADIjYOmLKFJvW6Ym5sLSqzZgu1WJCEh5c8VkoCwReHChQX9UGUKW1tbQUUjpsiWLZugwiBTWFlZCSo4MYWZmZmkdZLiZZvmERJCoJ4t8ufPL6iAyxQ5c+ZknezlCxsbG4O/bwsLC4M/L4VCYbRnkXy1j9iwt7cXVMBlirx58wqCGKbInj27IFBlCmtra4P3H2Put1KeRbYbt4REoUKFBDVKM0Xu3LlZJ834ImvWrKwTTHxhaWlp8H6rUCiMtsaGfs8A/9tvhRyYMUX+/PkFFXCZImfOnIKK9EyRJUsWg/+/acz9VopXSu5jZ2cn6PCaKfLkySOoOZMpsmXLRnvtlJiwsrIy+GeMmZnZP7ffFihQQFABlyly5colqGjEFDY2NgbvtxYWFpL2W2M9i1L2WwcHB0EFXKbIly+foGYhpsiRIwfrDfF8YW1tbfD/N/9F1ixUqJDMmpm0TjJrCg9TzX2MxZp58uSRWVNESPlzjcmaQhoUmEJmTXEhhTXz5csns6aIMGadXWZN4SGzpvCQWVNcmCprSsl9pDwTprjfFipUSFCjNFP8i6xprGdRyn5rLNbMkiXLP8eaUtbYzs5OUKM0U8isKS6MyZoDBgyQX2lsRGVE46AC/9c4l6FSKBT9AGAbw396BABDEfEOg8cHABb/98sWiHiG4+u3AIBT//1yPCIuE/n9Cf4QQkJCwMHBQcyXl/WHSKlUwpo1a4z9bciSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSZXLKli0btGvXDubNmwfFihUz9rfzTyk0NBQcHR2pXzoiYqjUr2km9QsI1BEAqPBfVAeA7gBwGAAqAcAuhULRmsGThfjnZJ6vn0T8s40B358jT1Qz4GvK+gtkZWUFzZs3h44dO4r2mpubQ7169aBPnz4G/dlVq1aFYcOGGeQtX748jBo1yiBvsWLFYMSIEZAzZ07R3oIFC4KXlxeULFlStDdXrlzQrVs3qFGjhmivjY0NtG3bFlq0aCHaa2lpCY0bN4auXbuK9ioUCnB3d4cBAwaI9gIAVKpUCby9vQ3yli5dGsaOHWuQ18HBAYYNGwYFCxYU7c2XLx/07dsXnJ2dRXtz5MgBnTt3hnr16on2WltbQ8uWLaFt27aivebm5lC/fn3o2bOnaC8AQPXq1WHw4MEGeV1cXGDkyJEGeZ2cnGDUqFGQJUsW/t+so8KFC8OgQYOgaNGior22trbQs2dPqFKlimhvtmzZoEOHDtC4cWPRXisrK2jWrBl4enqK9pqZmUHdunWhb9++or0AAFWqVDF4vy1btiyMHj3aIG+RIkXA29sbbG1tRXsLFCgA/fv3hzJlyoj25sqVC7p27Qru7u6ivTY2NtCmTRto1aqVaK+FhQU0atQIunfvLtqrUCigVq1aMHDgQNFeAICKFSvCiBEjDPKWLFkSxowZA2Zm4tNme3t7GDJkCBQuXFi0N2/evNC7d29wdXUV7c2ePTt06tQJ6tevL9prbW0NLVq0gPbt24v2mpubg4eHB/Tu3Vu0FwCgWrVqMHToUIO8zs7OBuc+xYsXh5EjR0K2bNlEewsVKgQDBw4EJycn0V5bW1vo0aMHVKsmHjWyZs0K7dq1g2bNmon2WlpaQpMmTaBz586ivWZmZlC7dm3o37+/aC8AgJubGwwfPtwgb5kyZWDMmDEGeR0dHWH48OGQL18+0d78+fNDv379oFy5cqK9OXPmhC5dukCdOnVEe7NkyQKtW7eG1q2ZUJlbFhYW0LBhQ+jRo4dor0KhgBo1asCgQYNEewEAXF1dDd5vS5QoAaNHjwZLS0vRXjs7Oxg8eLBBQ3558uSBXr16gZubm2hv9uzZoWPHjtCwYUPRXimsaWZmBvXq1TM49zEWaxYtWhSUSqXMmgKUHqypVCoN8hqTNfv06QMuLi6ivTJripMps2aTJk1Ee62srKBp06bQqVMn0V6KNfv16yfaCwBQuXJlg3MfmTWFy5is6erqavB+a2zWrFixomgvxZoNGjQQ7TVl1jT0WaTq7JnNmrlz54bu3btD9erVRXtNmTUNrbOXKVPG4NwnPVizfPnyor05c+aEzp07S2LNNm3aiPZaWFhAgwYNjMKaFSpUMDj3SQ/WJA7nBSs9WLNRo0aivRRrdujQQbQ3PVjT0P22XLlyklkzV65cor3pwZo1a9YU7TVl1pRyrjlu3DiDvA4ODjB06FCjsKanpyd4eHiI9qYHa/bq1Uu0F0A6axr6LFKsaWMjvl0nPVizatWqor3ZsmWD9u3bS2JNQ88169SpYzTWNLTOTrHmmTNnICIiAnbt2iU3Df4tSo9rCw0NAOgNABoASAOAfjr/zQf+/3rF5jxfpwXxe8dlwPfpQH19+VXFpquPHz/irVu3eF/rWKBAAfTy8tK+0x4R8du3bxgUFIQuLi6cXt132iMi/vr1C4OCgrBp06acXhsbG2zbti1u3LgRv3z5goiIcXFxGBQUhP379+f0WlhYaN9p/+7dO0RETE1NxaCgIJw6dSqnV6FQoLu7u/ad9hqNBhERHz58iOvWreO9jpbpnfbPnz/HI0eO8HpLlSqFY8eOxcDAQExOTkZExHfv3uGVK1d4X6fi4OCAQ4cOxZMnT2J8fDwi/u9a1rt37/Je0Z83b17s06cPHjhwAKOjoxERMSwsDIOCgrBatWqc3hw5cqCnpyf6+/tjWFgYIiJGR0djUFAQdujQgdNrbW2NLVu2xHXr1uHnz58RETEhIQGDgoJ4X6Vtbm6O9evXx2XLluHr168REVGj0WBQUBDOnz+f97OuXr06zp49Gx8+fKhd48ePH6O/vz+v18XFBSdOnIg3btzA1NRURER89eoVnj59mvd6/+LFi+PIkSPx/PnzmJSUhIiIHz58wBs3bvBeN12oUCEcOHAgHj16VHvV8devX/Hu3btYqlQpTq+trS326NED9+zZg5GRkYiIGB4ejkFBQVi/fn1Ob9asWbF9+/a4ZcsW/PbtGyIixsTEYFBQEPbs2ZPTa2VlhU2bNsVVq1bhhw8fEBExOTkZg4KC0MfHh9NrZmaGderUwUWLFuHz58+163T//n1Uq9W861S5cmWcMWMGBgUFaZ/FZ8+e4f79+3m9ZcuWRR8fH7xy5QqmpKQgIuLbt2/x0qVLvK9TcXR0xOHDh+Pp06cxISEBERE/ffqEt2/f5n3tTYECBbB///548OBB/P37NyIifv/+HYOCgrBixYqc3pw5c2KXLl1wx44dGB4ejoiIkZGRGBQUhC1btuT0ZsmSBVu3bo0bNmzA0NBQRESMj4/HoKAgHDRoEKfXwsICGzZsiL6+vvj27VtERExLS8OgoCCcOXMmp1ehUGDNmjVx3rx5+OTJE9p+u3HjRt51cnV1xSlTpuDt27e1a/zixQs8fvw476uNSpYsiWPGjMGLFy9q99vg4GC8du0aZsuWjdNrb2+PQ4YMwRMnTmj329DQULx79y7v9e158+bF3r174759+zAqKgoREX/+/IlBQUFYq1YtTm/27NmxU6dOuG3bNvzx4wciIv7+/RuDgoLQ09OT02ttbY0tWrTANWvW4KdPnxARMTExEYOCgnDUqFGcXnNzc6xXrx4uWbIEX716pc0jgoKCcNGiRbzrVLVqVZw1axY+ePBAu8ZPnjzBnTt38nrLly+PEyZMwOvXr2v329evX+O5c+d4XyVXrFgxHDFiBJ47dw4TExNpuQ/fqzYKFiyIAwYMwCNHjmj3Wyr3KVeuHKc3d+7c2L17d9y1a5c294mIiMCgoCBs1KgRpzdr1qzYrl073Lx5M379+hUREWNjYzEoKAj79OnD6bW0tMQmTZrgihUrMDg4GBERU1JSMCgoCCdNmsTpNTMzw9q1a+PChQvx2bNn2nV68OABrl69mned3NzccNq0aXj37l1a7nPo0CFeb+nSpXHcuHF4+fJl2n57+fJl3tepODo64rBhw/DUqVPa/fbz5894584d3tcw5MuXD/v27YsBAQHa/fbHjx8YFBSElStX5vTmyJEDO3fujNu3b8efP38iImJUVBQGBQVhmzZtOL1ZsmTBVq1a4fr167UcReU+Q4cO5fRaWFhggwYNcPny5fjmzRvafjtnzhxOr0KhwBo1auDcuXPx0aNH2jV+9OgRbt26lXedKlSogJMmTcKbN29qn8WXL1/iyZMn0czMjNNbokQJHD16NF64cEGb+7x//x6vX7+OOXPm5PQWLlwYBw0ahMeOHcO4uDhERPzy5QvevXuX97Umtra22LNnT9y7d69e7lO3bl1Ob7Zs2bBDhw64detW/P79Oy336datG6fXysoKmzVrhqtXr8aPHz8iImJSUhIGBQXh2LFjeZ/FunXr4uLFi/Hly5fadbp37x4uW7aMd52qVKmCM2fOxHv37mm9T58+xT179vB6y5UrhyqVCq9du6Z9Ft+8eYMXLlzgfZ1K0aJFUalU4pkzZ/T2W2OxZrNmzTi9NjY22KZNG6OwZq1atf441uR7lVxGsWb16tU5vRRr+vn5pQtrUrmPUqnk9FKsuXTp0kxnTWdnZ0bWPHPmjNFYs3Tp0pxekjV//fpF228zkjUtLS1ZWVOlUnF6M4o1Dxw4wOstW7Ysjh8/PtNZM3/+/NivXz9G1qxUqRKn929izUePHuGmTZt414lizVu3bqUra/K9Ss7Ozg6HDBmCx48f1+Y+mcWaHTt2ZGTNzp07c3qtrKywefPm6c6aixcv5l0nmTX/nzUbN27M6aVYc9OmTZnKmlSdfcGCBX8Ea757904Qazo4OGQIa1apUoXTy8Wabdu25fRKYU1zc3M91qRyn7lz5/KucY0aNXDOnDnpypqnTp3iZU0nJyccNWpUurMm32sO/0TWHDduHKc3o1hz7969vF6KNa9evZourEnlPkJYs3///n8Ua3p5eXF6M4o1169fz7tOGcGaV69e5WVNe3t7HDp0KK3OTrEm36twKdbcv39/prNmixYtcO3atenCmlTus2DBAt7Pulq1an8Ua968eTPTWZPKfRo0aMDpNTZrLly4UI81V6xYwbtOlStXxunTp6c7a1pbW3N6/0TWbNWqFaf3T2DNx48fa9dYlnGVEa8qNmrjIP6vKW/ff3+hWACwJf79UOIv68nzNTyJ3zskA75HuXHwL9GOHTsYN72KFSvqNWPo6vr164xeqkB26dIlbZKoq48fPzIWYZiaMXQVExODefPm1fNSBbL9+/drC2S6SktLw/Lly+t5qWYMMklkEtMPKaYkkUlMCaO5uTl6eHjoJYm6Wr58OeNnTSWJZIFMV2yJvbOzs16BTFcPHz5k9FJJ4rlz57RJoq6+f//O2OzIVCDTVUJCAtrb2+t5qQLZ7t27tUmirjQaDSMUkM0YVJLIJCZApwpkK1euxPfv37N6mYplZDMGmSTqiq1w7ebmppck6urChQuM3jJlyuglibp68+YNYxGGShLJApmuIiMjMVeuXIKSRF2lpKRgyZIlWZNEskDGJKbmGypJXL9+vTZJZNLAgQMZk0SqQEYliUxiOigkmzG4kkS2Q/sKFSrg5MmTaQcSurp9+zajl2rGIA8kdPX582fGAyg7OzscPHgw7UBCV7GxsVigQAE9b548ebBXr160AwldpaWlMTY7ZsuWDTt27Ihbt27VHkgwqV27dnpe8kCCKpAxacyYMYzPYr169fQKZLpauXIl42ddtWpVnDlzJt6/f5/Ve+LECUYv2YzBtt8+ffqU8QCKKpCdPXtWWyDTVVhYGGOzY8GCBdHLywsPHz6sLZDpKikpCYsUKaLnpQpk5IGErjQaDbq7u+t5qcZ/8kCCSb169WLcbxs3bkw7kGDStGnTGJ9FpgMJXW3bto1xnSpVqoTTpk2jFch0dfnyZUYvU4FMV8HBwYxFGKZmDF1FR0ejra2tnjdfvnx6zRi6Sk1NxTJlyuh5ycZ/rv2WqSBKNmNwscCwYcP0vEyN/0xiOyisXr263oGErgICAhi9Li4uOGnSJFqBTFf37t1j9DIdSOjq69evjAdQ1IHE0aNHWffb+Ph4LFSokJ6XOpAgG/91pdFoGJsds2XLpi2QUQcSTGJqPGZq/GcS0xAA2Yzx4sUL1nVia5KimjHu3bvH+iyeOXOG0Us1/pMHErp6+fIl435bpEgR9Pb2xjNnzrDmPhEREZgjRw49L3kgwZb7JCcnY/HixRn3265du+LOnTu1BTImeXh4MO63bdq0wQ0bNmgPJJjUr18/PS91IOHr66s9kGDS7NmzGfdbpmYMXRmTNZkOoDKDNZ2dnfW8JGty5T5SWHPEiBGM+y3FmmQzhq6MxZqPHj1i9JLNGBnBmomJiSbJmpMnT2bcbzOaNS9evMjopViTbMbQVUawJlMzhq4yijWpZgwu1mQ6nMgM1mQ7tCdZk+1ZlMKaISEhBrNmXFwcJ2uSzRi6ksqa7du31/MyNWMwSQprrlq1ivGzppox/kTW/PnzJyNrUo3/GcmatWvX1vOSrMmV+0hhzenTpzM+i0xD5rry8/NjXKdKlSrpNWPoSiprMtXZM4M1y5Ytq+f901lzyZIljJ81xZpkM4aupLDm/fv3Gb1MzRi6ksqaTM2OTEPmutJoNIzNjpnBmkyNGZnBmmfPnmX0Gps1uersycnJjIN1FGuSzRhMksKaTENXZDNGRrEmW4M405C5rozJmkzNjpnBmq1bt2bcb3WHzJkkhTV9fX0ZP+tq1arpNf7r6ujRo4zejGbNHz9+GI01a9Sooef9E1iTq86+efNmxs+aqfFfV1JY8+3bt4x1dqYhc11JZU2mS1yYGv+ZxDTokRmsydSUmhmseefOHUYv05C5rozFmhqNhrHZkWRNrtxHlvH0tzYO9iD+Uj2If9+a+Pejeb7GGOL3tsyA71FuHPwLlJKSou3mZ5oO5VOTJk20SSLTdCiXBg8erH14maZDubRw4UKtl5oO5SqQkdq3bx9jkshWICN19+5dvSSRq0BGKjQ0VPsDjmk6lEtxcXHabn6m6VAukT/ghBbISFGTNUKbMUiRU25UMwZXkkiKnDhlmg7l0qlTp7RepulQLj1//lwL92SSyFYgI/Xz50/t5LjQJJFSUlISFitWjJYk8hXIKGk0GqxTp472WdSdDuUTNVXMNh3KpRkzZtCSRN3pUC6RE1BCmjFIXb16Vetlmg7l0vv377XFVKbpUC79/v1bOznONB3KpdTUVO3kuNADCVItWrTQAhs1HcpVICM1fPhw7efFNB3KpaVLl2q9TNOhXCKnv8kCmZD99sGDB1ov03Qol759+6YtppLNGEL224SEBG0xlWk6lEsajQarVq2qBTbd6VA+denSRfssMk2HcmnChAnaz4tpOpRLGzZs0HqpAwmuAhmpc+fOab1M06FcevXqlfYgmWk6lEsRERHayXGm6VAupaSkaCfHhTZjkKImGYU2/pMip4qZpkO5RE74M02HcmnXrl1ar5ADCVI3b97UepmmQ7n0+fNnbTGVaTqUS7GxsdpiKtN0KJfS0tKwQoUK2tynadOmvAUyUtSNgWzToVwib1QR0oxBirzdiGk6lEvHjh3TepmmQ7n05MkTrVdI4z+pHz9+aCfHmaZDuZSYmKidHGeaDuWSRqPBmjVravdb3elQPvXo0UO734qdDiUn/F1dXXkb/0lt2bJFr0DG1YxBKjAwUFSBjBRZTBXS+E8qKipKOznOdBMRlzKKNYWs05AhQ4zCmuSt1hRrcjVjkJLKmtTkuJBmDFLGZM2OHTsahTXXrFnDyJpCnsX0Zk2uZgxS4eHheqzJ14xBSSprUrfmkM0YmcGa5IQ/1Yzxp7Pmhw8fjMaa1IAsyZpczRikpLAm+aaIKlWqaJsxhHjJ243KlSvH24xBylRZ087O7o9hTa5mDFITJ07UY02uZgxSUljz/PnzNNbka8YgJYU1f/36pWVNoUPmlIzJmgMGDDAKa+7evVuPNbmaMUilN2tyNWOQio2Nxfz589NYk68Zg5JU1qRuDBTa+E9KCmuStxsJGTIndfz4caOwZlhYGCNrCsl9pLImdUMrxZp8zRikjMWa5M2Omcma7969MwprpqamMrKm0Dp7erMmV+M/KfKtLeXLl+dt/CclhTWDgoJorMnX+E9KCmuSA7JCh8wpaTQadHNzMwprjh8/Xo81hdbZpbDm6dOn9ViTq/GflLFYMzk5WcuaQhv/KUllzb59+2o/LyFD5qSksOb27dsNZs1r164ZjTWpAVmKNfka/ylJZU3qdnqKNfka/0mlF2sKafwndfjwYYNZU5Zx9bc2DjYh/lKTiH/vRPz79TxfYwPxe4tnwPcoNw7+BTp79qyoJJHUs2fP9K7qFqofP36gp6cn73QokxISErBbt26oVqsFJ4mUNBoNDho0SFQzBqnJkyeLasYgtWLFCt7pUDbt27ePdzqUTdeuXeOdDmXTu3fvRCWJpCIjI7Fz586010IJVXJyMvbq1Yt3OpRJGo0GR4wYwTsdyqY5c+aIKpCR2rhxo6hmDFLHjx8XVSAjde/ePd7pUDaFhoaip6en4CSRVGxsLHbp0oV3OpRJaWlp6OXlJSpJJOXj46P3WiihWrJkiagkkdSOHTvQ29tbcIGM1IULF3inQ9n04sULUc0YpH7+/Imenp6806FMSkxMxO7du/NOhzJJo9Hg0KFDeadD2TRt2jTe6VA2rV69mnc6lE0BAQGiDiRI3bx5k3c6lE0fPnzAzp07Cy6QkYqOjsbOnTuLasaglJqain369BHV+E9q1KhRopoxSM2fP593OpRNW7Zs4Z0OZdOpU6d4p0PZ9OjRI97pUDZ9+/YNPT09BR9IkIqPj8du3bqJOpCglJaWhgMHDuSdDmXTxIkTRTVjkPL19RXV+E9q9+7dopoxSF2+fJl3OpRNr1+/FnQTEZMiIiLQ09OTdzqUSUlJSdizZ09RBxKUNBoNent7806HsmnWrFk4efJkwQUyUuvWreOdDmXTkSNHRBXISN25c4d3OpRNnz9/Rk9PT4OmQ2NiYrBLly6iGv8ppaamYr9+/XhvImLTuHHjeG8iYtPChQtFHUiQ8vf3572JiE3GZM1OnToJbsYgJZU1Bw8eLLOmQAUHB2tZU0gzBikprJmSkoK9evUS1YxByZisuWnTJqOw5v37943CmnFxcdi1a1eTY82lS5eKasYgJYU1L168KKoZg1R6saYhuU+PHj1ENf5Tksqa06dPNwprHjx4UPsKYpk1+TV69GijsObWrVtFDZmTOn36tFFZU2gzBikprKnRaHDgwIGimjFIGYs19+zZYxTWfPPmjVFYMzk5WcuaQpsxKFGsKaYZg5QU1ly/fr2oZgxSUljz7t27opoxSP2LrLlo0SJRQ+akpLDmuXPn0MvLS3DjP6k/gTUNqbNLYc0pU6YYhTX3799vMGtev35dVOM/KSmsGRUVhZ6enqIa/ylJYU3E/93sKKbxn5SxWPPEiRNGYc0vX75oWVNsnT29WFNo4z8plUolqvGflBTW3Llzp6jGf1JSWPPly5cmyZrDhg2TX0FsosqIxkEF/q8xzmhSKBT9AGDbf78ciYir/vv3CgAIBQA7AHiFiOU4vsZLACgLAF8AwBHT+S+lUCgcACAEACAkJAQcHBzS88vLkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZjAoNDQVHR0fql46IGCr1a5pJ/QLpoM7EPz+l/uG/5r+j//2yrEKhqMlk/u/fl/3vl0fTu2lQlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJ+puUYY2DCoWin0KhyMLze8YAQMv/fvkRAK7r/BY1AKT+98+rFAqFjY7fBgBW/ffL1P9+vyxZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiWLRRl54+BMAPiiUCg2KhSKPgqForZCoaioUCjqKBSKYQqF4joALP/v9yYDwCBETCW/ACK+AYCl//2yKgDcUCgUXRUKRVWFQtEVAG789+8BAJYg4tsM/PvIMnFFRESARqMxyBsVFQUpKSkGeWNjYyEhIcEgb1JSEvz+/dsgLyJCeHi4QV4AgJ8/fxrslfLnhoeHg6EXh/769QvS0tIM8kZHR0NycrJB3vj4eIiLizPIm5KSApGRkQZ5EVHSOkldY0PXKTw83OBnMTIyElJTU/l/I4NiYmIgMTHRIG9iYiLExMQY5NVoNBAREWGQF8A0n0VT3G+Tk5MhOjraIK/U/VbqXi3lWTTGfvv7929ISkoyyCtlv01NTTV4vwWQvk5SvMZ4FiMjIw1+FqXut4bmPsbcb431MzUiIsIouU9cXBzEx8cb5E1JSYGoqCiDvKac+xjqlZL7SNlvExISIDY21iBvWloa/Pr1yyAvgJz7iJGpsqYxOfVfYk0puY8x91up+a3MmsJlis+ilNxH6n5raO5jTNY05rNoiqwpJfeRwprGyn3+NdY01dznX6uzmyprGvNZlLLGpsia/2LuY4qsaYq5z7+23xqzzm6K+63MmuJkis+izJqy/nVl9KuK8wDAIADwh//dJvgIAK4BwFoAqP3f7wkFgNaIeIHla0wBgK3//bMbAOwFgKD//tftv3+/BQCmpvP3Lusv09u3b8HOzg4GDBgAR44cEQUnMTEx4OjoCN27d4ddu3aJOghTKBTg7OwM7dq1g02bNsG3b98Eey0tLaFRo0bQuHFjWLFiBbx//17Unzt48GCoXbs2LFiwAJ49eybqh+X8+fOhUqVKMG3aNLh7966ohGjPnj1QunRpGDduHFy+fFnUD8s7d+5AkSJFYNiwYXDq1ClRCdHXr1/Bzs4O+vbtCwEBAaKKQcnJyVCsWDHo3LkzbN++XdQPSwsLC6hcuTK0atUK1q9fD6Ghwl8jb2FhAe3bt4cGDRrA8uXL4c2bN4K9CoUCxo4dCzVq1IA5c+bAo0ePRK3xqlWrwMXFBSZNmgQ3b94UlRCdOHECSpYsCaNGjYILFy6IgpNnz56Bg4MDDBo0CI4dOyYqIYqMjAR7e3vo2bMn7N27V1QxSKPRQOnSpaFDhw6wdetW+PHjh2CvpaUl1KlTB5o1awarV6+GT58+CfaamZlB7969oW7durB48WJ4+fKlqHWaMWMGVKlSBWbOnAn37t0T9Sxu27YNypUrByqVCq5evSoKTi5fvgzFihUDb29vOHPmjKhi0MePH8HOzg68vLzg0KFDovbb+Ph4cHR0hK5du8LOnTtFwYm5uTm4uLhAmzZtYOPGjfD161fBXktLS2jevDk0atQI1Go1BAcHC/YqFAoYPnw41KpVC+bPnw9Pnz4VtcaLFy+GihUrwtSpU+HOnTui1jggIABKly4NY8eOhcDAQFH77f3798HR0RGGDh0KJ0+eFFUM+vHjB9jZ2UGfPn1g//79ouAkJSUFnJycoFOnTuDn5ycKIi0tLaFatWrQsmVLWLt2LYSEhAj2mpubg6enJ3h4eMDSpUvh9evXgr0AACqVCqpVqwazZ8+Ghw8filrjdevWgbOzM0ycOBFu3Lghar89e/YslChRAkaOHAnnz58Xtd++evUK7O3tYeDAgXD06FFRxaDfv3+Dg4MD9OjRA/bs2SOqGKRQKKBs2bLQvn172LJlC3z//l2w18rKCurXrw9NmzaFlStXwocPHwR7zczMwMvLC+rUqQOLFi2C58+fi1qn2bNnQ+XKlWH69OkQFBQk6lncuXMnlClTBsaPHw9XrlwRtd/euHEDihYtCsOHD4fTp0+Lyn1CQkLAzs4O+vXrBwcPHhRVDEpMTISiRYtCly5dYMeOHaL324oVK0Lr1q1hw4YN8OXLF8FeCwsLaN26NTRs2BB8fX3h3bt3gr0KhQJGjx4NNWvWhHnz5sHjx49FrbGvry+4urrC5MmT4datW6KexSNHjkCpUqVgzJgxcPHiRVH77ePHj8HBwQEGDx4Mx48fF5X7hIeHg729PfTq1Qv27dsnar/VaDRQokQJ6NixI2zbtg3CwsIEey0tLaFWrVrQvHlzWLNmjajcx9zcHLp37w716tWDJUuWwKtXr0St05QpU6Bq1aowa9YsePDggSjvpk2boHz58jBhwgS4fv26qGfxwoULULx4cRgxYgScPXtWVO7z7t07o7Fm+fLloW3btgaxZuPGjSWxpru7e6az5t69e02aNf39/UXlPhYWFlClShWDWNPc3FzLmsuWLRPNmuPGjTMKa548eRJKlChhEGs+f/7cKKyJiOnGmh8/fhTsNTMzgz59+hiFNf38/KBcuXLg4+MjmjWvXLkimTX79+8vmjUTEhIksWaFChWMwpre3t4Gs+aSJUu0rHn79m1Ra3zw4MF0Yc0TJ06IYs2wsDCDWTM1NVUSa1avXh1atGgBa9euhc+fPwv2mpubQ+fOnQ1mzQkTJhiNNZ2cnLSsKeZZJFnzyJEjRmHNzZs3i2JNS0tLaNCggUGsqVAowMvLC2rXrg0LFy6UWZNHuqwpts5eqVKldGHNt2+F3zNCsubcuXMzlTWPHj0KJUuWhNGjR8PFixdF5T5SWDMiIgLs7OwMZs2SJUsahTV79OihZU2xuY8U1ty8ebOWNa9duybqWbx48aJk1vTy8oLDhw+Lyn1iY2MNZk0zMzNwdnY2mDWbNGliMGsOGTLEYNZcsGDBH8GaYnIfkjUPHDggijVTUlKgePHiklizZcuWsG7dOtF19g4dOhjEmgAA48aNg+rVq2c6a546dUoSa9rb22tZU0zuk56sKTb3qVu3rmTWXLRoEbx48ULUOs2cORMqV64MM2bMMCprisl9Pn36ZDTWdHV1NZg1W7RokS6s+eTJE4ObLmX9JULEDAkAKAEAQ+B/DX6PAeA7AKQAQAwAvAOAAADoBwBZBX69lgBwBAC+AEDSf/97BABaZNTfgfizHQAAAQBDQkJQlumqefPmSK2ltbU1Nm/eHNesWYOfPn3i9Q4fPlzrNTc3x3r16uGSJUvw1atXvN6lS5dqvQCAVatWxVmzZuGDBw9Qo9Fweg8ePEjzli9fHidMmIDXrl3D1NRUTu+DBw9o3mLFiuGIESPw7NmzmJiYyOn9+vUrZsmSRestVKgQDhgwAA8fPoyxsbGc3oSEBCxcuLDWmzt3buzevTvu2rULf/36xenVaDRYtWpVrTdr1qzYtm1b3LRpE379+pXTi4jYuXNnrdfS0hIbN26MK1aswPfv3/N6J0yYoPUqFAp0d3fHBQsW4LNnz3jXaf369bTPulKlSjht2jS8e/cupqWlcXrPnTtH85YuXRrHjRuHly9fxpSUFE7vy5cv0czMTOt1dHTEYcOG4alTpzAhIYHTGxERgTlz5tR68+XLh3379sWAgAD8/fs3pzclJQVLlCih9ebMmRM7d+6M27dvx58/f3J6ERHr16+v9WbJkgVbtWqF69atE7THenl5ab0WFhbYoEEDXLZsGb5584bXO2fOHNpnXb16dZwzZw4+evSId4137dpF81aoUAEnTZqEN2/e5H0Wb9y4QfM6OTnhqFGj8MKFC5iUlMTp/fTpE1paWmq9hQsXxkGDBuGxY8cwLi6O0xsbG4v58uXTevPkyYM9e/bEvXv3YlRUFKc3LS0NXVxctN5s2bJhhw4dcOvWrfj9+3dOLyJimzZttF4rKyts1qwZrl69Gj9+/MjrHTlypNZrZmaGdevWxcWLF+OLFy9410mtVtM+6ypVquDMmTPx3r17vN5jx47RvOXKlUMfHx+8evUq77P4+PFjmrdo0aLo7e2NZ86c4d1vf/z4gVmzZtV6CxQogP3798dDhw5hTEwMpzcxMREdHBy03ly5cmHXrl1x586dGBERwenVaDRYs2ZNrdfGxgbbtGmDGzduFLTfdu/enfYsNmrUCNVqNQYHB/N6p0yZQttva9WqhfPnz8enT5/yrtOWLVton3XFihVx6tSpePv2bd799tKlSzRvqVKlcOzYsXjp0iVMTk7m9L59+xbNzc21XgcHBxw6dCieOHEC4+PjOb2RkZGYO3durTdv3rzYu3dv3L9/P0ZHR3N6U1JSsHTp0lpvjhw50NPTE/38/DAsLIzTi4jYpEkTWu7TokULXLt2LX7+/JnXO3jwYFru4+HhgUuXLsXXr1/zehcuXEj7rKtVq4azZ8/Ghw8f8q7xvn37aF5nZ2ecOHEi3rhxg3e/vXv3Ls1bvHhxHDlyJJ4/f553vw0NDUUrKyta7jNw4EA8cuQIb+4TFxeHBQsW1HptbW2xR48euHv3bkG5T6VKlWj7bfv27XHz5s347ds3Ti8iYocOHWi5T5MmTXDlypX44cMHXu+4ceNo+22dOnVw4cKF+Pz5c951Wr16Ne2zdnNzw+nTp2NQUBDvs3jq1Cmat0yZMjh+/Hi8cuUK7377/PlzVCgUWm+RIkVw+PDhePr0ad7c5+fPn5g9e3atN3/+/NivXz88ePAgb+6TlJSExYoVo+U+Xbp0wR07dmB4eDinV6PRYJ06dWi5T+vWrXHDhg0YGhrK6UVE7NOnD22/bdiwIfr6+uLbt295vTNmzKDttzVr1sS5c+fi48ePedfY39+ftk6urq44efJkvHXrFu8aX716leYtWbIkjh49Gi9evMi7375//x4tLCy0Xjs7Oxw8eDAeP36cd7/9/fs35smTh5b79OrVC/ft28eb+6SmpmK5cuW03uzZs2PHjh1x27Zt+OPHD04vImKLFi1o+216sObLly9514mNNe/fv8/rPXToEM0rlTWVSqUg1vz27Vu6sma3bt0yhTW7dOlC228zizU3bNhA+6zTgzUDAwN599tXr16lO2seOHBAUO7DxJr+/v6CWLNBgwa0/dZQ1jQ3N8f69esLZs25c+fSPmsprOni4iKYNW/evEnzimHNz58/pztr7tmzByMjIzm9aWlpWKFCBVruI5U1V61aJYg1R40aRct9pLLmjBkzDGLNsmXLCmbNJ0+e0LyZyZqOjo5ab3qx5pcvXzi9iIg9evSg5T5iWHPq1Km0/ZZizSdPnmQoawYGBtK8UljT3t4ehwwZIog1o6Ki0pU1O3XqlCmsOWTIENp+mx6sKaTOvn//fpo3PVjz3LlzgljT2tqalvsIZc34+HgsVKiQ1iuFNbNmzYrt2rUTzJodO3ak5T5SWLN27dqCWXPNmjW0z9oUWDM8PDzdWXP79u2CWLNu3bq03Ecqay5fvlwQa86cOZO230phzQoVKhjMmiVKlBDMmh8+fDAaa5YvX17rzUzW9Pb2pu23Ylhz2bJltM9aKmuqVKpMZ82CBQuil5eXYNa0s7PTek2FNSdOnEh7FtODNe/cucP7LJ4/f57mTQ/WPHnyJO9+++vXr3RjTarObihrtmzZUjBrDhgwgPYsZhZr7t69m+Y1FdbMnz8/bb+VyppbtmwRxJpt27bVeqWyZp06dXDRokWCWHPFihW0z1oMax4/fpzmzSzWlGVchYSEkGvngOnRE5ceX+RvD5AbB/8a3bp1i7YBkuHq6opTpkxhLQZ9/vyZdphMRqlSpXDMmDGsxaDY2FgsUKAAo5evGJSWloaurq6MXiHFoHbt2jF6s2fPzlsMGj16NKNXSDFo5cqVjF4hxaATJ06wrhNfMejp06esXqoYdP36dcaEKCwsDLNly8boLV68OI4YMYK1GJSUlEQrqJJBHYSxFYM0Gg26u7szeqmmS65iUM+ePRm9QopB06ZNY/QKKQZt27aN0SukGKRbUCWDKgaxHYQFBwfTCqpk8BWDoqKi0NbWltHr6OiIw4cPZz0IS01NxTJlyjB6qWIQV9Nl06ZNGb1k0yVbMWjo0KGMXuogbP369azFoMWLFzN6qaZLrmLQgQMHGL0KhQJr1KjBWQy6d+8e6xrzFYO+fPlCK6iSwVcM0i2oksFXDNJoNFi5cmVGr5BiUKdOnVj3244dO+LWrVtZi0E+Pj6MXisrK2zevDmuXr2atRi0du1a1meROghjKwadOXOGdZ2qVq2KM2fOZC0GvXjxglZQJaNcuXKcxaDw8HDMkSMHo5evGJScnIzFixdn9PIVgzQaDdarV491v6WKQWwHYf369WPdb/mKQbNmzWLdb6liENtB2I4dO1ifRaoYxNZ0ef36ddY1rlSpEk6dOpW1GPTx40daQZUM6iAsMDCQ8VmMiYnBvHnzMnqppku2YlBaWhqtoEpGvnz5sE+fPpzFoFatWjF6hRSDlEol637LVwxavnw5o1dIMejIkSOs68RXDHr48CGrlyoGsR2Eff/+HW1sbBi9VDGIrekyISEB7e3tGb2FCxfGgQMH4tGjRxmLQRqNBqtXr87otbW15S0GdevWjdFLNV1yFYMmTZrEut82bdqUsxi0adMm1v2Wrxh04cIF1nWqXLmythjE9Cy+efOGVlAlg68YFBkZibly5WL0FilShLMYlJKSgiVLlmT0Uo0HBw8eZG08aNSoEaOXajzgarocOHAgo9fGxkZ7EMbWeDB//nxGL9V44Ovri+/evWP07tmzh3W/rVmzJs6bN4+18eD27dusayyFNUuWLJmhrFmxYkVGb0az5pgxYxi96cGaXAN+UlmTLfdxdnbGCRMmZBhrFilShNGb0azZq1cvRu+fwJpsB2GXL19mXWOprMk14BcdHZ1hrMk34NesWTNGrxDWHDZsGKM3o1kzICCAdb9NL9ZkehZ1h2TJSA/WZDsIE8KaXAN+np6erPutFNakBvzYWHPdunWsz6IU1qQG/NhY8+XLlwazZkRERIazJlvu4+HhwbrfGsqaNjY22LZtW84Bv9mzZ7Put1JZk2vATyprkofJZGQ0azo7OzN6M5o1R4wYwbrf8rGmr68vo5dkTbY6uxDWZBvwe/ToEatXKmtyDfglJiZmGGv26NEjw1hz8uTJrPttRrLmxYsXWdcpPViTrc5uqqw5aNAg1v1WCmtSA35srLl3717W/TYjWTMkJMRg1oyLi8tQ1uSqs7dv357Rmx6suWbNGlbWXLVqFet+K4U1+S6T4WJNasCPjTV//vxpNNasXbs2ozejWXP69OmMXiGs6efnx7rfSmVNrgG/4OBg1jq7VNbkGvBLTU3FsmXLMnr/ZNZcsmQJ636bHqzJVme/f/8+6xqnB2teuHCBlTXJIVkyhLBmlSpVGL1CLpNhY01ywE9Ik7uszJXcOCg3DsqSoEuXLqFarWYt8pFBFYOoCdz79++jWq2m3b7FFrly5cJu3bppJ3Dfvn2LarWatXhEhm4xKCwsDNVqNe0mGbawtLSkTeAmJiaiWq1mBSHdH5a6tz2tX7+edisCV1ATuFQxaPfu3bhw4UJW6CRDtxh08uRJ9PX1pU2MsAVZDIqPj8fr16+jWq2mTeixhW4x6MmTJ6hWq1l/uJJBFoPCwsLw06dPqFarWRvDyLC2tsaWLVtqD8IiIyNRrVbTbu5iC91ikEajQbVazdrkoBvVq1en3fa0detW2i00XKE7gRsQEIBLly5lLfKRoVsMOn/+PKrVatrtBGyhWwy6c+cOqtVq1kMVMnSLQa9evUK1Ws16cEYGWQz69u0bfv36FdVqNe1mA7bQLQbFxcWhWq1mLQKTQRaDqKbLNWvW0KZ0uYIqBlETuDt27MB58+YJ8uoWg44dO4bLly9nLfKRoTuBe/nyZVSr1axFPjIKFCigncCNiYnBhw8folqtZm2YJkP3tqfg4GBUq9W0yS+20C0GhYeHo1qtZk2SydAtBqWkpKBaraZNzLMFWQyiDsI2btzIWlzUDd1i0L59+3DRokWsB5xkUMUg6iDs9OnT6OvrS7udgC2oYhDVdHnz5k1Uq9Xo5OTE69UtBj179gzVajVWq1aN10tO4IaFhWFISAiq1WraDcJsoTuBGx0djWq1mrXZmgymm4VXrFhBuw2TK3SLQX5+fqyNg7qhWww6dOgQLl26lLXIR4ZuMejixYuoVqtpN+GxhW4xKCgoCNVqNe32LbbQvVn4zZs3qFaraVPvbKFbDPr+/Tuq1WrWZhQyqGIQNYGbkJCAarWadlsQW1DFIHICd+3atawHq7qhe9vTrl27cP78+axFPjJ0bxY+fvw4+vr60m4nYAvdYtDVq1dRrVazDi+QoVsMevz4MarVanRzc+P16haDPnz4gGq1mrVYTwZZDAoJCcFfv36hWq3Grl278nrJYtCbN28wNTUV1Wo17XY2tmAqBm3evJl2Cw1X6N4svH//flyyZAlrkY+MEiVK0CZwz549i76+vrTbCdjCzs6ONoF769YtVKvVWKpUKV6vbjHoxYsXqFarsUaNGrxe3WLQly9fUK1Wsx6OkqF7s3BMTAyq1Wra7RVcz6Ju48GqVatYC/26oXuzsL+/v94N02xBNR5QTZdHjhzBZcuWsRb5yChatCgqlUrtQRjFmmxFPjKksiZ529O7d+9EsSZ5szDFmuRNMmyhy5pJSUmSWZO8FYErdFlzz549JsOaVNPl06dPRbMmdRAmhTWjoqJEsSY54GdM1jx48KBg1tS9WVgKa969e9cg1vz165ck1vz27ZtBrPnhw4dMZ03yticxrKk74EexJnkTHltIYU3d256ksOb79++Nyppsw4RkpBdrUgN+mcWaugN+6cGabE1DZOje9pQerMl2AE6GqbKm7ltsDGFNasCPYk22YTEypLImOeBHsSZbMwoZUliT6bantWvXokqlErROTKy5YMECg1jzxIkTklmTraGEjPRizZ8/f2pZs3Hjxrze9GBNasAvLS1NNGuSA36bN29mHZrQDV3WPHDggGDW1L3tSQpr3r59WzJrkrfLskV6smZsbKxBrEk1XUphze3bt4tiTXLATwprBgYGCmZN3ZuFjcWaP3/+FMyaujcLS2XNDRs2iGZNqs4uhTVPnTolmjWppktTYU1ywE8KayKiKNbUfYuNKbCm7s3CFGuyNfCRkR6sSdXZKdYkb9Fji/RgTfIyGTGsqXuzsLFZk3zDF1tkBGs2bNiQ18vGmuTbGNlC9y02UllTlnElNw7KjYOyJIi8kltMWFtbCyocM4W5ubmgIghbSPEa+j0D/K8YJARimKJgwYKCEiemyJ07t6CDb6bImjUr65QaX1haWgpK2JhCoVBIWichDRlsIQTq2cLR0ZF1Apsv8uXLJ6gBlyly5MghCICYIkuWLLRXqIgJc3NzSZ+1lDU29P9bAP8rBgmBGKYoXLgw6xQSX+TJk0dQcswU2bJlo133LiasrKwM/rzMzMyMtsaG/v8S4H/FICHNmUxRoEAB2pXtYiJXrlyCir9MYWNjY/D+Y2FhYfA6GXu/FVKkZwp7e3tBRSOmyJs3r6DCIFPkyJGD9bYMvvgXc5/ixYsLOjBjikKFCrHeeMEXtra2Jpf7mJmZGe1ZlLLfFilShHUCmy/y588v6FCUKXLmzCkp9zHF/VZK7lOiRAlBDQpMYWdnJ6hBgSny5MlDeyWRmMiePbug5gam+Bf323+RNU019zHUK7OmuDBV1hTSoMAUtra2gpr+mEIqaxq6d5lq7lO0aFFBB2ZMIZU1ixYtapBXZk1xYSzWzJ49+z/HmlL2W2OxpinW2U11vzUmaxq630rJfWTWFBfGYk0puY/U/dZYz6IxWdPQOnvWrFkNzn1MlTWlrLGDg4PRWNPQ3EdmTXEhlTVN8VzTFJ9F+ZXGxldGNA4q8H+NcbI4pFAoHAAgBAAgJCQEHBwcjPwdyTJESqUS1qxZY+xvQ5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5Ysk1SpUqVgxYoV0KJFC2N/K/+UQkNDwdHRkfqlIyKGSv2aZlK/gCxZf7tsbW2hcuXKBnmzZcsGNWrUMMhrZWUFtWrVMshrZmYGNWvWNMgLAFC5cmWwsbExyFu2bFkoVKiQQd4iRYpAyZIlDfIWKFAAKlSoYJA3V65cULVqVYO8NjY2Bn/WFhYWBq+xQqGQtMYVK1aEXLlyGeQtWbIk+cNIlOzt7aFs2bIGefPmzQuVKlUyyJs9e3aoXr26QV5ra2uDP2tzc3OD1xgAoFq1amBlZWWQ19nZGfLnz2+Qt3jx4lC8eHGDvAULFgRnZ2eDvLlz5zZ4v82aNavB+62lpaXR9ls3NzfIli2bQd4yZcqAnZ2dQV5HR0coVaqUQd78+fODq6urQd6cOXNCtWrVDPJmyZLFaPttjRo1QKFQGOSvUKEC2NraGuQtUaIEFClSxCCvnZ0dlCtXziBvnjx5wM3NzSBvtmzZDN5vpeY+UvbbqlWrgrW1tUHecuXKQYECBQzyFi1aFJycnAzyFixYEFxcXAzy5sqVC6pUqWKQV0ruI2W/lZr7VKpUCXLmzGmQt3Tp0mBvb2+Q18HBAUqXLm2QN1++fFCxYkWDvDly5DB4vzVm7lO9enWwsLAwyOvi4gJ58+Y1yOvk5ATFihUzyFu4cGEoX768QV6prGms/VZmTeEyJmu6u7sb5KVyH0Mls6ZwWVtbG/wsmiprFitWTGZNgUoP1syePbtBXmOxZr58+f5J1jQzM+yI5l9kTSl1dkPXWCprVqlSxWisWaJECYO8/yJrSlljKaxZqlQpmTUFylRZs3jx4kZjTVOs7UllzaxZsxrkNSZrGpr7/Ivnmq6urjJrCpTMmuIklTUNzX2MyZpS1tjNzQ2mT58OQUFB8OrVK7lp8G9Relxb+LcHyK8q/it0+/Zt9Pf3F/QahjJlyuD48ePxypUrmJKSgs+fP0d/f39B76Z3dHTE4cOH4+nTpzEhIQE/ffqE/v7+2KhRI15v/vz5sV+/fnjw4EH8/fs3RkREoL+/P3bv3p3XmzNnTuzSpQvu2LEDw8PDMSkpCf39/XHkyJG83ixZsmDr1q1xw4YNGBoaioiIe/fuxTlz5vB6LSwssGHDhujr64tv375FRMQTJ07gmjVr0MzMjNOrUCiwZs2aOG/ePHz8+DFqNBq8fPkybtu2TdB1066urjh58mS8desWpqWl4f3799Hf31/QldElS5bEMWPG4MWLFzE5ORlfv36N/v7+WL16dV6vnZ0dDh48GI8fP45xcXH49etX9Pf3x1atWvF68+TJg7169cJ9+/ZhVFQU/v79G/39/bF///683uzZs2PHjh1x27Zt+OPHD9RoNOjv748qlYrXa2Vlhc2bN8c1a9bgp0+fEBHx4MGDuGTJEl6vubk51qtXD5csWYKvXr1CRMSzZ8/ixo0bBV03XbVqVZw1axY+ePAANRoN3rhxA/38/ARd/V6+fHmcMGECXrt2DVNTU/Hx48fo7+8v6PrlYsWK4YgRI/Ds2bOYmJiI79+/R39/f6xXrx6vt2DBgujl5YWHDx/GmJgYDAsLQ39/f+zUqROvN3fu3Ni9e3fctWsXRkREYHx8PPr7++PQoUN5vTY2Nti2bVvctGkTfv36FRERd+3ahdOnT+f1WlpaYuPGjXHFihUYHByMiIhHjx7FlStX8noVCgW6u7vjggUL8NmzZ6jRaPDSpUu4ZcsWQa/RrVSpEk6bNg3v3r2LaWlpePfuXfT39xd0LXjp0qVx3LhxePnyZUxJScEXL16gv78/urm58XodHBxw2LBheOrUKUxISMDPnz+jv78/Nm3alNebL18+7Nu3LwYEBGB0dDRGRkaiv78/9urVi9ebI0cO7Ny5M/r7++PPnz8xJSUF/f39ccyYMbxea2trbNmyJa5bt06bU+zbtw/nz58v6Fls0KABLlu2DN+8eYOIiKdOncJ169YJetVG9erVcc6cOfjo0SPUaDR49epV9PPzw1y5cvF6XVxccNKkSXjz5k1MTU3FBw8eoL+/v6BX1zg5OeGoUaPwwoULmJSUhG/fvkV/f3+sVasWr7dw4cI4aNAgPHbsGMbFxeG3b9/Q398f27Zty+u1tbXFnj174t69ezEyMhJjYmLQ398fBwwYwOvNli0bdujQAbdu3Yrfv39HRMTt27fjpEmTeL1WVlbYrFkzXL16NX78+BEREQ8dOoTLli3j9ZqZmWHdunVx0aJF+OLFC9RoNHju3DnctGmToFcbValSBWfOnIn37t1DjUaDt27dQj8/P0GvvSlXrhz6+Pjg1atXMSUlBZ8+fYr+/v7o4uLC6y1SpAjtavoPHz6gv78/NmjQgNdboEAB7N+/Px46dAhjYmIwPDwc/f39sUuXLrzeXLlyYdeuXXHnzp0YERGBiYmJ6O/vj97e3rxeGxsbbNOmDW7cuBG/fPmCiIi7d+/GWbNm8XotLCywUaNGqFar8d27d4iIePz4cVy9ejXva8YUCgXWqlUL58+fj0+fPkWNRoOBgYG4detWQa82qlixIk6dOhVv376NaWlpGBQUhP7+/oJeiULlPpcuXcLk5GR89eoV+vv7Y9WqVXm99vb2OHToUDxx4gTGx8djaGgo+vv7Y4sWLXi9efPmxd69e+P+/fsxOjoao6Ki0N/fH/v06cPrzZ49O3bq1An9/PwwLCwM09LS0N/fH8ePH8/rtba2xhYtWuDatWvx8+fPiIh44MABXLRoEa/X3NwcPTw8cOnSpfj69WtERDx9+jRu2LABLSwseP3VqlXD2bNn48OHD1Gj0eD169fRz89P0Ks2nJ2dceLEiXjjxg1MTU3FR48eob+/v6DXRxQvXhxHjhyJ58+fx6SkJHz37h36+/tjnTp1eL2FChXCgQMH4pEjRzA2NhZ//PiB/v7+2KFDB16vra0t9ujRA/fs2YO/fv3CuLg49Pf3x8GDB/N6s2bNiu3bt8fNmzfjt2/fEBFxx44dOGXKFF6vpaUlNmnSBFeuXInv379HRMQjR46gWq3m9ZqZmWHt2rVx4cKF+Pz5c9RoNHjhwgXcsmWLoFcbubm54fTp0zEoKAjT0tKMzpqNGzfm9aYnayYnJ4tmzfXr16cba65du1Ywa86dOzfTWbNEiRI4evRoPdasUaMGr5eNNVu3bs3rNUXWNDMz07Lmy5cvUaPRGI01nzx5Ipg1ixYtikqlMl1Z09PTk9ebK1cu7Natmx5rDhs2jNf7J7KmkNfopgdrBgYGYnJysiTWDAkJEc2aBw4cMDpr7t+/XzBr1q9fP91ZU8hrHf801mzXrh2vl401Bw4cyOtND9ZctWoVfvjwQTJrnj9/XjBrVq5cGWfMmGF01vz48aNRWVOpVPJ6/wTWfPLkCY01s2fPzvtns7GmkFfhSmXNIUOGpAtrRkdHmyRrnjlzRjRrUrlPerCmkNfZUqx57ty5TGVNqs6+e/duGmsOGTKE18vGmlOnTuX1/kmseefOHcmsWbFiRV5verLmr1+/RLPm9u3b8efPn1rWHDVqFK+XjTXnzp3L67WwsMAGDRrg8uXL04U1r1y5gtu2bcOcOXPy/tkVKlRgZE0hr6X+G1gTEQ1iTarOnpmsOXPmTLx//z5qNBq8efOmYNYsV64cqlQqPdYU8kpaNtb08PDg9aYnayYkJEhmzRkzZvB6M4I1t27dKoo179y5k+msOXToUDx58iTGx8drWbNZs2a8Xqms6enpqWXN1NRUSawpy7jKiFcVG70pzxQC5MbBv0aBgYGMGx7VjLF8+XJtgUxXwcHBjMUyhUKBNWrUoCWJuoqKikJbW1vGP5tKEqkCma5SU1NZ4U23QMYktqKmboGMSWyNTroFMiaxgTJTgUxXBw4cYPQyNWPo6t69e4xeqkC2ePFibZKoqy9fvqC1tTWjn2rGoJJEXcXHx2OhQoUYvVSSSBXIdKXRaFiTCd0kkUlszWwFChRALy8vbYGMST4+PoxeKkmkCmRMWrt2LaOXqUCmqzNnzjB6mQpkunrx4gVjsYypGUNX4eHhrAeFVIGMShJ1lZycjMWKFWP0lipVCseOHatNEnWl0WhYD5GoZgwqSWRSv379GL158+bFPn36aJNEJrEVJskkMSwsjNG7Y8cOziSRLJDp6tq1a6z7bf369WkFMl19/PiRtVim24yhq9+/f2PevHkZvS4uLrQCma7S0tJY4U23GYNJbM3DVIHs6NGjGBsby+hlKz6TzRhs++3y5csZvVSBbMuWLdoCma4OHz7M6LW0tMSmTZvSDiR09fDhQ9b9tk6dOrho0SJtgUxX379/Z21KpQ4kqAKZrhISEtDe3p7RW7ZsWVqBTFcajYa1QVy3QMakrl27Mnp1C2RMYjsI0m3GYNLGjRsZvUyN/7q6cOEC636r24yhqzdv3jAWy5ga/3UVGRnJ2pTq6uqKU6ZM0R5I6ColJYX1oFC38Z9JDRs2ZPTa2dnhkCFD8Pjx46z7Ldthn26BjElsh7LUgQRZINPVnj17GL1MzRi6un37Nut+q9v4r6vPnz+zHhTqNmPoKjY2FgsUKMDopZoxrl+/zrrfsjVJUY3/586dY8192A50CxYsiAMGDNAeSDCJrRiieyDBJLaiVdasWbFdu3a0ApmuTpw4wbrf6hbIdPX06VPW/bZ27dq0ApmuwsLCWJtSdZsxdJWUlMTalKrb+K8rjUaD7u7ujF7dZgwmsRW8dBv/mTRt2jRGL9WMQR1IMGnbtm2s+22rVq1w/fr1rDWBjGRNshlDV9HR0UZjTbaiZkaz5uLFixm9fzJrfv36lfWgULfxX1dSWbNy5cqMXt1mDCZlFGuSzRhMWrduHaM3o1nz5cuXRmNNtqZUY7Mm1YzBpNmzZzN6dZsxmCSFNa9fv8663+o2Y+hKCmvGxMSwsqZuM4au0tLS0NnZmdGb0aw5YsQI1v2WbPxnkhTWPHLkCKOXYs2VK1cahTXJZgxdJSYmGo01u3XrxujNaNbctGkTo1cIa168eJF1vzUma5LNGLqSyppsFwPoNmMwKaNYU7cZQ1d79+5l9GY0a4aEhBiNNdmapHSHzJnUvn17Rm96sCbVjMGkVatWMXqZmjF0JZU12XIf3WYMXRmTNWvXrs3ozWjWZBu40G38Z5IU1rx8+TLrs6g7ZK6rjGJN3cZ/XaWmpmLZsmUZvRnNmmyNThnNmgEBAaz7LR9r3r9/n9GbGazJ1pSq2/ivK6msydbMptv4zyRjsebZs2cZvRnNmhEREbysyVZnl8KaiMjasKg7ZM4ktsbSjGbNnTt3MnqZGv91JZU12ZpS/2TWZGseFsKasownuXFQbhyUJVH169enJYl8zRikvLy8tF6yQMaWJJIib1OwsrLibcYgtWvXLlqSSBXIqOlQLt24cYO2yZPToUwJBKlPnz7RfsCVLVuWM0kkFRMTQ5u6IJNENmCjlJaWRps4pZJErgIZqTZt2mi9QgpkpMgbM6gkccOGDaxJIily2owskLEliaSOHj1KSxKpAhk1Hcqlx48f09aYrxmD1I8fP2hTF7rToVxKTEykTV3oTodySaPRYM2aNWlJIjUdylYgI0VOqpFJIluBjBR5ew2VJHIVyEht3ryZMUlkK5CRunTpkl6SyFUgI/X27Vsa3PMVyEhFRkbSJvzJZgy2JJFSSkoK7XYjIQUyUuQ0opBmDFLkDUVUMwY5HcqlBQsWaL1M06Fc2rdvH22/paZD2QpkpO7evUtbYzc3N84CGanQ0FBaMZWaDmUrkJGKi4ujTfg7OjryFsgoaTQarFSpktZLFsiE7LfkZLCQZgxS48aN03rJAhnbgQSp1atX0/Zb3elQLp06dYq23/I1/pN69uwZDe7J6VC+Z/Hnz5+0CX9qOpSrQEYpKSmJNuEv5ECCkkajoU1/UwcSXAUyUuSUvpACGSlyolBIgYyUv78/7VnkK5CRunLlCu1Z5Gv8J/X+/XvaQbLudCiXfv/+TZvwF9L4Tyk1NZV2uxHVjEFNh/KJvIlBSOM/qeHDh9NyH+pAQkjus3TpUtp+27hxY1Sr1awHEqQOHjxIexbd3d05C2SkHjx4QFtjvmYMUt++faMVU4UUyCglJCTQiqm606Fc0mg0tNs2hDT+k+rcuTNtvyWnQ/k0YcIEWu5DTYeyFchIbdiwgZb7UDcRsRXISJ07d462TtRNRGwFMlKvXr2iHSTzNf6TioiIoE34CymQUUpJScESJUpovWILZMZiTfI2BSGN/6SksObNmzdpa8zX+E9KCmvGxsYysiZXMwYlY7ImeWOGkGYMUlJY89ixY7T91lRY09HRkZb7ZBZr9ujRQ+sV0vhPSgprbtmyhbbf8jVjkDIWa0ZFRbGyJl/uI5U1mzRpovVmJmsuXLiQtt+KYc39+/fT9lu+xn9SUlmTHJDla8Yg9S+y5po1a2jPYmax5vPnzxlZk60Zg5RU1iQHZIU0Y1DSaDRYt25dWu7D14xBSgprzpw5U+vNTNa8evUq7Vk0FdYkB2QzkzXJNwEIacYgJYU1Dx06RHsW+ZoxSBmTNe3s7LReIY3/lKSyJnkDp5Ahc1LpzZpczRikzp8/r5f7cDVjkJLCmr9+/TIaa5K3rJoKa+7evZu23/I1/pOSwpqfP3/WY02uxn9SUlmzQoUKWq+Qxn9S5Nt1MpM1V6xYofUKafwnJYU1nzx5QltjY7Mm15A5JY1GQ7vVWkjjPykprEnelCqk8Z+UFNbUHZDla/wn9e7dO6OwZmpqqtFYk7wNV8iQOSljsWZQUBBtjfka/2X9OZIbB+XGQVkSdPnyZb2ruoUqODgYnZyccPjw4YIKZKSioqKwTJkyopJESqmpqVi9enXaVd1i1K5dO72ruoVqxIgRogpkpJYsWaJ3VbdQHThwQO+qbqG6d+8elixZknZVt1B9+fIFnZycBDdjkIqPj0cXFxdRSSIl6nYAvulQNvXo0UPvqm6hmjhxItarV09wgYzUunXr9K7qFqozZ86IKpCRevHiBTo5OQkukJEKDw/HUqVKiSqQUUpOTkY3NzfaVd1CpdFosHnz5rzToWwaPHgw73Qom+bMmcM7HcqmHTt26F3VLVTXrl3Tu6pbqD5+/IhOTk6CC2Skfv/+jWXLlqVd1S1UaWlpWKtWLVHNGKQ6depk8FXdo0eP1nstlFD5+vrqvRZKqA4fPsw7Hcqmhw8fYokSJXinQ5n0/ft3LFGiBA4aNAiPHj0qar9NSEjAChUqYM+ePQUXyChpNBps2LChqAIZqT59+ui9Fkqopk6dKqoZg9SmTZv0XgslVBcuXBDVjEHqzZs36OTkJLjxn1RkZCSWLl2adzqUSSkpKVi1alXtdKiQAhmp1q1bizqQIDVs2DBs1KiR4GYMUgsXLhRVICO1Z88erFixouACGanbt2+LKpCR+vz5Mzo5OQluxiAVGxuL5cuXF9WMQSktLQ1r167NOx3Kpq5du/JOh7LJx8dHVOM/qVWrVum9FkqoTpw4gc7OzoILZKSePn2KJUqUoL0WSqjCwsKwZMmSogpklJKSkrBSpUqiCmSUNBoNNmnSRFQzBikvLy9RBTJSM2fO1HstlFBt27ZN77VQQmUs1oyOjsYyZcqIasagJJU127dvL6oZg5QU1ly6dKmoZgxSxmLNr1+/YokSJYzCmh4eHtixY0fcunWrybDm+vXrRTVjkJLCmi9fvjQaa1auXNnkWHPu3LmiGv9JSWHN69evi2rGICWFNWNiYrBs2bKimjEoGZM1x4wZI6rxn5QU1jxy5IiWNYU0Y5AyFmsmJiaiq6urqGYMSlJZs2/fvqKaMUhJYc3NmzeLGjIndfHiRaOzptg6u1TWbNOmjaghc1LGYs29e/eKasYgJYU1Q0JCjMaaderUETVkTqpbt26iGv9JSWHN1atXi2r8JyWVNZ2cnAQPmZMyJms2bdrUKKw5a9YsUUPmpKSw5pUrV0QNmZMyJmvWqFFDVOM/KSmsOXLkSKOwZkBAgKghc1L379/XsqbY3Ce9WFNo4z8lqazZs2dPUY3/pIzFmmfPnjUKa0ZERBiFNRH/N0AgZsic1JAhQ0Q1/pOSwpo7d+4U1fhP6l9kTU9PT1GN/7L+HGVE46AC/9cYJ4tDCoXCAQBCAABCQkLAwcHByN+RLEMUFxcH2bJlM8gbHx8PNjY2oFAoRHsTExPB0tISzM3NRXtTUlIAEcHKykq0FxEhISEBsmbNKtoLIO3zMqY3a9asBq2TlDVOSkoCc3NzsLCwEO1NTU2FtLQ0sLa2Fu1FRIiPjzfJdTLGGickJIC1tTWYmZmJ9iYnJ4NCoQBLS0vRXo1GA0lJSWBjYyPaC2C66yTvt8JliutkrGdRyn6blpYGKSkpkCVLFtFeANNdJ2M8i/J+m7leY+Q+UvZbOfcRJ2M9i0lJSWBmZmbQsyjvt+Ik5z6m45VZU7hMcY3l3Ofv98r7rel4Zdb8u72muN/Kz6I4yaxpOl5j7bdSWDM5OVnOfQRKzn1Mx/svsSaA6a7Tv5T7yKwpTv/ifivLuAoNDQVHR0fql46IGCr1a8qNgwIkNw7KkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixjKCMaB8W3J8uSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyTFZy46Csf0YajcYkvYbeCkq9j1zKny17M8crZY1N9e/8L3nlZ9F0vPKz+Pd75Wfx7/bK+63peOX99u/2ys+i6Xhl1vz7vfJ++3d75WfRdLzys/j3e+Vn8e/2yvut6Xjl/fbv9srPoul4Zdb8+73yOv3dXvlZNB2vsXIfWX+f5MZBWf+Mzp07B40aNQK1Wg3BwcGivC9fvoTatWvD/Pnz4enTp6I24YiICHB3d4epU6fCnTt3RG3CKSkp0LhxYxg7diwEBgZCSkqKqO+7S5cuMHToUDhx4gQkJCSI8o4ZMwb69OkD+/fvh+joaFHeJUuWgKenJ/j5+cHPnz9Feffu3QstWrSAtWvXwufPn0V5b968CR4eHrB06VJ4/fq1KO/Hjx+hVq1aMHv2bHj48KGoNY6JiYG6devCxIkT4caNG5CWlibYq9FooGXLljBy5Eg4f/48JCcnC/YqFAro378/DBw4EI4ePQpxcXGCvQAAU6ZMgR49esCePXsgMjJSlHft2rXQvn172LJlC3z//l2U9/jx49C0aVNYuXIlfPjwQZT30aNHUKdOHVi4cCE8f/5c1Dp9//4d3N3dYfr06RAUFCTqWUxMTIT69evD+PHj4cqVK5Camirq++7QoQMMHz4cTp8+DYmJiaK83t7e0K9fPzh48CDExMSI8s6bNw+6dOkCO3bsgIiICFFef39/aN26NWzYsAG+fPkiynvp0iVo2LAh+Pr6wtu3b0V537x5A+7u7jBv3jx4/PixqDWOjIyE2rVrw5QpU+DWrVuinsXU1FRo2rQpjB49Gi5evCjqWQQA6NmzJwwePBiOHz8O8fHxorzjx4+HXr16wb59+0Tvt76+vtCxY0fYtm0bhIWFifIeOHAAmjdvDmvWrIFPnz6J8t65cwfq1asHS5YsgVevXolap5CQEHB3d4dZs2bBgwcPRHnj4uKgXr16MGHCBLh27ZqoZxERoXXr1jBixAg4e/YsJCUlCfYCAAwcOBAGDBgAhw8fhtjYWFHe6dOnQ7du3WDXrl3w69cvUd4NGzZAu3btYNOmTfDt2zdR3tOnT0Pjxo1hxYoV8P79e1HeZ8+eQe3atWHBggXw7NkzUesUFhYG7u7uMG3aNLh7966o/TY5ORkaNmwI48aNg8uXL4vOfTp16gTDhg2DU6dOic59Ro4cCX379oUDBw7A79+/RXkXLVoEnTt3Bn9/f9G5z86dO6FVq1awbt06CAkJEeW9evUqNGjQAJYtWwZv3rwR5Q0ODgZ3d3eYM2cOPHr0SNQaR0dHQ506dWDSpElw8+ZN0blP8+bNYdSoUXDhwgXRuU+fPn1g0KBBcOzYMdH77cSJE6Fnz56wd+9eiIqKEuVdtWoVdOjQAbZu3So69zly5Ag0a9YMVq9eDR8/fhTlvX//PtStWxcWL14ML168ELVOX79+hVq1asGMGTPg3r17op7FhIQE8PDwAB8fH7h69aro/bZt27bg7e0NZ86cEZ37DBkyBPr37w+HDh0Svd/OmjULunbtCjt37hSd+2zduhXatGkDGzduhK9fv4ryphdrPnnyRDRr1q5dG6ZOnQq3b982mDUvXboker/t2rWrUVhz6dKl0KlTJ/Dz8xOd+xiLNT99+gTu7u6ZzpqISGNNMblPerHm7t27RbPmunXroH379rB58+ZMZc3Hjx9LYs1atWoZxJpJSUkmyZrz58/XsmZ4eLgoL8maoaHi3qYTGBhoVNacPHmyaNZMS0szGmv6+PgYhTUDAgKMzpr37983Kdb08vLKdNbcuHEjtG3b1qRY8+fPn0ZjTU9PT5NjzV27dkHLli0NZs369esbxJrv3783edYUm/uQrCk291m9erVRWPPBgwdQt25dWLRokUmxZrt27dKFNcXmPrNnzzYKa54/f17Lmu/evRPlNRZrpqamQpMmTWDMmDEGs+aQIUMMZs3evXtnOmvu27fPYNa8deuWUVgzNjY2XVjz3LlzonMfLy8vGDhwIBw5ciTTWbNdu3awefNm0bnPiRMnoEmTJpnOmj9+/DD4XFMqa3bs2NHkWHP79u3QunVrWL9+vcGsuXz5ctGs+fbtW3B3d4e5c+f+M6wp6y8U1TEsB3sAgAMAIABgSEgIyjJNaTQarFy5MlJrWbZsWfTx8cGrV69iSkoKr9/T01PrLVq0KHp7e+OZM2cwMTGR1+vj46P1FihQAPv374+HDh3CmJgYXu+6deu03ly5cmHXrl1x586dGBERwes9c+aM1mtjY4Nt2rTBjRs34tevX3m9L1++RIVCgQCAFhYW2KhRI1Sr1RgcHMzrDQ8Pxxw5ciAAoEKhwFq1auH8+fPx6dOnqNFoOL3JyclYvHhx7fddsWJFnDp1Kt6+fRvT0tJ4/2wPDw+tt1SpUjh27Fi8dOkSJicn83r79eun9drb2+OQIUPwxIkTGB8fz+udPXu21psvXz7s06cP7t+/H6Ojo3m9O3bs0Hpz5MiBnTp1Qj8/PwwLC+P1Xr9+Xeu1trbGFi1a4Nq1a/Hz58+83o8fP6KlpSUCAJqbm6OHhwcuXboUX79+zeuNiYnBvHnzav/satWq4ezZs/Hh/7F31uFVHN//n3hCnHhCsOIUC5YPbWmhOC2lcKFYoQWKBHf3QHF3d3e4SHD3AMESLCHuRlzu+f3xfeb+Zvfu3p3dTXJJ2ffznD/6x7uEXXYyrzPnnHn6VPAdFxYWQu3atbXe2rVrw+TJk+HOnTtQUFAg+Gd37NhR661UqRKMHDkSLl26BLm5uYLeESNGaL3u7u4wcOBAOHXqFGRkZAh6ly9frvU6OjpCr169YP/+/ZCcnCzoPXnypNZbpkwZ+O2332Dr1q0QExMj6H327JnWa25uDm3atIHVq1dDaGiooDc2NhasrKwAIQTGxsbw3XffwcKFC+HVq1eC7yknJwe8vLy0f3aDBg1g5syZ8OjRI8FvUaPRQJMmTbTe6tWrw/jx4+HGjRtU622PHj203vLly4Ofnx+cP38esrOzBb1TpkzRel1cXOCvv/6CY8eOQXp6uqB3y5YtWq+dnR10794d9uzZA4mJiYLeK1euaL2Wlpbwyy+/wKZNmyAyMlLQ+/btWzA2Ntauty1btoTly5fDu3fvBL0pKSlgb2+vXW99fX1h/vz58Pz5c8F3nJ+fD1WqVNH+3HXr1oWpU6fCvXv3qNbbn3/+Wev95ptvYPTo0XDlyhWq9faff/7Rej09PWHQoEFw5swZqvV2wYIFWm/ZsmWhT58+cOjQIUhNTRX0Hjx4UOu1sbGBLl26wI4dOyAuLk7Qe//+fcZ6265dO1i3bh18+vRJ0BsREQHm5uba9bZ58+awZMkSePPmjeB7ysjIAFdXV+2f3ahRI5gzZw48efKEar2tV6+e1lurVi2YOHEi3Lp1i2q97dy5s9ZbsWJFGDFiBFy8eJFq7zNmzBit183NDfr37w8nTpygWm/XrFmj9To4OECPHj1g3759VOvt2bNnGettp06dYMuWLVR7nxcvXmj3PmZmZtCqVStYtWoVfPz4UdCbkJAA1tbW2m+xWbNm8O+//8LLly8F31Nubi6UL19e+3PXr18fZsyYAQ8fPqRab7/77jutt1q1ajBu3Di4fv061Xrbp08frdfb2xuGDh0KarWaar2dOXMmY+/Tr18/OHr0KNV6u2PHDsZ6261bN9i1axckJCQIeq9fv85Ybzt06AAbNmyg4rQPHz6Aqamp9lv86aefYNmyZfD27VtBb1paGjg6Omr/7CZNmsC8efPg2bNngu+4oKAAatSoofV+++23MGXKFLh79y7Vt9i2bVutt3LlyjBq1Ci4fPky1d5n6NChWq+Hhwf8888/cPr0acjMzBT0LlmyhLHe9u7dGw4ePAgpKSmC3qNHj2q91tbW8Pvvv8O2bdsgNjZW0PvkyRPG3qdt27awdu1aCAsLE/RGR0eDpaWldu/zww8/wKJFi+D169eC7ykrKws8PDy0f3bDhg1h1qxZ8PjxY0GvIVlz4sSJBmHNixcvFjlrvn//XtCblJSkw5rz58+HoKCgEmfNMWPGULPm33//XSSs6eTkBH/++Sc1a+7du7dUsqazs3ORsubt27ep1ttffvmlSFnz5MmTVHufFStWMPY+PXv2LHHWNDMzg9atW1OzZlxcnMFYs2nTpgZhzalTp+qwJu3eZ+vWrUXKmhs3bqRizXfv3oGJiUmRsGbTpk3B39+fmjWrVq1a6ljz33//NQhrPnjwwCCsmZmZqcOas2fPpmJNjUYD9evXLzLWHD58ODVrjh071iCsqVarvyjWpMmz5+bmQoUKFYqUNa9du0a13v75559Fxpp9+/aFI0eOUO19du7cydj7qFQqata8ceOGwVizbNmyBmHNdu3aGZw1HR0doXfv3nDgwAEq1jx27FiRsWabNm1gzZo1Jc6aPj4+olizYcOGpY41N27cWOSsGRUVJeh98+YNI89ekqxZuXJlxt5n2rRp1Kz5008/GYQ1582bVySsaWNjI4o179y580WxZmBgIBVrfvvtt0XGmiNGjICAgACq9XbkyJEGYc1Tp05JZs3nz58bjDXLlStnENbs2bPnF8Ga3bp1g927d1Ox5tWrVyWzpiLDKiIiQvvuEELloChq4orif/JfD6QUDv5ndPr0afIjEpUMCgoK4vTSJIPi4uKgTJkyOl5zc3No164drF27ljcZlJOTA97e3jpemmSQRqMBX19fzp+bJhnUq1cvTi9NMmjatGmcXppk0LZt2zi9NMmga9eucXppkkFkQpUMmmRQamoqODg46HhpkkH5+flQrVo1HS9tMqh169acf+f69evD9OnT4cGDB7wbosGDB3N6aZJBCxcu5PSWK1cOhgwZojcZdPjwYU4vTTLo4cOHnF6aZFBkZCRYWFjoeGmSQZmZmeDm5sb5LQolg9gJVTJokkFdunTh9NIkg8aNG8fpxckgfQdh69at4/TSJIPOnTvH6aVJBr169UqbUCXD2toaOnfurDcZlJCQADY2NpzrrVAyKDc3FypWrKjjNTY2hu+//15vMkij0cAPP/zA+XemSQb17duX00uTDJo9ezanlyYZtGvXLk4vTTLo5s2bnF6cDNJ3EBYaGqpNqJJBkwxKT09nJFRx4GTQihUreJNBBQUFUKtWLc71liYZ1L59e86/M00yaNiwYZzeKlWqCCaDli5dyumlSQYdP36c00uTDAoMDOT00iSDYmJitAlVMmiSQdnZ2eDp6cm53golgzQaDTRq1Ijz56ZJBnXv3p3TW7t2bZg0aZLeZNDkyZM5vTTJoE2bNnF63d3dYcCAAXqTQZcuXeL00iSDgoODtQlVMmiSQcnJyWBnZ6fjpUkG5efnwzfffMO53tIkg1q0aMH5d8bJIH0HYQMGDOD00iSD/P39Ob3e3t7g5+cH586d49377N+/n9NLkwy6e/cup5cmGRQeHq5NqJJhaWkJHTt21JsMysjIABcXF871tkWLFnoLDwoLC6FOnTqc6y1N4UGnTp04/8516tQRLDwYNWoUp5em8GDVqlWcXprCg+Jkze3bt/OyZnx8fJGzJj4IW7x4sV7W/N///sf5c8thzZo1awqy5vTp0zm9XwJr8h2EvX//vlhZk6/Br6Cg4ItjTdzgd+3aNd5vcdGiRZze4mbNR48ecXqLmzWzsrLA3d1dx0uypr69T3Gypr4Gv/Hjx3N65bImbvDjY83z589zeoubNRMTEyWzZl5eXrGzJt+32K9fP06vHNYsX768IGvu3r2b02tI1sQNfvpYk2ySxSGXNXGDnz7W7NChA+ffubhZc9myZZxeGtY8ceIEp7ckWBMfJpNRFKy5ZMkSCA4O5vRqNBpo3Lgx58/9JbPm5s2bOb3FzZohISFfLGvqa/Br2bIl599ZLmsKNfjNnz+f0yuXNYUa/O7du8fp/dJZs27dupzrbVGxJt+3OHr0aE5vUbCmvjz7mTNnOL1kg19JsyZu8ONjzdzc3GJhzYYNGwqyZu/evTm9xc2a27dv5/SSrMm39ykO1rSysoJOnTrpbfBLTU1lNMmS661c1hQaJtOmTRvOv/OXzJpHjhzh9BY3a0ZFRRmMNRs0aMD5czdp0kSwwa9r166cXrmsKdTgt379ek6vXNbs1auXXtZ8/fp1qWTN5s2bc/6daVhTkeGkD6X4ogABAABJREFUFA4qhYOKZOjly5dw9uxZRiclV+AOXDIZ9PHjR1Cr1ZxAwt4QsZNBMTExoFareTdBZLCTQWlpaaBWqxkdenzBTgbl5eWBWq1mTDvkC65kUEBAAG/yiAyuZNDt27dhz549nL8gyeBKBgUGBsLJkye1nZR8gZNB69at0yaD3rx5A2q1mtFJyRVcyaBPnz6BWq1mdBPwBZ72hJNBCQkJoFareaGTDHYyKCMjA9RqNQwaNEjQy04GaTQaUKvVjC5MvuBKBl29epV3A0UGVzLo/v37cOjQIc5kLBlcyaDnz5/DmTNnOAt/yOBKBr179w7UajWjk5IruJJBUVFRoFarGd1bfMFOBiUnJ4NarYY//vhD0MtOBuXk5IBareY9xCYDd+CSyaALFy4wut75gisZdPPmTV5gJYMrGfTo0SM4fvw4Z+EPGVzJoFevXsHZs2cZnZRcwZUMCg0NBbVazQskOMhkED4Ii42NBbVazeiW5Qt2Mig9PR3UajWjQ48vcDLo8uXLkJeXBwUFBaBWq3kTuWRwJYMuXboEK1euFPRyJYPu3LkD+/bt40zGksGVDHr69CmcOnVK20nJF1zJoJCQEFCr1YxOSr5vkZ0MCg8PB7VaDc2aNRP8O7OTQYmJiaBWq3kPOMkgk0H5+fmQlZUFarWa0RHNF1zJILVaDXPmzBH0ciWDrl27xlsYRoa9vT306NGD0YH74MEDOHLkCGcylgyuZNCLFy/gzJkzjE5KrjAzM9OZLPz+/XtQq9WMqT183yI7GRQdHQ1qtZoxKYQv8LQnnAxKTU0FtVrNm+Qjg50Mys3NBbVazZhAwRdcyaCLFy/C4sWLBb1cyaBbt27xFuKSwZUMevz4MZw4cYIzGUuGhYWFTjLo9evXcPbsWUYnJVdwJYPCwsJArVbzFlqSwU4GxcfHg1qtZnTL8gU7GfT582dQq9W8hypksJNBhYWFoFareRtUyOBKBl25coUxZYQvuJJBd+/ehQMHDnAmY8ngSgY9e/YMTp8+zVn4QwZXMujt27egVqsZU3u4gisZFBkZCWq1mrfYgAycDMIduElJSaBWq6Fbt26CXlx4gIsus7OzQa1WM6Zv8QXZgYvX2/Pnz/MenJGBCw+OHTumXW+vX7/O6LTlC65pTw8fPoSjR49qp/bwBVfhAWZNriYTMr5E1uRrXiCDzZr5+fmgVqsZEyj4oihYkyy6FMOauMGPzZpcyVgy5LImbvArStb87bffBL21atVisGZmZiao1WreQxUyvlbWJBv8SpI1yWlPKSkpoFarGZPw+II9WRizJt8hNhl8rMnXEEgGH2uSE4T54r/CmnFxcaBWq3kbicioU6cOo8GvKFiTnKzPF56enjoNfpcvX+YtVCBDDmviaU9crMlV+EPGf401/fz8BL0VKlSA4cOHM4ouz507x5guyxeGZE32ZOEXL17A2bNni5012bfYGIo1cZ6drzmXDD7WJCes8UVRsCaZZ3/y5Ils1uQq/CEDsybZ4FdSrMm+xQbn2QcOHCjoZU8WxqzJVzREBh9rrl27VtDLxZr37t0rUdbEefbSwppkg19JsSZ5iw1eb2/cuCGbNbkKf8go7ayJG/xKmjXJBr9Lly4xbo7iC0OyJnuycHBwMKjVas7CHzJKK2viW2wCAgIYefZZs2YJevlYk7w9gS+KgjW3bNmiZc2goKBiZ02uW2wU1uQPkjXJPLtc1uRqMiGDZE08TKY0sCZ7srBc1lRkWCmFg0rhoCIZ4uu+FIqaNWvyTjURigoVKlAt9Fzh6upKtWHjCnt7e95KfqHAySChwj2uwMkgoYQC3y/L//3vf5yTSWiiXr16VIlBrqhatSq0atVKkrdcuXJUiQyucHZ2ht9//12SF18zJcWLD8K4uqiFAieDuDo3aaJx48aMa9zERO3atXk7H4SiUqVKjGv+xISHhwdVUShXODo6UiWduQIng4QSClyBk0FChylcgZNBNWvWlPRz+/j4UIEqV9SoUYO3s1coypcvz9uhLxQuLi6S11s7OzvJ7xgng4QOU7gCJ4OEEgpcgZNB5BW2YqJu3bqM62rERJUqVXgn1wiFl5cX/Prrr5K8ZcuWlbze4mSQUNKIK3AyiKuLWihwMkgogcsXjRo1okrSc0WtWrWokhFcUbFiRariXa5wd3eX/C06ODhI/hZxMohraoVQ4A5cocI9rsDJIKEDM76oX78+bwe2UFSrVo3qsI0rvL29oWPHjpK8Li4ujGvJxISdnZ3kvQ9OBnF1UQsFTgYJHV7zveOmTZsKJo34ok6dOvD9999L8lauXJkqwc8VHh4eBllvceGBUAKXK3DhgdBhClfgwgOhBC5fNGzYkHf6jFCUVtaUs/eRypp42hN5tTttKKwpLgzJmj/++CNUqVJF0p9dGlnT3d291LKm0GEKV8hlzQYNGpRK1pSz95H6jvE1Uwpr0oWnp6fk9bYoWFOoOJMrioI1uaYE0YQhWVPq3udrZU3ySkUxURpZ09nZudSxJs6zG4I1v/32W6qiP64wJGvK2fvIZU2uiV1CYUjWrFGjhuT1tjSzplDhHld8jazp5eUla739GlmTvDJcTMhlTTl5dkOwJt77GII1v/vuO84J4DQhhzWrV69eKllTzt4HF7krVxobTsVROGgE/1cYp0iPjIyMyiGEIhBCKCIiApUrV87AP5EiKRo+fDhat26doX8MRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYpKpX744Qe0YsUK1LBhQ0P/KF+VIiMjkbe3N/5PbwCIlPv/NJb7P1Ck6L8uMzMzVK1aNUleY2NjVKNGDcl/dvXq1SV7q1SpItnr7e2NLC0tJXmdnZ2Rk5OTJK+dnZ3kwlxLS0v0zTffSPKamppKftZGRkay3rHUf1sIIVS5cmXJXk9PT2RrayvJW7ZsWeTm5ibJa21tjSpUqCDJa25uLvnftbGxsazvSY63atWqkr0VKlRAZmZmkryurq7I0dFRktfe3h55eXlJ8lpZWUn+tylnvZX7Lcp5x1LXHoQQKleuHLKyspLkdXZ2Ri4uLpK8tra25KZSlCwsLCR/iyYmJrKetaHW20qVKiEjIyNJXnd3d2RnZyfJ6+joiNzd3SV5ra2tUcWKFSV5zc3NJa9dcvc+crxy1tvy5csjc3NzSV5XV1dUtmxZSV47OzvJ662lpaXk9dbU1NRg662cb1HOeuvl5YWsra0leZ2cnJCrq6skr42NjeS9j9z11lC/F+V8ixUrVkQmJiaSvG5ubsje3l6S18HBAXl6ekrylilTBlWqVEmSt7Syppx3bCjWtLW1/epYU847NhRrOjo6Gow15ex9DLW/VViTXl8ra5YpU0aS18nJSRZrli9fXpJXYU1xMhRrlilTRjJrmpmZKawpQnJZU87epzSypqHWW09Pz6+ONUtjnl0uazo4OEjyfo2sKcdbGs815eTZ5bCmnG+xtK63Hh4eyMbGRpJXYU1x+hpZU+p6+zXufby8vNCQIUOQWq1GFy9eVIoG/ysqirGF//VAylXF/wmdP38e/P39wdXVVXDMqrOzM/Tr1w+OHDkCaWlpcP/+ffD394fq1asLem1tbaFbt26wa9cuSEhIgODgYPD396ca729hYQEdOnSADRs2QEREBMTGxoK/vz/VmFo82n7ZsmXw9u1byMnJAX9/f+jTpw/VaNkmTZrAvHnz4NmzZ6DRaGDZsmUwYsQIKu+3334LU6ZMgbt370JBQQFs27YNpk+fTnWtY+XKlWHUqFFw+fJlyM3NhWPHjsG8efOorq/y8PCAf/75B06fPg2ZmZlw9epV8Pf3p7rCwdHREXr37g0HDx6ElJQUePLkCfj7+0PdunUFvXi0/fbt2yE2NhY+fvwI/v7+8OOPPwp68Wj7tWvXQmhoKCQnJ4O/vz/VaG882n7RokXw+vVrKCwsBH9/f+jfvz/Ve/Lx8YFZs2bB48ePQaPRwJo1a2D8+PFU3ho1asCECRPg5s2bkJ+fD3v27IHZs2dTjfcvX748DBs2DC5cuAA5OTlw9uxZ8Pf3p7rCwdXVFf7++284fvw4fP78GW7dugX+/v5UVyXb29vDH3/8AXv37oWkpCR4+fIl+Pv7U12ngkfbb968GaKioiAyMhL8/f2prmHAo+1XrlwJ79+/h4yMDPD394c//vhD0ItH2y9YsACCgoJAo9HAokWLYOjQoVTvqV69ejB9+nS4f/8+FBYWwqZNm2DKlClU3ipVqsCYMWPg6tWrkJeXB4cOHYK5c+eCpaWloNfLywsGDx4MZ8+ehaysLLh48SL4+/tTXeHg5OQEf/75Jxw+fBjS0tLg4cOH4O/vT3V9lY2NDXTt2hV27twJ8fHx8PbtW/D396e62giPtl+/fj2Eh4dDfHw8+Pv7U12XgUfbL126FEJCQiAvLw/8/f2hb9++VM+6cePGMHfuXHj69CloNBpYsWIFjBo1ispbu3ZtmDx5Mty5cwcKCgpgx44dMHPmTKqrjSpVqgQjR46EgIAAyM3NhRMnTsC8efPA1tZW0Ovu7g4DBw6EkydPQkZGBly/fh38/f2prnBwcHCAnj17wv79+yE5ORmePXsG/v7+UL9+fUEvHm2/detWiImJgbCwMPD396ca/W5mZgatW7eG1atXw8ePHyE1NRX8/f2pRrDj0fYLFy6EV69egUajgfnz58M///xD9Z4aNGgAM2fOhEePHkFhYSGsW7cOJkyYQOWtXr06jB8/Hm7cuAH5+fmwb98+mDNnDpiZmQl6vb29wc/PD86fPw/Z2dmgVqvB398fnJ2dBb0uLi7w119/wbFjxyA9PR3u3r0L/v7+VFcl29nZQffu3WHPnj2QkJAAr1+/Bn9/f6rx/ni0/caNGyEyMhKio6PB39+f6hoGfI3a8uXL4d27d5CVlQX+/v7Qq1cvQS++Rs3f3x+eP38OGo0GlixZAsOGDaN6T3Xq1IGpU6fCvXv3oLCwELZu3QrTpk2j8n7zzTcwevRouHLlCuTl5cGRI0dg3rx5UKZMGUGvp6cnDBo0CM6cOQOZmZlw+fJl8Pf3p7rCoWzZstCnTx84dOgQpKamwuPHj8Hf35/q+ip8jdqOHTsgLi4O3r9/D/7+/lRXG5mbm0O7du1g3bp1EBYWBomJieDv7091dY2xsTE0b94clixZAm/evIH8/Hzw9/eHv/76i+pZN2rUCGbPng1PnjwBjUYDq1atgrFjx1J5a9WqBRMnToRbt25BQUEB7Nq1C2bNmgUmJiaC3goVKsDw4cPh4sWLkJOTA6dPn4Z58+aBvb29oNfNzQ369+8PJ06cgM+fP8ONGzfA398fKlWqJOi1t7eHHj16wL59+yApKQmCgoLA39+f6upOKysr6NSpE2zZsgWio6MhPDwc/P39qa69wdeorVq1Cj58+ADp6eng7+8P3bt3p/oWmzVrBv/++y+8fPkSNBoN/PvvvzB48GCq91S/fn2YMWMGPHjwAAoLC2HDhg0wefJkKm+1atVg3LhxcO3aNcjLy4ODBw/C3LlzwdzcXNBbrlw5GDp0KKjVasjKyipR1lSpVEXKmjTXE/3XWJPm+io+1vT29hb0YtY8cOAApKSkQGBgoGjW3LZtG4M1aa4Zw6y5Zs2aImPNAQMGUL2nomTNvXv3ymbNsmXLCnrZrHn79m1JrJmYmKhlTZqr5IqCNVesWMFgzR49egh6i4I1p02bpmXNzZs3G4Q1AwICJLFmamqqljVprq/6ElgzODhYMmsGBgaCRqOBlStXimbN27dvy2bNkydPymbNChUqCHoV1vw/1pw4cSKVl82a+/fvF82a586dg+zsbDh37pxo1jx69CiDNWmuSsasuXv37iJjTZrrN01NTaFFixaSWbNp06ZfBGsePXpUNmt6eXkJeouDNWmudSwK1ly8eDG8efMGCgoKSow1a9asyWDN3bt3y2JNf39/cHBwEPSyWfPmzZuyWZPm6s4vgTVfvHghmzU3btwomzVpru4sV64cDBkyRMuaFy5cEMWaffv21WFNmquSvwTWDAkJkc2ay5cvl8WaM2bMkMSax48fF82ap06dKjLWrFevnqDX2toaOnfuLJk127RpI5k1v//+ey1rajQayaxZWFhoENbMzs6WzJrp6ela1qS5Krm0sqavry/Mnz9fy5qLFy+mZs26devqsObUqVOpvGzWPHz4sGzW9PDwEPQWB2t+//33gt6iZE2cZ5fKmooMq+K4qtjgRXmlIZBSOPif0YMHD3gXPHYxBluRkZG8h0g4QXbp0iXIzc3V8WZmZoKbmxunFyfITp06BRkZGTpejUbDm/BydHSEXr16aTeJXOLbuJUpU0a7SYyJieH08sGumZkZY5PIpbVr13J6yU0iTpCxpVared8T3iTiBBlbL1++5N3Y16hRg5EgYyshIYF3Y88uxmArNzeXN6nJLsZgS6PR8G4IyGKMxMREzmf9559/cnpxgmzTpk0QGRnJ6Z01axanFxdjrFixAt69e8fp3bVrF6eXa5PI1o0bN3jfMXuTyNbHjx95N/Z4k4gTZGylpaXxbuw9PT1h8ODBcObMGcjKytLxFhQU8Baz4U0iTpBxia8Ihp0g45Kfnx+nl0yQffr0idO7dOlS3k0iLsYIDg7m9B47doz3PTVq1AjmzJnDu0kMDAzk9daqVQsmTZqkPZBgKzo6mndjX7FiRRgxYgQEBARATk6Ojjc7O5t3Y+/m5gYDBgzQHkiwpdFoeAtL8YEETpBxqVu3brzr7W+//aZNkHFp0qRJvOtt69attQkyLm3cuJF3vf3uu+8YxRhsBQQE8L6nBg0awIwZM+Dhw4ec3+KbN294D5Fwguz69euc621SUhLY2dlxenExBj6QYCs/P5/3QBcXY+ADCS7xJUNw4T8+kOASX6G2paUldOzYETZu3Mi7V5w3bx7vt4gPJN6+fcvp3bdvH+96iw8kcIKMrbt37/K+4zp16jASZGx9+vSJ9xCJnSBjKyMjg/cQiV2MwVZhYSHvAQO78J9LfKDMLvzn0siRI3nXW1z4HxYWxulduXIl77f4ww8/aA8kuN7T6dOned9Tw4YNYfbs2dpiDLaeP3/O68UHEjhBxlZcXBzvIRI+kMDFGGzl5OTwNmu4urpC//79tcUYbGk0GvD19eX04gMJXPjPpZ49e3J62QkyLvEdurEL/7m0bds23m8RF2PgAwm2rl69yvuecOE/PpBg6927d7yHSFWrVoWxY8dqDyTYSklJ4T1E8vLygiFDhmgTZGzl5+fzHug6OTlB3759tYX/XGrdujXveqtSqbQJMi4NGjSI04sPJHCCjEsLFy7kXW9/+uknbeE/lw4dOsT7ntiF/2w9fPiQ11vaWTM5OZnzeclhzXHjxnF6i4I1yWIMts6dO8f7noRY89WrVwZjzYoVK3J6i5s1+RLIXwJr4mIMtm7evMn7jjFr4mIMtuSwZnp6OhVrcu199LEmuxiDS3xFMDSsyVfIUtysefz4cd73VJysGRMTU6ysiYsx2JLLmnwFEnJZkyzG4NKmTZt4v0V24T9b+lgTF2PwsWZwcPAXzZp8e58WLVpweoubNf39/Xm/RbmsSRZjsKWPNdnFGGyFh4cbjDXr1KnD6S1u1uQr4i0q1sTFGGzJYc2goCBerxzWZBf+s5WTk8NbQMMu/GdLiDXJJnMu8RWH0rDm9OnTOb3FzZrXrl3jfU/FyZqpqalfHGuyizG4xFc4yC7G4JI+1iSbzLl0+PBh3vdU3KzJV7AoxJpZWVm8zRrFzZpdunTh9BYFa65evZqXNdetW8e73sphTXbhP1v6WJNd+M9WYmKiwViTr6G4uFlz9uzZvOutIVmTLPxnKzQ0lJc12YX/bAmxJln4z1ZBQQFvMduXzJrLli3jXW9J1uR6T8XNmrjwny0a1sSF/2xlZ2fzDgaQw5rswn8u8bEmu/Bf0ZclpXBQKRxUJFPk5D52d6iQhg8fztgksrtD9Wn58uWiNomkTpw4wblJ5EuQkXr69CnnJpEvQUYqJiYGrKysdDaJ+ooxsLKzsxndiOzuUH3SaDSMzgkyQca3SSRFTnVjd4cKieyW5+oO1afNmzcznjW7O1SfLl++LGqTSCokJISRTBXaJJJKSUlhTL7Bm0R9CTKs/Px8RneMtbU1dOnSBbZv3867SSRFdnDjTaK+BBmpgQMHMr5FsjtU6D3Nnz9fZ5NIdofq04EDBxhedneoPt27d4/hZXeH6lN4eDjjIJndHapPGRkZjG5Emk0iVmFhIWMqCrlJ5EuQkSK7e2kOJEiNHj2a8S02a9ZMb4KM1OrVqxnPmt0dqk9nz55leIUSZKRevHjB8LK7Q/UpPj6eMWWV3R2qT7m5uYxkKrs7VJ80Gg00a9ZM62V3hwqpd+/eDGAju0OFNGPGDMbzwt2hfAkyUjt27GB48YEEX4KMFDuZig8k+BJkpD58+MBIprK7Q/UpNTWVMWWVpvAfq6CggDGFit0dKqS2bdsy1luhYgxSQ4YMYay37O5QfVq8eDHjWbO7Q/XpyJEjDC+7O1SfHj9+zPCyu0P1KSoqipFMxQcSfAkyUuxkKj6Q0Jcgw9JoNIyJcPhAYtOmTVTrLTnZhN0dKiRyEiZN4T+p9evXM561UOE/qQsXLjC87O5QfXr9+jUjmcruDtWnxMRExuQbdneoPuXl5TEmMZAHEkJ7H41Gw5iYQR5I8CXISJFTL9jdoUKaM2cO41k3btxYb4KM1J49exje2rVr6y3GIHX79m2GlyzGEFpvw8LCGMlUocJ/Up8/fwYnJyetlz2JSJ8KCwsZyVT2JCIhkdMUioo1+YoxSPGxJl8xBqmTJ08yvCXFmrGxsQzWpCn8x2KzJk0xBpZGo4EmTZpovWJZk+y0L0nW3LJlC+NZk6wp9C3qY02hb/Ht27dfHGvS7H1+/vlnxt5HqBiDFJs1hQr/SS1YsIDxrHExRnGz5v379xleMawZERHBYE1c+F8SrElORSlJ1hwzZgzjW5TDmkLFGKTksia59ylJ1iQnzJcka5JThkoLa16/fp3hFSrGIMVmTaFiDFJpaWlFxppkMUZxsyY5gaYkWfPo0aMMb1GwJl8xBil2g6wc1qQpxsBisyZNMQYplUrF2PvgYoziZs0NGzYwnnVJseabN28ks2ZSUpJBWBMAGLcgYdbUV4xBios19RX+k5o7dy7jWcthTaHCf1L6WFNo7xMWFsYoWi5J1qxduzZjvS0p1iSn74llzRUrVjCetVCTOSku1tRX+E/q2bNnDK+3t7fewn9SclgzJyfni2NNvsJ/UuRktqJiTb7Cf1JXrlxheDFr8hX+k+JjTb7Cf1JFzZpChf+k5LAmOV26JFnz4MGDDK+hWZOv8J9UZmYmJ2vqK/zH4mNNfYX/pDp37sxYb1u1agUrV64sdtZcs2YN41mXBtZUZFgphYNK4aAiGXrw4AG4uLgwroWiVWRkJLi4uDCuIKZVZmYmVKxYETp27EidIMPCVeItWrTQXgslRl27dhXsDuXT2LFjBbtD+bR27VrB7lA+qdVqwe5QPr18+RKcnZ0Fu0O5lJCQAO7u7qI2iVi5ublQrVo1UZtELI1GAz/++KNgdyif+vbtCw0bNmRcC0WrWbNmQc2aNakTZKR27dol2B3Kpxs3bgh2h/Lp48eP4OzsLNgdyqW0tDQoV66cYHcolwoKCqBevXqC3aF86tChg861ULTy8/PTuYKYVkuXLtVuEmkSZKSOHTsm2B3Kp8DAQO2BhL7uUC5FR0eDq6urYHcol7Kzs6Fy5cqC3aFcwh3JQt2hfOrevbtgdyifJk2aJNgdyqeNGzeKOpAgFRAQIOpAgtSbN2/A2dkZevXqRZUgI5WUlAQeHh7QuXNn6gQZVn5+PtSsWVPbHUqTICP1888/iyr8J9W/f39Rhf+k5s2bJ9gdyqd9+/YJdofy6e7du4LdoXz69OkTODs7Ux9IkMrIyIDy5cuLOpDAKiwshAYNGgh2h/Lpt99+E+wO5dPIkSMFu0P5tHLlSlGF/6ROnz4tqhiD1PPnz8HZ2VmwO5RLcXFx4ObmJtgdyqWcnByoUqWKYHcol/D0K6HuUD716tVL2x1KkyAjNW3aNMHuUD5t27ZNsDuUT1evXhVV+E/q3bt34OzsTF2MQSolJQU8PT0ldYfm5+fDt99+K6oYg1Tbtm0FJxHxadCgQYKTiPi0cOFCxiQiMd/ioUOHBCcR8enhw4cGZU0xxRhYuGGLvIJYjLp06aJzLRStxo0bZxDWPHfunGTWfPXqlcFYs3r16lrWpCnGwCJZk7YYg1S/fv1ksaaYYgxScljz5s2bBmHN9PR08Pb2lsyadevWlcyaHTt2lMyaw4YNk8WaYooxSB0/flxUMQYpzJq4GEPMehsTE1MqWfOPP/4wCGtu2rRJ5wpiWpGsSVOMQSo4OFg2a4opxsDCrCmmGINUq1atDMKa/v7+pY41w8PDwcXFRcuaYvY+JGvSFmNgFRYWgo+PD7Rs2ZK68J8UZk3aYgxSo0aNKnWsGRQUZDDWrFq1KuMKYlqxWZOmGINU7969RTWZk5o+fTrUqlWLuhiD1LZt20QVY5C6du2aQVgzNTUVvLy8Sh1rDh48WFSTOSmSNWmKMUgdPnxYy5piizEePnwoqvCflBzWzMrKMhhrdu3a1SCsuW7duiJhTZomc1Ika9IU/pNKTEzUsiZt4T8WyZq0hf9YGo0GfvrpJ1msSRb+i/HOnj271LFmaGgogzXF5NnT09MNdq6JWZO28J8UZk3awn9Sy5Yt+yJYU8ze50thTZrCf1IkaypXEJcuFUfhoBH8X2GcIj0yMjIqhxCKQAihiIgIVK5cOQP/RIqkKCEhAZUtWxaZmJiI9qakpCBra2tkbm4u2vv582dkbGyMrK2tRXtzc3NRdnY2cnBwEO0FAJSQkIBcXV1FexFCKC4uDrm5uUn2urq6IiMjI9He+Ph45OzsjIyNjUV7ExMTkYODAzI1NRXtTU1NRZaWlsjS0lK0NzMzE2k0GmRrayvaW1BQgNLS0pCTk5NoLwCg+Ph4We9Jqjc+Ph65uLhIescJCQnIyclJ0jtOTk5Gtra2yMzMTLQ3PT0dmZmZISsrK9He7OxslJeXh+zt7UV7NRoNSkpKQi4uLqK9CMn/Fg3xjhMTE5Gjo6Pk9bZMmTLIwsJCtDcjIwMZGRlJWm/z8vJQZmYmcnR0FO015LdoqPU2KSkJ2dvbS1pv09LSkIWFhaT1NisrCxUWFkpeb1NTU5Gzs7NoL0KG+xblvGM5e5/k5GRkY2Mjee9jYmKCypQpI9qbk5ODcnJyJO19NBoNSkxMLJV7HznrrZy9j5WVleT1FiGEbGxsRHvz8/PR58+fUdmyZUV7S+t6K2fvk5SUhOzs7CTtfdLS0pC5ubnkvU9+fj6ys7MT7S0sLETJycnK3odSpZU1S+O3aKi9j8Ka4r2GWG8V1iw579fImhkZGV/V3qe0smZBQYHkvU9KSorCmpQqjaxZmvPspY01MzMzEQAorEkphTXF6Wvc+xiKNbOyspQ8O6W+NtZEqPTufQzFmqamppL3Prm5uQprUkphTUWlSZGRkcjb2xv/pzcARMr9fyqFgxRSCgcVKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEhVByFg+LLohUpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFpVZK4aAiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVL0FUkpHFT01ejKlStoxowZ6OHDh0ij0Yjyvnz5Eo0bNw5dv34d5efni/LGx8ejYcOGoXPnzqGcnBxR3pycHDRixAh09OhRlJ6eLsoLAGjixIlo9+7dKDExUZQXIYQWLlyINmzYgCIjxU823bx5M1q2bBl6+/ataO+JEyfQvHnz0LNnz5DYq9Tv3r2LpkyZgu7evYsKCwtFeT98+IBGjRqFLl++jPLy8kR5U1NT0bBhw9Dp06dRVlaWKG9+fj4aNWoUOnjwIEpNTRXlBQA0ffp0tH37dhQXFyfKixBCK1asQGvWrEFhYWGivXv27EGLFy9Gr1+/Fv2eLly4gGbNmoUeP34s+lsMDAxEEyZMQDdv3kQFBQWivFFRUWj48OHowoULKDc3V5Q3MzMTDRs2DB0/fhxlZGSI8mo0GjRu3Di0d+9elJSUJMqLEELz5s1DmzdvRtHR0aK969evRytXrkQfPnwQ7T1y5AhasGABevHiheh3fP36dTR9+nT04MED0e/4zZs3aOzYsejq1aui19vExEQ0bNgwdPbsWZSdnS3Km5ubi0aMGIEOHz6M0tLSRHkBAE2ePBnt3LkTJSQkiPIihNDixYvR+vXrUUREhGjv9u3b0dKlS1FISIho7+nTp9HcuXPR06dPRb/jBw8eoMmTJ6M7d+6IXm/DwsLQyJEj0aVLl0R/i+np6WjYsGHo1KlTKDMzU5S3sLAQjR49Gu3fvx+lpKSI8iKE0KxZs9C2bdtQbGysaO+qVavQ6tWrUWhoqGjvvn370MKFC9GrV69Ev6eAgAA0c+ZM9OjRI9Hf4vPnz9H48ePRjRs3RK+3MTExaPjw4ej8+fOi9z7Z2dlo+PDh6NixY+jz58+ivBqNBo0fPx7t2bNH0nq7YMECtGnTJhQVFSXau2nTJrR8+XL07t070d5jx44hf39/9Pz5c9Hv+NatW2jq1Kno3r17or/Ft2/fotGjR6MrV66IXm+Tk5PRsGHD0JkzZ0TvffLy8tDIkSPRoUOHJK23U6dORTt27EDx8fGivAghtGzZMrRu3Tr06dMn0d6dO3eiJUuWoODgYNHvSa1Wozlz5qAnT56I9j569AhNmjQJ3bp1S/S3GBERgUaMGIEuXrwoer3NyMhAw4YNQydOnBC99yksLERjxoxB+/btQ8nJyaK8CCE0Z84ctGXLFhQTEyPau3btWrRq1Sr08eNH0d6DBw+if//9F718+VL0ezI0a6rVatF7n6JgzV27dkna+2DWlLL32bJlS6ljzY8fPxqENQsKCoqENaXsfeSy5qJFi0qcNZ8+faqwpght2LABrVy5Er1//160Vy5rTps2Dd2/f7/UsGZeXp7BWHPJkiVo/fr1KDw8XLRXDmueOXOmVLKmn58fOnnypEFYc+vWrSXOmvv375fMmpcuXTIIa8bGxhqENQEATZgwAe3Zs0dSnh2zppQ8uxzWPH78uEFY8927d1rWFLv3kcOa+fn5slhz2rRpBmHNXbt2ocWLF6M3b96UKGs+fvwYTZw4sdSx5tixY78q1rx69WqpZM3hw4ejI0eOfDWsefLkScmsee/ePYOwZlpampY1xe595LAmQgjNmDFDcp7dUKx58eJFg7BmdHS0ljXF7n1I1pSSZ5fDmv7+/mjz5s2S8uxyWXP+/PkoKCioRFkzODgYjRkzptSx5pQpU9DOnTsl7X0U/QcFAEoIBEKoHEIIEEIQEREBikqncnJywMvLCxBC4O7uDgMGDIATJ05ARkaGoFej0UDTpk0BIQQODg7Qo0cP2LdvHyQnJ1P92T169ACEEJQpUwY6deoEW7ZsgejoaCrv1KlTASEEZmZm0KpVK1i1ahV8/PiRyrtlyxZACIGRkRE0a9YM/v33X3j58iVoNBpB75UrVwD/u69fvz7MmDEDHj58CIWFhYLet2/fgrGxMSCEoFq1ajBu3Di4fv065OfnC3pTUlLA3t4eEELg7e0NQ4cOhXPnzkF2dragNz8/H6pWrQoIIXB2doZ+/frBkSNHIC0tTdALAPDzzz8DQgjs7OygW7dusHv3bkhISKDy/vPPP4AQAktLS+jYsSNs2LCBer1YsGABIITAxMQEfvrpJ1i2bBm8ffuWynvw4EHte2rSpAnMmzcPnj17RvWOHzx4oPV+++23MGXKFLh79y4UFBQIeiMiIsDc3BwQQlC5cmUYNWoUXL58GXJzcwW9mZmZ4OrqCggh8PDwgH/++QdOnz4NmZmZgt7CwkKoV68eIISgbNmy0Lt3bzh48CCkpqYKegEAOnfuDAghsLa2ht9//x22b98OsbGxVN4xY8YAQgjMzc2hbdu2sHbtWggLC6PyrlmzBhBCYGxsDD/88AMsXrwYXr9+TfWe1Gq19j01bNgQZs2aBY8fP6byvnjxAoyMjAAhBDVr1oQJEybAzZs3qb7FhIQEsLa2BoQQVKhQAYYNGwYXLlyAnJwcQW9ubi6UL18eEELg6uoKf//9Nxw/fhw+f/4s6NVoNPDdd98BQgjs7e3hjz/+gL1790JSUpKgFwCgT58+gBACKysr+PXXX2Hz5s3U6+3MmTMBIQSmpqbw888/w8qVK+HDhw9U3p07d2rX2//973+wYMECCAoKonpP169f177jevXqwfTp0+H+/ftU6+2HDx/A1NQUEEJQtWpVGDt2LFy9ehXy8vIEvWlpaeDo6AgIIfDy8oLBgwfD2bNnISsrS9BbUFAANWrUAIQQODk5wZ9//gmHDx+mXm/btWsHCCGwtbWFrl27ws6dOyE+Pp7KO3ToUEAIgYWFBbRv3x7Wr18P4eHhVN4lS5Zo19sff/wRli5dCiEhIVTeo0ePat9T48aNYe7cufD06VOqd/zkyROtt3bt2jB58mS4c+cO1XobHR0NlpaWgBCCSpUqwciRI+HSpUtU621WVhZ4eHho9z4DBw6EkydPUu99GjZsCAghcHR0hF69esH+/fup9z4qlUq73nbu3Bm2bt0KMTExVN6JEydq9z6tW7eG1atXQ2hoKJV3w4YN2vX2u+++g4ULF8KrV6+o3tPFixe176lBgwYwc+ZMePToEdW3+ObNG+3ep3r16jB+/Hi4ceMG1XqblJQEtra2gBCC8uXLg5+fH5w/f55q75OXlweVK1cGhBC4uLjAX3/9BceOHYP09HRBLwDAjz/+qN37dO/eHfbs2QOJiYlU3r///lu79/nll19g06ZNEBkZSeWdO3eudr1t2bIlLF++HN69e0fl3bt3r3a99fX1BX9/f3j+/DnVO75z5472HdepUwemTp0K9+7do3rHYWFhYGZmBgghqFKlCowePRquXLlCtd5+/vwZnJ2dASEEnp6eMGjQIDhz5gzVeltYWAi1a9fW7n369OkDhw4dot77/PLLL4AQAhsbG+jSpQvs2LED4uLiqLwjR47Urrft2rWDdevWwadPn6i8K1as0K63zZs3hyVLlsCbN2+o3tOpU6e076lRo0YwZ84cePLkCZX32bNnWm+tWrVg0qRJcOvWLar1Ni4uDqysrAAhBBUrVoThw4fDxYsXqfY+JGu6ublB//79S4w1e/bsaRDW3Lp1q0FY8927d2BiYsJgzWvXrklmTbVaXSKs2apVK+3eR6VSwa5du0qENf/9999Sx5qRkZEGYU2NRgP169dnsOaBAwcgJSVF0AsgjzXHjh3LYM01a9ZIZs1FixaVCGu+fPlSy5o1atQoUdasUKGCQVjzzz//1GHNqKgoKu+sWbN0WPP9+/dUXjmseePGDQZrTps2rcRYs2zZsqWONf38/AzCmseOHdNhzcDAQMmsefv2bcmsGRAQQLXeZmdnM1hzwIABJcaa3bp10+59fvvttxJjzY0bN5ZK1rSzs2OwJm2eXS5r/vTTTwzW3L17t2TW3LhxIzVrzps3TzJr7tu3T7veNm3atMRY89OnT1rW/Oabb0qUNb/99ttSx5orV65ksObixYtLhDWfP3/OYM2JEyeWGGuWK1eu1LHmtGnTdFiTNs8uhzWvXr2qw5oPHjwoEdZ0cHCQzJrVqlXTsmbfvn1LjDUHDRqkXW87dOhQYqx56NChUsmabm5uDNY8depUibDm77//zmDNbdu2SWLNNm3aiGLNtWvXavc+33//vSjWPHfunPY9+fj4lChr2tjYGIQ1v//+ex3WpN37GIo1d+3axWDN+fPnU7OmIsMqIiJC+40hhMpBUdTEFcX/5L8eSCkc/M9o3bp15EckKhl0/vx5HS9OBi1ZsgSCg4N5va9evdL+kiODJhmUmJio/SVHRu3atWHSpEl6k0G5ublQsWJFHW+lSpVgxIgRepNBGo0GfvjhBx0vbTKob9++Ol4HBwfo2bOnYDJo9uzZOl7aZNDu3bt1vLTJoJs3b+p4aZNBoaGh2oQqGTgZpO8gLD09XZtQJQMng/QVXRYUFECtWrV0vN7e3lTJoA4dOuh4XVxcoF+/fnD06FG9yaBhw4bpeMmiS30bomXLlul48UGYUDLo+PHjOl5TU1No0aKFYDIoMDBQx0ubDIqJidEmVMkgk0F832J2djZ4enrqeGmSQRqNBho3bqzjxckgoYOw7t2763hpk0GTJ0/W8eJk0Pbt2/UmgzZt2qTjNTc3h3bt2sHatWv1JoMuXbrE+S3iokt9yaDg4GBtQpWMhg0bwuzZs/Umg5KTk7UJVTJq1qwpmAzKz8+Hb775RsdLmwxq0aKFjpc2GTRgwADO9RYng/QdhPn7+3OutzTJoP3793OutzTJoHv37nF+i82aNYMFCxbAixcveN9TeHi4NqFKRv369WH69Ol6k0EZGRng4uKi48UHYdeuXeP9FgsLC6FOnTo63nLlysGQIUMEk0GdOnXS8dImg0aNGqXjpU0GrVq1inO9pUkGnTlzRsdLJoP0HYQFBQXpeBGiSwbFx8dDmTJldLw4GaSv6DInJwe8vb11vDgZpK/oUqPRwP/+9z8dr4eHBwwcOFAwGdS7d28dLz4IE0oGTZ8+XceLiy6FkkHbt2/nXG9pkkHXrl3jXG9pkkHv37/XJlTJIJNBfN9iamqqNqFKBk0yqKCgQJtQJaN8+fJUyaA2bdroeHEy6NixY3qTQYMHD9bx4mSQUNHlokWLdLxWVlbaokt9yaDDhw/rePFB2IoVK/Qmgx49esS53vr6+gomg6KiosDCwkLHX7duXcHCg6ysLHB3d9fxVqlSBcaMGaO38ECj0UCDBg10vLSFB126dNHx0hYejB8/XsdrY2NDVXhgKNZ8/fo1J2vig7DiYs28vDyDsWa/fv10vF86a966dYtzvcWsqe8gTC5rOjk56XirV68u2OCnjzVpGvzksObw4cN1vCXBmidOnOBcb0uCNfFhMhlFwZqXL18uNtb8448/dLy0DX5yWHPz5s06XrLBr7hYMyQkRDJrkoXLZJCsyfctymXNli1b6nhJ1tS395HDmvPnz9fxWllZQadOnQQb/PSxplCDn1zWxIfJZOAGv+Jkzbp16+p4S4I1R48ereOlZc3Vq1freC0sLIqdNV+8eKHjRej/WFOowU8Oa+bm5vKyplCDnyFZc8aMGTre0s6a+oouU1NTtU2yZGDW1Fd0WVBQANWrV9fxkg1+xcWaQ4YM0fHSNvjJYc0jR47oeBXW5GfNrl276ngxawrl2eWw5vr16znX2/bt28O6deu+WNbETbJk4Aa/4mTN5s2b63hLgjXnzJmj46VlzT179uh4MWsKNfjJYc2wsDBe1hRq8JPDmoWFhaWSNZcvX67jLQnWfPr0Ked6i1lTX55diDX1FV1mZ2drm2TJoGXNJk2a6Hg9PT2pGvzksOaUKVN0vGSDX3Gx5uXLlzm/xS+dNatUqaLjrVChAgwfPpy66FJRyUspHFQKBxXJUGJiIgQHB3MWaJHBlQxKTU2Fjx8/Qs2aNfV6uZJBGRkZEBoaCq1bt9br5UoG5ebmQmhoKGeijgyuZFBhYSGEhoZyHoyQwZcM+vTpE2dygAy+ZFBUVBQEBATo9eJkELsDNy4uDp4+fcpZoEUGVzIoOTkZ3r17p+145QuuaU/p6ekQGhqq7XjlC65kUFZWFoSGhmq7PviCKxmUl5cHoaGh2i47vuBKBmk0GggNDdV2NfMFXzIoIiKC0dnDFWQyiDwIi4mJgVu3bnFuZMgNEVcyKCEhAV69esVZoEUGVzIoJSUFPnz4oO145QuuZNDnz58hNDSUExzJ4EoG5eTkQGhoqHaaHV+QHbg4GVRQUAChoaGcm1Uy+JJBYWFh2glafMGXDIqMjORMxpLBlwyKjY2FR48ecRZo4eBLBiUlJUFISIi245UvcDKI7MBNS0uDjx8/ajte+YIrGZSZmQmhoaHQvn17vV6cDCI7cPF6y1UUQgZXMgivt1xFeGSQHbhkMig8PJzzIJoMvmRQdHQ0Y2oPV5DTnshkUHx8PDx//pwzaU4GVzIoOTkZ3r9/r+145QuuZBBeb3HHK19UrFhRmwzC32J2djaEhoZqp9nxBVcyKD8/H0JDQ7VddnzBlwwKDQ3VTtDiC75kUEREBGOKBFfwJYNiYmLg7t27nElz8lvk6sBNTEyE169fcxZokcGVDMJ7H64CLTK4JgvjvQ/XISUZXMkgvN7+9ddfer1cySC83nIdjJDBN1n406dPnMkBMviSQVFRUZzJWDLIZBDZgRsXFwdPnjzhPKQk3zFXMigpKQnevn2r7Xjlizp16uh04KalpUFoaKi245UvuJJBeO/z66+/6vVyJYPw3oerAYEMrmQQ3vssXLhQr5cvGRQeHs55EE0G32Th6OhouHHjBmfSHAdfMighIQFevHjBWaBFBlcyCO99cMcrX+BkEFl0ifc+eLoSX3Alg/B6iycM8AVXBy5eb/FEF76wt7eHHj166Ex7CgsL007Q4gu+ycKRkZGMKRJcYWZmxjlZODY2Fh48eMCZNCe/RTztiSw8MBRr4r0P1yElGSRrsvc+cliT62CEDMya7IMwWtbkKrqMioriLPwhQy5rck0WLgrWbNSokV4v12ThomBNrgYEMvSx5tKlS/V6SdZk733ksObt27epWJPd4CeXNT9+/MhZoEVGjRo1dKY94fUWT/Lli/8aa549e1av90tlTa5mIDK4Jgvj9ZbrkJIMfazJVRRCBleDX0mxJte0p+joaMbUHq4oTtbkKtAio7hYE0+z4wuuW2yKgjXxBC2+wKy5ZcsWSazJNVlYLmu+efNGkDW5JgsXBWviW2P44ktkTXwzEF/wTRYuCtbkKtAi33HTpk11GvxKgjW5pj3hvQ9XQSwZXJOFi4I1uYrwyPgSWJOdZ5fLmlwFWmTIZU12g19JsSbXZOHiZk2+W2xKC2ty5dnlsObAgQP1ejFrkg1+RcGaO3bs0OuVy5pck4Xj4+NlsyZXMxAZxcWaXM2XZOBbbE6dOqXd+8hhTQCQzZpcDbZkYNZkN/iVBGtyTRaWw5p47yOGNdl7HzzNji+4JgvjvQ++qYIv9LEmntbMF3y32Mhhzbi4OFGsSTb4YdbkagYiw1CsyTVZWA5r4r0PV8MXGVImCysqfimFg0rhoCIZEgJGrsDJIKGEAlfgDlyuzk2hwNOe8LWZYgIng4Qgl++XJU4GCSV+uAIng4RAhCtwMohr6pZQ4GSQUHKPK/A1U3gkt5jAySAhUOUKnAzCV/WJCfIgTKwXof8/7UkIRLgCd+D6+PiI9uJkkFBRF1fgZJDQYQpX4GTQiBEjRHtxMgiP1hcTOBmER7aLCTIZxNUNJBT4mikhEOEKfKWxUOKHK3AyCF/TJSZwMkjo8JorcDJIKEnPFTgZJFRkzRU4GbR48WLRXjIZxNWZJxQ4GSQEIlyBk0FCiXauwAdhXB1fQoGLLvFVw2ICXzM1adIk0V6cDBI6bOMKMhmkL6HAFzgZJHToxRU4GcQ1BUYocDKoY8eOor04GcQ1OVgocDJIqBieK3AyiGvynlDgokup6y3uwOXqhBYKnAzimkogFHiysFBBO1fgZBBXt7tQ4GQQvvpSTOBk0IQJE0R7cTJIKPnLFTgZJNQswRXklcZCh15cgTtwhQ69uAIng4QS7VyBk0G9evUS7cXJICn8g5NBQolBrsCFB0IJJ64gCw/0FdHyBS48EDr04gpceODr6yvai6c9CRXRcgWe9iSHNceMGSPaW9pZk2sqgVBg1sRX5omJomBNocYUrsAHYV8jawo183GFoVmTa2qFUBQFay5YsEC0l7zSWA5rck0lEArc4CeHNYWKaLmiKFhz3Lhxor1fAmsKFVhyBb7SWA5r4ivzxIShWZNrCqZQFBVr6ivc44uiYE2uKTBCgVkTX1EqJnCeXQ5rChUocAUuupTDmkKNS1zxJbCmUJEBVxiaNbmmsgmFIVkTN/iVNGviBr+vjTWl7H3IK43lsGalSpVEe/GVxnJYU6iIlisMzZr42kwxUVSsyTVxVCiKgjXlnGty3RglFLjo0hCs2aFDB1msyTUhnia+VtY0xLlmmzZtJLMmHiYj1EDEFbjBTw5r4uuCxcTXyppS9z7KlcZfhoqjcNAI/q8wTpEeGRkZlUMIRSCEUEREBCpXrpyBfyJFUjR8+HC0bt06Q/8YihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihSVOlWoUAF17doVTZ06FTk5ORn6x/mqFBkZiby9vfF/egNApNz/p7Hc/4EiRf91GRsbo0qVKkn2V65cWbK3YsWKkr1yClxdXV2RhYWFJK+9vT1ydHSU5LWyskKenp6SvKampqhChQqSvEZGRgZ7x1J/ZoSQ5GeFEEJOTk7I2tpaktfGxga5uLhI8lpYWEj+t2liYiLrm5DznuT8+yB+cYuWm5sbMjU1leR1cHBA9vb2krxlypRB7u7ukrxmZmaofPnykryldb318vKS7HV2dkaWlpaSvHZ2dpI345aWlgZbbw31LUr9d4nQ/623RkZGkrxly5ZFtra2krzW1tbI1dVVktfc3Fzyeltav0W5ex9zc3NJXrl7Hw8PD0leMzOzr27vI3e9LVOmjCSvra0tcnZ2luS1sLCQ/HN/jXsfDw8PZGJiIsnr6OiI7OzsJHmtra2Rm5ubJK+5ubnkv/PXut5KZU07OztUtmxZSd7SyppyvApr0utrXG8V1hSn0sqaVlZWkry2trYKa4rQ18iacvY+hlpvFdakl1zWNNS3aCjWdHJyUlhThAy193F3dzcIa5YpU0ZhTREqjaxpyL1PaWRNueutwpr0kvPnymVNMzMzSV6FNcVJzrcoZ711dnZG/fr1Q8uWLUOzZ89Wigb/KyqKsYX/9UDKVcX/CR08eBD8/PyorkXCo/H37NkDiYmJcPnyZfDz84MKFSoIevFo/I0bN0JkZCQ8ffoU/Pz84Ntvv6UaD9uyZUtYsWIFvHv3DiIiIsDPz4/qGhfyGrbnz59DZmYm+Pn5UY9Prlu3LkydOhXu3bsHhYWFMGHCBOrrQfBo/CtXrkBeXh4sXLgQBg4cSOXFo/HPnDkDmZmZsHXrVhg6dChYWloKevFo/EOHDkFqaiqcPHkS/Pz8wNXVVdCLR+Pv2LED4uLi4NatW+Dn50c1Atnc3BzatWsH69atg0+fPsGbN2/Az8+P6vpeY2Nj7TVsb968gbi4OPDz86O+NguPxn/y5AkUFhaCn58f9bh6fA3brVu3oKCgAGbMmEE9IrtChQowfPhwuHjxIuTk5MDKlSth8ODBVFd34tH4J06cgM+fP8PevXvBz8+P6poOe3t76NGjB+zbtw+SkpLg/Pnz4OfnB15eXoJeKysr6NSpE2zZsgWio6Ph0aNH4OfnR3WVNh6Nv2rVKvjw4QN8/PgR/Pz8oGnTplTfIh6N//LlS0hLSwM/Pz9o3bo11bPGo/EfPnwIhYWFMHr0aOrrQfBo/GvXrkFeXh74+/vD33//TeUtV64cDB06FM6dOwfZ2dmwYcMGGDp0KJiZmQl68TVsR44cgbS0NDhy5Aj4+flRXcFra2sL3bp1g127dkFCQgJcvXoV/Pz8qK4atLCwgA4dOsCGDRsgIiICgoKCwM/PD+rVqyfoJUfjv337FqKiosDPz496lDkejf/s2TPIyckBPz8/6mth8Wj8u3fvQkFBAUyaNAl69uxJ5cWj8S9fvgy5ubmwZMkS6itg8Gj806dPQ2ZmJmzfvh38/PyoxsY7OjpC79694eDBg5CSkgKnT58GPz8/cHd3F/Ti0fjbt2+H2NhYuHv3Lvj5+UG1atUEvfgatjVr1kBoaCiEhISAn58fNGrUSNBLXsP2+vVrSExMBD8/P2jZsiXV88Kj8R8/fgwajUbUNdz4yu+bN29Cfn4+zJo1i/o6pvLly8OwYcPgwoULkJOTA6tXr4YhQ4ZQXV+FR+MfP34cPn/+DPv37wc/Pz+wt7cX9OLR+Hv37oWkpCQICAgAPz8/qquv8Gj8zZs3Q1RUFDx58gT8/Pygdu3agl48Gn/lypXw/v17+PTpE/j5+cH//vc/QS95DVtQUBB8/vwZ/Pz8oG3btlTPGl/5ff/+fSgsLIRx48ZRX0VZpUoVGDNmDFy9ehXy8vLg33//pb6SAF/DdvbsWcjKyoLNmzfD0KFDqa7MwdewHT58GNLS0uD48ePg5+dHdQ2djY0NdO3aFXbu3Anx8fFw48YN8PPzg8qVKwt68TVs69evh/DwcHj16hX4+flRXalEXsMWEhICsbGx4OfnR31FM76G7enTp5Cfnw9+fn7UV6Pha9ju3LkDBQUFMHXqVOrrmPA1bAEBAZCbmwvLly+HQYMGgZGRkaAXX/l98uRJyMjIgF27doGfnx9YW1sLeh0cHKBnz56wf/9+SE5OBrVaDX5+flRXseBr2LZu3QoxMTFw//598PPzo7reDF/Dtnr1avj48SO8f/8e/Pz8qK6wI69he/XqFSQnJ4Ofnx/8/PPPVM8aX8P26NEjKCwshJEjR0KXLl2ovPgaths3bkB+fj7MmTOH+jomb29v8PPzg/Pnz0N2djasW7cOhgwZAqampoJefA3bsWPHID09XcuaNNcikayZkJAgizWfPXsGfn5+VNdJmpqaQosWLWD58uWyWTMrK0sUa+Jr2IqCNRctWlTqWPP27duSWDMsLEwWa8bHx4tmzdmzZ0tmzYkTJ371rElzvVlxsCbtNYWYNR88eFDirDlkyBBQq9WQlZVVoqypUql0WJPmqsGiZM3o6Gjw8/ODH374gep5FSVrTp482SCsuWPHDtGseeDAAcmsuW3bNtms+fbtW1Gsia9hKwrWHD58ODVr4mvYioI116xZI5k1Dxw4IIk1ExMTZbFmYGCgaNZcsWKFbNbMyMgQzZrTpk37YljTwsJC0EuyZmpqqsFZs0GDBoJekjWDg4Mls2ZgYKCWNX/99Vcqb+3atWHSpElw+/btEmVNNzc3GDBggA5r2tjYCHqLgzVr1Kgh6C1K1kxJSQE/Pz9o1aoV1bMuStacO3euaNbEefZ169bB0KFDJbHmoUOHRLPm7t27DcqakZGRolgTX/ldFKw5ceJEg7Dmtm3bJLPmqVOnqFnT2toaunTpAtu3b5fNmsHBwaJZc/HixQzWpL2imWRNjUYjijVr1qypw5p//vknlbc4WNPOzk7Qy8ea5cqVE/QWB2vSXJdOsuaLFy9ks+aYMWNApVJReatWrQpjx44tEtbcuHGjKNbs27dvkbDmtWvXSpw1Q0JCZLFmbm6uJNbEeXZFhlVxXFVs8KK80hBIKRz8zygwMJB3wcObRJwgYysmJoZ308dOkLGVnZ0NHh4enF52MQZbGo2GN2nFLsbgUvfu3Tm9OEG2du1aCAsL4/ROmjSJ04uLMfAmkesO+02bNvE+64YNGzI2iWwFBATweslNYn5+vo43ODiYd9OHN4k4QcZWcnIy76bP1dUV+vfvr02QsZWfnw/ffPMNpxdvEnExBpf4NtjsBBmX+vfvz+llF2Nwyd/fn9NLJshevHjB+Z727dvH+55wMQbeJLJ19+5dXi97k8hWeHg476aPvUlkKyMjgzfh5eTkxNgkslVYWMgLyuQmMT4+nvNZ8yWeyE1ieHg4p3fUqFGcXrxJxMUYXFq5ciXvs27SpIm2GIPrHZ8+fZrXyy7GYCsoKIjXixNkly5d4lxv4+LieA8YcDHGqVOnICMjQ8ebk5PDm3x2dHSEXr16aQ8k2NJoNLwQVaZMGejcuTNs27YNYmJiOJ81X4LQzMwM2rRpoz2Q4NL06dN511t8IPHq1SvO97Rt2zbeZ40PJHCCjK1r167xemvUqMFIkLH17t073gMGdjEGW6mpqbyF/OwEGVv5+fm8B0Hswn8u8RXx4gTZpk2bIDIyktM7ePBg3vWWLPzn0sKFC3nXW19fX5g/fz4EBQVxvuPDhw/zvqe6desyDiTYevjwIa8XH0jgBBlbkZGRvAcMnp6eMHjwYG2CjK2srCzewz58IIETZGxpNBregjR2MQaX+JLA7MJ/Lo0bN453vcXFGMHBwZzedevW8T5rXPgfGBjI+Y7PnTvH68WF//hAgq1Xr17xHjBUrFgRRowYAQEBAZx7n8TERN4DBvaBBFu5ubm8Rd74QAInyNjSaDS8CQ18IIETZFziOxzFBxI4Qcal2bNn836LZDEG13vavXs373tq0KABo/CfrZs3b/J6cTHG9evXOdfb0NBQ3gMGduE/W+np6VC2bFlOLy7GOHr0KOd6W1BQwJuYxIX/+ECCS3yJfktLS+jYsSNs3LiRl6+HDRvG+y3iA4m3b99yepctW8b7jvGBxLNnzzjf8fHjx3nfU506dRjFGGzpY012MQZbclmT77DvS2bNyZMnc3qLijVxMQZbly5d4vVi1sTFGGwVJ2uSxRhsGZI1+QoVips19+/fz/ueDMWaXl5eMGTIEG0xBlsZGRng4uLC6S0K1sTFGFziO3TDrImLMbgkhzVXrVrF+6zJwn+ud3zmzBleb3GyZnx8fLGzZnJyso5Xo9HwFisZmjVxMQbXe9q+fTvvsy5O1nz//r1BWLOgoEAWa/IdrBY3ay5atIh3vcWs+fz5c8msiYsx2Hr06BGvl12MwVZxsSa7GIMtjUbDW5BW3Kw5fvx43vW2OFnz/PnzvF52kzlbxc2auBiDrby8PIOxZr9+/XjXW7IYg0vFxZrsJnO2bt26xestbtbkK64gWZNr7yOXNTt06MC73nbs2FFbjMGl4mRNXIzB9Y5PnDjB+56KmzWtrKw4vcXNmo0bN+b00rAmX/FfUbHm69evOd/T5s2beZ91cbJmSEgIL2uyC//ZKk7WJJvMucTXNFHcrDl//nzeb7E4WfPevXu8XsyauPCfrfDwcN6m8aJgTdxkzlZhYSHUrVuX08su/OeSPtYkC/+5NHr0aN71lmwy55KhWPPFixe83uJkzdzcXIOxZu/evTm9mDVx4b+iL0tK4aBSOKhIpn777TfGJpHsDuX65UJqzJgxjAWT7A7l2kCQWr16NcPL7g7Vp7Nnz/JuErmAjdSLFy8YcC+0SSQVHx/PmIrC7g7Vp9zcXChfvryoTSKWRqOBZs2a6WwScXeokMipBjTFGKRmzJihs0nUV4xBaseOHQwvuztUn65fv66zSSS7Q/Xpw4cPjGQquztUn9LS0hidauQmkS9BhlVQUMCYXkOzSSRFduiyu0OFNGTIEM5NIl+CjNTixYt1Non6ijFIHTlyhOElE2Rcm0RSjx8/ZniFijFIRUdHMw6S2d2h+sROprK7Q/VJo9Ewus3Y3aFCIidXsLtDhd7ThAkTGM+L3R2qT+vXr2d4cXcoX4KM1IULFxhedneoPr1584ax3goVY5BKSkpiTEVhd4fqU15eHqOLiSzG4DuQwNJoNIwubHZ3qJDILlt2d6jQO547dy7jWZPdoULf4p49exheoQMJUrdv32Z42d2h+hQWFsY4SBY6kCD1+fNnRjKV3R2qT4WFhYxpCvhAQl+CjBTZMcbuDhV6TyNGjGA8L6HCf1LLly9neNndofp08uRJhpfdHapPT58+1Vlvye5QfYqNjWUkU9ndofqUk5PDmFBEdofS7H3ITnuaAwlSPXr0YHyLzZo105sgIzVlyhTG82J3h+rTli1bGF6hYgxSly9fZniFCv9JvX37lpFMZXeH6lNKSgpjKgq7O1Sf8vPzGR3c7O5QIZHT99jdoUJid7zj7lC+BBmpBQsWMLxiukMPHjzI8AolyEjdv3+f4cUHEqdOnRJcbyMiIhjJVKHCf1IZGRmMLn1ra2ttgozvQAKrsLCQ0d1rbm4uWIxBylCsuWbNGobX0KzJV4xBio819RVjYPGx5qZNm75o1pw5cybjWQsV/pP6GlmTnF6DWVNfMQYpOaw5dOhQxvNq3Lix3mIMUnJY8+jRowxvaWFNskFWLGs2bNiQsfcRw5rk5AqSNfmKMUjxsSZfMQapDRs2MLxiWPPixYsMr7e3t95iDFJFyZo0xRhYclgTAODHH39krLelgTX37t3L8Ao1mZO6c+cOw1sUrMlXjEHq8+fPjAZZkjVp9j5s1hQqxiBFTgGnKfwnJYc1V6xYwfCWFGs+e/aM4cVN5l86a5ITbTFrrly5sthZc+rUqYznJVSMQUoOa165coXhFcOa7AZZocJ/UnJZs2rVqoy9j1CTOSk5rMmeLFsaWPPBgwcMr1AxBik5rJmZmclgTbIYo7hZk5xKW1pYU61WM7yYNfkK/0m9fPlSMmsmJCQwWJOm8B+LzZo0hf9YGo2GMWGRLPynYU1ygl5JsubOnTsZXjGseePGDYZXLGuSRculhTXbtWvHWG+FCv9JyWHNJUuWMLxCTeak9LGm0N7nyZMnDK/Cmvrf08SJExnPS6jJnBQXa+or/CcllzXZeXZa1lRkWCmFg0rhoCIZCgwMBHt7e+pNIqmYmBgoW7YsY1Q3rbKzs6FChQqC3aFcwgfJ5LVQQr+YSHXr1k3nCmJaTZo0SVQxBqmNGzeKSpCRCggIEFWMQSo4OBjs7e0Fu0O5lJSUBC4uLoLdoVzC06/Ia6HEvKcWLVoIdofyqX///oLdoXzy9/cXlSAjtW/fPlHFGKTu3r0LDg4O1AkyUp8+fQIHBwfGqG5aZWRkgJeXl6hiDCwM90LdoXz69ddfBbtD+TRq1Cida6FotXLlSsHuUD6dPn1a51ooWj1//hzs7e0ZVxDTKi4uDpycnEQVY2Dl5ORApUqVoEWLFtproWiFD5LJUd1i3nGvXr10roWi1bRp0wS7Q/m0bds2we5QPl29elWwO5RP7969A3t7e8HuUC6lpqaCm5sb41ooWuXn50PNmjUZVxCLeU9t2rTRuRaKVoMGDdK5gphWCxcuFOwO5dOhQ4dEFf6TevjwIVV3KJciIyPB0dGRuvCfVGZmJnh7ewt2h3IJwz15LZSY9/T777/rXEFMq3HjxolKkJFat26dqAQZqXPnzulcQUyrV69egb29vWB3KJcSEhLA2dlZVOE/Vm5uLlSpUkWwO5RLeAKEUHcon/r27SvYHcqn2bNn61wLRatdu3bpXEFMq5s3b4pKkJH6+PEjODg4QOfOnakSZKTS09PBw8NDVIIMq6CgAOrUqSOq8J9U+/btRRX+kxo2bJjOtVC0Wrp0qeAkIj4dP35ccBIRnwzNmmKKMbDksmb37t11roWilRzW3LRpU6ljzeTkZHB1dWVcC0UruazZsmVLnWuhaGUo1ty/f79BWDM8PNxgrFm/fv1Sx5qrVq0SVYxBSg5rBgUFgb29PXUxBqmiYE3yCmJaGZI1p0+fbhDWvHbtms4VxLQyFGvi6VdiijFIyWHNwYMHiyrGICWHNQ8fPiyZNR89eiSqyZyUHNbMysrSsiZtMQaWXNbs0qWLqCZzUoZizfPnz4sqxiAlhzUTExMNxprNmzcX1WROql+/fqIK/0nJYc3du3eLKsYgJYc1Q0NDwcHBgboYg5QhWbNDhw4GYc1ly5aJajInVVSsSVP4T8qQrNm0aVNRhf+k5LDm5MmTDcKaly5dksyaISEhWtakaTInJZc1q1evLqrJnJQc1hwwYICown9ShmLNe/fufXWs2alTJ1FN5qRGjx4tqvCflBzWPHPmjKgmc1JyWDM+Pr5Usmbv3r2VK4hLqYqjcNAI/q8wTpEeGRkZlUMIRSCEUEREBCpXrpyBfyJFUhQTE4OcnJyQubm5aG9iYiIqU6YMKlOmjGhvWloaAgDk4OAg2pubm4tSU1ORm5ubaC8AoMjISOTt7S3aixBC4eHhyNvbGxkZGYn24u9EijcqKgq5ubkhU1NT0d64uDjk4OCALCwsRHuTk5ORubk5srGxEe3NyMhAeXl5qGzZsqK9+fn5KCEhAXl6eor2AgCKiIhA5cuXF+1FSN47joyMRJ6ensjY2Fi0Nzo6Grm4uCAzMzPR3vj4eGRra4usrKxEe1NTU5GxsTGys7MT7c3OzkYZGRnIxcVFtFej0aDo6GjJvzvCw8Mlv2O536K7uzsyMTER7Y2NjUVly5aVtN4mJSUhS0tLZG1tLdqbnp6ONBqN5PU2JSUFubu7i/Ya8luMiIhAXl5ekr9FV1dXSettfHw8srOzQ5aWlqK9KSkpyNTUFNna2or2ZmZmopycHOTk5CTaW1hYiGJjY5GXl5doL0LyvkVDrbcxMTHI2dlZ0nqbkJCArK2tJe99EELI3t5etDcnJwelp6cjV1dX0V6NRoOioqJk7X1K43rr6Ogoae8jZ739/Pkzys/Pl7T3ycvLQ0lJScjDw0O0tzTvfQy13pqYmEja+2RlZaGsrCzk7Ows2ltYWIhiYmJK3d4nMjISeXh4SPoWDcWacvc+CmvSqzSyZkFBAYqPj1dYk1IJCQnIxsZGYU1KfY2sWVhYiBwdHUV78/LyUHJyssKalFJYU7xXYU06yWHNotj7lMb1Vg5rWlhYSNr7yGHN/Px8lJiYWOpYs7Sutwpr0ksOa8rZ+yisKU4Ka9JLDmsi9HXufRTWpJfCmvQyJGsqMqxYvyu9ASBS7v9TKRykkFI4qEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKDKHiKBwUX1KtSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKSq1UgoHFSlSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRoq9ISuGgoq9GT548QTdu3EAFBQWive/evUPnz59HOTk5or3x8fHo2LFj6PPnz6K9OTk5aN++fSgxMVG0FwDQ/v37UVRUlGgvQggdP34cvXv3TpL34sWL6Pnz50jKVeh37txB9+7dQ4WFhaK9QUFB6MqVKygvL0+0NywsDJ05cwZlZWWJ9qampqJDhw6htLQ00d78/Hy0d+9eFB8fL9oLAOjQoUPo06dPor0IIXT69Gn05s0bSe/pypUrKDAwUJL34cOH6NatW5K+xTdv3qCLFy+i3Nxc0d7o6Gh04sQJlJGRIdqbmZmJ9u/fj5KTk0V7NRoN2rdvH4qJiRHtRQiho0ePoo8fP0rynjt3Dr18+VLSe7p58yZ6+PAh0mg0or2BgYHo+vXrKD8/X7T3w4cP6Ny5cyg7O1u0NzExER09ehSlp6eL9ubm5qK9e/eihIQE0V4AQAcOHEARERGivQghdPLkSfT27VtJ3kuXLqFnz55Jesd3795Fd+/elbTevnz5El2+fFnSehseHo5Onz6NMjMzRXvT09PRwYMHUWpqqmhvYWEh2rt3L4qNjRXtRQihw4cPo7CwMEnes2fPotevX0t6T9euXUOPHz+W9C0+evQI3bx5U9J6GxISgi5cuCBp7xMbG4uOHz8uab3Nzs5G+/fvR0lJSaK9eL2Njo4W7UXo//Y+Hz58kOS9cOECCgoKkvSOb926he7fvy/pHT979gxdvXpV0nr78eNHdPbsWUnrbXJyMjp8+LCkvU9eXp6s9fbgwYMoPDxctBchhE6dOoVCQkIkeS9fvoyePn0q6R3fv38f3blzR9J6++rVK3Tp0iVJe5/IyEh08uRJSettRkYGOnDgAEpJSRHtlbveHjlyBIWGhkryqtVq9OrVK0nv6fr16+jRo0eSvsWvlTUjI6XdgvG1seanT58MwpoFBQVo3759pY41r169ip48eaKwJoUMyZrnz583CGs+ffoUXbt2zSCseeTIEUmsmZeXh/bt2/dVsea9e/dKJWsaau9TGlnz8ePHBmVNKXsfOawJAGjfvn2y8uyGYM3bt28bhDVDQ0MNwpr5+fmy9j6GZE2peXY5rPn69WsUEBBQ6lhTzt5HYU16lVbWPHHihMKalEpLS0OHDh2SlGeXw5oIIYU1RSgmJqbUsqbUvY9c1nzw4IFBWFOtVn9VrKnoPygAUEIgEELlEEKAEIKIiAhQVDoVGxsLVlZW4OjoCL169YL9+/dDcnIylTcnJwe8vLygTJky8Ntvv8HWrVshJiaGyqvRaKBJkyZgbm4Obdq0gdWrV0NoaCj1z92jRw8wNjaG7777DhYuXAivXr0CjUZD5Z0yZQoghKBBgwYwc+ZMePToERQWFlJ5t2zZAgghqF69OowfPx5u3LgB+fn5VN7Lly8DQgjKly8Pfn5+cP78ecjOzqbyvn37FoyNjcHFxQX++usvOHbsGKSnp1N5U1JSwN7eHuzs7KB79+6wZ88eSExMpPLm5+dDlSpVwNLSEn755RfYtGkTREZGUnkBAH7++WcwNTWFli1bwvLly+Hdu3fU3oEDB4KRkRH4+vrC/Pnz4fnz59TveMGCBYAQgrp168LUqVPh3r171O/44MGDgBCCb775BkaPHg1XrlyBvLw8Ku/9+/cBIQSenp4waNAgOHPmDGRlZVF5IyIiwNzcHMqWLQt9+vSBQ4cOQWpqKpU3IyMDXF1dwcbGBrp06QI7duyAuLg4Km9hYSHUq1cPLCwsoF27drBu3Tr49OkTlRcA4LfffgMTExNo3rw5LFmyBIKDg6m9Y8aMAYQQNGrUCObMmQNPnjyhfsdr1qwBhBDUqlULJk6cCLdu3YKCggIq79mzZwEhBBUrVoQRI0bAxYsXIScnh8r74sULMDIyAjc3N+jfvz+cOHECMjIyqLzx8fFgbW0NDg4O0KNHD9i3bx/1epubmwvly5eHMmXKQKdOnWDLli0QHR1N5dVoNNCsWTMwMzODVq1awapVq+Djx49UXgCAPn36gJGRETRr1gz+/fdfePnyJfV7mjlzJiCEoH79+jBjxgx4+PAh9be4Y8cOQAhBtWrVYNy4cXD9+nXq9fb69euAEAJvb28YOnQoqNVq6vX2w4cPYGJiAs7OztCvXz84evQo9XqblpYGjo6OYGdnB926dYNdu3ZBQkIClbegoABq1KgBlpaW0KFDB9iwYYOo/VXbtm3BxMQEfvrpJ1i2bBm8ffuW2jt06FBACEGTJk1g3rx58OzZM+p3vHjxYkAIwbfffgtTpkyBu3fvUn+LR48eBYQQVK5cGUaNGgWXL1+G3NxcKu/jx48BIQQeHh7wzz//wOnTpyEzM5PKGx0dDZaWllC2bFno3bs3HDx4EFJSUqi8WVlZ4OHhAdbW1vD777/Dtm3bIDY2lsqr0WjAx8cHzM3NoW3btrB27VoICwuj8gIAqFQqMDY2hh9++AEWLVoEr1+/pn5PEyZMAIQQNGzYEGbNmgWPHz+m9m7YsAEQQlCjRg2YMGEC3Lx5k/pbvHjxIiCEoEKFCjBs2DC4cOEC9Xr75s0bMDIyAldXV/j777/h+PHj8PnzZypvUlIS2Nragr29Pfzxxx+wd+9eSEpKovLm5eVBpUqVwMrKCn799VfYvHkz9XoLAPDjjz+Cqakp/Pzzz7By5Up4//49tfevv/4CIyMj+N///gcLFiyAFy9eUL+nuXPnAkII6tWrB9OnT4f79+9Tr7d79+4FhBBUrVoVxowZA1evXqXe+9y+fRsQQuDl5QWDBw+Gs2fPUu99wsLCwMzMDJycnODPP/+Ew4cPQ1paGpX38+fP4OTkBLa2ttC1a1fYuXMnxMfHU3kLCwuhdu3aYGFhAe3bt4f169dDeHg4lRcA4JdffgETExP48ccfYenSpRASEkLtHTFiBCCEoHHjxjB37lx4+vQp9TtesWIFIISgdu3aMHnyZLh9+zb1envy5ElACEGlSpVg5MiRcOnSJer19tmzZ4AQAnd3dxg4cCCcPHmSeu9jSNZs2rQpmJmZQevWrUuUNadOnWoQ1rxy5UqpZM2qVatqWXPjxo0lxpr//PMPGBkZQdOmTcHf379UsOaDBw8MwpqZmZkGY83OnTszWPPNmzfU78lQrKlWq7WsOXz48BJjzYSEBIOx5nfffSeZNf/8808Ga4rZ+8hhzZ07dzJY89q1ayXGmqampuDs7Ax9+/aFI0eOUO99DMma7dq1MwhrLlmyxCCs+eTJE9ms6ejoCL1794YDBw6UGGs2bNhQm2dfs2ZNibHmxIkTASEEPj4+pYo1jY2NDcKalStXZrBmVFQUlRdAHmv+/fffWtacP38+BAUFUb+nefPmafc+06ZNKzHWvHPnjsFY09nZGWxsbEoVa44cOZLBmoGBgSXCmqdOndKy5ogRIyAgIKBEWDMuLg6srKzAwcEBevbsWWpYs2fPngZhza1btxqENd+9ewcmJiZa1hSTZ09JSQEHBwft3mf37t0lxpqtWrUCU1NTaNGiRYmy5r///gsIIahTp06pYc3IyEiDsKZGo4H69euDubk5tGvXDtauXVtirDl27Fgta86ePVsUa65duxYQQlCzZs0SZc2XL18ajDUrVKhQ6lhz1qxZWtacPn06PHjwgPpbVGRYRUREAK5fQwiVg6KoiSuK/8l/PZTCwf+Oxo0bR35EopJB69atY3jJZJDQQdi5c+d0vDgZdOfOHb2/LF+9egVGRkYML04GCR2EJSQkgI2NDcOLk0GnTp3SmwzKzc2FihUrMrz4IEwoGaTRaOD7779neMUkg/r27cvwikkGzZ49m+E1NjaG77//nioZtGvXLp33RJsMunnzpo6XNhn08eNHMDU1ZXhpk0Hp6elQtmxZhhcng44dO6Y3GVRQUAC1atVieHEyiOYgrH379gwvTgZt2rRJMBk0bNgwhhcfhK1YsUIwGbR06VKGV0wy6Pjx4zrviTYZFBgYqOOlTQbFxMSApaUlw0ubDMrOzgZPT0+Gl0wG6YMTjUYDjRo1YnjFJIO6d+/O8IpJBk2aNElnvcXJIKGiy02bNuk868aNG8OcOXMEk0EBAQE6XtpkUHBwMBgbGzO8tMmg5ORksLOzY3jd3d1hwIABgsmg/Px8+OabbxheMcmgFi1aMLxikkH9+/dneMUkg/z9/XXWW5wMEiq63L9/v857wskgoYOwu3fv6nhxMkio6DI8PBzMzMwYXnwQdu7cOb3JoIyMDHB2dmZ4aZNBhYWFUKdOHYZXTDLo119/ZXgtLS2hY8eOVMmgUaNG6ay3tMmgVatW6ay3tMmg06dP67wnMhmk71sMCgrS8eJk0OXLl/Wut3FxcVCmTBmGl0wG6dv75OTkgLe3N8OLk0EHDx4UXG//97//ce59tm/fLpgM6tWrl87ehzYZNH36dJ1v8YcffoDFixcLJoO2bdum86wbNmxIlQy6du2ajpc2GYQTqqSXNhmUmpoKDg4ODC+ZDBLa+1SrVk1nvcXJIKGDsNatW+ust7TJoMGDB+ust61atYKVK1fChw8f9HoXLlyo8y3SJoMOHz6s855ok0GPHj3i3PuMHTsWrl27pvdbjIyMBAsLC4a3XLlyMGTIEMHCg6ysLHB3d2d4aQsPcEKV9Nra2oJKpaIqPOjSpYvOektbeGAo1jx//ryO99tvv4XJkycXK2smJiZysubAgQOLnTV/+OEHnfW2c+fOXzRr7t69W+c9YdYUOgiTw5qhoaE6rFm+fHkYNmwYnD9//otlzQ4dOjC8VlZW2ga/4mTNZcuW6ay3uMGvpFmzSpUq1KxpZWXF8JYUazZu3Jjhxay5Y8eOYmXNyZMn66y3P/74I1WDnxzWvHTpko63Vq1aMGnSJEHWDAkJ+epYc8CAATp7H8yaQgdhhmLNe/fu6XirV69O1eAnlzVdXFwYXhcXF6oGP7ms2alTJ529Dy1rjh49Wme9xawptPeRw5pnzpzReU+YNYWKLuWwZnx8PC9rChVdGpI1e/furbP3oW3wk8Oa27dv13nWJcGa79+/l8Wajo6ODC9mTaGiS7ms2aZNG529T6dOnaga/OSw5qJFi3S+RdoGP0OxZlRUlF7W1Lf3kcuaDRo0YHhJ1hTa+8hhzfHjx+vsfTBrChVdGoo1X79+zcmaNA1+clgzLy/PYKzZr18/nfWWljXnzJmjs95i1hQqupTDmrdu3dLxYtYUKrqUy5pOTk4Mr6urq7bB70tlzeHDh+vsfUqCNU+cOKHzngzNmkJFl9nZ2eDl5cXwYtYUKrqUy5p//PEHwyumwU8Oa27evFnnWeMGvy+VNXGTLOmlZU1FhpVSOKgUDiqSKTwJgr344tA37Ql35/B59SWD8NRBPq9QMqhHjx68XjIZxHUQhqcOcoVQMghPguAKoWQQnjrIFWQyiKsDF0+C4PPXqVOHtwOX65ccGfo6cPHUQT6vp6en3g7cn3/+mddLTnvi2hANHDiQ1yuUDMKTILhCKBmEu3O4gkwGcR2E4amDfKEvGYQnQfB5cTKI6yAMTx3k81aoUAGGDx/OWXSJJ0HweYU6cH/77Tder729PfTo0YO3AxdPguAKoWlPeBIE37eIO3C5kkF46iDft6gvGYQnQfD58bQnrmQQnjrI59WXDMKTIPi8+pJBuDuHzyuUDOrTpw+vFyeD+Iou8SQIrhA6CMNTB7kCJ4P4OnDxJAi+0DftCU8d5PPiokuuZBCeBMHn1TftCU+C4PPiDtxTp05xwknbtm15vULJIDwJgivIZBDXQRieOsgVZDKIq+gST4LgCpwM4uvAxZMg+EJfMghPguDz1qhRg7cDF0+C4PPq68DFUwf5vOS0J671VqVS8XqFpj3hqYNcIZQMwpMguEIoGYQnQXCF0GRhPHWQz4+TQVwduHgSBJ+3SpUqvB24eOogn1coGfTjjz/yeoU6cP/66y9eL9mBy7Xe4qmDXCGUDMKTILhCaLIwnjrIF/qSQXgSBJ9XXzIITx3k8+LJwgEBAZx7n9q1a/N6cTKIrwP3l19+4fUKdeDiqYNcgQsPtmzZwrne4kkQXCHUgYunDvJ9i/omC+NJEHyhb9qTIVmzadOmvF6hycJyWBNPguAKzJp8B2FyWBNPguB7x02bNuWd9sRVuExGcbJm1apVeb1C057ksOY///zD6/1SWRNPguALfZOF5bAmngTB59XX4CeXNTt37szrFZr2hCdBcEVxsiaeBMH3LRYXa+JJEHxezJpcB2ElwZp8057+/PNPXq/QZGE5rImnDnKF0LQnuazJPkwm40tlzXbt2vF6hSYLy2FNPHWQK4RusSlO1tQ37UmINfVNe5LLmg0bNuT1Ck0WlsOaeOogVwjdYmNI1tSXZ9c3WVgua1auXJnXKzTtSQ5r/v3337xeoWlPeOogVxQna+Kpg3yhb7KwXNZkN8mSoe8WG0OyJp46yBVCDX5yWBNPHeT7FouLNfHUQT6vEGuWK1eO11ucrNmzZ09er9BkYTmsiacO8n2L+hr8ipM19U0WxlMH+bzFyZqtWrXi9QrdYiOHNfHUQa4QYs1Dhw7xeouTNfHUQT6vvgY/OazJ1SRLxpfKmnjqIFcITRaWw5p46iCfX98tNnJZs0KFCrxefQ1+hmRNPHWQK6ROFlZU/FIKB5XCQUUyNHbsWLCxsdH7y4IMMhm0cOFCsLGx0bvpI4PswN21axfY2NjohTcyyA7c8+fPg42Njd6NCHtDhDtwHzx4ADY2NnoTOOwgk0H4+hZaL5kM+uGHH/T+YmUHmQzq3bu3TjeRviCTQZMmTQIbGxu9yRAyyGTQ6tWrwcbGRm9SkwwyGXTo0CFR75i8ZurKlStgY2Oj0yXHFzgZhIsubWxs9EIjO8hkUO3atUW9J3L0d/v27UW9JzIZNGjQIFHfIpkMmjt3rqhvkUwGbdmyRdQ7JpNBp06dEvUtksmgO3fuiP4WyWSQm5ubqHdMXjPVuHFjUe+Y7MBVqVSi3jE57WnMmDGivkUyGbR06VLR6y1OBu3Zs0f0eouTQQEBAaK/RZwMevz4seh3TCaDKleuLGq9Ja+Zatmypaj3RF4z1a9fP1FenAw6cuQITJs2TfR6i5NB69atE73e4g7co0ePiv4WcTLoxo0bot4xQsxrpuzs7ER9i2QyqF69eqK+RTIZ9Msvv4h6T2QyaOjQoaLXW3zN1Pz580V9i+Rk4e3bt4v6FnEyaM2aNXD27FnRex98zdTdu3dFf4tkMghf30LrJZNBzZo1E/WOyWTQH3/8Ieodk8mgCRMmiPoWyWTQihUrRL1jMhl04MAB0XsfnAy6dOmS6PUWJ4OePHkieu9DJoOqV68u6h2Tk4Vbt24t6j2RyaABAwaI+hbJaU8zZ84U9Y7JZNDGjRtF731wMujEiROi11tceHDr1i3R3yJ5zZSTk5Ood0xOFvbx8RH1LeLCg4CAAPj9999FvWPymqkRI0YYhDV3795tENZ8+PChwVizefPmpYo1d+/eDWvWrJHEmhs3bpTFmlevXhW93pINfmLXW3KysBzW7NChg0FYc968eQZhzdOnT5dK1mzSpIlBWBPn9kqaNffu3SuZNaXsfTBrPnr0SDJrPnjwAL755huDsOZff/0l6lskG/zEsiY57UkOax47dsxgrGlvb28Q1vz1118ls6afn5/ovU9RsOaOHTtEsyZu8JPCmnja071790R/i+QtNoZizR49ehiUNWm/xaJizcuXL0tizfnz50NgYKCkPDue9iSHNdu0aWMQ1pw1a5aod0zeYmMo1rx9+7bBWLNhw4aiWRM3+ElhTTztaeTIkaLeMTlZ2FCseeHCBYOxJr4qlNZbFKx57tw56NOnjyTWPHr0KEyePFlSnl0qa+JhMocPHxa93uIGPzms+fz581LJmoMHDzYIa27dulXUOyZvsZHKmosXL5aUZyevNHZ3dxf1jsnJwnJYs1u3bgZhzWXLlhmENQ1xrqlcafxlqDgKB43g/wrjFOmRkZFROYRQBEIIRUREoHLlyhn4J1IkRcOHD0fr1q2T5DUyMkJf27ci5+9sYmKCCgsLS9xrbGyMNBqNJO/X+I7lPK/S+I5Lq0rjtyjHq3yL4lQav8Wv8R2Xxm9RWW/FqTS+p6/xW/za1tuvUaVxvf0av0Vlvf3vS1lvS4dK47eorLfi9LV9i1/jOy6N36Ky3opTaXxPX+O3+LWtt1+jSuN7Ur5FcVLecenQ1/aOS6tK495HYU1xcnd3Rx07dkRdu3ZF7dq1Q0ZGRob+kb4qRUZGIm9vb/yf3gAQKff/aSz3f6BI0X9dxsbGqGLFipL9lStXluyV8+fKKXB1dXVF5ubmkrz29vbIzs5OktfKygq5ublJ8pqampILpCgZGRnJetaVKlWS7K1QoYJkr6enp2Svk5MTsrKykuS1sbFBZcuWleS1sLBAHh4ekrwmJiaofPnykrwIyfsW5bxjqf8uEULIzc0NmZiYSPI6ODggGxsbSd4yZcogFxcXSV4zMzPk5eUlyVta11upf1+EEHJ2dpa83tra2iIHBwdJXktLS4Ott3K+JzleOeuHp6enZPApW7YsKlOmjCSvtbU1cnJykuQ1NzeXvN4aGxsbbL015N7HzMxMklfu3sfV1VWS18zM7Kvb+8hdby0tLSV5bW1tkaOjoySvhYUFcnd3l+T9Gvc+7u7ukvc+jo6OyNraWpK3TJkyyNnZWZLX3Nxc8r68tO59DMWadnZ2yN7eXpLX0tJS8nqrsKY4fY2sKec9yfn3obAmvUrreit372NhYSHJq7CmOMlZPzw8PCSzpqOjo8FYU87eR2FNehmKNU1NTSX/nUvr3kfOeuvk5KSwpggprEkvZe8jTi4uLpLXW7msqZxr0kthTXEy1LcolzVNTU0leRXWFCc536Kc/a2zszNq27Ytat++Pfr++++VosH/iopibOF/PZByVfF/Qlu3bgWVSkU13pa8wjYxMRFOnz4NKpUKXF1dBb3ktUKRkZFw//59UKlUUKlSJUEvea3Qu3fvIDQ0FFQqFXz77bdU42XxFbbPnz+HjIwMUKlU0LRpU6rxsuQVtoWFhfD333/Dzz//TOUlRz3n5eXBpEmToFOnTlRectRzZmYmLF++HLp27Uo1dpkc9Zyamgp79+4FlUoF9vb2gl5y1HNcXBwEBASASqUCT09PQS8e9bxu3ToICwuD58+fg0qlgmrVqgl6jY2NtdcKvXnzBqKjo0GlUkH9+vWpnhd5rVBhYSGoVCr4/vvvqby1atWCSZMmwa1bt6CgoAD8/Pygbdu2VN4KFSpoRz3n5OTA7Nmz4ffff6fykqOeP3/+DOvXrweVSkU1/tje3l476jkpKQmOHj0KKpUKnJycBL1WVlbaUc/R0dFw69YtUKlUUKFCBUEvOer5w4cPEBISAiqVCmrWrEn1LeJRzy9fvoSUlBRQqVTQuHFjqudFXmFbWFgIffr0gZ9++onKS14rlJeXB2PHjoWOHTtSecuVK6e9VigrKwsWLlwIXbt2pRrLTV5hm5aWBtu3b6e+fsrW1lZ7hW1CQgKo1WpQqVTg7u4u6LWwsNBeKxQREQGPHj0ClUoF33zzjaCXvFbo7du3EB4eDiqVCurWrUv1vMhrhbKzs0GlUsH//vc/Ki95rVBBQQEMHDgQWrVqReUlrxXKzc2FqVOnwm+//UblJa8VyszMhJUrV0LXrl2pRqDja4UOHjwIKSkpcODAAVCpVODo6CjoxdcKbd++HWJjY+Hq1augUqmgXLlygl7yCtvQ0FB4+fIlqFQqqF69uqCXvML29evXEBcXByqVCnx8fKieF3mtkEajge7du8MPP/xA5SWvFcrPz4fhw4dDu3btqLzly5fXXiuUk5MDc+fOhS5dulB5yWuFPn/+DJs2bQKVSkV1RQd5rVBiYiKcPHkSVCoVuLi4CHrJa4WioqLg7t27oFKpoGLFioJe8lqh9+/fw/v370GlUkHt2rUFveQVtkFBQZCWlgYqlQqaNGlC9bzIK2wLCwuhb9++0KJFCypvlSpVtNcK5eXlwYQJE+DXX3+l8pLXCmVlZcGSJUuga9euVFcZkNcKpaamwu7du0GlUoGdnZ2gl7xWKD4+Hi5cuAAqlQo8PDwEveS1QuHh4RAYGAgqlQqqVKki6CWvFQoJCYHIyEhQqVRQr149queFrxV6+vQp5OXlgUqlgmbNmlF58bVCd+7cgYKCAhg8eDC0adOGykteYZubmwszZsyAzp07U3nJK2wzMjJg7dq1oFKpqK6NIK8VSk5OhsOHD4NKpYKyZcsKeslrhWJiYuD69eugUqnA29tb0EteK/Tx40d48+YN9d6HvFbo1atXkJiYCCqVCho2bEj1vMhrhQoLC6Fnz57w448/UnnJa4Xy8/Nh1KhR0KFDByqvt7e39grb7OxsWLBgAXTp0oXq2hnyCtv09HTJrJmQkCCLNR88eAAqlQoqV64s6CWvFZLCmuS1QpmZmaBSqcDX15fqWZPXCsllzcmTJ5c61rx06RKoVCrw8vIS9BYla8bExIBKpYIGDRpQPS/yWiEprImvFSqtrHns2DFQqVTg7Ows6C1K1nz79i2oVCqoVasW1bdYFKyJrxUqSdYcMmSIZNbEV9impaXBjh07QKVSga2traCXvMJWLms+fvxYYU09gVnz1KlTkJmZCatWrQKVSkV1LRp5ha1U1ty2bVuJsya+wlYuaxYWFhqMNefNmyeZNTdv3lxqWHPFihWSWXP+/PkQFBQE6enpolkTX2FrSNZcunTpV8OawcHBEBUVJYk1AwMDIT8/H1QqFXz33XdU3tq1a8OkSZPg9u3bolmzYsWK2itsc3NzYebMmdSs6ebmpr3C9mtkzaSkJFCpVNCoUSOq51UUrHn9+nXIz8+H0aNHi2bNc+fOSWbNo0ePSmbN3bt3M1jTzc1N0FuUrBkWFgYqlQrq1Kkj6C1q1uzfv3+pY819+/aBSqUCBwcHQa+1tTV06dIFtm/fLpk1165dC2FhYRAUFCSaNRcvXiybNTUajSjWJK+wNSRrbtiwAVQqFdX1u0XFmlFRUXD79u0SZ80XL16UKGtWrVoVxo4dWySsuWjRIoOw5rlz50qcNUNCQmSxZk5OjiTWxHl2RYZVcVxVbPCivNIQSCkc/M8oMDCQd8FjJ8jYiomJ4U0+s4sx2MrOzuYFZXYxBlsajYYXhNjFGFzq1q0bpxcnyPAmkUuTJk3i9OJiDLxJ1Gg0Ot6NGzfyPuuGDRsyNolsBQQE8HrxJhEnyNgKDg7m3RCwE2RsJSUl8SZDXF1doX///toEGVv5+fm8v9TJBFlSUhLns+bbQLETZFzq378/p5ddjMElf39/Ti9ZjPHixQvO97Rv3z7e94SLMfAmka27d+/yetmbRLY+ffrEW+jk5eXF2CSylZGRwbs5d3Jygr59+8Lhw4chLS1Nx1tYWMh7sEpuEuPj4zmfNV+SD28ScYKMS6NGjeL0sosxuLRy5UreZ00WY3C949OnT/N62cUYbD1//pzXi4sxLl26xLnexsXF8SafcTHGqVOnICMjQ8ebk5PDm7RydHSEXr16aQ8k2NJoNLxJiTJlykDnzp1h27ZtEBMTw/mse/Xqxek1MzODNm3awOrVqyE0NJTTO23aNN71Fh9IvHr1ivM9bdu2jfdZ+/j4MBJkbF29epXXW6NGDUYxBlvv3r3jTT6zizHYSk1N5U2GsIsx2MrPz+dNaLAL/7nUunVrTi9OkG3atAkiIyM5vYMGDeJdb1u2bAkrVqyAd+/ecXoXLlzIu976+vrC/Pnz4fnz55zv+PDhw7zvqW7duowDCbYePnzI68UHEjhBxlZkZCRv8pmdIGMrMzOTNzHJTpCxpdFoeAvq2cUYXOJLAJHFGJ8+feL0jhs3jne9xcUYwcHBnN5169bxPmtc+B8YGMj5js+dO8frxYX/+ECCrVevXvEmn/GBBE6QsZWQkMBb5M0+kGArNzeX98AOH0jgBBlbGo2GN0GIDyRwMQaX+vbty7vekgkyLs2ePZv3WySLMbje065du3jfE7vwn62bN2/yenExBj6QYOvjx4+8yWdc+I8PJNhKT0/nPQjChf9Hjx7l3PsUFBTwJhfZhf9cat++Pe9627FjR9i4cSMvXw8bNoz3W2zRooW2GINLS5cu5X3HTZs21SbIuN7x8ePHed8TuxiDLUOyJl/zU3GzZvfu3XnX2+JkzU2bNvE+a8yauPCfrUuXLvF6i5M1k5OT9bImWYzBllzW5CtU+JJZc//+/bzviV34z5Yc1gwPDxdkTVyMwZZc1uQ7WGUXY3CJ74CzuFlz1apVvM+6OFkzKCiI1/slsGZycrKOV6PR8B7IYNbExRhcksOa06dP511vyWKMombNa9eu8XrZhf9sGYo1CwoKDMaagwcP5l1vDcmaZDEGW48ePeL1sosx2JLDmllZWbyHssXNmnyFll8ya54/f57Xy24yZ0sOayYmJuplTbIYgy25rMlXiMsu/OdSv379eNfb4mTN3bt3876n4mTN0NDQUsmafAV87GIMLslhzWXLlvE+a7IY40tjTb5Cp+JmTb6Co+JmzcmTJ3N62U3mJc2aZOE/WyEhIV8daw4YMIDTS8Oa8+fP511vi5M17927x+tlF/6zJZc1+RouyML/kmZNsvCfS6NHj+Zdb4uTNc+cOcPrLU7WjI+PF2RNvjy7IVmzd+/enF524b+iL0tK4aBSOKhIpshOWXZ3KNcvF1JjxoxhLJjs7lB9Wr16NcPL7g7Vp7Nnz3JuEvkSZKRevHjBu0nkSpCRio+PZ3Qx4U2ivgQZVm5uLuMXHM0mEUuj0TCmyLC7Q4XUp08fxiYRJ8iCgoIE3/GMGTMYz0uoGIPUjh07RG0SSbGTqezuUH368OEDI5nK7g7Vp7S0NEYHN7lJ5EuQYRUUFDC6sMlNIl+CjBTZEYQ3ifoSZKSGDBnCuUnkS5CRWrx4sc4mUV8xBqkjR44wvOzuUH16/PgxwytUjEEqOjqacZDM7g7VJ3Yyld0dqk8ajYbRLS92k9i1a1fGeit0IEFqwoQJjOeFu0P5EmSk1q9fz/Cyu0P16cKFCwwvuztUn968ecNIppIJMqH1NjExkdHFZGdnB926ddN2h+pTXl4eY6ItWYzBdyCBpdFooHnz5oz1luwOFdJff/3FWG/J7lChdzx37lzGs8bdoXwJMlJ79uxheMkDCaFv8fbt2wwvPpDgS5CRCgsLYyRT8YEEX4KM1OfPnxmTUsnuUL4EGVZhYSFjIgK7O1RIZHceTTEGqREjRjCel1DhP6nly5czvOzuUH06efIkw8vuDtWnp0+f6qy3+g4kSMXGxjKSqezuUH3KyclhdPfiAwnavQ85uYLmQIJUjx49GN9is2bN9CbISE2ZMoXxvOrXr6+38J/Uli1bGF6hYgxSly9fZnjZ3aH69PbtW0Yyld0dqk8pKSmMaWE0hf9Y+fn5jKkXNAcSpMiOd3Z3qJAGDhzIeF74QIIvQUZqwYIFDK+Y7tCDBw8yvEIJMlL3799neIWKMUhFREQwJhQJFf6TysjIYEzus7a21hb+06y35HQSc3NzaNOmjXYSkZAMxZpr1qxheDFr8hVjkJLLmuTeB7MmXzEGKbmsWb58ecbeR6gYA8uQrDlz5kzGsy4p1rx+/TrDW1pYs0aNGoz1tn379nqLMUjJYc2hQ4cynpdQMQYpOax59OhRhpdkTaG9jyFZk2yQJVmTrxgDSy5rqlQqxnqLWZOvGIOUHNbcsGEDw1u9enW9xRikLl68yPB6e3vrLcYgJYc1k5KSGKyJizGKmzUBgDHRiWRNvmIMUoZizb179zK8mDX5ijFIyWVN8iBZqBiDVFGzplAxBqlffvmF8S2WFGuuWLGC4SVZU+hblMOaz549Y3iFmsxJGZI1yduIaIoxSMlhzalTpzKel1CTOSk5rHnlyhWGVwxrsouWceF/SbBm1apVGXsfzJp8xRik5LDmP//8w3heTZo00VuMQcpQrPngwQOGt6RYMzMzk8GaNE3mWHJZk5xISdNkTspQrKlWq3X2PvoK/0nJYc2EhAQGa9IU/mPJZU1yYilN4T+pP//8k7HelhRr7ty5k+EVajInJZc1yTw7Zk2+wn9ShmRNcsozTeE/KTmsuWTJEoZXqMmclBzWfPLkCcNbFKxJs/eRy5rkDSiYNWnz7HJYc+LEiYzn1aBBA72F/6QMyZrsPDstayoyrJTCQaVwUJEMBQYGgr29PfUmkVRMTAyULVuWMaqbVtnZ2VChQgVRm0QsfJBMXkEs9IuJVLdu3QS7Q/k0adIkwe5QPm3cuFGwO5RPAQEBgt2hfAoODgZ7e3vB7lAuJSUlgYuLi2B3KJfw9CvyWigx76lFixaiNomk+vfvL9gdyid/f39RCTJS+/btE1WMQeru3bvg4OBAnSAj9enTJ3BwcBDsDuVSRkYGeHl5iSrGwMJwL9Qdyqdff/1VsDuUT6NGjdK5FopWK1euFOwO5dPp06d1riCm1fPnz8He3l6wO5RLcXFx4OTkJKoYAysnJwcqVaok2B3KJXyQLNQdyqdevXoJdofyadq0aYLdoXzatm2bYHcon65evSrqQILUu3fvwN7eXrA7lEupqang5ubGuBaKVvn5+VCzZk3B7lA+tWnTRucKYloNGjRIsDuUTwsXLhTsDuXToUOHBLtD+fTw4UOq7lAuRUZGgqOjI3XhP6nMzEzw9vYWdSCBheGevIJYzHv6/fffBbtD+TRu3DhRxRik1q1bJypBRurcuXOC3aF8evXqFdjb2wt2h3IpISEBnJ2dBbtDuZSbmwtVqlQR7A7lEp4AIdQdyqe+ffsKdofyafbs2TpXENNq165dgt2hfLp586aoYgxSHz9+BAcHB8HuUC6lp6eDh4eHpO7QgoICqFOnjqjCf1Lt27fXuRaKVsOGDROcRMSnpUuXijqQIHX8+HHBSUR8MjRriin8x5LLmt27d9e5FopWclhz06ZNpY41k5OTwdXVlXEFMa3ksmbLli11roWilaFYc//+/QZhzfDwcIOxZv369Usda65atUpUMQYpOawZFBQE9vb2jGuhaFUUrEleQUwrQ7Lm9OnTDcKa165d07mCmFaGYk08/UpM4T8pOaw5ePBgUU3mpOSw5uHDhyWz5qNHj3SuIKaVHNbMysrSsiZt4T+WXNbs0qWLzhXEtDIUa54/f15U4T8pOayZmJhoMNZs3ry5qCZzUv369RNV+E9KDmvu3r1bVDEGKTmsGRoaCg4ODtRN5qQMyZodOnQwCGsuW7ZMVJM5qaJiTZrCf1KGZM2mTZuKKvwnJYc1J0+ebBDWvHTpkmTWDAkJ0bImvoKYVnJZs3r16owriEuKNQcMGCCqyZyUoVjz3r17Xx1rdurUSecKYlqNHj1aVOE/KTmseebMGVFN5qTksGZ8fHypZM3evXsrVxCXUhVH4aAR/F9hnCI9MjIyKocQikAIoYiICFSuXDkD/0SKpCgmJgY5OTkhc3Nz0d7ExERUpkwZVKZMGdHetLQ0BADIwcFBtDc3NxelpqYiNzc30V4AQJGRkcjb21u0FyGEwsPDkbe3NzIyMhLtxd+JFG9UVBRyc3NDpqamor1xcXHIwcEBWVhYiPYmJycjc3NzZGNjI9qbkZGB8vLyUNmyZUV78/PzUUJCAvL09BTtBQAUERGBypcvL9qLkLx3HBkZiTw9PZGxsbFob3R0NHJxcUFmZmaivfHx8cjW1hZZWVmJ9qampiJjY2NkZ2cn2pudnY0yMjKQi4uLaK9Go0HR0dGSf3eEh4dLfsdyv0V3d3dkYmIi2hsbG4vKli0rab1NSkpClpaWyNraWrQ3PT0daTQayettSkoKcnd3F+015LcYERGBvLy8JH+Lrq6uktbb+Ph4ZGdnhywtLUV7U1JSkKmpKbK1tRXtzczMRDk5OcjJyUm0t7CwEMXGxiIvLy/RXoTkfYuGWm9jYmKQs7OzpPU2ISEBWVtbS977IISQvb29aG9OTg5KT09Hrq6uor0ajQZFRUXJ2vuUxvXW0dFR0t5Hznr7+fNnlJ+fL2nvk5eXh5KSkpCHh4dob2ne+xhqvTUxMZG098nKykJZWVnI2dlZtLewsBDFxMSUur1PZGQk8vDwkPQtGoo15e59FNakV2lkzYKCAhQfH6+wJqUSEhKQjY2NwpqU+hpZs7CwEDk6Oor25uXloeTkZIU1KaWwpnivwpp0ksOaRbH3KY3rrRzWtLCwkLT3kcOa+fn5KDExsdSxZmldbxXWpJcc1pSz91FYU5wU1qSXHNZE6Ovc+yisSS+FNellSNZUZFixfld6A0Ck3P+nUjhIIaVwUJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUGULFUTgovqRakSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUlRqpRQOKlKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRV+RlMJBRV+NPnz4gJKSkiR5o6KiUHR0tCRvcnIy+vDhgyRvTk4OevHiBZJypTgAoMDAQKTRaCT92U+fPkX5+fmSvC9evEDZ2dmSvCEhISgtLU2SNywsDCUkJEjyxsbGooiICEnetLQ0FBISIsmbn5+Pnj17JusdFxYWSvqznz9/jnJzcyV5X79+jTIzMyV5379/j1JSUiR5IyIiUGxsrCRvQkICCg0NleTNzMxEr169kvSeNBqN7G+xoKBAkvfFixcoJydHkjc4OBh9/vxZkvfjx4+S19vo6GgUFRUlyZuSkoLev38vyZubm4ueP38u+Vt88uSJ5G/x2bNnktfbly9foqysLEnet2/fSl5vP336hOLj4yV54+Li0KdPnyR5P3/+jIKDgyW9p8LCQvT06VNJXoQQCgwMlPwtyl1vMzIyJHnfv3+PkpOTJXkjIyNRTEyMJG9SUhL6+PGjJG92djZ6+fKlwdZbQ+x9goODUXp6uiRvaGio5L1PTEwMioyUNsE+NTUVvX37VpI3Ly9P1t5Hznr7/PlzlJeXJ8n76tUryevtu3fvUGpqqiRveHg4iouLk+SNj49HYWFhkrwZGRno9evXktdbOd+inPU2KChI8nr75s0byevt18iaT548Mch6+/Lly1LJmuHh4ZK8clizoKBAYU0RUlhTnAzJmomJiZK8clnz3bt3krx5eXkGZU2pe5+vkTXfvHmjsCalPnz48FWxpiH3PnLz7IZiTal5djmsaeg8uxzWlLr3kcuaUvc+XytrSt37yGFNOXl2Q7JmUFCQQdZbuXl2Q7Gm1L2PHNZMT083CGsihBTWFKHExESFNUXIkKwpNc9eWllT0X9PSuGgoq9G+fn5yMPDAzVv3hwtWbJEVDLIysoK1apVCzVq1AjNnj0bPXnyhNpra2uL2rRpg2rVqoUmTZqEbt26Rf3L0tLSEo0cORJVqlQJDR8+HF28eJF6Q2RkZITWrl2LPDw8UP/+/dGJEydEwYlarUYuLi6oR48eaN++faKSQUFBQcjJyQl16tQJbdmyRVQyKCkpCbm4uKBWrVqhVatWiUoGGRsbo/Lly6NmzZqhf//9V1QyyMbGBjVs2BDVr18fzZgxAz18+JB6Q2Rra4tUKhWqVq0aGjduHLp27Ro1nJiZmaEZM2ag8uXLo6FDh6Jz585Rw4mRkRHatWsXcnd3R/369UNHjhwRlQy6fv06cnFxQSqVCu3atUtUMuj9+/fIyckJdejQAW3YsEFUMigrKwu5ubmhn376CS1btkxUMsjCwgJVqVIFNWnSBM2bN08UnNjZ2aHmzZujb7/9Fk2ZMgXdvXuXekNUpkwZNGDAAPTNN9+gUaNGocuXL1Mng4yNjdHSpUuRl5cX+ueff9Dp06dFwcmxY8eQq6sr6t27Nzpw4IAoOHn48CFydnZGv//+O9q+fbsoOImJiUHOzs6obdu2aM2aNaKSQRqNBnl6eqIffvgBLVq0SFQyqEyZMqhOnTrIx8cHzZo1Cz1+/FjUt9ihQwdUs2ZNNGHCBHTz5k3q9dbCwgKNHz8eVaxYEQ0bNgxduHCBGk6MjIzQ5s2bkYeHB/r777/R8ePHRcHJhQsXkLOzM/rjjz/Q3r17RSWDXr9+jZycnNCvv/6KNm/eLOogLDU1Fbm4uKCff/4ZrVy5UlQyyNTUFFWsWBH973//QwsWLBCVDLK1tUVNmzZF9erVQ9OmTUP379+nfsc2NjaoZ8+eqFq1amjMmDHo6tWr1OutiYkJmjdvHipXrhwaPHgwOnv2rKhk0L59+5Cbmxv6888/0eHDh0Ulg27fvo2cnZ1R165d0c6dO0Ulg8LCwpCzszNq3749Wr9+vahkUG5uLnJ3d0c//vgjWrp0qahkkKWlJapevTpq3Lgxmjt3LgoMDBT1jlu2bIlq166NJk+ejO7cuUO93lpaWqKhQ4eiypUro5EjR6KAgADqvY+xsTFauXIl8vLyQgMHDkQnT54Utd6eOnUKubq6op49e6L9+/eLWm+fPn2KnJ2d0W+//Ya2bt0qau8THx+PnJ2dUevWrdHq1atFJ4O8vb3Rd999hxYuXCgqGWRtbY3q1auHGjRogGbOnIkePXokar3t3Lkzql69Oho/fjy6ceMG9Xprbm6OpkyZgipUqID8/PzQ+fPnRa2327dvR+7u7uivv/5Cx44dE7XeXr58Gbm4uKDu3buj3bt3i0oGhYSEICcnJ/TLL7+gjRs3ikoGZWRkIBcXF9SiRQu0fPlyUckgMzMzVLlyZeTr64v8/f1FJYPs7OzQd999h+rUqYOmTp2K7t27R/0tWltbo379+qEqVaqg0aNHoytXrlDvfUxMTNDChQtRuXLl0KBBg9CZM2dEFR4cPnwYubm5oT59+qBDhw6JOgi7d+8ecnJyQl26dEE7duwQtd5GRkYiJycn1K5dO7Ru3TpRhQeGYk07OzvUtm1bVLNmTTRx4sQSZc3169crrCni92KjRo20rPngwYMSYU1TU1M0c+ZM5O3tjYYMGYLUanWpYM0PHz4YjDWrVq1qENYcOHBgqWPNR48eIScnJ9S5c2e0bdu2EmVNLy8v9P3335c4a/7yyy+oRo0aolnT3NwcTZgwwSCsefHiReTi4lLirJmWlqZlzRUrVohq8DMka/bq1QtVrVq1xFlz//79BmHNT58+FRlrimnwk8uaP//8M6pduzaaNGkSun37domwppGREVq9ejXy9PREAwYMUFhTQDY2NqhBgwYlzppmZmZo6tSpWtY8d+6cJNbs168fOnr0qKi9jxzWfPv2LXJ2dkYdO3YsUdY0NzdH33zzDWratGmpYs1FixYZhDXv37+PnJ2dUZcuXdD27dtFNfjJZU1PT0/UvHlztHjx4lLDmqNHj/6qWDM5OZnBmmLy7CYmJqhChQqoWbNmaMGCBaIa/OSwpo2NDerWrRuqVq0aGjt2bImxJkII7d69G7m5uaG+ffuWGtbMzs42CGva2tqiH3/8UcuaYvLscllz2bJlWtY8deqUqL3P8ePHkYuLC+rVq1eJsmZsbCxycnJCbdq0KVHWtLa2RnXr1i11rLllyxYta4rNsyv6DwoAlBAIhFA5hBAghCAiIgIUlV717t0b8LtECME333wDo0ePhitXrkBeXp5e74wZMxheT09PGDRoEJw5cwYyMzP1erdv387wli1bFvr06QOHDh2C1NRUvd5r164xvDY2NtClSxfYsWMHxMXF6fW+f/8eTExMtF4LCwto164drFu3Dj59+qTXm5qaCo6OjlqviYkJNG/eHBYvXgxv3rwBjUbD6y0oKIBq1aoxfu5GjRrBnDlz4MmTJ3q9AABt2rRheGvVqgUTJ06EW7duQUFBgV7vkCFDGN6KFSvC8OHD4eLFi5CTk6PXu2jRIobXzc0N+vfvDydOnICMjAy93iNHjjC8Dg4O0KNHD9i3bx8kJyfr9T569IjhLVOmDHTq1Am2bNkC0dHRer1RUVFgYWGh9ZqZmUGrVq1g1apV8OHDB73erKwscHd313qNjIygWbNm8O+//8KLFy/0vieNRgMNGjRg/Nz169eHGTNmwIMHD6CwsFDvn921a1eGt1q1ajB27Fi4du2a4Lc4fvx4htfb2xuGDh0KarUasrOz9XrXr1/P8Do7O0Pfvn3hyJEjkJaWptd7/vx5htfW1hZUKhXs2rULEhIS9Hpfv34NRkZGWq+lpSV06NABNmzYIPh7JTExEWxtbRnf4k8//QTLli2Dt2/f6vXm5eVBxYoVGT93kyZNYN68efDs2TPBd9y8eXOG99tvv4UpU6bAnTt3BL/Ffv36MbyVK1eGUaNGweXLlyE3N1evd86cOQyvh4cH/PPPP3Dq1CnB9Xb37t06623v3r3hwIEDkJKSotd769Ythtfa2hp+//132LZtG8TGxur1hoWFgampqdZrbm4Obdq0gTVr1kBYWJheb3p6Ojg5OWm9xsbG8P3338OiRYvg9evXet9TYWEh1KpVi/Fz+/j4wKxZs+Dx48eC622HDh0Y3ho1asCECRPg5s2bkJ+fr9c7fPhwhrdChQowbNgwuHDhguB6u3z5cobX1dUV/v77bzh27Bh8/vxZr/fEiRMMr729Pfzxxx+wd+9eSExM1Ot9+vQpw2tlZQW//vorbNq0CaKiovR6Y2JiwMrKSus1NTWFn3/+GVauXAnv37/X683OzgYvLy/Gevu///0P5s+fD0FBQYLfYuPGjRk/d7169WDatGlw//59wfX2jz/+YHirVq0KY8aMgatXrwqut1OmTGF4vby8YPDgwXD27FnIysrS6928eTPD6+TkBH/++SccPnxYcL29fPmyzt6na9eusHPnToiPj9frDQkJAWNjY8bep3379rB+/XoIDw/X601JSQF7e3vGevvjjz/C0qVLITg4WK83Pz8fqlSpwvi5GzduDHPmzIHAwEDBb7Fly5YMb+3atWHy5Mlw+/ZtwfV24MCBDG+lSpVgxIgREBAQILjezp8/n+F1d3eHAQMGwMmTJwX3PgcOHNDZ+/Ts2RP2798vuPe5d++ezt7nt99+g61bt0JMTIxeb3h4OJibmzP2Pq1bt4bVq1dDaGioXm9GRga4uroy1tvvvvsOFi5cCC9fvhRcb+vWrcv4uRs0aAAzZ86ER48eCX6Lv/32G8NbvXp1GD9+PFy/fl1wvR09ejTDW758efDz84Nz584J7n1Wr17N8Lq4uMBff/0FR48ehfT0dL3es2fPMrx2dnbQrVs32L17t+B6++LFC4bX0tISOnbsCBs3boTIyEi93vj4eLC2tmasty1atIDly5fDu3fv9Hpzc3PB29ubsd42bdoU/P394fnz54LrbbNmzRg/d506dWDq1Klw7949wW/RUKy5Y8cOnb1Pnz594ODBg8XKmh8+fGCwprm5ObRr1w7Wrl1b7KxZvXp1xs/dsGFDmD179hfNmosXL2Z4SdYU2vvIYc3Hjx/rrLelgTV9fHwYP3f9+vVh+vTpxc6aEyZMYHjLlSsHQ4YMKXbWvHDhAsNbWlizUqVKjJ8bs+bTp0+LlTX/+usvhhez5qVLl4qVNffs2cPwOjo6Qq9evahY8/bt2wyvtbU1dO7cudhZ8/PnzwZjzY4dOzK8pYE1T548yfBi1tyzZ0+xsmZsbKwOa7Zs2RJWrFhR7KzZpEkTxs9dt25datbs0aMHw1ulSpUSYc0tW7YwvCRrCu195LDm27dvSyVr/vzzzzp7n0mTJhU7ay5YsIDhLSnWvH//vs7eh5Y1IyIieFnz48ePer1yWbNevXqMnxuz5sOHD4uVNceMGcPw4jz7l86a7L1PSbFm+fLlGettSbFmnz59GF7MmpcvX/5iWfP69es6e5/ff/8dtm/fXqysmZaWxmBNY2Nj+OGHH0qENdu2bcvw1qxZk5o1hw4dyvCWFGsePXpUZ73FrJmUlKTXK4c1o6OjwdLSkrHetmrVClauXPlFs6ZKpWJ4q1atWiKsuWHDBoa3pFjzzZs3klkzKSmJlzVDQkL0euWwJgDAjz/+yPB+++23MHny5GJnzblz5zK8Hh4eMHDgwC+eNc3MzBjrLS1rKjKsIiIiyPdeDoqiJq4o/if/9UBK4eB/Rm/evGEAPhtOunfvzpsMSkpKAjs7O06vlZUV/PLLL7zJoLy8PKhcuTKnlyYZ9NNPP3F6jYyMwNfXV28y6O+//+b0IiScDJo3bx6vVygZtHfvXl6vUDLozp07vF6cDOIruvz06RPjlxwZ5EEYVzLo8+fP4OzszOnFyaB169ZxJoMKCwvh22+/5fTig7AlS5bwJoN++eUX3r8zLrrkSwaNHDmS1yuUDFq5ciWvt2LFitpkEBecnDp1itcrlAx6/vw5r1coGRQXF8dIqJIhlAzKycmBcuXKcXpxMmjVqlWcySCNRgNNmzbl9NIkg3r27Mn7d27QoAHMmDGDNxk0bdo0Xm+1atVg3LhxvMmgrVu38nqFkkFXr17l9bq4uEC/fv14k0Hv3r1jAD57vdWXDEpJSQEHBwdOr1AyKD8/X6dwmVxvhZJBrVq14l1vcTKIr+hy0KBBvM+rTp06MGXKFLh79y7nt/jvv//yeoWSQYcOHeL1enp6wj///AOnT5/mhJMHDx7wenHRJV8yKDIykpFQJUMoGZSZmQlubm6cXnNzc2jbti2sXbuWE040Gg3Ur1+f91sUSgb9/vvvvH9noWTQ2LFjeb1kMojrW1y7di2vt0KFCjB8+HDegzC1Ws3rFUoGvXz5kgH4ZNjb20OPHj1g7969nMmghIQEsLGx4fTig7DNmzdzJoNyc3OhQoUKvOstLrrkSgZpNBr4/vvveb/F//3vf7BgwQLeZNCff/7J+7zq1aunNxk0a9YsXq9QMmjXrl28XjIZxLX3uXHjBq9XKBn08eNHxmEyGTgZxHcQlpaWBmXLluX0WlhY6E0GFRQUQM2aNTm9OBm0dOlS3mRQu3bteP/OTZo0gblz5/Img/z8/Hi9uOiSLxm0dOlSXm+lSpVg5MiRvMmgY8eO8XqFkkGBgYG8XqFkEDuhyl5v9SWDsrOzwcPDg3e9xckgrqJLjUYDjRo14l1vv//+e1i4cCG8evWK8z1169aN9++MCw/4ii4nTZrE661RowaMHz8ebty4wbnebty4kdeLiy7Pnz/Pud4GBATwevFBGF/hgaFYMz8/H7755htOb3GzZv/+/XmfF2bNe/fuFTlr7tu3j9eLWfPMmTOc6+3du3d5vcXJmhkZGXpZU1+Dn1zW/PXXX3n/zl8qa54+fZrXi1mTr8FPLmuWKVOG04tZc8uWLcXCmr6+vrzfIj4I+9JYc9u2bbzeL4E1uQ7CSoI1+YouW7duzfuOmzZtqrfBTw5rLly4kNcr1OAnhzUfPnzI6y3trMlXdCmHNceNG8frxazJV3QphzXPnTvH68VFl8ePH+fc+7x69Uova+IGv+JgTXaTLPktFidr9u3bl/d5famsefPmTV4vZk2+Bj85rJmenq6XNfUVXcplzfbt2/P+nRs3bqyXNYcNG8brLU7WPH78OK/X3d1dy5pcex85rBkTE0PFmlx7H0OyZvfu3Xn/zkINfnJYc9OmTbxekjW59j5yWDM4OLhUsmaLFi1411vMmnxFl3JY09/fn9dbpUoVvQ1+xcWaQsNkwsPDqViTa+8jlzXr1KnDu94WJ2uOGjWK1/ulsmZQUBCvV6jBTy5rkk2yZJANfsXBmr169eL9O+NhMnysOX36dF5vcbImu0mWDGdn52JjzdTUVEHW5MuzG5I1Bw8ezPu8cIMfH2sqMpyUwkGlcFCRDC1cuBB8fHwYHfN8wU4G7d69G3x8fBjV8fqiYcOG2g7cK1eugI+PD+/GjR1kMujVq1fg4+PD6BzVF2QHbmJiIvj4+OhU5fMFOxnUsmVLqFGjBpWXnQzq06ePTpccX7CTQZMmTQIfHx9eEGL/siSTQatXrwYfHx/eojL2L0syGXT06FHw8fHh/aXODjIZdPfuXfDx8eFNTLIDJ4OuXr0KHz58AB8fH95NHztwMujs2bOQmZkJPj4+Ol2nfMFOBv3yyy9Qu3ZtKq+trS2jA3fQoEE6Ewf5gp0Mmjt3Lvj4+PCCEBlkB25ISAhs3boVfHx8eJOL7CCTQefOnQMfHx/epBU7yGTQ06dPwcfHhzcZwg4yGRQTEwM+Pj68SU12sJNB3333nU6nG1/gZBA+COvevTsv+LGDnQwaM2YMNGjQgDcJTAZOBuFpT0uWLBG13pLJoH379oGPjw9vQoMdZDLo2rVr4OPjAy4uLlRe3IF748YNCA4OBh8fH97DPnaQyaCUlBTw8fHhLRBnB5kMSk9Ph9atW/MmRNnBTgb99ddfvAcb7LC0tNQmgyIjI2Hq1Kng4+PDC0JkkMmgd+/ewfr168HHx4cXdslgJ4NOnjwJPj4+jO5PfVG3bl1tB+6DBw9ErbdkMujTp0/g4+PD6A7WF2QHblZWFjRq1AiqVq1K5WUng3777TfeA392sJNBfn5+otZbMhk0f/588PHx4T10I4OdDNq5c6eovQ85WfjixYvg4+PDmG6iL8hk0IsXL8DHxwc8PT2pvDgZdPHiRYiLixO192Eng5o3b0693rKTQb169dKZRscX7A7c8ePHU+992MmgFStWgI+PD2+inwx2MujQoUPg4+PDmHyhL8hk0K1bt8DHx4cxUUFfkMmgd+/eiVpvyWRQeno6+Pj48Cau2cFOBrVv315ncg5f4GQQ7sAdMGCAqPWWTAbNnDkTfHx8eA/dyGBPe9q0aRP4+PgwpiLoC3Ky8JkzZ0Ttfchk0OPHj8HHx4fRxa0vyMKDyMhI8PHx4S0eZgee9oQLD3x9fXmTZewgCw9SUlKgS5cu1Ostu/Bg5MiR1Ostu/CgtLAmOe1JDmsmJSWJ2vsUJWv++eefslmTdu9TVKx57NgxSax5//59Waz58eNHUaxJNviJZU32ZGE5rDl48GCDsOa2bdu+GtbEDX4lxZrsBj85rLl06VLqvQ/Z4CeXNa9fvy6ZNUNCQgzGmm3atDEIa06bNk00a+IGPymsiac9yWHNhw8fitr7kJOF5bJm48aNSx1rLliwQBJrvnnzBnbs2CGZNQMCAkSzJm7wk8Oa8fHxoliTfYuNoVhzwoQJXw1rXrt2Dd6/fy9q70PeYvP582fRrEk2+MlhzYEDB4pab8kGPzmsuXnzZoU19QSbNbt27Soqz07eYiOHNRctWiSaNfFkYUOx5uvXr78q1oyKioLJkydLYs3379/DmjVrRLMmbvCTw5r37t0TzZq4wU8Oa2ZlZSmsKRAka54/f17U3oe8xUYqawYEBEBsbKws1vz+++9F7X3IBj85rDl27Fjw8fGhYk32LTZyWHP//v2ljjVTU1NF7X3ETBZWVPxSCgeVwkFFMqSvW0woaH8hcwVtsooraH/BcAUt8HGFhYUF1eaHK0xMTKg3P0X9vOS8Jzle2k05V9BCG1fQgARfmJmZUW1+uMLIyEjWv03ahEJRvyc5fy5toosr5HyLlpaWVLDJFSYmJrL+bDn/rg31LRpqvaU50OALc3NzqkQ7VxgbG8taQ5T1lj7krLempqaS/UZGRrLWH2W9pQ8LCwuqRDtXfI17Hzk/syH3PjSJdq4wNjb+6vY+ctZbOd+DpaUl1cEmV5iamkr+nWxkZCTr72yod1waWdPc3FwyaxobG391621p3PvIZU1l70MfCmuWnFdhzZJ7XqVx7yN3vaU52OQKhTXFhcKaJfeeFNakD4U1xcXXyJql8Vs05N5HYU36MNTeR847Vs41xYXCmiX3nr7G9Va50tiwKo7CQWOkSJEiQZmamn5VXhMTE2RkZCTJa2xsjIyNpS0tcrwIyf87S5WZmZlkr6F+ZkO9YyMjI1k/d2n8nr62d4z/bKkqje+pNK63cr9FQ3kN9T2VxneM/2ypKo3fk6H+fRgbG39177g0/tuS+y1K9RoZGRlsf/u1veOv8VssrV6p78nExETW3sdQ77g0/vswJIfIWW9L47P+Gt+xst6WjPdrZM3S+D2VxneM/2ypKo3fk8Ka4lQav6fS+C0qrFly3q/xWyytXoU16VUa1wBlf1s6vHLek9x3rLynkvGamJggCwsLZGFhIatGQtEXpqKoPvyvB1ImDv4ntGTJEvD19aXq/iJH83/48AH2798Pvr6+VNX5eDQ/vpbo2rVr4OvrSz1eH4/mf/DgAQQHB4Ovry/1VRf4WqJr165BSkoK+Pr6Ul91ga/AVavVkJWVBW3btqUeBcwezf/3339Do0aNqLy2tragUqm0o/mnTZsGvr6+VN0IFhYWjNH869evB19fX6oqeXI0f0hICJw4cQJ8fX2puzfI0fwPHjwAX19f6nHPeDT/nTt3ICwsDHx9fanHPePR/JcuXYKcnBzw9fWlHr2OR/OfOnUKMjMz4ffff6e+BgFfS3TgwAFISUmBYcOGQZMmTai85BW4sbGxMH/+fPD19aXqfCe7FkJDQ2HHjh3g6+tL1dGEr8DFo/kvXLgAvr6+1OP1fXx8tKP5nz9/Dr6+vtTjnsnR/HFxceDr60s97rl8+fLa0fzZ2dnQokUL6tHreDQ/vpaoV69e4OPjQ+UlR/MnJibChAkToGnTplSd73g0/6ZNmyAqKgpWrFgBvr6+VN1feDT/ihUr4P3793Do0CHw9fWl6gwir8ANCgqCmzdvgq+vL/V4/bp168K0adPg/v378O7dO/D19aW+6qJKlSra0fyfP38WddUFezR/hw4dqK+dIUfzp6amwj///AONGzem8trY2GhH88fFxcHMmTPB19eXqvOdHM3/6dMn2LRpE/j6+lJ1f5Gj+YODg+HMmTPg6+tL3YXVuHFjmDNnDgQGBsLjx4/B19eX+mqh2rVra6/AjYyMBF9fX+qrLvC1RAEBAZCbmwvNmjWjvubLzc0NBgwYoB3Nr1KpqNdb9mj+kSNHQtOmTam87NH8CxcupF5vydH8Hz9+hD179oCvry9V1xo5mv/ly5dw6dIl8PX1pR6vT47mf/XqFfj6+lJfdYFH81+/fh2SkpLA19eX+qoLb29v8PPzg3PnzkF2dja0atWK+pov9hW4ffv2hYYNG1J5bW1toVu3brB7925ISEiAyZMng6+vL1XnO74Cd+PGjRAZGQmrV68GX19fqukIpqam0KJFC+01cEePHgVfX1+qrkYjIyNo2rSp9hq4u3fvgq+vL/XVQnXq1NFeA/fhwwdRex/yGjh8tRDtVRfkNXCZmZnQqVMn6mtn8DVw+FqiIUOGiNr7dOnSRXsF7ty5c8HX15eq8519LdHWrVvB19eXqvOdvAL3zZs3oFarRe19GjZsCLNnz4YnT57As2fPwNfXl/pqoZo1a2qvgYuJiRG13laoUAGGDx8OFy9ehJycHGjevDn1NV+urq7aa+A+f/4Mf/zxB/W1M/b29tpr4JKSkmDs2LHU662VlZX2GrioqKhSw5r4WiKFNUuWNU+ePCmJNZ8+fSqLNT99+gS+vr7U1yqSV+CKZU18LdGpU6cgIyNDFmsOHz5c1N6nqFhz586dBmHNoKCgEmfN8+fPy2bN3r17U7Mm+wrckmTNli1bGpw1379/bzDW7Nixo0FYc9asWaJZE1+BK4U1lyxZIps1nzx5Ioo1a9WqVWSs+d133xmENUeNGiWZNRctWiRq71NUrHn58mVRe58GDRpor8AtadYcOnSowVlzypQpBmHNY8eOlThr3r17Fz5+/CiJNS9fviyaNdlX4JYka/7++++wfft2iI2NlcWa27ZtK3WsGRsbK2rvU5Ss2aNHD1F59h49emivwJXDmkuXLqXe+2DWXLlypUFZMyQkxGCs2a5dO2rWdHJyKhLWjI+Ph+nTp0tizfDwcEmsia/ALWnWnDx5smzWzM3NLZWsuWDBAlF59qJizYsXL4rKs2PWfPTokWTWvHHjBsTHx4va+7BZs2XLltSsia/ALQrWnDhxIjVrWlpawi+//AKbNm2CyMhIWax5+PDh/zxrenp6wuDBg+HMmTOQlZVl6LKfr17KVcVK4aAimXr16hXvLwsyQZaWlqbjTUxM5IUoMkEWHx+v483NzeUFVrIYIzw8XMer0Wjghx9+4PSSxRghISGcf+e+ffvyLvKNGzeGuXPnwtOnT0Gj0eh4Z8+ezeutXfv/sXfWUVF13R/ftCA2FmUhNnZgt6BgjN3dY3eL3d3d3R1gd2CgYmGi0t0x+/fHu+787r1zz425wMjj/a61/3jXer8qc55z2J999j5TQZskpqWl6Xj37t1L9LKTRLbu3LlD9FJJIlUgY+vr16/EwiS7QMZWTEwMMcGmkkSqQMZWWloaETrZBTIuubu7c3rpBbK3b99yrhPf13DTmzHS09N1vCtXriR6qQLZ7du3MTU1Vcd76tQpopdqxqCSRLZ8fX2JXnaSyNafP3+IiRs7SWQrMTGRWASmkkSqQMaWRqMhgiM9Sfz06RPnGnfp0oXTSyWJVIGMa42nTp1K/LzozRhca7x161ail96MkZKSouO9fv060ctuxmDr/fv3xMIkVSA7evQoRkVF6XgjIiKIBWRra2tUqVS4e/duDA4O1vGmpqYSi0fm5ubo5uamvZDgUpMmTYh7sWHDhrh8+XL09/fnXKeBAwcSP68aNWpoC2Rc3gULFhC91IXE3bt3Oc/bQ4cOEb3sAhlbDx48IHoLFy7MKJCx9ePHD2Jhkt2MwVZcXBwRdukFst+/f+t409PTiQUgdjMGl9q2bUvci3Xr1sXFixfjmzdvONdpzJgxxM+Lavx/8uQJ515cu3Yt0evs7IwTJkzAmzdvcu7Fc+fOEb329vaMCwm2Xr9+TfRSFxJUgYytkJAQYtGK3YzBVlJSEvFCht2MwZZGo0FXV1dOL70Z4+PHj5xr3KNHD+LPTG/851rjmTNnEr1UM8aDBw849+KuXbuIXqrx39vbmzP3uXnzJtHLvpBg6/Pnz8TCZL58+bBnz57aAhlbUVFRxIIG+0KCrbS0NGJhgbqQoApkXGrRogXxvG3QoIG2QMa1TkOHDiV+XvRmDC7v0qVLiV56MwZX7nPs2DGil974z3XePn36lOilmjFOnTrFed4GBgYSL2Xpjf9c521CQgLx0o1qxti2bRv++vVLx6vRaIhNeOzGfy6pVCrieevq6oqLFi3C169fc67TxIkTiZ9X5cqVtQUyrvN248aNRC+9QMZ13l6+fJnoZTdjsGUo1kxJSTEYa/bt25f4eVGs6evrm+GsuW/fPqKXYk2qGYOtu3fvEr2ZzZqkRhZ2MwZbclmzdevWxPP2b2XN06dPE73sxn+25LImqUGCYk2qGYMtuaxJatBiN2NwyVCsuW3bNqI3M1nzw4cPfzVrkr6qqWnTpsS92LBhQ20zRkaz5sKFC4leejNGRrPmw4cPid6/mTVJjZaZzZpjx44lfl70IfOMZs3z588TvexmDLb8/PyIXnbjP1tyWDM5OdlgrNmzZ0/iz5ydWZMaMmdLLmuSGgfZQ+ZsyWXNli1bEs9bejMG1zoNGzaM+HnRWZNrL8phzePHjxO97CFztuSw5q9fv0SxJled3ZCs2bFjR+J5S2/GyGjW3LRpE9Gbmaz57t07UazJlfsYkjUbNmxIPG/pQ+ZcksOaXl5eRC99yDwrWZPd+M/Wt2/fDMKa6enpBmNNtVpN/Lz+VtZ88eIF0ctu/GdLLmuSmq3Zjf9syWXNrl27Es9beuM/1xpPmzaN+HnRWZNrL8phTW9vb6I3M1kzMjKS2KjNHjJny5CsOWjQIOLnRW/85/IqMpyUxkGlcVCRTHXr1o1x4NGnQ7l+MdE1ffp0hpc+HcpVIKNr+/btkpJEunx8fDiTRFKBjK6PHz8yfsHRk0SuAhld7F9wVJLIVyCjlJqayphCYE+HCv1yadasmU6SyNeMQdfgwYMZXqpAduvWLc4kka5FixbpJIl8zRh0HTlyRFKSSNejR48YXvZ0KJ9+/vzJmHChJ4lC51V8fDxjYszExESbJJIKZJTS09MZU5T0JJFUIKOrffv2OkkiX4GMrnHjxnEmiaQCGV3r169neIWaMei6cOECw0sVyKjpUD75+fkx4F6oGYOu0NBQxqQ9ezqUT8nJyYzJPvZ0KN86aTQarFevHmeSSGrGoKtXr14ML/1CQmgvzp49m+GlLiRIzRh07d69m+GlpkNJBTK6bt26xfCyp0P5FBAQwIB7oQIZXdHR0YxiKlUgW7NmDbFARiktLY0xnUdvxvDz8xNcp1atWjF+Zvp0qNB5O3z4cIaXPh3KBWx0LV++nOG1s7PDYcOGEQtkdJ04cYLhZU+H8un58+c6522nTp2IBTK6fv/+zWhaZk+H8ikhIYExvcmeDuWTRqPRmbCrVasWb+M/XZ06dWJ4hZox6Jo8eTLDK9T4T9fmzZsZXvZ0KJ+uXr2qc95S06FcBTK6/P39GectfTqUq0BGV3h4OGPykz0dyqeUlBTGCyPUhQRfgYyuRo0aMX5m+nSo0F7s378/w1u2bFneAhld8+bN08l9+Br/6Tpw4ADDK9SMQde9e/cYXqHGf7q+ffvGuEhmT4fyKTY2lvEigpjGf0rp6emMSVkxFxJ0eXh4MH5majqU1IxB16hRoxhe6kKCVCCja/Xq1QwvfTpUKPc5e/YswytUIKPr5cuXDK9QMwZdwcHBjGKqmMZ/SklJSYxiqomJibbxn3QhQUmj0ehMnteoUUP7EpHQGhuKNXfs2MHwUqxJasagSw5rfvr0iXGRTLEmqRmDLrmsSX99QkwzBl2GYs3FixczvEKN/3TJYc3Hjx/r5D5/O2tqNBrGCxIUa/I1Y9AlhzXHjx/P8Ao1Y9AlhzUvXryok/tkB9akv2pAZ01SMwYluazZu3dvhpdiTVIzBl1yWHPPnj0Mr1AzBl23b99meIUa/+mSy5r0AdmsZE03NzfGz5wdWPPkyZMML8WapMZ/ujKaNfmaMeiSy5rsl+yEhszp6ty5M8ObVay5ZcsWhjcrWZNdZ88OrNm4cWOd3IevGYMuOaw5f/58hjerWPP+/fsMrxTW/P79u8FYk/4iJZ01Sc0YdMlhzdGjRzO8Qs0YdBmKNV+9esXwZiVr0l/tYrOmUO4jhzW7d+/O8AoNmdNlKNa8ceOGTu7D1/hPl1zWpA/Iimn8pySXNZs3b874mYWGzOkaMmQIw0tnTaG9KIc1jx49yvAKDZnTJYc1AwMDOVmT1PhPlyFZs0OHDoyfWajxny45rLlhwwaGN6tY882bN7JYk960TGdNodxHLmvWr1+f8TNXr16dd8icLjmsOWfOHIZXaMicLkOx5pcvX/RmTUWGldI4qDQOKpKht2/fooWFhegkka6wsDDMkycP46lusZ3V1GuDQtOhXKJegJBSIKOrT58+gtOhJM2dO1dwOpSkvXv3Ck6HknTnzh3B6VCSvn79ipaWloyvhRKrmJgYtLGxEZwO5RL1AgT9a6GEkkS63N3dJSWJdI0cOVJwOpSklStX6jzVLVanTp0SnA4lydfXFy0sLEQXyOj68+cPWltbC06HcomayhGaDuUS9dqg0HQoSV26dBGcDiVp6tSpOl8LJVZbt24VnA4l6fr16zpfCyVW79+/RwsLC8HpUC5FRERg3rx5JTVjUKKmcoSmQ0lq0qSJ4HQoSQMHDhScDiVpwYIFgtOhJB06dEjna6HE6sGDB5IuJOj68eMHWllZCU6HcikuLg4LFy7M+FoosWtMvTYoNB1KUtu2bXW+FkqsxowZI6nxn661a9cKToeSdO7cOcHpUJJev36NFhYWgtOhXAoJCcFcuXJJavynlJSUhI6OjpIuJChRL0DQvxZKynnbo0cPwelQkmbOnCmpGYOuXbt2SSqQ0XXz5k3B6VCSPn/+jDly5BCcDuVSVFQU5s+fX3A6lEtpaWlYpkwZwelQklq0aCHpQoKuoUOHCk6HkrR06VKdr4USq2PHjglOh5L09OlTtLCwEN2MQVdgYCDmzJlTcDqUS9RFsj7TodQLEEIvEZGkUqkEXyIiaeLEiTpfCyVWGzdulHQhQdfly5d1vhZKrAzFmikpKViiRAlJzRiU5LJm3759DcKa+/bty5asWbBgQcbXQmUVa7Zu3VpSMwZdhmLN06dP63wtlFhlV9asWbNmtmPNbdu2SWrGoEsOa3748AEtLCwYXwslVnJZ08nJifG1UFJYs2nTpgZhzYULFxqENR8+fKjzFcRiZUjWdHFxkdT4T5cc1hw7dqxBWPP8+fN6s6afn59BWJMakJXS+E9JLmv27NlT0pA5Xf8iaxYoUMAgrNmyZUtJQ+Z0DRs2TFIzBl1yWPP48eOSmjHoksOav379wpw5c4oeMqfLkKzZsWNHg7Dmpk2bJA2Z0yWHNd+9e6dlTeoriMXKkKzZsGFDg7Cml5eXpCFzuuSw5t27dyUNmdP17ds3LWuKafynSw5rUgOy9K8gzirWVKvVkhr/6TIUa7548cJgrGlvby9pyJySXNbs2rWrzlcQi9W0adMkNf7TJYc1vb29JTX+0yWHNSMjIzFfvnzZjjUHDRqkfAVxNpXSOKg0DiqSoa9fv0pKEun6/fu34HQoSREREZKSRLoSExMlJYl0aTQaSSDAlp+fn6QkkS5/f39JSSJdnz59kpQk0vX9+3dJBTK6goKCJBXI6IqOjpZUIKMrJSVF1HQol6g1lpJA0PXmzRtJSSJd79+/l5Qk0hUQECApSaQrMDBQUpJIV1hYmKQkka64uDhJBTK60tPTZe9Ffdf43bt3kpJEuj5+/CipQEbXt2/fJF1I0PXnzx9JFxJ0RUZGSrqQoCspKUlSgYwujUYjCQTYevPmjazzVkqBjK7Pnz9LKpDR9ePHD0kFMrpCQkIEp0NJiomJkVQgoystLU3ShQRbr1+/1nsvvn37Vu+9+OHDB73P2y9fvuid+/z69UtSgYyu8PBwvXPmhIQEwelQkjLivNV3L757905W7iPnvJVSIKPrz58/kgpkdEVFRUkqkNGVnJwsqUBGV0act3JyH33P24CAAL3P258/f+p93oaGhuo9HRoXFyepQEZXWlqawXIfOeftx48f9S6Q/YusKWcv/musGRwcbBDWTE1NVVhTggIDA/XOfeSwZnx8vMKaEmRI1pTSjEFXcnKywpoSpLCmNMllTX1zn3+NNQ1ZZ8+OrBkUFGQQ1kxJSZHFmtk195HDmvrW2Q3JmnLOW0PmPnJYU9/cx5CsKaXxny5D5z76nrefP3/WmzV//PjxT7Emorzcx1Dn7ZcvXxTWlCC5uY/CmuJkSNZUZFhlRuOgEf6vMU4Rj4yMjOwB4CcAwM+fP8He3t7A/yJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUvQvKDAwEBwcHKj/6YCIgXL/TGO5f4AiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkKPtIaRxUpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWK/iEpjYOK/hkFBQVBamqqXt7w8HBITEzUyxsTEwMxMTF6eZOTkyE0NFQvLyLCr1+/9PIC/O+JU33169cv0Pdr0H///g3p6el6eUNCQiAlJUUvb0REBMTHx+vljYuLg8jISL28qampEBQUpJcXEWWtU2BgoN7r9OvXL9BoNHp5g4KCIC0tTS9vaGgoJCUl6eWNioqC2NhYvbyJiYkQHh6ul1ej0cDv37/18gIYdi/qu8bBwcEGOW9jY2MhOjpaL29KSgqEhITo5TX0XtTX++fPH1nnbXJysl7eyMhIvc/b+Ph4vc/btLQ0+PPnj15eAHl7MTuet2FhYXqft9HR0XrnPklJSRAWFqaXV6PRGCz3kbPGcnKf4OBgWblPQkKCXt7Y2FiIiorSy5uSkgLBwcF6ebPzeSsn99H3vI2KioK4uDi9vAkJCXrnPunp6QbLfeTuxeyW+yisKU1yc5/sxpppaWkKa0qQwprSpLCmeCmsKU2GZM2IiAi9vOnp6f8ka+q7F7Mjaxoy9/nXWDMuLk5v1kxNTc22rGmo3EdhTWnefyn3UVhTmgzFmnJyH0OxJkD2zX0MVWdXWFO85OY+cs5bOXX27Miaiv57UhoHFf0z+vXrFxQqVAi6d+8Ohw4dklQMSklJAXt7e2jXrh1s375dUjHIzMwMXFxcoEWLFrB27Vr48uWLaK+5uTm0adMG6tWrB4sXL4Y3b96I/mVpZGQEY8eOhapVq8KsWbPgyZMnkhKidevWgbOzM0yYMAFu3bol6Zfl+fPnwdHREYYPHw6XLl2SlBD5+flBkSJFoG/fvnDixAlJcBIREQGFCxeGzp07w759+yQXg0qWLAlt2rSBLVu2SPplaWFhAXXq1IEmTZrAqlWr4OPHj6K9ZmZm0L17d6hduzYsWLAAXr58KWmNZ82aBZUqVYJp06bBgwcPJCVEu3fvBicnJxgzZgx4e3tLgpNbt26Bvb09DB48GM6dOycpIQoICIBChQpBz5494ciRI5KKQQkJCWBrawsdOnSAXbt2SSoGmZqaQrly5aBVq1awYcMG+P79u2ivhYUFNGvWDBo0aADLli0Df39/0etkbGwMQ4cOherVq8PcuXPh2bNnkvbismXLoFy5cjB58mS4c+eOJDg5fvw4FC9eHNRqNVy5ckVSMejp06dQtGhRGDBgAJw6dUpSMSgoKAgKFSoE3bp1gwMHDkiCk7S0NHBwcABPT0/Ytm2bJDgxNzeHqlWrQrNmzWDNmjUQEBAg2mtmZgbt27cHV1dXWLRoEfj5+Unai5MmTYLKlSvDzJkz4fHjx5LWePPmzeDs7Azjx4+HmzdvSjpvL1++DA4ODjBs2DC4ePGipGKQv78/FC5cGPr06QPHjx+XBCfR0dFQpEgR6NSpE+zZs0dSMcjIyAhKlSoFrVu3hk2bNsHPnz9Fey0sLKBevXrQuHFjWLFiBXz48EG019TUFPr06QM1a9aEefPmwYsXLyQB6Lx586BChQowdepUuH//vqTzdv/+/VCqVCkYPXo0XL9+XdJ5e+/ePbCzs4NBgwbB2bNnJRWDfvz4AYUKFYIePXrA4cOHJRWDkpKSwM7ODtq3bw87d+6UVAwyMzODihUrQsuWLWH9+vXw9etX0V5zc3No1aoV1K9fH5YuXQpv376VdN6q1WqoVq0azJkzB54+fSppL65atQrKli0LEydOhNu3b0s6b8+cOQPFihWDESNGwOXLlyXlPi9fvoSiRYtCv3794OTJk5KKQaGhoVC4cGHo0qUL7N+/X9J5q9FooHjx4uDh4QFbt26VVJi1sLCAGjVqQNOmTWH16tXw6dMn0V4zMzPo3Lkz1KlTBxYuXAivX7+WdN5OmzYNXFxcYMaMGfDw4UNJe3H79u1QunRpGDduHPj4+Eg6b729vcHe3h6GDh0K58+fl5T7fPz4EQoXLgy9evWCo0ePSjpvY2NjoUiRIqBSqWD37t2SikHGxsbg7OwMbm5usHHjRsm5T+PGjaFhw4awfPlyeP/+veh1MjExgUGDBkGNGjXAy8sLfH19JZ23ixYtgvLly8OUKVPg3r17kvbikSNHoGTJkjBq1Ci4du2apNzn4cOHYGtrCwMHDoTTp09Lyn0MzZrNmzfXizU9PDygbt26erNmlSpV9GLN9evXZxhrSsl9MpI1pV6EyWFNV1dXvVjT1NRUy5rz58+XzJqzZ8/Odqz55cuXbM+a7969k5T7DBs2TG/WXL58uWzWHDlypGTWfPbsGRQtWhT69++vN2t27dpVMmump6eDo6NjtmPNyZMnG4Q1r1y5omXNCxcu6M2ax44dk5T7xMTEyGJNJycncHd3h02bNsGPHz9Eey0sLKB+/frQqFEjyaxpYmICffv2NQhrHjhwwGCsWbhwYb1YMzk5OUNYc926dZJY08LCAtzc3KB+/fqwZMkSSaxpZGQEarUaqlatCrNnz5bMmqtXr852rBkWFmYQ1jQ3N4eaNWvqxZqmpqYM1nz16pWkNZ4+fTq4uLjA9OnTJbPmjh07oHTp0jB27Fjw8fGRtBe9vb3BwcEBhgwZorCmgOSy5uLFi7WseffuXcmsWaJECRg1ahRcvXpVUu7z6NEj2azZrVs3OHjwoGTWdHBw0Is1zc3NDcaa48aNMwhrXrhwIUNY8/jx43qz5t69eyXlPoioZc3NmzdLrrNTrLly5UrJrNmjRw+9WBMAYPbs2VCxYkW9WHPPnj16s+bt27f/CtaUkvuYmJgwWPPbt2+ivRYWFtC8eXPZrDlnzhy9WXPSpEmSWfPEiRMM1pSS+8hhzeDgYFmsWaxYMb1Zs1q1ahnCmlLr7HTWfPTokd6NtYr+I0JEJQQCAOwBAAEAf/78iYqyrzw9PZFaSxMTE2zYsCEuX74c379/L+gdM2aM1gsAWKNGDfTy8kJfX1/UaDS83rVr1zK85cuXxylTpuC9e/cwLS2N13vu3DmGt3jx4jhq1Ci8evUqJiUl8Xpfv37N8BYpUgQHDhyIp0+fxri4OF5vcHAwWllZab158+bFbt264cGDBzEiIoLXm5SUhA4ODlqvlZUVtmvXDrdv345//vzh9Wo0GqxTp47Wa2Zmhs2bN8e1a9fily9feL2IiD169NB6jYyMsG7durh48WJ88+aN4DrNnDmT8XlVqVIFZ82ahU+ePMH09HRe786dOxleZ2dnnDBhAt66dQtTU1N5vTdv3mR4HRwccPjw4Xjp0iVMTEzk9X769AlNTEy0XhsbG+zbty+eOHECY2JieL1RUVGYN29erTd37tzYuXNn3LdvH4aGhvJ609LS0NnZWevNkSMHtmnTBjdv3izqnGzRooXWa2pqik2aNMGVK1fix48fBb1Dhw5lrHHt2rVx/vz5+PLlS8E1XrJkCeOzrlixIk6bNg0fPHgguBePHTvG8JYsWRLHjBmD3t7emJyczOt98uQJw1u0aFEcPHgwnjt3DuPj43m9gYGBaGFhofXmz58fe/bsiUeOHMGoqCheb0JCAhYpUkTrzZkzJ3bo0AF37dqFwcHBvF6NRoNVqlTRes3NzbFVq1a4YcMG/PbtG68XEVGlUmm9xsbG2KBBA1y2bBm+e/dOcJ0mTJjA+LyqV6+Oc+bMwWfPngl6N27cyPCWK1cOJ0+ejHfu3BHci5cvX2Z4ixUrhiNHjsQrV64Inrdv375FIyMjrbdQoULYv39/PHXqFMbGxvJ6w8LC0NraWuvNkycPdu3aFQ8cOIDh4eG83uTkZCxevLjWa2lpiZ6enrht2zb8/fs3r1ej0WCDBg0Ye7FZs2a4Zs0aDAgI4PUiIvbp04exF11dXXHRokXo5+cnuE5z585lfNaVK1fGmTNn4qNHjwTP23379jG8pUuXxvHjx+ONGzcwJSWF13vnzh2G197eHocNG4YXLlzAhIQEXu/Xr1/R1NSUcd726dMHjx07htHR0bzemJgYzJ8/v9abK1cu7NixI+7ZswdDQkJ4vWlpaVi+fHmt18LCAt3d3XHTpk3448cPXi8iYuvWrRm5T6NGjXDFihX44cMHQe/IkSMZn1fNmjVx3rx5+OLFC8E1XrlyJcNboUIFnDp1Kt6/f1/wvD116hTDW6JECRw9ejRev35d8Lz19fXVyX0GDRqEZ8+eFcx9/vz5gzly5NB68+XLhz169MBDhw4J5j6JiYloa2vLOG/bt2+PO3bsEJX71KxZk3HetmzZEtetW4dfv37l9SIidunShXHe1q9fH5csWYJv374VXKepU6cyPq+qVavi7Nmz8enTp4J7cevWrQxvmTJlcOLEiXj79m3B8/b69esMr6OjI44YMQIvX74smPu8f/8ejY2Ntd6CBQtiv3798OTJk4K5T0REBObOnZuR+3Tp0gX379+PYWFhvN7U1FQsVaoUI/fx8PDArVu3YmBgIK8XEbFJkyaM87Zp06a4evVq/PTpk6B34MCBjPO2Tp06uHDhQnz16pXgGi9YsIDxWbu4uOD06dPx4cOHgmt86NAhhtfJyQnHjh2LPj4+guftw4cPGV5bW1scMmQInj9/XvC8/fHjB5qZmTFyn169euHRo0cFc5+4uDgsWLCg1mttbY0qlQp3794tmPukp6djpUqVGOetm5sbbty4Eb9//87rRURs27Yt47zNCNZ8/vy53qx59+5dwfP2/PnzDG9WsWZISEiGsmbbtm1x+/btonIfV1dXrVcqa/bs2ZOxF7OKNXft2sXwZhVrfv78OcNZc+/evZnOmi1btmTsxcaNG+vFmgCAtWrVEs2aS5cuZXizijWfPn3K8EphzV+/fhFZMzIyktfLx5pBQUG8Xo1Gg1WrVmXkPlnFmhMnTmR8XnJYs2zZsjhp0qRMZ813794ZhDVTUlIyhTU/f/7M60VE7Nu3L+O8lcKaXl5ejM86q1jz7t27DK+dnR0OHTpUL9YsUKAA9u7dWzRrFihQQOvNLqypVqsZn1dWsebp06cZ3oxgzTNnzohiTUtLS61XDmtSdXZ9WNPMzAxbtGghmjW7du3KOG/r1auXJay5bds2hjerWPPDhw96s2ZkZCTmyZOHkftkFWs2bdqUcd42bdoUV61apTdrLliwQBRrLly4kPFZy2HNUqVKZRlrmpubM3KfrGJNFxcXxnmbEazp7+8vuE5jx45lfF5SWHPdunUMb/ny5XHy5Ml6s6ZarRbFmn5+fgxv4cKFccCAAZnOmsnJydmSNWfNmsX4vDKCNW/evKk3a168eFEv1uzTpw8eP35cMPeJiorCfPnyMc5bKaxZpkwZxnnbunXrLGHNYcOGMT6vrGLN48ePM7yGZs3Dhw/rzZo7d+7UmzXXr18vijU7duzIyH0aNGiAS5cu1Ys1q1WrJpo1N23axPBmB9ZUZFj9/PmTvu72mBE9cRnxh/zXA5TGwf+Mnj17xjg86VG6dGkcN24csRj0+/dvxmUyPYSKQQkJCVi0aFFOr1AxSKPRYLVq1Ti91tbWgsWgTp06cXrFFIMmTZrE6aUXg0gXYZs3byZ+1lQxiNR0eeXKFaKXKgaRmi79/f0Zv+ToUaJECRw1ahReu3aNMyEKDw/HXLlycXqpizBSMSglJQVLlCjB6c2bNy92796dtxjUqFEjTq+YYlC/fv04vWKKQfPmzeP0iikGHThwgLhOQsWge/fuEb1CxaBv374xLpPpQRWDSBdhsbGxjIIqPahiEOkiLD09HStUqMDppYpB+/btIxaD2rRpw+mlLsK2bNlCLAaNGjWK00s1XfIVg1avXs3ppZou+YpBZ86cIa5TpUqVeItBL1++JHqFikFBQUGMgio96MUgLjhJSkpCOzs7Tq9QMUij0WDt2rWJ561QMahbt26cXnNzc3Rzc8MNGzYQi0HTp08nnrcNGzbEZcuWEYtB27dvJ37WNWrUwLlz5xKLQT4+PkSvUDHo48ePjIIqPYSKQeyCKj2EikGpqalYunRp4nkrVAxq1qwZ8bwVKgYNHjyYeN5SxSBS0+WiRYuIe5EqBpEuwo4cOUJcJ6oY9PjxY869+PjxY6LX2dkZx48fjzdv3uTciz9//mQUVOlBNV2SikHx8fFYqFAhTq9QMSg9PR0rV67M6c2VKxd26tSJtxjUvn174nkrVAwaN24ccS8KFYPWr19P/KyFikEXL14keqliEOkizM/Pj5j7UMUg0kVYaGgo5syZk9NLFYPOnj3Led4mJyejo6Mjp5e6CCMVgzQaDdarV4/TK6YY1KtXL+J527JlS95i0OzZszm9VNMlXzFoz549xHUSKgbdunWL6BUqBgUEBDAuk+khVAyKjo5mFFTpQRWDTp48yVkMSktLw7Jly3J6qcYDvoswNzc3Ti/VeLB161b89esXp3f48OGcXqrxYPXq1cTGg+XLlxPPW1dXV1y4cCG+fv2ac51OnDhBXCcXFxecMWMGsfHg+fPnRO/fzJrVq1fn9GY2a06ePJl43splTb4Bv6tXrxK9YliTlPtkNmuWLFmS05vZrNm/f39Ob0axJukiTAxrki7C7t+/T/RSrElquuRjTQcHB0HWtLGx4fTKZU1qwI903np4eHB6xbDm6NGjiedtZrLm2bNnietEZ02uvSiHNYODgzOVNUkDfmJYk2/Ar3v37pxeOaxJb7okseaOHTuIn3X16tX1Zk1qwI/EmuwhWXqIYU164zI96KzJlfuIZU1S02Xz5s2J521msubixYuJe1Eua86cOVMv1qSaLkmsGRgYaBDWZA/J0iOzWXP8+PGc3oxiTVLTpRzWfPPmTaaxJjXgR2LNYsWKcXrlsmb79u15WbN3797E81aINefMmUM8bzOKNbn24u3bt4leOazp6OgoyJr0IVl6GJI1qaZLEmuOGDGC00sf8NOHNakBPxJrnjx5krhOcljTyckp01gzMTFRFGuSch85rNm5c2dOb0awJt+A35YtW4iftRzWFHpMRi5r0odk6ZHZrNm4cWNOb0axJqnpcv78+cTzVog1Dx48SFwnuazJN+D3/ft3XtbkG/ATYk2+Ab/09HSsWLEip/dvZs01a9YQz9vMZM1Xr14RvRRrent7682apKbLpKQktLe35/TKYU0xj8nwsSY14CemyV1R1kppHFQaBxXJ0LZt21ClUjGmTUiRJ08e7Natm3YC9+zZs6hSqRgTRaSwtLTEtm3baidwHz16hCqVijGlSwozMzPGa09fv35FlUpFLCCzf1nSJ3Dj4uJQpVJhrVq1BL0A/z+BSxWD+vbtS0z62MEuBk2aNInYJMUOdjFoxYoV2KFDB2KBkB7sYtD+/ftRpVIRk2R60ItBISEheO3aNVSpVEQQooeFhQWjGPTq1StUqVTo5OQk6KUXgz58+IB//vxBlUpFbJBgR61atbQTuOnp6ahSqbBu3bqivOwJ3GHDhjFe/uOLkiVLMiZwZ8+eje3atRPlZReDNm7ciCqVijFtQgp2Mej48eOoUqmIRQl6sItBd+7cQZVKxZgaIwW9GPT161f88OEDqlQqYkGDHuxiUGRkJKpUKiIos4MqBlFNlz169MCGDRuK8lLFIKrpcuzYseju7i7KS5/ATUpKwsWLF2OHDh2IBUJ6FCpUSDuBGxsbizt37kSVSkUsENKDPYF74cIFVKlUxCIwPdjFoCdPnqBKpSI28dKDXQz6/v07qlQqIkTRg10MSkxMRJVKRUzO2cEuBg0YMIAxHcwX7GLQtGnTGK/p8gVVDKImcFevXo0dOnQgAis9qGIQ1XR56NAhVKlUxOY/etCbLkNCQtDHxwdVKhVjYp4U7AlcPz8/VKlUxMscerBfewoJCUGVSkW8JGAH+2XhTp06EYvP7GAXg0aOHMmYSOQL6rWna9euYVJSEnp5eYk+b9nFoC1btqBKpSICKz3YxaDTp0+jSqUiFiXowS4G3b9/H1UqFbHQTw+qGERN4H7+/BlVKhWWK1dO0EsVg6gJ3OjoaFSpVFijRg1Rn1fVqlUZE7i9evUiNlewg/3a04QJExgvbvAFuxi0bNky0bkPuxi0d+9eVKlUxGYUerCLQZcvX0aVSsWY4CQFuxjk6+uLKpWKWFykB70Y9PHjRwwMDESVSsWYticFvRj08uVLTElJQZVKxXidmi8qVarEmMAdPHgwsXmYHaVKlWJM4M6YMYMx5c8Xtra2jAncdevWoUqlIl6O0oP9svDRo0dRpVIRm//owS4G3bp1C1UqFbHwRA/2a0/+/v6oUqkYk9h8e5HeeBAWFoYqlYo4/MQOduNB165dsX79+qK87JeFR40aha1atRLlLVasGKrVau1F2IIFC7B9+/aicx/6BG5Wsib9tSdDsWZ8fLxs1qS/wskXbNacPHmyXqyZkJCgZU3S5Sg9MoI1qYswfViTugjThzWp156CgoKyBWuyX3uaM2eObNYkXY7Sg82aJ06c0Is1//z5k+WsSQ34ZTVr0gf8xo0bpxdrJiYmalmTdDlKD/prT7Gxsbhr1y6DsObTp0/1Zs0fP37oxZqvXr3SmzWpAT99WJNqupTDmmvWrBHNmuwBP4o1Sc1/9CCxJqnBkx5s1nzz5o3CmjzBfllYH9akBvz0YU3qW2wePHggmzXpryzy7UX6a08xMTGSWJP92tO/xJqhoaF45coVvVjz58+fWtakv8BHCjZr/vr1SzJrUgN+qampqFKpGC+G8QUXa5Kah9nBfu1p5syZCmsSgv2ycHh4uF6sSQ34de3alfEiLl+wWXP06NEGYc3t27dLYk36y8JZxZrsb7ExJGv269dPFmuSmqTYwWbNlStXSmZNasDvwIEDWcaa9KZLqaxJf1lYKmuyXxbODqzJ/habTZs26cWaERERWtYkPWpCDzZr3r17N1uwJvsxGSmsyX5MRg5rLlmyRC/WjImJ0bIm/cV2UrBZ8+LFi6JZk/2yMMWaYuvsGcWaSUlJslhTkWGlNA4qjYOKZIj9dXtiw8TERNRhTQoxkEsKOX8v6QUYMVGkSBFRTV1ckTdvXlGFdq6wsrIS1UjCFWZmZqIghiuMjIwMtsb6/psBQBSYk8LGxkZU8sMVuXPnFgWbXJEjRw5RCS5XmJiYiCrSZ8Y6yfnvQ0wxkxRFixYVBZtckT9/flFNXVyRM2dOUcU9rjA3N9f7/DE2Ns6W562+/00D/K8YJKbQzhV58uQRBZtcYWlpKeoyhStMTU1lnbdy1slQ562dnZ2o4h5XFChQQFShnSty5colCja5wsLC4p87b+XmPmIK7VyRL18+UYV2rrCyshJV3OMKMzMzvX/HGPK8lfPflpzztmDBgqIK7VyRO3duURebXJEjRw69czZTU1O9Py+5562hch9bW1tRF5tckT9/flGFdq6wtrbGwoUL6+W1sLDQ+/z5F1mzcOHC/xxrZsfcx1CsmStXLlmsqe+/O7vmPoZkTTFNXVwhlzWV3Ed8KKyZdWussKb4yK7nrcKa4uNfPG/lsqYhch+5rClnjbMra+pbZ1dYU1rIZU0xTV1cobCmtJCT+8g5bw3Jmv9a7iOXNcUMEHFFvnz5ZLGmvrlPdr3XlPPflpzzVvlKY8MrMxoHjfB/jXGKeGRkZGQPAD8BAH7+/An29vYG/hcp0kdqtRo2btyol9fU1BTS0tL08pqYmEB6erpeXkPK2NgYNBqNXl4zMzNITU3Vy2tubg4pKSlZ7pWzxnI+K0NKzs9sqHWS89+WnL1oZGQEhvp9KefvVvZi9pCc/zaz4178F9dYOW/Fy5DnbXbMfZS9KE3/2nmbXfeinL87O563/+JezI7nrbLG0pQd96Jy3kqTshezh/613OdfXGPlvBUvhTWz7u/9F/fiv3beZte9qOQ+4vUv7kVljbOHlNxHvJTcJ+u8/+JedHJyAk9PT+jYsSPUq1fP0P+cf06BgYHg4OBA/U8HRAyU+2cay/0DFCnKLrK2tgYbGxswMTER9f+3s7ODoUOHwoULF2DFihVgY2MDZmZmorwFChSA3r17w7Fjx+Dw4cNgY2MDOXLkEP3v7NixI+zZswdu374NNjY2kDNnTlFeCwsLcHd3h02bNsG7d+/AxsYGcufOLcprYmICjRo1ghUrVsCHDx/AyckJ8ubNK8oLAFCzZk2YN28e+Pr6QqNGjaBAgQKivRUqVICpU6fC/fv3oVevXmBjYwNGRkaivCVKlIDRo0fDtWvXYPr06WBjYwOmpqaivEWKFIFBgwbBmTNnYNOmTWBjYwPm5uaivHnz5oXu3bvDoUOH4OzZs2BjYwOWlpaivFZWVtC+fXvYsWMHPH78GGxsbMDa2lqU18zMDFq0aAHr1q2DgIAAsLGxgTx58ojyGhsbQ7169WDJkiXw9u1bcHFxgXz58onyAgBUrVoVZs+eDU+fPgV3d3ewsbER7S1TpgxMnDgRbt++DUOHDgUbGxswNhb3K8jBwQFGjBgBly9fhgULFkjaiwULFoR+/frByZMnYe/evWBjYwMWFhaivLlz54YuXbrAvn374Nq1a2BjYwNWVlaivDly5AAPDw/YsmULvHr1CmxsbCBXrlyivKamptCkSRNYtWoVfPr0CRwdHUXvRSMjI6hTpw4sWLAAXr16BXXq1JG0FytVqgTTp0+Hhw8fQufOnSWtcalSpWDs2LHg4+MD48aNk3Te2trawpAhQ+D8+fOwZs0aSXsxf/780KtXLzh69CgcP35c0l60trYGlUoFu3fvhnv37kk6b83NzcHNzQ02btwI79+/l3TeGhsbQ8OGDWH58uXg7+8PZcqUkbQXa9SoAXPnzoXnz59Ds2bNJK1x+fLlYcqUKXD37l3o16+fpPO2WLFioFar4erVqzBr1ixJ523hwoVhwIABcPr0adi6daukvZgnTx7o1q0bHDx4EC5cuCBpL1paWkLbtm1h+/bt8OzZM8nnbfPmzWHt2rUQEBAAhQoVEn3eGhkZQd26dWHx4sXw5s0bqFq1KuTPn1+UFwCgSpUqMGvWLHj8+DF4enpK2ovOzs4wYcIEuHnzJowcOVLSeWtvbw/Dhg2DixcvwpIlSySdtzY2NtC3b184fvw47N+/X1LukytXLujUqRPs3bsXbty4ITn3ad26NWzevBn8/PwknbcmJibQuHFjWLlyJXz8+BGKFy8uKfepVasWzJ8/H16+fAn169eXtBcrVqwI06ZNgwcPHkD37t0l7cWSJUvCmDFjwNvbG6ZMmSLpvC1atCgMHjwYzp07B+vWrZN03ubLlw969uwJhw8fhlOnTkk6b3PmzAnt27eHnTt3wsOHDyXtRXNzc2jVqhWsX78ePn78KPm8rV+/PixduhTevXsHFSpUkHTeVqtWDebMmQPPnj2Dli1bStqLZcuWhUmTJsGdO3dg0KBBkvaio6MjjBw5Eq5cuQJeXl6SzttChQpB//794dSpU7Br1y7J523Xrl3hwIEDcOXKFcnnraenJ2zbtg1evHghOfdp1qwZrF69Gj5//gy2traSzltXV1dYtGgRvH79GmrWrCnpvK1cuTLMmDEDHj16BB06dJC0xk5OTjBu3Di4ceMGjB492iCseeTIEYOwpr+/v2zWlLIX6azZuHFjyaw5ZcoUuHfvXpayZuHChWHgwIFw5swZ2Lx5c5ayZrt27WDHjh3w5MmTbMmarVu3znLWvHTpEixcuFA2a4rdi3TWvH79umTWbNOmjUFYs3bt2lrWdHV1NQhrjh8/3iCseeLECcm5j0qlgl27dsH9+/eznDWXLVuW5axZrlw5mDx5Mty9exf69++f7Vjz4sWLBmPNwoULG4Q127ZtK2kvli5dGsaPHw83b94EtVqdpazZp08fOH78OBw4cMAgrPnmzRu9WfPDhw8GYc379+9Djx49spw1z549C+vXrzcIaz569Egya7Zs2RLWr18Pnz59UlhTQIZmza1bt8LLly9ls6bUOvvChQsNyppjxoyRzZpi92J2Z833798bjDV79+4t6bwtXrw4jBo1KsNYU+xepLPmuXPnDMKaX7580Zs137x5Ay4uLpL2Ykaw5q1bt2DYsGFZxppUnf3EiROwb98+g7Dm69evZbGmg4ODQVizS5cu2Yo1jxw5IvleUy5rtmrVCjZs2CCbNT9+/AirVq1Smgb/S8qIZwv/6wHKVxX/ZxQYGMj71QA1atRALy8v9PX1RY1Gw/DGx8fzPilevnx5nDJlCt67dw/T0tIYXo1Gg1WqVCF6ixcvjqNGjcJr165hUlKSzr+7Q4cORG/hwoVx4MCBeObMGYyLi9PxTpgwgejNmzcvdu/eHQ8ePIjh4eE63g0bNhC9VlZW2K5dO9y+fTv+/v1bx3vp0iWi18zMDFu0aIFr167FgIAAHe+bN2+IX9NhZGSEdevWxcWLF+ObN2901ik0NJT3qeqqVavirFmz8MmTJ5iens7wJicn8z6x7ezsjBMmTMBbt25hamqqzhrXr1+f6HVwcMDhw4fjpUuXMDExUedn7tOnD9FrY2ODffv2xRMnTmBMTIyOd86cOURvrly5sHPnzrhv3z4MDQ3V8e7du5fozZEjB7Zp0wa3bNnCefbduXOH6DUxMcEmTZrgqlWr8OPHjzreL1++EL8WycjICGvXro0LFizAly9f6qxxTEwM77PxlSpVwmnTpuGDBw909mJaWhqWK1eO6C1ZsiSOGTMGvb29MTk5Weff7e7uTvQWLVoUBw8ejOfOncP4+Hgd74gRI4jefPnyYc+ePfHIkSMYGRmp412xYgXRmzNnTuzQoQPu2rULg4KCdLynTp0ies3NzbFVq1a4YcMG/Pbtm47X19eX6DU2NsYGDRrgsmXL0N/fX2ed/vz5w/vVANWrV8e5c+fis2fPdLyJiYm8T4qXK1cOJ0+ejHfu3OHcizVq1CB6ixUrhmq1Gq9cucJ53nbp0oXoFXp+e8qUKURvnjx5sFu3bnjgwAHO83br1q1Er6WlJXp6euK2bdvw169fOt5r164RvaamptisWTNcs2YNfv78Wcf7/v17NDY2Ju5FV1dXXLRoEfr5+emsU3h4OO9XQlauXBlnzpyJjx8/1jlvU1NTeZ9gL126NI4fPx5v3ryJKSkpOv/uJk2aEL12dnY4bNgwvHDhAiYkJOh4BwwYQPQWKFAA+/Tpg8ePH8fo6Ggd74IFC4jeXLlyYadOnXDPnj0YEhKi4z148CDRa2Fhge7u7rhp0yb88eOHjvfBgwdEr4mJCTZu3BhXrFiBHz580PH++PGD96sBatasifPmzcMXL17orHFcXBzv17NWqFABp06divfv39c5b9PT07FSpUpEb4kSJXD06NF4/fp1zvPW09OT6C1SpAgOGjQIz549y5n7jBkzhujNly8f9ujRAw8fPowRERE63jVr1hC9VlZW2L59e9y5cyf++fNHx3vu3Dmi18zMDFu2bInr16/Hr1+/6nhfv35N9BobG2P9+vVxyZIl+PbtW511Cg4O5v1apGrVquGcOXPw6dOnOnsxKSmJ96s2ypYtixMnTsTbt29znrd16tQheh0cHHDEiBF4+fJlztynR48eRG/BggWxX79+ePLkSc7cZ8aMGURv7ty5sUuXLrh//34MCwvT8e7cuZPozZEjB3p4eODWrVsxMDBQx3vz5k2i19TUFJs2bYqrV6/GT58+6Xg/ffpE/FokIyMjrFOnDi5cuBBfv36ts8ZRUVG8X9Ph4uKCM2bMwIcPH3Ket87OzkRvqVKlcOzYsejj48N53rZo0YLotbW1xaFDh+L58+c5c5+hQ4cSvfnz58devXrh0aNHMSoqSse7ZMkSotfa2hpVKhXu3r0bg4ODdbzHjh0jes3NzdHNzQ03btyI379/1/E+efKE6DUxMcGGDRvi8uXL8f379zrrFBgYyPsVvBnBmnfv3s1w1lSpVEQvxZqnT5/mzH3ksObGjRuJXrms2bx5cyJrvn37Vm/WDAsL42XNKlWqZBprNmjQgOi1t7fPNNacO3cu0ZsRrLl58+YMZ82vX78Ksub8+fMzhTXLly9P9GYma44cOZLoFWLNlStXEr1/A2u+e/cuw1mT76vk5LCmo6Mjjhw5MlNYc+rUqURvnjx5sGvXrpnCmtevXyd6M4o1uXKfiIiITGfNGzduZDhrDhw4kOilWPPYsWMZzpqHDh0ieuWyZqNGjTKNNfm+LjAzWbNt27ZEb0aw5qFDhzhZc+3atURvRrDmunXr8MuXLzpeOawZEhLCy5pVq1bF2bNnZwprurq6Er2ZyZozZ84keoVYc9euXURvZrLm58+fRbHmq1evMpQ109LSMpU1hwwZkimsuXTpUqI3M1nz6dOnRG9Gsebz5891vAkJCVikSBGiV4g1q1atSvRSrHn16tUMZ82JEycSvVSdPTNY8/Lly0Tv38qaKSkpolmTvRflsmbfvn2JXoo1SXV2May5d+9eTtbct28f0SvEmnfv3uXdi40bN8aVK1dmCmsWKFCA+HdXrFgx01izdevWRO/fypqnT58meumsyVVnl8ualpaWRH/16tVxzpw5erFm2bJlcdKkSUTWrFmzJtH7t7KmIsMpM76q2OBNedkhQGkc/M9IrVYzDjxLS0ts27Ytbt++nbNARteqVasYXqEkka4zZ87oJBBUksjVjEHXixcvdA5qKknkKpDRFRQUpPMLjkoSSc0YlBITE9HOzk4nSRw2bBhevHiRs0BGSaPRYK1atXSSRL5mDLq6du2qkyR26tSJmCTSNW3aNIbXwsICW7duTUwS6dq+fTsxSeQqkNHl7e2ts061atUiJol0ffz4UaeYypck0hUZGYl58uThTBJJBTJKqamp6OTkxJkknj17ljNJpKtZs2acSeLhw4c5k0S6Bg0apJMkUgUyriSRrkWLFukkiXzNGHQdPnxYJ0msX78+Ll26lDNJpOvRo0c6a0w1Yzx79ox3L/748UOnaZkvSaQrLi4OCxUqREwSuYCNUnp6OlauXJmYJHIVyOhq164dMUnkKpDRNW7cOJ3zlu9Cgq5169YxvNSFxOrVqzkvJOi6cOGCznnr6upKbMagy8/PTwfuqQLZo0ePeNc4JCQEc+bMyfA6OTnhuHHjiBcSlJKTk9HR0ZHhtbOzw6FDhxIvJChpNBqsW7cuw1ugQAHs3bs3Hjt2jLNARlevXr0YXmtra+zYsSPxQoKuWbNm6Zy31IUEV4GMrt27d+uct9SFxPv373m9t27d0tmL1IUEVzMGXQEBATrF1AoVKhAb/+mKjo7GfPnyMbz0Zgy+8zYtLQ3LlCnD8Ao1/tPVqlUrhpdqxiBdSNA1fPhwhpcqkO3YsYPzQoKuZcuW6eQ+LVq0IF5I0HXixAmd87ZevXrECwm6nj17prPGfBcSdP3+/VvnIrlMmTI4ceJEzmYMuriKqdSFBKlARkmj0WC1atV0ch++Zgy6OnXqxPDmzp2btxmDrkmTJjG89MZ/rgsJujZv3qxz3lLNGFwXEnRduXJF57ylGv+5LiTo8vf31zlvK1WqhNOnT+e8kKArLCwMc+XKxfDSLyT49mJKSgqWKFGC4RW6kKCrUaNGDC91IUEqkNHVr18/ndxHpVLhrl27OC8k6Jo3b55O7uPm5kZsxqBr//79OnuRr/Gfrnv37unsRaoZg+tCgq5v377pXCRTzRhcFxJ0xcbG6hRTqcZ/0oUEpfT0dKxQoYLOeTtgwADihQRdbdq00cl9+C4k6Bo1apRO7mNI1iQ1/tP18uVLnTWuUqUKsRmDLi7WFGr8p5SUlGQw1uzWrRvDK4U1p0+frpP7ZAVr+vj46KwTxZpczRh08bEmVzMGXRnNmkLNGHRxsSbV+C903g4ePFjnvM0K1jxy5IjOeZsVrPnz50+9WTM+Pp7ImqRmDEp8rElqxqCrffv2Oudt165dic0YdJFYc+vWrYLn7fr163VyHzmsydf4T5cc1gwNDTUYa9arV4/hzSjWFMp9Zs+erXPeimXNPXv26Jy3jRo10jZj8InEmqTGf7oCAgJ0LpKzijXLli2rk/v87ay5fPlyndwnI1iTqxmDrufPn+usMcWaXM0YdJFYk9T4T1dCQoLOgKyhWFOo8Z+uyZMnM7xZxZpXr17VOW8zgjWF6uzh4eFE1iQ1Y1BKSUnBkiVLMrwUa5KaMeiSw5r9+/fXyX0o1hTKfbhYk6/xn64DBw7o7MXswJrsAVk5rFmoUCHRrOnh4aGT+8hlTTF19tWrV+uct2JZ8+zZszp7UQ5r8jX+0xUcHGww1qxdu7bOeZsRrClUZ+djTa7Gf7p27Nihk/tkBWtyDcjKYU2hxn9KqampWLp0aYZXCms2b96c4ZXDmvTGf6HzdvHixTrnbVaw5uPHj3XWOCNYk6vxny45rMk1ICuHNYUa/+kaP368Tu7D1/hPFxdr8jX+03Xx4kWd8/ZvZ01FhpXSOKg0DiqSIeq1QaHpUC5RL0DQC2RCSSIl6heclGYMujp06CA4HUrShAkTBKdDSaJeG+SbDiWJegGCbzqUJOq1QbFJIl3Ua4NUkiimQEaJegFC6CUiLlGvDVJJopgCGV19+vRhTIcKJYl0zZkzR1IzBl3UCxBimzHool6AoJoxhJJEuqjXBoWmQ7lEvQAhNB3KJeq1QSlJIl3u7u6SkkS6RowYISlJpGvFihXaJFFMgYwu6gUIFxcXUc0YdFFTOULToVyiXoCQ0oxBiXptUGg6lEvUCxBC06EkdenSRXA6lKQpU6agsbGxdjpUqEBGF/UCBN9LRCRRrw3yTYeSRL0AITQdyiXqtUEpzRiUqBcgpBTI6GrSpAmjGYNrOpSkAQMGSCqQ0bVgwQLB6VCSqNcG+aZDSaJegOB7iYgk6gUIoelQLlGvDQpNh3KJegFCaDqUJE9PT0nNGHSNGTNG+xIRaTqUJOq1QbGN/3RRL0CIbfyni3oBQmg6lEvUa4NC06Fcol6AEJoO5RL12qDQdChJPXr0kHQhQdeMGTO0FxJiCmR0Ua8N0gtkYr3UCxDlypUT1YxBF1VMFZoO5RL1AoTQdCiXqNcG9Z0ObdGihaTGf7qGDh0q+BIRSUuWLBF8iYgk6gUI6kJCqEBGF/XaoD4FMuoFiOzGmiqVyiCsSb0AkdWsSb0AoQ9rUi9AyGFNKc0YlKgXIOSypthmDLrmzp2b7ViTegHCEKxZvnz5DGFNMc0YdI0cOVJv1ly5cqVs1hTb+E+XIVnT1tb2r2BNKbnP1KlTM4Q1xTRj0EW9NiiHNcU2Y9BFvTaY3Vhz4MCBBmFN6rXBjGBNoWYMuuisKaYZgy7qtUG5rCm28Z+utm3bymZNvpeISKJeG8xOrEm9NpgRrCmmGYMS9dpgRrCmmGYMumbOnCmpGYMu6rVBOawptvGfLuq1waxmTeq1QUOzppjGf7qWLl2aIawpphmDLuq1QbmsKabxny5qQFZf1qxatapBWHPixIkZxppS6uzUa4MZwZpCjf90UawppfGfEvXaoFzWFNv4T1ffvn0NwprUa4P6sCb12mBGsKaUOjv12mBGsKaYxn+6WrduLZs1xTb+00WxptjGf7qo1wYNwZqWlpYGYc2aNWsanDXFNP4r+nukNA4qjYOKZOjly5eSkkS6Pn/+LDgdSlJISAjxa6GElJiYKGpCgksajQbPnDkjOklk69KlS5IKZHTdvHlTUpJI1+PHjyUVyOh68+aNpAIZXd+/f5fUjEFXZGSkpCSRrpSUFDxz5ozoJJEujUaD586dk5Qk0nX16lW9z7S7d+9KKpDR9fz5c0kFMro+fPggqUBG1+/fvyUVyOiKi4uTVCCjKz09HU+fPi26QMbWxYsXJRXI6PLx8ZGUJNL18OFDvZPE169fS7qQoOvLly+SCmR0hYaGSrqQoCspKQnPnDkjukBGF3Xe6vtU95UrVyQVyOi6deuWpAIZXU+fPhWcDiXp3bt3gtOhJP38+VPShQRd0dHRki4k6EpNTcXTp0+LLpCxdf78eUkFMrquX78uqUBG17179yQVyOh68eKFpGYMuj59+iSpQEZXUFCQpGYMuhISEvDcuXN65T7p6el45swZWeetlAIZXTdu3JB0IUHXo0ePJBXI6PLz85NUIKPr69evkgpkdIWHh0tqxqArOTlZVu5z9uxZSc0YdF29elVSgYyuO3fuSCqQ0fXs2TNJBTK63r9/L+lCgq7AwEBJBTK6YmNjJRXI6EpLS8PTp0+LLpCxdeHCBUkFMrq8vb0lNf7Tdf/+fcGXiEgyJGvqm/tkBGvqm/tcvnxZFmtKacagSw5rvn37NtuxppzcR6PR4Pnz5xXWFClDsqbc3Cc7sqaUZgy65LKmlGYMuqjcR1/WPHv2rEFY8/bt2/8ca0ppxqCLyn0U1hSn7MiaGVFn/5dY89u3bwZhTbl19n+RNaU0Y9D169cvhTUl6MGDBwZhzYCAAIOxpqHq7P8aa/748cNgrHnmzBm9cx8595rXrl0zCGv6+voahDX//PmjN2vGx8f/k6wppfGfLkOxZlhYWLZkTUWGVWY0Dhrh/xrjFPHIyMjIHgB+AgD8/PkT7O3tDfwvUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJF/4ICAwPBwcGB+p8OiBgo9880lvsHKFKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYqyj5TGQUWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpOgfktI4qOifUXh4OGg0Gr28UVFRkJqaqpc3Li4OkpKS9PImJydDTEyMXl5EhPDwcL28AABhYWEG8+r7FeoRERGQnp6ulzc6OhpSUlL08iYkJEBCQoJe3tTUVIiKitLLi4jZcp3k7MXIyEhIS0vTyxsbGwvJycl6eZOSkiAuLk4vr0ajgYiICL28ANl3L+q7xtHR0Xqft/Hx8ZCYmKiXNyUlBaKjo/XyGnov6qvw8HC91zgyMlLv8zYmJkbWeRsfH6+XNy0tDSIjI/XyAmTPvSg395Fz3srJfWJjY/XyajSabJn7yNmLcnMfOeetnNwnu563cvaioc5bfXOfxMREvXOf9PT0fy73UVhTmrLjGmdH1kxLS1NYU4IU1sxar8Ka4mTovaivsiNrJiYmKqwpQYZiTbm5j76sqeQ+0qSwpnSvoVhT372osKZ0ryFyH4U1s85ryNpedmNNgOy5FxXWlKbsuMYKayr616U0Dir6Z/Tp0yews7ODQYMGwdmzZyUVg2JjY8HBwQF69OgBhw8fllQMMjIygvLly0P79u1h586dEBQUJNprZmYGzZo1g5YtW8K6devg69evkv7ewYMHQ/369WHp0qXw9u1bSb8sFy5cCNWqVYPZs2fD06dPJf2yPHToEJQtWxYmTpwIt2/flpQQPXr0CIoVKwYjRoyAy5cvS4KT379/g62tLfTr1w9OnjwpqRiUkpICJUqUgC5dusD+/fslwYmpqSlUq1YNPDw8YOvWrfDr1y9J3nbt2kHTpk1h9erV8PnzZ9FeIyMjGD9+PNSpUwcWLlwIr169krTG69atAxcXF5g+fTo8fPhQEpycP38eSpcuDePGjQMfHx9JCZGfnx84ODjAkCFD4Pz585LgJCIiAuzs7KBXr15w9OhRSQmRRqOB0qVLg0qlgt27d0NISIhor5mZGdSrVw/c3Nxg48aN8OPHD9FeY2Nj6NWrFzRs2BCWL18O79+/l7ROs2fPhho1aoCXlxf4+vpK8u7atQvKly8PU6ZMgXv37knai7du3YISJUrAqFGj4OrVq5Lg5MuXL2BrawsDBw6EM2fOSIKT+Ph4cHR0hO7du8PBgwclwYmxsTFUrFgR2rVrB9u3b4c/f/6I9pqZmUGrVq2gefPmsHbtWvjy5Ytor5GREYwYMQLq1q0Lixcvhjdv3khap6VLl0KVKlVg1qxZ8OTJE0nn7fHjx8HZ2RkmTJgAt27dkrQXnz59Co6OjjB8+HC4dOmSpPM2KCgIbG1toW/fvnDixAlJxaDU1FQoWbIkdO7cGfbu3QuhoaGivWZmZlCzZk1o06YNbNmyBQIDA0V7TUxMoFOnTtCkSRNYuXIlfPz4UbQXAGDSpElQu3ZtmD9/Prx8+VLSGm/atAkqVqwI06ZNgwcPHkg6by9fvgxOTk4wZswY8Pb2llQM8vf3B3t7exg8eDCcO3dO0nkbHR0N9vb20LNnTzhy5IjkYlDZsmWhQ4cOsGvXLggODhbtMzMzg8aNG0OrVq1gw4YN8O3bN9FeY2Nj6N+/PzRo0ACWLVsG/v7+ktZp3rx5UL16dZg7dy48e/ZM0l7cv38/lCtXDiZNmgR37tyRdN7evXsXihcvDiNHjoQrV65IOm9//PgBdnZ20L9/fzh16pSk8zYxMRGKFSsGXbt2hQMHDkjKfUxMTKBKlSrg6ekJ27Ztg9+/f4v2mpqaQuvWraFZs2awZs0aCAgIEO01MjKC0aNHg6urKyxatAj8/PwkrfGqVaugcuXKMHPmTHj06JGkNT59+jQ4OzvD+PHj4ebNm5LO25cvX4KDgwMMGzYMLly4IKkYFBoaCra2ttCnTx84duyY5NzHyckJOnbsCHv27JF83rq6uoK7uzts2rRJUu5jYmIC3bt3h0aNGsGKFSvgw4cPor0AANOnT4eaNWvCvHnz4MWLF5LWeNu2bVChQgWYOnUq3L9/X9J56+3tDSVLloTRo0fD9evXJe3Fv4E1d+zYkeWsWa9ePViyZEmWsubhw4ehTJky2Zo1pRRm5bCmiYkJtG/fXsuanz59Eu01JGteuHABnJycYOzYseDj4yMp95HDmpGRkQZjzfr162tZ8/v376K9hmTN3bt3a1nz7t27WcaaX79+BVtbWxgwYACcPn06S1mzUqVK0LZtW71Y083NzSCsuWzZMoOw5rNnzxisKSX3MRRrmpqaQq1ataB169awefNm+Pnzp2ivXNacPHky1KpVK8tZ88qVK1CqVCm9WPP9+/cM1pSS+2Qka0rNffRlTSMjIxgwYAA0aNAAli5dCu/evcsWrHn//n0Ga0rJfeSwZlJSksFYs02bNnqz5pgxY7Ss+fr16yxjzTNnzoCzszOMGzcObty4kWWsGRYWBnZ2dtC7d+9sxZo9evQwCGtu377d4Kx55syZbMOazZs3hxYtWmQ5ay5atAiqVq2a7VjTzs7OIKxZvXp18PDw0KvOri9rAgBMmDAB6tSpAwsWLMg2rPnmzRuwt7fPctZERHB2djYIa/bu3VvLmlLr7HPmzIEaNWrA3Llz4fnz51nGmrdv34YSJUqAWq3OUtZMSEgAR0dH6NatW7ZizZEjR+rNmor+g0JEJQQCAOwBAAEAf/78iYqyr9zc3JBaSwsLC3R3d8dNmzbhjx8/BL3Dhw/Xek1MTLBRo0a4YsUK/PDhg6B3+fLlWi8AYM2aNXHevHn44sUL1Gg0vN6TJ08yvBUqVMCpU6fi/fv3MS0tjdf7/PlzhrdEiRI4evRovH79OiYnJ/N6f//+jTly5NB6ixQpgoMGDcKzZ89iXFwcrzchIQGLFi2q9ebLlw979OiBhw8fxsjISF6vRqPB6tWra705c+bE9u3b486dO/HPnz+8XkTETp06ab3m5ubYsmVLXLduHX79+lXQO3nyZK3X2NgY69evj0uWLMG3b98KrtOWLVsYn3XVqlVx9uzZ+PTpU0xPT+f1Xr16leEtW7YsTpw4EW/fvo2pqam8Xn9/fzQ2NtZ6HR0dccSIEXj58mVMTEzk9YaHh2OuXLm03oIFC2K/fv3w5MmTGBMTw+tNSUnBkiVLar25c+fGLl264P79+zEsLIzXi4jYuHFjrTdHjhzo4eGBW7duxcDAQEFv//79tV5TU1Ns2rQprl69Gj9//izonT9/vtZrZGSEderUwYULF+KrV68E1/jAgQOMdXJxccEZM2bgw4cPBdf4/v37DK+TkxOOHTsWfXx8MCUlhdf7/ft3NDMz03ptbW1xyJAheP78eUxISOD1xsbGoo2NjdabP39+7NWrFx49ehSjoqJ4venp6VixYkWt19raGlUqFe7evRuDg4N5vYiIHh4ejPPWzc0NN27ciN+/fxf0jh49mnHeNmzYEJcvX47v378X9K5evZrxWdeoUQO9vLzQ19dXcI3Pnj3L8JYvXx6nTJmC9+7dEzxvX716xfAWL14cR40ahVevXsWkpCReb3BwMFpaWjLO24EDB+Lp06cFz9ukpCS0t7fXevPmzYvdunXDgwcPYkREBK9Xo9Fg7dq1tV4rKyts164dbt++XdR52717d63XzMwMmzdvjmvXrsUvX74IeqdPn87Yi3Xr1sXFixfjmzdvBNdpx44djM+6SpUqOGvWLHzy5IngXrxx4wbD6+zsjBMmTMBbt24JnrefPn1CExMTrdfBwQGHDx+Oly5dEjxvIyMjMW/evFqvjY0N9u3bF0+cOCF43qampmLp0qUZ523nzp1x3759GBoayutFRGzevDnjvG3Tpg1u3rxZVE47ePBgxl5s3Lgxrly5Ej9+/CjoXbx4MWONa9eujfPnz8eXL18KrvHRo0cZ61SxYkWcNm0aPnjwQHAvPn78mOEtWbIkjhkzBr29vQVzn8DAQDQ3N9d6ixYtioMHD8Zz585hfHw8rzc+Ph4LFy7MOG979uyJR44cEZX7VKlShZH7dOjQAXft2iXqvO3QoQMj92nVqhVu2LABv337JugdP348I/dp0KABLlu2DN+9eye4Ths2bGB81tWrV8c5c+bgs2fPBL0XL15keMuVK4eTJ0/GO3fuCO7FN2/eoJGRkdZbrFgxHDlyJF65ckXwvA0NDcWcOXNqvYUKFcL+/fvjqVOnMDY2ltebnJyMxYoV03rz5MmDXbt2xQMHDmB4eDivV6PRYP369bVeS0tL9PT0xG3btuHv3795vYiIvXv3ZuQ+zZo1wzVr1mBAQICgd86cOYy96OrqiosWLUI/Pz/BddqzZw9jnSpXrowzZ87ER48eCZ63t2/fZnhLly6N48ePxxs3bgjmPl++fEFTU1Ot187ODocOHYoXLlwQzH2io6Mxf/78jPO2T58+eOzYMYyOjub1pqWlYbly5bTeXLlyYceOHXHPnj0YEhLC60WUx5ojRoxgnLfZgTV9fX0Z3qxizcTERE7WPHTokKjcRw5rdu7cmXHeSmHNKVOmMM7bevXqZQlrXrt2jeEtU6ZMlrFm7ty5tV4prJmammow1hwwYADjvG3atCmuWrUKP336JOiVw5oHDx5krJOLiwtOnz79r2bNuLg4g7Gmp6cn47zNKtZcs2YN47OmWPP58+d6sebkyZPx7t27mc6aVlZWWm/hwoVxwIABWcKaderU0XqtrKywbdu2uH37dlG5jxzWnDFjBmMvZmfWvHjxYqazprOzM+O87dy5M+7du1cv1mzdurVo1hwyZAhjL0phzSVLljA+61q1amUJaz558oThzc6suXPnTgwKCuL1IspjzQkTJjBynwYNGuDSpUsznTUvXbrE8JYtWxYnTZokijXfvn0rizWtra21XqmsWbx4ca03K1mzT58+jNyHYk0xdXY5rLl3717GOklhzTt37jC8pUuXxnHjxmU6a8bExDBYs0CBAti7d+8sYU13d3dG7pNVrLlixQrGZ50RrCmmzi6HNf/8+cPJmmfOnMl01qxRowYj92nXrh3u2LFDMmuamZlhixYtsoQ1t27dyviss4o1379/bzDWLFWqFCP3kcuaW7ZsyXTWXLBgAeO8rV27Ni5YsCDTWfPBgwcMb6lSpbIFa1aqVEnrzUrWHDNmDOO8pVjT399fcJ3ksOa5c+cYXims+fr1a4a3ePHiqFarRbGmIsPq58+f9LWzx4zoicuIP+S/HqA0Dv5n9PDhQ8YBSA+qGPT48WPOX5Y/fvxg/JKjB1UMunnzJmdCFBcXhwULFuT0ChWD0tPT0cXFhdNLXYQdP36cCCdt27bl9ObKlQs7derEWwwaO3Ysp1dMMWjt2rWcXjHFoPPnzxPXSagYxP4lRw+hYlBISAijoEoPoWJQcnIyOjg4cHqFikEajQZdXV05vVQxiK/psmfPnpxeMcWgmTNncnqpi7D169cTi0G7du3i9FJNl3zFoJs3bxLXqVq1arzFoM+fPzMKqvQQKgZFRUVhvnz5OL1CxaC0tDRGQZUeYopBLVu25PTSi0EkOBk6dCinl14M+vXrF6d36dKlnF4xxaDjx49zeqli0MKFC/H169ec6/T06VPiGleuXBlnzJhBLAb9+vULLSwsOL1CxaCEhAQsUqQIp1eoGKTRaLBq1aqcXjHFoI4dO3J6ra2tBYtBEydO5PSKKQZt2rSJeN4KFYMuX75MXCeqGERqunz37h2joEoPoWJQWFgYo6BKjxIlSuCoUaPw2rVrnOdtSkoKo6BKD6rpklQM0mg02LBhQ05v3rx5sXv37rzFoL59+3J6xRSDvLy8OL1iikH79u0jnrdCxaC7d+8S11ioGPT161dGQZUeQsWgmJgYLFCgAKeXKgaRmi7T09OxfPnynF6qGMR3Eda6dWtOL1UM2rdvH/G8VavVnF6q6ZKvGLRy5UriedukSRPeYtDp06eJ561QMejFixfENa5UqRJvMejPnz+MxmV6CBWDEhMT0c7OjtMrVAzSaDRYs2ZNTq+YYlDXrl2J561QMWjq1KmcXnNzc3Rzc8MNGzYQi0Hbtm0jnrcNGzbEZcuWEYtB3t7exHWqUaMGzp07l1gM+vDhA6OgSg+hYlBkZCTmyZOH0ytUDGIXVOkhpvGgadOmxPNWqPFg0KBBxPNWqPFg4cKFxPOWajwgNV0ePnyYuBepxgPSRZhc1qRfJtPD2dkZx48fjzdv3uTci3ysaW9vj8OGDcs01mzXrh2nN7NZc926dcS9mJms6efnR/RSrElqugwJCWE0LtODYk3SRZgY1jx79iyRNevWrcvpzZcvX6ay5qxZs4jn7d/KmgEBAQZjzTJlynB6M5s1hw0bxumlWHPr1q16sybfgJ8c1nz27BlxjakBP4U1/1+TJk3i9GYUa5KaLq9cuUJcp8xmTfqQLD3+Ztbs168fpzezWXP//v3E85ZiTVLTpRjWJDVdfvv2TZA1SU2XsbGxROcmI5IAAQAASURBVNZ0cHDIVNZs06YNp5c+4JcZrLlq1Sriefs3sCbXXgwKCsp01iTlPrVq1eL0ZgRr8g34TZs2jdMrhjW3b99O3IvUgJ8+rFm9enVe1vz48SORNakBv8xiTScnJ04vnTVJuY8Y1iQ1XcphzUWLFhHP28xkzUePHhHXuEqVKjhz5sxMY81ChQpxev9m1hw3bhzxvM1M1rxw4QJxnSjWJDVdGpI1HR0dOb1FixbVDvjpw5pCj8n06tWL00sf8MsM1ty9ezfxvM0o1uTai3JYMzo6msiajo6Oslnz5MmTxPO2VatWnF6KNfmaLvlYkxrwI7HmsmXLOL1iHpM5ceIE8bylBvwygzXZQ7L0cHJyylTWrFatGqeXzpqk3EcOayoynJTGQaVxUJEMHTt2DNVqNWMSgRTsYpCPjw+q1WrGpC0p2MWgly9folqtxgoVKgh62cWgwMBAVKvVxKYyerCLQQkJCahWq4m/1NkJEbsYNGXKFOzSpYugF0C3GLRs2TIcOHCgKG+ZMmUYE7g7d+7EkSNHEmGGHuzXns6ePYtqtZpYPKJHwYIFGRO49+7dQ7VazXjZgBTsYpC/vz+q1WrGBCcp2MWgkJAQVKvVxOIiPdjFII1Gg2q1mjEBQQp6MYi6CJs9ezbxIogd7GLQ2rVric1s7KCKQd7e3piSkoIHDx5EtVpNhBl6UMUgqunyypUrqFarGZNfpKBP4EZFReHTp09RrVYTk2R6sItBX758QbVaTWxyoAd9Avf79+8YExODarWaMYnNtxfZxaDx48ejSqUS9Vmzi0ELFy4kFp/ZQS8Gpaam4tatW3HEiBFEmKEHuxh04sQJVKvVjKl3UrCLQTdv3kS1Wk0EVnqwi0GvX79GtVrNeL2CFJaWlti2bVvtBO7v379RrVZjvXr1BL1mZmaM156Sk5NRrVYzpj/59mLdunUZE7jTpk0jFibZQU3gUsWglStXMl6F4wvqtSeqGLRnzx4cOXIk8eKMHuxi0Pnz51GtVhMbFejBLgY9fPgQ1Wo1sRmFHuxi0MePH1GtVhNBiB4WFhaMYlB4eDiq1WrGZCAp6MUgquly1KhRxGZ8dtSqVYsxgevl5cV4MYwv2MWgDRs24LBhw4gXZ/QoWbIkYwL38OHDqFariU2a9GAXg65fv45qtRptbW0FvexikK+vL6rVasY0NSnYxaDv37+jWq1mvIZJCnYxKC4uDtVqNbZo0ULQy1UMmjRpEuPlYr6gikFU0+WSJUsYk6N8QRWDqKbL7du348iRI4kXZ/SgT+AmJSXh6dOnUa1WM6beScEuBt25cwfVajXxcpQe7Anct2/folqtJhaB6cEuBgUFBaFarWa8ikAKdjEoLS0N1Wo18cKOHlzFoJkzZzJesOELdjFo9erVjJdR+IJdDNq/fz+OHDmSeHFGD3Yx6NKlS6hWqxmvjJCCKgZRF2GPHz9GtVrNeLWUFPSmy5CQEAwICEC1Ws2YmCcF1XiwceNG/PHjB0ZFRaFarSZe5tCD67WnsWPHYvv27UV91uyXhefPn09s8mYH+2XhzZs34/Dhw4kXZ/RgNx5kBGuSGsPowWbNV69eZSlrUq89JSYmolqtZryySIqMYE36a0/Lly8nXvaxIzNYkz71Tgo2a96/f98grBkaGopqtRobNWok6DU0a9IH/NatW5dlrEkf8Msq1mS/LPz161dUq9XEJgd6/E2suWjRoixhzWLFiqFardZehGUVa+bJkwe7deumfe3Jz88P1Wo14/UKUrBfe8pK1mS/9jR9+nTs1q2bqHXKDNYkXZzRIzNYk9SMQg+KNamLsKxmTfqA3+jRo4kNEuyQw5rsl4WlsCb7tacjR47IZk1SYxg9/gbW/Pr1K8bHx6NarSY2atPD0KxJH/DbsWNHlrAm/bUnQ7JmcHAwqtVqbNCggaD3b2BNasBvzZo1onOfjGBNasAvu7Am/bUnQ7LmggULsoQ1qZeFr127hklJSdmKNalvsckq1uR6WXjq1KlZwprsl4V37dqlN2ueO3cuy1kzNDQU379/j2q1mjjcQo+MYk2q6dKQrCmlzk5/TMZQrPns2TNUq9VYtmxZQW9Gsea3b9/0Zk0q95kwYYIs1qR/8xxfsL/FhmJNMbmPHNZkD/jdunUL1Wo149tqSGEo1mR/i01KSoos1lRkWCmNg0rjoCIZGjlypKhfMuywsLAQ9QuZK0xMTEQl1qSQ49X33wzwv2KQmOIeVxQtWlRUgssV+fLlE1XA5YqcOXOKAlWuMDc3J06bCoWxsbGoJqXMWGMxlxKkcHR0JE5gC0XBggWJkw9CkTt3bixRooReXktLS71/ZlNTU73X2MjISNY66fv3AvyvGER66VQo7OzsRBX3uCJ//vyiGqW5wtraWlRDGFf8i+dt8eLFiS+dCkWRIkWIU59CkTdvXlEQwxVWVlbE1zeFwszMLFvuRWdnZ1EFBa5wcHAgTmALRcGCBUUVFLgid+7coopGXJEjRw69/7s2NTXVe52MjIxk/U4Vc3lEipIlS4oq7nFF0aJFRQ0tcEX+/PlFFXC5ImfOnKIuRbnC3Nxc78/L2Ng4W563xYoVE3WxyRWFChUSdZnCFXny5BF1YcYVlpaWep+32TX3KV26tKhGEq6wt7cXVdzjChsbG1GX11yRK1cuJfeREHJYs0iRIqIaSbjiX2RNOXvRkKwpJ/fRlzVz5MihsKaEsLW1NRhr6pv7/IvnrcKa4uNfZE0bGxtRQ2JcYSjWNDExkbXGCmuKD4U1pUV2Zc1/LfeRw5p2dnYKa0oIhTXFh5WVlcFY01B7UWFN8SG3zm6oNS5VqtQ/x5r65j7Z9bylmtyVrzQ2nDKjcdAI/9cYp4hHRkZG9gDwEwDg58+fYG9vb+B/kSJ9pFarYePGjYb+ZyhSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSlK1kZGQEtWvXhp49e8LQoUPBzMzM0P+kf0qBgYHg4OBA/U8HRAyU+2cay/0DFCn6L6ty5cowc+ZMGDNmjGRv6dKlYfz48TBv3jzJXjs7Oxg2bBisW7dOsrdAgQLQp08f2Lt3r2Rvrly5oFOnTrBnzx7Inz+/JK+FhQW0bt0aNm/eDC4uLpK8JiYm0LhxY1ixYgW4u7tL8gIA1KxZE+bNmwf9+/eX7K1QoQJMnToVJk+eLNlbokQJGD16NCxdulSyt0iRIjBo0CDYsmWLZG++fPmgR48ecOjQIcleKysraN++PezcuZP+C0WUzMzMoGXLlrB+/XpwdXWV5DU2Nob69evDkiVLoGPHjpK8AADVqlWDOXPmwPDhwyV7y5YtCxMnToRZs2ZJ9jo4OMCIESNg1apVkr0FCxaEfv36wa5duyR7c+fODV26dIH9+/dDzpw5JXlz5MgBHh4esHXrVihTpowkr6mpKTRt2hRWr14NzZo1k+Q1MjKCOnXqwMKFC6Fnz56SvAAALi4uMGPGDBg3bpxkr5OTE4wbNw7mz58v2WtrawtDhw6FDRs2SPbmz58fevXqBfv375fstba2BpVKBbt374aCBQtK8pqbm4Obmxts3LgRqlWrJslrYmICDRs2hOXLl4OHh4ckLwBAjRo1wMvLCwYNGiTZW758eZgyZQpMnTpVsrd48eIwatQoWL58uWRv4cKFYeDAgbBt2zbJ3rx580L37t3h4MGDYGwsLW22srKCdu3awfbt26FEiRKSvGZmZtCiRQtYu3Yt1K9fX5LXyMgI6tatC4sXL4bOnTtL8gIAVKlSBWbNmgVqtVqy19nZGSZMmABz586V7LW3t4fhw4fD2rVrJXttbGygb9++sHv3bsneXLlyQefOnWHfvn2QO3duSd4cOXJAmzZtYPPmzVCxYkVJXhMTE2jSpAmsWrUKWrZsKclLQfn8+fOhT58+krwAAJUqVYJp06bBhAkTJHtLliwJY8aMgUWLFkn2Fi1aFAYPHgybNm2S7M2XLx/07NkTDhw4INmbM2dO6NChA+zatQtsbW0lec3NzaFVq1awYcMGqFWrliSvsbExNGjQAJYtWwbt27eX5AUAqF69OsydOxeGDBki2VuuXDmYPHkyzJgxQ7LX0dERRo4cCStXrpTsLVSoEPTv3x927Ngh2ZsnTx7o2rUrHDhwACwsLCR5LS0twdPTE7Zt2wZOTk6SvKamptCsWTNYs2YNNG7cWJLXyMgIXF1dYdGiRdCtWzdJXgCFNaXIwsIC3N3dYdOmTVC5cmVJ3r+BNadMmSLZmxGsuXXrVsleQ7PmunXrspw1q1atCrNnz4YRI0ZI9mYEa65evVqy929gzbJly0ryZhRr9urVS5IXQB5rlipVCsaOHQsLFiyQ7LW1tYUhQ4boNcScUaxZqFAhSd6MYk1PT09JXoB/jzXz5MkD3bp1g4MHD4KJiYkkr1zWbN68OaxduxYaNGggyUtnzS5dukjyAiisKUVyWbNx48awcuVKaNWqlSSvXNasWLEiTJs2DSZOnCjZmxGsuXnzZsleijUPHjwo2ZudWXPOnDkwdOhQyd5/mTVLly4tyZtRrNm9e3dJXgDDsubQoUNh/fr1kr1yWNPa2ho6duwIe/bsgQIFCkjyymXNRo0awYoVK6B169aSvAD/z5oDBgyQ7FVYU7zksma9evUMwpplypSBiRMnwuzZsyV7/1XWXLVqFTRv3lySNyNYc/r06TB+/HjJ3uzOmkFBQfDw4UNQq9VK0+B/RRnxbOF/PUD5quL/hGJjY/Hr16+8X+FgYWGB7u7uuGnTJvz+/bvWm5CQgMHBwbzPgpuYmGCjRo1wxYoV+P79e603KSkJQ0NDsUmTJrzPutasWRPnzZuHvr6+2u+GT01NxdDQUOzXr5/gU7RTp07Fe/fuYVpaGiIipqenY2hoKM6ZM0fUc7LXrl3D5ORk7b87LCwMd+3axestUqQIDho0CM+cOYNxcXFab2RkJHp7e/N68+bNi927d8dDhw5hRESE1hsdHY1v377l/QoHKysrbNeuHe7YsQP//Pmj9cbFxWFgYCDvk+JmZmbYokULXLduHX758kXrTUxMxJCQEHRxcSF6jY2NsV69erhkyRJ8+/atdp2Sk5MxNDQUPT09eX/mqlWr4uzZs/Hp06eYnp6OiIhpaWkYGhoq+FXaZcqUwYkTJ+KtW7cwNTUVERE1Gg2Ghobi8uXLeb0ODg44YsQIvHTpEiYmJmp/5vDwcDx69Civt2DBgtivXz88ceIExsTEaL1RUVH48OFDXm/u3Lmxc+fOuG/fPgwNDdV6Y2Ji8NOnT5gzZ06iN0eOHOjh4YFbtmzBwMBArTc+Ph7//PnD+1Ubpqam2KRJE1y1ahV++vRJZy/WrVuX6DUyMsLatWvjggUL8NWrV9o1TklJwdDQUOzWrRvvz1ypUiWcPn06Pnz4ULvG1F6cMmUKr7dUqVI4duxY9PHxYezF0NBQ3LRpE6/X1tYWhwwZgufPn8f4+HitNyIiAi9evMjrzZ8/P/bq1QuPHDmCkZGRjL348uVL3q9wsLa2RpVKhbt378bg4GCtNzY2Fr9//4758uUjes3NzdHNzQ03bNiA375903oTEhIwJCSE9/l2Y2NjbNiwIS5fvhz9/f2160StcYsWLXh/5ho1auDcuXPx+fPnOuftoEGDeL3lypXDyZMn4927d7XnLbUX58+fz+stVqwYqtVqnee7w8LCcN++fbzewoUL44ABA/D06dMYGxur9UZGRuKtW7d4vXny5MFu3brhwYMHMTw8nLEX/f390cLCgui1tLTEtm3b4vbt2/HXr19ab1xcHP769Yv3a8vNzMywefPmuHbtWgwICNB6qfO2atWqvHuxbt26uHjxYvTz89PZix06dOD9matUqYIzZ87Ex48f65y3Y8eO5fU6OzvjhAkT8ObNm5iSksLYi6tWreL12tvb47Bhw/DixYuYkJCg9YaHh+OpU6d4vTY2NtinTx88fvw4RkdHa71RUVH4+PFj3q+vypUrF3bq1An37t3LOG9jY2MxICCA9yscLCwssHXr1rh582ZGnhsfH49BQUG8X3tjYmKCjRs3xpUrV+KHDx+0XmovNmjQgPdnrlWrFs6fPx9fvHihsxd79+7N661YsSJOmzYNHzx4oJP7zJgxg9dbsmRJHDNmDF6/fl0n99m2bRuvl8p9zp49y8h9IiIi8OrVq7zefPnyYc+ePfHw4cM65+3r16/R1NSU6M2ZMye2b98ed+7ciUFBQYy9+PPnT96vrzI3N8eWLVvi+vXr8evXr1ovdd7yffWEsbEx1q9fH5cuXYrv3r3TyX3c3d15f+Zq1arhnDlz8NmzZ9q9SK3xsGHDeL1ly5bFSZMm4Z07d3Ryn8WLF/N6HR0dceTIkXj58mWd3OfgwYO83kKFCmH//v3x1KlTjNwnMjIS7969y+vNkycPdu3aFffv349hYWFab0xMDH748AEtLS2JXktLS/T09MRt27Yxztv4+Hj8/fs371cbmZqaYrNmzXD16tX4+fNnrTcxMRFDQ0OxVq1aRK+RkRHWqVMHFy5ciK9fv9Y5bzt16sT7M7u4uOCMGTPw0aNHOuftxIkTeb1OTk44btw4vHHjhs55u379el6vnZ0dDh06FC9cuMA4byMiIvDs2bO83gIFCmDv3r3x2LFjGBUVpfVGRUXh8+fP0djYmOi1trbGjh074p49ezAkJETrzQjW5PtKFIo1ly9fbhDWnDJlCidrzp07l9crhzULFy6MAwcO5GRNHx8fXm9msibfV3cKsWblypWJ3oxizSdPnujsRbVazevNLNY8duwYr9fGxgb79u1rENZs06YNkTX5vmYsM1mze/fuvD9zZrHm5s2beb0Ua547dy5LWTNnzpyoUqlw165djNwnK1izQYMGuGzZMgZrUntRiDWrV6/+17Hm/v37eb2ZyZp8XxeYmaxZrVo13r1Yt25dXLRoUZazZunSpXH8+PGcrLl69Wpeb2ax5pMnT0SzJjv3kcuafF/5J8SaDRs25P2ZM4I179+/r5P7zJw5k9ebWax57do1Xm++fPmwR48efx1r8n19XmawJrUXhw8fzuvNLNY8dOgQr5dizZMnT+qw5r1793i9cliTqrNv3bqVM/cxFGt27tyZ92fmYk1qLxqKNc+dO8frzSjWZNfZv337ZjDWbNq0Ke/PXKNGDfTy8jIoa7Jzn927d/N6/wbW/P37t9ablaz55s0bnfO2bdu2vD+zXNacMGECgzWpvbhixQpeb2ayplDuY2jW/Pjxo85ezArW5KqzT506lddLsaa3t7dO7iOHNS9dusTrpersJNYUyn3ksGarVq2IrMn39b+ZyZqDBw/m9dJZk5376MuaigyrzPiqYoM35WWHAKVx8D+jpUuX6hx4VJLILpCxxZWIUEkiu0DG1tOnT3W8VJK4fft2RpLI1q9fv3SaOkgFMrYSEhJ0Cm30Zgx6ksiWRqPhbOqoUqUKzpo1i5EkckmlUul4qWYMdpLIFhf42dvb4/Dhw3WSRLY2btyo46UnifQCGVuXL1/W8ZKSRLbevXunk2zSk0S+syMsLAytra0ZXhMTE84kka2UlBSdpg4qSZw/fz6+fPmSd425mjq4mjG41LdvXx0vVSBjJ4lseXl56XiLFi2KgwcP1kkS2eJqsCIliWxxXfjnzJkTO3TooJMksvX161edZJOUJLIVExOjU2ijJ4n0AhlbaWlpnE0dVJL47NkzohcRsXXr1sQkkV4g4xIX+FEFsitXrvAmiStXrtTx0psx+M7b06dP63ipAtmBAwd4z1tfX18dL6kZg60/f/7oFNqoAtmaNWsYBTK2EhMTdQptRkZG6OrqqnMhwZZGo8GaNWvq/LsrV66scyHBpa5du+p4SRcSbHGBn52dHQ4bNkynQMYWV9G7QIEC2KdPHzx27BjveXv9+nUdL6kZg60PHz7oFNroBbIfP34QvZGRkTqFNnrjP/1Cgq3U1FTOAQKqGYN+IcElrkIb1fhPv5Dg0sCBA3W8JUqUwNGjR+tcSLC1cOFCHS/pQoItrqI3/UKCXiBji+vC38rKSnshQW/GYOvHjx86hTYzMzNs2bIlrlu3jnEhwVZcXJzOAAF1IcFuxmArPT2dc4CAq/GfS1yFNqoZ4/bt27znLdclI1UgY19IsLVu3TodL9X4z76QYOv8+fM63ty5c2OXLl10LiTY8vPz0/GSLiTYCgkJQSsrK53ztmnTprh69WpGMwZbycnJOgME9AsJeoGMLY1Gg66urjr/bhcXF51mDC717NlTx0tvxuA7b2fNmqXjJTX+s8XVYEU1Yxw9epRxIcHWzZs3Oc9brsZ/tj5//qzT1EE1Y2zcuJFxIcFWVFSUTqHNxMRE2/j//v173tyHq6mD60KCSy1bttTxli9fHqdMmcJoxuASV0MrdSEhVCCTw5rHjx/X8ZKaMdjiYk16M8Z/kTU7duyo480K1uQa5qFYk92MwdaVK1d0vBRrshv/2eJjTXYzBlthYWE6TR0Ua65cuTJTWZOrqeNvZ02uBqusYM1v374ZhDXT09OJrEk1Y+jDmuxmDC7JYU2uYZ6sYM0XL15wnreGZk16MwZbGo2Gs6mDYk16MwaX+FiT3YzB1rRp03S8WcGaXIPM2YE1uZo6soI1uRpaKdZkN/6zxcea7GYMtg4fPsx53vbo0UOnGYOtR48e6Xgp1mQ3/rMlxJr0Zgy24uLidJo6SI3/bMllzXbt2ul4/3bWvHDhgo43q1iT3dSREazJbsZgS6PRcDZ1iGXNXr166XizgjW5GqyygjUDAgJ4WZMv9+FiTdKQOVtCrElvxuBSq1atdLxZwZrLli3T8ZIa/9mSw5rPnj3T8WYH1uQaIMgo1uTbi5MmTdLxUqzJbvxny1Cs6e/vr8OapMZ/tkisSTX+C7Em1wAB1fifmazJ1dD6t7MmV3N5RrEmX509NjaWyJrsxn+2SKxJb/znO2/btGmj4+Vq/OfSqFGjdLxZwZpnzpzhPG8zmzWDgoIMwpqKDCulcVBpHFQkQ7GxsWhjY6NNEsU0Y1BKT0/XTsiJbcagy8PDQ5skck2H8mn06NHaJJFrOpRP1LQq6SUiPlEvdYhNEul6+fKlTpLIVyCjKzg4WPsLjms6lE9JSUnaX3Bc06F80mg0WLt2bUaSKNSMQRc1sSG2GYOu6dOnM5JE9nQon3bs2KFNErmmQ/lETU+RpkP59OnTJzQxMSFOh/IpMjIS8+bNq5MkitmLqampWLp0aUlJIl3NmzdnJIlCBTK6qIkN0ktEfKKmVUnToXw6cuQIAogvkNH1+PFjRpLIng7lU2BgIJqbmxOnQ/kUHx+vLaZyTYfySaPRYJUqVRCAPB3Kp/bt2yMAeTqUT+PHj0cA8nQonzZs2IAA5OlQPlEvdZCmQ/n05s0bNDIyIk6H8ik0NFRbTOV6iYhPycnJWKxYMQTgng7lk0ajwXr16iEAeTqUT9TrAKTpUD5Rr/CSpkP5tGfPHgQgv0TEp9u3byMAeTqUTwEBAWhqair6QoKu6OhozJ8/PwJwT4fyKS0tTTshR5oO5ZObmxsCkKdD+TRixAhGgYw9Hcon6mUk0ktEfDp58qT2vOWaDuXT8+fPteetmMZ/un7//o05cuQgTofyKTExEYsWLYoA3NOhfNJoNFi9enUEIL9ExCfqdQDSdCifJk+ejADkl4j4tGXLFm3uwzUdyifqVUixzRh0+fv7o7GxMXE6lE/h4eGYO3duBOCeDuVTSkoKlixZEgG4XyISUuPGjRFAv+nQ/v37a3OfAQMGCBbI6KKmVcVeSNBFvQpJXUgIFcjoun//vva8FXMhQdf379/RzMyM+BIRn+SyZsWKFbMda65Zs0aHNfmaMeiSw5qvXr0yGGva29vrzZp16tRBAPGN/3TJYU3qFV7SS0R8ksOaN27cyFDWFJv7yGVNZ2dnBmsKNWPQJYc1hwwZwmBNoWYMuuSwJvUNBHJZU0wzBl1yWbNw4cIGYU3qJbqMYE2hZgy65LAm9VIHxZpCjf90yWVNakBWbOM/JbmsWb9+/WzHmnv37tVhTb5mDLrksOaXL190WJOvGYMuNmuKacaglJaWhuXKldObNamX6BwcHEQ1/tMlhzWpl5HEDpnTJYc1qQHZjGJNvmYMuuSyZo0aNRisKdSMQZcc1qRe4RXbjEEXnTXFNGPQRb0KqQ9rvn//3iCsSR+Q5XqJSEhyWHPAgAEZxppCzRh0yWHNBw8eSGrGoEsOa8bFxWlZU+yQOSW5rEm9ei6HNanG/6xiTepVSDpr8jX+0yWXNakB2Vq1aolq/KdEZ02xjf+U5LJmjx49DMKaO3fu1OY+YobM6fqbWFOo8Z+SXNakXqIT2/hPlxzWXLJkibbOLqbxny45rPnkyRNZrGlhYfFXsKZQ4z9dclhzwoQJGcKaYhr/Ff09yozGQVNQpOgfka+vL8ybNw88PDzAwcFBkvf9+/fQv39/8PT0BGdnZ0nekJAQqF27NsyfPx8qV64MRkZGor1JSUmQP39+uHfvHtSpUwdMTExEexERkpKS4Pr169CwYUMwNzeX9O/++fMnnDlzBpo3bw45c+aU5H3z5g0cOnQI3NzcIF++fJK8z58/h/Xr10ObNm2gSJEikrwvX76EKVOmgIeHB5QoUUKS98uXL9ChQwfYtWsXlCtXTtI6RUVFQdmyZeHp06dQrVo1MDY2Fu1NTU2FHDlywO3bt6Fu3bpgair+WEZEiIqKgsuXL0Pjxo0hR44cor0AAAEBAXDixAlo2bIl5MqVS5L35cuXsGfPHnB3d4cCBQpI8vr6+sKSJUvAw8MD7OzsJHnfvn0Lw4cPB09PT3BycpLk/fXrFzRu3BhWrlwJlSpVkrTG8fHxYGdnBw8fPoRatWpJWmONRgPp6eng4+MDDRo0ADMzM0n/7uDgYDh//jw0bdoUrKysJHn9/f3h6NGj0KpVK8iTJ48kr6+vL2zduhVat24NhQoVkuR98eIFzJkzBzw8PMDR0VGS9+PHj9CzZ084fPgwlClTRtI6hYWFQbVq1WD27NlQpUoVSd7k5GTInTs33L17F1xdXSWft3FxcXD16lVo1KgRWFhYiPYCAHz//h1Onz4NzZs3B2tra0lePz8/OHDgALi5uUH+/PkleZ8/fw5r1qyBNm3aQNGiRSV5X79+DePHjwcPDw8oWbKkJO/379/Bw8MDtm7dCuXLl5e0TjExMeDk5ARPnjyB6tWrS9qL6enpYGpqCjdv3oR69epJ3ovh4eFw8eJFaNq0qeTz9tOnT3D8+HFo2bIl5M6dW5L35cuXsHPnTmjdujXY2NhI8vr6+sLChQvBw8MD7O3tJXnfvXsHgwcPBk9PTyhdurQkb1BQENSrVw+WLFkCLi4uktY4MTERChUqBA8ePIBatWpJ2osajQZSU1PB29sbGjRoIDn3+f37N5w7dw6aNWsm+bx9+/YtHD58GNzc3CBv3rySvL6+vrBx40Zo06YNFC5cWJL3xYsXMH36dPDw8IDixYtL8n7+/Bm6dOkC+/fvh7Jly0pap4iICKhYsSJMmTIFqlWrJsmbkpICOXPmhDt37oCrq6vk3CcmJgauXLkCjRs3lnzefvv2DU6dOgUtWrSQfN6+fv0a9u3bB+7u7pLPW19fX1ixYgW0adMGbG1tJXn9/Pxg9OjR4OHhAaVKlZLk/fnzJ7Ro0QLWrVsHFStWlLROcXFxUKxYMXj06BHUrFlT8nkLAHDjxg2oX7++5PM2JCQELly4AE2bNgVLS0tJ3g8fPsCxY8egVatWks/bFy9ewPbt26F169ZQsGBBSV65rNmvXz+9WbNWrVowb948ybmPXNZMTEyEa9euQaNGjf4J1nz16hVMnjxZL9b8+vUrtG/fHnbu3JmlrJmWlgYWFhYGYc3Pnz/LYs3du3eDu7u7XrmPHNYcNmxYlrNmQkIC2NraGoQ1g4KC9GbN9+/fG4w1Z82aBR4eHlCsWDFJXrmsWaVKFZg5cyZUrVpVcu7zr7Gmr68vrF692iCs2aZNG9iyZYterFmqVCl4/Pgx1KhRI0tZMywsDC5evAhNmjSRnPvIYc0XL14YhDX9/f1h0KBBerNm3bp1YfHixVnKmogIKSkpetfZ/0XW7Ny5M+zbty9LWTM1NRWsrKxks2ajRo0k5z5fv37VmzVfvXoFe/fu1bvOLoc11Wo1eHp6ZjlrOjo6ZlvWbNmypeTcJ7uyZs2aNcHLy0thTRF6/vw5rFu3LluxZnR0NJQpUybLWRMAIDIyEi5dugRNmjRRWFNAv3//hkaNGsGKFSuyHWvqm/vIvdfcvHkztGnTJstZs0ePHv8Uayr678kI//einiIeGRkZ2QPAT4D/JR1SYViRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFCnSR4GBgfSBAgdEDJT7Z4pvLVakSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUZXspjYOKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEjRPySlcVDRP6Pw8HDQaDR6eSMjIyE1NVUvb1xcHCQmJurlTU5OhujoaL28iAihoaF6eQHAoF59v0I9PDwc0tPT9fJGR0dDcnKyXt6EhASIj4/Xy5uamgqRkZF6eQ29xvquU1hYmN57MSIiAtLS0vTyxsTEQFJSkl7exMREiI2N1cur0WggLCxMLy/Av7cXo6KiICUlRS9vXFwcJCQk6OVNSUmBqKgovbzZeS/q65WzF+Wet3FxcXp509LSICIiQi8vQPbci3LOWzm5T2xsrN65T1JSEsTExOjlVc5baZJz3sbHxyu5jwT9a7lPeno6hIeH6+UFyL57UWFN8TLUOv1rrJmWlqactxIUGRlpkPNWyX2kSWFNaVJYU7wU1pSmf401EVE5byVIYU3pXoU1xUlhTWlSWFO61xCsGRER8U+xJkD23IuGYs3Y2FiFNSV6s1vuk11ZU9F/T0rjoKJ/Rp8/f4aiRYvCgAED4PTp05KKQfHx8WBvbw/dunWDAwcOSIITIyMjKF++PLRt2xa2b98Ov3//Fu01MzOD5s2bQ/PmzWHNmjUQEBAg6e8dOnQo1K1bFxYtWgR+fn6SflkuXrwYKleuDDNnzoTHjx9LSoiOHDkCzs7OMH78eLh586YkOHny5Ak4ODjAsGHD4OLFi5Lg5M+fP1C0aFHo06cPHD9+XFJClJKSAiVKlIBOnTrB3r17Jf2yNDU1herVq0Pr1q1h8+bN8PPnT0ne9u3bQ+PGjWHlypXw8eNH0V4jIyOYMGEC1KpVC+bPnw8vXryQtMYbNmyAihUrwtSpU+H+/fuSEqKLFy9CqVKlYPTo0XD9+nVJCdHbt2/Bzs4OBg0aBGfPnpUEJ1FRUWBraws9evSAw4cPS4YTZ2dnaN++PezcuROCgoJE+8zNzaF+/frQsmVLWL9+PXz79k2019jYGPr27Qv169eHpUuXwrt37ySt05w5c6BatWowZ84cePr0qaS9uGfPHihbtixMmjQJ7ty5IwlO7ty5A8WKFYORI0fC5cuXJcHJt2/fwNbWFvr37w8nT56UVAxKTEwER0dH6NKlC+zfv1/SeWtiYgKVKlUCT09P2Lp1K/z69Uu018zMDNzc3KBp06awevVq+Pz5s2ivkZERqNVqqFOnDixcuBBev34taY2XL18OLi4uMGPGDHj06JGkNT558iSULl0axo0bBzdu3JB03j5//hzs7e1h6NChcOHCBUnnbUhICNja2kLv3r3h2LFjkopB6enpULJkSejYsSPs3r0bQkJCRHvNzMygVq1a4O7uDhs3boQfP36I9pqamkLnzp2hYcOGsHz5cnj//r2kdZoyZQrUrFkTvLy8wNfXV5J3y5YtUL58eZgyZQrcu3dP0nl79epVKFmyJIwaNQquXbsmqRj04cMHsLW1hYEDB8KZM2cknbcxMTFgb28P3bt3h0OHDkm6CDMyMoKyZctCu3btYMeOHfDnzx/RXnNzc2jSpAm0aNEC1q1bB1++fBHtNTY2hgEDBkC9evVgyZIl8ObNG0nrNH/+fKhatSrMmjULnjx5ImkvHjx4EJydnWHChAlw69YtSXvxwYMH4OjoCMOHD4dLly5JOm8DAwOhaNGi0LdvXzhx4oSk3Cc5ORmKFSsGnTt3hn379kkqBpmamkKVKlWgTZs2sGXLFggMDJTk9fT0hCZNmsCqVavg06dPor1GRkYwZswYqF27NixYsABevXolaY3XrFkDlSpVgunTp8ODBw8k7cWzZ8+Ck5MTjB07Fry9vSXlPq9fvwZ7e3sYPHgwnDt3TlIxKDw8HGxtbaFXr15w5MgRScUgjUYDTk5O0KFDB9i1axcEBweL9pqZmUHdunWhVatWsGHDBvj+/btor4mJCfTo0QMaNGgAy5YtA39/f0nrNHPmTKhevTrMnTsXnj9/Lmkv7tixA8qVKweTJ0+Gu3fvSsp9bty4AcWLFwe1Wg1Xr16VdN4aijWNjY2hfPny4OnpCdu2bctS1hw2bBi4urpmOWsePXo027FmamqqQVjTxMQEOnToAI0bN4YVK1bAhw8fRHsNyZqXLl0yCGtGRkYahDXNzMygYcOG2Y419+7dC2XLloWJEyfC7du3s4w1v3//Dra2ttCvXz+DsKaHh4derOnu7m4Q1lyxYgWDNaXsRTms6evrq2XN8+fPS8p9DM2abm5uWc6aU6dOhRo1amQ5a167dk1v1vz48SODNaXkPnJZs1y5ctCuXTvYvn17lrGmkZERDBw4EOrVqweLFy/ONqz58OFDg7BmSkqKwVizbdu2WtaUWmcfO3Ys1K5dG+bPnw8vX77MMtY8d+4cODk5wZgxY7KUNSMiIsDW1hZ69uyZrVizZ8+eBmHNnTt3allTap1dDmsGBARoWfPUqVPZgjXNzc2hRYsW0KxZsyxnzSVLlhiENZ8+fZohrCk198ko1ty0aVOWsSYAwMSJE6FmzZowb968bMOa7969MwhrIqLBWLNfv35a1nz79q2kdZo7dy5Uq1YNZs+enaWseffuXShWrBiMGDFCYU0BGRkZwahRo7SsKbXOrug/KERUQiAAwB4AEADw58+fqCj7yt3dHam1NDc3x1atWuGGDRvw27dvgt6RI0dqvcbGxtigQQNctmwZ+vv7o0aj4fWuWLFC6wUArF69Os6dOxefP38u6D116hTDW65cOZw8eTLeuXMHU1NTeb2+vr4Mb/HixVGtVuPVq1cxKSmJ1/vnzx/MkSOH1lu4cGEcMGAAnjp1CmNjY3m9iYmJWLRoUa03b9682K1bNzx48CCGh4fzejUaDdaoUUPrtbS0xLZt2+K2bdvw9+/fvF5ExC5dumi9ZmZm2KxZM1yzZg0GBAQIeqdMmaL1GhkZoaurKy5atAj9/PwE12nr1q2Mz7py5co4c+ZMfPz4Maanp/N6r127xvCWLl0ax48fjzdv3sSUlBRe7/v379HY2Fjrtbe3x2HDhuHFixcxISGB1xsREYG5c+fWem1sbLBPnz547NgxjI6O5vWmpqZiqVKltN5cuXJhp06dcO/evRgSEsLrRURs0qSJ1mthYYGtW7fGTZs24Y8fPwS9AwYM0HpNTEywcePGuHLlSvzw4YOgd8GCBYzPulatWjhv3jx88eKF4BofPHiQ4a1YsSJOnToV79+/j2lpabzeBw8eMLwlS5bE0aNH4/Xr1zE5OZnX++PHDzQzM9N6ixYtioMGDcKzZ89ifHw8rzcuLg5tbGy03nz58mGPHj3w8OHDGBkZyetNT0/HSpUqab05c+bE9u3b486dO/HPnz+8XkRET09PxnnbsmVLXL9+vajzdsyYMYzztn79+rh06VJ8+/at4DqtWbOG8VlXq1YN58yZg0+fPhXci+fOnWN4y5Yti5MmTcLbt28LnrevX79meB0dHXHEiBF4+fJlTExM5PUGBwejlZWV1luoUCHs168fnjx5UvC8TUpKQgcHB603d+7c2KVLF9y/fz+GhYXxejUaDdapU4dx3np4eODWrVvx169fvF5ExB49emi9pqam2LRpU1y9ejV+/vxZ0Dtz5kzGeVunTh1cuHAhvnr1SnCNd+7cyfisXVxccMaMGfjo0SPBNb558ybD6+TkhOPGjUMfHx/B8/bTp09oYmKi9drZ2eHQoUPx/PnzgudtVFQU5s2bV+stUKAA9u7dG48ePYpRUVG83tTUVHR2dtZ6ra2tsWPHjrh7925R522LFi0Y562bmxtu3LgRv3//LugdOnQo47xt2LAhLl++HN+/fy/oXbJkCeOzrlGjBnp5eaGvr6/gGh87dozhLV++PE6ZMgXv3bsneN4+efKE4S1RogSOGjUKr127JnjeBgYGooWFhdZbpEgRHDhwIJ45cwbj4uJ4vQkJCVikSBFG7tO9e3c8ePAgRkRE8Ho1Gg1WqVJF67WyssJ27drhjh07RJ23KpWKkfu0aNEC165di1++fBH0TpgwgXHe1qtXDxcvXoxv3rwRXKeNGzcyPusqVargrFmz8MmTJ4J78dKlSwxvmTJlcMKECXjr1i3B8/bt27doZGSk9To4OODw4cPx0qVLgudtWFgYWltba70FCxbEvn374okTJzAmJobXm5ycjMWLF2ect507d8Z9+/aJOm8bNGig9ebIkQPbtGmDW7ZsEcWXffr0YZy3TZo0wVWrVuHHjx8FvXPnzmWct7Vr18YFCxbgy5cvBdd43759jHWqVKkSTps2DR88eCC4F+/cucPwlipVCseMGYPe3t6Ce/Hr169oamqq9dra2uLgwYPx3LlzgrlPTEwM5s+fX+vNnz8/9uzZE48cOSJ43qalpWH58uUZuU+HDh1w165dGBwczOtFNBxrrly5kvFZU6z57NmzLGXNYsWKoVqtxitXrmQ6a9ra2mq9efLkwa5du+KBAwf+atacOnUqYy9mFWtev36d4c3OrLlnz55MZ82BAwcycp9GjRrhihUrMp01Dx06xPBWqFAhW7BmwYIFtV46awrlPnJZs23btozzlmLNr1+/CnrlsObatWsZn3W1atVw9uzZoljz/PnzOrnPxIkTM501Q0JCGKxZsGBBLWsK5T5yWdPV1ZVx3mYH1ty1axfjs6ZY8+HDh5nKmp8/f2awpq2tLQ4ZMiTTWTMtLU2HNVUqFe7evVtU7tOyZUvGeZtVrLl06VLGZ51VrPn06VOGt3jx4jhq1ChRdXZDsmbVqlW1XisrK2zbti1u375dVO4jhzUnTpzI2It169bNEta8fPkyw+vs7CyaNd+9e2cQ1kxJSSGyZmhoKK9XLmv27duXcd42adIEV65c+Vez5t27d3Vyn6xizQIFCmi9WcmarVu3ZuQ+2YE1T58+zfCWK1cOJ02alCWsaWlpqfUWKlQI+/fvnyWsWbNmTUbu4+npKZo1u3btytiLWcWa27ZtY3zWFGuKqbPLYc0PHz5wsuaFCxf+atZs2rQpI/dxd3fPEtZcuHAh47OuWbNmlrDmw4cPGd4SJUpIYk1zc3NG7jNo0CBRuY9c1nRxcWGct+3btxddZ5fDmmPHjmWct/Xr18clS5b81azp5+fH8EphTUWG1c+fP+lrZ48Z0ROXEX/Ifz1AaRz8z+jRo0eMA5AeLi4uOH36dGIx6OfPn4xfcvQoVaoUjh07llgMiouLw0KFCnF6hYpB6enpWLlyZU5v/vz5sVevXrzFoHbt2nF6xRSDxo0bx+kVUwxat24dp5deDCLByYULF4jrRBWDSE2Xfn5+DMCnR/ny5XHy5Ml49+5dzoQoJCQEc+bMyekVarpMTk5GR0dHTi91EXb69GnOhEij0WDdunU5vfSmS1JC1KtXL06vmGLQ7NmzOb1mZmbYvHlz3mLQ7t27Ob1iikG3bt0irrFQMSggIIBRUKUHVQy6efMmZ0IUHR2N+fLl4/RSxaCLFy9yJkRpaWlYpkwZTq+NjQ327dsXjx8/ToSTVq1acXqpYtDevXuJxaDhw4dzenPkyIGtW7fGzZs3E38/LVu2jLgXqaZLUjHoxIkTxHWqVasWzp8/n1gMevbsGdFbsWJF3mLQ79+/GZfJ9BAqBrELqvQoWrQobzFIo9FgtWrViOctVQwiNV126tSJ00sVg3bu3IlBQUGc3kmTJnF6qWIQX9Pl5s2bOb1UMWjp0qX47t07znW6cuUKcZ2qV6+Oc+bMIRaD/P39iect1XRJKgaFh4djrly5OL3FihXDkSNHEotBKSkpWKJECU6vmGJQo0aNOL1iikH9+vXj9NKLQaSLsHnz5nF66cUg0kXY/v37iectVQx6/fo15zrdu3ePuMZCxaBv374xLpPpUbp0aRw3bhzeuHGDM/eJjY1lFFTpQTVdkopB6enpWKFCBU4vdRHGVwxq06YNpzdXrlzYsWNH3mLQqFGjOL1iikGrV68mnrdCxaAzZ84Q10moGPTy5UuilyoGkS7CgoKCGAVVelDFIFLTZVJSEtrZ2XF6hYpBGo0Ga9WqxemlikGHDh0i5j7dunXj9Ippupw+fTqnl7oIW7duHbEYtH37duJ5W69ePd5ikI+PD3GdqlatylsM+vjxI6OgSg+hYlBkZCTmyZOH0ytUDEpNTcXSpUtzeqnGA76LsGbNmnF6xTQeDB48mNObI0cO9PDwwC1btmBgYCCnd9GiRcTztmnTprhq1Sr89OkTp/fIkSPE85a6CCM1HvCxZqVKlTKNNePj4w3Gmu3bt+f0ZjZrrl+/nnje/q2sGRoaajDWrFevHqf3b2bNPXv2EPcixZqkizC5rEm/TKZHZrNm2bJlOb3URZg+rEkf8MsM1ly+fDlxL2Ymaz5//pzozWzWpA/J0kMMa1avXp3Tmy9fPuzZsyfvgJ8c1pw8eTKnV8yAHx9rUk2XJNa8evUqcZ2oAb+/kTVLlizJ6c0o1iTlPv379+f0ZjZrHjhwgHjeurq64sKFC4msef/+feIaCw34yWVN+pAsPTKbNT08PDi91IDf38iaZ8+eJa4TxZqkpks5rBkcHMzLmnwDfkKsydd0qdFosHbt2pxequmSjzW7d+/O6c1s1tyxYwfxvM1M1mQPydIjI1iT1HQplzWbN2/O6RUz4CeHNRcvXkw8b6kBv8xgzcePHxPX+G9lTfaQLD0ymzXHjx/P6TU3N0c3NzfcsGGD3qzJ13R58eJF4jrVqFGD9zGZN2/eEHMfasAvs1izWLFinN7MZs3evXsTz9uMYE1S06Uc1rx9+zZxjatUqcI74CfEmnxNl9HR0YwhWXrQB/wygzXd3Nw4vWJYc8SIEcTzNjNZ8+TJk8R1ygjWJDVdimFNUtOlGNYkDfjJZc3OnTtzeukDfiTWVGQ4KY2DSuOgIhm6dOkSenl5EQsL9GAXgx48eIBeXl5EmKEHVQyiLsL8/f3Ry8uLeDlKD3Yx6M+fP+jl5UUsAtODKgZRE7hJSUno5eVFvFhlJ0TUBC5VDFq2bBnxlzo72MWg7du347Rp00R5qQlcqhh0/PhxnDt3LmMimhTsYpC3tzd6eXkRCwv0YBeDnj17hl5eXlixYkVBL7sYFBAQgF5eXozpPlKwi0Hh4eHo5eXFmGIgBVUMoiZwNRoNenl5MSYD+YJdDFq7di1jAoIvKlSowJjA3bt3L86aNYtYWKAHuxh07tw59PLyYkxEk4JdDLpz5w56eXkRm4bowS4G+fn5oZeXF7ExjB7sYtDPnz/Ry8uLeAFOD3YxKC4uDr28vIiFfnpwFYMWLVpELGiwgyoGURdhmzdvJl4SsIP92tPhw4dxzpw5jIloUjg4ODCKQVeuXEEvLy9iYYEe7AncR48eoZeXFxFm6MEuBn348AG9vLwYr+iRgj6BGxgYiMHBwejl5cWY4CQFuxiUkpKCXl5e2LNnT0EvVzFoxYoVqFarRa0TvRiUlpaGO3fuxOnTpxMLC/RgF4NOnjyJc+fOZUxEk4IqBlEXYTdu3EAvLy/GCxSkYBeDXrx4gV5eXozJL1JQxSBqAvfr16/o5eVFvJChB7sYFBUVhV5eXsTCE3svsidw582bR7zMYQf7ZeH169cTi1bsYBeD9u/fj7NmzSIWFujBLgZduHABvby8iIUFerCLQffu3UMvLy/GFCYp2C8Lv337Fr28vBivOpGC/drTr1+/0MvLi/F6BSnYxaCEhAT08vJivAjFtxfr1q3LmMBdsmQJDhs2TNQ6sYtBW7duZUz48gV7Avfo0aM4d+5c4qUKPdjFoGvXrqGXlxexsEAPdjHoyZMn6OXlxZh6JwW7GPTp0yf08vIiFgjpwS4GhYaGopeXF/HSjR7sl4XT0tLQy8uLWFxkB7sYtHr1ahw9erQoL7sYtHv3bpw5cyaxgY8e7Neezpw5g3PnzmVMRJOC/drTrVu30MvLi1jIpQf7ZeFXr16hl5cXsVhPD3Yx6Pv37+jl5cV4uYsU7MaDmJgY9PLyYrxQQgquxoMFCxYwJrH5gt54kJ6ejhs3bmS8bsIX7JeFDx48iLNnzyZeqtDD0dGR0XigD2tSLwtTrEl/8YcUJNYkXY7Sg/3aE8WapCIwPdivPVGsSbpYpYfCmtH4/PnzLGXNjRs34o8fPzAiIiLLWJP92pPCmuQgsSbpApweGcWa1IDfokWLcMiQIaLWyZCsSX/tiWLNwoULC3ozgzXpr+iRgs2aISEhBmPNlStXZilrent7Y0pKCp46dSrLWJP+2lNWsib12lNGsSb92zX4IqNYMzU1Fffv34+zZ8+WxZqkYTF60FkzNjZWy5pOTk6CXhJr0l91IoVc1qS/9kSxJv1FKL69KIc12S8Ly2HNY8eOGYQ1nz59miWsSb0sTLFmWFiY3qyZnp4umTXpA35yWHPPnj0GZU36a4ekyAzWpL/cRQoSa3bs2FHQS2LNQYMGiVonQ7ImNeBHZ03661ukkMOa7AE/OawZFBRkMNZcvny5QVjzxIkTOHfuXGIDHz3YrOnj4yOZNak6uxzW/PLlS5axJvtl4axiTfbLwhnBmqRhMXqQWJM0oEIPEmuSGsPokRGsSQ34UaxJaiqjBxdrLl68WBJr0gf85LDmkSNHDMKajx8/znasmZqaqhdrinlZWFHmS2kcVBoHFckQ/UluKWFubk58ZUzML8ty5crp5QUAWV4xMECKYsWKEbvihaJw4cKiLsy4Ik+ePKIKg1xhaWkpquDEFWZmZqJ+mXOFkZGRrHXS9+8FAL1/XoD/FYNIE9hCYWNjQ3zRTShy5colqhjBFRYWFnr/d21iYiJrncQUukih7/kB8L9iEGkCWyiKFi0qCmK4Il++fKJAlSty5swpCoC44l88bx0dHUUVcLmiYMGCoopGXJE7d27iyzVCYWlpKaqRnitMTU2z7Xkr5sKMK2xtbUUVcLmiQIECoor0XGFtbS3q4psrDHneyvHKOW+LFy8uqoDLFUWKFBF1YcYVefPmRXt7e728VlZW/1zuo+/ZA/C/YpCYAi5XFCxYUFQzPFfkzp1bVNMfV+TIkUPWeavvOhkZGcnKfeSscalSpUQVcLnC1tZWVLMQV+TPn5/xlURSQsl9pIUc1ixUqJDCmhJCYU3x8S/mPiVKlMiWrClmqIUr5J63cn4vylljObmPo6OjqEZprvgXWdNQuY+hWDN//vwKa0qI7Mqa+uY+VlZWep+32TX3MSRrimlQ4Aq5rKnvXpTDmgDy9qKcNS5ZsqTCmiJDYU1pYSjWzK65j5zzVg5rFihQQBZrKrmP+JDDmkWKFJHFmvrW2eWwppmZmcFY01B7UflKY8MrMxoHjfB/jXGKeGRkZGQPAD8BAH7+/An29vYG/hcp0kdqtRo2btxo6H+GIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkXZTiYmJuDu7g4rVqyAMmXKGPqf808pMDAQHBwcqP/pgIiBcv9MY7l/gCJF/2UZGRlB7dq1wd3dXS9/pUqVoGPHjnp5S5UqBT179tTLa2trC/369dPLmz9/fujVqxfkypVLstfa2hpUKhUUL15cstfc3Bzc3NygWrVqkr3GxsbQsGFDaNKkiWQvAECNGjXAw8NDL2+5cuWgS5cuenmLFSsGvXv31stbuHBh6N+/v17ePHnyQLdu3aBgwYKSvZaWltC2bVu9EgAzMzNo3rw51KlTR7LXyMgI6tatCy1btpTsBQCoUqUKtG/fXi+vs7MzdO/eXS+vvb099O3bVy+vjY0N9OnTBywsLCR7c+XKBZ06ddKr0d3CwgJat24NLi4ukr0mJibQuHFjaNCggWQvAECtWrWgdevWenkrVqwInTp10stbsmRJ6NWrl17eokWL6r0X8+XLBz179oQ8efJI9ubMmRPat28PpUqVkuw1NzeHli1bQo0aNSR7jY2NoX79+tC0aVPJXgCAatWqQdu2bfXyli1bFrp27aqX19HREfr06aOXt1ChQtC/f38wNpaeNufJkwe6du0KhQsXluy1tLQET09PKFeunGSvqakpNGvWDFxdXSV7jYyMwNXVFVq1aiXZCwDg4uICKpVKL6+TkxP06NFDL6+dnZ3e522BAgWgd+/eYGVlJdlrbW0NHTt2hGLFikn2WlhYgLu7O1SpUkWy18TEBBo1agSNGjWS7AUAqFmzpt65T4UKFaBz5856eYsXL673eSsn98mbNy90794d8ufPL9lrZWUF7dq1g9KlS0v2mpmZQYsWLaBWrVqSvcbGxlCvXj1o3ry5ZC8AQNWqVfXOfcqUKaN37uPg4KD3XixYsCD069cPzMzMJHtz584NnTt3hqJFi0r25siRA9q0aQMVK1aU7DU1NYUmTZpAvXr1JHsV1pSmnDlzgkqlghIlSkj2ymXNBg0ayGJNT09Pvbz/KmuWLVtWsje7smbp0qUV1hQpijUbNmwo2QuQPVmzSJEiep+3FGvmzZtXsvdfZc1u3brp5c2OrJkjRw7w8PCA8uXLS/ZSrFm3bl3JXiMjI6hTp062ZE1996KhWbNq1aqSvXJZs0aNGtCmTRu9vP8qazo7O0v2ZmfW1Pe8lcOaNjY20LdvX1msaWtrK9mbEaxZv359yd5/kTWp3McQrNmqVSuDsGb16tVlsaa+dXY5rFmoUCEYMGCAXl5Ds6a+dXY5rFm5cmXo0KGDXl5Ds2aOHDkkezOCNStXrizZm11Zs0SJEnqft3JZs0ePHnD48GEICwuD8+fPK02D/xVlxLOF//UA5auK/xN6//49Xr9+XfCrNnLmzIkdOnTAXbt2YVBQECIifv/+HX18fLBixYq8XnNzc2zVqhVu2LABv337hoiIISEh6OPjgy1atBB8jrZBgwa4bNky9Pf3R41GgzExMejj44N9+vQRfBa2evXqOHfuXHz27BlqNBpMTU1FHx8fnDJliqC3XLlyOGnSJLxz5w6mpqYiIuKdO3dwzZo1op6jHTlyJF65cgWTkpIQEfHJkyd4+PBhQW+hQoWwf//+eOrUKYyNjUVERD8/P7x06ZLg16nkyZMHu3btigcOHMDw8HBERPz8+TN6e3sLPgtuaWmJnp6euG3bNvz16xciIgYGBqKPjw/WrFmT12tqaorNmjXDNWvW4OfPnxERMTw8HH18fLBdu3a8XiMjI3R1dcVFixahn58fajQajI+PRx8fHxw6dKjg51W5cmWcOXMmPnr0CNPT01Gj0aCPjw/OnTtX0Fu6dGkcP3483rx5E1NSUhAR8f79+7h161ZBr52dHQ4bNgwvXLiACQkJiIjo6+uLp06dEnzev0CBAtinTx88duwYRkdHIyLiu3fv8OrVq4LP+1tbW2PHjh1xz549GBISgoiIX79+RR8fH8GnvS0sLNDd3R03bdqEP378QETEoKAg9PHxwUaNGvF6TUxMsFGjRrhixQr88OEDIiJGRUWhj48PduvWTfDzqlmzJs6bNw9fvHiBGo0Gk5OT0cfHB8eNGyforVChAk6dOhXv37+PaWlpiIh469YtXLZsmaC3RIkSOHr0aLx+/TomJycjIuKjR49w3759gt4iRYrgoEGD8MyZMxgXF4eIiK9evcLz58+jhYUFrzdfvnzYo0cPPHz4MEZERCAi4ocPH9Db21vwqzasrKywffv2uGPHDvzz5w8iIv748QN9fHywcuXKvF4zMzNs2bIlrlu3Dr9+/YqIiKGhoejj44Nubm68XmNjY6xXrx4uWbIE3759ixqNBmNjY9HHxwf79+8v+HlVq1YNZ8+ejU+fPsX09HRMS0tDHx8fnD59uqC3TJkyOHHiRLx9+7b2vL179y6uX79e0Ovg4KDz/PfTp0/x6NGjgl9tVLBgQezXrx+ePHkSY2JiEBHxzZs3ePnyZbS2tub15s6dG7t06YL79+/HsLAwREQMCAhAb29vwa+Dy5EjB3p4eODWrVsxMDAQERF//fqFPj4+6Orqyus1NTXFpk2b4urVq/HTp0+IiBgREYE+Pj6oUql4vUZGRlinTh1cuHAhvnr1CjUaDSYmJqKPjw+OGDFC8LN2cXHB6dOn48OHDzE9PR0REX18fHD+/PmC3lKlSuHYsWPRx8dHe94+ePAAd+zYIei1tbXFIUOG4Pnz5zE+Ph4REV+8eIGnT59GU1NTXm/+/PmxV69eePToUYyKikJERH9/f7x27Rrmz5+f12ttbY0qlQp3796NwcHBiIj47ds39PHxEfxKA3Nzc3Rzc8ONGzfi9+/fERExODgYfXx8sGnTpoJ7sWHDhrh8+XJt7hMdHY0+Pj7Ys2dPwc+rRo0a6OXlhb6+vqjRaDAlJQV9fHxw4sSJgt7y5cvjlClT8O7du9rz9vbt27hy5UpBb/HixXHUqFF49epVbe7z+PFjPHjwoKC3cOHCOGDAADx9+rQ293n9+jVevHhR8OtU8ubNi927d8eDBw9qc59Pnz6ht7e34NfeWFpaYtu2bXH79u34+/dvRPzfc/Y+Pj5YrVo1Xq+ZmRk2b94c165diwEBAYiIGBYWhj4+Pujh4SG4F+vWrYuLFy/GN2/eoEajwbi4OPTx8cFBgwYJfl5VqlTBWbNm4ZMnTzA9PR3T09PRx8cHZ82aJeh1dnbGCRMm4K1bt7Tn7b1793DTpk2CXnt7exw+fDheunRJe94+e/YMT5w4gcbGxrxeGxsb7Nu3Lx4/flyb+7x9+xavXr0q+FVyuXLlws6dO+PevXsxNDQUERG/fPmCPj4+gl+XYWFhga1bt8bNmzdrmfXPnz/o4+OD9evX5/WamJhgkyZNcOXKlfjx40dERIyMjEQfHx/s3Lmz4OdVq1YtnD9/Pr58+RI1Gg0mJSWhj48Pjh49WtBbsWJFnDZtGj548EC7F2/evImLFy8W9JYsWRLHjBmD3t7e2tzn4cOHuHv3bkFv0aJFcfDgwXju3Dntefvy5Us8d+6c4FfJ5cuXD3v27IlHjhzByMhIRMwY1qxUqRKvNyNYc+nSpfju3TvJrFmtWjWcM2eOwpoyWbNWrVq83oxizdevX6NGo8GEhAT08fHBYcOGCX5ecljTyckJx40bhzdu3Mhy1uzdu7fCmv9h1qRyn0OHDmlZ8+PHj+jt7S34NWNyWbNFixa4bt06/PLlCyL+P2u6u7vzerlYk8p9BgwYIPh5Va1aVWFNiay5ZcsWg7DmggULdFhz5MiRgp91pUqVdFjzxo0buGDBAkFvZrDmmTNn9GLN9+/f47Vr1wS/RpePNYW+ls3QrDl37lx8/vw5gzUnTZok6JXDmsWKFUO1Wp3hrGlpacnrzZMnD3br1i3DWbN69eq83oxmTarOPnjwYMHPi8Sas2fPFvRSrEmvs9+7dw83b94s6OVizefPn2cJa3bq1ImTNYW+JlUuazZu3Pg/w5p79uwR9GYEax4+fFjLmh8+fMgy1ly/fr22zk6xZsuWLXm9XKxJ1dn79u0r+HnJYc2yZctysubatWsFvZnFmkJfW/6vsuaMGTO0rIn4vzq7l5eXoFcuaw4dOjTDWJOqswt9jS4fawp9nS0fazZu3JjXm1GsSdXZKdYcP368oDcjWPPatWsZxpoXLlzIdNZs164dJ2tWqVKF1/s3suaMGTMEvVysqciwyoyvKjZ4U152CFAaB/8zOn78OOeBRyWJfN/F/uzZM04vV4GMrV+/fnH+kuIqkLGVkJDA+UuKqxmDLY1Gg1WrVtXxchXIuNSxY0cdL70Zg0oSuUS6tHdxcdFJEtkiXehyJYlsXblyhdNra2uLQ4cOxfPnz2uTRLbevXvHWRClkkR6gYytsLAwzJUrl46XShLpBTK2UlJSOAuiVJJIL5CxpdFosGHDhjpeExMTbYHs/fv3nF5ExH79+nF+XuxmDC6REnuqQHbv3j1tksjW/v37Ob1UM8a1a9e0wMbW3bt3Ob2FCxfGgQMHMpJEtr59+8ZZEOVKEtmKiYnhLIjSk0SqQMZWeno6Z0GUK0nkUps2bYhJIr1AxiW1Wk1MEukFMi6tWrWK08vVjMHW6dOnOb0ODg46BTK2Xrx4wemlCmQnTpwgnrd//vzhLIhSzRj79u3TFsjYSkxMRDs7O87ztk2bNowLCbY0Gg0noFPNGKtWrdIWyLjUtWtXzvO2du3auGDBAm2BjEvTpk3j/LyoCwl6gYytbdu2cXqpCwl6gYwtb29vTi9XgYytjx8/chZEuZox2IqMjMQ8efLoeLkKZGylpqZyFkS5mjG4xHU5wdX4zyVSkxTV+E9dSHBp4cKFnN5y5crh5MmT8e7du8S9SCp4cV1IsPXo0SNOb6FChXDAgAGMAhlbP3784CyIUhcS9AIZW3FxcVioUCEdL1eBjK309HR0cXHR8XIVyLjEVSzjavznEunSnmrGePz4MfG8XbduHaeXq/GfrQsXLnB6qWaMixcvEnMfPz8/Ti/V+E+/kGArJCSEsyBKv5CgCmRsJScncxZE6RcSVIGMLY1Gg3Xr1uU8bxs3bswokHGpV69enD8zuxmDS6SGRa4CGVukZjauZgy2bt68yemlCmRnz54l5j4BAQGcBVF64z/pvI2OjuYsiFLNGDt37tQWyNhKS0vjLIhSjf/0CwkutWrVivO8rV+/Pi5dulRbIOMSqXBNXUhQBTIukYqaZcuWFSyQkViTqxmDLTms+fv3b87G46xgTa7G46xgTdKlfUawJr0Zgy05rOnv78/JmlzNGGzxsSa7GYOtlJQULFGihI6XqxmDLUOy5rx58zi9mc2a9+7d4/RmBGvSmzHYio2N5WVNejMGW0KsSW/G4JIc1hw1ahTn58VuxuCSHNY8c+YMp5erGYMtOawZFBSkN2smJSUJsiap5iyXNbkuCinWpDdjcImPNdnNGGxt376d08vVjMHWv8iazZo149yLGcGaVDMGlxYtWsTppViT3ozB1pEjRzi9XM0YbMlhzZ8/fxJZk92MwZZc1uRqPP7bWZPUPJwRrElvxmDLz8+PWGdnD5mzJcSa9GYMtpKTk9HR0VHHS7EmvRmDLY1Gg/Xq1eM8b9nNGFySw5qkhsXMZs1bt25xejOKNUl1drmsWbZsWR0v15A5l+Sw5vDhwzk/L/aQOZfksOaJEyc4vX87axYtWlTHmxWs2alTJ87zlj1kziUh1qQ3/rNFah4Ww5pXr17l9HI1/rMlhzXDw8MNwpqIyDl09bez5oEDBzi9XEPmbAmxJr3xn61v376hmZmZjjcrWLNChQqc5y278Z9LXEMAXI3/XJLDmqtXr+b0ZjZrvnz5ktNLZ01S7mNI1qxduzbnXmQPmSv6u6Q0DiqNg4pkKD09XftiIL0Zgy9JpMvT01O7AbmmQ/lEn4Dimg7lE/0lBjFJIl1nz56VlCTS9erVK0lJIl3BwcHaX3D0JJGvQEYpKSkJ7e3tEYB7OpRPGo0G69Spw0gShZox6OrevTsjSaSaMUhJIl30jnwxzRh00SeDuaZD+XTjxg2tl2s6lE+fPn3Swj19OpRUIKMrMjJS+4qD2CSRUmpqqvYVB3qSyFcgo6t58+Y6SSJfgYyuIUOG6CSJfAUyuujTiFSSyNeMQdfRo0cZSaJQMwZdT548YSSJ7OlQPgUGBmqLqVzToXyKj4/XvhhInw7lK5BR0mg0/8feWcdFlb1//AEEBcUELLC729W1115r7VpdC7vHdu3uwjGxu7sduxsVMZEQBJFuZp7fH9+98zv3cu/cAsbR83m9nteuKx9mhrP3cN7PeZ5zWJ013O5QMf31119GL193qCmRHVBSNiRIrVu3zuhlNiROnDghab49e/as0cvXHWpKL1++NMI9syGxdetWwQ0JUqGhocZTHOzs7CQVYzBKTEzEwoULG+dbbneoKRkMBlZXMdkdKuVZJE834usONaWZM2cavVI2JEjt2LHD6CW7Q4USZKSuX7/Omm+ZDQmhBBmpjx8/GjeSpWxIkIqMjDSeGCh1Q4JRSkqK8cRAZkNCrBiDFNnlJqUYgxR5sqOUwn9Sy5YtM3r5ukNN6ciRI0Yv2R0qZe3z5MkT1tqH2x1qSkFBQcZkKtkdaipBxig+Pt6YTCU3JEwlyBgZDAasUaOG8X1zu0PFRHb4MxsSphJkpMjub7IYQ8p8u2HDBqOXrzvUlC5evGj0Sin8J/XmzRvjRjJfd6gphYWFGU9xkFr4zyg5Odl4YiBfd6iYyK5ibneomMiOU6Y71FSCjBR58g2zIWEqQUaKPBWF2ZAwVYxB6s6dO0Zv9uzZRRNkpD5//mxMpvKdRGRKMTEx6OTkZJxvmWIMUxsSjMzJmqNHj+ZlTSnPohrWPHnyZCrWNFWMQUotazInBjKsKVaMwcicrNmzZ0+jlyz8T2/W3Lp1q8WxZkREhNlYkzy9s0qVKqLFGKTUsOaiRYtYrClW+E/KnKzJNMj+CKxpqhiDlBrWHD9+fCrWNFWMQcrDwyPV2sdUMQYpNaz56tUrFmsyxRgZwZpMgyxZjPGjsyZ5yqqUJnNSaljzxo0bqVjTVDEGKTWsGRUVlYo1V65cKZk1maJlqYX/pNSwJnmyY0ay5tGjRy2SNZkTAxnWFCvGYKSWNbt27cpiTbFiDFJqWJM8hUpK4T+pS5cumYU1v3//bjbWbNy4cSrWNFWMQcpcrLl3717W2kes8J+UGtb08/NjsaZYkzkptazJnBhoSaxJnvrHsKapwn9SaljzxYsXRm/WrFmxY8eOJgv/SallTaZBVmrhPyODwcA6LVlKkzkpNaw5ffp0s7Am2SBrKayZkpKSijXFCv9JqWFN8sY6KYX/pNSw5sGDBxWz5sOHD3lZU8raRw1rkg2yGc2a5MnlDGuaKvwnZS7WPHfuHIs1xZrMqX4c0cJBWjhIpULnzp0T7Q4VkpeXl6xFIqmvX79i8+bNJS8SScXHx2Pbtm1Fu0P5ZDAYsHfv3qLdoUIaN26crGIMUkuXLhXtDhXS3r17RbtDhXTjxg1ZCTJS79+/x+bNm0suxiAVHh6OLVq0kLVIZJSUlIR//fWXrEUiI4PBgAMHDpS1SCQ1ffp00e5QIXl4eIh2hwrp+PHjshJkpB49eiTaHSqkgIAAbNasmWh3KJ9iYmKwVatWot2hfNLr9ditWzfR7lAhjRw5UrQ7VEjz58+XtUgktX37dtHuUCFdvHhRtDtUSK9fv8YWLVqIdofyKTQ0FJs3by7aHcqnhIQEbNeunaxiDEYGgwH79Omj+KjuCRMmiHaHCmnlypWi3aFCOnDggGh3qJBu374t2h0qpE+fPmHz5s1Fu0P5FBkZiS1bthTtDuVTcnIydurUSVaCjNTgwYNFu0OFNHPmTFnFGKQ2bNggq/Cf1OnTp2UVY5B69uyZpO5QPn358gWbNWsmeUOCVFxcHP7555+i3aF80uv12KNHD1kbEqTGjBkj2h0qpMWLF8tKkJHatWuXaHeokK5evZrqWiip8vHxwebNm0tOkJEKCwvD5s2bi3aH8ikxMRHbt28v2h3KJ4PBgP369RPtDhXSlClTRLtDhbRmzRrR7lAhHTlyJNUVxFJ1//590e5QIfn5+WGzZs0UdYdGR0djq1atZBX+M0pJScEuXbrIKsYgNWzYMFmF/6TmzJkjehKRkLZs2SJ6EpGQzM2aUosxSKUFa8opxiClhjWXLVuW6looqfrVWDM5ORk7duzIuoJYqszJmuvXr091LZRUqWHNx48fp7oWSqrUsmbr1q0tjjUXLFggq/CflBrWvHTpUqoriKUqLVhTTjEGo8TERLOx5sSJE83CmgcPHrRY1pRTjMEoLVhTTpM5KTWsuXHjRsWseebMGbOwZlBQEDZv3lxy4T8pNaxpMBiwZ8+eqa4glipzsqacYgxSaljz7du3ZmHNpKQk7NChg2LW7N+/v6zCf1JqWHPt2rWpriCWKrWsKacYg9SvyJpz5841C2ueP3/eIlmzTZs2rCuIpUota44fP94srLlv3z7FrHnz5k2zsWbLli1ZVxBLlRrWRPzfaclyCv9JmYs1T5w4YRbWDAwMNBtrdu/eXTFrjho1KtUVxFKlljXlFP6TUsOa3t7exlNvpRT+kzIna/bt25deQWyhSo/CQSv8X2EclQlZWVm5AoA/AIC/vz+4urqa+R1RKREigpWVFfX+4K9NvRnjNedrU69lvDb1ZozXnK9NvZbx2tSbMV5zvjb1ZozXnK9NvZbx2tSbMV5zvjb1ZozXnK9NvZbx2tSbMV5zvjb1WsZrU2/GeM352tSbMV5zvjb1WsZrU2/GeM352tRrGa9NvRnjNedrU2/GeKnMr4CAAHBzc2P+6IaIAWq/p7Xab0BFZSlSM/n9al5zvjb1ZozXnK9NvZbx2tSbMV5zvjb1WsZrU2/GeM352tSbMV5zvjb1WsZrU2/GeM352tSbMV5zvjb1WsZrU2/GeM352tRrGa9NvRnjNedrU2/GeM352tRrGa9NvRnjNedrU69lvDb1ZozXnK9NvRnjpfo5RQsHqaioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKh+IdHCQapfRnFxcaq8iMqu9U5ISAC9Xq/Im5ycDElJSYq8iKj6M1uiV+k4qfEmJiZCSkqKIm9KSgokJiYq8tIxlqf4+HgwGAyKvElJSZCcnKzIazAYID4+XpEXwHLHSY2XzreW4TXHs6hmvtXr9ZCQkKDIC2C546TGS+fbn99rjvmWrn3ke+l8+/N76drHMryUNaXLUr107fPze+l8axleuvb5+b2WNt8iIp1vZXopa1qG11zPIp1vM85L1z6W4VXzLFoaawJY7jip8Vra2oeypnzvrzbfUv18ooWDVL+MHj58CGXKlIEJEybAjRs3ZC2IgoKCoESJEjB8+HA4f/68LDhJTEyE8uXLQ79+/eDo0aMQHR0t2WttbQ3169eHbt26wa5duyAsLEyy18rKCnr27Alt27aFTZs2QWBgoGQvAMCkSZPgjz/+gJUrV8L79+9ledevXw916tSB+fPnw4sXL2T9sjx79ixUqlQJpk2bBvfu3ZO1IHr9+jWUKlUKxo4dC1evXpW1IIqIiICSJUvC4MGD4fTp07IWRAaDAapUqQJ///03HDx4ECIjIyV7bWxsoEWLFtCpUyfYvn07hISESPZaWVmBu7s7tGrVCtavXw9+fn6SvQAAc+fOhYYNG8KyZcvgzZs3ssZp586dULNmTZgzZw48efJElvfGjRtQvnx5mDRpEty6dUvWgujz589QokQJGDlyJFy8eFEWnMTFxUGZMmVgwIABcPz4cYiNjZXstbKygt9++w169OgBe/fuhfDwcFneTp06Qfv27WHLli0QFBQk2QsAMGbMGGjWrBmsWbMGPn36JMu7YsUK+P3332HRokXw6tUrWeN05MgRqFq1KsyYMQMePHgg61l88uQJlC5dGjQaDVy7dk3WfBsSEgIlSpSAYcOGwdmzZ2XNt8nJyVCxYkX4559/4PDhwxAVFSXZa2NjA40aNYIuXbrAzp074du3b5K9VlZW0KdPH/jzzz9hw4YNEBAQINkLADBt2jRo3LgxrFixAt69eyfLu3HjRqhduzbMmzcPnj9/LmuML168CBUrVoSpU6fC3bt3ZT2Lb9++hVKlSsGYMWPgypUrsuAkMjISSpUqBe7u7nDq1ClZcIKIUL16dejduzfs378fIiIiJHutra3hzz//hI4dO4Knpyd8/fpVshcAYOjQodCyZUtYt24dfP78WZZ3wYIFUL9+fViyZAl4e3vLGqe9e/dCjRo1YNasWfD48WNZ3rt370LZsmVh4sSJcPPmTVnPYkBAAJQoUQJGjBgBFy5ckDXfJiYmQtmyZaF///5w7NgxiImJkey1traGunXrQvfu3WHPnj2y1j7W1tbQtWtXaNeuHWzevBm+fPki2QsAoNFooGnTprB69Wr48OGDLO+aNWugbt26sGDBAvDy8pI1TidPnoQqVarA9OnT4f79+7Lm2xcvXkCpUqVg3LhxoNPpZK19wsLCoESJEjBkyBA4c+aMrLWPXq+HSpUqQZ8+feDQoUOy5ltra2to2rQpdO7cGXbs2AGhoaGSvVZWVtC/f39o3bo1aLVa8Pf3l+wFAJg5cyY0atQIli9fDm/fvpXl9fT0hFq1asHcuXPh6dOnssb46tWrUKFCBZgyZQrcvn1b1nz78eNHKFmyJIwePRouXboka76NiYmB0qVLw8CBA+HEiROy1z41atSAnj17wr59+2StfaytraFdu3bQoUMH2Lp1KwQHB0v2AgCMGDECmjdvDmvXrgVfX19Z3qVLl0K9evVg8eLF8Pr1a1njdODAAahWrRrMnDkTHj16JOtZVMOawcHBRtY8d+6cYtY8cuSIbNZs0KCBKtZs06YNbNy4UTZrTp48WRVr/vbbbxnOmt7e3mZjzapVq1oca86bNw8aNmwIS5cuVcyas2fPls2aN2/etEjWrF27tllYc+zYsUbW/PjxoywvyZovX76UNU5Hjx5VzZrjx4+Ha9euyXoWQ0NDoWTJkopYMyUlBSpWrAh9+/bNcNbs27evWVhz06ZNacKad+7cyTDWjIqKgtKlS4O7uzucPHnSolizRYsWilhz4cKFillz3759UL169QxnzcDAQItjTSsrKyNrbtq0KUNZc+3atapYs3LlyopY08vLi7KmDM2aNcvImj4+PrK8alhTp9OpZs1Ro0ZlKGsCANSsWdMsrDly5Mg0YU25efaDBw+mCWtev349w1gzKSkJKlSooJg169evD127dlXEmr169VLFmk2aNFHEmlqtVjFrnjt3jsWacp7FtGRNOWsfkjUPHDiQYawJADBo0CBo1aoVeHh4ZChr7tq1C2rUqKGYNcuVK6eINf38/NKMNeWsfdTsa1pbW0Pnzp3NwporV65UzZr//vuvbNZ8+vSpKtYsUaIEDB06NMNZs3HjxmZhTaqfUIhIQyQAwBUAEADQ398fqSxXjRo1QmYsc+XKhT179sR9+/ZheHi4qLdfv35Gb9asWbFDhw64detWDA4OFvXOnTvX6LWzs8PmzZvj2rVr0dfXV9S7e/duo9fa2hrr1auHixcvxtevX6PBYDDpvX37ttELAFitWjWcOXMmPnr0CPV6vUmvr68v2traGr1lypTBCRMm4PXr1zE5OdmkNzo6Gp2cnIzeQoUK4fDhw/H8+fOYkJBg0qvX67FChQpGr4uLC/br1w+PHDmC0dHRJr2IiG3atDF6c+TIgd26dcNdu3bht2/fRL2jRo0yeu3t7bFNmza4ceNGDAwMFPWuXLnS6M2UKRM2adIEV65cie/fvxf1njhxwui1srLC3377DefPn48vXrwQHePnz5+zxrhSpUo4bdo0vHfvnugYf/36Fe3t7Y3eEiVK4NixY/Hq1auYlJRk0puQkICurq5Gb8GCBXHw4MF4+vRpjIuLM+k1GAxYu3ZtozdPnjz4999/48GDBzEiIsKkFxGxR48eRm+2bNmwU6dOuH37dgwJCRH1Tp061ejNnDkztmrVCj08PNDPz0/Uu2XLFqPXxsYGGzZsiEuXLsU3b96Ieq9evcoapxo1auDs2bPxyZMnomP87t07tLGxMXrLlSuHkyZNwlu3bmFKSopJb3h4OObMmdPoLVq0KI4cORIvXryIiYmJJr3JyclYsmRJozdfvnw4YMAAPH78OMbExIh+5qZNmxq9OXPmxB49euDevXvx+/fvot5BgwYZvQ4ODti+fXvcsmULBgUFiXoXLlxo9Nra2mKzZs1wzZo1+OnTJ1HvgQMHWPPt77//josWLcKXL1+KjtP9+/dZY1y1alWcMWMGPnjwQPRZDAgIQDs7O6O3dOnSOH78eLx27ZrofBsbG4suLi5Gr5ubGw4dOhTPnj2L8fHxJr0GgwGrVKli9Do7O2Pfvn3x8OHDGBUVZdKLiPjXX38ZvdmzZ8cuXbrgzp07Jc2348aNM3qzZMmCf/75J27YsAEDAgJEvevWrWPNt40bN8YVK1bgu3fvRL1nzpxhzbe1a9fGefPm4bNnz0TH+OXLl2hlZWX0V6xYEadOnYp3794VfRZDQ0Mxa9asRm/x4sVxzJgxePnyZdH5NjExEQsXLmz0FihQAN3d3fHkyZMYGxtr0mswGLBevXpGb+7cubFXr164f/9+SfPt33//zVr7/PXXX+jp6Ylfv34V9c6cOZO19mnRogWuW7cOP3/+LOrdvn0761msX78+LlmyBL29vUXH6fr166xnsXr16jhr1ix8/PixqPfjx4+YKVMmo7ds2bI4ceJEvHnzpuizGBkZiblz5zZ6ixQpgiNGjMALFy6Irn1SUlKwbNmyRm/evHmxf//+eOzYMUlrn5YtW7LWPt27d8fdu3djWFiYqHfYsGGstU+7du1w06ZN+OXLF1Hv0qVLWfPtH3/8gatWrcIPHz6Ieo8cOcJ6FuvWrYsLFixALy8v0XF68uQJa4wrV66M06dPx/v374vOt1++fMEsWbIYvSVLlsRx48ahTqcTfRbj4+Mxf/78Rq+rqysOGTIEz5w5I2m+rV69utHr5OSEffr0wUOHDmFkZKRJLyJily5djF5HR0fs3Lkz7tixA0NDQ0W9kyZNYq19WrdujVqtVhLXbtiwgbX2adSoES5fvhx9fHxEvRcvXmSNU61atXDOnDn49OlT0TH29vZGa2tro7dChQo4efJkvH37tuh8GxYWhtmzZzd6ixUrhqNGjcJLly6Jrn2SkpKwWLFiRm/+/Plx4MCBeOLECdH5FlEda/bv358132YUa+7Zs4c136YFaz58+FD0Wfz8+XOasuawYcPw3Llz6c6abdu2Za19unbtmiGsuWrVKtbax1JY08HBwehNC9Y8deqUJNb87bffjF6GNQ8cOKCINTt27Ijbtm2TxJrTpk1jzbdqWLNBgwY/PWuWKlXK6M1I1nR3dzd65bLmokWLWGufZs2a4erVq/Hjx4+iXj7WXLhwoSTWfPDgAWuMq1ativ/++68i1ixVqpQs1sybN6/RaymsOX78eKM3rVjz7du3ot6zZ8+y5lu1rDllyhS8c+eOJNbMli2b0SuXNYsUKWL0FihQAAcNGpQhrNmnTx/W2ictWFPK2mfHjh2sZ9ESWDMqKorFmoULF8YRI0ZIyrMLsebRo0clrX1atWpl9KplzbZt20pmzWXLlrHmWzWsWadOnQxhzaCgoHRhTSlrnxo1ahi9acGaUvPsalhz48aNrLVPo0aNcNmyZenOmm/evGGxZvny5RWzZtGiRSWzZnJyMhYvXtzotRTWnDdvHmu+ZVhTSp5diDVfvXolOk537txhjbFa1tRoNJJYMyYmRhVrVqxYkbX2+eeffzKENUePHs2abzOKNU+ePMmab9OCNe/evZvurOnm5mb0ZiRr9uzZ0+hVy5otW7ZEDw8PSXn2rVu3suZbOayp0+lY45RRrBkREcFizSJFihhZU+xZVMuazZo1M3rTgjU3b96c7qx58OBB1rNYt25dxaxZpUoVyaxJZV75+/uTY+eKaVETlxbf5GcPoIWDP424v+TIBZFYMuj9+/esX3LkJFy7dm2cO3euYDIoIiICc+XKxfvaYsmglJQU1i85MooVK4ajR4/Gy5cvC8JJ8+bNeb1SkkGDBw/m9UpJBi1evJjXKyUZdOjQIV6vlGTQw4cPeb1kMkhoIywwMBAzZ87M6xdLBsXFxWG+fPl4vUwy6MaNG7xwYjAYsGrVqrxeKcmgTp068XqZjTBTySCNRsPrZYouTSWD1q9fz+uVkgw6d+6c4LMolgx6/fo1K6FKPotiyaBv376xEqpkiCWDkpKSWAlVMsSSQQaDARs0aMDrlZIM6tu3L6+XSQYdPHhQMBk0e/ZsXq+UZNDOnTt5vcxG2Pr16wU3wm7evMnrlZIM+vTpEyuhSkbNmjVNJoOioqIwT548vF6xZJBer8dy5crxeqUkg1q3bs3rzZcvnzEZJAQnI0aM4PVKSQYtX75ccL5lkkFCcHLs2DHB+VYsGfT06VPB+bZevXq4aNEiwWRQUFAQq3CZDKboUigZFB8fjwULFuT1iiWDDAYD1qxZk9dLJoOENsK6devG65WSDJo8eTKvV0oyaNOmTYLzrVgy6PLly4LzrVgyyMfHh5VQJedbJhn0/Plz3jEODw/HHDly8L62WDKIm1Alo0SJEjhmzBi8cuWKYDKoSZMmvF4pyaCBAwfyenPnzo29e/c2mQyaP38+r5dMBgmtffbt2yc434olg+7evSs434olg/z8/FibyWSIJYNiYmLQ2dmZ1yuWDNLr9VipUiVer5RkUPv27QXn2wEDBuCxY8cE59sxY8bwenPmzIndu3fHPXv2CCaD1qxZw+uVkgw6deoUr9fW1habNm1qMhnk5eXF65WSDAoJCWEVLpMhlgxKTExkJVTJECs8MBgMWLduXV6vlMKDXr168XqdnJxECw/+/fdfwfmWKTwQKrr09PTk9TKFB6Y2wtSw5ocPH9KFNStUqCDKmqVLl+b1qmHN/Pnzi7LmkCFDBOfbH5U1Hz16xOtNC9ZkGvwymjXFGvzUsOaECRN4venNmufPnxd8FtObNR0dHXlfOy1YU2gjTC1r/vPPP4LzrRrWFGvw27VrF69XLWs2bNjQJGv6+voqZs3o6Gizseaff/7J600L1jS1EbZixQrB+VYta5pq8FPDmsHBwenCmqVLlxZlzVq1avF604o1hdY+U6ZM4fVKYc3NmzfzerNkyWJkTaGiSzHWNNXg9/bt23RjTabBT4g1S5QowetVw5pMg196seaCBQt4venNmvfu3ROcb9OCNYXy7DExMawmWTLSgjVNNfgJsSbZ4Cc0344dO5bXq5Y127Vrh5s3bxZc+5w+fZrX+6OzZqFChXi9acGaphr8evfuzetNC9Y01eC3bds2wflWKWuSDX7pwZqRkZFmY80WLVrwetOKNYXy7EuWLOH1SmHNw4cP83rTgjVNNfhxm2TJUMOaTIOfKdasVq0ar/dHZk2tVsvrTSvWFMqze3t7pytrCjX4JSUlYdGiRXm9YqyJiNiwYUNer5TDZIRYkzxMRog158yZw+tNb9a8deuW4Hz7I7Nm+fLleb1pwZpSiy6pMla0cJAWDlKp0J07d9DT01NwEUQGNxnk5eWFnp6erNMJhIKbDPL19UVPT0/BxAIZ3GRQWFgYenp6YteuXUW93GRQYmIienp64vDhw0W9fMmgPXv24KxZs0S9fMmgkydP4po1a3gXQdwFETcZdPXqVdyyZYvgIogMbjLo4cOH6OnpyTqZSSiYDlwmGfTmzRv09PQULCghg5sMCgwMRE9PT1YXplBwk0GRkZHo6enJ6rQVCm4yyGAwoKenJ6ubWij4kkEHDx5kdTEIBZkMYjpwz507h1qtVnARRAY3GXTz5k3cunWr4CKIjHLlyhk7cFNSUvDZs2fo6ekpCJ1kcJNBHz58QE9PT1ZHtFBwk0Ffv35FT09PVte7UHCTQXFxcejp6cnqNhEKvmTQzp07WR1FQsGXDDp27BjrNExTzyI3GXTp0iXctGmTYMKdDG4y6N69e+jp6YkFChQQ9XKTQa9evUJPT0+sXLmyqJebDPr8+TN6enqyTqAQCm4y6Pv37+jp6ck6ZUQouMmg5ORk9PT0ZJ0kIxRZsmRJ1YG7b98+1mlBpp5FbjLo1KlTuG7dOt6EOzdq1arFSgZdu3YNt27dKphwJ4ObDHr8+DF6enoKFneRwU0GvX37Fj09PVknjwoFNxn05csX9PT0ZJ0uKxTcZFB0dDR6enqyThAWCiYZRHbgbtu2DSdOnCjq5UsGHT58WDDxRAZfMuj8+fO4YcMGwYQ7Gdxk0O3bt3Hr1q2CCXcyuMmgFy9eoKenp+AGJxncZNDHjx/R09NTMLFABjcZFBoaip6enti5c2dRLzcZlJCQgJ6enjh06FBRL18yaPfu3ThjxgxRL18y6Pjx46wuXaFgkkFkB+6VK1dw8+bNggl3MrjJoAcPHqCnp6dgcRcZJUuWZHXgvn79Gj09PQWTfGRwk0H+/v7o6ekpmMglg5sMioiIQE9PT8FkPRncZJBer0dPT0/BDRky+JJB+/fvFyzwJIMvGXTmzBlcv349b8KdG9xk0I0bN3Dr1q2CCXcymGQQsxH25MkT9PT0ZJ0CLBTcZNC7d+/Q09NTcFOFDG4yKDg4GD09PQU3zsjgduDGxsaip6en4OYoGXynPe3YsUOw2JoMvpOFjxw5IlhQTwZ5sjBTeHDx4kXcuHGjYHEXGdzCg7RgTfJ0AqFIC9Zk1j4MawoVKpDBZc2kpCTZrEme9pRRrMmc9pSWrClU3EVGerCmUIMKGVzWjIqK+iVYk2zwy0jWJE8WZlizfv36ol4ua4aEhPwyrMlshGU0a+p0OhZrkifhCQWXNf38/NDT05N1AoVQcE97Cg8Pl8ya3JOFKWua9gqxJnkajFBwWTMoKEgya+bKlQt79eplbPDLSNbkniysljU3btwoiTXJW2zSijWFNjjJ4LLmp0+fLIo1mQY/tay5evVqSWsfNazJPVmYYU2h4i4yuKzp7e39w7Mm9xabtGBNoQJPMtKKNZkGPzWs+fTpU1msSZ4sbMmsKVRsTUZ6sOamTZsEi7vI4LLm3bt3f3rWJE8WZlhTqPGBDLWsyb3F5uTJk7h27VpFrKnT6SSzJnmLjV6vx0ePHlksawodeEEGX5G7VNa0s7PDli1bsm6xSQvWJE+lFAoua966dUsya5InC5OsWaZMGVFverBmx44dRb1c1oyPj0dPT0/BA4bISCvWZBr81LDm5cuXZbEm2eDHsKZQIxEZaliTe4tNWrAmeaKlUKQ1a1KZV7RwkBYOUqmQlE0NvsiVK5dgh75YZM2aVbDbVCzs7OywTp06irzW1taSkmRCUa1aNUm/VPmiTJkykiCGLwoXLizY9SkWLi4ukgCIL3LkyME60l9O2NvbK/5ZZ8qUSbGXKbpUOsaVKlWSlMDlixIlSkgqUOCLggULSloc80WePHkkLbr4Ilu2bIqfxcyZMyv+WdvY2Ch+jgH+lwySksDli/Lly7OO1pcTRYsWFexCEot8+fJJSv7yRc6cOSUlFfnCwcFBUiEaX9ja2pptvq1ataqkBC5flC5dWtKGGV+4ublJSgzyhbOzs2D3tlhkz55d8XybJUsWVfOt0jFmkkFiSSOhqFixoqQELl8UL15cUpKeLwoUKMC6kkhO5M6dW/HaR818a861T/Xq1SUVC/FF2bJlJW2Y8UWRIkVYV6PKibx580pqauGLnDlzsq7OlRMODg6Kf9Zq5lu1a58qVapISuDyRcmSJSUljfjC1dVV8PRwsXBycpJUSM8Xjo6OkhLHfKFmvlW79qlVq5akYiG+qFChgqQELl8UK1ZMUpKeL/Lnzy+pyJovKGvKCzWsWahQIYtkTaXr27RY+ygdY8qa0iNz5syKx8mcrFmuXDnBU4fFgrKm9EgL1hS6cUEsSpcuzbo2U05Q1pQezHwrpTiTLyyVNZXOt2rXPkrH2JJZU0oBLl+YizXV5NnNyZqVK1emrCkxKGvKC8qa8qJatWqsK2zlhCWyZvbs2c0y36pd+9B9TelhqfuaNWrU+OVYU02e3VysqWaMq1atSq80NrPSo3DQCv9XGEdlQlZWVq4A4A8A4O/vD66urmZ+R1RKNGLECPDw8DD326CioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKySFWsWBHWrVsHDRo0MPdb+aUUEBAAbm5uzB/dEDFA7fe0VvsNqKh+djk6OkKlSpUUeTNnzgzVqlVT5LWxsYEaNWoo8gKA4tcFAChfvjzY29sr8hYtWhRcXFwUefPlywdFixZV5M2VKxeUK1dOkdfBwQGqVKmiyGtrawvVq1dX5LW2tlbsBQCoWrWqYm+ZMmUge/bsirxubm5QsGBBRV5nZ2coWbKkIm/27NmhQoUKirxZsmRR/PPKlCmT4nGysrJSNcaVKlUCW1tbRd4SJUpAnjx5FHkLFCgAhQsXVuTNnTs3lClTRpE3W7ZsiudbOzs7VfOtmnFSM9+WK1cOsmbNqshbpEgRyJcvnyJv3rx5oXjx4oq8OXPmhPLlyyvymmu+VfssVqlSBaysrBR5S5UqBTlz5lTkdXV1Vdyw4uTkBKVKlVLkdXR0hIoVKyryZsmSxSxrH7VjXLFiRcicObMib7FixcDZ2VmRN3/+/FCkSBFF3ly5ckHZsmUVebNmzQqVK1dW5FUz36pd+6iZb8uWLQuOjo6KvIULF4YCBQoo8rq4uECJEiUUeXPkyKF4vrW3t1c835pz7VO5cmWwsbFR5C1ZsiTkzp1bkbdgwYJQqFAhRd48efJA6dKlFXkpa8pT0aJFIW/evIq8vyJrqhljpe8ZgLKmHFkqaxYvXhycnJwUeSlrytOvxpo5cuSwuPnWklmT2GiSJcqa8lShQgWzsaaatQ9lTelSw5qFChUyG2sqXftQ1pQnc7FmtmzZFM+3alnTXM+iOVmzWLFiiryWyprm2tcsXbo0ZU2JMjdr2tnZKfJaKmuaY+1jbtacNGkS3Lx5E54+fUqLBn8WpcWxhT97AL2q+KfQjRs3UKvVSjpuukiRIjhy5Ei8ePEiJiYm4rNnz1Cr1Uo6oj9v3rw4YMAAPH78OMbExODHjx9Rq9Vio0aNJB1n26NHD9y7dy9+//4dQ0NDUavVYqdOnSQdZ9u+fXvcsmULBgUFYWJiImq1Whw8eLCk42ybNWuGa9aswY8fPyIi4rZt23DatGmSjrP9/fffcdGiRfjq1Ss0GAx4+PBhXLZsmaRrHatWrYozZszAhw8fol6vx4sXL6KHh4ek61RKly6NGo0Gr127hsnJyXjv3j3UarVYuHBhUa+bmxsOGzYMz549i/Hx8fjq1SvUarWSjhN2dnbGf/75Bw8fPoxRUVHo7++PWq0WW7RoIerNnj07dunSBXfu3ImhoaEYERGBWq0We/XqJerNkiULtmnTBjds2IABAQFoMBhQq9Xi6NGjRb2ZMmXCxo0b44oVK/Ddu3eIiLh7926cO3euqJe5OmXevHn4/PlzNBgMeOLECVy9erWk4/0rVqyIU6dOxbt376Jer0edTofr16+XdLx/8eLFccyYMXjlyhVMSkrCx48fo1arxdKlS4t6CxQogO7u7njq1CmMjY3Ft2/folarxbp164p6c+fOjb1798b9+/djeHg4BgcHo1arxXbt2ol6s2XLhh07dsRt27bh169fMS4uDrVaLQ4YMEDUa2dnhy1btsR169ahr68vIiJu3rwZJ06cKOlZbNCgAS5ZsgS9vb3RYDDggQMHcPHixaJegP8dHz5r1ix8/PgxGgwGPHfuHK5bt07SVXJly5bFiRMn4s2bNzElJQVv3bqFWq1W0jW6hQsXxhEjRuCFCxcwISEBX7x4gVqtVtL1RHnz5sX+/fvjsWPHMDo6Gj99+oRarRabNGki6s2RIwd2794d9+zZg2FhYRgWFoZarRa7du0q6rW3t8d27drh5s2bMTAwEJOTk1Gr1eKwYcNEvba2tti0aVNcvXo1fvjwARERt2/fjjNmzJD0LNatWxcXLlyIXl5eaDAY8OjRo7hixQpJVxtVqVIFp0+fjvfv30e9Xo+XLl3C9evXY/bs2UW9pUqVwvHjx6NOp8OkpCS8f/8+arVaSVesurq64pAhQ/DMmTMYFxeH3t7eqNVqJR2z7+TkhH369MFDhw5hZGQkBgYGolarxdatW4t6HR0dsXPnzrhjxw4MDQ3FqKgo1Gq12KdPH1Fv5syZsXXr1qjVao1rvw0bNuDYsWNFvTY2NtioUSNcvnw5+vj4ICLi3r17cf78+ZKexVq1auHcuXPx6dOnaDAY8NSpU7hmzRpJx/tXqFABp0yZgnfu3MGUlBS8fv06arVaScf7FytWDEePHo2XLl3CxMREfPr0KWq1WklXUOXPnx8HDRqEJ06cwNjYWHz//j1qtVqsX7++qDdXrlzYq1cv3LdvH4aHh2NISAhqtVr866+/RL1Zs2bFDh064NatWzE4OBjj4+NRq9XioEGDRL12dnbYvHlzXLt2LX769AkREbdu3YpTpkwR9VpbW2O9evVw8eLF+Pr1azQYDHjo0CFcunSppDGuVq0azpw5Ex89eoR6vR7Pnz+PHh4ekq4tL1OmDE6YMAFv3LiBycnJeOfOHdRqtZKu2ihUqBAOHz4cz507h/Hx8ejl5YVarVbS1TUuLi7Yr18/PHr0KEZFReHnz59Rq9Vis2bNRL05cuTAbt264a5du/Dbt28YHh6OWq0Wu3fvLuq1t7fHtm3b4qZNmzAwMBBTUlJQq9XiyJEjRb2ZMmXCP/74A1euXInv379HRMSdO3fi7NmzRb3M1Snz58/HFy9eoMFgwOPHj+OqVavQxsZG1F+pUiWcNm0a3rt3D/V6PV69ehXXr18v6Sq5EiVK4NixY/Hq1auYlJSEDx8+RK1WK+nam4IFC+LgwYPx9OnTGBcXhz4+PqjVaiVdTZInTx78+++/8eDBgxgREYFBQUGo1WqxTZs2ot5s2bJhp06dcPv27fj161eMiYlBrVaL//zzj6g3c+bM2KpVK1y/fj1+/vwZERE3bdqEGo1G1GtjY4MNGzbEZcuW4Zs3bxARcd++fbhw4UJJz2LNmjVxzpw5+OTJEzQYDHjmzBlcu3atpKvkypcvj5MmTcJbt25hSkqKRbNm586dRb1CrDlkyBBRb3qw5vLly2WxJnN1iiWwppOTE/bt2zdNWDMyMlIWa/75558/BGuePHlSEWumpKQoZs3ExERFrHny5EkWa/7++++iXiHWbN++vag3a9as2LFjR/T09MTg4OA0Yc1JkyZJehbr16+vmDWrV69u8azp6+trkay5Y8cOWay5YMGCNGHNy5cv4/r16yVdJVeyZEkcN27cL8+a48aNE/X+CKx5+/ZtFmtKuUa3aNGiOGrUqFSsKeX6zXz58uHAgQPxxIkTGBMTI5s1e/bsmSasmZCQYHbWlLL24bLmhQsXzMKaL1++lM2aR44cSTPW7NGjh6iXybNv3LgRAwICUK/Xy2LNJk2a/DSsKeV6+fRgzbZt24p604I1PTw8FLPm0qVLjay5f/9+yaxZo0YNnD17dpqw5s2bNxWxZkJCgtlY89u3b2ZlzenTp4t6SdZ8+fJlmrDm+vXrJV1bXrp0aRw/fnwq1pRypbWbmxsOHTo0FWvWqFFD1CvEmi1bthT1Ojo6phlrIqIi1nz79m2asaatra2on2FNJs9+7do12ax5+fJl1az57t07yazJ5NnNwZotWrRgseaWLVssljULFiwo6hVizcqVK4t6XVxcsH///nj06NE0Y81u3bqJehnWZPLsDGsOHz5c1Muw5qpVq4ysSWVepcdVxWYvyrOEAFo4+NPoxo0bggsIphiDWSRy9enTJ8HEdZUqVUze5R4VFYW5c+fm9TLFGMwikauUlBTBRIqrqytrkcinVq1a8XrJRWJkZCSvV+iXBbNIZBJkfFq2bBmvl1wkCj1PR48e5fXa2Nhg48aNcfny5cZFIldPnjwRHOPatWvj3Llz8dmzZ7xjHBQUhFmyZOH1c4sxuIqPjxdMXDPFGMwikSuDwSC4sGeKMZhFIp+Eks/cRSKfJk+ezOvNmjUr/vXXX8ZFIp82btzI6+VbJHJ16dIlXi+5SGQSZFy9efNGMHHNLBIfPXrE6/3+/btgkVTZsmVZCTKukpOTsXjx4rxeJkF2/vx5TEhI4P3MjRs35vWSxRjR0dG8XqHFOZMg2717N4aFhfF6582bJ7hIJIsx+LR3715eL1OMsWrVKmOCjKs7d+4IPot16tRhbUhw5efnJwhvlStXxunTpxsTZFzFxMSgk5MTr5e7IcGVXq/HihUr8noLFiyIQ4YMMSbI+CRUWJonTx7s06cPHjx4UHC+FQJlMkEWEhLC6129ejWvlyzG8PPz4/WePHlScL5lijGYDQmuXrx4wesF+P9iDGZDgquQkBB0cHDg9ZYvXx4nT55s3JDgKiEhQTBxzd2Q4MpgMGCdOnV4vcyGBJMg41PPnj0F51tmQ+L79++8XqGklYODA3bo0MGYIOPT1q1beb22trbYvHlzXLNmjXFDgiudTic433KLMbh6//69YOKaW/jPVUREBObMmZPXyxRjXL9+XXDtU6pUKV4vU4zBbEjwSWiDgSn8ZzYk+CTUcJE9e3bs2rWrcUOCT0IJDe6GBJ8OHjwoON8yGxJMMQZXDx8+FJxvf/vtN1aCjKuAgADBxHWlSpVYhf9cxcXFCSauuYX/XBkMBqxSpQqvl1v4z6eOHTvyeplijAMHDmBERASvV2iTgFv4zycPDw9eL1OMQW5IcHXu3DnBZ7FBgwa4dOlSY4KMq1evXgkmrrkbElx9+/ZNsEiqXLlyOGnSJGOCjKukpCTBxDWzIcEkyLgyGAyCG7rcYgw+9e3bl9fLTZDxadasWbxeshjjy5cvvN6dO3cKzrfcYgyuzMmaQolrkjX5nkW1rClUXMGwJlOMwSc1rLl8+XJeL18xBlfpwZoA/1+MYYo1hRLX6c2aNWvW5PX+yKy5adMmwfmWYU2htY8Ya5LFGFz5+PgIsiZZjEFZ838SKlZKb9a8e/eu4HzLsCZTjMGVWtYUasjhFmNwpdfrBQsWucUYfDLFmkwxhtB8O2bMGF5verPmqVOnBOfbH5U1ExMTRVmTKfznSi1rCm28c4sx+KSGNT09PXm9fMUYXJmTNYWKpNKbNZs3b87rNTdrksUYXB06dEhwvm3SpAmr8J8rNawZGBgoyJrcJnOu1LKmUMGiFNYUOsAhvVlz/fr1vF6SNYXy7GpY8/Xr1yZZkyzG4Cq9WJNbjMGVwWDABg0a8HrTmzWFikPTmzVv3rwp+CyamzVN5dnFWJMp/OeTGtYcMWIEr5db+M8nNax57NgxXi9Z+C/Emk+fPuX1AqQ/awoVSaU3awoVOnGbzPmUnqxJFv5zdfnyZcH5Nj1ZMzw8XLAhh1v4z5Va1hQqZpPCmgMHDhScbxnWFFr7qGHNffv28XozgjWFGnIqV67MKvznypysKVRYyi38p/qxRAsHaeEglUr98ccfvItEoQQZKbKjkFwkCiXISC1YsIB3kSiUICO1f//+VItEUwkyUvfu3eNdJAolyEj5+/uzfsGJFWOQiomJYXWccrtDTUmv17Mq8rndoWLq0KGD0cskyJjuUDGRJ0nxdYea0tq1a1mLRKY7VChBRur06dOCi0S+BQQpLy8vFtwzi0ShBBmp0NBQVscptzvUlBITE7FQoUKpFommEmSMDAYDqztGSoKMVO/evY1eKcUYpMhOeynFGKS2bdvGWiRyu0NN6dq1a6wx5naHmtKHDx9YcC+2SCQVGRnJSqZKWSQySklJwTJlyqRaJJpKkJEiT0XhdoeKaejQoaz5ltsdakpLlixhzbfc7lBTOnz4MGucxIoxSD1+/JjlZRJkTHeoKX358oVVtMztDjWluLg4zJ8/v9HL7Q41JYPBgNWqVTN6pWxIkCK7RsnuUKEEGSnyFE0pGxKktFota77ldoea0oULF1jjVLVqVZMJMlLe3t6s+ZbbHWpKYWFhrI5TbneoKSUlJWHRokWNXm53qJgaNmzIWvuQ3aFi6tevH2u+5XaHmtKcOXNY8y23O9SUdu/ezZpvme5QoQQZqVu3brHGmNsdakq+vr6sjWRud6gpRUdHs4qWpSTIGOn1eixfvjxr7SNWjEGKPBFOSoKMFHmagpTCf1IrV65kPYvc7lBTOn78OGucuN2hpvTs2TOWl+wOFXsWv379ykqmim1IkEpISGAlU7ndoaZkMBiwdu3aRi+zIWGqGIMUeTojtztUTFOnTmU9i2IJMlJbtmxhPYtihf+krly5whonphiDOYnIlN69e8faSBYr/CfFTaZyTyIypeTkZNZpG0zhv6kNCVLmYk3y1AuGNU0VY5BSw5r3799necWKMUipYc3Y2NgfjjWFijFIkSdJMYX/GcGaZ86cYY0Tw5pCxRik0pI1pRRjMEpMTGSd7CilGIORWtb8+++/WWufjGLN7du3s+Zbc7OmUDEGqcjISFaDbIECBXDw4MF46tSpdGdN8lQUKcUYpNSwJnm6tI2NjbEYQwprHjlyhDVOvwJrkqesMqxpqhiDVFqzpqliDFIbNmxgzbe///67yWIMUmpZk9xIFmsyJ6WWNcmTHeWyJnkKVVqxppS9F/KUIabwPyNY8/bt26wxrlixosliDFLmZE3ypLGMZM1Ro0YZvRnJmidOnGCNk1iTOannz5+zvAxrChVjkBJiTVPFGIwSEhLQ1dXV6M1I1iRPZ5RSjEHKXKx59epV1jhlJGuSDbJSmswZqWXNpk2bsubbzp07myz8J2Uu1jxw4ABrnMQK/0mpYc2AgACzsCa3QVZKkzkp8jTcjGTNdevWsebbevXqmSz8J6WGNV++fJmKNU0V/pMyJ2vWq1fP6M1I1pw5cyZrvs0o1rx+/TprjBnWFCr8J/Xx48d0YU2xtU9KSgrrBiUphf+k1LAmeUq8lCZzUuZiTW6DrBzWpDKvaOEgLRykUqEbN26IdocK6dOnT1ioUCHR7lA+RUVFYYkSJbBnz56SizEYpaSkYM2aNVlHdctR+/btjScRSSnGIDVq1CjR7lAhLVu2TLQ7VEhHjx4V7Q4V0pMnT7BQoUKSF4mkgoKCsHDhwpIXiaTi4+OxbNmyxkWilAQZI6ZDTs4ikVSvXr1Eu0OFNHXq1FRHdUvVxo0bRU8iEtKlS5dEu0OF9ObNG3RzcxPtDuXT9+/fsVixYrIWiYySk5OxSpUqshaJpFq2bCnaHSokd3d30e5QIc2fP9+4SJRSjEFq7969WK5cOdZR3VJ1584d0ZOIhOTn54eFChUS7Q7lU0xMDJYsWVK0O5RPer0ef/vtN9HuUCF17txZtDtUSGPHjhXtDhXS6tWrjd2hUhJkpE6ePCl6EpGQXrx4gYUKFRLtDuVTSEgIFi5cWFaCjFFCQgKWL19e9CQiPhkMBmzSpIlod6iQ+vTpI9odKqR///1XtDtUSFu3bhXtDhWSTqcT7Q4V0vv379HNzY11BbFURUREYPHixWVtSDBKSUnB6tWr419//SW58J9UmzZtRE8iEtKwYcNEu0OFtGTJElmF/6QOHjwo2h0qpIcPH2LhwoVFu0P5FBAQgIUKFRLtDuVTXFwclilTRrQ7lE9MUYecDQlS3bp1k7UhQWrixIlYp04dyQkyUh4eHqInEQnp3Llzsgr/Sb169Qrd3NwkF/6T+vbtGxYpUkRRd2hSUhJWqlRJ9CQiPhkMBmzWrJnoSURCGjBgQKoriKVq9uzZsjYkSO3cudO4ISE3QWZu1pRT+M9ILWt26NBBVuE/KTWsuXz5cotmTanFGIzUsmbDhg1FTyISkrlYc9OmTaInEQlJDWv6+PhQ1pQxTgsWLBA9iUhIaljz7t27WKRIEcmF/6TUsmapUqUUs2adOnVYVxDLkRrWHDdunJE1pRRjkFLDmqdOnRI9iUhI5mLNxMRErFChguhJRHxSy5p9+/aV1WROSg1renp6pglrSinGIJVWrCm18J+RWtZs27atrGIMUuZizUOHDpmFNQMDA1msKWfto5Y169Wrp5g1u3fvjn/88QfrCmKpUsOa69evl1X4T0oNa75+/doiWbN58+ZG1pRSjEFKDWvOmTPHyJpSijFIqWHNmzdvsgr/LYE19Xo91qpVyyysOXr0aLOw5rFjx4ysKaXwn9TTp0+NrCml8J+UWtYsV66crMJ/RmpZs3fv3sbCf0thzcuXL7NYU86zqIY1w8PDjawpN8+uljVbtWqFLVu2lFz4T2rw4MGyCv9JqWHNffv2pbqCWKp+Rdbs0qWLYtakMq/So3DQCv9XGJcusrKyqgYALQGgPgBUAAAXAEgGgC8AcAcAtiLiTRnfryUAuANALQBwBoBQAHgAAJsQ8XzavnvW67oCgD8AgL+/P7i6uqbXS1Glo6KiosDR0RGsrKxke2NiYsDBwQGsra1le+Pi4sDOzg4yZcok25uUlAQGgwGyZMki24uIEBMTA46OjrK9AP/7eWXPnt2ivNHR0ZAtWzbFY2xvbw82NjayvQkJCWBtbQ12dnayvSkpKZCUlAQODg6yvYgI0dHRFjdOap5FNWMcGxsLmTNnVvQsJiYmAgBA5syZZXsNBgPExcVBtmzZZHsBfs1nUel8Gx8fD5kyZQJbW1vZ3uTkZEhJSQF7e3vZXjrfylNsbCxkyZIlw+dbvV4PCQkJkDVrVtleAMscp19t7WMwGCA2NpY+ixJlqfOtpa59LG2+VbP2ofOtPFnifEvXPvJkrrUPZU15oqxpOV5zzLeUNTPOa4nzLV37yBNd+1iG11JZMzk5+Zdb+1jafKuWNePj43+ptY+5nkU632ac1xLXPmpYE8Ayx8lcrKnmWaSsKd9LWZPKUhQQEABubm7MH90QMUDt90y3wkErK6vrANBAwpfuAoCBiJhk4ntZAcAG+F/RoJA2AcAQTIcPRAsHqaioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqMyh9CgclF/2Kl0F//vnFwBYDQCd4X8nBdYBgHEAEPjf3/8NANtFvtc8+P+iwacA0OO/79Xjvz/Df38/Nw3eNxUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRXVT6v0LBx8AwDdAKAQIo5BxCOI+BAR7yHiSgCoAgBv//vaHlZWVvX5vomVlVUJAJj43x8fAcDviLj/v++1HwDq/fffAQAmWVlZFU+vD0Rl2VJzGKWlei31ff9qXqV+OsaW47XU90290r2W+r5/Na+lvm/qle611Pf9q3np2ufn91rq+6Ze6V5Lfd+/mpfOtz+/11LfN/VK91rq+/7VvJb6vqlXutdS3/ev5qVrn5/fa6nvm3qley31ff9qXkt939Qr3Wup75t6pXvV+Kl+PqVb4SAitkHEg4ioF/j7bwAwnvhPnQW+1VgAYC5uH4mI8ZzvEwcAI//7YyYAGKP4TVP91Lpw4QI0b94c1q5dC76+vrK8r169gvr168PixYvh1atXsibS0NBQqF+/PsycORMePnwIBoNBsjcpKQmaNm0KGo0Grl+/DikpKbLed/fu3WH48OFw7tw5SEhIkOUdO3Ys/PPPP3DkyBGIjo6W5V26dCl07doVdu3aBWFhYbK8+/btgzZt2sDGjRshMDBQ3EDo1q1b0KRJE1i5ciW8f/9elvfTp09Qr149mD9/Prx48ULWGEdFRUHDhg1h2rRpcO/ePdDreac9Xun1emjTpg2MHTsWrl69CsnJyZK9VlZW0K9fPxg8eDCcOnUK4uLiJHsBAKZOnQq9e/eGAwcOQGRkpCzv+vXroVOnTrBt2zYICQmR5T1x4gS0bNkSPDw8wM/PT5b36dOn0KBBA1i6dCm8efNG1jgFBQVBvXr1YPbs2fDkyRNZ3vj4eGjSpAlMmjQJbt26JWuMAQA6deoEI0eOhIsXL0JiYqIs77Bhw2DAgAFw/PhxiImJkeWdP38+9OjRA/bu3Qvfv3+X5d2+fTu0b98eNm/eDEFBQbK8V65cgWbNmsGaNWvg48ePsrw+Pj5Qv359WLhwIbx8+VLWOH3//h3q168P//77Lzx48EDWfJucnAzNmzeH8ePHw7Vr12Q9iwAAPXv2hKFDh8LZs2dlz7cajQb69u0Lhw8fhqioKFnelStXQpcuXWDnzp3w7ds3Wd5Dhw7Bn3/+CRs2bICAAHmnWN+7dw8aN24MK1asgLdv34obCH3+/Bnq1asHc+fOhWfPnska45iYGGjUqBFMnToV7ty5I+tZNBgM0LZtWxg9ejRcvnwZkpKSZL3vgQMHwqBBg+DkyZOy59sZM2ZAr169YP/+/RARESHLu3HjRvjrr7/A09MTvn79Kst79uxZaNGiBaxbtw4+f/4sy/vixQto0KABLFmyBLy9vWWN09evX6FevXowa9YsePz4saxnMTExEZo2bQoTJ06EGzduyF77dOnSBUaMGAEXLlyQPd+OGjUK+vfvD0ePHpU93y5cuBC6desGu3fvlr322b17N7Rt2xY2bdoEX758keW9du0a/PHHH7Bq1Sr48OGDLO/79++hXr16sGDBAvDy8pI1xhEREdCgQQOYPn063L9/X9YYp6SkQOvWrWHcuHGg0+lkr3369OkDQ4YMgTNnzkB8fLy4idCkSZOgT58+cPDgQdlrnzVr1kDnzp1hx44dEBoaKst77NgxaN26Naxfvx78/f1leR89egSNGjWCZcuWgY+PjyxvQEAA1KtXD+bMmQNPnz6VNcaxsbHQqFEjmDx5Mty+fVvWfIuI0KFDBxg1ahRcunRJ9nw7ePBgGDhwIJw4cQJiY2NleWfPng09e/aEffv2QXh4uCzv1q1boUOHDrB161YIDg6W5VXDmq9fv4YGDRooZs169erBjBkzFLFms2bNVLHmsGHDMpw1ly1bZhbWvH37dpqw5vPnz83CmleuXMlQ1pw2bZpi1vTw8ICOHTsqYs2TJ08qZs1nz55Bw4YNzc6acp9FNaw5fPhwxaw5b9486NGjB+zZsydDWfPq1avQtGlTWL169S/Dmr169aKsKVF+fn6qWLNhw4YwZcoURazZrl07xaw5aNAgs7Dmpk2b0oQ15a59vLy80oQ1Hz16lOGsOXz4cDh//nyGsuaiRYvMwprXr19XzJofPnwwC2vq9fo0Yc3Tp0/LZs3JkyerYs1OnTrB9u3bM5w1GzZsmOGsGRcXB40bN04T1pT7LA4ZMkQxa86ZM8csrHnx4kVo3rw5rFmzBj59+iTLq4Y1v337BvXr17c41hw3bpxZWHP//v1pwprv3r2T5U0L1pw6dSrcvXs3w1gTAKB///7g7u6e4ay5fv36NGFNuXl2NawZHBxsdtZUkmcfNmwY9O/fH44dO6Z4X1Mpa7Zr1y7DWfPt27dQr149s7BmixYt0oQ15a59qH5CMdWk5ggAyAYA+F+c5vl7KwAI+O/vvUW+15v/vs4fAKzS+H26Mu/T398fqSxTBoMBq1atyvz/huXLl8fJkyfj7du3MSUlRdTfsWNHo7do0aI4atQovHTpEiYmJop6NRqN0Zs/f34cOHAgnjhxAmNjY0W9Hh4eRm+uXLmwZ8+euG/fPgwPDxf1njt3zujNmjUrdujQAbdu3YpBQUGi3tevX6OVlRUCANrZ2WHz5s1x7dq1+OnTJ1Hvt2/fMFu2bAgAaG1tjfXq1cPFixfjq1ev0GAwmPQmJSVhkSJFjO+7WrVqOGPGDHz48CHq9XqTXoPBgPXr1zd6y5QpgxqNBq9fv47Jycmi77tv375Gb6FChXDYsGF47tw5jI+PF/XOnj3b6HV2dsZ//vkHjxw5gtHR0aLenTt3Gr3Zs2fHrl274q5du/Dbt2+i3ps3bxq99vb22KZNG9y4cSMGBgaKej99+oSZMmVCAMBMmTJhkyZNcOXKlfj+/XtRb1RUFObJkwcBAK2srPC3337D+fPn4/Pnz0XHOCUlBcuVK2d835UqVcJp06bh3bt3RccYEbF169ZGb4kSJXDs2LF45coVTEpKEvWOGDHC6C1QoAC6u7vjqVOnMC4uTtS7fPlyozdPnjz4999/44EDBzAiIkLUe+zYMaM3W7Zs2LFjR9y2bRt+/fpV1PvkyROjN3PmzNiyZUv08PDAz58/i3qDgoLQ3t4eAQBtbGywQYMGuHTpUnzz5o2oNz4+HgsWLGh87Ro1auDs2bPxyZMnomNsMBiwZs2aRm+5cuVw0qRJeOvWLUnzbbdu3YzeIkWK4MiRI/HChQuYkJAg6p08ebLRmy9fPhwwYAAeP34cY2JiRL2bNm0yenPmzIk9evTAPXv24Pfv30W9ly5dMnodHBywffv2uHnzZknzrY+PD1pbWyMAoK2tLTZr1gxXr16NHz9+FPWGh4djjhw5jM9i3bp1ceHChfjy5UvRcUpOTsbixYsb33eVKlXw33//xQcPHkh6Fps0aWL0lipVCsePH4/Xrl2TNN8OGDDA6HVzc8OhQ4fi2bNnJc238+fPZ823ffv2xcOHD2NUVJSod+/evaz5tkuXLrhz504MDQ0V9d69e9fozZIlC/7555+4YcMGSWtDPz8/tLOzM863jRs3xuXLl+Pbt29FvTExMejs7Gwc49q1a+O8efPw2bNnomOs1+uxUqVKxvddsWJFnDJlCt65c0fSs9iuXTujt1ixYjh69Gi8fPmypLXPmDFjWPPtoEGD8OTJk5LWPmvWrDF6c+fOjb169cL9+/dLmm9PnTrFWvv89ddf6OnpKWm+9fLyMnrt7OywRYsWuG7dOvT19RX1hoSEoIODg3HtU79+fVyyZAm+fv1adJwSExPRzc3N+NrVq1fHWbNm4aNHjyTNt3Xq1DF6y5YtixMnTsQbN25IehZ79epl9BYuXBhHjBiB58+flzTf/vvvv0avi4sL9uvXD48ePSpp7ePp6Wn05siRA7t164a7d+/GsLAwUa9Op2Otfdq2bYubNm3CL1++iHrfv3+PNjY2xmfxjz/+wFWrVuGHDx9EvREREZgrVy7js1inTh1csGABenl5SVr7lC5d2vi+K1eujNOnT8f79+9Lmm+bN29u9JYsWRLHjRuHOp1O0tpnyJAhRq+rqysOGTIET58+LWnts3jxYqPXyckJ+/TpgwcPHsTIyEhR76FDh4xeR0dH7Ny5M27fvh1DQkJEvQ8fPmStfVq1aoXr169HPz8/UW9gYCBmzpzZuPZp2LAhLlu2DH18fES9cXFxmC9fPuNr16xZE+fMmYNPnz6V9CyqYc1OnTqlCWvmy5fPyJpS1j7r16/nZU0pa5/z58+bjTUdHR1ZrLlo0aIMYc0GDRoYvaVLlzY7a0pZ++zatcssrOnr68vLmu/evRP1qmFNvV6vijX//PNPFmuOGTMmQ1hzxYoVrLVP7969M4Q1nz59apGsWatWrVSsefPmzXRnzSlTpqRizWPHjilize7du0tmzcuXL7NYs127drh582ZJax8uazZt2jTDWLNEiRJmYc2BAwemCWs6OTnJYs19+/YpZs179+6lYk2tVpshrOni4mJ87Vq1auHcuXMVsWaFChVksWb79u3ThDXz58+fYax5+vRpXtYMDg4W9aplzaxZs6YZa86cOVMya9atW5fFmhMmTJDMmr1792ax5vDhwzOENbdt22YW1vzw4cMPxZr37t2TNN+2aNEiFWtevXo13VlzyZIlRi+TZ1fKmp06dZLMmo8ePVLMml++fMEsWbKYhTWrVatmFtacMGFCKtaUmmfnY829e/cqZs0tW7ZIYk1vb28jazJ59jVr1mQIaxYtWtT4vqtWrZphrPnPP/9YHGveunWLtfZhWDMgIEDUq4Y1o6OjU7HmvHnzFLPm1KlTM4Q1R44caRbWPH78uFlYMzg4mJc1vb29RcdJiDUfP36c7qzZvXt3FmuOGDEiQ1hz8+bNZmFNKvPK39/fOHYA4IppUROXFt9E8YsD5CY+0Emevy9G/P0Gke+1kfjaomn8Pmnh4E+iEydOkA8RKxnUp08fPHTokCCcPHv2jNfLbITt2LFDMBn09etX4y85MrJkyYKtW7c2mQxKSEhg/ZJjwsbGBhs1amQyGWQwGLB27dq871tKMqhHjx68XinJoKlTp/J6pSSDtmzZwuuVkgy6cuUKr5dJBpkqunz37p0R8MlgkkFbt24VTAaFh4djzpw5U3mZZNDatWsFk0HJyclYsmTJVF4mGbR48WKTyaCmTZvyfuZq1aqJJoMGDRrE6y1TpoxoMmjhwoW8XinJoP379/N6pSSD7t+/z+uVkgwKCAgwJlTJIJNBQhthsbGxrIQqE2QySKjo0mAwYJUqVVJ5mWTQ/Pnz8cWLF4Lj1KFDB97PXLlyZZw2bZrJZNC4ceN4vSVLlsSxY8eaTAatW7eO11uwYEEcPHiwyWTQmTNneL1SkkEvX740Aj4Z2bJlE00GhYaGGhOqZEhJBiUmJmLhwoV551uxZJDBYMDff/+d9zMzySBTG2F///03r5dJBpkqupw5cyavt2jRojhy5Ei8ePGi4Hy7fft2Xq+UZND169d5vUzRpalk0IcPH4yATwZTdGkqGRQZGYm5c+dO5ZWSDEpJScEyZcrwzre///67aDKoZcuWvJ9ZSjJo2LBhvF4pyaClS5fyeqUkg44cOcLrZZJBpjbCHj9+zOtlkkE7d+4UTAaRCVUymGTQhg0bBJNB8fHxmD9/ft75tnHjxrhixQrBZJDBYMDq1avzzrdM0aWpZFCXLl14P3PFihVFk0ETJ07k9RYvXlw0GbRhwwZer5Rk0IULF3i9UpJB3t7exs1k7nwrlgwKCwvD7Nmzp/La2dlhy5Ytcd26dYLJoKSkJCxWrBjvfCslGdSoUSPez1yjRg2cNWuWyWRQv379eL3lypXDiRMnmkwGzZ07l9crJRm0Z88eXm/evHmxf//+JpNBt2/fFpxvxZJBnz9/RltbW975ViwZFB0djU5OTrzzLVN4ILQRptfrsUKFCrzPIlN4YGojrE2bNryfmSk8MFV0OWrUKF4vU3ig0+kE59tVq1bxepmNsDNnzgjOt2pY8/nz57zejGBNV1dX3mdRCmv+9ttvvO87vVlz2rRpvF6GNU1thKlhzatXr/J6c+XKZTbWZIouTbFmqVKlUnnJBr/0Yk13d3deb3qz5oEDB3i9UljzwYMHvF6SNYXWPmpZM2/evKm8DGuaavBTy5p//fUX72dmii5/RNY8e/YsrzcjWJNpkiUjrVhTqOjSYDBgvXr1eD/zj8yaO3bs4PVKafBTw5ofP340G2uWLVuWd76VwpqtWrXi/czpzZrLli3j9bq5ueGwYcNMFl2qYU2ySZYMsuhSCWsyDX7pxZo1atTgnW/TmzUnTZrE600r1hRa+1y8eJHXK4U137x5YxbW5DbJks8iU3SphDWZBj9TrNm/f39eL9Pg9yOy5p07dwTnW4Y1hfLsalgzJibGbKzZtm1b3s9cpUoV0Qa/0aNH83pLlSol2uCnhjVPnjzJ680I1mSaZLnz7Y/Mmj179uT1MqxpquhSDWtu3bqV1yvlMBlTrCl2mIwp1mQa/H5E1mzWrBnvZyZZU+hZVMOaixYt4vUWKlRINWuaOkxGjDVNFV0GBAQYm2TJYFjTVINferEm0+CXXqw5fvx4Xi9zmMyPyJqvXr0yG2uSTbLkfNuwYUOTDX5irCm1wY8q4/UzFg7+RXygJTx//yfx92NEvtdY4mtbp/H7pIWDP4Hevn2LV69e5U0OkEEmg5gOXD8/P9TpdKxTJPiCTAYxHbghISGo0+lYp6QJBZMMYjpwo6OjUafTsU5mEorSpUuzOnCTk5NRp9OxOvSEgq8D99atW6yuIKHgO+3p0aNHePjwYd5fkGTwJYNevnyJFy9eNHb2CAVfMujDhw949epVVmcPX/AlgwIDA1Gn0wkW/jDBlwz6/v076nQ67Ny5s+jPi0wGpaSkYFxcHOp0OlbHiFAwyaDLly9jUlISGgwG1Ol0uGDBAlEvkwwiN8Lu3r3L6sIUCr4O3KdPn+LJkyd5kwNk8J329ObNG7x8+bKxs0coyA5cJhnk6+uLOp0Oy5cvL/oscpNBwcHBqNPpBDe/yOAmgyIjI1Gn0wkm3MngJoMSExNRp9MJJvnI4EsG3bhxA1euXCnqJZNBDJw8ePCA1fUuFHzJoBcvXuC5c+d4N6LJsLe3x3bt2rE6cN+9e4dXr17lLXomg0kGkR24/v7+qNPpWCcWCj2L3A7c0NBQ1Ol0ggkgMrjJoJiYGNTpdDh48GBRL/e0p5SUFNTpdDhr1ixRL18y6Pbt27hx40ZRL18y6PHjx3js2DHe5AAZZDKIgZNXr17hpUuXjKdICAVfMujjx4+o0+l4i57JIJNBTNHlly9fUKfTsTophaJWrVqsDtzw8HDU6XSsk0KEokKFCqwO3Pj4eNTpdKzTCYSiWLFiqTpwdTod6/QtoeBLBt27d491uqxQ8CWDnj17hqdPn+bdiCaDLxnk4+ODV65c4S16JoMvGfT582fU6XSsUyT4gi8Z9PXrV9TpdKzOdaFgkkHMRlhUVBTqdDrB4i4ymGQQsxGWlJSEOp1OsHmBDCYZdO7cOeN8e/PmTVy7dq2o18XFJdXJwg8fPsSDBw9KWvtwO3C9vLzwwoULvEXPZPCd9vT+/Xu8evUqFipUyKSX72ThgIAA1Ol0gslYJviSQWFhYajT6QQTQGRwk0GxsbGo0+kENzjJ4CaD9Ho96nQ6wU0VMphkEFl0eefOHcGiITL4ThZ+8uQJHj9+nHcjmgwmGbRt2zbjfOvt7Y2XL1/m3Ygmg0kGeXh4GJNBnz59Qp1Ox1v0TAZfMigoKAh1Oh02btxY9DNzT3uKiIhAnU4nmHAng3uycEJCAup0OtZJeELBV3hw/fp1wU1sMvgKD+7fvy+4cUYGX+HB8+fP8ezZs7wb0WTwFR6kBWuSp0jwBcOa5GlPzNpHKmuSpz0xrEmezCQUPyJr8m1Ek5FerMlX9EwGyZrMRpgS1mQ2wpSwJlN0ybCmUDEtGcWLF2c1+KUFawo1qJCRHqx55coV3o1oMvhOe2JYk28jmvsspgdr9unTR9TLPVk4LVhTaBObDIY1yaJLqayZI0cO7N69O6vBLy1Yk28jmgxbW9tUpz2pYc1v376hTqdjncgtFNyThc3Bmszax1ys+fr1a7x06RLvRjQZmTNnxtatW7M2wiyBNbmnPTGsOXbsWFEvH2teu3aNdfqWUPwIrMmsfZSwJlN0ybBm5cqVTXr5brFh8uw/OmtyG/zMxZovX75UzZp8Rc9k/IisOXz4cFEv9xYbZu2jhjWFiobIUMuaTNGlEtbknvbEsCZf0TMZfCcLpwVrkjcgCIUa1mROFr548aJx7XP9+nXWrUJCIcSa5E0mQmFu1iRPFk4L1iRPSRMK7snCcliTe7JwWrCmVqsV9aY1a7569QovXrzIW/RMBt8tNpbCmmSDnxrWRPxfnl2oWYwMvlts1LLmqVOnLIo1mTy7UKElGeZiTb5bbKSyJl+D34MHDwQPnyGD7zAZLy8vyazJPVnYklmTPAVYKLisyeTZlbImlXn1UxUOAoA1ANwnPlANnq8ZQvx9Z5Hv15n42sEy34urSNRgvjctHLRcSQFGvihfvjzrigw5UbRoUUkLa77Ily+fJEDmi1y5cgl2MYoFkwziq2wXCyYZJLZ5zRdMMkisQEEoqlatKro4FooyZcpIWnTxRaFChSQVKfGFs7Mz6wpsOcHAiRIvc9qTWOEeXzDJIPLKGanBJIP4ToKSEpUqVcKGDRsq8pYoUULwpDCxKFCgAOsKFTmRO3duSeDFF0wyiK+TSCyYZFCBAgVke5lkEHnsupyoUaOGaGJQKMqVK4d//PGHIm+RIkUETycSi3z58il+FnPmzKl4jJlkkFhCgS+Yoku+TiKxYDpwxZL0QlGlShXBLiSxKFWqlKQEP1+4ublJgie+cHJyYl3NISeY+VYsSc8XTDKIuWpYTjAbYXydm1LGuHbt2qKgKhQVKlSQlPzli2LFikkqYOGL/PnzC56wKhZq5lsmGSSWUOALJhkkllDgCyYZJJY0Eorq1auzrimWE2XLllW89ilcuLDi+dbFxUXxfJsjRw7Fax8mGcRc/yQnmA5csQQuXzDJILEkvVBUrlxZ0sY3X5QsWVLx2qdgwYKK1z5OTk6Kn0XmmimxDTO+YIou+bqoxYIpuhQrzhSKmjVrsq4ykROUNaWHWtb8/fffzcKapUuXZl03LifUsqbatY8Sb1qwplixEF9YMmuaY+1DWVNeqGHNvHnzKp5v1bJmu3btRJvE+CItWJPvZBIpYU7WVLP2UTvfihUo8IW5WBPgf0WXlDWlxa/ImmXKlJFUSM8Xvypr8p2QKBbmZk2l860a1syTJ4/i+TYtWJO8alhqpAVrCt0oJha/GmsyeXYlrMkUXf5qrKk0z66WNbt27arIa07WrF27tllYs3jx4oKnUouFuVlTrFCaL9KCNcUOnREKc7Km0vlWLWuqmW/plcbmV3oUDlrh/wrnMlxWVlbjAWDZf388hogdeb5mAgAs+e+PrRDxvInv1woAzv73Rw0iLpfxXiT/EPz9/cHV1VXql1P9QBoxYgR4eHiY+21QUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRWaRq164Nc+fOhWbNmpn7rfxSCggIADc3N+aPbogYoPZ7Wqv9BkpkZWXVEAAW/ffHEAAYKvClWYh/TxL5tonEv9srfGtUVLwqUKCAYm/+/PkVe11cXBR7c+XKpdibLVs2sLOzU+TNnDkz5MiRQ5HXxsYGnJ2dFXkBAPLly6fYq2ac1Lyuk5OTYm/OnDkVex0cHMDBwUGR19bWVvH/X9bW1qr+v1YzTuZ6FvPkyaPYmz17dsiUKZMib5YsWcDR0VGRN1OmTIr/37SyslL1TKiZb9W8rpq5R+18mzlzZkVeOzs7xfOAtbW1qs+s5nlSM8Z58+ZV7FUz3+bIkQOsrKwUee3t7SFr1qyKvLa2tpA7d25FXisrK1U/L0ucb5X+rAAAHB0dwdbWVpE3c+bMkD17dkVeGxsbVf9vWuLaR83co2btkzVrVrC3V4aJdnZ2Frn2Mdd8q2btkyNHDrC2VpamsLe3h2zZsinyZsqUSfH7VjvfmmvtY675lrJmxr2u2rWPUqllTaX/f1HWlKdfkTUtce1jqaz5q619KGvKkyXOt5Q15ckS51vKmhnnpawpXZaaZ6esKU/mehbVjLGaZ9Gc+5pqWPNXW/tQ1pQnS1z7qGHNrFmzQseOHWHbtm1w8uRJWjT4sygtji2UEwBQHgC+w/+OTUwAgIYmvnYC/P8Riy1Fvm8r4mvHy3xP9KriX0BHjx5FjUaDLi4uoses2tnZYcuWLdHDwwM/f/6M169fR41GI+kKB+Y43KVLl+KbN2/Qy8sLNRqN5CscatSogbNnz8YnT55gQEAAajQaycf7lytXDidNmoS3bt3CmJgY1Gg0ko8TLlKkCI4cORIvXryICQkJOGPGDBwwYIDk43AHDBiAx48fx5iYGFy1ahWOGTNG0rWOOXPmxB49euDevXvx+/fvuGvXLtRoNOjo6CjpONz27dsbj8M9c+YMajQaSVc4MFevrF69Gj98+IB3795FjUYj6QoH5vjxhQsX4suXL9HHxwc1Go3kI8WrVKmC//77Lz548AC/fv2KGo1G8lUbpUqVwvHjx+O1a9cwKSkJNRoN9uzZU5LX1dUVhw4dimfPnsX4+HicP38+Dh06VJLXyckJ+/bti4cPH8bIyEjUarU4btw4tLW1FfU6Ojpily5dcOfOnRgaGooHDx5EjUaDuXPnFvUyV69s2LAB/f398fLly6jRaCRdF2hjY4ONGzfGFStW4Nu3b/HJkyeo0WiwatWqol7m+PG5c+fis2fP8NOnT6jRaCRfp1KxYkWcOnUq3rlzByMiIlCj0Ug+FrxYsWI4evRovHz5MiYmJuLUqVOxb9++krz58+fHQYMG4cmTJzE2NhaXLVuGI0eOlOTNlSsX9urVC/fv34/h4eHo6emJ48ePl3SdCnP1iqenJwYHB+Px48dRo9FIusKBuXpl3bp16Ovrizdv3kSNRiPpCgfm6pUlS5agt7c3vnz5EjUajeQrHKpXr46zZs3Cx48f45cvX1Cj0Ug+3r9s2bI4ceJEvHHjBsbFxaFGo5F8zH6hQoVw+PDheP78eUxISMDZs2fjoEGDJHldXFywf//+ePToUYyOjsa1a9fi2LFjJV1tlCNHDuzWrRvu3r0bw8LCcM+ePajRaCRdX8VcvbJp0yYMDAzEc+fOoUajkXSFA3P1yqpVq/D9+/f44MED1Gg0WLFiRUnPYp06dXDBggXo5eWF7969Q41Gg/Xr15f086pcuTJOnz4d79+/j9++fUONRiP52puSJUviuHHjUKfTYVJSEk6YMAF79+4tyVuwYEEcMmQInjlzBuPi4nDRokU4fPhwSd48efJgnz598ODBgxgZGYmbNm3C8ePHo52dnajX0dERO3fujDt27MCQkBA8fPgwajQaSddXZc6cGVu3bo3r169HPz8/vHr1Kmo0GklX0zNXryxbtgx9fHzw2bNnqNFoJF/hULNmTZwzZw4+ffoU/fz8UKPRSD7ev3z58jh58mS8ffs2RkVFoUajkXw9UdGiRXHUqFF46dIlTExMxOnTp2O/fv0kefPly4cDBw7EEydOYExMDK5cuRJHjRolae2TK1cu7NmzJ+7btw+/f/+OO3bswPHjx2PWrFlFvQ4ODtihQwfcunUrBgUF4alTp1Cj0Ui6wsHW1habN2+Oa9aswU+fPuHt27dRo9FIui7Q2toa69Wrh4sXL8ZXr17h69evUaPRSL6+qlq1ajhjxgx8+PAhBgUFoUajkXytY5kyZVCj0eD169cxISEBNRoNdu/eXZLXzc0Nhw0bhufOncP4+HicO3cuDh48WJLX2dkZ//nnHzxy5AhGRUWhh4cHjh07Fm1sbES9zNUru3btwm/fvuH+/ftRo9FIur6KuXpl48aNGBAQgBcvXkSNRiPpukDm6pWVK1fiu3fv8NGjR6jRaCRdF8hc8zl//nx8/vw5fvjwATUajeTrVCpVqoRTp07Fu3fv4vfv31Gj0Ui+9qZEiRI4duxYvHLlCiYlJeHkyZPx77//luQtUKAAuru746lTpzA2NhaXLFmCI0aMkOTNnTs39u7dGw8cOIARERG4ZcsWHD9+vKTrVJirV7Zt24Zfv361aNaUem15WrDmhQsXVLPm6tWrccyYMZLWPgxr7tmzB8PCwszGmvfu3ZPMmsw1n2nBmiEhIajRaCRfe/OjsOaGDRtks+aOHTtYrCnl+qq0YM3ly5erZk1fX19ZrFmhQgWcMmVKmrHmP//8I8n7o7DmiRMnUKPRYP78+UW9PwJrPnr0yLj2kcOaEyZMMAtr9uvX76dgTSnXBaYVa967d081a06cOFE2a54+fTpDWTNbtmzYqVMn3L59O4aEhOCRI0dksWarVq3ShDWfP3/+S7Lm6NGjM4w1t2zZwmLNggULinrVsubvv/+OixYtUs2awcHBqNFoJF/rWLp06R+CNdevX29W1ixatKio90dhzfDwcFmsWbx4cRwzZgyLNfv06SPJ+6Ow5rFjx1Cj0WDevHlFvenBmrVq1ZL0mUnWDAwMVMSaN2/eVM2aM2fOxIEDB0ry5s2bF/v374/Hjh3D6OjoDGNNe3t71jWfZ8+e/aVYMzk5+adnTSbPrtVqVbPm06dPUaPRSL6avlatWmnKmlKvwuWy5rRp01Sx5qhRoyR5uay5bds2i2HNxYsX4+vXr9OENVu0aCHJm5asSWVepcdVxRldNFgUAAL/+wApAPCXyNcPIT5wZ5Gv7Ux87eA0ft+uzPemhYOWLS8vL0HIZooxmEUiVyEhIYKQnSNHDuzevbsxQcZVYmKiYMKLXCQGBgam8hoMBqxbty6vl1kkrlq1Cj98+MD7mYUST8wikUmQGQyGVN4ZM2YI/oIgizH0en0q77Zt2wS93AQZV9euXRP0urq6sooxuPrw4YMgZDMJskOHDmFkZGQqb2RkpCBkk8UYoaGhqbwpKSmCCwJykejn58c7TkK/1G1sbLBRo0a4fPly9PHx4fWaWiQzi8SnT5/yjvGSJUsEvRUqVDAmyFJSUlJ5Dx8+LOjlJsi4evTokaCXmyDj6suXL4KQTSbIwsPDU3nj4uIEF31kMUZwcHAqr8FgEFyc29nZYfPmzXHt2rX46dMn3nESgl2yGOP169e84zRhwgTBn1e1atVw5syZ+PDhQ95nUavVCnrLlCljXCQmJyen8l64cEHQyywSmQQZV97e3ibn2379+hkTZFyFhYUJQjY3QcZVUlKSYMKL2ZDYuHEj73yLiIJJKzJB9v79e16vEAiRCbIXL17wjvGcOXMEf9aVKlXCadOm4b1793jHePfu3YJephjj6tWrvPPtrVu3BL0FCxbEwYMHGzckuPL19RWE7Dx58uDff/+NBw8exIiIiFTe6OhoQchmNiSYBBlXer0ey5cvLzjftmrVypgg45NQQoObIOOTqc3RmjVrGhNkfGO8cuVKQS9ZjME33x4/flzQSxb+8823z549E/RyizG4Cg4OFoRsbuE/VwkJCYIbDEwxBrMhwZXBYBAEZVtbW2zWrBmuWbMGP378yDtOQol+ckPi5cuXvOM0depUwZ9X1apVjQkyvmdx8+bNgl5ugoyrK1euCHrd3NxYCTKu3r59K5jUJBNkfPNteHi44IYut/Cfq+TkZCxZsiSvlyzGCAgI4B0noQ27TJkyGQv/3717x+sV2gBnijHmzZuHz58/5x3jBQsWCP6sycJ/vmdx//79gl5mQ4JJkHF1//59QS83QcaVv7+/4IYusyHBJMi4io2NFSxm4ybIuNLr9Vi5cmVeLzdBxiehQhZuMQbfOI0dO1bw50UW/vN5165dK+hlCv9v3rzJO8ZnzpwR9BYuXBhHjBhh3JDgSg1rhoaGphtrksUYXBkMBsFNAimsKVTgyS3GSGvW3L59u6A3vVkzU6ZMvN60Ys2QkJBUXrWsKVSozbAmU4zBJzWsuXTpUkFverLm48ePBb0/MmsKFcEwxRjpxZoTJ04U/HmpZU2mGCM9WFNo7cMtxuBKLWsKbfZxizH4JIU1hdY+QgVHPzJr3r59W9BboEABHDx4MJ46dSpdWNPJyYnXq4Y1ucUYfBIqHJTCmqY2R8lijLRmzRMnTgh6uU3mXKlhza9fv6YrazLFGFypZc0ePXoIzrdkk3las+aWLVsEvWpYk1uMwdW7d+8E8+xSWDNnzpy83vRmTaFDGLhN5nwSY02mGINvjBcuXCj4s1bDmtxiDK7UsGZAQIAga3KLMbhSw5oGg0Gw6DC9WXPcuHGCPy8x1ly3bp2gl2wy53sW1bDmy5cvRVmTKfznSi1rFi5cmNerhjW5hf98UsOaM2fOFPxZpydrXr9+XdDLbTLnSgprMoX/XEVGRgoe0pEWrMkU/vNJDWsOGzZM8OdFFv6nNWseOXJE0PujsmZ8fLwk1hTKs6thzS5dugjOt2STuRLWZAr/+Z7FDRs2CHrVsCa38J8rtayZPXt2Xm96s2ajRo0E59u0YE2hPDuV+WTRhYMAUAAAPvz35g0A0EeCpw3xgceIfO1Y4mtbp/F7p4WDP4m4VdOVK1c2mSAjNWnSJJZXLEFGauPGjSyvWDEGqYsXL6ZaJJpKkJF68+YN6xcctzvUlL5//876BcftDjWl5ORkLF68OGuRSHaHionb/cAsEoUSZKT69+/P8pYvX95kgozUvHnzeBeJQsUYpPbu3cvyiiXISN25c4flFUuQkfLz82MlU8WKMUjFxMSwOoOlJMgY6fV61mlh3O5QsXFq27Yt6zNXrVrV5CKR1OjRo1lesjuUb5FIavXq1byLRKEEGamTJ0/KWiSSevHiBe8iUShBRurr16/o4ODAWiSKJcgYJSQkoJubG2uRKFaMwchgMLC6e6UUY5DidowxCbK7d++KjvH06dNZXm53qClt3bqV5eV2h5qSTqdjebndoab0/v17VjI1a9as2LFjR/T09OTdkCAVERHBSqaSGxJCCTJGKSkprK5Ra2trbNCggckEGSlu52eNGjVMJshIcTupxYoxSC1atIjlFUuQkTp48GCq+dZUMQapBw8esLxMgozpDjWlgIAAzJw5s9HL7Q41pbi4ONYJnNzuUFPiJlO53aFi48Q9EYHpDhVKkJEaP348yyuWICPl4eHB8ooVY5A6d+4cy+vk5GSyGIPUq1evWMlUscJ/Ut++fcNs2bKx1j5kd6gpJSUlsU6Ek1L4z8hgMKQ62YTsDhUbY263PNMdKpQgIzVr1iyWV2xDgtTOnTtZXmZD4sSJE6Lz7Y0bN1heZkNCKEFG6tOnT6xkatasWU0WY5CKiopiJVOlFP4zSklJYZ2YIaUYgxT3dGmmGOPRo0eizyL3FBmxwn9Sy5cvZ3nJ7lCxtc/Ro0dZXrHCf1JPnjxJNd8yJxHxJchIBQUFsZKpUgr/GcXHx7NO4GQ2JEwV/jMyGAysk/ukFGOQUsOakydPZnkzijUvXbrE8sphTR8fH0HWFFv7pBdrChVjkFLDmtxTEtWwpljhPyk1rHn37l2W19JZU8rah3sCjRzWHDNmDMvLsKZQMQYpNax56tSpVGsfU8UYpNSwZkhIiEWyZq9evVifmWRNsWdRDWt6enqyvGnBmkLFGKTSmjXFijEYqWVN7gmLYsUYpNSw5uLFi1leNawpVvhP6uHDh6nWPlJZMzAwUJA1xdY+almTPClVSpM5KS5rihVjkNJoNCyvJbDm69evfyrWFCrGIMW9AUUOa86ePZvlFSvGIKWGNW/evMnyihVjkOKypljhP6moqChWg6wc1tTr9WZjTe4JehnFmseOHUs130plzadPn/KufYSKMUgFBQWxipblsiZZtCylyZyRWtbs1q0b6zOLFf6TUsOamzZtYnktgTW5DbJSmswZqWXNJk2asD6zWJM5KS5rihX+k5o/fz7LaymsSRYtZyRrkidTpwVrmir8J6WGNdesWcPyijWZk1LDml5eXiyvWOE/KTWsmZiYaJGs+e+//7K8Yk3mpH4k1jRV+E/148hiCwcBwAkAXhFvfrhEXzHCs0HkazcSX1s0jd8/LRz8CeTl5YVZsmQR7Q7lU2hoKObIkcPYHSolQcYoMTERixQpItodyiemK4c8qlvsFxOp3r17pzqqW6pmzJghqxiD1LZt21Id1S1V165dk1WMQerDhw/o4OAgOUFGKjIyEp2cnGQVYzBKSUnBsmXLso7qFlskkmrRooVod6iQhg4dKtodKqSlS5caF4lSEmSkDh8+nOqobql6/PgxZsmSRXKCjNSXL18wW7ZsrKO6pSouLg4LFiwoqxiDEXPaIHlUt5xnsXPnzrKKMUhNnDhRtDtUSFqtVrQ7VEgXLlxQvEj09vZGe3t7yRsSpMLCwjBXrlyso7qljhPTlUMe1S2nC6Zhw4aso7rlPIv9+vVTfFT3nDlzUl0LJVW7d+9OdS2UVN26dUu0O1RIvr6+6ODgINodyqfo6Gh0cXExdodKSZAx0uv1WKFCBda1UHLm2zZt2shKkJEaOXJkqmuhpGrlypWsBJmc+fb48eOyCv9JPXv2DLNkySK5GIPU169fMXv27LIK/xkxG8li3aF8Yk6AIK+FkjPfdu/eXdaGBKmpU6cau0OlJMhIbdmyRVaCjNSVK1dSXQslVe/evUN7e3vJCTJS4eHhmDt3blmF/4ySk5OxVKlSsooxSP3xxx+yCv9JDRo0SLQ7VEgLFy6UVfhPav/+/bI2JEjdv38f7e3tsU2bNpISZKT8/f0xa9asot2hfIqNjcV8+fLhb7/9JjlBxogpWpZT+E+qQ4cOsooxSI0bN05WgozU2rVrZRX+kzpz5kyqa6Gk6kdgTanFGIzUsubff/8tqxiDlBrW3L59u6xiDFK/Imu2bNnSyJpSijFImYs1jxw5IqsYg5Ra1nR0dDQWY2Qka1avXt3iWHPDhg2yCv9JpRVrSinGIKWWNYsXL84qxpDDmo0aNZJVjEFKDWvOnTvXLKx5+/Zti2TNihUryir8J6WGNUeNGiWrGIOUGtY8ceKEYtZ8/vy52VizUKFCsgr/GallzR49eshqMidlLta8evWqrGIMUmpZM0+ePGZhzaZNmypmTXd3d1mF/6TUsOaBAwdkFf6TUsOaAQEBmDVrVsnFGKTMyZp//fWXWVhz3bp1ZmHNly9for29veQmc1LmZM169erJKvwnpYY1Z86caRbWvH79umLW/Pjx4w/BmlIK/0mpYc1hw4bJKvwnZS7WfPLkiVlYkylaNgdrdunSRTFrTpo0SVbhPyk1rHnx4kVZTeak0oI15RT+MzIna/bv319W4T/VjyOLLBwEgBwA8Jh445NkeK3g/6829hb5Wu//vi4AAKzS+DPQwsGfQJ8/f5a1SCQVFBQka5FI6vv377ISZKTi4+NlJchIGQwGWb+YuPL29pa1SCTl4+Mja5FI6sOHD7IWiaT8/f1lLRJJff36VVaCjFRkZKSsBBmppKQkWQkyUmrH+M2bN7IWiaTevXsna5FI6tOnT7ISZKQCAwNlLRJJffv2TVaCjFRsbKysRSIpvV4vC8q5ev36teJn8c2bN7IWiaTev3+veJH4+fNnWQkyUsHBwbKKMUiFh4fLSpCRSkhIkJUgI2XO+fbt27eK59uPHz8qnm8DAgJkJchIhYaGykqQkYqOjpZVjEEqJSVF8XyLiGadb+UkyEj5+voqnm+/fPmieO0TFhYmK0FGKi4uTlaCjJRer1c1TmrmWx8fH8Xz7YcPHxTPt35+forXPsHBwbISZKQiIiIUc1FiYqKsBBmptJhvlT6Lb9++VbX2kZMgIxUQEKB47RMaGqq4OzQmJkbWhgSplJQU1WsfNfOtmrWP0vnWXKwZHh5OWVOGzMWaISEhZmHN5ORkypoyFBgYKKsYg9SvyJpq1j6/GmsmJib+kqypZu1jLtZUs/b5FVlT6dpHDWt+//7dLKxpMBgscr41F2t+/frVLKyZlJREWVOGKGvKE2VN6aKsKU/mYs2oqCizsCaiedc+lsaaYWFhlDVliLKmdKmdb6nMq/QoHLTC/xXGpYusrKwcAOAiAPz+33+aj4jTZX6P9QAw9L8/1kHEezxf8xsA3P3vj+sRcbjCtyz0HlwBwB8AwN/fH1xdXdPy21NRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR8SogIADc3NyYP7ohYoDa72mt9hsIycrKyg4AjsH/Fw2ulls0+J9WAUDKf/++1srKyp7zOvYAsPa/P6b89/VUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFQ8ypSO33sfADT/79+vAsBWKyurCia+PgkR33L/IyK+tbKyWgYAkwGgBgDctrKyWgwAHwCgOABMAoCq/335UkR8l1YfgIqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKiorqZ1O6nTgIAB2Jf28CAC8AwMtEXDTxvaYBgOd//14VAPYDwMP//skUDW4FACUnGlL9Irp9+zbs3LkTvn37Jtvr7e0NGzZsgIAA+ad8hoSEwIoVK+DdO/k1rQkJCbB06VJ4/vw5yL1WHBFh5cqVcPfuXdDr9bJfe8uWLXD58mVISkqS7T148CCcPHkS4uLiZHsvXrwI+/fvh4iICNnehw8fgqenJ3z9+lW29+PHj7Bu3Tr4/PmzbG9ERAQsW7YMvL29ZY9TcnIyLF26FB4/fqxojNetWwc3b96ElJQUcQNHO3bsgPPnz0NiYqJs7/Hjx+HYsWMQExMj23v9+nXYvXs3hIWFyfa+ePECNm3aBF++fJHtDQwMhFWrVsGHDx9ke2NjY2HJkiXg5eUle5wMBgMsX74c7t+/DwaDQfZrb9y4EXQ6HSQnJ8v27tu3D86cOQPx8fGyvWfPnoVDhw5BVFSUbO/du3dhx44dEBoaKtvr4+MDWq0W/P39ZXu/ffsGy5cvh7dvU/UhiCoxMRGWLFkCT58+VfQsrlq1Cm7fvq1ovvX09IRLly4pmm8PHz4MJ06cgNjYWNney5cvw759+yA8PFy298mTJ7B161YIDg6W7f38+TOsXbsWfH19ZXujoqJg6dKl8Pr1a9njpNfrYdmyZfDw4UNFz6KHhwdcv35d0Xy7a9cuOHfuHCQkJMj2njx5Eo4cOQLR0dGyvTdv3oRdu3Ypmm9fvXoFGzduhMDAQNneoKAgWLlyJbx//162Nz4+HpYsWQIvXrxQNN+uWLEC7t27p2iMN2/eDFevXlU03x44cABOnTqlaO1z/vx5OHDgAERGRsr23r9/H7Zt2wYhISGyve/evQMPDw/w8/OT7f3+/TssW7YM3rx5I3uckpKSYMmSJfDkyRNF8+2aNWvg1q1biubb7du3w8WLFxWtfY4ePQrHjx9XNN/qdDrYu3cvfP/+Xbb32bNnsGXLFggKCpLt9ff3h9WrV8PHjx9le2NiYmDJkiXw8uVLxfPtgwcPFD2LWq0Wrl27puhZ3LNnD5w9e1bRfHv69Gk4fPiworWPuVlTydonLVjzzp07Gc6ahw4doqwpUSkpKUbWlPssmps1jx49SllTgn5V1ty+fbvZWNPHx0e2l1n7/EqseeXKFYtkzSVLlsCrV68oa0qQuVgzODjYLKyJiLBixQrFeXZzseaFCxfMwprv3783C2syeXalrLl27Vq4deuWomdRDWseO3ZMcZ5dLWtu3rzZ4lhz+fLllDUlypysuWTJEnj27Nkvw5qXLl1SzJqPHj0yC2tGRkaahTUBANatWwc3btygrClBX758MRtrrlixQhVrKl37qGHNc+fOwcGDBxWtfdSw5tu3b2H9+vUWx5qrV69WzJpUP6EQMV0CAFBm+Er4nq0B4DgABAJA4n//PA4ArdLrc/z3uq7M+/T390cqy1RERATmypULra2t8ffff8eFCxfiy5cv0WAwiHpTUlKwdOnSCABYpUoV/Pfff/HBgweo1+slvXbz5s0RALB06dI4fvx4vHbtGiYnJ0vyDhkyBAEA3dzccOjQoXj27FmMj4+X5F28eDECADo7O2Pfvn3x8OHDGBUVJcl76NAhBADMnj07dunSBXfu3Infvn2T5H348CECAGbJkgX//PNP3LBhAwYEBEjyBgYGYubMmTFTpkzYuHFjXLFiBb59+1aSNy4uDvPly4dWVlZYu3ZtnDdvHj579kzSGBsMBqxatSoCAFasWBGnTp2Kd+7cwZSUFEmv3alTJwQALF68OI4ePRovX76MiYmJkrwajQYBAAsUKIDu7u548uRJjI2NleRdv349AgDmzp0be/Xqhfv378eIiAhJ3vPnzyMAYNasWfGvv/5CT09P/Pr1qyTv69ev0crKCu3s7LBFixa4bt069PX1leT99u0bOjo6orW1NdavXx+XLFmC3t7eksYpKSkJixQpggCA1atXx1mzZuHjx48lj3GDBg0QALBs2bI4ceJEvHHjhuRnsW/fvggAWKRIERwxYgReuHABExISJHlnz56NAIB58+bF/v3749GjRzE6OlqSd9euXQgAmCNHDuzWrRvu3r0bw8LCJHlv3ryJAID29vbYrl073LRpE3758kWS19fXFzNlyoS2trb4xx9/4KpVq/DDhw+SvFFRUZgnTx60srLCOnXq4IIFC9DLy0vSOOn1eixXrhwCAFauXBmnT5+O9+/flzzftm7dGgEAS5YsiePGjUOdTodJSUmSvCNGjEAAQFdXVxwyZAieOXMG4+LiJHlXrFiBAIBOTk7Yp08fPHjwIEZGRkryHjt2DAEAHR0dsXPnzrhjxw4MCQmR5H369CkCAGbOnBlbt26N69evRz8/P0neoKAgtLe3RxsbG2zUqBEuX74cfXx8JHnj4+OxYMGCCABYq1YtnDNnDj59+lTys1irVi0EACxfvjxOnjwZb9++LXm+7datGwIAFitWDEeNGoWXLl2SPN9OmTIFAQDz58+PAwcOxBMnTkiebzdt2oQAgLly5cKePXvivn37MDw8XJL38uXLxvm2Q4cOuHXrVgwKCpLk9fHxQWtra7Szs8PmzZvj2rVrJc+34eHhmCNHDrS2tsZ69erh4sWL8dWrV5LGKTk5GUuUKIEAgNWqVcMZM2bgw4cPJT+LTZo0QQDAMmXK4IQJE/D69euS59uBAwciAGChQoVw2LBheO7cOclrn/nz5yMAoIuLC/7zzz945MgRyfPtvn37jGufrl274q5duySvfe7du2ecb9u0aYMbN27EwMBASV4/Pz+0s7PDTJkyYZMmTXDlypX4/v17Sd6YmBh0cXFBKysr/O2333D+/Pn4/PlzyfNtpUqVEACwUqVKOG3aNLx3757kMW7fvj0CAJYoUQLHjh2LV65ckTzfjhkzBgEACxYsiIMHD8ZTp05Jnm/XrFmDAIB58uTBv//+Gw8cOCB57XP69GkEAMyWLRt27NgRt23bJnnt4+XlZZxvW7ZsiR4eHvj582dJ3pCQEMyaNSva2NhggwYNcOnSpfjmzRtJ3sTERHRzc0MAwBo1auDs2bPxyZMnkufbunXrIgBguXLlcNKkSXjr1i3J823v3r2Na5+RI0fKWvv8+++/CACYL18+HDBgAB4/fhxjYmIkebdt24YAgDlz5sQePXrgnj178Pv375K8Op0OAQAdHBywffv2uGXLFsnz7YcPH9DGxgZtbW2xWbNmuHr1avz48aMkrzlZs0WLFggAWKpUqQxlzSVLlpiFNR89epSKNaXmaczJmtWqVTOy5pQpUzKMNSdMmGBkzUGDBlkEa3p7e5uNNYsWLcpizUePHmUIa/7zzz8IAFi4cGEcMWIEnj9//odnzVu3bhnXPm3bts0w1oyOjjYba/7555+KWXPkyJEs1jx9+nSGsObx48dZrLl9+/YMYc3g4GAjazZs2BCXLVtmEazZvXt3BAAsWrRohrLm5s2bU7Gm1LWPGtZ8+/ZtKtb89OmTJC+XNRctWpRhrPnHH38Y8+wajSbDWHPBggXGtQ/DmlLXPuZiTX9//1Ss+e7dO0letaxZuXJlFmvevXs3Q1hz7NixrDy7HNZcu3atce3Tu3fvDGVNKysrs7BmoUKFLI41Z8yYwWLNY8eOZQhrXrt2zcia7dq1w82bN0te+6hhzcjISMyVKxdaWVlh3bp1LYY1hw4dahbWPHz4cCrWDA0NleRVw5pfvnzBLFmyGFlz+fLlslgzf/78xrXP3LlzM4w1O3fubMyzZyRrarVai2PNsLCwVKz5+vXrdGdNRMSGDRsaWXPChAkZxppz5swx5tn79esnizV3795tNta0tbXFTJkyZThrli9fnsWacvLs5mLNlStXsvLscliTyrzy9/cn6+xcMS1q4tLim/zsQQsHfx7NnTuXW7AqORm0Z8+eVN58+fLhwIEDRTfCbt++ncrLJIP27t1rEk4+f/6Mtra2LK/UjbDo6Gh0cnJieRk4WbNmjclkkF6vxwoVKrC8zEaYlGRQmzZtUn3mqlWrSkoGjRo1KpVXajJo1apVqbxSk0EnTpxI5ZWaDHr+/Hkqr9Rk0NevX9He3p7lzZIlizEZZKroMiEhAV1dXVleJhm0YsUKk8kgg8GAv/32G8tLboSJJYN69OiR6jNXqlQJp06dKpoMmjZtWipv8eLFccyYMaLJoC1btqTySk0GXb16NZVXajLo3bt3aGNjw/JKTQaFh4djzpw5WV6pyaDk5GQsVaoUy0smg8Q2wpo2bZrqMzPJILGiS3d391TecuXK4cSJE/HmzZsmAXThwoWpvFKLLg8cOJDKy2yEiSWD7t+/n8qbM2dO7N69u2gyKCAgAO3s7FLNt1KSQbGxsZg3b95U823Tpk1Fk0EGgwGrVKmS6lmUmgz666+/Un1mqcmgcePGpfIyySCdTmdyvl23bl0qL5MMOnPmjMn59uzZs6m8zEbYoUOHTMLJy5cv0crKKtV826VLF9yxY4fJZFBoaChmy5Yt1XzbunVr1Gq1Jtd5iYmJWLhw4VTPIlN0aSoZZDAYsF69eqk+s9Rk0N9//53KW6FCBUnJoJkzZ6bySk0G7dixI5U3f/78kpJB169f551vmWSQqaLLjx8/YqZMmVheJhm0detWDA4OFvRGRkZi7ty5WV4mGSRWdJmSkoJly5ZleZlk0OLFi0WTQa1atUr1matVq4YzZ84UTQYNGzYslZcpuhRLBi1btiyVt3Dhwjh8+HDRZNCRI0dSeaUmg548eZLKKzUZxCRUSS+ZDDK1ERYfH29MqDJBJoNMFV0aDAasUaNGqvm2Tp06OH/+fHzx4oXJcerSpUuqzyw1GTRp0qRU3pIlS+LYsWPx6tWrJtc+GzZsSOVlii7FkkEXL15M5ZWaDHrz5g1aW1uzvNmyZcNOnTqJFh6EhYVh9uzZWd7MmTNjq1atRAsPkpOTsXjx4qnmW6mFB40aNUr1mWvWrCmp8KB///6pvEzhgdhGmCnWvHjxYrqx5p07d1J5mY2w9GTNmJgYs7Fm27ZtU33mH501T548mcrLsKbYRpha1nRwcGB5GdYUa/AzJ2v27Nkz1WdmGvzSkzW3bt2ayktZU3icmjVrluoz16hRQ1KDnxrWXLRoUSpvRrDmgwcPeOdbqayZOXPmVPOtuVlTbCPMFGuKFV2OHz8+lfdHZ81Xr16lYk2ywS89WZNpkiWfxYxgzT59+qTySmXNWbNmpfIyrCmWZ1fDmjdu3EjlzZUrF/bq1Uu0wU8Na0ZFRfGyppQGPyHWZBr80pM1hw8fnsqbEax59OjRVN60Yk1Ta5+goCBVrFmgQAGWl2FNsQY/tazZtWvXVJ9ZaoOfGtbcuHFjKu+Pzprfv383G2s2btw41WdmWFOs6FINa86bNy+Vt2jRojhy5EjFrCmlwU8Na/r5+ZmNNStWrJhqvs0I1hw9enQqr1TWXL16dSqvm5sbDhs2TLToUg1rvnjxIpVXaoOfEGtKOUwmISHB2CRLzrdMg9+PyprTp09P5c0I1mSaZMnICNaMiIhIxZp2dnbYsmVLXLdunUnWTElJScWachr81LDm4MGDU3mZBr/0ZM2DBw+m8v7orMk0yXLnW4Y1pRZdUmW8aOEgLRykUqGEhAQMCAhIBRVkCCWDEhMTMSIiIhVUcBdEfMmg5ORkjI6O5t3AYkIoGZSSkoLR0dHGjgChYJJB5EaYwWDA6Oho3iQOGUwyiNuBGx0djdu3bzfpFUoGxcbG8i5kyBDqwI2Pj0cfH59UUEGG0GlPCQkJGBISkgoqyCA7cMlkUFJSEkZFRaWCCu6CiC8ZxIwxX7EkuSDiSwbp9XqMjo42nnQmFGQyiFm4MmPMl8QhQygZFBMTY+zAEopChQrh8OHD8dy5c6wFUVxcHO9ChgwmGcQ97Sk+Ph59fX1TQQUZTDKIuxGWmJiI379/TwUVZDDJIG4HLjPGXKggQ+i0J+ZZZLrP+YLswCWTQcwYT5482eTPSygZFB0dzVswQAbTgctNBsXGxho7sIRCKBkUFxeHL1++TAUVZJDJIBJOEhIS8MuXL6mgggyhZFBiYiJGRkamggoyhJJBzLPIVyzJBJMM4nbgMmPMdJ8LRc2aNVN14DLPIl8ShwyhDtyYmBhjB5ZQCCWDYmNjjSdLCoVQMig+Ph7fv3+fCirIEEoGJSQkYGhoaKoNLDKEkkHMs8jdwCKDTAaRG2HMOHXo0EHQSyaDyKJL5llkTjoTCiYZxC26jI6O5i0YIEPoZOGYmBjjaR9CIdSBGxcXh48fP061gUWGUAdufHw8+vv7p9rAIkMoGZSYmIjh4eGpNrDIEEoGMc8i3wYWE0LJIGaMme5zvhBKBjHPIl8ShwwyGcRd+/AVp5PBJIMuX76car5lTvsQCqGThePi4tDb2zvVBhYZTDKI24GbkJCAwcHBqTawyBDqwE1KSsLIyMhUG1hkkB24ZDKIGeOWLVuafBb5kkHMs8icdCYUfCcLM2PMl8QhQygZFBMTg/v37zfpFUoGxcbG4t27d016yWQQd+3z8ePHVBtYZJDJILLoMjExEcPCwlJtYJEhdLIwM99yN7DIYJJB3A5c5llkus+FnkW+DlxmjJlTtYWiSpUqvKc9RUdH8xYMkCHUgRsTE2M87UMoyJOFufPt8+fPU21gkSFUeJCQkICBgYE/PGuSG2EZxZp8pz1JZU2+Br/Y2FjjaR9CkZ6s6ezsLOi1dNYkN8LksiZ3I0wtazK3GAiF0MnC8fHx+Pnz53RlTb7Tnihr8ofQycJqWTMoKEgSa27btk0xa3p4eKQZazLjJMaafKc9mZs1mdM+hOJXZU1ug58ls+aTJ09+atbky7NLZU2y6FIua3KLLn901uQ77YlhzTx58gh6xViTOeWVL4ROezI3azI3OAmF0MnCMTExvMXpZKQFa3KLLuPj4/HTp0+pDiUgIz1Zs2bNmoJeoZOF04I1mZPOhELoZOHo6Gj08PAw6TXFmmfOnDHpFbrFJiNZk7v2EWNN5mTh9GDNfv36mfx58Z0szDyLzKnaQmGKNfmK08lIL9Z8+/ZthrAm39qHuVGEL8RYk69YkgmhW2yYZ5E56Uwo+FiTGafly5eb9KplTabBLyNZU6jBTy1rRkdHY506dQS9YqzJdwgME0KsyTyLzKnaQmGKNfmK08kQOlk4NjYWL1y4YNKbFqzJLbqUyppM0aUS1uRr8GOeRb5iSSaEThZOC9ZkbnASCiUnC1Olv2jhIC0cpFIhvu46U0F24IqBCF8wHbhisMkXTAeuWEKBL5hkkNjCiS/IZJCpDWi+IJNBphJ0fEEmg0xtiPAFmQzi61gXG+PatWvj3LlzRRM/fMEc/c3XDSQWTNHlzp07ZXuZo7/5TkgUCzIZxFxFIDXIZNDvv/8uy0smg5hrRqUGmQziOyFELJhkkNjihy+YZBBzdLqcYI7+FitQ4AuyAzdr1qyyvGQHrqliEL4gO3CZK9alBnnak9gGNDfIZJDYphdfMMkgsY1NvmCSQZ6enrK9TDKIr4taLMhrplxcXGR5yWumTBWD8AVZdGlqQ4QvyA5c5roJOcF04IoVGfAF04HLXBsjJ5jTnvg6bMWCOe3pxIkTJpN7fEEmg4oVKybLSyaDmGvvpAaZDOLroDQV5DVTfKdRigWzEcZ34qhYlClTBjUajfFKaDnBJIP4uvrEgjxZOEeOHLK8ZDLIVDEIX5AnC/OdHmEqyGSQWFKAG2QyaOrUqbJ/XkwyiLkyT06UKFECx4wZI1osxBfMRhhztbucIDtwmWvvpAaZDDJVDMIXZDLI1IYIX5DJILGCH75gkkHMlSJygkkGMVeUygnmmqm9e/fK9pLXTJkqMuALciOsZMmSsrxM4cHmzZuN195JDbIDl+9kWFORVqzJXOEkJ8zFmk5OTmnCmlWrVpXlZVhTq9UqZs3ly5erYk3m6m45wTT4ZTRrMqc9mZM1TRWD8EVasSbfCSFiUb16dZw5c6ZoURdfMNdMiRXu8QVz2pM5WdNUMQhfpBVrim1Ac8NSWZPZCOM7HVosSNY0VXzHF46OjsYGPzWsyXdSoan4EVhTrGmBL9KKNU1tbPIFeYuNUtbcsmWL8do7qcGw5po1a7BXr16yvGSDnxrWFGsg4gvmtKdfkTVbt24ty0ueLDxgwABZXpI1+U7/FQvmFhtzsaZYAS5fpBVrmioG4Yu0Yk2xgh++SAvWFCvc4ws1rEk2+KlhTVPFIHxBnvakhjX5ToY1FT8Ca/KdrCYWDGseOnRItpdkTVPFznxB3mKjhjVNFd/xBVl0yXc6mlgwDX5qWHPNmjWyvWnBmnwnJIrFj8Caphq9+IK8xUYNayrZ12SKLs3JmqaaS/girViTuWJdavyK+5oMayrZ16RXGv84So/CQSv8X2EclQlZWVm5AoA/AIC/vz+4urqa+R1RKdGIESPAw8PD3G+DioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKyqJka2sLDRs2hO7du8M///wDNjY25n5Lv5QCAgLAzc2N+aMbIgao/Z7War8BFdXPLjs7OyhdurQir7W1NZQtW1bxa6vxlipVSrG3UKFCkCVLFkVeFxcXcHJyUuTNkSMHOcnJkr29PZQoUUKRN1OmTFCmTBlFXisrK1XjpPR1AUDx5wUAKFiwIDg6Oiry5smTB/Lly6fI6+joCEWKFFHkzZw5s+L/r21sbMz2LCqdPwAAihYtCra2toq8+fLlg1y5ciny5sqVCwoWLKjI6+DgAMWKFVPktbW1/eXmWzc3N7C3t1fkdXZ2BmdnZ0Xe7NmzQ6FChRR5s2TJAiVLllTkteT51srKSpG3QIECkD17dkXe3LlzQ/78+RV5s2XLBkWLFlXktbOz++Xm2yJFioCdnZ0ib968eSFPnjyKvDlz5lTclOTg4KB4LaBmvjXns6h07gEAcHV1haxZsyryOjk5gYuLiyKvo6MjFC5cWJFXzXyr5lm0srKCcuXKKfICqHsWixUrpjjRlD9/fsiZM6cib65cuaBAgQKKvFmzZlW89qGsKU+UNeXpV2PNbNmyUdaUIUtlzeLFiyvyWiprqln7uLm5gYODgyLvr8iaatY+lDWli7KmPKllTTVrHzXzrSWufczJmnnz5lXkVcuav9qzSFlTuihrypOlsqY51z5KRVlTnn5F1lSTZ7dE1jTX2sfNzQ0GDRoE48ePh169etGiwZ9FaXFs4c8eQK8q/im0d+9edHd3R0dHR8nH6R45cgSjoqLw4sWL6O7uLunIefIqgW/fvuGTJ0/Q3d0dy5QpI/k43Y0bN2JgYCD6+fmhu7s71qpVS9Jxusy1de/fv8e4uDh0d3eXdAw6eZXAixcv0GAw4NixYyVfLcJcW3fv3j3U6/U4f/58yUeolyhRAseOHYtXr17FpKQk3LhxIw4aNAhtbW0lH6d7+vRpjIuLw6NHj6K7u7ukq6/I43QjIiLwxo0b6O7ujkWKFBH1ZsuWzXh1y9evX/H169fo7u4u6eoI5uoWDw8P/Pz5M4aEhKC7u7ukq3+Zq1uWLl2Kb968QYPBgO7u7tiyZUtJP+uaNWvi7Nmz8cmTJ2gwGHDKlCnYtWtXSV7mKoFbt25hSkoKLl++HPv37y/Jy1wlcPHiRUxMTMQdO3agu7s7Ojg4iHrz5s2LAwYMwOPHj2NMTAyeOXMG3d3dJV23kzNnTuzRowfu3bsXv3//jvfv30d3d3dJV9gx19Zt2bIFg4KC8MOHD+ju7o7VqlUT9dra2mKzZs1wzZo1+PHjR4yMjER3d3ds1KiRqJe8uuXly5doMBhw5MiRko+6r1q1Kv7777/44MED1Ov1OGvWLMnXxzBXt1y7dg2Tk5PRw8MDBw4cKOnKHOYqgbNnz2J8fDzu378f3d3dJV3FQl4lEBUVhVeuXEF3d3d0dXUV9To6OhqvrQsNDcVnz56hu7u7pKPMySvSAwICMDAwEN3d3SVdRUlekf7u3TtMTExEd3d3bNasmaiXubZu3rx5+Pz5czQYDKjRaLBTp06SxqlixYo4depUvHv3LqakpOCiRYuwb9++krzFixfHMWPG4OXLlzExMRG3bNmCgwYNknRNB3N1y8mTJzE2NhaPHz+O7u7u6OTkJOplrm7Zv38/hoeH4+3bt9Hd3V3SlUrkVQLBwcH45s0bdHd3x8qVK4t6yasEfH19MSwsDN3d3SVdSUBeW+ft7Y0GgwEHDx4s+Zof5or0x48fo8FgwOnTp0u+Oo+5Iv3mzZuYkpKCK1euxAEDBqCVlZWol7ki/cKFC5iQkIC7d+9Gd3d3SdfQubi4GK9uiY6OxvPnz6O7uzvmz59f1JsjRw7s3r077t69G8PCwvDRo0fo7u6OpUuXFvXa29sbr24JDAxEX19fdHd3l3Q1GnN1y6pVq/DDhw8YExOD7u7u2KRJE0nPYt26dXHBggXo5eWFBoMBR48eje3bt5c0TsxVAvfv30e9Xo9z586VfFUpc5WATqfDpKQk1Gq1OGjQIMyUKZOol7ki/cyZMxgXF4eHDh1Cd3d3zJUrl6g3T5482KdPHzx06BBGRkaiTqdDd3d3SVd8MFek79ixA0NCQtDLywvd3d2xQoUKot7MmTNj69atUavVop+fHwYFBaG7u7uk65jIq1t8fHwwJSUF3d3dJV87wVzd8vTpUzQYDDhp0iTJVzlVqFABJ0+ejLdv38aUlBRcunSp5OsRmWvrLl26hImJibht2zYcNGgQZsmSRdRLXlsXExODp06dQnd3d0nX2pNXpIeHh+Pdu3fR3d0dixcvLup1cHAwXpEeHByM7969Q3d3d0lX9dja2hqvSP/06ROGh4eju7u7pKvWmSvSFy9ejK9fv0aDwYDDhg2TfKVstWrVcObMmfjw4UPU6/U4Y8YM7NGjhyQvc3XLjRs3MDk5GdesWYMDBgyQdDV9oUKFcPjw4Xju3DmMj483G2s+ffpUMmuS19YFBASoYs34+HizseaCBQvMyppSrr5KC9bctm0bizUrVaok6lXLmsy1dSRrtmrVStLPmrm2Li1Yc8WKFYpYMyEhQRVrnj17NsNZ88uXL/jx40eLZM3Zs2dLZk3m2rq0YM0DBw6oZk03NzdRL5c1nz9/niGsaWNjY2TNt2/fmoU179y5Y2RNqdd1qWFN8to6uayZK1cu47V1alnTx8dHNWvWr19f0rPIZc0hQ4aoYk2pV+eRrJmcnIyrVq1SzZpSrqFjWPPo0aMZzprMtXVyWZO8tu79+/eyWZO5ts7crLlhwwbJrFmwYME0Y81r166ZhTWDg4Nls+ayZcsUsSZzRTrJml26dJHkTQ/WtLe3F/WmB2uWKFFC1EuyZlBQkCrWjIiIUMSar169Us2aM2fOlMWaGo0Gr1+/bmTNgQMHSmJNNzc3HDZsmJE19+3bJ5k1ySvSzcma/v7+iljz3bt3RtZs2rSpqJePNceNG5ehrHnlyhVMSkrCTZs2SWbNAgUK4ODBg/HUqVOyWZO8Ij0jWdPOzs54Rbpa1kREi2TNnTt3qmbNfPnyiXq5rPngwQPZrLl582YWa1avXl3Uy7Dm6tWr8cOHDxgVFSWbNRcuXMhizXbt2kn6WTNXpGc0a7q6ulo0a/r7+6tizaSkJNmsOXfuXHz27BkaDAYzV/1QpcdVxWYvyrOEAFo4+NPo3r17gpNepUqVjMUYer0+ldff3x/t7Ox4vUyCjFkkchUbGysIYEwxxqlTpzA2NjaVV6/XCyatuItEPnXo0IHXmy1bNuzYsaNxkcinsWPH8nrJRaKvry+vd+3atYILCGaRyCTIuDp9+rTgODGLRCZBxpWXl5dgwqtcuXKsYgyuQkNDBYsrmEUikyDjKjExUTAZkjdvXlYxBlcGg0Fwgc0kyPbs2YNhYWG8P+vevXvzeslijC9fvvB6Z8yYwetlijGYRSKftm/fLriAqFu3LmuRyNW1a9cEx5hZJDIJMq4+fPggmPAiF4l8z2JkZKRgwotZJDIJMq5SUlIEQZlZJDIJMj4JJZ6YReKOHTswNDSU1zt06FBeL5kgE/r9tHTpUsFFIlOM8fbtW17v4cOHBceJKcYQWiQ+fvxY0FuhQgWcMmWKcUOCqy9fvggWVxQrVgxHjx5t3JDgKi4uTjD5zN2Q4MpgMAhCFHdDgk9CxSjMhgRTjMGniRMnCs63zIbEp0+feL1arVZwvq1fvz6rGIOrCxcuCI4TkyB79OgRr9fb21twvuUWY3AVFhYmmPBiijHOnz/PO98mJSUJbgQxxRjMhgSfGjZsKDjfduvWDXfv3o3fvn3j9QolcrkbEnyaM2cOr5e7IcGn3bt3C863zIYEkyDj6tatW4JjzGxIMAkyrnx9fQUTXtxiDK6io6MFN/u4xRhc6fV6LF++PK+XW4zBJ6EkMFn4HxISwusdOXKk4HzbqlUrXL9+Pfr5+fF6V65cKTjfNmzYEJctW2ZMkHF14sQJwXHibkhw9ezZM0Fv+fLlcfLkycYEGVdfv34V3GBgNiSYwn+uEhISBJPPzIYEkyDjymAwYO3atXm93AQZn4Q2R7mF/3yaOnUqr5dbjMGnLVu2CM63TDEGsyHB1ZUrVwTHqWrVqjhjxgzjhgRX7969E0x4MYX/zIYEV+Hh4YIJL+6GBFfJycmCiUlmQ4JJkPFJKNFPbkgIrX0GDRrE62U2JJhiDD4tXLhQcL5t0qSJsfCfT/v37xecb7nFGFzdv39fcIzJwv8fiTUNBgNWqVKF15verDlu3Dheb3qz5pkzZwTHqUaNGqxiDK5evnyZLqzJLcbgKjExEQsXLszrTW/WFCpU+BFYkynG4Or69euCY5wWrMkUY3AVGRkp2MTILfznSow1yWIMPgk1E5LFGOZiTR8fH17vkSNHBMfJklnzxIkTilmTKcbgk1AxilrWJIsx+LRhwwbB+ZZb+M+VVNbkexa9vb0Fiyt+BNYUWvsIbaymN2vOnTuX18uwJlP4zycx1iSLMbi6ffu24BhzizG4+vz5s9lYU6ggLb1Zc9SoUYLzrblZkynG4Or58+eCXjWsyW0y5yohIUGwoZhbjMGVWtYUKgyTwprTpk3j9aY3a169elVwnNKCNZliDK7Cw8MxZ86cvF6GNZliDK7SkzXJYgw+ubu783rVsibZZM6nAwcOCM636cmaAQEBPyxrmsqzCxX/pQVrMoX/fFq3bp3gs9igQQNW4T9X6cWa3CZzrkJDQwUL+dObNYUa9NOKNYXWPjNnzhScb83JmmThP1cfP340G2uWLVuW15verDls2DBerxTWXLZsGa83rVhTKM/+5MkTQS/DmkzhP1dSWJMp/OcqPj7+h2RNssmc6scSLRykhYNUKkV2MHC7Q8U0fPhw1iKR2x1qSsuXL2dNttzuUFM6evQo7yJRKEFGivsLjlkkCiXISAUFBbF+wXG7Q00pPj4eCxQokGqRyHSHmpLBYGB1fkpJkJEiO02kFGOQmjx5MmuRyO0ONaWNGzeyftbc7lBTunTpEsvL7Q41pTdv3rCSqdzuUFP6/v07Zs+e3ehlukMPHjwouEhklJyczDq9htsdKqbGjRunWiSaSpCRGjBgQKpFItMdKqZ58+axftZixRik9u7dy/IyCTKhRSKpO3fusLzc7lBT8vPzYyVTud2hphQTE4POzs6sRSLZHWpKer2edYomtztUTGQ3Ebc7VEyjR49mzbfc7lBTWr16Netnze0ONaVTp06xvNzuUFN68eIFyytWjEEqJCSE1anG7Q41pYSEBFYXE7c71JQMBgOrC5vbHSqmnj17suZbsjtUTNOnT2fNt0x3qFCCjJSnpyfrZy22IUFKp9OxvNzuUFN6//49K5lKdofyARupiIgIVjJVSjEGo5SUFCxVqpTRKyVBRorsGON2h4pp8ODBrPmW2x1qSosXL2b9rLndoaZ08OBBlpfbHWpKDx8+ZHm53aGmFBAQwDoVRWxDglRcXByra5TZkDCVIGNkMBhYnfbc7lAxdezYkTXfiiXISGk0GtazKFb4T8rDw4P1s+Z2h5rSuXPnWF5ud6gpvXr1ipVM5XaHmtK3b99YyVSyO1Rs7ZOUlMTq4OZ2h5qSwWBgnUDD7Q4VE3myLLc7VEyzZs1ijbGc7tCdO3eyxkmsGIPUzZs3WV6xYgxSnz59YiVTxQr/SUVFRbG69KUU/jNKSUlhdfdyTyISE3lS0I/AmkKF/6SOHTvG8qphTbFiDFJBQUGsjWQphf+M+FiTKcaQMt/WrFnT6JXLmuTpwRnJmps2bWL9rDOKNX18fHhZU6gYg1RasqaUYgxS5GlQalmTKcaQwprz589n/awzijXv3r3L8v4IrClUjMFIr9ezTjZJC9Zcs2aNJNYcM2YMa76tV6+eyWIMUnysaaoYgxSXNcUK/0l5eXmxvBnFmomJiWZjTfKEEXOzpqliDFJpzZqmijFIRUREsBpkM5I1mzdvzlr7yGHNIUOGsObbjGLNQ4cOsbwMawoVY5ASYk2hYgxSgYGBvKwpVIxBKi1ZU0rhPynyxNKMZM3169ezftYZxZqvX79WxZpk0XJasKapYgxGBoOBdfpeWrCmqSZzUrNnz2aNsSWwpq+vr1lYU6/Xm401R4wYwVr7MKwpVPhPKq1Z01ThP6mnT5+yvBnJmmSDrKWw5pQpU1jPYlqwppQ8++XLl1lehjWFCv9JqWFNboOsOVlTrPCf1MCBA1nzbUax5r59+1jejGRNsmhZrMmcVExMDKtoOS1Y01ThPynyhGiSNYUK/0lxWVOs8J/UmjVrWD9rscJ/UuZiTSrzihYO0sJBKhW6d++epO5QPvn7+6OLiwt269ZNUoKMVGxsLBYtWlTWIpGRXq/HGjVqiHaHCqljx46i3aFCGjt2rKxiDFJr164V7Q4V0unTp0W7Q4Xk5eWFzs7Oot2hfAoNDcX8+fPLWiQySkxMxFKlShkXiVISZIwMBgM2bNhQtDtUSH///bdod6iQZsyYgeXLl5dcjEFq+/btot2hQrp27ZqsYgxSHz58QGdnZ9HuUD5FRkaim5ubaHcon1JSUrBy5cqi3aFCat26taxFIqmhQ4caF4lSEmSkli5dKtodKqTDhw+LdocK6fHjx+ji4iLaHcqnL1++YN68eSUXY5CKi4vDYsWKiXaH8slgMOBvv/0m2h0qpK5du4p2hwpp4sSJot2hQtJqtazuUDnP4oULF2RtSJDy9vZGZ2dn0e5QPoWFhWGBAgWwY8eOkhNkjJKSkrBcuXKi3aFCatKkiaxiDFL9+/cX7Q4V0pw5c0S7Q4W0e/du0e5QId26dUu0O1RIvr6+6OzsLNodyqfo6GgsXLiwaHcon/R6PVatWlXWhgSpdu3aiXaHCmnkyJGi3aFCWrlypaxiDFInTpwQ7Q4V0rNnz9DZ2Vm0O5RPX79+xXz58ol2h/IpISEBS5QoIdodyifm9Cux7lAh9ejRQ7Q7VEhTp04V7Q4V0pYtW0S7Q4V05coVWcUYpN69e4fOzs6i3aF8Cg8Px4IFCyrqDk1OTsYKFSrIKvwn1aJFC9GTiITEXNlp6iQiIS1cuFD0JCIh7d+/P9UVxFJ1//59s7FmkSJFZBVjMGI2NtSwJvdaKKkaN26cWVjzzJkzilnz5cuXacaaUooxGCUmJmLp0qVVs6bUYgxSffr0+SFYU87a5/r1678ca/75559mZU2pxRikjhw5ooo1nZ2dWddCSVVasCZ5BbFUcVlTSjEGqW7duqUJa0opxiC1YcOGNGFNKcUYpMzJmmXLlpVVjEHqjz/+UMWacprMSc2dO9csrHn79m0ja0opxiD1+fNndHFxUc2aSvLs1apVU82aUosxSI0aNcriWPP58+dpxppy8uwJCQlYsmRJs7Bmz549sVatWpKLMUhNmzZNFWvKKcYgdfXqVdWsKbXJnFR4eDi6urqanTXlrn0GDx6cJqwppRiD1IEDB9KENaUU/pMKCAgwK2vKKfwn1alTJ7Ow5rp168zOmlIK/0mlFWtKLfxnZDAYsFGjRqpYU07hP6mZM2daHGt+/PgxzVhTSuE/o7RkTSmF/6SGDRuGVatWlVz4T2rZsmWqWVNq4T+pJ0+emIU14+PjsXjx4mZnTXoFsWUpPQoHrfB/hXFUJmRlZeUKAP4AAP7+/uDq6mrmd0SlRN++fYPcuXODtbW1bG94eDhky5YNbG1tZXtjYmLA2toaHBwcZHsTExMhISEBcuTIIduLiPDt2zdwdnaW7QUACAkJARcXF0Xe0NBQxa8bGhoKTk5OYGVlJdsbFhYGOXPmBBsbG9neyMhIyJIlC2TOnFm2NzY2FhARsmXLJtubkpICUVFRkDt3btleRITQ0FDF46R2jJWOk9pn0dHRETJlyiTbGxUVBXZ2dpAlSxbZ3oSEBEhKSoLs2bPL9hoMBvj+/Ts4OTnJ9gKoGydzjbGaZzEiIgIcHBzAzs5OtlfNfJuUlARxcXGQM2dO2V5zzrchISHg7OysaJzUjPH3798he/bsip5FNfNtXFwcGAyGDJ9vASzzWTTX2ic6OhoyZcoE9vb2sr10vpUnc823sbGxAACQNWtW2d7k5GSIiYmBXLlyyfb+imsfNfOtmrVPfHw8pKSkgKOjo2yvXq+HiIgIyJMnj2wvgGU+i5Q15ckS1z7mYk1zrX0sdYzVzreOjo6KnkXKmvJkiWufX5E11YyTpbKmXq9XvPaJjIykrClRlsia5v69+CvNt+ZkTUucbylrypMlPouUNeWJsqZ0/Yp5dnOxpppnMSoqCmxtbWmeXaIsce1jqaxJZV4FBASAm5sb80c3RAxQ+z1p4aAE0cJBKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKnMoPQoH5ZdFU1FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRWaxo4SAVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV1S8kWjhI9cvIz88PYmNjFXmDg4MhPDxckTc8PByCgoIUeRMSEuDTp0+KvIgIb968AaXXkb958wYMBoMi77t37yAlJUWR99OnT5CQkKDIGxAQAFFRUYq8oaGh8O3bN0Xe6OhoCAhQdgJscnIyvHv3TpFX7Rj7+PiAXq9X5P3w4QMkJSUp8n7+/Bni4uIUeb98+QIRERGKvGFhYfD161dF3ri4OPj8+bMir8FgAB8fH1XPolLv27dvFT+LHz9+hMTEREVef39/iImJUeT9+vUrfP/+XZE3IiJC8XybmJgIHz58UORFRPD29lb1LCqdb9+/fw/JycmKvJ8+fYL4+HhF3sDAQMXz7bdv3yA0NFSRNyYmBvz9/RV59Xq94vkWQP2zaK75VunaJygoSPHa5/v37xAcHKzIGx8fD76+voq8BoNB9e9Fc6x9Pn78qHjt4+/vD9HR0Yq8ISEhEBYWpsgbFRUFgYGBirxJSUnw/v17RV5LnW99fX0Vz7dfvnyByMhIRd5v375BSEiIIm9sbCz4+fkp8ur1erOufdTMt0rXPuZiTTVrH7WsqeZZpKwpXWpYMyUlxSJZ8/3792ZhzaCgIMqaMqR27WNprBkZGQlfvnxR5E1KSvrlWFPN2oeypjyZizXVrH3UsGZ4eLhZWDMtfi9S1pQmNayZnJysijXNNcaUNaWLsqY8mZM1P378qMhrzrUPZU3pUsOaAKB6jH8l1vz+/bvFsqa51j7mYk2lax9zsqaa34tUP59o4SDVL6OoqChwdnaG1q1bg1arlZUMsrGxgaJFi0KjRo1g+fLl4OPjI9mbNWtWqFOnDtSqVQvmzp0Lz549kzwJZ86cGXr37g0VKlSAyZMnw+3btyUviKysrGDevHlQvHhxGDVqFFy6dEnWgmjv3r1QsGBBGDhwIJw4cUIWnNy6dQucnZ2hZ8+esG/fPllw8vnzZ8iTJw906NABtm7dKisZlJSUBPnz54fmzZvD2rVrZSWD7OzsoGzZslCvXj1YvHgxvH79WvI4OTg4QLNmzaBatWowc+ZMePTokeQFka2tLYwYMQLKlCkDEyZMgBs3bkheEFlZWcHq1auhcOHCMHz4cDh//rwsODl58iTkz58f/vnnHzhy5IisZNDTp0/B2dkZunbtCrt27ZK1IPr27Rs4OTlBmzZtYOPGjbKTQW5ubtCkSRNYuXKlrGSQg4MDVKtWDX777TeYP38+vHjxQvIY29vbQ8eOHaFSpUowbdo0uHfvnuQxtra2hmnTpkHJkiVh7NixcPXqVVnJIE9PT3B1dYXBgwfD6dOnZSWDrly5Annz5oW///4bDh48KCsZ9O7dO3BycoJOnTrBtm3bZCWDYmJiwMXFBVq1agUeHh6ykkGZMmWC4sWLQ4MGDWDp0qWyFq5Zs2aFevXqQc2aNWH27Nnw5MkTyV47Ozvo378/lCtXDiZNmgS3bt2SNd8uWbIEihUrBiNHjoSLFy/KgpMDBw5AgQIFYMCAAXD8+HFZ8+29e/fAxcUFevToAXv37pU13wYGBoKTkxO0b98etmzZIisZlJKSAgUKFIBmzZrBmjVrZBUeZMmSBSpUqAC///47LFy4EF6+fClrvm3VqhVUrVoVZsyYAQ8ePJD8LNrY2MDYsWOhVKlSMH78eLh27ZosAPXw8IBChQrB0KFD4ezZs7Lm2zNnzkC+fPmgb9++cPjwYVnJIC8vL3BycoIuXbrAzp07ZSWDwsPDwdnZGf7880/YsGGDrGSQtbU1FClSBBo3bgwrVqyQlQxycHCAWrVqQe3atWHevHnw/PlzyWOcJUsW6NatG1SsWBGmTp0Kd+/elfwsWltbw6xZs6BEiRIwZswYuHz5sqy1z44dO8DV1RXc3d3h5MmTspJB169fBxcXF+jVqxfs379fVjLo06dP4OTkBH/99Rd4enrKSgYlJCRA3rx5oUWLFrBu3TpZySA7OzsoVaoU1K9fH5YsWSIraefg4ACNGzeG6tWrw6xZs+Dx48ey5tvBgwdD2bJlYeLEiXDz5k1Za58VK1ZAkSJFYMSIEXDhwgVZ8+3Ro0chf/780L9/fzh27JisZNCjR4/A2dkZunfvDnv27JFVePD161fIkycPtG3bFjZt2iQrGaTX68HV1RWaNm0Kq1atkpUMsre3h8qVK0OdOnVgwYIF4OXlJWvt065dO6hcuTJMnz4d7t+/L2u+nTRpEpQqVQrGjRsHOp1O1tpn06ZN4ObmBkOGDIEzZ87IWvtcuHAB8ubNC3369IFDhw7Jmm/fvHkDTk5O0LlzZ9ixY4eswgNzsaaDgwPUrVsXatasCXPmzIGnT59mGGsuWLDALKx5+/Zti2PNzJkzm4U1M2XKBCNHjjSy5vXr1xWz5rlz5zKMNZ8/f2421ixUqJBZWLNTp04Wy5q9e/eGAwcOZBhrxsbGgouLC7Rs2TJDWdPBwQHq168PNWrUUMSaAwYMMAtrHjx4MM1YU87aJy1ZU07hgVrWbN26NVSpUgX+/fffDGXN9evXm4U1X758afGsKSfProY1raysYPbs2VCiRAkYPXq0YtYcNGhQhrKmr6+v2VizdOnSacaacvLsQ4YMSRPWPH/+fIax5uPHj8HJyQm6desGu3fvlrX2UcOaBoMBXF1d4Y8//rAo1pw8ebJZWPPixYtmZ83169crZs1ly5ZlKGv26dMHypcv/8uwpp+fX5qxppw8u1rWbN68OVSrVg1mzJgBDx8+VMSaGo1GFmsCAKxduxYKFy4Mw4YNsxjWDAsLMwtr2tvbQ/Xq1dOMNeXk2adPn66YNbdt2wZubm7g7u4Op06dkrX2UcOa79+/hzx58kDHjh0zlDVtbW2hZMmSFsmaRYsWVcSaVD+hEJGGSACAKwAgAKC/vz9SWa66dOmCzFgCAFapUgWnT5+O9+/fR71eb9I7adIklrdkyZI4btw41Ol0mJSUZNK7YcMGltfV1RWHDBmCZ86cwfj4eJPeixcvsrxOTk7Yp08fPHSuFnQ5AAEAAElEQVToEEZGRpr0ent7o7W1tdHr6OiInTt3xh07dmBoaKhJb1hYGGbPnt3ozZIlC7Zu3Rq1Wq3oc5CUlITFihUzem1sbLBRo0a4fPlyfPv2rUkvImKjRo1Yn7lWrVo4d+5cfPbsGRoMBpPe/v37s7wVKlTAKVOm4O3btzElJcWkd+7cuSxvsWLFcPTo0Xjp0iVMTEw06d2zZw/Lmz9/fhw4cCCeOHECY2NjTXpv377N8ubKlQt79uyJ+/btw/DwcJPez58/o62trdGbNWtW7NChA27duhWDg4NNemNiYtDJycnotbOzw+bNm+PatWvR19fXpFev12OFChWMXmtra6xXrx4uXrwYX79+LTpObdu2ZX3matWq4cyZM/HRo0eiz+KoUaNY3jJlyuCECRPwxo0bmJycbNK7atUqlrdQoUI4fPhwPH/+PCYkJJj0njhxguV1cXHBfv36/R97Zx0WRffF8YOgKAYmJrayiN1ix2u7tmu3oujahbl2F3Z3d3e3YmIrBiIoDdKx5/fH75l9ZoY7O3d2gH33db7Pc/54//i+LDvO4X7OPedePH78OP7588eo9+XLlxyvvb09ajQa3LNnDwYHBxv1/v79G+3s7AzeLFmyYNu2bXHTpk348+dPo964uDgsUqSIwWtjY4NNmzbFlStX4ufPn4169Xo91q5d2+C1srLC2rVr4/z58/HVq1eiz7hHjx6c37lixYo4bdo0fPjwoegznjZtGsdbunRpHDt2LF6/fl00327dupXjLVy4MLq5ueHZs2cxJibGqPf69escb548ebBPnz54+PBh0Xz76dMntLa2NnizZcuGnTt3xp07d2JgYKBRb1hYGObMmdPgtbW1xVatWuH69evR19fXqDcxMRHLli3LybcNGzbEpUuX4vv37416ERGbNWvG+Z2rV6+Os2fPxmfPnok+46FDh3K8Li4uOHnyZLx7965ovl20aBHHW6JECdRqtXj58mXRfHvo0CGOt0CBAjho0CA8efIkRkVFGfU+fvyY482ZMyf26NED9+/fj6GhoUa9fn5+mClTJoPXzs4O27dvj1u3bsWAgACj3ujoaMyfP7/BmzFjRvznn3/Q09MTv379atSr1+uxcuXKnHxbt25dXLRoEb5580b0OXXs2JHzO1epUgVnzpyJjx8/Fn0Xx48fz/E6OTnh+PHj8ebNm6L5du3atRyvo6Mjuru74/nz50XXPufPn+d48+XLh/369cOjR49iZGSkUe/r16/RysrK4M2RIwd27doVd+/eLZpvg4KCMFu2bJy1T5s2bXDjxo3o5+dn1BsfH4/Fixfn5NvGjRvjihUr8NOnT0a9er0e69Wrx8m3tWrVwnnz5uHLly9Fn3Hfvn0531eFChVw6tSp+ODBA9F3cdasWRxvqVKlcMyYMXjt2jXRfLtr1y6Ot1ChQjh06FA8ffq06Nrn1q1bHG/u3LmxV69eePDgQQwPDzfq/fLlC9rY2HDybadOnXD79u34+/dvo97IyEjMnTs3Z+3TokULXLt2LX7//t2oNykpCZ2dnTnvYv369XHJkiX47t070efUqlUrzu9crVo11Ol0+PTpU1Gvu7s7x+vs7IyTJk3CO3fuiD7jZcuWcbzFixfHkSNH4qVLl0TXPsePH+d48+fPjwMHDsQTJ06Irn2ePXuWIt92794d9+3bhyEhIUa9AQEBmDlzZs7aR61W4+bNm9Hf39+oNzY2FgsWLMjJt82aNcPVq1ejj4+PUa9er8fq1atz3kVXV1dcsGABent7iz4nPmtWqlQpXVhz06ZNHG96seb79+9TjTVtbW2pWTMxMRFLlSrFWfswrPnhwwejXkRh1nz+/Hmasua8efM43pIlS+KoUaPSnDXv37/P8VoKa1aoUIGTb9OLNUePHs3xMqx569Ytk1nzwoULovn29OnTHC/DmseOHZPMmjly5MBu3bqlC2s6Ojpy1j5NmjRJF9bs2bMn53dOL9bctm0bxyuFNW/cuMHxMqx56NAh0bWPHNYMDw8nsua6detMYs0GDRpQs+Y///zD+Z3lsGa5cuXShTUPHz7M8aYna9ra2hq8qcWaX758Meo1xpqvX78WfU6dOnXi/M5VqlTBGTNmpDlrrlu3juN1dHTE4cOHpzlrvnnzxiJZs379+px8y7AmTZ1dDmvqdDqOl2HNq1evmsSaQ4YMoWLN27dvc7xSWPPr168c1syaNSt27NgxXVizXLlynHcxvVhzxIgRHC+bNcXeRT5rFitWzCysaW9vj927d8e9e/emOWsWKlSIk2+bNm2Kq1atMok169SpQ82a3bp14/zOlsCaV65c4XjTizVDQ0NTnTWXLVtGxZqNGzfm/M41a9bEOXPmULHmoEGDOF4XFxecMmVKmrPm/v37Od70Yk1fX1+LZE21Ws35nRnWfPLkSZqy5urVqzneokWLoru7u0msmS9fPuzfvz8Va7569YrjlcKagYGBZmPNOnXqcPJterHm9OnTOV5LYM3Pnz+nYM1OnTrhjh07RFlTkXn148cP9nMvgqnRE5ca/5P/eoDSOPifkbe3Nyd5skOsGBQYGIhZs2YlesWKQfHx8Zw/cuwQKwbp9Xp0dXUlepli0OrVqwWLQb169SJ6aYpBM2bMEPy+xIpB27dvF/SKFYP4f+TYIVYM8vHx4fyR4y+IjBWDwsPDMVeuXESvWDEoKSkJnZyciF6aYlDz5s2JXppi0LBhw4hemmLQkiVLBL/rChUqoIeHB96/f58IJ0eOHBH0ihWDvLy8BL1ixaCfP39yCqrsECsGxcTEYIECBYhesWKQXq/HKlWqEL00xaDOnTsLvotixaCJEycKfl9ixaD169cLesWKQRcvXhT0MsUgoabLt2/fcgqq7BArBgUHB2P27NmJXrFiUEJCApYoUYLoFSsG6fV6bNCggWC+FSsG9e/fX/BdFCsGzZ49W/C7FisG7dmzR9ArVgy6c+eOoFesGPTt2zdOQZUdYsWgP3/+YJ48eYhephgktBGWnJzMKaiyg6YY1KZNG6KXphg0cuRIwe9LrBi0YsUKQa9YMejEiROCXrFi0PPnzwW9YsWgX79+YZYsWYhesWJQbGwsFi5cWDDfGisG6fV6rFmzpmC+ZYpBQk2XGo1GMN+KFYM8PDwEvy+xYtCWLVsEvSqVCidMmCBYDLp69aqgV6wY9PHjR05BlR1ixaCwsDC0t7cnesWKQYmJiVi6dGnBfCtWDGrSpAnRS1MMGjx4sGC+FSsGLViwQPC7ZopBDx48ID7jAwcOCHrFikEPHz4U9DLFoDNnzhCLQb6+vpzGZXaIFYOioqLQwcGB6BUrBiUnJ2OlSpUE823Lli1x3bp1gmuf9u3bC+ZbscaDsWPHCn5fYo0Hnp6egl6xxoOzZ88KeosXL25oPCC9i+ZkzaJFixK9DGtu2bIlTVizd+/egu+iq6srLly4ME1Yc8eOHYLesmXLGmXNmzdvCnrTkjUjIiKoWJO0ESaXNVu0aCGYbxnWFBrwMxdrHj16VNDLDPhdvXqVuPaRw5r+/v6czWR2pDVrVq1alehls6bQRpi5WHPDhg2CXoY1hQb85LDmu3fvBFlTbMAvLVmzXbt2RhsPGjZsKPgupiVrzpkzR/C7TkvWvHv3rqCXzZqktY85WdPFxYXopRnwk8OaWq1W8PuqUaNGmrHmyZMnBb0lSpQwypovXrwQ9BYoUMDAmqS1jxzWjIuLo2JNobWPHNbs3r27YL6tV6+e0QE/c7HmtWvXBL1s1iStfSyVNZs2bSqYb8VYc8iQIYL5lmFNoQE/Oax58OBBQW/p0qWNDvjJYc0fP34Ismbu3Lmxd+/e/0rW7NChg2C+TUvWXLNmjaA3rVlTaO3DsOaJEyeI+TYoKMhsrFm3bl2ilz3glxasOXPmTMHvunLlyv9a1jS29klL1lSpVEQvw5rG6uxyWHP48OGCz7hWrVpGD5MxF2s+ffpU0FuwYME0ZU32kCw70po1u3TpQvSyWVOozj5p0iTB76tatWqGAb/UZs1Lly4JeosVK2b0MBk5rBkSEmKUNTUazb+SNQcMGCD4LkppcleUvlIaB5XGQUUyNGfOHFSpVIKLL3awi0E/fvzAHTt2oEqlEixosIM57YkpBl2+fBlVKhVnysVYsItBb9++RZVKxZmeMBbsYlB4eDiqVCrBxQQ/+MWg2rVrY7Fixai87GJQdHQ0dunSRRDu+cEvBo0dO1ZwocoPfuPB8uXLUaVSCcIuO5hiEHPa06FDh1ClUglCFDvYjQdv3rzBu3fvokqlElyc84M57enJkyf49etXVKlUgpDND3YxKCEhAVUqlWCxjB/8xoOmTZsKLkT4wS8G9evXjzN5biz4xaBp06ahSqUSLDyxI3PmzJxi0IYNG1ClUgkusNnBLwadPXsWVSqV4MKNHfzGg2fPnqFKpeJMjhoLdjEoMDAQVSqV4CYSP5jGA6YYVLVqVcHGY34wpz0xxaB27dpxpuSMBb8Y5O7uLrhByQ9+MWjBggWS8i27GLR7925UqVScaSSh4BeDrl+/jiqVSrAwyQ92MejDhw+oUqkwX758VF52MSgqKgpVKhVn6tRY8ItB9erVk5Rv2Y0H3bt3xzJlylB52ac9hYaG4oQJE1ClUgmCEDv4xaBVq1ZR51t+MejYsWOoUqk40/ZCwS8GPXz4UFK+ZReDfvz4gSqVinMag7HgF4PKlSvHOcHTWPCLQS1atKDOt/xi0MCBA6nfRX4xaNasWahSqQSbHNjBbzzYsmWLpLUP+2ThCxcuUK99+MUgb29vVKlUgpt9/GBOe7p//z4GBwdLWvvwi0E1atQQLIjyg18M6tixo6R8yy4GabVa6mfMLwYtWbIEVSoVZ0pXKPjFoH379lHnW34x6NatW6hSqTgn2BgLpvHAy8sLfXx8JOVbdjEoJiZG0tqHXwxq1KgR57QOY8EvBvXu3Zs63/KLQVOmTKFe+/CLQWvXrkWVSiU4NMEOfjHo5MmTktY+7GKQl5eXpLUPu/EgICBAUr7lNx5UrFiReu3DNB4wE7itW7fmnHxuLPiNB0OHDqV+F7Nnz8457clU1vT19ZXFmleuXJG09kkt1oyIiDALa0ZFRWHXrl1lsybN2offeCCHNQ8fPiyJNdknC8thzW/fvkliTScnp1RhzdjYWFms2b9/f7Ow5saNG01izU+fPpnMmi9fvsTnz59LWvtUrFjRcNqTKazJbjyQw5pqtdqsrEmz9klN1rxx44bJrPnx40eTWPPOnTvpyprsAT+5rDlx4kRJrKlWq83Omo8ePTIba7q4uJiFNQcNGiSZNZnTnnQ6nSTWZA/4yWHNixcvSqqzs2+xkcOaISEhFsmao0aNMgtr7t+/X9Lap379+oYBP1NYk2k8+PLli6R8y77FJjY29q9jzXXr1lkca/769Usya7IH/OSwZps2bahZk3+LjRzWnDt3rsWx5rt378zGmnXq1ElX1mSaLqWwJv8wmRUrVkha+7BvsZHDmvfu3TMLayYmJpqFNSMjI2Wx5vTp0yWtfdq2bWuos8thzXPnzknKt+xbbOSwZlBQkCTW5N9iYy7WHDFihEms+fv3b1msuWfPnnRnzadPn8pizejoaMmsSXuysKK0l9I4qDQOKpIh/rHrUoI2aZKCdoFLCloAEvpjaao3e/bsVItUUmTOnJn6jxs/rK2tqf+4pfZ3LecZ0y6cSCHn96Vd0JMia9asVAsYUmTKlMnkf18ZMmSQ9e9aznMy1zOmBWRS2NvbUxUFSJElSxYqmCCFjY2NyZ/byspK1vdlrnxLC7mkkJtvaQp0pLC1taUupPLD2tpa1u/8N+ZbmsIPKezs7KiKN6TImDGjkm8lBG0RhBQ5cuSgKgqQInPmzNQbV/ywsbEx+d+mlZWV2d5Fc+VbOWufbNmyURXLSWFra2vyz7a2tv7r3kU5a5+cOXNSbXqRws7OjqpRgBQZM2Y0OYeYc+0jx6uwprT4G9c+pnoV1ky/Z/w3subftvaRm29pNidJobCmtLBU1jR17ZMhQwaLXPsorEkff2O+VVgz/bwKa9KHwprSQmHN9Pu5Cmum33OyxHyrsKa0sETWzJYtm6HJXez6eUVpo7RoHMwAihQpMqq8efNCoUKFTPJmz54dSpQoYZI3c+bMULZsWZO81tbW4OLiYpLXysoKypUrBzY2Nib5y5QpA3Z2diZ5ixcvDjlz5jTJW7BgQXBwcDDJmytXLihSpIhJ3qxZs0KpUqVM8mbKlAlUKpVJ3gwZMpj8jAEAVCoVZMqUySRvqVKlIFu2bCZ5HR0dIU+ePCZ5HRwcoECBAiZ57e3toVixYiZ5s2TJAqVLlzbJa2NjA87OziZ5mXcxQwbT/lSXLVsWMmfObJK3RIkSYG9vb5K3UKFCkC9fPpO8efLkgcKFC5vklZNvbW1twcnJySSvnHwL8P93MWPGjCZ5y5QpA1mzZjXJW7RoUciVK5dJ3gIFCkD+/PlN8ubKlQscHR1N8trZ2ZmcbzNmzGjWfGtra2uSt1SpUpA9e3aTvIULFzY53+bLlw8KFixokjdHjhwm59vMmTPLyrflypUzycvkW2tra5P8ZcuWhSxZspjkLV68uMn5tmDBgibn29y5c5ucb7Nly2Zyvs2UKZNZ1rcA8vJtqVKlTM63jo6OJufb/Pnzm5xvc+bMCUWLFjXJa2dnZ/K7mDFjRpPXPky+lbP2MTXflihRAnLkyGGSt3DhwpA3b16TvHJZs3jx4iZ5/0bWLFasmNlY09S1j8Ka0lSkSBHInTu3SV4HBweT1z729vYm51tLZk1T1z5yWdPUfGuprGnq+hbg/++iqfm2dOnSfx1ryln7yM23VlZWJvkV1qSXwprSJJc1Ta2zy2VNOfm2fPnyJnkB5LOmnDq7HNY0tc5uiaxp7jq7wpp0Midrli5dWhZrmvouFixY0Cxrn6xZs0LJkiVN8splTbn51lysqexr0klhTWmSs/axtbU1W53d2dkZKlWqBJUqVTKZKRT9C5Ua3Yf/9QDlxMH/hLZt24bdunWjmjhhX0WQlJSEZ8+eRY1GQzUJwVxFwByN/ejRI9RoNFRH8jJXETBX/n779g01Gg3V1b25cuXCXr16Ga5hio6ORo1Gg9WrVxf18q/8RUQcPHgwNmzYUNTLXMO0Zs0a/Pr1KyIienh4YJs2bUS97Ct/3759i3q9HletWoVdu3al6mivWrWq4SqC5ORk3L9/P2o0GqqJE/ZVBImJiXj16lXUaDRU3flFixblXEXw6tUr1Gg0VMdjs68iiIyMxF+/fqFGo8EKFSqIetlXEQQHB6Ner0eNRoO1a9cW9bKvIvj58yciIo4cORKbNWsm6mWuImCu/EX8/9Xf7du3F/UyVxEwV/7q9XrcuHEjduvWjepIb+bK34cPH2JycjIeP34cNRoN1bQtc+UvcxXB3bt3UaPRUE1+FC5cGN3c3AxXEXz8+BE1Gg3VtRHsqwjCw8MxPDwcNRoNVqlSRdTLntIIDAxERMS+ffti/fr1Rb3sqwi+f/+OiIgTJkzAli1binrZVxG8f/8eERGXLFmCnTt3pnoXmasInj17hnq9Hnfu3IkajYbqJD0XFxfDlb9JSUl4/vx51Gg0VJOY7GuY4uPj0cvLCzUaDdX1L/nz5+dc+evr64sajQbLlSsn6s2ZMyf26NHDcBVBfHw8ajQarFmzpqiXfxUBIuLQoUOxcePGol72VQRfvnxBRMQZM2Zgu3btRL38qwj0ej16enpi165dqU43YF9FkJycjIcOHUKNRkM1bctcRcBcw3Tjxg3UaDRUU3qOjo7o7u5uuIbpzZs3qNFoqI6qZ64iYK5hCgoKQo1GgxUrVhT18q/8RUTs3r07urq6inr5V/4iIo4ePRr/+ecfUa+NjQ02btwYV6xYgZ8+fUJExHnz5mHHjh1FvfyrCPR6PW7ZsgW7detGNeFXoUIFw1UEycnJeOrUKdRoNFQnjbCvIoiPj8cHDx6gRqOhunKCfRVBdHQ0+vj4oEajobpSgLmK4ODBgxgWFoZ//vxBjUaDVatWFfVmzZoVO3XqZLiGCRFxwIAB2KBBA1FvpkyZsGXLloZrmBARJ0+ejK1bt6Z6F5krf9+9e4d6vR6XL1+OXbp0EfUC/P8qAp1Oh0+fPkW9Xo979uxBjUZDdboBc+XvnTt3MCkpCS9duoQajYZqErNYsWKcqwieP3+OGo2G6iom9rV3f/78wZ8/f6JGo0EXFxdRr729veHau5CQEExMTESNRoO1atUS9WbJksVw7R2z9nF3d8emTZuKetnX3vn4+CAi4qxZs1CtVlO9i8y1d97e3qjX63H9+vXYrVs3qtMNKleubLiGKTk5GY8cOYIajYZq2pZ/5e+tW7dQo9FQTa4y1zCdO3cOY2Ji8P3796jRaKiu6eFf+RsSEoIajQYrV64s6s2ePTt26dLFcO0dImLv3r2xbt26ol5bW1vOtXeIiGPHjsUWLVqIetnX3n348AERERctWoSdOnWieheZa++eP3+Oer3eJNa8d++ebNZ8/PgxNWvyr2GSw5oxMTFmY82pU6f+FazJXMOU3qzJXMNkCmsyV/6mBmt26NBB1Mu+8jc1WZPmpJG0YE2aK7NSizWZtY8c1pw4caIk1mSuYZLLmrt27TILaz59+tRk1vzx44fZWNPNzS1dWfP169eo1+txzZo1klnz8ePHFsOa/Ct/5bJmjx49zMKa8+fPl82aNCfpMazJ1NlTgzVprnZmWJO58jc1WLNatWqiXjZrMmsfKazJvvJXLmuuWLGCmjWrVauWaqx5+fJl1Gg0VCdSyWFNBwcHDmv6+/ujRqPB8uXLi3r5rJmUlCSZNdl1djmsqdPpJLEmc+WvXNY8evSoxbFmaGioSazJ1NnlsOa4cePMwprbt29HjUYjizVpTpXiX/mbGqzp7Ows6mWu/E1N1mzUqJGoN61Yk2btw2fNAwcOoEajoTpFmGFN5spfOazp7e2NGo2G6gpuhjWZK3+lsCb/yl9ERI1Gg3Xq1BH1Mlf+btq0ybD2kcKazJW/qcGamzZtoq6zpyZr3rt3zyysGRERIYs1+/XrJ4k1mSt/5bLm0qVLqVmTufI3NVjzwoULJrFmXFycxbGmv78/KjK/lKuKlcZBRTJ1/fp1YsLLmDEjNm/eHD09PQ2LRL4+ffpELD6TmjH4CgsLEyyGVK1aldOMwVdiYqLgH3WmQMYsEkkSWkAxBTJmkUjS0KFDiV6mGYNZJJK0cOFCope0SOTr0KFDRC9pkcjX48ePiV72IpEpkPHl5+dHBDD2IpEpkPEVHR0tWJisWLEipxmDL71eLwi77AJZQkIC8XMLFfn4zRgkjR8/nuhlCmSHDh3C8PBwonft2rVEb7Zs2bBTp064Y8cOwyKRr/PnzxO9TDMGe5HI1+vXr4kAZm1tjQ0aNOAsEvkKCgoSLD7zF4l8xcfHY7FixYjecuXK4eTJkw0FMr70ej3Wq1fP6CKRKZCR1LdvX8FFIrtARtKsWbOMLhKZAhlJu3btInrZzRhCi8Rbt24J5lt+gYyvL1++EAGM3YzBbEjwFRERIVgMqVy5Ms6YMcOwIcFXUlKSYEGjbNmyOH78eMOGBEmtWrUieosUKYLDhw83bEiQ5O7uTvSyNySEjvxetmwZ0Zs9e3bs2rUrpxmDr2PHjgnm2zZt2nAKZHw9e/aM6LW2tsbGjRvj8uXL8ePHj0RvQECA4LVZTIHsxYsXxGccGxsrWJjkN/7zpdfrBQtPTDPG1atXMT4+nvi5hZoNmMZ/ZkOCpMmTJxO9TDMGsyFB0saNG4nerFmzYseOHTkbEnxdvnxZMN/yNyT4ev/+PbH4zGxIsAtkfIWEhAg2eTMbEl5eXkRvYmKi4Iads7MzpxmDJKECIb/xn6SBAwcSvexmDKF8O2/ePKKX3fgvlG/37dsnmG/5jf983b9/n+hlmjFWrVplKJDx9f37d+JmH9P4v2DBAkOBjK+oqCjBpsNKlSrh9OnTDQUyvpKTkwU3c5gNCaZARpLQJnbhwoVx2LBhhgIZSaNHjyZ62QUyoXy7atUqopfU+M/X6dOniV52M4avry/R+/LlS8F8yzT+MxsSfP3+/Vuw0YlpxmA2JPiKi4sT3CRwcXHBKVOmGDYk+NLr9YINR/wNCZJ69uxJ9DIbEkyBjKRp06YJ5ltmQyI0NJTo3bZtG9FrZ2eHHTp04DRj8EXDmkwzBl9yWDM8PFyQNfmN/3zJZU2hRoW0Zs1FixYRvf921iQVnxnWZDdj8PU3sua6desE821asuabN2+IrJkhQwYDazLNGHzRsCbTjMFXfHy8YIPEv5k1dTod0ctvxiBJDmvevn1bMN+mJWtGRkbKYk2hzRyGNZlmDJLksOaIESOIXoY1mWYMkuSw5vHjx4leUjMGX8ZYk2nGSCvWFNqUTWvW7NatG9Gb1qy5adMmopeGNa9cuSKYb1u0aMFpxuBLDmuGhoYKsia7GSMtWFOoEfffzJr79+8XzLdpyZq+vr5mY02hRhZ+MwZJQg18/GYMkuSw5urVq4netGbNV69eCebbfzNrCjUcMazJNP6TJIc1p0+fTvTymzFIMsaa/MZ/vm7cuEH0khr/+TIXayYlJZmNNd3c3Ije1GJNobXP4cOHiV6GNdmN/3w9efJEMN/yG//5ksOaMTExgtfZ8ofM+ZLLmkLNtP9m1rxw4QLRy2ZNoTq7HNYMDg42yprsxn++xFiT3fjPl16vF2z+4zf+k9SvXz+iN61Zc/fu3URvWrPm169f05Q1mcZ/vuSyptCACr/xX9G/S0rjoNI4qEiG9Ho9Z7KPPx0qpv79+xu8TIGMPR1qTLNnz+YsEvnToca0Z88eg5dpxlixYoVggYytO3fucP4w8adDjenbt2+cP3D86VBjioyM5HTVM4tEYwUyRsnJyZw/cDQFMrbYE0E0BTK2Ro4cafDSFMjYWrFiBWeRKNaMwdaJEyc4i0T+dKgxPX/+nPOHnD8daky/fv3iTI0y06HGCmSMYmNjOSdJ0SwSGen1es4EAzMdaqxAxpZGo0mxSDRWIGPLw8ODs0gUK5CxtXnz5hSLxFWrVgkuEtm6evUq511kCmTMdKgxffz4kVNMZQpkQotEtsLCwjhTTPzpUGNKTEzkTH4yzRi0i8QmTZoYvHny5OFMh4pp8ODBnHzLnw41pvnz5xu87A0JoQIZWwcOHODk20aNGhktkLH18OFDzrsoViBjy9fXl9O0XL58eaMFMraioqI4E4U0zRiMkpOTOSci8KdDxcQ+dZQ/HSqmsWPHGrxMM8a2bdsEC2RseXp6ct5F/nSoMZ09e5aTb5npUKECGVve3t6cZ8xsSAgVyNgKDAzkTI2qVCrRAhmj+Ph4TjGVPx1qTHq9nnNyBU2BjK3evXsbvDTNGGzNmDGDs/YRa8Zga8eOHQYvTTMGW+xiKmk61Jh8fHw4xVT+dKgxRUREcE4LYzYkjBXIGCUlJXFOvShUqBC6ubnhmTNnqPIte+KdpkDG1rBhwwxeZkPCWIGMrSVLlnDWPmLNGGwdOXKEk2/FGv/Z8vLy4ryLYo3/bPn7+3M2kplmDGY61Jj4xVT+dKgx6fV6zkmY/OlQMbEnZWk2JNiaOHEiJ9+2b9/eaIGMrQ0bNqRY+xgrkLF18eJFTr6tW7eu0QIZW+/eveMUU8WaMdgKDg7mnJhB0/jPKCEhgXOqG00zBiNzsuacOXOIrElTu5DDmnfv3k3BmsaaMdiSw5p//vzhsCZNMwYjc7KmVqs1C2uePHnS4lgzLi6Ow5o0zRiM5LJm9+7dOawp1ozBlhzW3LJlC2ftI9aMwdbfyJrsE50Y1jTWjMGWHNZcsGBBCtY01ozB1sGDBzn5VqwZgy05rPnjxw8Oa4o1Y7AllzUrVapkcay5Zs2aFKxpbMicLbmsyV77iA2ZsyWXNdknm9A0YzDS6/WcU7vSkzVnzpxpFta8efMmkTVp6uzmZE326dI0zRhsyWHN4cOHc1hTrBmDLTmsefToUZNZ8+nTp2ZjTfaALE3jPyO5rMk+kZJmyJwtc7HmpUuXOO+iWDMGW3JYMyQkxCysiYic09pphszZMhdr7t27NwVrGmv8Z0sua7KblsUa/9mSy5rsmzWksmbbtm3NwporV640C2u+ePGCyJpCjf9smZM12afS0jT+syWHNadOnWoW1rx27ZrJrMlvWhZr/GdLLmuyb46jGTJnSw5rDhkyhLP2EWv8Z8tcrPno0SOTWVOReaU0DiqNg4pk6Pr165IWiWx9+vQJy5Yty7kWilZhYWFYrlw5zhXEtEpMTMTatWtzroWSog4dOmDHjh05R3XTSqvVSmrGYGvJkiWi06FCOnz4cIqjumn1+PFjqulQkvz8/LBs2bLUi0S2oqOjsWLFipxroWil1+uxUaNGnCuIpahXr16SFolsTZkyJcW1ULRav359iiuIaXX+/HlJBTK2Xr9+jWXLlhWdDiUpKCgIVSqV6HQoSfHx8VitWjXOUd200uv12KpVK0mLRLaGDh2a4looWs2dOzfFFcS02r17d4proWh1+/Ztw4YETYGMrS9fvmDZsmU510LRKiIiAl1cXESnQ0lKSkpCV1dXSc0YbHXp0kV0OlRIY8aMEZ0OFdLKlStFp0OFdOzYMdHpUCE9e/bMsCFBUyBjKyAgAJ2cnDjXQtEqNjYWK1euzLmCmFZ6vR6bNm0qqUDGVt++fUWnQ4U0ffp00elQIW3evFlS4z9bly9fFp0OFdL79++xbNmynGuhaBUSEoLOzs6SNiQYJSYmYs2aNTnXQklRu3btJG1IsDV8+PAUVxDTauHChZIKZGzt379fdDpUSPfv309xLRStvn//jmXLlqVu/GcrKioKK1SoIDodSlJycjLWr19fdDpUSBqNJsUVxLSaOHGipA0Jtjw9PVNcQUyr06dPp7gWilYvX75ElUolOh1K0u/fv9HJycmk6dC4uDisWrWqpMZ/Rnq9Hps3b57iCmJaDRw4UPQkIiHNmjUrxbVQtNq+fXuKa6FoZS7WDA8Px3LlyklqxmAklzU7duyY4looWslhzaVLl6a4FopW/wbWpGnGYCu1WJO2GYMtc7Hmhg0bJDX+syWHNd+8eWM21qxevbrFsea8efNSXAtFKzmseefOnRTXQtFKDmtGRkaii4uLpGYMRklJSVi3bl2zsObYsWPNwprHjx9PcQUxrczNmlIa/xnJZc1+/fpJGjJnSw5rbtmyxWTWvHLliqTGf7bksGZoaKiBNWmbMRilFmvSNmOwZS7WPHDggKTGf7bksKavr6/ZWLNBgwYms2b37t1TXEFMKzmsuWbNmhRXENNKDmu+evUKnZycqJsx2DIna7Zo0UJS4z9bclhTp9OZhTVv3LiR4gpiWpmLNZOSkrBOnTqSGv/ZksOao0aNMgtrHjlyxGTWfPLkiYE1aRr/2ZLDmjExMVipUiXOFcS0Sg3WlNL4z5a5WPPChQtmYc3g4GCzsWbr1q1TXEFMKzc3txRXENNKDmvu2bNHUuM/W3JY8+vXrxzWlLL2MSdrdu3aVbmC2EKVFo2DVvj/xjhFRmRlZVUEAH4AAPz48QOKFCli5k+kyBTFxcVB5syZTfba2tqClZWVZG98fDxkzJgRMmTIINmbmJgIVlZWYGNjI9mLiBAfHy/rd/7bvKY+44SEBLCxsTHpGSclJQEiQsaMGSV7lWcs3SvnGVtbW4O1tbVkr16vh8TERLC1tZXsBbDc79rS8q3yLqav1xzvYnJyMiQnJ0OmTJkkewEs97s217uYKVMmk7xy1j5KvpXuVfLtf9+r5FvL8Cqs+d/3moM1k5OTQa/XK/lWgtfU5yTHm5iYCBkyZFBYM528ytrnv+9V1j6W4bU01kRESEhIUPKtBK+Sb//7XnPV2ZOSkpR8K8GrsOZ/32tprAlgud+1wpr0stTnZGn51pxrH0XmlZ+fHzg6OjL/6YiIfnL/n0rjIIWUxkFFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUmQOpUXjoPTWVUWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRxUppHFSkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYr+IimNg4r+GsXFxZnsjY2NBVOv9Y6Pjwe9Xm+SNzExEZKSkkzyIqKs39kSvbGxsbJ+rpxnnJycbJI3KSkJEhMTTfIioqzfWe73Za6fa+pzkuNNSEgw+V3U6/UQHx9vkhfAfM/JnF5z5Fu576Klftfm8sp5F03Nt8nJyZCQkGCSF8Byv2tTJWftExcXZ5a1j9x8a86/beby/m351lKfkxyvufKtsvaR5lVY87/vNQdryln7yGVNS8zVctc+lsialvicLDHfKqyZvl6FNdPHK7ceaWmsaanvojlztZJv6fW3/U01J2ta4ntsie/i35hvLXG/TFn7SJM51z6WyJp/Wz3hb1z7KPrvSWkcVPTX6MGDB1C+fHnw8PCA+/fvS1oQ/fz5E5ycnGD06NFw5coVSQui2NhYKF++PAwZMgROnToF0dHR1F4rKyuoX78+9OrVCw4cOABhYWGSvD169ICOHTvCtm3b4NevX9ReAICJEydC8+bNYc2aNfDt2zdJ3jVr1kD9+vVh8eLF8PbtW0l/LM+cOQNVq1aFWbNmgZeXl6Q/lt7e3qBSqWDixIlw+/ZtSQuikJAQUKlUMGLECLh48aKkP5bJyclQtWpVGDBgABw/fhz+/PlD7bW2toZ//vkHNBoN7N27F0JCQqi9VlZWMHjwYGjXrh1s3rwZfv78Se0FAJg9ezY0bdoUVq5cCZ8/f5bk3bFjB9SpUwfmz58Pr169kvSMb9y4ARUrVoRp06bBw4cPJT1jHx8fUKlUMHbsWLh+/bqkBVFUVBQ4OzuDm5sbnD17VvICsnbt2tCnTx84fPgwREREUPusrKygY8eO0LlzZ9i5cycEBgZK+rmjR4+GVq1awfr168HX11eSd9myZdCwYUNYtmwZvH//XtJzOnLkCNSoUQPmzJkDz549k+R98uQJuLi4wJQpU+Du3buS8m1AQAA4OTmBVquFy5cvS4KT+Ph4qFixIgwePBhOnjwpOd82atQIevToAfv375ecb3v37g3t27eHrVu3QkBAALUXAMDDwwP++ecf8PT0hK9fv0rybtiwAerWrQuLFi2CN2/eSHpO58+fhypVqsDMmTPhyZMnkt7Fd+/egUqlggkTJsDNmzcl5duwsDBQqVTg7u4O58+fl5Rv9Xo9VKtWDfr37w9Hjx6FyMhIam+GDBmgdevW0LVrV9i9ezcEBwdTewEA3NzcoG3btrBx40bw8/OT5J03bx40btwYVqxYAZ8+fZLk3b17N9SqVQvmzZsHL1++lPSM79y5AxUqVICpU6fCgwcPJL2L379/BycnJxgzZgxcu3ZN0tonJiYGXFxcYOjQoXDmzBmIiYmh9lpZWUHdunWhd+/ecPDgQQgPD6f2ZsiQAbp06QKdOnWCHTt2wO/fv6m9AADjxo2Dli1bwtq1a+H79++SvKtWrYL69evDkiVL4N27d5Ke04kTJ6B69eqg0+ng6dOnkrzPnz8HZ2dnmDRpEty5c0fSuxgYGAhOTk4wcuRIuHTpkqR8m5SUBJUqVYKBAwfCiRMnICoqitqbIUMGaNq0KXTv3h327dsHoaGh1F4rKyvo378/qNVq2LJlC/j7+1N7AQBmzJgBzZo1g9WrV4OPj48k75YtW8DV1RUWLlwI3t7ekp7TlStXoHLlyjB9+nR49OiRpHz78eNHUKlUMH78eLhx44aktU9kZCQ4OzvDsGHD4Ny5c5LWPogINWrUgL59+8KRI0ck51u1Wg1dunSBXbt2QVBQELUXAGDEiBHQunVr2LBhA/z48UOSd9GiRdCoUSNYvnw5fPz4UZL3wIEDULNmTZg7dy48f/5c0jOWw5p+fn6gUqlksebgwYPNwpodOnRId9Zcu3Yt1KtXzyys6ezsLJs1L1y4kG6smSFDBmjRogVoNBrYs2ePxbDmzp07oXbt2unOml+/flVYU4KWL18ODRs2hKVLl6Yra3p5eYGLiwtMnjw5XVkzISEBKlasCIMGDUp31uzTp4/JrDl16lQDa3758kWSVw5rXrhwwcCajx8/TjfWDA8Pl82a/fr1S3fWHDZsGLRp0ybdWXPPnj0ms+bdu3cNrCl17ePr6wsqlUo2a54+fTrdWNPKygq6desGnTp1gu3bt1sMa548eRKqVauW7qwZFBQEKpXK7Kwpde3DsObmzZvTlTW3bt0Krq6usGDBgnRlzU+fPoGTkxOMGzdOYU0KLV682MCaHz58kOSVw5oPHz40sOa9e/fSjTXj4uJksWa9evWgZ8+e6c6akyZNsjjWfP36tYE1b926ZRbWPHbsWLqxJgDA4MGDoW3btrBp0yaLYc2bN29yWFPKuyiHNaOjo6FcuXIG1pSy9gGQx5qdOnWSzZrr1q1LV9Y8evQoVK9eHWbPnp2urPnr1y+zsWbjxo3NwpqK/oNCRCVEAgCKAAACAP748QMVWab0ej02aNAAmWeZN29e7Nu3Lx45cgQjIiJE/f369TN4s2fPjl26dMFdu3ZhUFCQqHf27NkGb+bMmbF169a4YcMGqn9Pe/bsMXitra2xUaNGuHz5cvzw4YOo986dOwYvAGDNmjVx7ty5+OLFC9Tr9Ua93759QxsbG4O3fPny6OHhgffu3cOkpCSj3sjISMyTJ4/BW7JkSRw9ejReuXIF4+PjjXqTk5OxXLlyBm/BggVx8ODBeOrUKYyOjhb9nVu3bm3w5sqVC3v27IkHDhzAsLAwUe/IkSMN3qxZs2KHDh1w27Zt+OvXL1HvihUrDN5MmTJh8+bNcc2aNfjt2zdR74kTJwzeDBkyYL169XDx4sX49u1b0ef0/PlzzjOuWrUqzpo1C728vDA5OdmoNyAgALNkyWLwqlQqnDhxIt66dQsTExONemNjY7Fw4cIGb9GiRXHEiBF48eJFjIuLM+rV6/VYo0YNg9fBwQEHDBiAx44dwz9//hj1IiJqNBqD197eHjUaDe7ZsweDg4NFvR4eHgZvlixZsG3btrhp0yb8+fOnqHfz5s0Gr42NDTZp0gRXrlyJnz9/FvVevXrV4LWyssLatWvj/Pnz8dWrV6LP+MOHD5ghQwaDv2LFijht2jR8+PCh6DMOCwtDe3t7g7d06dI4duxYvH79OiYkJBj1JiYmYunSpQ3ewoULo5ubG549exZjYmJEf+cmTZoYvHny5ME+ffrg4cOHqfLt4MGDDd5s2bJh586dcefOnRgYGCjqnT9/vsFra2uLrVq1wvXr16Ovr6+o98CBA5x827BhQ1y6dCm+f/9e1PvgwQPOu1i9enWcPXs2Pnv2TPQZ+/r6YqZMmQxeFxcXnDx5Mt69e1c030ZFRaGDg4PBW6JECdRqtXj58mWqfFuxYkWDt0CBAjho0CA8efIkRkVFif7O7du3N3hz5syJPXr0wP3792NoaKiod8yYMQavnZ0dtm/fHrdu3YoBAQGiXk9PT4M3Y8aM+M8//6Cnpyd+/fpV1Hv27FlOvq1bty4uWrQIX79+LfqcvL29Oc+4SpUqOHPmTHz8+LHouxgYGIhZs2Y1eJ2cnHD8+PF48+ZN0XwbHx+Pjo6OBq+joyMOHz4cz58/j7GxsUa9er0eXV1dDd58+fJhv3798OjRoxgZGWnUi4jYq1cvgzdHjhzYtWtX3L17N1W+nTFjBmft06ZNG9y4cSP6+fmJenfs2MHJt40bN8YVK1bgp0+fRL03btzg5NtatWrhvHnz8OXLl6LP2MfHB62trQ3+ChUq4NSpU/HBgwei72J4eDjmypXL4C1VqhSOGTMGr169Kppvk5KS0MnJyeAtVKgQDh06FE+fPk219mnRooXBmzt3buzVqxcePHgQw8PDRb3Dhg3j5NtOnTrh9u3b8ffv36LeJUuWcNY+LVq0wLVr1+L3799FvUeOHOG8i/Xr18clS5bgu3fvRJ+Tl5cX512sVq0a6nQ6fPr0qaj358+faGtra/A6OzvjpEmT8M6dO6LvYkxMDBYoUMDgLV68OI4cORIvXbpEtfapWrWqwZs/f34cOHAgnjhxgmrt07lzZ06+7d69O+7btw9DQkJEvRMnTuSsfdRqNW7evBn9/f1FvevXr+fk26ZNm+KqVavQx8dH1Hvx4kXOu+jq6ooLFixAb29v0ef09u1btLKyMvgrVaqE06dPx0ePHonm2+DgYMyePbvBW6ZMGRw3bhzeuHFD9F1MSEjAEiVKGLxFihTBYcOG4blz56jyrRzW7N+/f6qwpq2tbbqx5t27d1Ow5pw5c/D58+dpypp//vxJwZqjRo1KF9Zs06aNxbHmyZMnzcKav379SlXWdHd3xwsXLlDl25o1a5rMmt27d+esfbp165YurLllyxazsObHjx8tkjWbNm2agjUPHTpEtfaRw5oLFixIwZrr1q0ziTUbNGhAzZoPHz40mTV//PjBYc1y5cqlG2tWqlTJLKw5duzYVGXN1atX45cvX0S9clmTvfapUqUKzpgxI11Ys2jRomZhzd69e1sca968eZPImjR1diHWvH//vui7GBERkaqsOWTIkHRhzeHDh3PWPh07dkwX1jx69KhZWNPf3x8zZ86cKqxZrFgxHDlyJHWdXQ5rdunSxeC1t7fH7t274969e9OcNTds2JBqrFmnTh1q1nz37p3JrBkSEmIW1kREbNiwYaqzJs3aZ86cOanKmsuWLUsX1syYMaPB6+LiglOmTEkX1nRxcTELa2q1WpNZc+XKlUTWpKmzy2HNFy9eEFnzyZMnacqacXFxqcaa+fLlw/79+6cLa06dOtUsrHnt2rVUZ80HDx6YhTXPnDmT5qw5ZMgQDmt26tQJd+zYYRJrtmzZEtetW0e19jl48KBZWFORefXjxw/2syuCqdETlxr/k/96gNI4+J/R9evXOQlQSjHo06dPHMBn/7F0dXXFhQsXChaDwsLCMGfOnMSfXblyZaPFoMTERCxbtizRW7ZsWdFiULNmzYhemmLQ0KFDiV6aYtDChQuJXnYxSGgj7NChQ0Qvuxgk9C4+evSI6GWKQcuXL8ePHz8SvX5+fpyCKvsZixWDoqOjMX/+/MSfXaFCBfTw8BAsBun1eqxcuTLRW6pUKRw9ejRevXpVEE46duxI9NIUg8aNG0f00hSD1q5dS/TSFIPOnTtH9LKLQUIbYa9fv+YAPhtOxIpBQUFBmC1bNuLPZopBXl5eRG98fDwWK1aM6HV2dsaJEyfi7du3ie+iXq/HevXqEb00xaA+ffoQvcxG2PHjxwXhZNasWUQv03RprBi0a9cuojdLlizYrl07o8WgW7duCeZbsWLQly9fOJvJ7HdRrBgUERGBuXPnJv5sphgktBGWlJSEzs7ORC9NMahly5ZEL1MMMrYR5u7uTvQyxSBjTZfLli0jeplikLGNsGPHjhG9TDHIWNPls2fPiF6m6dJYMYhfUGVHjRo1jBaDYmNjsWDBgkSvWDFIr9dj9erVid4SJUqIFoO6du1K9NIUgyZPnkz0sotBQhthGzduFMy3HTp0MLoRdvnyZcF8K1YMevfuHQfw2fm2Xr16uGjRInzz5g3xOYWEhGCOHDmIP7tq1ao4c+ZMwWJQYmIilipViuh1cnLCCRMmGC0GNWrUiOhlF4OE1j4DBw4ketnFIKG1z9y5c4lemmLQvn37BPOtWDHo/v37RC+7GCS0Efb9+3dOQZWdb5likFDTZVRUFObNm5f4s8WKQcnJyVi+fHmit3Tp0jhmzBi8du2aYL5t164d0cs0XRorBo0aNYrozZ07N/bu3dtoMWjVqlVEL7sYJLT2OX36tGC+FSsGvXz5UjDfihWDfv/+jXZ2dkS/WDEoLi4OixQpQvQyjQd37twRzLe1a9cmeosXL45ardZo02WPHj2IXqbx4MSJE4KNB9OmTSN6mcaDffv2Cebbbdu2Eb12dnaoVqtxy5YtgmsfY6zZrFmz/yRr/vPPP0RvWrPmokWLBPOtXNY0thH2+PFjwXxrKmsCiA/4pRVrMgN+acWa48ePF8y3qcGaQhth58+fJ3ppWPPNmzeirCm0ESaXNYsXL070ymVNsQG/vn37Er3/Zta8ffu24LuYlqwZGRmZpqxpbCOsVatWRC8Na44YMYLopRnwk8Oax48fJ3ppBvzksGZAQIBFsma3bt2I3gIFCuDgwYONNl3KYc1NmzYJ5ltTWZNmwO/9+/dpwprMgF9asWbjxo2J3rRmzXnz5hG9clgzc+bMBtYUarqUw5q+vr5GWdPYgJ9c1qxQoQLRm9asOXr0aKL338yar169Esy3DGsK1dnlsiZ7SJYdcllTbMCvZ8+egvlWjDWnT59O9LIH/NKCNdlDsvx8m5asGR4enqaseePGjTRhTTc3N6I3b9682K9fP6NNl3JY8/Dhw4L51lTWZA/4GWNN9pAsO8RYk9+4zA5mwC+tWLNTp05Eb8GCBWWzprGmy3Xr1hG9qcGaxgb85LBmcHCwUdZkBvzSgjXr169P9KY1a+p0OqI3tVhTqM4uhzW/fv0qyppCTZdirGlswC8pKYkzJMsOOawpdcBPUfpKaRxUGgcVydDGjRuxXbt2xKTND6YYxEzgnjx5EtVqNafDXSj4E7j3799HtVotWHhiB38C98uXL6hWqznd8ULBn8CNjo5GtVrNOU1KKEgTuL169RIEMHaQikHjxo3jnDYmFOwJXKYYtGTJEmzbtq2oFyBlMWjXrl2oVqsFC4TsYIpBzEbYxYsXUa1WcyaKhIIpBjFw8vz5c1Sr1YKwyw6mGMRshPn7+6NareZMfwoFUwxiJnD1ej2q1WrOVKFQkCZwBw8eLLjBwA7SBO60adOwefPmol7SaU9r1qzBdu3aEQuE/OCf9nTo0CFUq9WCi2R2MBO4TDHo1q1bqFarBTfd2MEuBkVHR+P79+9RrVZzJgOFgl8MCgsLQ7VazZk4EwpSMahbt26cExqFIlOmTNiyZUvOBK5WqxVsoGEHUwxiN13OmzePc4KnseBP4G7ZsgXVarXg5ig7ypUrZ5jATUpKwtOnT6NarRYsSrCDXwx69OgRqtVqLFSokKiXPYEbFRWF379/R7VajWXKlBH18otBcXFxqFarOScqCAWpGNS3b1+sU6eOqJddDGLgZNKkSYIN4vx3kSkGMRthy5Yto863TDGImcDdu3cvqtVqwQIhO8qWLctpurxy5Qqq1WrBIjA7+BO4r169QrVazTkVQSj4E7iBgYGoVqsFN+zYQTrtqUOHDlitWjVRL+lkYTc3N0HI5r+L/GLQzJkzBZtS+cEvBq1btw7btWtHLBDyg3/a07Fjx1CtVnOmqYWCf7Lw3bt3Ua1WCxae2MEUg5imy0+fPqFarcaSJUuKevkTuJGRkahWqwUb0tjBFIPYE7g9evTAWrVqiXpJpz2NGTNGcBOJHaQJ3IULF3Imi40F+7QnvV6P27dvR7VaLVggZAczgcsUg86dO4dqtZpzeoVQ8ItBT58+RbVaLdhUxg7+aU9+fn6oVqsFC8js4J8snJiYiGq1WrAwyQ6mGMRuuhw4cCDWrVtX1EuawJ0yZYpg4ZodTDGIPYG7atUqbNeuHbFAyA/+aU8HDhxAtVrNOUlGKMqUKcOZwL1+/Tqq1WrMly+fqJdfDHr79i2q1WrB4iI72I0H4eHhGBISgmq1WrBoxQ7SaU+dO3cW3HhnB6nxwN3dnXMag1CwGw+YpsvZs2cLFsv4UaNGDc5GmFTWZJ/2JIc1Hzx4YBbWjImJMRtrjh8/njMBLhSk055MYU1mI0wOa166dImaNfkbYXJYMyAgANVqNapUKlEv/7Qnc7Lm9OnTzcKahw8flsyazGlP6c2aTNOlKazJHvDr1q0b59QMoZDDmqQBPzmsuXXrVmrWZJ/2JJc1Hz9+jGq1mnNCiVDwT3sylTVDQkJks2a/fv04p8IJBcOa7I0wOay5fPlybNu2LdXap3LlypzTnqSwJn/ATw5rent7/3WsOWvWLMmsyTRdrl+/XhJrspsuGdYUav5jh1zWZA/4yWHNP3/+oFqtFmxIYwfptCdzseaiRYsksyZTZ5fDmufPn0e1Wi24Ac4O5hYb5rQnc7FmUlKSJNbkD/jJYU0PDw9q1uSf9pRerMk/7cmSWJN92lPnzp2p6uwk1hwxYoQk1mQP+MlhzU2bNqFarSY24vKDf7KwuVjz69evZmPN3r17U9fZGdZkmi7NxZq7d++WxJrsAT85rPnixQtJrMke8JPDmohoVtZkn6YrFKnFmkzTpRzWvH37tmTWZJou5bBmeHi45Dq7qazJH/CTw5rz5883C2ueOXPG4lgzPj6emjWlniysKO2lNA4qjYOKZEhowlYs8ubNS7VxRYrs2bNTLVJJYWtrS7X4IYW1tbXJXoD/F4NoCnSkcHFxoSrekKJkyZJUf9xIUbBgQao/bqTIlSsX1QKGFFmzZqUqwpIiU6ZMJj8nBk5MfcZVq1alWsCQQqVSUcEEKYoWLUpVSCVFvnz5sEqVKiZ5c+TIQbU5SYosWbKY/F3b2NiY/IyZYhDNIpUUFStWpCrekKJ06dJUhVRSFC5cmAomSJEnTx6T8222bNlk5VtTn7G1tbWsd7F69epUwEiKcuXKUTVJkqJ48eJUhVRSFChQgKqQSoqcOXNSFctJYWdnZ/J3nTFjRlnvoqurK1URlhRVqlShKpaTomzZsoInnYqFo6MjVSGVFPny5aPauCKFnHybOXNmk5+T3Hxbq1YtqgIdKSpUqEBVvCFFyZIlBU+8EItChQpRFVJJkTt3bqpiOSksde1TrVo1qs1JUjg7O1NtXJGiWLFiVIVUUjg4OJicb+3t7U3Ot+Zc+9SpU4eq+Y4UlSpVoiqWk6JMmTJUhVRSFClShKpphxTmZE05ax85rFmjRg1ZrEmzcUWKEiVKKKxJGeZmTZqmHVLIZU2ajStS/K2syb7CVkrIZU2aph1S5M6d22ysKae2Z6msSTMcS4q/lTVpNqBJUblyZYtjzbx588piTVPfxb+VNWmadkhRsGDBv4415axvLZU1Ta2z/62sSdOUTgq5rGlqnd1SWVPO2scSWbNAgQJmY01Tv2tz5tsqVaqYzJpOTk5/FWtmzpzZYlnTHPuahQoVMjnfWiprynkXmZOFmaZLRemvtGgczACKFCkyqqioKIiOjjbJGxMTA5GRkSZ5ExISIDw83CRvcnIyhISEmOQFAAgODga9Xm+SNzQ0FJKSkkzyhoWFQXx8vEneyMhIiI2NNckbHR0NUVFRJnljY2PN8oz1er3sZ5ycnGySNzQ0FBITE03yRkREQFxcnEneqKgoiImJMckbExMDf/78MckbFxcHERERJnmTkpIgNDTUJC8iQkhICNPALlkhISEmP+OwsDBISEgwySv3GZuab+W8i/Hx8SY/4+TkZJOfMcD/n5M58m1ERISsfGvquygn38p5FxMTEyEsLMwkL/Mumio5+TYsLMws+fbPnz+y1j6mPuP4+HiT/y7Kzbdy1j4hISEmv4vh4eEm51s5ax85+TYuLs5sax9z5ltT38Xw8HBZ76Kpz1jOuyh37SM33/5Na58/f/6Y/JzksKbctY+cv4vmWvuEh4crrEkpvV4PwcHBJnkBFNaUInOyZnBwsKx8K6fuIyffynkX5bCmqc9YzvpWYU1pio6ONsu7mBqsaa61j5x8a+ozlltnN8e7+DeyphwOMVdtz9x1dnOtb+VwiJy1j8Ka9FJYk16psfYx9RnLfRfNkW/lsqapzykhIcHkd1Eua1rq2sccrCnnXZSbb+WypjnybWRkpMn51lJZU+7aJzg4WNZaVdG/UKnRffhfD1BOHPxPaPny5ejq6ko1VVSgQAHDVQZRUVF44MABdHV1pZrU5V9lcPPmTXR1daU6/cLOzo5zlcHHjx/R1dWV6njajBkzGq4y+Pr1K0ZFRaGrqyvVKTakqwxatWpFfXIG/yqDgQMHUk9QqFQqnDBhAt66dQsTExNx+vTp1N317KsMYmNjccOGDejq6kp1hQJzjdOxY8cwMjIST548ia6urlTHtjNXBjNXGTx+/BhdXV2pJu4zZ85suMrAz88P/fz80NXVlWrShX+VgV6vR1dXV6pTw0hXGXTu3Jl6epR/lcHIkSOpp0f5VxksWLCAeqK6UKFC6ObmhmfOnMGYmBjcuXMnurq6Uk2O8a8yuHz5Mrq6ulJNY7OvMvj9+zd6e3ujq6sr1dQZc43TunXr8Pv37xgaGoqurq5Uk4XMlcHsqwyaNm1KPc3ETHkwVxn07t2benqUf5XBpEmTqKeZihcvbrjKIC4uDletWoWurq5UVyjkz5+fc5XB4cOH0dXVlep6VP5VBnfu3EFXV1eqCVDmKgPmGicfHx90dXWlmvLlX2UQFxeHrq6uVJPczAkuCxcuNFxl0LZtW+pppipVquCMGTMMVxkMHTqUepqpbNmynKsMdDoddb7lX2WwefNmdHV1pZqaz5s3L+cqg7Nnz6KrqyvVdGD27NkNVxkEBQXh06dP0dXVlWrinn+VQUBAALq6ulKdqmBtbW24yoC5xqlevXpUJ2eQrjLo1q0b9fQo/yqD0aNHU0+PMtc4Xb16FePj43HJkiXo6upKdX0Uc2Uwc5XB3r170dXVlerKmly5cmGvXr3w4MGDGBYWhteuXaNe+7CvMvj16xe+e/cOXV1dqU444V9lEBERga6urlSThaSrDJo3b059cgb/KoP+/ftT51vmKgPmGicPDw/qd7FYsWKcqwzWrl2Lrq6uVFOcDg4OOHDgQDx+/Dj++fMHjx07hq6urlQnI9jb22P37t1x7969GBISgg8ePKBe+zBXBm/evBl//vyJ3759Q1dXV6rTi21sbLBp06a4atUq/Pz5MyYmJqKrqyvVJDdzosCCBQsM1+Z16NCB+qSiSpUqca7NGz58OHW+5V+bN3fuXKxTpw7VyaWFCxc2XJsXExOD27ZtQ1dXV8ySJYuoN0+ePJxr8y5cuICurq5U11Gzr80LDAzEly9foqurK9VJ4ra2tti6dWvDNU6BgYHo6upKdfUUc23esmXL8MOHD4iI2KhRI+qTM2rUqIFz5swxXJvXo0cP6pOK+NfmjR8/nvrkjBIlSuCoUaMM1+aZizVv3bplEmsGBASYhTXfvHkjmzUHDRpEfVKRHNZ0dHREd3f3VGHNU6dOWRRrfvr0yaysqdVqJbPmtWvXZLPmrl27qFmTucbp0KFDslnz9evXFsmaffr0+atY8+7du+jq6kp1+gWfNb98+SKJNZs1a4arV69GHx8f2azZrl07atasXLlyqrMmzdqnSJEiqcKaERERsljz2bNnJrHmjx8/ZLNm/fr1JbHm3Llz8cWLF7JZc8yYMRbHmtevX/9rWNPLy8vAmrR1dj5rTp06VXKd/eLFi7JZ8/jx45JYU6PRpAprfv/+3SJZ093d3SysuX37dsmsefjw4VRjTZq1D581g4KCJLFmw4YNU401e/bsSc2aLi4uFs2aoaGhBtakrbOzWfPTp0+SWdPT0zNVWLN169aSWHPmzJmpwpozZsywONZ88uSJpLVParEmIprEmkydXSprTp06FR88eGBgTdq1D581Fy5cKIk1hw4dimfOnMHo6GhZrHnlyhVJrNmpU6d/BWs2a9bMLKw5efJkyazJ1NnlsOaRI0cksyZzZbAU1mSuDE5v1mROSmezpiLzSrmqWGkcVCRTDx48EEx6VapU4SwS+fL19RX8Y+Hk5IQTJkwwFMj4ioqKEkz4zCKRKZDxlZycLLgI4jdjkKRWq4leZpHIFMhIGjNmDNHLb8YgafXq1USvjY2NoUDGLBL5OnPmjOAfJn4zBl+vXr0SfMZMgezBgweYlJSUwhsYGCi4cCtVqhSOGTPGsEjkKz4+XrAowV8k8qXX6wWhgr9IJKlXr15Eb9asWbFTp064fft2/P37N9E7ffp0opdfICNp+/btRG+GDBmwQYMGnAIZXzdu3BB8TvxmDL4+f/4sWJhkCmR37twhPuPw8HDBgga/GYOvpKQkQZjJnz8/Dhw4EE+cOIF//vwhfl/NmzcneplmDGaRSJKbmxvRy14k/vz5k+hdvHgx1SKRpCNHjhhdJLILZHw9efJE8BkzGxJMgYyvnz9/CoIyv0DGV0xMjGCTQ5EiRTgFMr70er0gkOTNm5fTjEFSp06diF52gUwo306YMIHoZQpkGzZsEFyDrF+/nuhlmjGWL19uKJDxdeHCBcHnVLNmTc6GBF9v374VLEyWL18ePTw8DAUyvoKDgwWLVvwCGV8JCQmCBUJmQ+LUqVOC+bZBgwZEL78Zg6R+/foJ5lt24z9Js2fPFsy37GYMknbv3i2Yb/mN/3zduXNH8BkzzRheXl7Ed/Hr16+ChUmVSoUTJ040bEjwFRkZKbiZw96QEFr7CG2qODg44IABAwwFMpJat24tmG+ZDYng4GCid+TIkYL5tl27drhp0ybBfLt8+XKil9/4T9KJEycE8y2/GYOv58+fCz5jfjMGXwEBAYKbBPzGf75iY2MFi8CFCxdGNzc3PHv2rGC+FWoK4Tf+k6TRaIhephlj586dgmufKVOmCObbVq1aGQpkJG3evFkw3zIbEkyBjK+rV68KPqcaNWpwCmR8ffjwQbAw6eLiwimQ8RUWFiZYQGY3Y5DybWJiomCxnl8gI6lJkyZEL78Zg6RBgwYRvUwzxtatWzEgIIDonT9/PtHLb/wn6cCBA4L5tm7durho0SLBAhkNazLNGHz5+voKbsrKZU12MwZfclmzffv2RC+/GYMkOazp6ekpmG/TkjW9vb0Fn3FqsCbTjMGXXNYUuvKPYU2mGYMkOaw5Y8YMolcua/KbMfiSw5o+Pj5mY02hpiGmGSOtWHPYsGFEb2qw5qpVq9KENb28vASfMb8Zg69/I2vyG/9J6ty5s2C+FWPNiRMnEr1s1vT19SV65bDmxYsXBZ8Tw5pMMwZfcllTaMNODmvymzH4ksua/fv3J3r5Q+YkyWHNPXv2CObb1GBNoTr7t2/f0pQ1mWYMvuSyZps2bYhefjMGSUKsyW/GIGnFihVE77+ZNX/9+mU21hRqCkkN1mSaMUjy8PAQzLdyWJPfjMGXHNb8+PGjIGvymzH4ksuaQo0Kac2agwcPFsy3Yqy5YMECojetWfPhw4eCz5g/ZM6XGGuyG//5ioqKEmzi/Tez5tixYwXzbVqy5tmzZwXzbWqwJtP4z1dgYKBgMz4Nawo1//Eb//mSy5q9e/cmevmN/yTJYc0dO3YIvov/VtaMiIgwG2u2aNGC6OUPmZNkjDXZjf8kLVmyRDDfymFNfuM/X3JY09/fX3D4Ka1ZU2jIJLVYMzAwkOhVZD4pjYNK46AimWrZsqXhJaJpxmBr+PDhBi+7QMZMhxrT0qVLOclWrBmDrWPHjnG8TIFMaJHI1tOnTzle/nSoMfH/wIktEtmKiYnhTDDwp0ONSa/Xc6Z6aBaJbHXp0iXFItFYgYytSZMmpVgkGiuQsbVx40bOd81uxhDzXrp0KcUi0ViBjK13795x4J4/HWpMISEhnGIqUyBjpkONKSEhgTNly58OFVPDhg0lLRLZGjBggMHLnw4V09y5c4mLRKECGVt79+4lLhKFCmRs3bt3j+MVK5Cx9f37d07TsliBjK0/f/5wpgLZBTKhRSKj5ORkzskE7GYMmkVi27ZtOfm2VatWhulQMY0aNYqTb/nToca0cuVKznfNnw41plOnTnG8/OlQY3r58iXHy2xICBXI2Pr9+zenmMpsSBgrkDGKi4vjTBPRFMgY6fV6zrQrsyFhrEDGVo8ePTjAJlYgY2vq1KmcfMsUyJjpUGPaunUr57sWa/xn6/r16xwv04zBTIca06dPnzhwz58ONaawsDDOqRf86VBjSkxM5Ey802xIsNWsWTODl9mQMFYgY2vIkCGcfCtWIGNr4cKFnHxbu3ZtowUytg4dOsR5TuxmDLFn/OjRI45XrPGfLT8/P04xVawZg63o6GhOMZWm8Z+RXq/nTK3zp0PF1LFjR87ah5kOFSqQsTVu3DjOu8hsSAgVyNhau3Yt57uuXr260QIZW+fOneN4mQ0JoQIZW69fv+ZsJIsVyNgKCgriFFNpGv8ZxcfHc06RoWnGYKTX67FevXqctQ97OlRMffr04eRbscZ/tmbNmsV5F6VMh+7cuZPznMQa/9m6desWx8ucRCRUIGPry5cvnI1ksQIZWxEREZwpbGZDwliBjFFSUhJnGpqmGYMtOazp7u7OWftYAms+e/aM400v1oyNjSWyprFmDEZyWbNr166cfCuHNcWaMdiSw5qXL1/meMWaMdiSy5rsU4ZSizVp1j6NGjXi5FsprDlw4EDO2qdp06ZGmzHYksOa+/bt4zynSpUqGW3GYOvfyJpiax+5rNmuXTtOvk0v1ly1ahXnu2ZYU6gZgy0SaxprxmBLLmuym5ZpmjEYyWVN9kkfNM0YbMlhzWnTpnHyrSWzplAzBltyWZM9IEszZM4WnzXFmjHYGjp0KCffymFNsWYMtuSw5uPHjzne9GRN9mlQcliTpvGfLTmsOX78eM67KDZkzpYc1jx//jzHK9aMwdabN29ksSZ7QNZSWLNv376cfJterLlr1y7Oc5LCmrdv3+Z4xZox2JLDmpGRkSlYU6wZg5Fc1mzVqhVn7ZNerLls2TLOd50arElTZ5fDmgEBAUTWFBoyZ0sua7JPDqUZMmeLz5pijf9sTZ48mZNvpbDmpk2bON+12JA5W3JY8/3794KsKbb2kcOa/AHZ1GBNY0PmbMlhzXnz5nHyrVjjP1tyWPP+/fscb3qxZlRUVJqwJs3aRw5rjh49mpNvxYbM2ZLDmqdPn+Z45bCmWOO/on+PlMZBpXFQkQw9ePBAdDpUSL6+vligQAHOUd20ioqKwhIlSnCO6qZVcnIy1qhRg3NUtxR17NgxxVHdtBo7dmyKo7pptXr16hRHddPqzJkzkpox2PL29sb8+fNTF8jYCgwMxEKFCklqxmAUHx+PTk5OotOhJDETyfyjumnVp0+fFEd102rGjBkpjuqm1fbt21Mc1U2rGzduSCqQsfX582fMnz8/dYGMrfDwcCxatKikZgxGSUlJWLFiRc5R3VLUunVr0elQITFXIxqbDhXS4sWLRadDhXTkyJEUR3XT6smTJ1igQAHqDQm2fv78iQUKFOAc1U2rmJgYLFWqFOdaKFoxGxtSCmRsde3a1eSjuidMmJDiWiharV+/PsW1ULS6cOFCimuhaPX27VvMnz8/51ooWgUHB2PhwoWxa9eu1AUyRgkJCejs7My5FopWer0emzRpgo0bN6YukLE1YMCAFNdC0Wr27NmSmjHY2r17t6QCGVt37tyR1IzB1rdv3zB//vzUjf9sRUZGYrFixSQ1YzBKTk7GqlWrik6HCqldu3ai06FC0mq1Ka6FotWKFSskNf6zdeLECUnNGGw9f/4c8+fPT10gYysgIAALFiwoqfGfUWxsLJYpU0ZSMwYjvV6PdevWldT4z1aPHj1Ep0OF5OHhIanxn63NmzdL2pBg6+rVq4ZroWgKZGx9+PAB8+fPz7kWilZhYWFYpEgRSc0YjBITE7F8+fKSCmRsNW/eXFIzBltDhgyR1PjP1vz58yU1/rN14MAB0ZOIhPRvYE3aZgxGclmzU6dOkpox2JLDmp6enpKaMdj6G1mzYcOGFseaO3bskNSMwZYc1vTx8TEba1aqVMniWHPJkiWSGv/ZksOaXl5ekpox2EoN1pTSjMHInKw5ceJEs7DmxYsXLZI1y5UrJ6kZg1FqsKaUZgy25LDmnj17TGbNu3fvmoU1//z5g8WLFzcLa6rVaklD5myZizVPnjxpFtb89euX2VizXr16JrNmz549JTX+syWHNbds2SKpGYMtOaz58eNHzJ8/P/WQOVvmZM0WLVqYhTUXLFhgFtZ8+PChpCFztszNmlIa/9mSy5pSGv/ZksOaZ8+etUjWVKlUkobMGcllzb59+0oaMmfLXKx58+ZNs7BmRETEv4I1pdbZ3d3dJTX+syWHNY8ePSqp8Z8tOazp7++PBQoUoG78Z8ucrNmtWzflCmILVVo0Dlrh/xvjFBmRlZVVEQD4AQDw48cPKFKkiJk/kSJTFBoaCjlz5oQMGTJI9oaHh0O2bNnAxsZGsjcqKgpsbGwgc+bMkr3x8fGQkJAA2bNnl+xFRAgNDYU8efJI9gIABAcHQ968edPdGxISArlz5wYrKyvJ3rCwMMiRIwdYW1tL9kZGRkLmzJkhU6ZMkr0xMTEAAGBnZyfZm5SUBFFRUZAzZ07JXkSEkJAQi3tOcrzh4eGQPXt2k57xnz9/IFOmTGBrayvZGxcXB0lJSZAtWzbJXr1eD+Hh4ZA7d27JXgDLfBfl5NuIiAiws7ODjBkzSvZGR0dDhgwZIEuWLJK9CQkJEBcXBzly5JDsVfKtNMnJt7GxsaDX6yFr1qySvcnJyfDnzx+T8i2A+Z5TcHAw5MmTx+R8mytXrr9m7aPkW2kyV75NTEyEmJgYsLe3l+w159rHUvOtra2tSWsfufk2MjIScuXKJdkLYJnPSWFNabLEZ6ywpjSZc+0jhzVNfRcV1pSmv23to7CmNCmsmb5eU/Pt37j2CQsLU/ItpSyVNc2Vb0NCQkz+uQprStPf9i6aM9/Gx8crax9K/W2sCWCZax+FNaXJEp+xJa59zMmaiswrPz8/cHR0ZP7TERH95P4/lcZBCimNg4oUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkyBxKi8ZB6S2zihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSKLldI4qEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFP1FUhoHFf01knMtt6V6LfVz/21eU/3KM7Ycr6V+bsVL77XUz/23eS31cyteeq+lfu6/zausff77Xkv93IqX3mupn/tv8yr59r/vtdTP/bd5lXfxv++11M+teOm9lvq5/zavkm//+15L/dyKl95rqZ/7b/Na6udWvPReS/3cf5vXXGsfRf89KY2Div4aXbp0Cf755x/w9PSEr1+/SvK+ffsW6tevD4sWLYLXr19LSqRBQUFQr149mDlzJjx58gT0ej21NyEhAf755x+YMGEC3Lx5E5KSkiR9bo1GA+7u7nD+/HmIi4uT5B0zZgz069cPjh49CpGRkZK8S5cuhW7dusHu3bshODhYkvfAgQPQpk0b2LhxI/j5SbuO/e7du9C4cWNYsWIFfPr0SZL3y5cvULduXZg3bx68fPlS0jOOjIyEBg0awNSpU+HBgweQnJxM7U1OToY2bdrAmDFj4Nq1a5CQkEDttbKygv79+8PQoUPhzJkzEBMTQ+0FAJg6dSr07t0bDh48COHh4ZK869atg06dOsH27dvh9+/fkrynT5+GFi1awNq1a+H79++SvM+fP4cGDRrAkiVL4N27d5KeU0BAANStWxd0Oh08ffpUkjc2NhYaN24MkyZNgjt37kh+Fzt16gQjR46ES5cuQXx8vCSvu7s7DBw4EE6cOAFRUVGSvPPmzYPu3bvDvn37IDQ0VJJ3586doFarYcuWLeDv7y/Je/XqVWjWrBmsXr0afHx8JHk/fPgA9erVgwULFoC3t7ek5xQSEgL169eHGTNmwKNHjyTl28TERGjevDmMGzcObty4AYmJiZI+d8+ePWHYsGFw7tw5iI2NleQdP3489O3bF44cOSI5365YsQK6dOkCu3btgqCgIEnew4cPQ+vWrWHDhg3w48cPSd6HDx9Co0aNYPny5fDx40dJXl9fX6hbty7MnTsXnj9/LukZR0VFQcOGDcHDwwPu3bsnKd/q9Xpo164djBo1Cq5cuSIp3wIADBo0CIYMGQKnTp2C6OhoSd4ZM2ZAz5494cCBAxAWFibJu3HjRujQoQNs27YNfv36Jcl77tw5aN68OaxZswa+ffsmyevt7Q3169eHxYsXw9u3byU9p9+/f0PdunVh1qxZ4OXlJeldjI+Ph6ZNm8LEiRPh9u3bkvNtly5dYMSIEXDx4kXJax+tVgsDBgyAY8eOwZ8/fyR5Fy1aBN26dYM9e/ZASEiIJO+ePXugXbt2sGnTJvj586ck761bt6BJkyawcuVK+Pz5syTv58+foW7dujB//nx49eqVpGccHh4O9evXh2nTpsHDhw8lPeOkpCRo1aoVjB07Fq5fvy4p31pZWUGfPn3Azc0Nzp49KznfTp48Gfr06QOHDx+GiIgISV5PT0/o3Lkz7Ny5EwIDAyV5jx8/Dq1atYJ169aBr6+vJO+TJ0+gYcOGsGzZMnj//r2k5+Tn5wd169aF2bNnw7NnzyR5Y2JioFGjRjB58mS4e/eupHyLiNC+fXvQarVw+fJlyWsfNzc3GDRoEJw8eVJyvp09ezb06NED9u/fLznfbtu2Ddq3bw9bt26FgIAASV5zsWZwcDDUq1cPZsyYAY8fP0531hw+fLhZWLNr164WxZpfv341O2tevXrVYlhz/fr10LFjR4U1KWUu1pw/fz50794d9u7dK3ntI4c1r127Bs2aNYNVq1alK2uGhoZCvXr1YPr06SaxZosWLczCmhMmTDALax45csRiWXPKlCnpzpqDBw+GwYMHpztrbtq0yWTWPH/+vFlYMzAwEOrVqwezZs2SXGeXy5pdu3aFESNGwIULFyyGNffu3Qtt27b9a1gzOTlZFmv27dsX3NzcTFr7yGHNNWvWQOfOnWHHjh3pyppeXl7QoEEDWLp0qUWxZocOHczCmnPmzDGwptQ6uxzWvHz5soE1v3z5IslrTtZs1qwZjB8/Hm7evCl57SOHNceOHWsW1jx48KDJrHnv3j0Da0pd+8hlzYYNG8LUqVPh/v376caaAAADBgyAIUOGwOnTpy2GNc+cOfOvYE0p76I5WXPEiBEwcOBAOH78eLqy5q5du6Bdu3awefPmdGXNjx8/Qt26dS2ONXv16mUyayr6D4rpJlVCOACgCAAgAOCPHz9QkWVKr9djlSpVkHmWLi4uOHnyZLx79y4mJSWJ+jt37mzwlihRArVaLV6+fBnj4+NFvRMmTDB4CxQogIMGDcKTJ09iVFSUqHf9+vUGb86cObFHjx64f/9+DA0NFfVeuHDB4LWzs8P27dvj1q1bMSAgQNT79u1btLKyQgDAjBkz4j///IOenp749etXUW9wcDBmy5YNAQAzZMiAdevWxUWLFuGbN29Qr9cb9SYkJGDx4sUNn7tKlSo4c+ZMfPz4MSYnJxv16vV6bNCggcHr5OSEEyZMwJs3b2JiYqLo5+7Xr5/B6+joiO7u7nj+/HmMjY0V9c6ePdvgzZcvH/br1w+PHj2KkZGRot7du3cbvDly5MCuXbvi7t27MTg4WNR7584dgzdz5szYpk0b3LhxI/r5+Yl6v337hjY2NggAaGNjg40bN8YVK1bgp0+fRL2RkZGYJ08eBAC0srLCWrVq4bx58/Dly5eizzg5ORnLlStn+NwVKlTAqVOn4oMHD6jexdatWxu8pUqVwjFjxuC1a9cwISFB1Dty5EiDt1ChQjh06FA8ffo0RkdHi3qXL19u8ObOnRt79+6Nhw4dwvDwcFHviRMnDN5s2bJhp06dcPv27fj7929R7/Pnzw3eTJkyYYsWLXDt2rX4/ft3UW9AQABmyZLF8C7Wr18flyxZgu/evRN9TrGxsVi4cGHDz65WrRrqdDp8+vSpqFev12ONGjUMXmdnZ5w0aRLeuXOH6hlrNBqDt3jx4jhy5Ei8dOkSxsXFiXqnTJli8ObPnx8HDhyIJ06coMq3mzdv5uTb7t274759+zAkJETUe/XqVYM3S5YsqFarcfPmzejv7y/q/fDhA2bIkMGQb5s1a4arV69GHx8fUW9YWBja29sb3kVXV1dcsGABent7iz6nxMRELFWqlOFzV65cGadPn46PHj0SzbeIiE2aNDF4y5Qpg+PGjcMbN25QvYuDBw82eIsUKYLDhg3Dc+fOUeXb+fPnG7x58+bFvn374pEjRzAiIkLUe+DAAYM3e/bs2KVLF9y1axcGBQWJeh88eMDJt61bt8YNGzZQrQ19fX0xU6ZMCABobW2NjRo1wuXLl+OHDx9EvVFRUZgvXz7Dz65ZsybOnTsXX7x4QZVvK1asaPCWL18ePTw88N69e1TvYvv27Q3ekiVL4qhRo/DKlStUa58xY8YYvAULFsTBgwfjqVOnqPKtp6enwZsrVy7s2bMnHjhwAMPCwkS9Z86cMXizZs2KHTp0wG3btuGvX79Evd7e3px827x5c1yzZg1++/ZN1BsYGIhZs2Y15Nt69erh4sWL8e3bt6LPKT4+Hh0dHQ0/u2rVqjhr1iz08vKiWvu4uroavCqVCidOnIi3bt2iWvv06tXL4C1atCiOGDECL168SJVvZ8yYYfA6ODjggAED8NixY/jnzx9R7/bt2w1ee3t71Gg0uGfPHqq1z40bNzj5tm3btrhp0yb8+fOnqNfHxwetra0Na58mTZrgypUr8fPnz6Le8PBwzJUrlyHf1q5dG+fPn4+vXr0SfcZJSUno5ORk+NwVK1bEadOm4cOHD6nybfPmzQ3e0qVL49ixY/H69etU+XbYsGEGb+HChdHNzQ3Pnj2LMTExot4lS5YYvHny5ME+ffrg4cOHqfLtkSNHOGufzp07486dOzEwMFDU6+XlZfDa2tpiq1atcN26dejr6yvq/fnzJ9ra2hrybcOGDXHp0qX4/v17UW9MTAwWKFDA8LOrV6+Os2fPxmfPnlGtfczFmhMnTjQLa168eNFsrJk9e/YUrPn69et0Z83x48dTs2b//v05rDl8+PB0Yc09e/ZYHGv++fPHbKzZpk2bFKx59erVNGfNFStWcFizV69eePDgwX81a/769ctsrFmzZk0ia9K8i3JY08PDg8iaNGufLVu2cNY+6cWaHz9+5LBm06ZNcdWqVenCmqVLlzZ87kqVKlkEay5YsMAsrPnw4UPO2ic9WdPBwYHDmnPmzMHnz59T5dtKlSpx1j5TpkxJF9YcO3asWVjz7NmzFsmaRYsWNQtr9u7dm8Oa7u7ueOHChTRnzR07dnDWPt26daNmzZs3b5qFNSMiIszGmi1atPjXsCZtnf3o0aMp1j47duxIc9b09/fHzJkzG/JtgwYN0o01q1atavCWK1fOIlhzw4YNZmHNd+/epWDN1atX45cvX0S9clmzRIkSHNacMWMGFWsiIjZs2NDgLVu2bLqx5pw5c8zCmnfv3v1XsSZtnd3FxSUFa96/fz/NWVOr1XJYc8iQIenCmidPnuSsfTp27EjNmi9evDALa8bFxZmNNbt3727wFitWDEeOHEldZ09t1ty7dy8Va167do2z9mnXrh01ayoyr378+GF4dgBQBFOjJy41/if/9QClcfA/o1OnTrFfIknFoJcvXxK9NMWg379/G/7IsYOmGBQXF4dFihRJ4WWKQcuWLRMsBun1eqxVqxbxc9MUg3r06EH00hSDpk6dSvTSFIO2bt1K9NIUg65fv0700hSDPn36ZAB8dtAUg8LCwjBnzpwpvOxikNBGWGJiIpYpUyaFl7YY1KxZM+LvzBSDnjx5IggnQ4cOJXppikELFy4kemmKQYcOHSJ68+XLh/379zdaDHr06BHRS1MM8vPzMxRU2UFTDIqOjuYUVJmgKQbp9XqsXLlyCi9tMahjx47E35mmGDRu3Diil6YYtHbtWqKXKQadOXNGsBh07tw5opemGPT69WsD4LODphgUFBRkKKjy861YMSg+Ph6LFStGzLdixSC9Xo/16tUj/s40xaA+ffoQvTTFoFmzZhG9xYsXNxSDhN7FnTt3Er00xaBbt24RvTTFoC9fvhgAnx00xaCIiAjMnTt3Ci9NMSgpKQmdnZ2J76KrqysuXLjQaDGoZcuWxN+Zphjk7u5O9NIUg5YuXUr00hSDjh07JphvxYpBz549E8y3YsUgdkGVHTTFoNjYWCxYsCAx3zLFoI8fPxK9er0eq1WrRnzGNMWgrl27En/nChUqoIeHh9Fi0OTJk4lemmLQxo0biV6aYtDly5eJXppi0Lt37wybyeygKQaFhIRgjhw5UnjZxSChjbCEhAQsWbJkCi9tMahRo0bE35mmGDRw4ECil6YYNHfuXKKXphi0b98+opfZCDt+/Ljg2ufevXtEL00x6Pv375gxY8YUXppiUFRUFObNm5eYb8UaD5KTk7F8+fLEd7FOnTqijQft2rUj/s40jQejRo0iemkaD1atWkX0shsPhNY+acmaxpouf//+jXZ2dim86cGatWvXJn7uGjVqpClrTps2jegtUaKERbOm0NpHLmuWLVuWmG/r1asnOuCXVqw5YcIEo6y5aNEiojetWfPx48dEb3qwZv78+VN4/w2s+eDBA8FnPH78eKI3rVnz/PnzRC/NgJ9c1mSGZPn5tmXLlrhu3TrBjbD4+HhO4zI736Y1a/bt25foTWvW3LVrF9HLsKaxAb+0ZM0tW7YI5tvIyEizsWarVq2Iv3PlypXTlDWXLVtG9NKw5vHjxwXzbWqwplCdPSAgwChrGlv7yGXN6tWrE59xrVq1RAf80oI1S5YsiaNHj8arV68Krn02bdpE9KY1a75//94srMkfkmWCzZrG6uyNGzcm/s6pwZq3b98WfBfnzZtH9BYrVkx0wE8Oa96/f5/oZQb80ps1bWxsqFizQoUKxHcxrVlz9OjRRC/DmsbWPnJY8/Tp00Qvw5rGBvzSijVbtWqF69evF6yzx8XFcYZkmUgP1uzZsyfRm9asuW3bNqK3QIECBtYUWvuwh2TZkdasGR4ebpQ1jQ34yWXNf/75h/g7MwN+5mRNobXP4cOHid70YE1mSJYdmTNnNrCmUJ09rVnT2IBfp06diL+zXNYUO0xm3bp1RC8z4JdWrPnmzRtR1hRa+5iTNevXr0/8naU0uStKfymNg0rjoCIZOnz4MI4cOZIIM+xgn/bEFIOuXbuGWq3WMIkgFKRi0IsXL1Cr1XKmTYSCXwzy8/NDrVZL/MPMD34xKDY2FrVaLedUBKEgFYOmTJmCbdu2FfXmzZs3RTFo6dKlnBNshIJUDNq+fTtnWk0oSMWg06dP48iRI4kww18Q8YtBd+/eRa1Wy5n8EnrG/GLQ+/fvUavVcqb7hII57YkpBgUFBaFWq+WcziYU/GKQXq9HrVaLTZs2FfUWLFgwRTFo1qxZggs3dpCKQZ6enpxJJqEgFYP279+PI0aMIMIMO0jFoIsXL6JWqzVMvQsFqRjk5eWFWq2WM2krFNWqVTNM4Or1evz69StqtVriBjg/+MWgyMhI1Gq1nCldoSAVg8aPHy9YQGYHqRi0YMECzokKQkEqBm3evBmHDBki6iUVg44ePYojR44kwgz/XeQXg27evIlarZZzwprQu8gvBnl7e6NWqyUWCPnBLwb5+/ujVqvlTHAKBb8YFB8fj1qtVrCRhR2kCdypU6eiWq0W9ZKKQStWrBBsOmRH9uzZU5z2tHPnThw+fDgRZthBKgadPXsWtVotEWbYwZz2xC4GPXjwALVaLRYqVEj0c/OLQR8/fkStVkvckOEHvxgUEhKCWq1WsKGeHaRi0KhRowQLGuwgFYPmzJmDXbp0EfUyxSD2RtjatWsFi8/sIBWDDh48iCNGjCBunLGDVAy6cuUKarVaw9S7UJCKQc+ePUOtVksEVn7wi0Hfv39HrVbLOSlRKJiThZliUFRUFGq1WsGNVXaQikGTJk3iTH8KBbsYxKx9Fi9eLNgEww5SMWjr1q3o5uYm6iUVg06cOIEjR44kbpyxgykGsSdwb9++jVqtllg8YgepGPTmzRvUarXEwQd+VKxY0XDaU3JyMv769Qu1Wi2xwZMf/GJQUlISarVazik0QkEqBs2YMQM7dOgg6iUVg1atWsU5nVooSMWgPXv2oLu7O3HjjB2kYtD58+dRq9USN87YQSoGPXr0CLVaLbExjB9MMYjZCPPx8UGtVsuZphYKfuNBeHg4arVarFOnjqiXaTxgn/Y0duxYzskXQkE6WXjevHnYrVs3US/7ZGEm327YsIFzSpFQ2NnZoVqtxi1bthjWPuZizZcvX6JWqyU24vLD3KzJPu1pypQpght27EgN1mQP+KUHa7JPe2JY8969e1SsCZDyZGFzs6ZQ4yA7Uos1mY2wNWvW4IABA0S9qc2aly5dksSa7AG/9GJNZsCPz5p169YV9aY2ay5cuJBzooJQpDZrHjt2TDJrMhth6c2azIBfQECA2Vhz2rRpnJPdhIJ0srAc1ty1a5fFseanT5/MxpqjR4/mnDAtFAxrsgf85LDmunXrqFiTNOCXXqzJv8Xm+fPnZmHN6Oho1Gq1ghur7PivsSbpMAR2kFjzzp071KzJP1lYDmv+/v0btVotscGTH/xbbFKDNYWa8dnxb2LNCxcuSGZNZsAvPVmTfYtNarCm0FAwO/5NrHnkyJG/kjXZJ/AJhVzW5A/4yWHNHTt2ULMmf8Dv9OnTqNVqZbEmqSmeH2nBmuzT2YSC1ORuKazJPkwmNViT1KTJDrmsyT5ZWC5r/vnzRxZrTpgwwWysKdRYyg42azIDfunJmuwBv/RkTfaAX0JCgizWVGReKY2DSuOgIhkaMWKEaOIjhYuLCxUwkqJEiRJURQFSFChQgAo2SZEzZ06qohEpmGKQWIGOFMwELs0Chh9MMYimeEOKKlWqUC1gSOHk5ETVDEKKokWLUoEIKfLly0e1wCUFAyemeJlikBgwkoIpBrGvnKENphhE0yhAigoVKlABIylKlSpFVRQgRaFChagK7aTInTu3ye8iUwwSW6SSgikG0RTL+cEUg9hXfEmJ6tWrUxXLSVGuXDmqRlhSFC9e3OR8mz9/frPlW7VaLVqgIwVTDKIplvODKQaxrxWSEpUrV6ZqzCJF2bJlqZpBSOHo6EjVYEmKvHnzmpxvmQlcsU0vUjDFIDFgJAVTDCJNbtJEzZo1qRoFSFG+fHnBKXuxKFmyJOdKeSlRsGBBqqYuUuTKlcvkd5EpBoltiJCC2QijKZbzgykG0RRvSFG1alWqYjkpVCoVVYGOFMWKFaMaLiGFg4ODye+ivb29yWsfphgktjlJCqYYRFMs5wdTDGJfYSslKlasSLU5SYoyZcqYnG8LFy5s8tonT548nKuQpARzpbHYBjQpmMYDsc1JUjCNByqVyqTPXaNGDapiOSnksqap+VZhTWkhlzVpmkFI4ejoKIs1TX0Xc+TIYfIzlsuajRs3pmoU4Icls6apax9zsWamTJnMyppCp8+IhbOz81/JmmKNsKRIDdakaRQghblYs0iRImZlTbGGH1IorCktzMmaHTp0MAtr1qtXz+JYs2jRon8la9I0CvCDGfCTw5o0Q0CkKF269F/JmjRDQPxIDdY0tc7u4uJicr5VWJM+LJk1TV37mHNfs02bNn8da9I035Hib2NNps5O05ROimrVqv11rGnqu0hqcleU/lIaB5XGQUUyZGrjIACYBH7s5GuqN3v27CZ7TSlIMJExY0bRCSahyJAhg0mL89T4vkjXiaTHMzalEMuEnO/KlIUXEzY2NqKnEwmFlZWVSY1OqfFdy3nGcv5tyfl9xSbFjEWmTJlEJ5iEIkOGDLJ+tpzvS84zNle+lfMumvouAfw/35KuNKMJKysrWX8nzPUuyvm5ct5F0hXWtCEn31pbW8v6m/y35Vs5/6bl5ltTCsgA/8+3cv59KWsf+pCTb21sbEx+l5V8Ky3kvIu2trYmbZ4D/D/fyvnZcv5dW+K7qLCmZTxjOe+iwprp94wV1ky/78tc76LCmun3XVvi31S5rGnKkBqAeVlTznNSWJM+FNaUFuZc+yisSR8Ka1rGc1JYU1pYYr41V51dbm3vb2NNOT/XnGsfc7Hm35ZvzcmazZo1Q09PT8Er2BWlrdKicTADKFL0lyh79uzg4OAAGTKI/7O3srICV1dXWLhwIbx+/Rrmz58PDg4OkDFjRqqfVaVKFZgxYwY8fvwY9uzZAw4ODpA5c2Yqb9myZWH8+PFw8+ZNuHPnDjg4OEDWrFmpvEWKFIHhw4fD+fPn4fv37+Dg4AA5cuSg8ubNmxf69esHR48ehZCQEChVqhTkypWLyps9e3bo2rUr7N69G37//g2urq6QN29eKm/mzJmhTZs2sHHjRvjx4wd07doVHBwcqLzW1tbQuHFjWLFiBXz8+BHGjRsHDg4OYG1tLeq1srKCWrVqwbx58+DFixewatUqcHBwgEyZMlH97AoVKoCHhwfcv38fTpw4AQ4ODpAlSxYqb8mSJWH06NFw9epVePr0KTg4OEC2bNmovAULFoQhQ4bA6dOnISQkBBwcHMDe3p7KmytXLujVqxccPHgQgoKCoHz58pA7d24qb9asWaFjx46wfft2CAgIgGbNmkG+fPmovJkyZYIWLVrA2rVr4du3b9C/f39wcHAAKysrUW+GDBmgfv36sGTJEnj79i1Mnz4dHBwcwMbGhupnV6tWDXQ6HXh5ecHWrVvBwcEBbG1tqbzOzs4wadIkuH37Nly+fBkcHBzAzs6OylusWDEYOXIkXLx4ET58+AAODg6QPXt2Kq+DgwMMGDAAjh8/DiEhIeDo6Ag5c+ak8trb20P37t1h7969EBQUBNWrV4c8efJQebNkyQLt2rWDzZs3w8+fP6Fdu3bU76KNjQ00bdoUVq1aBZ8/fwZ3d3dJ+bZOnTqwYMEC8Pb2hkWLFknKt5UqVYLp06fDo0ePYP/+/ZLybZkyZWDcuHFw48YNuH//vqR8W7hwYRg2bBicPXsWfv78KSnf5smTB/r27QuHDx+G4OBgKFOmjKR826VLF9i5cyf8/v0b6tevT51vbW1toVWrVrB+/Xrw9fUFjUYjKd82atQIli1bBh8+fICJEydS51sAgBo1asCcOXPg+fPnsHbtWkn51sXFBaZMmQL37t2DM2fOSMq3JUqUgFGjRsGVK1fg1atXkvJtgQIFYPDgwXDq1CkICQmBAgUKSMq3PXv2hAMHDkBQUBBUrFiROt/a2dlBhw4dYNu2bRAQEAAtWrSgzrcZM2aE5s2bw5o1a+Dr168waNAgSfm2Xr16sGjRInjz5g3odDpJ+bZq1aowa9YsePLkCezYsUNSvlWpVDBhwgS4desW3LhxQ1K+dXR0BHd3d7hw4QJ8/vxZUr7Nly8f9O/fH44dOwbBwcFQvHhx6nybI0cO6NatG+zZswcCAwOhdu3a1Pk2c+bM0LZtW9i0aRP4+flBx44dJeXbJk2awMqVK+HTp08watQoSfm2du3aMH/+fHj58iUsW7ZM0rtYsWJFmDZtGjx48ACOHj0qKd+WKlUKxowZA9euXYPHjx9LehcLFSoEbm5ucObMGfj165ektU/u3Lmhd+/ecOjQIQgODgZnZ2fqdzFbtmzQqVMn2LFjB/z69QsaN24sae3TsmVLWLduHXz//h169+5N/S5aW1tDgwYNYOnSpfD+/XuYMmWKpHexevXqMHv2bHj27Bls3LhR0rtYrlw5mDx5Mty5cwcuXrwo6V0sXrw4aLVauHz5Mrx9+1bSu5g/f34YNGgQnDhxAoKDg6Fw4cKS1z779u2DwMBAqFKlCvW7aGdnB+3bt4ctW7aAv78/tGnTRlK+bdasGaxevRp8fHxg6NCh6caalStXNrDmvn37zMKavr6+JrHmkSNHIDg4WBZr1q1bVzJrbtiwwSysOXfuXHjx4gWsXr1aUr4tX768gTVPnjxpMms+e/ZMYU0jSg3WnDVrVrqzZtGiRWHEiBFmYU2NRmNgzRo1algUa7569UoWax44cMAk1rx+/To8ePDAbKxZtmxZ6nybLVs26Ny5c6qwZvfu3SXl24YNGyqsKZE19+/fL5s1W7ZsKZk1PT094cuXL+nKmlWqVIGZM2fCkydPYOfOnZLyrZOTU6qwpo+Pj0WyZqdOnWSzJu3ah82ay5cvl8yaU6dO5bAm7bvIZs0nT55IZs2hQ4fCmTNnIDAw0Gys2aRJE5NY89u3b7JY08PDwyTWfPr0qVlY89KlS/Du3TuzsWbVqlUlrX3UanWqsKabm5vCmkbEZ83SpUtLZs1du3bJZs1u3bpJrrMvX74cPn78COPHjzcLa546dcpk1nz+/PlfxZpfv361GNZUqVQwceJEuH37Nly5csVk1vz48aMs1ixatKhZWLN9+/ZmYc3FixebxJoPHz6EgwcPpitrurm5wdmzZ8Hf318Wa165cgW0Wi31z1ZkAUqN7sP/eoBy4uB/Ru/fvxecKmKuh9i1axcGBQWl8IaGhgpOI9ja2mLr1q1xw4YNxH8jiYmJgkfOM9dDLF++HD98+ED83MaOFK9ZsybOnTsXnz9/jnq9PoV30KBBgt7y5cujh4cH3r9/H5OSklJ4582bJ+gtWbIkjh49Gq9cuYLx8fEpvPv37xf0FixYEIcMGYKnTp3C6OjoFN4HDx4Y7drv1asXHjhwAMPCwlJ4fX19BaeKmOshtm3bhr9+/UrhjYqKErzig7keYs2aNfj169cU3uTkZKxQoQLRy1wPsXjxYnz79i3xORk7Frxq1ao4a9Ys9PLywuTk5BTe0aNHC3pVKhVOnDgRb9++jYmJiSm8q1evFvQWLVoUR4wYgRcvXsTY2NgU3jNnzgh6HRwccMCAAXj8+HGMjIxM4X316pWg197eHjUaDe7ZsweDg4NTeAMDAwUnTpjrITZv3ow/f/5M4Y2Li0NHR0eil7keYuXKlfj58+cUXr1eL3hNB3MV4fz58/HVq1fEZ9yzZ0/B37lixYo4bdo0fPjwIfEZT58+XdBbunRpHDt2LF6/fh0TEhJSeLdv3y7oLVy4MLq5ueHZs2cxJiYmhffGjRuC3jx58mCfPn3w8OHDGB4ensL7+fNnwaki5nqInTt3YmBgYApveHi44JQecz3E+vXr8fv37ym8SUlJgtftMNdDLFu2DN+/f5/Ci4hGj/evUaMGzpkzB589e0Z8xm5uboJeFxcXnDx5Mt69e5eYbxcvXizoLV68OGq1Wrx8+TIx3x4+fFjQmz9/fhw0aBCePHmSOPnz5MkTQW/OnDmxR48euH//fgwNDU3h9fPzE5yoZq6H2Lp1KwYEBKTwxsTECF7xwVwP4enpiV++fEnh1ev1glexMNdDLFq0CN+8eUN8TsauUqhSpQrOnDkTHz9+THwXJ0yYIOh1cnLCCRMm4M2bN4n5dt26dYJeR0dHdHd3x/PnzxPz7YULFwS9+fLlw/79++PRo0eJ+fbt27eCJ1gw10Ps3r2buPYJDg4WnFpjrofYuHEj+vn5pfAmJCQIXm/GXA+xYsUK/PTpE/EZC13PylwPMW/ePHz58iXxGffr10/w+6pQoQJOnToVHzx4QHzGOp1O0FuqVCkcM2YMXrt2jfgu7t69W9BbqFAhHDp0KJ45c4a49rlz546gN3fu3Ni7d288ePAgce3z9etXwRMssmbNip06dcLt27cT1z6RkZGCV3ww10OsXbsWv337lsKblJQkeNUgcz3EkiVL8N27d8TnZOzam+rVq6NOp8OnT58SvSNHjhT0Ojs746RJk/DOnTvEfLt8+XJBb7FixXDkyJF46dIljIuLS+E9ceKE0Xw7cOBAPHHiBP758yeF99mzZ4Jee3t77N69O+7btw9DQkJSeAMCAgSn7rNkyWK4HoK09omNjRW84oOZDl29ejX6+Pik8Or1esFr6JirCBcsWIDe3t7E56TRaAR/58qVK+P06dPx0aNHxHdxypQpgt4yZcrguHHj8MaNG8S1z+bNmwW9RYoUwWHDhuG5c+eIa58rV64IevPmzYt9+/bFI0eOYERERArvhw8fLJI1jV2VnBqsee/ePeK7OH/+fEGvHNYsUKAADh48GE+dOkVc+8hlTaHTu9KaNYWuvkpr1hwzZoygNzVY88KFCyaz5rFjx4hrH29vb0GvHNZkrmHetGkTce0THx+fZqxZu3Zto6zZq1cvwd9ZjDVnzJgh6LV01vz9+3cKb3h4uOBpEKnBmkuXLjWZNWfPni3ImsOGDRP0phZrktY+R44cEfSmJWv+/PnzX82ar1+/Jj4nY1doymXN8ePHC7Lm+vXrBb1yWDNv3rzYr18/k1gze/bsoqwpdApOarHmx48fic9Y6HrW1GJNoTr77NmzBb2pwZqnT59Oddb89u1bmrFmixYtBFkzOTk5zVizWrVqacaaK1asEPTKYU0HBwccOHAgHj9+nMiaz58/F/SmBmsK1dljY2OxcOHCgvnWXKxZqVIlo6zp4eEh6E1L1rx69arRfJsarEmqs4eFhQmeZkXDmqVLlyZ605o1Bw8eLOiVw5olSpTAUaNGCbLmgQMHBL1yWbNnz54msaadnZ0oazo4OBC9qcWaQnV2Y1ePpwZr3rp1i7j28fT0FPSKsebZs2cFvXJYM0eOHNitWzejrCl0UqNc1mzSpAmuXLlSsM7u6upK9P6bWXPHjh2C3tRgzUOHDhFZ08fHJ01Zc926dYKs6eTkRPTSsGaLFi0Ef+fq1aubzJrlypUzypqKzCflqmKlcVCRTPXu3ZuT8MQWiWzNnDmT4xVbJLK1c+dOwUUiqUDG1s2bN4mLRKECGVs+Pj4cuM+YMSM2b94cPT09iYtEtiIiIjh/4GiaMRglJSWhSqVKsUicOXMmPnnyhLiAYKtly5YcL9OMIbRIZGv48OEcL1MgE1oksrV06VKOl2nGEFoksnX06FFJi0S2nj59KmmRyJa/vz/nOGGxRSJbMTExWLBgQeIiUahAxkiv12O1atVSLBKNNWOw1aVLF46XXSAjLRLZmjRpEscr1ozB1oYNGzhepkAmtEhk69KlSykWiZ06dcIdO3YQF4lsvXv3jlNMZZoxhBaJbIWEhHCKqdbW1tigQQPDItHYc0pISMCSJUtKWiSy1bBhQ+IiUahAxtaAAQM4XmZDQqhAxtacOXM4XrFmDLb27t3L8TIbEkIFMrbu3bvH8bKbMfz9/Y16v337xmlaFiuQsfXnzx/Mmzcv5110dXXFhQsXCm5IMEpOTkYXFxfO565cuTLOmDFDcEOCrbZt23K8ZcuWNbohwZZWq+V4ixQpgsOHDxfckGBr5cqVHC+zISFUIGPr1KlTHC+zISHUjMHWixcvUgCbsQIZW79//+YUU62trbFx48a4fPly4oYEW3FxcSmKqUyB7MWLF6L5tlatWhyvWOM/Wz169OB4mWaMq1eviq59pk6dyvEyjf9CGxJsbd26NcXap1evXoIbEmxdu3aN482aNSt27NhRcEOCrU+fPnHgXmxDgi1+MZXZkDDWjMEoMTERy5Qpw/nc1apVMxTIxPJts2bNOF5nZ2ejzRhsDRkyhONlN/6L5duFCxdyvOzGf7F8e/DgQY6XacbYu3evaL599OhRinxrrPGfLT8/P04xlWnGWLVqFbEZg63o6GhOMZVp/F+wYIFggYyRXq/HypUrcz43syEhVCBjq0OHDhyvWIGMrXHjxnG8hQsXxmHDhgkWyNhas2YNx8tuxhDLt+fOnUux9jHW+M/W69evOWsfdjOGr6+vUW9QUBCnmMpu/BfakGAUHx+PxYoV43xupvFfaEOCkV6vx7p163K8Li4uOGXKFMENCbb69OnD8aYGawo1Y7AlxJpCzRhs3bp1i+OVy5rGmjHYioiI4FwBI5c1mWaMtGZNd3d3jje9WPPYsWMcb2qwplAzBltpwZrGmjEYyWXNrl27crzpxZobN27keNOTNdkbyVJZk920nCFDBgNrCjVjMDLGmkLNGGw1atSI45XDmmLNGGzNnTuX45XDmmLNGGzJYc3v37+bjTXLly/P+dypwZpCzRhsjRo1iuOVwpqrVq3ieNOLNV++fMnxymVNphmDhjWLFCnC+dmWwJrTpk3jeFODNYWaMdi6fv06x5sarCnUjMFWWFgYZ0BWLmuymzGksqZY4z9bQ4cO5XjTizUPHTqUIt9aAmvmz5+fk2/lsqaxZgy2OnbsyPHKZU1jzRhsrV27luO1FNZkD8imFmuK1dn1ej3Wq1eP400N1hQaMmdr1qxZHK8U1ty1axfHK9b4zxaJNY01/rP15csXs7Gms7Mz53NbAmsuW7aM400N1hRq/GeLPyArlzWNDZmzFRsbK4s1q1evzvncYkPmbMlhzcmTJ3O86cWaly9fTpFvU4M1xerscliTNCArNmTOFp81xRr/2Ro4cCDHm16suW/fvhRrH1rWvH//foq1T3qwpiLzSmkcVBoHFcnQ+/fvMWPGjKLToSSFhoaivb09VqlShbpAxoj5Ayc2HSqkxo0bo6OjI3WBjK1BgwaJTocKad68eaLToULav3+/6HSokB48eCA6HSokX19ftLW1FZ0OJYk5AUJsOpQk5rRBZpFIUyBjS61Wi06HCmn06NGSmjHYWr16taQCGVtnzpyR1IzB1qtXr9DGxkZ0OpSkwMBAzJYtm+h0KEnMaYPsRSLtu8icACFlkchWz549RadDhTR9+nTDIpGmQMbW9u3bRadDhXTjxg1JBTK2Pn/+jJkyZRKdDiWJmcoRmw4liTkBQmw6VEjNmzcXnQ4VkpubG+bJk8fodKiQFi9eLDodKqTDhw9zNiTECmRsPXnyBG1sbESnQ0ny8/PDLFmyYM2aNamaMdhiToAoX748dYGMEXMChJRmDLY6deokqfGfrQkTJohOhwpp3bp1nOlQsQIZWxcuXBCdDhXS27dvMWPGjKLToSQxJ0AwGxI0BTJGzAkQYtOhJDGnDUopkLHVr18/0elQIel0OknNGGzt3r1bUuM/W3fu3JHUjMHW169fMVOmTKLToSQxJ0CITYeSxJw2yGxI0BTI2GrdurWkDQm2Ro4cKTodKqTly5cbNiRoCmRsnThxQnQ6VEjPnj1DGxsbTuM/rQICAtDOzk5S4z8j5rRBU6ZDmRMgxE4iEpJGoxE9iUhIU6ZMkdT4z9bmzZs5GxJiBTK2rly5YtiQkFog+/Dhg1lZU0rjP1tNmjQxC2vOnz8/1VhTSo1GLmtmzpzZwJpizRhssVmTthmDEXMChBzWlNKMwdaYMWMsjjW9vb1TjTVpmjEYxcfHY9GiRVOFNWmaMdjq1auXyaw5Y8YM2axJ24zBVmqwJtOMYUmsyTT+S2XNYcOGpQpr0jRjsHXkyJFUYU2aZgy2fv78KZs1pTRjMJLLmp07d0411hRrxmBr/fr1sliTGTI3hTVtbGxMZs0cOXLIZk3aZgxGzGmDclhTSjMGW7Nnz7Y41vz27Rva2tqmCmvSNGMwYk4blMOahQoVQjc3N6pmDLZGjhwpqRmDrRUrVkhqxmDrxIkTkhr/2Xr+/LnZWLNw4cIWx5oeHh6pwpo0zRhsXb16VTZr0jb+s8UMyJrKmqVLl5bFmlIa/9kaPHiwWVjzwIEDZmdNmsZ/tpjTBuWwppTGf7bat29vFtb09PQ0mTXPnj1r8axJ0/jPiDltUC5r0jb+s8WwJm3jP1s7duwwC2v6+PiYjTWdnJxMZs0WLVpIGjJni82aNI3/iv49UhoHlcZBRTL06dMnSYtEtn78+GHysw8JCZG0SGQrNjZW0iKRLb1ej0+ePDH56NinT59KWiSy9fLlS0mLRLbevXsnaZHI1pcvXyQtEtkKCAiQVCBjKzw8XHQ6VEgJCQmSmt/YYp6xFGBj69mzZ5KAja3Xr19LWiSy9eHDB0kFMra+f/8uaZHIVmBgoKRFIltRUVGSCmRsJScnSyqC8uXl5SVpkcjWixcvJC0S2Xr79q2kAhlbnz9/lrQhwZafn5+kDQm2QkNDJW1IsBUXFyepQMaWXq/Hx48fmyXfvnr1SlKBjK33799L2pBg6+vXr5I2JNj69euX6HSokCIjIyVtSLCVmJgoeDUCjeTk2+fPn8vKt1IKZGzJWfv4+vpK2pBgKygoSNKGBFsxMTGSGv/Zkptvnz59anK+lbP2kZNvfXx8JG1IsPXz509JBTK2wsLCJBXI2IqPj5e99jE13z579kxSgYwtb29vWWsfKQUytr59+yZpQ4Kt379/mzwd+ufPH0kFMraSkpIscu3z5s0bkwtk5mRNU9c+clnTXGsfhTXplZiYiE+fPjXpXTQna3p7e5u89vn48aPCmhJkqawpZ+0jhzWlNGOwFR8fL4s1zVXb+xtZU0ozBltJSUkKa0qQHNYMDg42C2umxrtoLtY0de0jhzX9/f3NwpqpUWf/21jT1LWPwprSJIc1P3/+bHK+9fPzMxtrSmn8Z0thTWmSw5oRERFmYU1EeWsfhTXpFR0drbCmBMllTSmN/2xZKmsqMq/SonHQCv/fGKfIiKysrIoAwA8AgB8/fkCRIkXM/IkUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSJEiRYoUKVKkSNHfID8/P3B0dGT+0xER/eT+PzPI/R8oUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFiixHSuOgIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClSpEiRIkWKFClS9BdJaRxU9NcoOTnZIr2mXieOiBb7O1ui19TnpNfrQa/Xm+RVnnH6es3xjJmfrXjTx6vkW8vwKu/if9+rvIv/fm9SUpLJz0l5xpbjVfLtf9+rvIuW4VVY87/vVfLtf9+r5FvL8Crv4n/fq7yL/36vwpp/h1fJt/99r/IuWoZXeRf/+17lGf/3vebKt4r+e1IaBxX9Nbp69SrUrVsXFi1aBG/evJGUSD9+/AjVqlWDmTNnwuPHjyX9sQwLC4Pq1avDhAkT4ObNm5CUlETtTU5OhkaNGoG7uzucP38e4uLiqL0AAN26dYP+/fvD0aNHITIyUpJ3zJgx0LVrV9i9ezcEBwdL8i5btgzatm0LGzduBD8/aVeqHzp0CBo3bgwrVqyAT58+SfI+fPgQatWqBfPmzYOXL19KesY/fvyAqlWrwtSpU+HBgweS/ljGxMRA7dq1YcyYMXDt2jVISEig9iIitGjRAoYOHQpnzpyBmJgYaq+VlRX0798fevfuDQcPHoTw8HBqLwDAtGnToFOnTrB9+3b4/fu3JO+GDRugZcuWsHbtWvj+/bsk77lz56B+/fqwZMkSePfunaTn5O3tDTVq1ACdTgdPnz6V5A0KCoJq1arBpEmT4M6dO5LexcTERKhXrx6MHDkSLl26BPHx8dReKysraN++PQwcOBBOnDgBUVFR1F4AAHd3d+jevTvs27cPQkJCJHnnz58ParUatmzZAv7+/pK8u3fvhmbNmsHq1avBx8dHkvfmzZvg6uoKCxcuBG9vb0nPycfHB6pVqwbTp0+HR48eScq3ERERUKNGDRg/fjzcuHEDEhMTqb2ICI0bN4Zhw4bBuXPnIDY2ltprZWUFPXr0gL59+8KRI0ck59sJEyZAly5dYNeuXRAUFCTJu2rVKmjdujVs2LABfvz4Icl77NgxaNSoESxfvhw+fvwoyevl5QU1a9aEuXPnwvPnzyU9Y39/f6hWrRp4eHjAvXv3JOXbuLg4qFOnDowePRquXLkiKd8CALRq1QoGDx4Mp06dgujoaEneQYMGQa9eveDAgQMQFhYmyTtz5kzo0KEDbNu2DX79+iXJu3nzZmjevDmsWbMGvn37Jsl76dIlqFevHixevBjevn0r6Tm9e/cOqlevDrNmzQIvLy9J72JISAhUq1YNJk6cCLdv35aUb5OSkqBBgwYwYsQIuHDhguS1T+fOnWHAgAFw/Phx+PPnjySvVqsFjUYDe/bskZxvFy9eDG3btoVNmzbBz58/JXn3798PTZs2hZUrV8Lnz58lee/duwe1a9eG+fPnw6tXryQ942/fvkHVqlVh2rRp8PDhQ0nPODo6GmrVqgVjx46F69evS863TZs2BTc3Nzh79qzkfNu7d2/o06cPHD58GCIiIqi9AABTpkyBzp07w86dOyEwMFCSd+3atdCqVStYv349+Pr6SvKePn0aGjZsCEuXLoX3799Lek7Pnz+HmjVrwpw5c+DZs2eSvL9+/YJq1arB5MmT4e7du5LybUJCAtStWxe0Wi1cvnxZ8tqnbdu2MGjQIDh58qTkfOvm5gY9evSA/fv3S863c+bMgfbt28PWrVshICBAknfHjh3wzz//gKenJ3z58kWS11ysGR4eDtWrV4fx48fDzZs3Jb2LqcGa/fr1S3fWXL58ObRp08biWLNatWowdepUuH//vllY8/Tp0xbDmhs3boQWLVqkO2u+fv0aqlevrrAmpRYsWABqtRo2b96crqx569YtcHV1hQULFqQra0ZGRkKNGjVg3LhxJrFmkyZN/irWPH78uIE1P3z4IMlrbtYcNWqUWVizZ8+e6c6aW7ZsMZk1L1++bGBNqWsfOawZGhoK1atXh4kTJ8KtW7fMwprHjh2zGNY8cOAANGnSxCysWa1aNQNrSnkX5bAmAECzZs0MrCl17dOnTx/o06cPHDp0yCysuW7dunRlzRcvXkCNGjVg9uzZFsWa7dq1M7Cm1LWPHNacO3euWVjz2rVrBtZ8/fq1RbCmXq+HRo0awfDhw9OdNceOHWsW1jx8+LDJrPno0SMDa7548cIsrHn16tV0Y00AgP79+0OvXr0sijXPnz//17Lm8ePHJefbESNGQPfu3WHv3r3pypp79uyBpk2bwqpVq9KVNb98+WKRrNmzZ08Da0pd+yj6DwoRlRAJACgCAAgA+OPHD1RkmdLr9VizZk1knmWJEiVQq9Xi5cuXMT4+XtTfvXt3g7dAgQI4aNAgPHnyJEZFRYl6PTw8DN6cOXNijx49cP/+/RgaGirq3bJli8FrZ2eH7du3x61bt2JAQICo9+rVqwZvxowZ8Z9//kFPT0/8+vWrqPfjx4+YIUMGBADMkCED1q1bFxctWoSvX79GvV5v1BsWFob29vaGn12lShWcOXMmPn78GJOTk416ExMTsXTp0gavk5MTjh8/Hm/evImJiYmin7tp06YGr6OjIw4fPhzPnz+PsbGxot7BgwcbvPny5cN+/frh0aNHMTIyUtS7YMECgzdHjhzYtWtX3L17NwYHB4t6Dxw4YPBmzpwZ27Rpgxs3bkQ/Pz9R78OHDw1eGxsbbNy4Ma5YsQI/ffok6v3x4wdmypQJAQCtrKywVq1aOG/ePHzx4oXoM46KikIHBwfDz65QoQJOnToVHzx4gElJSUa9ycnJWKlSJYO3VKlSOGbMGLx69SomJCSIfu727dsbvIUKFcKhQ4fi6dOnMTo6WtQ7duxYgzd37tzYq1cvPHjwIIaHh4t6PT09Dd5s2bJhp06dcPv27fj7929R79mzZw3eTJkyYYsWLXDt2rX4/ft3Ua+3tzdaWVkZ3sX69evjkiVL8N27d6LPKTAwELNmzWr42dWqVUOdTodPnz4V9cbHx2PRokUNXmdnZ5w0aRLeuXNH9F3U6/Xo6upq8BYvXhxHjhyJly5dwri4ONHfuXfv3gZv/vz5ceDAgXjixAn88+ePqHfGjBmcfNu9e3fct28fhoSEiHp37Nhh8GbJkgXVajVu3rwZ/f39Rb03b97k5NumTZviqlWr0MfHR9Tr4+OD1tbWhnfR1dUVFyxYgN7e3qLPKSIiAnPlymX42ZUqVcLp06fjo0ePRPNtUlISOjk5GbxlypTBcePG4Y0bN6jexRYtWhi8RYoUwWHDhuG5c+eo8u3w4cMN3rx582Lfvn3xyJEjGBERIepdsmSJwZs9e3bs0qUL7tq1C4OCgkS9R48eNXhtbW2xdevWuGHDBqr1nZeXl8FrbW2NjRo1wuXLl+OHDx9Evf7+/pg5c2aDv2bNmjhnzhx8/vy56DOOiYnBggULGrzly5dHDw8PvHfvnmi+1ev1WLVqVYO3ZMmSOGrUKLxy5QrV2qdLly4Gb8GCBXHw4MF46tQpqnw7ceJEgzdXrlzYs2dPPHDgAIaFhYl6N2zYYPBmzZoVO3TogNu2bcNfv36Jei9evMjJt82bN8c1a9bgt2/fRL3v3r3j5Nt69erh4sWL8e3bt6LPKSQkBLNnz2742VWrVsVZs2bhkydPRN/FhIQELFGihMGrUqlw4sSJeOvWLaq1T8OGDQ3eokWLoru7O164cIEq3/bv39/gdXBwwAEDBuCxY8eo8u2cOXM4a59u3brhnj17qNY+e/bs4eTbtm3b4qZNm/Dnz5+i3rt373LWPk2aNMGVK1fi58+fRb3fvn3DjBkzGvJt7dq1cf78+fjq1SvRZ/znzx/MkyeP4WdXrFgRp02bhg8fPhR9xsnJyeji4mLwli5dGseOHYvXr1+nyrdt2rQxeAsXLoxubm549uxZjImJEfVqtVqDN0+ePNinTx88dOgQ1dpn5cqVKdY+O3bswMDAQFHvyZMnOfm2VatWuG7dOvT19RX1vnjxgpNvGzRogEuXLsX379+Len/9+oVZsmQx+KtXr46zZ8/GZ8+eiT7juLg4LFy4sMFbrlw5nDx5Mt69e5cq35qLNadOnWoW1rx27VoK1ly9ejV++fJF1JvarDljxgxq1ixTpoxZWHPIkCFmYc2DBw9aHGtGR0enYE0PDw+8f/9+mrNmhw4dOKw5ZMiQdGHNNWvWcNY+HTt2/NezZlBQkNlYs27dugZvsWLFcOTIkXjx4sU0Z82ZM2cavPb29ti9e3fcu3cvFWvu3LmTs/Zp165durGmjY2N4V2sU6dOurGmSqWyONZcunRpCtbcuXMn1dpHDms+ffo0BWsuW7Ys3VnTxcUFp0yZQs2a1apV46x90os1J02aZBbWvHTpEpE1aers5mTNkiVLclhzwoQJ6cKaAwYM4Kx9+vfvny6suXfvXpNZ8969e2Zjzbx586ZgzQcPHqQ5a7Zt2zYFa545c+ZfzZqnTp3i5NuWLVviunXrqNY+cljz9+/fZmPNWrVqGbzFixc3sCbNu2gu1ty6dWsK1tyyZUuas+anT59S1NkXLlyY7qxZtmxZSazZrFkzs7DmwoULiaxJU2eXw5qPHj0isubHjx9FveZiTb1ej5UrVzZ4S5YsiaNHj8arV69SrX3ksOa4cePMwprnzp0jsiZNnf3169dE1qRZ+8hlzWLFiqVgzdu3b6c5a/bp08fgZersx48f/1ez5q1btzjvohTWVGRe/fjxw/DsAKAIpkZPXGr8T/7rAUrj4H9G58+fZ79EkopBb968MfyRYwezEbZ+/XrBjbCgoCDMli1bCq+1tTU2bNjQaDEoPj4eixcvTvzcNWrUMFoM0uv1WK9ePaKXphjUt29fopemGDRr1iyil6YYtGvXLqKXXQwSgpPbt28TvexikBCcfPnyxVBQZQdNMSgyMhJz586dwssUgxYtWoRv3rwhPqekpCR0dnYmfu6qVavizJkzjRaDWrVqRfTSFINGjBhB9LKLQUJwsmzZMqKXXQwSgpPjx48TvTTFoGfPnhG9NMWggIAATkGVvSASKwbFxsZyCqpMsItBL1++FHwXq1evTvzcNMWgbt26Eb2lS5fGMWPG4LVr1wSLQZMnTyZ6maZLY8WgTZs2Eb25c+fG3r17Gy0GXb58mehlF4OE4OT9+/eGzWR+vhUrBoWGhmKOHDmI+VasGJSYmIilSpUifm6aYlDjxo2JXppi0MCBA4lephhkrOly3rx5RC9TDDpx4oRgMWjfvn1EL1MM2rdvn2C+vX//PtFLUwzy9fU1FFTZkTFjRmzWrJnRYlBUVBSnoMp+F8WKQcnJyVihQgXi565cubJoMahdu3ZEL00xaPTo0UQvTTFo9erVgvlWrBh0+vRpwXwrVgx69eoV0csUg4xthP3+/Rvt7OyI+bZx48a4fPlywWJQXFwcOjo6Ep9xrVq1cO7cuYLFIL1ej7Vr1yZ+bppiUM+ePYlemmLQ9OnTid6CBQuKFoO2bdsmmG/FikE3btwgemmKQeyCKjtoikHh4eGYM2fOFF6aYlBSUhKWLVuW+LmZYpCXl5dgvv3nn3+IXmdnZ5w4caLRYpCbmxvRW6xYMRwxYoTRYtCiRYuIXppi0OHDh4lee3t71Gg0RotBjx8/JnppikF+fn5oa2tLfBfFikExMTFYoEAB4rso1njAL6iyg2k8MNZ02alTJ6KXaTwwthE2fvx4opdpPDDWdLlu3Tqil2k8OHz4sGDjgblYMzg42GysWb9+faI3rVlTp9MRvQUKFDCwptDaZ/fu3URvarCmsabLr1+/GmVNYwN+clmzXLlyxM/NDPiZwppOTk5pyprLly8nes3FmpkzZzawptBGGA1rCjVdxsbGYqFChYj5loY1a9SoQfzcac2aU6ZMIXrTmjWvXLlC9Fo6axrbCBNjzTt37gjm20GDBhG9ac2a+/fvJ3rZA35C+fbBgwdEr52dHarVatyyZYvg2kcua+bLl4/4LqY1a6rVaqLXXKyZN29eUdY8c+aMYL7t2rWr0QE/OawZGBhIZE32gJ9U1gT4f9OlGGvWqVOH6GUG/P6NrLl9+3bBfMuwplDTJQ1rCjVdfv78+V/JmrNmzTLKms2bNyd6mQG/tGLNxYsXE71pzZpPnjwhev8NrCnUdKnX67FKlSrEz53WrDlhwgSil2bAT4g1maZLY6x54cIFojd79uzYuXNno6z59u1bs7BmQkKC2VizX79+RG9qsKaxpksx1jTWdHnnzh2il2bAT4g1aQ6TiYyM5AzJsvMtM+CXVqzZunVropeGNUeOHEn0pjVrnjhxguhND9ZkNy6z822TJk2MDviJsea8efNMZk3mMBmhZ6zRaIheZsAvrVhz8+bNRG9as+aHDx/SlDWFBvzksmaTJk2I3nLlyhkG/MQaaxWlv5TGQaVxUJEMnTt3DmfNmsXpUicFqRh0//591Ol0nKkgoWCKQcwE7tu3b1Gn02H58uVFvUwx6MaNG5iYmIgBAQGo0+kEF8nsYIpBzARuXFwc6nQ6wcITO0gTuIsXLxZcYLODdNrT5s2bccyYMaLezJkzp5jAPXLkCE6fPp1YWOD/seQXg65evYo6nY4zES0U/GKQl5cX6nQ6zhSmUPCLQT4+PqjT6TiTtkLBLwaFhISgTqfjnF4hFPxikF6vR51Ox5nSFQqmGMSewF21ahUOHTpU1MsUg9gTuDt37uScJiUUpNOeTp06hTNnziRuqrCDNIF769Yt1Ol0mD9/ftGfzUzgMsWgV69eoU6n40y9CwW/GPTjxw/U6XSCBUJ28ItBUVFRqNPpBEGIHaRi0Pz587FXr16iXnYxiIGT9evXC0IUO9jFIKbp8sCBAzh16lRiYYEd7GIQ03R54cIFnDVrFmcimhRMMYg9gfvw4UPU6XSChVx2VKpUiXPa0/v371Gn03FOGRGKMmXKcCZwf//+jTqdjjNNLRT8YlBCQgLqdDrO1JhQkIpBS5cu5UxiC0W2bNlSFIO2bt3KmTgTClIx6NixYzhjxgxiYYEdpGLQ9evXUafTEQsL/GCKQUzT5bNnz1Cn03FOlxUKphjENF1+/foVdTqdILCyg3/aU3h4OOp0OsEiMDtIE7izZ88W3FhlB2kC19PTE4cNGybqJRWDdu/eLdgAzA5SMejMmTM4a9YsYmGBHaRi0N27d1Gn0xEbpvnBLwa9fv0adTqdYPGIHfxi0M+fP1Gn03Gm+4SCKQYxG2ExMTGo0+k4E/NCwRSD2BthCxcu5EwGCgVTDGKf9rRx40YcNWqUqJc0gXvo0CGcNm0asbDADtJpT5cvX0adTseZiCYFewKXKQY9fvwYdTqdYCGXHeyThZOTk/HTp0+o0+kEi/Xs4BeDgoKCUKfTCRYl2MEvBiUlJaFOpxMs9LODVAxasWIF54RpoSAVg7Zv3y64ScCOTJkyYcuWLTmnPZ04cQJnzpxpmIgWCqYYxD7t6caNG6jT6Yib2PyoXr06ZwL3xYsXqNPpBDfO2MEvBn3//h11Oh3nZAOh4J8sHBkZiTqdDlu2bCnqZZ/2xOTbuXPnYo8ePUS9pMaDtWvXoru7u6iX1Hiwb98+9PDwEF37sBsPmI0wU1iTabqUyprs057evXuHOp1OsFGBHWXLluWc9iSFNfmnPVk6a9KsfczNmsxGmCmsyWyEhYaGok6n45xeIRQMazIDflJYM1euXKnKmrt27eKcJiUUqc2at2/fVlhTIBjWZG+ESWVN9oCfVNZkD/hdvHgxXViTf7Lwhw8fTGbNwMBA1Ol02KhRI1FvarPmsmXLBIfU2JFWrElq4GMHmzWZpsv0ZE32gJ+5WVNoY5Udqc2ae/bsMZk1z549K5k1mTq7KazJNF2+efMGdTod54Q1oWBYk2m6lMKajo6OZmNN/snCqcGaYnX2fwtrJiUlyWLN4OBgk1gzOjoak5OTUafTYefOnUW9DGuyB/yksiZ7wG/Hjh1pzpqkk4Vv3rxJzZr8056ksCb7ZGFzsSaz9jGFNZmmS3Ox5vnz52WzZpEiRUQ/txzW5J8s/OvXL9TpdNigQQNRb2qz5pIlSzi3awiFpbMm03RpKazJP0xGp9Nh165dRb2kk4WlsCb/ZGE5rHn69GmcNWtWurJmcnIyent7o06nEzx8hh1yWLNo0aKyWZN9svCCBQvShTX5h8kwrElTZ+cfJiOFNfknCzOsyT5ZXyjksCb/ZGE5rJmYmIg6nQ47duwo6mWzJs1Jl4rSXkrjoNI4qEiGhKbdxaJEiRKCp/aJRYECBagawkiRM2dOKgAihZ2dHdUfc1IwxSAxECEFUwyiARFSVKlSharJgBROTk6c68GkhKOjI1WzECny5csneOqNWOTIkUPwBAexYODEFC9TDCKdWiEWTDGIfaWilKhQoQLV4ocUpUqV4lx/KyUKFSpEVTQiRe7cuTnX5EiJrFmzmvycmAlcscIPKZhiEGlykyaqVavGucJWSjg7O1PBJimKFy9OtXlNivz581OBKily5sxp8ruYJUsWzhWSUoK5ZkoMREjBbITRgAgpKlWqRFVoJ0WZMmWoinukKFKkCBXEkCJv3rxUGzGkyJ49u8nvInPNlFhxjxRMMYh0QiJN1KxZU3BaTCzKly8veNqXWJQsWZJqM4UUBQsWNDnf5sqVy+S1j9x827x5c9FNL1IwxSDS5CZNVK1alarwQwqVSkW1sUmKokWLUhVwSeHg4GByvs2RI4fJzzhLliyy1j5NmjQhnlohFkwxiGbTixQVK1bEihUrmuQtXbq04AmaYlG4cGHB04nEIk+ePCavfbJly2by31RmAles0E4KpumSfeWMlKhevTrnWiEpUa5cOc618FJCYU36UFhTWlgya9JsepFCLmvSbKaQolChQibnW4U1pYUc1ixWrJhZWNPe3l4Wa8rJt02bNiWeWiEWqcGaNMPTpPhbWVNsY5MU5mRNFxcXqqYuUpQoUUIWa5q69lFYU1qoVCrBm1PEQg5r5suXTxZrmiPfWjJrmrr2UVhTWpiLNYsXL66wJmUwTZemsmblypVNZs2yZcuajTVNXfvIZU1T91IslTVLliwpizUtdV+TdCKtWPyNrCmnzm5vb2+2OrtypbH5lRaNg1b4/8Y4RUZkZWVVBAB+AAD8+PEDihQpYuZPpMgUjRw5EtatW2fuj6FIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkSJFihQpUqRIkUUpY8aM0LBhQ5g8eTI0a9bM3B/nr5Ofnx84Ojoy/+mIiH5y/58Z5P4PFCn6rypDhgxQt25dWLhwIUycOFGyv3LlyjBjxgxYvHixZG/ZsmVh/PjxsHXrVsneIkWKwPDhw+Ho0aOSvXnz5oV+/frB0aNHIXfu3JK82bNnh65du8Lu3buhcuXKkryZM2eGNm3awMaNG6Ft27aSvNbW1tC4cWNYsWIFDB06VJLXysoKatWqBXPnzoXp06dL8gIAVKhQATw8PGD16tWSvSVLloTRo0fD7t27JXsLFiwIQ4YMgVOnTkn25sqVC3r16gUHDx6EokWLSvJmzZoVOnbsCNu3b4e6detK8mbKlAlatGgBa9euBY1GI8mbIUMGqF+/PixZsgRGjx4tyQsAUK1aNdDpdDBv3jzJXmdnZ5g0aRJs2LBBsrdYsWIwcuRIOHjwoGSvg4MDDBgwAI4fPw5Zs2aV5LW3tweNRgN79+4FZ2dnSd4sWbJAu3btYPPmzdC8eXNJXhsbG2jatCmsWrUK+vfvL8lrZWUFderUgQULFsCUKVMkeQEAKlWqBNOnT4dly5ZJ9pYpUwbGjRsH27dvl+wtXLgwDBs2DI4dOybZmydPHujbty8cPnwYHBwcJHmzZ88OXbp0gZ07d0L16tUleW1tbaF169awfv166NChgySvtbU1NGrUCJYtWwbDhw+X5AUAqFGjBsyZMwd0Op1kr4uLC0yZMgXWrFkj2VuiRAkYNWoU7Nu3T7K3QIECMHjwYDh16hRkyCBt2ZwrVy7o2bMnHDhwAEqWLCnJa2dnBx06dIBt27ZBgwYNJHkzZswIzZs3hzVr1kDPnj0leTNkyAD16tWDRYsWwbhx4yR5AQCqVq0KM2fOhIULF0r2qlQqmDBhAmzevFmy19HREdzd3eHw4cOSvfny5YP+/fvDsWPHwN7eXpI3R44c0K1bN9izZw9UqFBBkjdz5szQtm1b2LRpE7Rq1UqS18bGBpo0aQIrV66EQYMGSfJaWVlB7dq1Yf78+TB16lRJXgCAihUrwrRp02DFihWSvaVLl4axY8fCzp07JXsLFSoEbm5ucOLECcne3LlzQ+/eveHQoUNQuHBhSd5s2bJBp06dYMeOHVC7dm1J3kyZMkHLli1h3bp10KVLF0lea2traNCgASxduhRGjhwpyQsAUL16dZg9ezbMmTNHsrdcuXIwefJkWL9+vWRv8eLFQavVwv79+yV78+fPD4MGDYITJ06Ara2tJG/OnDmhR48esG/fPihTpowkr52dHbRv3x62bNkCTZs2leTNmDEjNGvWDFavXg19+vSR5LWysgJXV1fZrLlkyRLJXktnzSpVqkjy/htYc8aMGZK8AADly5f/a1mzXr16kryWzpobN26U7C1atCiMGDHCrKxZrlw5SV5LZ83ly5dL9jKsuWPHDsne1GLN/PnzS/Jmy5YNOnfubDJrtmrVCtavXw8dO3aU5LW2toaGDRualTXXrl0r2ZtarGltbS3Jm1qs2bBhQ0lehjU9PT2hV69ekrxMnd1U1qxSpQrMnDkTFi1aJNnr5OT017Jm69atJXlTizWnTZsmyQvwf9acOnWqSaxZqlQpGDNmjMmsOXToUDh58qRkb2qxZp06dSR5U4s1tVqtJC9A6rCmKYd7yGXNgQMHmsSa9vb20L17d9i3bx+ULVtWkjdLliygVqv/Stbctm2bZG9qsOaRI0cgT548krwMa+7atctk1tywYQO0a9dOkpdhzeXLl4Obm5skLwBAzZo1ZbOmp6enZG9qsObp06cley2ZNRcvXmwya86aNQvmz58v2evs7AwTJ040K2tmy5ZNkje1WLNFixaSvP8G1jTHvqabmxscP35csjdPnjzQp08fOHz4MAQHB8OVK1eUpsH/klLj2ML/eoByVfF/QuHh4fju3TujR1Vnz54du3Tpgrt27cKgoCCD98+fP/jjxw+j13Qw10ts2LCB8+8kNjYW/f39jR5FzFwvsXz5cvzw4YPBm5CQgP7+/ti9e3ejx8LWrFkT586di8+fP0e9Xo+IiMnJyejv74+TJk0y6i1fvjx6eHjgvXv3MCkpyfCzAwICcO3atUa9JUuWxNGjR+OVK1cwPj7e4A0KCsLTp08b9RYsWBCHDBmCp06dwujoaIM3NDQUvby80NraWtCbK1cu7NmzJx44cADDwsIM3oiICPTx8cFcuXIJerNmzYodOnTAbdu24a9fvwze6Oho/Pnzp9FjjJnrJdasWYNfv341eOPi4tDf39/oNVLM9RKLFy/Gt2/fGp5TYmIi+vv746BBg4x+X1WrVsVZs2ahl5cXJicnIyKiXq9Hf39/nD17tlGvSqXCiRMn4u3btzExMdHwuX///o07d+406i1atCiOGDECL1y4gLGxsQZvcHAwXrt2zajXwcEBBwwYgMeOHcPIyEiDNywsDL29vY0eVW1vb48ajQb37NmDwcHBBm9kZCR+//7d6FHVWbJkwXbt2uGmTZvw58+fBm9MTAz+/PnT6PH+zBHLK1euxM+fPxu88fHx6O/vjx06dBD0MtdLzJ8/H1+9emV4xklJSejv74+jRo0y+n1VrFgRp02bhg8fPjQ8Y+ZdXL58uVFv6dKlcezYsXj9+nVMSEgweAMDA/HIkSNGvYULF0Y3Nzc8e/YsxsTEGLwhISH44MEDo9ez5smTB/v06YOHDx/G8PBwgzc8PBw/fPiA2bJlE/Rmy5YNO3fujDt37sTfv38bvFFRUejn52f0OmxbW1ts1aoVrl+/Hr9//27wMvnW2JUo1tbW2LBhQ1y2bBm+f//e4GXyba9evYx+XzVq1MDZs2fjs2fPDM+YeRenTp1q1Ovi4oKTJ0/Gu3fvcvLtr1+/cOPGjUa9xYsXR61Wi5cvX06Rb8+fP2/Umz9/fhw0aBCePHkSo6KiDN7Q0FB89uyZ0Ws6cubMiT169MD9+/djaGgo51388uUL5smTR9BrZ2eH7du3x61bt2JAQIDBy+RbY1clM9dLeHp64pcvXwxeJt8aO4Kducpw0aJF+Pr16xTvopubm9Hvq0qVKjhz5kx8/Pgx51309/fH+fPnG/U6OTnhhAkT8ObNmyny7d69e416HR0d0d3dHc+f/x97Zx1Wxdr9/UWXXQiC3YLdHdhsu7u79Rw9dovHwkDsTrDZNordhYCoiCIg3Z17vX887+zfzOzJPcCW43yva/3xXNfzPcC+nbXXZ93rvueGRr59+PAhp7dMmTI4duxYvHDhAiXfJiQk4KdPnzhfi1S0aFEcPHgwnjhxQqP2CQ4OxgoVKrB6iddL7Nu3D0NDQ9XetLQ0DAsL43zVBvF6ie3bt2NAQIDGszho0CBWL/F6ifXr16O3t7dG7bNgwQLOz8ve3h6XLl2Kz58/16h9du7cyemtVq0azps3D+/du0d5FqOiovDy5cucXmtra5wyZQpeu3ZNo/Z5+fIl5yvKSpUqhaNGjcJz585p1D4BAQFYvHhxVq+FhQUOGDAAjxw5Qql9iHxbvXp1Vi/xeok9e/ZgUFCQ2kvkW67XExGvl/j333/R399fo/YZN24c5+fVpEkTXL16Nb59+1Yj365cuZLTW6dOHfz777/x8ePHGvn20KFDnN5KlSrhrFmz8Pbt25iRkUF5Fu/cucPpLVeuHE6YMAEvX76MycnJam98fDx6e3tzvhKyePHiOGzYMDx9+jTGxsaqvUlJSRgUFMT5WiQzMzPs06cPHjx4kFL7EPmW6/VVRkZG6ODggDt37qS8XoKofRQKBeez2Lp1a9y4cSP6+Pho5NuZM2dyfl4NGjTA5cuX48uXLzXy7ebNmzm9NWrUwAULFqCXl5dG7XP27FlOr42NDU6bNg2vX7+uUfs8efKEs/YpU6YMjhkzBt3d3TExMVHtLUjWDA4O1ngWW7duzerNT9ZcvHgxp1cKa1apUgXnzJnDyJoeHh6c3vLly+OkSZPw6tWrGrXP27dv8401zc3NOVmzdu3arN78ZM1JkyZxfl6/I2vev3+f0yuFNYsVK4ZDhgzRYM3k5GT8+fMnWllZsXpNTU3R0dER9+/fr1H7CGHNzp07s7Jm//79Wb18rDl37lzOzyu/WPPChQuc3vxgzcTERPz69SsWLVqU1ZsXrOni4qI1a27ZsoWRNUeNGsX5eTVt2lRr1qxbty4ra+7fv5/TS2ZNcu0jlTXfv3+PRkZGrF4u1vzx4wfnK3jzkzW5Xr2XF6y5YsUKRtbcuHEjp7dWrVq4cOFCrVlz+vTpfyRrfv36VeNZlMKaCxcu5Py8CNZ89uyZ1qzp6ekpmjWJPjsTa7569YqTNUuWLIkjR47UmjX79+/Pyppcr2f9XVlz1apVnF4ya5KfxYJizUuXLmnNmqdOndKaNQ8cOKA1a9JfZSiUNVu1asXKmrNmzeL8vPKLNc+dO8fplcKapUuXZmXNz58/C2bNqKgotZdgzUqVKrF684I1t27dysiaw4cP5/y8mjdvjmvXrtWaNZcsWaLBmhEREeji4sLp/V1Zk+sVvGTWZKp9uFjTyMiIkzW5XllMZk0/Pz+tWfP169caz+LatWs5vQRrPnz4UKP2OX78OKdXCmuWLVsWx40bx8iavr6+aGpqyurNL9YMCwvjfI0umTXJfXZds+b27ds5vQRr3rt3TzRrWltb49SpU9HDw4ORNblqH4I1z58/rzVrHj16lJE1uV6HLZU127dvny+suWzZMk4vG2vK0q3y41XFOh/KKwwB8uDgf0br1q3TSHhsRSJdp0+f1vASRSK9QUbX06dPNbxEkUhvkNH18+dPjUYbUSTSG2R0JScnazTaiCKR3iCjKzc3F+3s7ChecoOMXCQyydHRUeNvJoYx6EUiXUwDVsQwBr1IpMvZ2VnDSwxj0ItEuq5evSq4SKTL29tbcJFIV2RkpEajja1IpCsjIwNtbGwEFYl0qVQqbNmyJWORSG+QMYkJ/OrXr68exuBaY6ZChDyMQS4S6WJqwhDDGB4eHpQGGV1MUEAMY9CLRLoCAgI0wK9IkSI4YMAAjSKRrvj4eCxRogTFa2xsjD169EAXFxdKg4yu7OxsrFmzpsazSBSJ5AYZkxwcHFiLRHKDjElTpkxhLRLpwxh0bdq0ScNLbEjQG2R0nT9/XsNraWnJOIxB18uXLzW8bMMYdIWGhmo02sjDGGFhYaze1NRUtLS01Mi3TMMYdKlUKmzYsKHGs9i6dWvctGkTZUOCSUzg17BhQ8YNCbqYBqxq1qyp3pDgehaZNvxtbGwYNyToYtqAIjYk6A0yunx9fTUabcSGBH0Yg67o6GiNgVa2wX+6MjMzNRpt5GEM8oYEXSqVCtu2bavxNxPDGB8+fOBc49GjR2t4iWEM+oYEXUxNb2Lwn74hQRdTE4ZtQ4Iupg0otg0Jur5//64x0Mq2IUFXYmKiRqONvCFBbpDRlZOTg3Xq1NHIt+3atdMYxmAS0yYjeRiDyztjxgwNL9swBl1bt27V8BINslu3bnHm24sXL2p4iWEM+oYEXe/evWPMt0OHDtXYkKArLCxMo9FGDP7TNyToSk9P12i0EYP/zs7OlGEMulQqFTZt2lQj3xIbEuQGGZMGDx6s8TcTGxL0BhldTE1vtmEMupiGy9mGMehi2oAiD2Nw5dvPnz9rNNrIwxjkDQm6YmNjsVixYhr5lhj8J29I0JWdnY3VqlXTyLfE4D95Q4JJHTt21PibmzVrprEhwaQJEyZoeOvVq8e4IUEXF2vSB//pksKaz5490/CyDWPQxcaaTMMYdKWkpDCyJtMwBl1SWZNpk/F3Z02mg3V5xZpctU9kZCSam5tTvARr0ocx6OJiTfrgP11SWXPEiBEafzN58D+/WPPw4cMaXpk12deJaaC1adOmGsMYTGJjTabBf7qcnJw0vGzDGHRJYc1Xr15peMWwJn2gtbCzJn0Ygy6mASuCNenDGHRxsSZ9GIMuNtZkGsagy8/Pj5E1mQb/6ZLKmpUrV6Z4C4o1x4wZo+EVypqrV6/W8OYFa9IPmdP16NEjDS/BmvRhDLq4WJM++E9XUlISK2vShzHoym/W5HoWmQ7zFARrXrp0ScObV6zJ1WcPDw+XxJrW1tYUL9shc7q4WJM+jMGkIUOGaPzNDRo0YBzGoEsKazINl+cVa3LVPlJYMy4uLt9YkzyMwSSmgVaCNcnDGEziYk2+YYz169dreH931gwODtYZa9rb22vk24JgTaYBK6GsyTRcznbInC4u1qQP/tP18eNHDS/BmvTBf7qksqatra1GvmU6ZE4XG2syDf4zSQprLl++XMNbEKzp5eWl4S0I1kxISNCaNXNyclhZkz74zyQprMl0mIftkDldUljTzc1Nw/s7sCZX7ZOWlqZxUY9Q1pSlW8mDg/LgoCwJSkhIwJIlS6qLRCENMkI5OTnqm+iEDmOQRZzYIA9jcBWJZE2bNg0BhA9jkEWcnmI7Hcol4pYyttOhXHr9+rW6SGQ6HcqlX79+oYmJCRoYGDCeDuUS8QVHFIlCGmSEVCoVNmrUiFIk8jXIyBo4cCACCG+QkbVo0SIEED6MQdbevXsRQPgwBlm3bt1CAOHDGGR9+vQJ9fT0WE+HcikmJgaLFi3KejqUS1lZWepmKtPpUC6pVCr1iQ2iSORrkJE1duxYUUUiWcRNHWynQ7l08uRJdZEoZBiDrMePH6uLRCENMrKCgoLQ0NBQ8DAGWUlJSVi6dGnW06Fcys3Nxbp16yIA++lQLvXq1QsB2E+Hcok4rVqhQgXG06FcIk5PEadD+YYxyCJOjrOdDuXS+/fvEeD/NiT4GmRkhYeHo5mZGevpUC6lp6erbwcQOoxBSKVSqW8HEDqMQdbQoUMRQPjgP1n//PMPpUFGPx3KpQMHDqjzLdPpUC55enqqG2RMp0O59OXLF9TX12c9Hcql+Ph4LF68OOvpUC5lZ2erb6Jr3LixoAYZWZ07d0aA/21ICGmQkUWcVhU6jEEWcSuk0GEMsohbyoQO/pP14sULSoOMb/CfrODgYDQ2NhY8+E9WSkoKlitXjnI6lK9BRig3N1d9OwDb6VAu9e3bFwHYT4dyad68eeoGGdPpUC7t2rVLVIOMLKVSKapBRpaPj49Gg4x8OpRLUVFRaGFhwXo6lEuZmZnqZirT6VAuqVQq9e0A2pwOJU6rCh38J2vFihXqBhnTTURcOnr0KAL834YEX4OMLKKZSmxI8A1jkBUYGIgGBgZaNch0yZrdu3fXCWv++++/GqwptPaRwppv3rzRYE2hfRpdsiZxE53QYQyypLDmX3/9VehY09/fX2esSdxER7Am3+A/IamsSdyMJHQYgyxdseaTJ090wprJyck6Y83evXtrzZqzZ8+msCbfMAZZUljzypUr6tpHyDAGWVJYMyIiQs2aQgf/CemSNYlbeAuaNQ8ePKjBmlzDGGRJYc2vX79SWHPXrl1asabQYQxCUlmzS5cuCCB8GIMsKaxJ3ApZmFgzJCREZ6zZoEEDNWsKGcYgSwprzp8/X82aQoYxyNq9e7fOWJOofQqaNYlbzwsTaxJvIBA6jEGWFNZ88OCBxjBGQbBmYmIilixZUtTgPyFdsub06dN1wprELWVCD5mTJYU1iQOyBGvyDf6TlZaWpj4gK3Twn5BU1iRu4S1o1nR1dS10rBkbG0thTSGD/4SksCYiYocOHdSsKWTwnywprEncCil08J8s4kZsXbCmkZGRTliTuPVc6CFzsnTFmjt27FCzppBD5rJ+H+XH4KAhyJL1h8jX1xecnZ2hV69eUKZMGVHer1+/wrx586B3795ga2sryhsVFQXdu3eH3bt3Q82aNUV5MzIyoEqVKvD+/Xto0KAB6OnpCfYiIhgZGcHTp0+hRYsWYGBgIOpnx8fHw927d6F9+/ZgbGwsyvv9+3e4evUqODg4gLm5uSivr68vHDt2DHr06AElSpQQ7d2wYQP07t0bLC0tRXl//PgBEyZMAEdHR6hcubIob0JCArRs2RLWrVsHtWvXFrVO2dnZUK5cOXjz5g00atQI9PX1BXsREXJzc+HRo0fQqlUrMDQUl9IjIiLg5s2b0LFjRzA1NRXl/fLlC1y4cAG6du0KRYsWFeX18fGBvXv3Qs+ePaF06dKivP7+/vDPP/+Ao6MjWFtbi/KGhYVB//794ciRI1CtWjVR3tTUVKhbty58/PgR7OzsRK2xSqUCCwsLePHiBTRr1kzUGgMApKSkwP3796Ft27ZgZGQkyhscHAxKpRI6d+4MZmZmorx+fn5w5swZ6NatGxQvXlyU19fXF7Zt2wY9e/aEcuXKifIGBATAzJkzwdHRESpWrCjKGxMTA507d4bt27dDrVq1RHkzMzPB1tYW3r17Bw0bNhSdb/X09ODJkyfQsmVL0fk2NjYW7ty5Ax06dBCdb799+wZXrlwBBwcHsLCwEOX19fWFw4cPQ48ePaBkyZKivJ8+fYI1a9ZA7969oXz58qK8wcHBMGrUKDh37hxUqVJFlDcpKQmaNGkCK1asgLp164pap5ycHChZsiS8evUKmjRpIvpZzMrKggcPHkCbNm1E59uwsDC4ceMGdOrUSXS+/fz5M7i5uUG3bt1E59uPHz/C7t27oWfPnqJrny9fvsCiRYvA0dERKlSoIMobHh4Ojo6OsH//fqhevboob3p6OtSoUQO8vb3B3t5edL41NTWF58+fQ7NmzUQ/i0lJSeDp6Qnt2rUT/Sz++PEDrl27Bl26dBFd+/j5+cGJEyege/fuWtU+Tk5O0KtXL9G1T2BgIEyZMgUcHR2hUqVKorxxcXHQtm1bcHJyglq1aolap6ysLLCysoK3b99Co0aNROdbRITHjx9Dq1atRK9xdHQ03L59Gzp06AAmJiaivF+/foXLly+Dg4MDFClSRJTXx8cH9u/fDz179oRSpUqJ8n769AlWrlwJvXr1El37hIaGwpAhQ+DkyZNQtWpVUd6UlBSwt7cHHx8fqFevnqh1ys3NhWLFisHLly+hadOmovNteno6eHl5QZs2bUTXPr9+/YLr169Dp06dRNc+nz59gnPnzkG3bt2gWLFiory6ZM2uXbvCrl27Cpw1DQ0NdcKagYGBcPXqVejSpYtWtY+uWHP8+PFw8eLFAmXNnJwcKFu2LLx+/RoaN25caFjz8+fPOmPNJUuWQO/evUXXPlJZs06dOoWSNT08PKBLly4Fypo+Pj6wdetW6NWrV4GzZqdOnWDbtm2iWTMrKwtsbGx0yprt27cXXfv8iazZqFEjWL58eYGzZmZmpk5Y09/fX2vW9PHx0QlrRkREQO/evcHV1RVq1KghyiuFNRERTExM4NmzZ9C8efNCw5q+vr46Yc3v37/D5MmTC5w1s7OzJbGmSqXSuvaRypoXL16Erl27FjhrLl++HHr37i2zpgCFhobqhDV9fHzA2dkZevbsCWXLlhXl1SVrVq5c+Y9jzaNHj2rFmn5+frB+/Xro1auX6NpHCmsmJiZC8+bNYc2aNVCnTp0CY02A/+Xrhw8fQuvWrWXW5FFYWBj069cPDh06JLrPrmvWvHfvHrRr167AWfPUqVPQvXv3AmXNb9++wYwZM/4o1pT135Me/u9GPVkc0tPTswGAEACAkJAQsLGx0fFvJEuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmy/gSFhoaSDwXYImKo1P+muPFgWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS1ahljw4KEuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZP1BkgcHZf0xio6OhtzcXK28cXFxkJmZqZU3OTkZUlNTtfJmZmZCfHy8Vl5EhMjISK28AAARERGSvNq+Bj0yMhJUKpVW3piYGMjJydHKm5CQABkZGVp5U1NTISkpSStvdnY2xMTEaOVFRMnrJMWr7RpHRUVp/SzGxsZCVlaWVt7ExERIS0vTypueng4JCQlaeVUqFURFRWnlBdDts6itNzo6WutnMT4+XlK+TUlJ0cqblZUFcXFxWnkL67MoNd9mZ2dr5U1ISID09HStvGlpaVrn29zcXIiOjtbKCyB9naR4dZFv4+LitM63SUlJWtc+GRkZWtc+KpXqj6t9pOZbbWuflJQUSE5O1sqblZUFsbGxWnkLa76NiorSeo1jY2O1zrdSa5/ExEStvLm5uX9k7fOnsWZhfBb/NNbMycmRWVOEZNYU7/2TWDMlJUUSa8q1j3DpkjWl1D4yawpXYWTNP7HPXhhZMzs7W863IiSzpnivzJrClJmZKffZRUhq7VPYWBPgz6t9pLBmUlKSzJoipMva509jTVn/PcmDg7L+GAUFBUH58uVhzJgx4O7uLqogSk9PB1tbWxg0aBAcP35cVDPIwMAA6tWrB7169QJXV1cICQkR7DU2Nobu3btDx44dYevWrfDlyxfBXj09PZgxYwY0b94c1q5dC+/fvxf1Rbt161aws7ODJUuWwNOnT0UVRBcvXoRq1arBnDlz4O7du6IKonfv3kGFChVg0qRJcPXqVVFwEhUVBeXLl4cRI0bA2bNnRTWDcnJyoHLlytCvXz84fPiwqC9LIyMjaNasGXTr1g12794NQUFBgr2GhoYwaNAgaNu2LWzevBn8/PwEr5Oenh4sXrwYGjduDKtWrYLXr1+LKoj2798PtWvXhkWLFsHDhw9FFUR37tyBSpUqwcyZM+HmzZui4OTLly9gZWUF48aNg4sXL4pqBiUlJYG1tTUMGTIETp48Kaog0tfXh1q1aoGjoyPs378ffv36JdhrbGwMHTp0gM6dO8OOHTvg27dvon7uhAkToGXLlrBhwwb4+PGjqGdx/fr1UL9+fVi2bBm8ePFC1LN4+vRpqFGjBsyfPx/u378vCkCfPXsGNjY2MHXqVPDw8BAFJ6GhoVC+fHkYPXo0nD9/XlQzKDMzE2xtbWHgwIFw9OhRUXBiZGQE9evXh549e4KLiwsEBweL8vbu3Rvat28PW7Zsgc+fP4t6FufNmwdNmzaFNWvWwLt370StsbOzM9StWxcWL14MT548EbXG165dg6pVq8Ls2bPhzp07ouDk48ePYG1tDRMnToQrV66IgpPY2FiwsrKC4cOHw5kzZ0Q1gxARqlWrBn379oWDBw9CeHi4YK+xsTG0bNkSunbtCrt27YLv378L9hoYGMDw4cOhTZs2sGnTJvD19RW1TsuWLYNGjRrBihUr4NWrV6Ly7eHDh6FmzZqwcOFCePDggahn8f79+1CxYkWYPn063LhxQ1S+DQwMhPLly8PYsWPhwoULomqf1NRUqFChAgwePBhOnDghqhlkYGAAdevWhd69e8O+ffsgNDRUsNfY2BgcHBygU6dOsH37dvj69atgr76+PkyZMgVatGgB69evhw8fPohaYycnJ7C3t4elS5fCs2fPRD2Lbm5uUL16dZg7dy54enqKqn1evXoFNjY2MHnyZLh27ZqofBsREQHly5eHkSNHwrlz50Q1g7Kzs6FSpUrQv39/OHLkiKiNMCMjI2jcuDF0794d9uzZAz9//hTl7du3L7Rr1w7+/fdf8Pf3F5VvFy1aBE2aNIHVq1fD27dvRT2LLi4uUKdOHfj777/h0aNHomqfGzduQOXKlWHWrFlw69YtUfn206dPYGVlBRMmTIBLly6Jyrfx8fFgZWUFw4YNg1OnToluBtWoUQMUCgUcOHAAwsLCBPuMjY2hbdu20KVLF3B2dobAwEDBXgMDAxgzZgy0atUKNm7cCD4+PqKexdWrV0ODBg1g+fLl8PLlS1FrfPz4cahZsyYsWLAAvLy8ROXbR48ega2tLUybNg2uX78uavCAzppiah8prGloaAh2dnbQq1cv2Lt3b4Gy5qxZs6BZs2Zas2a9evW0Ys1Lly4VOtbMzc2FKlWq5Alr/vjxQ7DXwMAABg8eXOhY8+7du1CpUiWYMWNGgbJmcnKyzlizY8eOhY41z5w5o2bNe/fuFThrjho1SmvWHDBggGjWNDQ0hAYNGkCPHj20Yk2FQqET1ty5cyeFNcU8i38ia7Zq1QocHBxg586dWrFm69attWLN5cuXQ8OGDQucNb28vLRmze/fv/9RrKmnpwdTp06FFi1awLp167RmzX/++adAWfP169c6Yc2cnBydsKahoSH069dPa9b866+/1Kz55s2bAmPNmzdvQuXKlWHmzJlas+b48eNFs2ZCQgJYWVnB0KFDCxVrjh07VieseeLEiTxhTaVSKYo1f/78qWZNNzc3rVnz2LFjBcqaPXr0gA4dOhQ4a27btk0nrPn+/XutWTM6OhqsrKwKnDWNjY2hefPm0K1bN9i1a5fWrOnk5CSKNQEAlixZAo0bN4aVK1cWGtb8+vWrTlhTT08vz1gzICBAsFdfXx8mTpyoZk1vb29Ra7xhwwaoX78+LF26FJ4/f15grPn8+XOwtbWFKVOmFFrWFNtnl8Ka8+fP15o1Zf0HhYhy8AQA2AAAAgCGhISgrMKr3r17I7GWRkZG2KVLF3R2dsbAwEBe7+zZs9VePT09bNWqFW7cuBF9fHxQpVJxerdv3672AgA2aNAAly9fji9fvsTc3FxO75UrVyjeGjVq4IIFC9DLywuzsrI4vR8+fKB4bWxscNq0aXj9+nVMS0vj9EZERKCZmZnaW6ZMGRwzZgy6ublhYmIipzc9PR0rVKig9hYtWhQHDRqEx44dw6ioKE6vSqXC5s2bq70mJibYq1cv3Lt3LwYHB3N6ERGHDRum9hoYGGCHDh1w69at+OXLF17vP//8Q/m8mjVrhmvXrsX379/zrvHBgwcp3nr16uGSJUvw6dOnmJOTw+n19PSkeKtUqYJz5szBu3fvYmZmJqf369evqK+vr/ZaWVnhpEmT8OrVq5iamsrpjY+Px+LFi6u9JUuWxBEjRuDZs2cxLi6O05udnY3Vq1dXey0sLLBfv354+PBhDA8P5/QiInbp0kXtNTY2xm7duuHu3bvxx48fvN5Jkyapvfr6+ti2bVt0cnJCPz8/3nXauHEj5bNu3Lgxrly5El+/fs37LJ49e5birV27Ni5atAgfPnyI2dnZnN4XL15QvBUrVsQZM2bgzZs3MT09ndMbEhKCxsbGam/ZsmVx3LhxePHiRUxKSuL0pqSkYLly5dTeYsWK4ZAhQ/DkyZMYExPD6c3NzcUGDRqovWZmZujo6Ij79+/HX79+cXoREfv27av2GhoaYufOnXHHjh347ds3Xu/8+fMp+bZly5a4YcMG9Pb25l3jXbt2UT7r+vXr47Jly/D58+e8a6xUKine6tWr4/z58/HevXu8+dbHxwf19PTUXmtra5wyZQp6eHjw5tvo6Gi0sLBQe0uVKoWjRo3C8+fPY0JCAqc3MzMTK1asqPYWKVIEBwwYgEePHsXIyEhOr0qlwtatW1PybY8ePdDFxQV//vzJ6UVEHDVqFCXftm/fHrds2YKfP3/m9a5cuZLyWTdt2hTXrFmD7969413jo0ePUrx169bFxYsX45MnT3jz7YMHDyjeypUr4+zZs/H27duYkZHB6Q0MDERDQ0O1t3z58jhx4kS8fPkypqSkcHoTExOxZMmSam+JEiVw+PDhePr0ad58m5OTg7Vr11Z7zc3NsW/fvnjw4EFB+bZ79+6U2qdr1664c+dO/P79O693+vTplGexdevWuGnTJvT19eVdp3///ZfyWTds2BBXrFiBr1694n0WL1y4QPHWrFkTFy5ciA8ePODNt2/evKF4bW1tcfr06Xjjxg3efBsWFoampqaUfDt27Fi8cOECb75NS0tDKysrSr4dPHgwnjhxAqOjozm9KpUKGzdurPaamppi7969cd++fYLYY9CgQZR826lTJ9y2bRt+/fqV1/vXX39R1rhFixa4bt06/PDhA+8au7q6Uj5re3t7/Oeff/DZs2e8z+KtW7co3qpVq+LcuXPR09OTt/bx9/fXyLeTJ0/Ga9eu8dY+sbGxWLRoUUq+HTlyJJ47d44332ZlZWHVqlUptU///v3xyJEjvPkWEbFDhw6U2qd79+64Z88eDAoK4vWOGzeOUvu0a9cO//33X/z06RPvOq1du5byWTdp0gRXr16Nb9684fWeOnWK4q1Tpw7+9ddf+OjRI95n8cmTJxRvpUqVcNasWXjr1i3efBsUFIRGRkZqb7ly5XD8+PF46dIlTE5O5vQmJydjmTJl1N7ixYvj0KFD8dSpUxgbG8vpzc3NxXr16lFqH4VCgQcOHMCwsDBOLyKVNQ0NDQuMNXfs2EH5rAnWfPHihU5YU6lU5itrZmRkSGLNFi1aUGqfnj17FghrLl26lPJ5FRRr3rt3j+IVy5oGBgaU2odgTb7aRypr1qhRg5Jv+/Xrh4cOHcp31pw8eTIl30phzUaNGglmzXPnzlG8tWrVEsyaL1++pHgLijVTU1PzjDVNTU3VrBkaGsrpRUTs168fJd8SrBkQEMDrlcKau3fvpnzWYljz+vXrFG/16tVx3rx5vz1rVqpUSe0Vy5pt2rSh5NvCwJrHjh2jeAnWfPz4MW++ffjwIcVbkKxZqlQptbdEiRI4bNgwrVmzT58+ePDgQUG1T48ePdReIyMjdHBwKBDW3LJlC+WzLijWfPv2LcUrhTXLlClTYKzZpEkTSr7t3bs3urq65jtr/v3335TPq3nz5lqzpp2dnWDWvH37NsUrljXpfXZds2ZERASnF1Eaa44fP55S+0hlzVWrVuU7az59+pTirVSpEs6cOfO3Z007Ozu1VyxrOjo6Up7FwsCaV69epXgJ1rx//z5v7ePt7U3xVqhQAadOnSqINSMjIymsWbp0aRw9erRg1rSxsVF7ixYtigMHDiwQ1hw+fDil9iko1jx06BDFW1CsGRAQwMiaV65c0Zo1z5w5k++s6eDgQKl9unbtirt27dKKNdu0aSOYNTdt2kT5rAsDa4aGhuqENVUqFTZs2JBS+0hlze3btwtizQULFlDybcuWLXH9+vVas+bSpUvznTV9fX21Zk1ZulVISAh53W0wL2bi8uI/8l8PkAcH/zN69eoVJXmSo27duvj333+zNoNCQ0PRxMSE0Vu5cmWcNWsWazMoNTUVLS0tGb2WlpY4YcIE1mYQ/UuOHEKaQQMGDGD0CmkGLVy4kNErpBnk4uLC6BXSDLpx4wbrOvE1g/z8/ChfcuQgmkFeXl6MBVFMTAwWKVKE0Us0g65fv85YEGVmZmLlypUZvcRGmLu7OyOcqFQqbNeuHaOX2Ag7fvw4azNozJgxjF5TU1Ps1asXZzNo9erVjF4DAwPs2LEjZzPo+PHjrOvE1wx69OgRq5evGfTjxw9KQ5UcfM2gpKQkSkOVHHzNoJycHKxbty6jl2gGnT17FuPj4xk/r549ezJ6iWbQ4cOHWZtBM2fOZPSSN8LYmkHbtm1j9BLNoM2bN7M2gy5dusS6To0bN+ZsBr17947VW7t2bc5mUHh4OKWhSg6+ZlB6ejpaW1szevmaQSqVCps2bcroFdIMGjJkCKOX3AxiG7pcsmQJo5fcDGIbuty/fz9rvm3VqhVu2LABP378yLhOd+/eZV2nBg0a4LJly1ibQZ8/f6Y0VMlRo0YNnD9/PmszKC4uDosVK8bo5WsGZWdnY7Vq1Ri9QppBnTp1YvQWKVKEtxk0ceJERq+QZtD69etZ8y1fM+jMmTOs60Q0g9g2wp49e8bqJZpBbEOXwcHBlIYqOapUqYKzZ8/GO3fuMObblJQULFu2LKOX2Ahjawbl5uaivb09o5cYuuRqBvXp04fRSwxdcjWD5s6dy+gV0gzauXMna77lawZdu3aNdZ34mkEfP35k9fI1g6KiotDc3JzRSzSD2DbCMjIy0NbWltFLNIPYNsJUKhW2atWK0Us0g06cOMHaDBoxYgSjl2gG7du3j7UZtHz5ctZ826lTJ85m0JEjR1jzbYsWLTibQV5eXqzrZG9vz9kM+vbtG6WhSo5q1apxNoMSEhKwRIkSjF6+ZlBOTg7WrFmT0Stk8KBr166s+ZZv8GDq1KmMXmNjY+zRowfu2bOHdfBg8+bNrPm2ffv2+O+//6K/vz/jOrm5ubGuU9OmTXH16tX49u1bRu/r169ZvfnJmmlpaVi+fHlGrxDWbNSoEWu+zU/WXLRoEWu+JViTbSNMCGuybYTdvHmTdZ0I1mQ74JdfrEk+4MeUb7OysnTGmmPHjmXNt/nJmidOnGBdJ12zJttGWFJSEpYuXZrRS7Am2wE/LtYsWbIkL2v26tWL0atL1mzbti0na16+fJl1nfKbNcmbyeTIb9Zs1qwZo5dgTa6NsPxkTa4DfgcOHGDNt1JYkxi6ZGPNL1++FErW7Ny5M6M3v1lzw4YNrPmWYE22oUsprPn8+XNWb7169TgP+OmSNevXr8/ozW/WnDdvHqM3v1nTw8ODdZ0I1mTrs/v4+LB6pbCmra0tJ2tmZmbmG2sSQ5ds+XbkyJGMXvIBv8LKmkzPolTWJB+SJQeZNdlqHyms2a1bN9Z8O2DAAM4DfvnBmuShSzbWdHd3Z10n4oCfNqxZp04dTtb89evXb82abH32gQMHsubb/GTNvXv3sj6LUlmT6zKZT58+sbIm3wE/XbJm+/btGb35zZpr1qxh9OY3az5+/JjVS7Am29BlUFBQvrEm12Uyubm5nKxJHPDThjWJy2TYWHPWrFms+fZ3YE2mZ/H9+/esXimsWbFiRV7WJB+SJQfBmhcvXswX1hw6dCijV+xlMrIKVvLgoDw4KEuC7ty5g05OTqwDfOSgN4NevXqFTk5OrF+u5KA3g758+YJOTk6Uk7ZsQW8GRUZGopOTEyoUCl4v0QwiTuBmZGSgk5MT5YYSrqCfwN25cyflJDZX0JtBx44dwzVr1rAWuuSgN4OuXLmCmzZtopzQYwt6M+jBgwfo5OREuX2LLejNoPfv36OTkxMrzJCD3gz68eMHOjk5sTYIyUFvBsXFxaGTkxPlBCdbkJtBvr6+mJubi05OTjhlyhRB60RvBrm6urI2kOlRq1YtygncM2fO4Pr161kLXXLQm0E3btxAJycn1kKXHPTbnp4+fYpOTk6UU0FsQW8G+fn5oZOTE+XkF1vQm0GhoaHo5OTEOvxHDnozKCUlBZ2cnFgbT+RgagZt27aNcjKQK+jNoEOHDmmctmcLejPowoULuHHjRtZClxxEM4gYuvT09EQnJyfWTRVy0E/gvn79Gp2cnCinMNmC3gwKCAhAJycnVmAlB/kE7s+fPzE6OhqdnJwoJ4q4nkVyMygzMxOdnJxwwoQJgj5rejNo9+7drA0NepCbQdnZ2XjixAlcu3Yt66YKOejNoGvXruGmTZsoJ/TYgtwMSk5OxkePHqGTkxNrY4Ec9GaQt7c3Ojk5UU69s4WZmRn26dNHfQL358+f6OTkRDndxxb0ZlBiYiI6OTmxghD9WWzdujXlBO7mzZsptyJwBf1m4f3792uc/mQLejPo3LlzuGHDBsoJPbagN4Nu3bqFTk5OrJsq5KA3g168eIFOTk5Yq1YtXi+9GeTv749OTk6UGy3ZgrhZmGgGhYeHo5OTE+XmLrYgN4O+fPmCaWlp6OTkhKNHjxb0WTdv3pxyAnfHjh2sg4P0oDeDjh49iqtWrRJU+1StWpVyAvfSpUu4adMmym0wbEFvBt2/fx+dnJwoJ6LZgt4Mevv2LTo5ObFunJGD3gwKDAxEJycn7NixI6+X3gyKiYlBJycn1oEjctCbQdnZ2ejk5ES5fZgr6M0gFxcXjZsv2IJoBhEbYadOncJ169YJqn3IJ3AzMjJQqVSik5MT66YKOejNoMePH6OTkxPrJjY56CdwfXx80MnJibV5RA56MygkJASdnJwot5ayBf1m4aSkJHRycqKcmGcL8m1PxODBli1bWAdZ6EEfPDh48CDrhh09iJuFicEDNzc33LhxI+vhBXLQBw8I1mTbVCEHwZrERlhesGbbtm15vQRruri4UFiTbQOcHPnBmuST2FxBv1n4+PHjhY41P3z4IJk1ybfosQX9ZuH4+HjJrMm2sUqPRo0aUQ74SWHNs2fP4vr161kHSshBv+1JCms+e/ZMJ6z569evAmdNYiNMCmsePnxYNGt6enqqWXPTpk2CWZN8wK+gWJN+s/CfzJpsAyXkoN8snBesWaVKFV5v8eLFcdiwYeoDfnnBmmwHH8hBf4uNWNak3/akK9Y8f/68ZNYk3wbDFr8ba5Jv7mILgjWJA37p6emSWZNtcJAe9NuepLDm5cuXJbMm2wAfOeis+e7dO8msyXbokxz0m4VjY2O1Zs2cnBytWJM44CeFNU+fPl0grEm+7Sk5ORmfPHlS6FgzOTn5j2FN4oBfQbImccCvoFmTfLPw78CaQvvsBGtmZGTkCWuSb3pmi9+NNQcPHizoWaRfJiOVNelvj2ML+s3CecGa5JtH2YKNNdkGpslBv1n406dPklmTbfiPHGTW/Pr1K6ampkpize3bt+OcOXMErRP9LTZSWPPixYuSWZNtgI8cdNZ88+ZNgbNmUFCQJNbMysqSxJqydCt5cFAeHJQlQUKBgB5GRkaCGsdsX5ZCCgG2kOIlX28vNmxsbARBDFOUKVNGUJOeKYoWLSpo45spTExMtP6bDQwMtF5jqesk5ecKGdhhCysrK9ZTSHxRsmRJQQO4TGFhYSEIgJjC2NiY8npkMaGvry+oIckWUrza/s4A/2sGCWkaMUXZsmVZbxjii2LFignaiGEKMzMzQQ1+pjA0NJSUb6Wsk67yrbW1tSCIYYpSpUoJAlWmKFKkiKDmL1OYmJgIaioyhYGBgc6+F6XmWyFNeqYoX748640XfFGiRAlBjUGmMDc31/p7orDWPtr+uwT4XzNIyIYZU5QtW5b1Nlu+KFasmKBmBFOYmppqnX8MDQ21/qx1mW+1/X4B+F++FbJhxhSlSpUSNIDLFBYWFoIGjZjC2NhY63/X+vr6kj5rXdU+lSpVEjSgwBTlypUTNKDAFMWLF6e8Ak5MmJmZaZ1vC2vtIyXf/omsWVhrH2295cuXl1mzgNZYyrMolTWFDCgwhRTWNDU1lVlTRMisKS6krPGfyJra5lsjIyOt8+2fyJplypT5o1hT6jpJeRalsKaVlZUk1hQygMsUMmuKC5k1hUdhZc0KFSpozZqlS5f+41hTV7WPlHxbGFlTSu0jNd/qkjWFDGcyhcyaBbfGUllTfqWxbpUfg4N6+L/BOFkc0tPTswGAEACAkJAQsLGx0fFvJEsbzZo1C1xcXHT9a8iSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSVShlZ2cHzs7O0KVLF13/Kn+UQkNDwdbWlviftogYKvW/qS/1PyBL1n9d1tbW0LJlS628pUqVgvbt22vlLVKkCHTu3Fkrr7GxMTg4OGjl1dfXh/bt24O5ublW/qZNm4K1tbVW3rp160Lt2rW18lauXBmaNGmildfS0hJat26tlbd48eLQsWNHrbxmZmZaf5EaGRlp7dXT04PWrVtDyZIltfI3bNgQKleurJW3Zs2aYGdnp5XXxsYGmjdvrpW3TJky0K5dO628RYsW1fpZNDEx0XqdDAwMoFOnTmBsbKyVv3nz5lCuXDmtvHZ2dlCjRg2tvFWrVoWGDRtq5bWysoJWrVpp5S1ZsiR06NBBK6+FhYXW6yQ137Zr1w6KFCmilb9x48ZaH2aoU6cO1KlTRytvxYoVoWnTplp5y5UrB23bttXKW7x4cejUqZNWXin51tDQELp06QJ6enqivXp6etCqVSsoXbq0Vj+7QYMGUKVKFa281atXB3t7e628FSpUgBYtWmjlLV26tE5qH6n5tkOHDmBqaqqVv1mzZmBlZaWVt169elCzZk2tvFWqVIHGjRtr5S1fvrzWtU+JEiW0zrfm5uY6qX309fWhTZs2ULx4ca38jRo1gooVK2rlrVWrFtSrV08rr62tLTRr1kwrb9myZbWufYoVK6b1s2hqaqr196KhoSF07twZDA0NRXv19PSgZcuWULZsWa1+tr29PVSrVk0rb7Vq1aBBgwZaeaWyprbPosya4lSpUiWt862lpSW0adNGK6/MmuJUWFlT2/pWau3TsWNHSaxpaWmplVdmTeHKC9YsWrSoVn4prFm7dm2ZNQWKYE19ffFbNHnBmlWrVtXKW716dahfv75W3sLKmto+i7pmzVq1amnllVlTuGTWFCddsmanTp1k1hQoqaypq9qnffv2YGFhoZVfCmvWqVNHEmtK2dcsjKyp7RrrmjW17bP/qaxpYmKilV9mTeGysLDQWW+vbdu2sHnzZvj06RN8/PhRHhr8rygvri38rwfIryr+T+jdu3fo5uYm6DUM9Pe0f/nyBd3d3bFBgwa83jp16uDff/+Njx49wuzsbAwNDUV3d3fs2rUrr7dSpUo4a9YsvH37NmZkZGB8fDy6u7vjqFGjeL3lypXDCRMm4KVLlzA5ORmzsrLQ3d0dFyxYwOstXrw4Dhs2DE+dOoWxsbGIiHj16lXcvHkzr9fMzAwVCgUeOHAAf/36hYiInp6eePjwYd5XbRgaGmKXLl3Q2dkZv337hoiIz58/x3PnzmHRokV5r+9t1aoVbty4EX18fFClUuHHjx/R3d1d0HXCDRo0wOXLl+PLly8xNzcXAwMD0d3dHVu0aMHrrVGjBi5YsAC9vLwwKysLIyIi0N3dHfv06cPrrVChAk6bNg2vX7+OaWlpmJycjO7u7jhp0iReb+nSpXHMmDHo7u6OiYmJqFKp0N3dHZctW8brLVq0KA4aNAiPHz+OUVFRiIh4/fp13LVrF6/XxMQEe/XqhXv37sXg4GBERHzw4AGeOHGC99VGBgYG2LFjR9y6dSt++fIFERFfv36Nbm5ugq5+b9asGa5duxbfv3+PKpUKP336hO7u7linTh1eb7169XDJkiX49OlTzMnJwZ8/f6K7uzt27NiR11ulShWcM2cO3r17FzMzMzEmJgbd3d1xyJAhvN7y5cvjpEmT8OrVq5iSkoLp6eno7u6Os2fP5vWWLFkSR4wYgWfPnsX4+HhERLx06RKuX7+e12tubo79+vXDw4cPY3h4OCIi3r59G/fv38/rNTIywm7duuHu3bvxx48fiIj45MkTPHPmDO+rjfT19bFt27a4efNm9PPzQ5VKhe/fv0c3NzdBr0Rp3Lgxrlq1Cl+/fo25ubn49etXdHd3x8aNG/N6a9eujYsWLcKHDx9idnY2/vr1C93d3bFHjx68XltbW5wxYwbevHkT09PTMSEhAd3d3XHs2LG83rJly+K4cePw4sWLmJSUhDk5Oeju7o5//fUXr7dYsWI4ZMgQPHnyJMbExCAi4rVr13Dr1q28XlNTU3R0dMT9+/djaGgoIiLev38fjx49ivr6+pxeQ0ND7Ny5M+7YsQMDAgIQEfHFixd4/vx53ldt6OnpYcuWLXHDhg348eNHVKlU6Ovri+7u7oKurK9fvz4uW7YMX7x4gbm5ufjjxw90d3fH1q1b83qrV6+O8+fPx3v37mFWVhZGRUWhu7s79uvXj9drbW2NU6dOVV+Xnpqaiu7u7jh16lReb6lSpXDUqFF4/vx5TEhIQEREd3d3XLlyJa+3SJEiOGDAADx69ChGRkYiIuLNmzdxz549vF5jY2Ps0aMHuri44M+fPxER8eHDh3jy5EneVxsZGBhg+/btccuWLfj582dERHz79i26ubkJeu1N06ZNcc2aNfju3TtUqVT4+fNndHd3Rzs7O15v3bp1cfHixfjkyRPMycnBkJAQdHd3xy5duvB6K1eujLNnz8Y7d+5gRkYGxsXFobu7Ow4fPpzXa2lpiRMnTsQrV65gSkoKZmZmoru7O86bN4/XW6JECRw+fDiePn1aXftcuXIFN27cyOs1NzfHvn374sGDBzEsLAwREe/evYsHDx7krX2MjIzQwcEBd+7ciYGBgYiI+OzZMzx79izvq4309fWxTZs2uGnTJvT19UWVSoXe3t7o7u4u6PVEDRs2xBUrVuCrV68wNzcXv337hu7u7tisWTNeb82aNXHhwoX44MEDzM7OxvDwcHR3d8fevXvzem1sbHD69Ol448YNTE9Px6SkJHR3d8cJEybwesuUKYNjx47FCxcuYFJSEubm5qK7uzsuWbKE11u0aFEcPHgwnjhxAqOjoxERUalU4o4dO3i9pqam2Lt3b9y3b5+a/7y8vPDYsWO8rzYyMDDATp064fbt2/Hr16+IiPjq1Ss8f/4876s29PT0sEWLFrhu3Tr88OEDqlQq9PPzQ3d3d0GvnrC3t8d//vkHnz17hjk5ORgUFITu7u7Yrl07Xm/VqlVx7ty56OnpiZmZmRgdHY3u7u44aNAgXq+VlRVOnjwZr127hqmpqZiWlobu7u44Y8YMXm/JkiVx5MiReO7cOXXtc/HiRVyzZg2v18LCAvv3749HjhzBiIgIRES8desW7t27l9drbGyM3bt3xz179mBQUBAiIj5+/BhPnz7N+2ojfX19bNeuHf7777/o7++PKpVKK9Z88+ZNnrFmt27deL0VK1bEmTNn4q1bt/KMNRcuXMjrLV68OA4dOlRmTXd3bNmyJa83L1hTqVRSWHPy5Mm8XoI13dzctGbNY8eO5Slr8r3ayMDAADt06JDnrFm3bl1eb36w5tChQ3m9ecWacXFxklnzzp07olhz165dWrOmk5OTmjU/fPiA7u7ugllz5cqVecKaYWFhWrNmYmKizljTw8NDJ6z58uVL0azp7e1NYU0hr3QjWPP58+d5xpr9+/fn9ZJfzZWamqpmzWnTpvF6mVjzwoULOmHNR48e4alTp/7zrEn02QnWHDFiBK+XYM3Lly9jcnJynrDmpk2beL26Yk09PT1s3br1H8uaiYmJatb8559/eL0Eax4/fjzPWPP48eOC+uydOnXCbdu25SlrCnlFop2d3W/FmjNnzuT15gdrurq68nrzijU/ffpEYU0hrzv+3Vhz9OjRvN5y5crh+PHj85Q1//33X14vF2sKqX3ykjV9fHxEsybRZ5fCmpGRkTphTaLPLoQ1ixQpggMHDtSaNXv27JlnrPnmzRt0c3PDMmXK8P7svGTN4OBgnbBmRkaGJNa8fPmyKNY8dOhQnrDm06dPBbNmmzZtGFlTyKvHGzVqRGHNgIAAwaxZq1YtRtbs2bMnrzc/WPPvv//m9TKxpizdKj9eVazzobzCECAPDv5ndOfOHcaEx1Qk0vX582fGgpEoEnfs2KEuEumKjY3FYsWKaXiJIpE8jEFXdnY262AGfRiDSWzFBNEgu3//PmZlZTF62SC7QoUKOHXqVHWRyKR169YxekuXLo2jR49GNzc3dYOMrtOnTzN6mYpEup49e8boJReJRIOMrp8/fzIWjOQikWiQ0ZWSksJaMBJFItEgoys3N5e1WVavXj1Kg4xJCoWC0UsexsjMzGT0zp07l9FLH8ZgkrOzM6OXaJCdOXNGXSTSde3aNUYv0SAjF4l0eXt7M3qNjIywa9euuGvXLvz+/TujNzIyEs3NzTW8TEUiXRkZGawFI71IpEulUrHCG1EkEg0yJrE1NYkikWiQMYkNwIgikRjGYNLhw4dZi0T6MAZd9+/fZ/SSG2TEhgRdAQEBjIMZhoaG6mEMYkOCrvj4eCxRogRjvm3RogWuX79evSFBV3Z2Nutghr29PS5dulS9IcEktgHxatWq4bx58/DevXusz+KUKVMYvfQNCSY5OTkxeokNCXKDjK7z588zei0sLHDAgAF45MgR9YYEXa9evWL0EhsS5AYZXaGhoWhiYsL4LNKHMehKTU1FS0tLxp/dtGlTyuA/XSqVChs2bMjoJRpkjx8/Zs23bJtI9MF/JrE1vCwtLXHChAnqDQkmsW0EEYP/5A0Jum7cuMHoNTMzwz59+uDBgwdZax8/Pz/GzQmmDQm6oqOjsUiRIozPYuvWrSkNMroyMzOxcuXKjL93w4YNKcMYdKlUKmzbti2jl94gY9KYMWMYvTY2NpTBfyatXr2a0VumTBnK4D+Tjh8/zuglD/6z5dtHjx4xeolhDFdXV1aG+f79O+PmBDH4v23bNnWDjK6kpCQsVaoU489u3rw5rlu3Tt0goysnJ4f1EACxIUE0yJjE1kghNiSIBhmT2DYY6A0yJrFtvDMN/tN16dIl1nxLDGMQGxJ0vXv3jjXf0gf/6QoPD2fcnCAP/hMbEnSlp6ejtbU1488mBv/fvHnD+iw2bdqU0Vu7dm3866+/1BsSTGI7rEFsSBANMiYtXryY0UtsSBANMiaxNSaJDQmuBhkfa+7fvz9fWDMuLo6VNemD/3RJZc1OnToxevObNdmaz3nFmmy1jxTWDA4O5mRN8jAGXXysSR7GoCs3Nxft7e0Zvb8za+7cuZPRm9+s+fHjR0ZvXrEmMYxBV0ZGBtra2jL+bII1iWEMunTJmsuXL2f00gf/mcTGmkyD/3R5eXkxevObNRMSErRmzZycHF7WJIYxmCSFNdkOThGsSQxjMEkKa7q5uTF6yazJVvtwsSZ9GIMuKayZlpbGegiAfsicLqmsOWDAAEavFNYkBv+5WNPFxYXRK4Q1b968yeglWJOrzy6FNWNiYvKFNemD/3SpVCrWIanfmTVPnDjBmm/ph8zpksKaP3780Blrsg1mCGHNXr16MXrpwxhMksKa27ZtY/RKYU3y4P9/jTXZhlIJ1iSGMZgkhTXZDjFKYU0hwxh3795l9DIN/tPFxZrE4P9/jTUnTpzI6M1v1jxz5gyjVwhrPn/+nDXf9uzZkzL4T5dU1ixbtizjz6YP/tPFxZr0wX8msQ0s0g+ZM0lXrOnh4cGabwnWJAb/6ZLCmlFRUfnGmuTBf7pUKhW2atWK0VurVi3K4D+TRo4cyei1tbWlDP4zSQprHjlyhNGb36z57ds3XtYkBv/p0iVrsg2IE6xJDP7L+r0kDw7Kg4OyJEilUlFOnAoZxiCLfBMD0+lQLq1YsYJSJNJPh3Lp6NGjai/T6VAukb/g6KdDmb5cyAoMDKR8wfEViWQlJCRQTrkRRSJXg4xQTk4O5ZQb/XQon7p3704pEvkaZGSRTwYLaZCRRT7FRB7GYCsSyXJ3d6cUiXwNMrLevHlDKSDop0O5FBYWRoF7+ulQLtGbqfTToVxSqVSUUxf006F8GjhwoEaRyNUgI4t8Sp/pdCiXyLfXEEUiV4OMrFu3blGeRfrpUC75+/tTmqlEg4w4HcqlmJgYyik3+ulQLmVlZVFOudFPh3JJpVJh+/bt1V766VA+jRs3Tu1lOh3KJfKpUabToVw6efIkJd/ybUiQ9eTJEwqwtWvXjrNBRlZQUBClmdqkSRN1g4zPm5ycTLlRpU6dOrzDGIRyc3MpzVT66VA+kU9/00+H8ol8Uo3pdCiXtm/fTsm3fIP/ZF25coUCbPTToVx6//49Jd8Sp0PZGmRkRUREUE650U+Hcik9PZ1yowqxIcHVICOkUqmwefPmai/9dCifhg0bpvaSG2RC8i35lL6QwX+yDh48qPYynQ7lkqenJyXf0k+Hcunr16+UZir9dCiX4uPjKTeq0E+Hcik7O5tyo4qQDQmyyLdtEBsSXA0yssg3HhMbElwNMrLItzMynQ7l0tmzZym1D3E6lK1BRtaLFy8o+ZZv8J+skJAQyo0qfIP/ZKWkpFBuVKGfDuVSbm4u5YQ//XQon/r27av20k+H8mn+/Plqr9jTobt376bUPo6OjpwNMrKUSiUl39JvIuKSj4+PuvYhNiS4GmRkRUVFUW5UqV+/Pu/gP6HMzEzKjSrkYQwh+VZXrEm+oaggWfPBgweUZ5FgTbZhDLLYWJNtGIOsxMTEQsma06dP1wlrXrhwoVCyJvlGFYI1uYYxCEllTfLNNwXJmuTba4QMY5BFZ01iGCO/WTM2NlYnrImI2KFDB52w5tq1a7VmzVOnTmmwJtcwBllSWZO8kUwexhDLmkIG/wnl5uZivXr1Ch1rkm8LK0jW/PDhg05YMyMjg8KaQoYxCKlUKspbW4QMY5AlhTWXLl2qE9a8d+9eoWTNGjVqaLAm1+A/WVJYk3wLlZBhDLLorMk3+E/WuXPnKLUP3zAGWS9fvtQJa6ampuqMNclv9Mgr1hRS+0hhzevXr1PyLd/gP1lSWDM6OprCmkIOmROSyppt2rQpdKx57NgxRtYU0meXyprkPjvfIXOymFiTb/CfUE5ODtauXVvtFTL4Txb5VuuCZM0tW7bohDXfvn2b56zJNvhPllTWbNKkCYU1+Qb/yaKzJt/gP1nkG+GEHDInSwpr3r59WxJrkmufgmTNqlWr5ilrXr16VVC+HT9+vAZrcg3+k8XEmlyD/2RJYc2nT59S8i3f4L+s30fy4KA8OChLgu7evct7OpRNnz9/Rjs7O8pV3UIVGxuL9evXF1UkEsrOzsbWrVtTXgslRv369dN4BbFQzZo1S1SDjKzNmzejg4MDOjs7CyoSyTp79qzGVd1C9fz5c97ToWz6+fMn1qtXj/d0KJNSUlKwUaNGoopEQrm5udipUydRRSJZI0eO5D0dyqbFixdrvBZKqPbs2aPxCmKh8vDwENUgI8vb2xvt7e0FN8jIioyMRDs7O1HDGIQyMjKwefPmvKdDmaRSqbBXr168p0PZNHnyZI3XQgnVmjVreE+HsunYsWMaryAWKi8vL41XEAtVQEAA2tnZCW6QkRUfH48NGjTgPR3KpOzsbGzbtq2oBhlZgwYN0vqq7rlz5/KeDmXTtm3bRA1jkEW8xoDrdCibXr16hQ0aNOA9Hcqk0NBQtLOzo7wWSqhSU1OxSZMmlFcQC5VKpUIHBwdRDTKyxowZgwMHDhTcICNr6dKlooYxyNq3b5/Ga6GE6ubNm6IG/8ny8/NDOzs73tOhTIqOjkZ7e3ve06FMyszMxJYtW/KeDmWSSqVChUIhakOCrOnTp2u8FkqoNm7cKKpBRtapU6c0XkEsVI8fPxY1jEHW9+/fsV69eoIH/8lKSkrChg0bihrGIJSTk4MdOnTgPR3KpqFDh/KeDmXTokWLNF4LJVTOzs68p0PZdOXKFY3XQgnVu3fv1MNvQhpkZIWHh6OdnZ2oBhmh9PR0bNasmahhDEIqlQq7d+8uahiDrAkTJogaxiBr5cqVogb/yTp06BDvTURs0hVrxsXFYf369UUNYxCSypr9+/cXNYxBllTWFDOMQZauWDM4OBjt7Ox0wpqdO3fWeC2UUOmKNV1cXEQNY5AlhTU/fvwos6YIrV27VuO1UEIlhTUfPHig8QpioZLCmgkJCdigQQNRwxiEcnJysF27djphzXnz5umENS9cuKDxCmKh0hVrpqWlYZMmTUQNYxCSyppjx44VNYxBlhTW3L9/v9aseevWLZ2wZkxMjJo1xfbZpbJmnz59NF5BLFS6ZE0xwxhkSWHNHz9+oJ2dnc5ZU2ztM2zYMFGD/2RJYc2dO3eKOmROlhTWfP/+Pdrb2wsexiBLl6zZo0cPnbDmqlWrdMKanp6eGq8gFipdsmabNm1EDf6TJYU1Z8+erRPWPHfunNas+eLFC1GD/2RJZc3GjRuLOmROKC9YU8zgP1m6Yk2lUqkT1oyKikJ7e3udsGbv3r01XkEsVFOmTBF1yJwsKax5/PhxUYP/ZElhzW/fvhVK1hw8eLD8CuJCqvwYHNTD/w3GyeKQnp6eDQCEAACEhISAjY2Njn8jWdooKysLjI2NC9ybnZ0NhoaGoKenJ9qbk5MD+vr6oK+vL9qLiJCTkwNGRkaivQC6+7wKo1fKGufm5gIAgIGBgWgvIkJ2dnah+7x06TUyMtJqnbKzs8HAwECrZ1GlUoFKpQJDQ0PRXoDC+1kXtmcxJycH9PT0tH4W5XwrzivlWdRFvgUovJ91YVtjKbWPSqWC3Nxc+VksAK9c+xQer1z7/Le9Mmv+971yvi08Xl3VPnK+LRivzJqFxyuz5n/bK9c+/32vXPsUHq/Mmv9tr5xv//teufYpPF6ZNf/bXl2yppTaR5ZuFRoaCra2tsT/tEXEUKn/TXlwUIDkwUFZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkqUL5cfgoPgRY1myZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUtWoZU8OCjrj9HPnz8hOTlZK294eDjExsZq5Y2Pj4dfv35p5c3IyIBv375p5UVE+PTpE2h7q+inT5/U102L1ZcvXyA7O1srb2BgIKSlpWnlDQkJgcTERK28UVFREBUVpZU3KSkJgoODtfJmZ2fD58+ftVonRAQ/Pz+t19jf3x9ycnK08gYEBEBmZqZW3h8/fkBKSopW3l+/fkFcXJxW3tjYWAgPD9fKm5aWBt+/f9fKq1KpJD+LKpVKK+/nz58lPYsZGRlaeYODgyEpKUkrb0REBMTExGjlTUhIgNBQ7Q5VZGZmwtevX7Xy5sWzqG2+/fr1K2RlZWnl/f79u9b5NjQ0FBISErTyRkdHQ2RkpFbe5ORk+Pnzp1be3Nxc8Pf313qd/Pz8JD2Lusi3QUFBWudbKbVPXFwchIWFaeVNT0+HwMBArby6zLdSa5/09HStvMHBwVrXPpGRkRAdHa2VNzExEUJCQrTyZmVlwZcvX7TyFtZ8++PHD0hNTdXK++vXL4iPj9fKGxMTAxEREVp5U1NT4cePH1p5c3NzdVr7aJtvv337pnXt8yeyppRnUWZN4ZLCmjk5OTJrilBYWJjMmiIk9Vn8k1gzKytLZk0R0hVrpqSkQFBQkFZemTXFqTCyZl7UPjJrCpMU1szOzi60rCml9pFZU7hk1hQuqawZEBCglbewsqaU2kdXrCmlzy6FNQGgULKmlNpHZk1xkvIsfvv2TVLtI4U1ta19CitryvrvSR4clPXHKCUlBcqVKwfdu3eHPXv2iGoGGRkZQbVq1aBdu3awefNmUV+WFhYW0LZtW2jSpAmsWrUK3rx5I/jL0sTEBMaPHw+1a9eGv/76Cx49eiS4INLT0wMnJyeoXLkyzJw5E27duiUKTtzc3MDKygrGjx8Ply5dEgUnL168gDJlysDQoUPh1KlTouDk169fUKZMGVAoFHDgwAFRzaCcnBywsrKCLl26gLOzs6iNMFNTU6hXrx60atUKNm7cCB8/fhS1xj169IAGDRrA8uXL4cWLF4LX2MjICObPnw81a9aEBQsWwP379wUXRHp6erB3716wsbGBqVOnglKpFFUQ3bhxAywtLWH06NHg5uYmCk58fHygTJkyMHDgQDh27JgoOElISICyZctCz549Ye/evaI2wvT19aFSpUrQoUMH2Lp1q6hmkIWFBTRr1gyaNWsGa9euhffv3wteYzMzMxgyZAjUq1cPlixZAk+fPhUMoPr6+rB69WqoWrUqzJkzB+7cuSMKTk6cOAEVKlSASZMmwZUrV0Q1gx4+fAjlypWDESNGwJkzZ0Q1g75//w6lS5eGvn37wqFDh0TBSVpaGlhaWkK3bt1g165doppBxsbGULNmTWjTpg04OTmJKlwtLCygY8eO0KhRI1i5ciW8fv1aVL6dOnUq1KpVCxYtWgQPHz4UlW+3b98OlSpVghkzZsDNmzdF5duLFy+ClZUVjBs3Di5evCgq37558wbKli0LQ4YMgZMnT4raCIuIiIDSpUuDo6Mj7N+/XxScqFQqqFChAnTu3Bm2b98uqhlkbm4O9evXhxYtWsD69evB29tb1Bo7OjpC/fr1YenSpfD8+XPBz6KBgQEsXrwYqlevDvPmzYN79+6J2gg7cOAA2NrawpQpU8DDw0NU/lWVLwABAABJREFUM+j27dtgaWkJo0aNgvPnz4vKt/7+/lC6dGkYMGAAHD16VFS+TUpKgrJly0KPHj3AxcVFVDPIwMAAqlatCu3bt4ctW7aI2gizsLCAli1bQtOmTWHNmjXw9u1bwV5TU1MYNWoU1K1bF/7++294/Pix4GdRX18f1q9fD1WqVIHZs2fD7du3ReXbM2fOgJWVFUyYMAEuX74sqhn09OlTKFu2LAwbNgxOnz4tqhkUHBwMpUuXhj59+sDBgwdF5dusrCywsrICBwcH2Llzp6hmkImJCdSuXRtat24NmzZtAl9fX1Fr7ODgAA0bNoQVK1bAy5cvBedbY2NjmDVrFtSsWRMWLlwIDx48EFX77Nq1CypWrAjTp0+H69evi6p9rl27BpaWljBmzBhwd3cX1Qz68OEDlClTBgYPHgzHjx8X1QyKiYmBMmXKQK9evcDV1VX0RpitrS107NgRtm3bJqoZZG5uDo0bN4bmzZvDunXr4MOHD4LX2NzcHAYOHAh2dnbwzz//wLNnz0Tl2+XLl0O1atVg7ty54OnpKSrfHjlyBCpUqACTJ0+Gq1eviqp97t27B+XKlYORI0fCuXPnRNU+AQEBUKZMGejfvz8cPnxY1EaYLlmzXbt20Lhx4wJnzX///VcnrPny5ctCx5pmZmZgZ2cHrVq1gg0bNhQYaxoaGsKCBQugZs2aMH/+/ELDmr6+vr8Fa4rZCJPKmkOHDlWz5pMnTwoVaw4fPrxAWTM9PR0sLS2ha9euBcqaRYoU0Zo1jY2NYdq0aWrWfPDgQYGx5qVLl6B8+fIwbtw4uHDhgqjaRwprRkZGqllz3759hYI1zc3NoU+fPmBvb1/grHnw4EGwsbEpcNb8/PkzhTXFDF0mJyerWXPPnj0FypqtWrWCpk2bwurVqwuMNfX09GDjxo1QpUoVmDVrVqFhzZCQEApriql9pLCmqakp1KlTR82aPj4+BcKaRkZGMHv2bDVrenl5iap9du/eDba2tjBt2rQCZU1vb28oW7YsDBo0SGZNHhkYGMCKFSvUrHn37t0CY8379++rWfPs2bMFxpqpqalQrlw56NatG+zevbvQsObEiRN1wpru7u6/BWuKGbrMzc0Fa2tr6NKlC+zYsaPAWNPc3Bx69eoF9evXh2XLlhUYawIAuLq6FjrWjI+P1xlrNm/eXM2a7969KzDWXLNmDVStWhVmz54tmjVPnjwJ1tbWMHHixAJlzaCgIChTpkyBs6aJiQnUqlWr0LHmjh071Kx548YNrYfcZf1HhIhy8AQA2AAAAgCGhISgrMKroUOHIrGWAIB2dnb4zz//4LNnzzAnJ4fT+88//1C8VatWxblz5+Ldu3cxMzOT03vgwAGK18rKCidPnoxXr17F1NRUTq+npyfFW7JkSRw5ciSePXsW4+PjOb1fvnxBfX19tdfCwgL79++Phw8fxoiICE5vfHw8Fi9eXO01NjbGbt264e7duzEoKIjTm52djdWqVVN79fX1sW3btrh582b89OkTqlQqTn/nzp0pf3Pjxo1x1apV+ObNG17vpEmTKN7atWvjX3/9hY8ePcLs7GxO74YNGyjeSpUq4cyZM/HWrVuYkZHB6T179izFW65cORw/fjxeunQJk5OTOb3Pnz+neIsXL45Dhw7FU6dOYUxMDKc3ODgYjY2N1V4zMzNUKBR44MAB/PXrF6c3JSUFy5Urp/YaGhpily5dcMeOHfjt2zdOb25uLtavX1/t1dPTw1atWuGGDRvw48ePvOvUt29fyt9cv359XLZsGb548QJzc3M5vfPmzaN4a9SogfPnz8f79+9jVlYWp3fXrl0Ub4UKFXDq1KmoVCoxLS2N0+vh4UHxli5dGkePHo1ubm6YmJjI6fXx8aF4ixQpggMHDsRjx45hVFQUpzcqKgotLCzUXhMTE+zZsyfu3bsXg4ODOb2ZmZloa2ur9hoYGGCHDh1w69at+PnzZ06vSqXC1q1bU37vZs2a4dq1a/Hdu3e8azxy5EiKt169erhkyRJ88uQJb75dsWIFxVulShWcPXs23rlzhzffHjlyhOItX748Tpw4Ea9cuYIpKSmcXi8vL4q3RIkSOHz4cDxz5gzGxcVxegMDA9HAwEDtNTc3x759++KhQ4cwPDyc05uQkIAlS5ZUe42MjLBr1664a9cu/PHjB6c3JycHa9WqRcm3bdq0QScnJ/Tz8+Ndp27dulH+5kaNGuHKlSvx9evXvM/itGnTKN5atWrhokWL8MGDB7z59t9//6V4bW1tccaMGXjjxg1MT0/n9Lq7u1O8ZcuWxXHjxuGFCxcwKSmJ0/vmzRuKt1ixYjh48GA8ceIEb7799esXmpiYqL2mpqbYu3dv3LdvH4aGhnJ609LSsHz58pR826lTJ9y+fTsGBARwelUqFTZq1IiSb1u0aIHr169Hb29v3jUeOHAg5W+2t7fHpUuX4vPnz3mfxb/++ovirVatGs6bNw/v3bvHm2/37t1L8VpbW+OUKVPQw8ODt/a5desWxVuqVCkcNWoUnj9/HhMSEji9nz59Qj09PUq+HTBgAB49ehQjIyM5vTExMVi0aFFK7dOjRw/cs2cP/vz5k9OblZWFVapUoTyL7dq1w3///Rf9/f0510mlUmH79u0pf3OTJk1w9erV+PbtW941HjduHMVbp04d/Pvvv/Hx48e8a7xmzRqKt3Llyjhr1iy8ffs2b+1z8uRJitfS0hInTJiAly9f5s23jx8/1si3w4YNw9OnT/Pm26CgIDQ0NKTk2z59+uDBgwcxLCyM05ucnIylS5em5FsHBwfcuXMnBgYGcnpzc3Oxbt26lGexdevWuGnTJvTx8eFdp969e1P+5oYNG+Ly5cvx5cuXvPl21qxZFG/NmjVxwYIF6OXlxfssbt++neK1sbHBadOm4fXr13nz7ZUrVyjeMmXK4JgxY9Dd3Z239nn//j3FW7RoURw0aBAeP34co6OjOb0RERFoZmZGybe9evVCV1dXXh5PT0/HChUqUGqfjh074rZt2/Dr16+cXpVKhc2bN6f83s2bN8d169bhhw8feNeYjTWfPn2ar6x58OBBitfKygonTZqkNWuOGDFCEGt+/fpVgzX79etXIKxZvXp1Sr4tDKy5ceNGirdixYqSWfPixYu8rPnixQuKl2DNkydPas2a+/fv14o1O3fuLJg1GzRoQMm3LVu2LBDWnD9/PsVbvXr1AmFNpVJJ8RYW1qxYsSIl33bo0AG3bNmiNWuuWbNGEGuOGjWK4q1Xrx4uXrw431nz6NGjFK8Y1nzw4IFG7VMQrJmYmJgvrOnr68u7Tt27d6f8zQRrvnr1qsBZc/r06YJY88KFCxRv2bJlcezYsfnOmmFhYWhqakqpfQqKNRs3bkzJt2JYc9CgQZS/OS9Y09PTkzffurq6UrwEa167dk1r1jx37hwva/r7+zOy5pEjR35b1kRE7NChA+VvLijWXLt2LcWbV6zJV/s8efJEI98SrBkbG8vpDQoKQiMjI0rt06dPHzxw4IDWrOns7CyINevVq0d5Flu3bo0bN27Md9acPXs2xVujRo3fnjU/fPhA8RYUa2ZkZLCy5pcvXzi9XKz5/v173jUeNmwYxVsYWPPevXsU75/Aml26dKH8zWTW5HsWJ0+eTPESrPnw4UOtWfPmzZu8+fbcuXMUb0GxZkhIiAZrOjo6/vas2a9fP8rfXFCsuXv3boo3r1iTr/bx8fHRqH2EsmZ0dDQja7q4uOQ7a7Zp04byNzdt2lRr1qxbt65g1ly5ciXFW1hYk95nF8qasnSrkJAQ8rrbYF7MxOXFf+S/HiAPDv5n5OvrS/mSIwdfMyg6OhqLFCnC6OVrBmVmZmKlSpUYveRmENO/L5VKhW3btmX0kptBbBtho0ePZvSSm0FsG2GrVq1i9AL8XzOIbejy2LFjrN5q1arh3Llz0dPTk/HL8uHDh6xea2trnDx5Mmsz6Pv375QvOXKUKlUKR44cydoMSkxMxFKlSjF6iaFLtmZQTk4O1qlTh9FrbGyM3bt3xz179rDCSY8ePRi9QppBM2bMYP28+JpBW7duZfUSzSC2jbCLFy+yeitVqoSzZs1i3Qh79+4dq5doBrENXdIbquQgD10yNYPS09PRysqK0cvXDFKpVNikSRNGr5GREXbp0oWzGTR48GDWZ7FVq1aczaDFixezfl4NGjTgbAbt27eP1cvXDLpz5w6rl9wMYoITf39/CuCTg2gGsW2ExcbGYrFixRi95GYQE5xkZWVh1apVGb0mJibYq1cvzo2wjh07MnrJQ5dszaAJEyawfl7NmzfHtWvXsjaD1q1bx+olhi7ZmkGnT59m9VatWhXnzJnD2gx6+vQpq5evGfTz509KQ5Uc5GYQE5ykpKRgmTJlWPMt0QxigpPc3Fy0s7NjzbdEM4htI0yhULDmW6IZxDZ0OWfOHNbPq3HjxpxDl87OzqxevmbQ1atXWb0VK1bEGTNm4M2bNxkbs97e3qxeYujy4sWLjLVPZGQkmpubM3qLFSuGQ4YMYW0GZWRkoI2NDWu+5WoGqVQqbNmyJaNXSDNo+PDhrPmWaAaxbYQtW7aM9fPiawYdPnyY1Us0g9iGLu/fv8/qJQ9dMuXbgIAAymYyOYhmENvQZXx8PJYoUYLRyzd0mZ2djTVr1mTNtz169EAXFxfWjTAHBwfWfNu+fXvOZtCUKVNYPy++ZpCTkxOrl68ZdP78eVZv5cqVcfbs2awbYa9evWL18jWDQkNDKQ1VchDNILahy9TUVLS0tGT08jWDVCoVNmzYkNFLDB7s3LkTv3//zrhO/fv3Z30WiaFLtsGDhQsXsn5eDRs2xBUrVrAOHuzZs4fVW7NmTVy4cCHr4MGNGzdYvXyDBwXBmkwbYZmZmVi5cmVGb16wJtfQ5ZgxY1jXWCprch3wO378OKv3d2XNpKQknbFmz549Gb15xZpsQ5d8rMk1dHnp0iVWrxTW5DvgFx4enm+sSRzwY2PNpk2bsuZbXbMmW+2zf/9+Vm9esCbbRtjnz5/zlTXZNsLoh2TJIYQ1O3XqxOiVyprEAT821ly/fj2rVwprVqlShZM1nz17xurVNWuy1T65ublob2/Pmm+lsibXAb+5c+eyfl5SWJMYumRjzWvXrrF6+Vjz48ePrN78Zk3yIVl6vs0L1mQbuhwxYgRrvs0L1nz+/LlWrMl1wI9+SJYcUliT74BfQkKCzliza9eurPmWjzWnTp3K+nnlBWuyDV26ubmxevOCNdkO+IWGhlIOyZJDKmtyHfDjY03igB8baw4YMID1WcxP1nRxcWH15idr+vn5/basyTZ0qVKpsF27dqz5VlvWBOA/4Ld69WpWrxTWJIYu2Vjz0aNHnPmWizV//PiR76zJNHSZk5NDOSRLjrxiTbahy5kzZ7J+XrpkTa4DfrpkTWtra0avFNYkLpPhYs0hQ4aw5ls+1lyyZAnr55UXrMk2dHn37l1WrxTW5DvgFxcXl2+syXfATwprTpw4kfXz4mNNWbqTPDgoDw7KkqBHjx6hq6sra+IlB/0E7ocPH9DV1ZW1sUAviMi3PQUGBqKrq6vGyS+2IN/2FBkZia6urjh27FhBXnIzKDU1FV1dXTlBiBz0ZtDRo0dx06ZNgrz0ZtCFCxdw9+7drNBJDnoz6M6dO+jq6soKneQwNTVFR0dH9QncFy9eoKurK+WEHlsQzSDiBK6fnx+6urpqnMJkCvoJ3ODgYHR1ddW41YktyCdw4+Li0NXVlbMpQQ7ybU+ZmZno6urK2XgiB70ZdOrUKdy6dSsrdJKD3gy6evUquri4sEInOejNIC8vL3R1dWUdpiUHvRn09u1bdHV1pZyIZgtyM8jf3x+/fPmCrq6uGjessQXRDHr79i2Gh4ejq6sra4OQHnXr1lWfwE1OTkZXV1fOgSNy0E/gHjx4UOOULlvQb3s6f/487ty5kxU6yUG/7enmzZu4d+9eVugkB70Z9OTJE3R1dWVt8pGD3gz6+PEjurq6atxAwfYskptB379/R1dXV+zTp4+gz4vcDIqOjkZXV1fODRlyEM0gLy8vTE9PR1dXV/z7778FeYlmEHEC99ixY5zNRXLQT+BeunQJ9+zZwwqd5KCfwL179y66urqyQic56CdwX758ia6urqybKvRnkXzbk7+/P7q6umrc+MMW5GZQaGgourq6sm6O0oN8s3B8fDy6urri9OnTBXnpzaB9+/Zp3FDCFsTNwkQz6MyZM7h9+3ZW6CQH0QwiTuB6eHjg3r17WaGTHPSbhR8+fIiurq6U2wnYgn4C9/379+jq6orNmjXj9dJP4AYEBKCrqytr84ge5BO4RO3DdvCBHuTbnoh8Sz/ByRb0ZtDhw4c5N1bJQW8Gubu7465du1g3OMlBv1n41q1buHfvXtYNTnLQbxZ+9uwZurq6sg6UkIPcDPr27Rv6+Pigq6srayOXHPSbhYOCgtDV1VXjpC1bNGjQQD10GRsbi66urho3d7EF+WZhIt9yNZ7IQT+Be+LECdyyZYsgL70ZdOXKFXRxcWHd4CQH/QTu/fv30dXVlXWYlhz0ZtDr16/R1dWVdVOFHPRmEFH7sA1p0oN8s3BYWBi6urpq3GzAFuSbhRMTE9HV1VXjpkS2oJ/APXDgAGejnxz0ocuzZ8/ijh07WDc4yUE/gXv9+nXcu3cv6wYnOehDlwRrkm8nYIv8YE1HR0dBn5euWZPYCNOGNYmNMG1YkzjgV5CsSb7tSVesSdQ+hY01r127ViCsSb/tiWBNtsNi5CBYkxi6JPIt/YY1tmjatKn6gB/BmvQb29lCZk3tWDMwMFBr1vTx8cEfP35oxZovX77UijWJocu0tDRRrEm/7en48eO4efNmQV421iTfzMQWdNb09PSUzJrkt1xwPYt5zZpsm6P0IN/2pC1rEkOX+/bt07ihhC3ob7ERw5r0t9jkBWuyHdwkx3+BNVNSUiSzJv1NN2yRF6xJ9Nlv376Nrq6uWLZsWV4v/WZhbViTOODn6+srmTXZDiHRg3zAj2BN+s1dbEFmzYyMDHR1ddW4nY0t/mTW/Pz5c4GzJnHAT5esee7cOXR2di5w1nz8+HGhYs1Xr15hVFQUurq6atxayhbkm4XFsib9LTYFyZrky2TEsib5ZmGCNdkOypPjd2FNKfuaWVlZWrNmamoqnjp1Crdt21ZgrEkc8Hvw4EGBsCb9gN/Xr19FsSb5MhmxrEm+WZhgTa7DLeSgs+ahQ4c4L8sgB/1mYW1ZMzY2Vs2a5FuA2YKNNcm3rrOFrlmTuExGLGuSD/hJZU1ZupU8OCgPDsqSIK7TC3xBfuWD2BBSKLKFkA1kri9Lbb0WFhast5rwhbGxsaCGE1Po6+tL+pulfNZS1ph8LbbYENIoZwttP2eA/zWDhDR/mcLQ0FDrf196enqCmlX5scZSvFJ+Z/JrgcRGkSJFBDUjmMLExEQQADGFgYGBoMKaLaQ8E7paYyl/L/n1B2LD3NxcUDOCKYyMjLT+2YU130p5FnWVb01NTQU1f5nC0NBQ6xyip6cn6Vn8E2sfIRsxTGFsbEx57ZSY0NfXl5R/dJUzpfzb0lW+NTMzEzRkzRRGRkZy7SMipNQ+RYsWFbTxzRQmJiaU16CICQMDA0nfE3K+FR4ya4oLXeVbbb/XAKSzppTaR0ru0tWzKLOmuCiMrCkl9xRW1tRV7VNYWVPIxjdTyKwpLmTWLLjPujDWPlL77DJrCg9d5VuprCml9tEVaxbG2kdmTXEh72sKjz+x9tElawoZ+mOKwsqaunoWdcmaffv2xYMHD8qvNNaR8mNwUA//Nxgni0N6eno2ABACABASEgI2NjY6/o1kaaNZs2aBi4uLrn8NWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbIKrfr06QM7duyAqlWr6vpX+WMUGhoKtra2xP+0RcRQqf9Nfan/AVmy/gSZmppq7TU2Ntbaa2hoqLVXT09Pay8AgIGBgdZeKZ+XmZmZTrxSfmcjIyOtvVI+Z6mS8ntL+bzMzc219kpZYxMTE629unwW9fW1/6qW8jdL+aylrHFhzLdSJeVny/lWuKQ8S1Il5d+mrp7FPzHfSvlOlvOtcMm1jzjp6lnUZb6V8izrKt/q6ntRZk1x0tUa6+pZLKz5Vq59hOtPZM0/Ld9Kla5YU1fPosya4lQY8+2fWPvIrClchbX2KYz5VmZNcZJrH+GSmm//tD57YWRNqWusK9YsjGsss2bBeQtjvpWqBg0awPLly+Hly5dw+fJleWjwPyDd/WuSJauA5eDgABYWFnD+/Hn4+fMn7/+/Zs2aoFAoQKFQgEqlglu3bsHt27fB29ub12tjY6P2litXDtzc3ODFixfw6NEjXm+ZMmWgd+/e4OjoCPb29nDkyBH4/PkzXLt2jddbtGhR6NGjBzg6OkLnzp1h9+7dEBERASdOnOD1mpiYQJcuXUChUICjoyMcPnwYYmNjYffu3bxeAwMDaN++PTg6OoJCoYBbt25BSEgI7Nq1CzIzM3n9zZs3V39ePj4+4OPjA0ePHoXo6Gher52dndobGxsLjx8/hsuXL0NAQACvt2rVqmqviYkJeHh4wP379+HNmze8XisrK/XfW6lSJTh9+jS8e/cOPD09eb0lS5aEXr16gUKhgGbNmsH+/fvh+/fvcOHCBV6vhYUFdOvWDRQKBfTs2RN27NgBsbGxcPjwYV6vsbExdOrUSb3GZ8+ehaioKHB2dga+22f19fWhTZs26r/50aNHEBgYCK6urpCSksL7sxs3bqz+rL9//w5v3ryB06dPw69fv3i9derUUf/cjIwM8PT0hOvXr4Ofnx+vt2LFiuqfW7JkSbh48SI8efIEnj17xustV64c9O7dGxQKBdSuXRuOHTsGvr6+cOPGDV5v8eLFoUePHqBQKKBdu3bg4uICoaGhcObMGV6vmZkZODg4gEKhgN69e4OrqyvExsaCq6srr9fQ0BA6dOigXuNr167Br1+/YOfOnZCTk8Pp1dPTg5YtW6q9b9++BX9/fzh06BDExcXx/uwGDRqoveHh4fD8+XNwd3eHHz9+8HqrV6+uXid9fX24ceMG3L17F96/f8/rrVChgvrnWllZwfnz5+H169fg5eXF6y1durT6WWzYsCEcOnQIvn79CleuXOH1FilSBLp37w4KhQK6du0KO3fuhKioKDh27Biv18TEBDp37qz+vY8dOwYxMTGwa9cuXq+BgQG0bdtW/Xl5enpCUFAQ7N69GzIyMnj9zZo1U3s/ffoE3t7ecOLECYiIiOD11qtXT+1NSEiAhw8fwtWrV+HLly+83ipVqqj/3iJFisCVK1fg4cOH8PLlS15v+fLlwdHRERwdHaFq1apw6tQp+PDhA9y5c4fXW6JECejZsycoFApo2bIl7Nu3D4KCgsDNzY3Xa25uDt26dQNHR0fo3bs3ODs7Q3x8PBw4cIDXa2RkBB07dlT/ze7u7hAZGQnOzs6gUqk4vfr6+tCqVSv1Z/306VP49u0b7Nu3D5KSknh/dqNGjdTeoKAgeP36NZw9exZCQkJ4vbVq1VJ7s7Oz4c6dO3Dz5k3w8fHh9dra2qq9pUuXhgsXLsCzZ8/gyZMnvN6yZcuq823dunXh6NGj8OnTJ1AqlbzeYsWKqfNthw4dYM+ePRAWFganTp3i9ZqamoKDg4P639eBAwcgNjZW0A3VhoaG0L59e/UaX79+HUJDQ2Hnzp2QnZ3N6dXT04MWLVqov9s+fPgAfn5+6tqLT/b29urPOjo6Gp48eQIXL16EwMBAXm+1atXUXiMjI1AqlXDv3j14+/Ytr9fa2lr9O9vY2MDZs2fhzZs3cP/+fV5vqVKl1Pm2SZMmcODAAfj27RtcunSJ11ukSBF17dO9e3dwdnaGmJgYOHLkCK/X2NhYnW979+4Np0+fhujoaHB2dub16uvrq/Oto6MjeHl5wY8fP8DFxQXS0tJ4/U2bNlV/XgEBAfDu3Ts4efIkhIeH83rr1q2r/rmpqalw//598PDwAH9/f15vpUqV1GtcrFgxuHz5Mjx+/BieP3/O67W0tFQ/izVq1IATJ07Ax48f4datW7ze4sWLq/Nt69atwdXVFYKDg+HcuXO8XjMzM+jatat6nfbs2QNxcXGwb98+Xq+RkRGl9rl06RJERESAs7Mz5Obmcnr19PQo+fbly5fw5csXOHDgACQkJPD+7IYNG6q9ISEh8PLlS3Bzc4OgoCBeL8Gajo6OoFKp4Pbt26JYk/i3ZWlpCW5ubvDy5Ut4+PAhr1cqaxK1T5cuXWDXrl0Fxprt2rVTf9Z5wZrHjh2DqKgoXm9es6aXlxe8fv2a15sXrOno6AjNmzeXzJpxcXFw6NAhXi/BmsR36rlz50SxZuvWrdWfV0GyZu3atdXevGDNp0+fwtOnT3m9hZk1iX+b165dg7CwMHB2di4Q1iR+bkREBDx79qzAWJP4udbW1nDu3DmtWLNRo0Zw8OBBnbDm8ePHITo6WhJr7tmzB9LT03n9BGs6OjrC58+f4cOHD789a1paWqrXuFq1anDy5Enw9vaG27dv83qlsia59tm5cyfExcUVKtb8+fMnvHr1Cs6dOwfBwcG83rxgTUdHRyhbtiy4u7vD8+fP4fHjx7xeJtb09/cHDw8PXi/Bmo6OjtChQwdwcXEpMNYk1z5iWZNc+xCseeTIEYiJieH92b8Ta759+xbu3bvH6y3MrEn8zQXJmnXq1FGvk8ya3KKz5uXLlyE8PLxAWdPR0RF+/foFL168KBSsSTyL9evXh8OHD+uENYl8V9Cs6evrCx8/ftSKNePi4uDRo0dw5coV+Pr1K683L1jT0dERqlSpAqdOnYL379/D3bt3eb1SWZP8LG7fvr3QsuaZM2cgNJT/Yq+8Ys0SJUrApUuXJLGmn58fXL9+nddLZs22bdvC3r17JbFmXFwc7N27l9crlTVbtGih/rzygjUvXLgA379/5/X+DqwpZV/TwcEBdu3apTVrkm67k/VfUV687/i/HgBgA///HdEhISEC3iot63dVUFAQGhkZMb6P3cDAADt27Ihbt27FL1++aHiTk5M53xXfrFkzXLt2Lb5//x5VKhXFm5ubi/Xq1WP11qtXD5csWYJPnz7FnJwcjZ/t6OjI6q1SpQrOmTMH7969i5mZmRreOXPmsHrLly+PkyZNwqtXr2JKSoqGd8eOHazekiVL4ogRI/Ds2bMYHx+v4b169Sqr19zcHPv164eHDx/G8PBwDe+HDx9YvUZGRtitWzfcvXs3/vjxQ8MbGRmJZmZmjF59fX1s27Ytbt68Gf38/DTWKSMjAytUqMD6sxs3boyrVq3C169fY25uLsWrUqmwRYsWrN7atWvjokWL8OHDh5idna3xew8fPpzVa2trizNmzMCbN29ienq6hnfp0qWs3rJly+K4cePw4sWLmJSUpOE9dOgQq7dYsWI4ZMgQPHnyJMbExGh47927x+o1NTVFR0dH3L9/P4aGhmp4AwIC0MDAgNFraGiInTt3xh07dmBAQICGNz4+HkuUKMHo1dPTw5YtW+KGDRvw48ePGmucnZ2NNWrUYP2969evj8uWLcMXL15orDEiooODA6u3evXqOH/+fLx37x5mZWVpeCdPnszqtba2xqlTp6KHhwempqZqeDdt2sTqLVWqFI4aNQrPnz+PCQkJGt5z586xeosUKYIDBgzAo0ePYmRkpIb35cuXrF5jY2Ps0aMHuri44M+fPzW8oaGhaGxszOg1MDDA9u3b45YtW/Dz588a3tTUVCxXrhzrz27atCmuWbMG3717p7HGKpUKGzZsyOqtW7cuLl68GJ88ecKYb/v168fqrVy5Ms6ePRvv3LmDGRkZGt4FCxawei0tLXHixIl45coVxny7e/duVm+JEiVw+PDhePr0aYyNjdXwXr9+ndVrbm6Offv2xYMHD2JYWJiG19fXF/X09Bi9RkZG2LVrV9y5cycGBgZqeKOjo9HCwoL1WWzdujVu2rQJfX19NdYpMzMTK1WqxPp7N2zYEFesWIGvXr1izLdt2rRh9dasWRMXLlyIDx48YMy3o0ePZvXa2Njg9OnT8caNG4z5dtWqVazeMmXK4NixY/HChQuM+fbYsWOs3qJFi+LgwYPxxIkTGB0dreF9+PAhq9fU1BR79+6N+/btY6xTAwMD0dDQkPVZ7NSpE27fvh2/fv2q4U1MTMRSpUqxrnGLFi1w3bp1+OHDB401zsnJwdq1a7P+3vb29vjPP//gs2fPGJ/FHj16sHqrVq2Kc+fORU9PT8baZ8aMGaxeKysrnDx5Ml67do0x327ZsoXVW7JkSRw5ciSeO3eOsfa5ePEiq9fCwgL79++PR44cwYiICA3v27dvWb3GxsbYvXt33LNnDwYFBWl4w8LC0NTUlNGrr6+P7dq1w3///Rf9/f011ik9PR2trKxYf3aTJk1w9erV+ObNG8Z826RJE1ZvnTp18O+//8ZHjx4xPouDBw9m9VaqVAlnzZqFt27dYsy3f//9N6u3XLlyOH78eLx06RImJydrePft28fqLV68OA4dOhRPnTrFmG9v377N6jUzM0OFQoEHDhzAX79+aXj9/f1RX1+f0WtoaIhdunRBZ2dn/Pbtm4Y3NjYWixUrxvostmrVCjdu3Ig+Pj4a65SVlYVVq1Zl/b0bNGiAy5cvx5cvXzLWPh07dmT11qhRAxcsWIBeXl6Mtc/48eNZvRUqVMBp06ahUqnEtLQ0De+6detYvaVLl8YxY8agm5sbJiYmanhPnz7N6i1atCgOGjQIjx07hlFRURrep0+fsnpNTEywV69euHfvXgwODtbw/vz5U2esaWdnx+r9XVnT2dmZ1Utmzbi4OA2vFNb09vZm9eYFazo5ObGypo2NDevPbty4Ma5cufK3Y81ly5axevOTNe/fv8/q/R1Y09vbm5E1a9asyfp7E6z5/PnzPGfNKVOmsHrzkzXPnz/P6v2dWdPS0pL1Z+cna/bv35/VS7Dm7du3tWbNy5cvM9Y+e/bsYfXyseaNGzdYvVJZ08HBgZM1ixQpwvos5idrtm3bltX7O7AmU+1z/PhxVm9+sub37995WXPbtm35wpp16tRh/b3t7Ow4WbNnz56s3vxkza1bt7J685M13717x+rNK9b89OlTnrNm06ZNWb1SWLNixYo4c+ZMVtZcvHgxqzc/WfPOnTus3t+VNbOzs7FatWqsv3desOb9+/cZa58JEyawenXFmkWKFMGBAweysuazZ89YvSYmJtizZ0+tWbNDhw6srJmSkqIz1lQoFKze35U1r127xurNC9bctWsXK2uam5szevX19bFNmzZas2ajRo04WbNly5as3lq1anGy5ogRI1i9+cmahw8fZvX+qay5dOlSVtbs2rUrq7datWo4b948rVlzypQprKzp5OTE6s1P1nz16hWrVwhrmpiYMHrprElfp4JgzcePH+c5ay5cuJDVa2lpiRMmTGBlTVm6U0hICHmtbDAvZuLy4j/yXw+QBwf/M5o6dSol4RENsjNnzjAWiWRt3ryZ4iUaZIcOHWIsEslyc3OjeIlhjF27duH37985va9fv6Z4yUUiU4OMLKYvOK4ikay0tDQsX748Y5HI1iAjpFKpsFGjRoxFIluDjKwBAwZQvHzDGGQtWrSI4uVrkJHl4uKiUSQSDTKmIpGsmzdvahSJxDAGU5FIlp+fH6WZSjTI1q9fz1gkkhUTE6PRTLW3t1cXiUwFBKGsrCysXLkyY5HI1iAjpFKpsF27dqKKRLLGjh3LWCSyNcjIWr16NcVrYWGBAwYMwCNHjjAWiWSdOHFCo0jkapCR9fjxY41nsX379qzDGGT9+PFDo5lKNMjevn3L6U1KSsLSpUtTvESDjK1IJJSTk4N169aleIlhDLYikaxevXpRvOXKlRNcJM6cOZPiLV68OA4bNox1Q4Ksbdu2UbxmZmbYp08fPHjwIGODjKxLly5p5FuuDQmy6M1UYkOCrUFGVnh4uMZGMl+DjFB6ejpaW1tTvHzDGIRUKhU2a9aM4rWxscFp06bh9evXGRtkZA0ZMkQj344ZMwbd3d0ZG2RkLVmyRCPfDho0CI8fP86bbw8cOEDxEsMYrq6ujA0ysu7evUvxEsMY27ZtY2yQkfXlyxeNZmrz5s1x3bp1jA0ysuLi4jSaqcSGBFuDjBBTM5WvQUZWp06dKF5iQ+Lq1au8+XbixIkUL9/gP1kbNmzQqH2IBhnThgRZZ86c0ci3XMMYZD1//lwj3xKD/0wbEmQFBwdrbCQTg/9v3rzhfBZTUlKwbNmyFG/t2rXxr7/+Yt2QIJSbm4v169eneIkNCbYGGVl9+vTRyLfjx49nbZCRNW/ePIqXr0FG1s6dOzXyrUKhwP379/PmWw8PD43ah2iQMW1IkPXx40eNfMs1+E9WVFSURjOVb/CfUGZmJtra2lK8xDAG24YEIZVKha1ataJ4K1SogFOnTmXdkCBr5MiRFG/p0qVx9OjR6ObmxtggI2v58uUUL3lDgq/2OXLkiEa+7dmzJ2uDjCwvLy+NfMs1jEHWt2/fNJqpzZo1Y22QkZWQkIAlS5akePmGMQjl5ORgrVq1KF7y4D9fvu3WrRvFyzf4T5auWNPd3V2j9ikI1vz16xcja7INY5CVH6zJNYxBlq5Yc+/evRRvQbHmp0+fCiVrtm/fnrH2YRvGIEsKa65Zs4bi5RvGICuvWZNr8J8sXbFmbm6uzlhz1qxZFC/BmmzDGGRJYc3Lly9r5FsHBwd0dnbmZc33799r1D5cwxhkSWVN+gHZgmLNoUOHatQ+vztrenp6atQ+XIP/ZElhzfj4eCxevDjFa2dnxzmMQSg7OxurV69O8Yphzc6dO1O8fMMYZE2aNIniLSjWPHv2rMazqGvW5Ouz65I1+/btS/HyDWOQJYU1d+3apVH7cA1jkCWFNX18fDTyrRjWpB+QLSjWbN26NcVLHvzPT9ZcsWIFxUuwJtswBlm6Ys3AwEAN1uQaxiArP1mTr/aRwprTpk2jeAsDa75580Yj37Zp04Z18J+svGZNvsF/QiqVChs3bkzximHNgQMHUrxiWPOvv/7SqH0KgjVv3bql8SxyHTInSyprFi1alPKzCdZkG/wnlJWVhVWqVKF4C4o1x40bp1H7cA3+kyWFNU+ePEnximHNJ0+eaDyLQlkzKChIa9ZMTk5mZU0htY8U1uzduzfFS7Am2+A/WVJYc/v27RQv3+A/WbpizYiICK1ZU5ZuJQ8OyoODsiSIuG2QKBL5GmRkETdAiGmQESJuGySKRCENMrIcHR1FNcjImj17NqVBJubf744dOyjDGHxFIllXrlxBgP9rkDGdDmUTcdsg3+lQJhE3QPCdDmUScdugmCKREHEDBFEkCmmQkTVs2DBRRSJZS5cuVReJQhpkZB06dEhUg4ws4rZB8jCGUC9xKkdog4wsopnKdzqUScRtg3ynQ9nUpUsX3tOhbJo8ebKoIpGsTZs2qU+HCmmQkXXu3DlKkcjXICOLuAGiQYMGghpkZIWEhKCxsbHgBhlZxG2DYoYxCOXm5mKDBg0oDTIx+bZfv368p0PZtGDBAt7ToWzavXs37+lQNhG3DRKnQ/kaZGT5+Pignp4e7+lQJhG3DRIbEkKGMQgRN0CIaZARIm4bFNMgI2v06NGiGmRkrVy5UlSDjKxjx47xng5l04MHD9QNMiGD/2QRtw3ynQ5lEnEDhJjBf0LEbYNiNiTI6tGjh3pDQkiDjKzp06erNySENMjI2rJli6hhDLIuXrwoqkFGFnHbIHkYQ+gaEzdA8J0OZVJaWhpaWVmJGvwnRNw2yHc6lE2DBg3iPR3Kpr///ptyOpSvQUbWvn37RA3+k0XcNti0aVNBDTKyiBsghA5jkBUbG4tFixYV1SAjRNw2qO3p0I4dO4oa/Cdr/PjxlGEMppuI2LRu3TpRg/9knTp1ivcmIjYRtw0SNxGJaZDpkjXt7OxEDf6TJYU158yZoxPWJG4bLGysaWNjI2rwn5BU1hw+fDhaWFgIHsYgS1esSdwAIXTwnyyprFmiRAkKawqtfaSypoODA4U1+YYxyNIVa54/f17UMAZZUliTuG2woFmTuAFCzDAGWf379xc1+E+WFNbcs2cPhTX5hjHIksKaxG2D9erVEzSMQZYuWbNt27Y6Yc1Vq1bphDWJ2wa1YU3itkGhg/9kSWXNOnXqiBrGIEsKa86YMUPUMAZZumJN4oCs0MF/sqSwJnHboC5Yc/DgwaIOmZO1ePFiUcMYZElhTeK2QaHDGGRJZc1ixYoVOtacMGGCqMF/sqSw5unTp0UdMidLCmsStw0KHfwnS5esqVAodMKazs7Oog6ZkyWFNYnbBoUeMieLuG1QzOA/Iams2bJlS1GD/2RJYc1ly5aJOmRO1p/ImjVr1hR1yJwsKaw5ZcoUUYfMyXJychI1+E+WFNYkbhsUOvhPllTWtLS0LHSsuXDhQlGD/7J+H8mDg/LgoCwJ8vX1FVUkkvXjxw/e06FsioqKElUkkpWeni6qSCRLpVLh7du3BTfI6Lp//76oBhlZT58+FdUgI+vdu3eiikSyPn/+LKpBRlZISIioBhlZ8fHxooYxyMrKysLbt28LLhLJUqlUePfuXVFFIlkPHjwQVSSS9eLFC1ENMrK8vb1FNcjICggIENUgIys8PFzUMAZZKSkpohpkZOXm5uLt27cFAxtd9+7dE1UkkvX48WNRRSJZb9680bpI9PPzE7UhQVZQUJCoDQmyYmJiRG1IkJWRkSHodCiTiHyr7VXdXl5eohpkZD179kzUMAZZ79+/F9UgI+vLly+ihjHI+vXrF+/pUDYlJiaK2pAgKycnR+t8i/i/mw7FNMjIevjwoagGGVkvX77Uuv78+PGjqGEMsgIDA0U1yMiKjIwUNYxBVlpamqhhDLLyIt+KaZCR9eTJE1ENMrLevHkjakOCrE+fPolqkJH18+dPUYP/ZMXFxYlqkJGVmZkpKd/euXNH63z74MEDrfPt8+fPRTXIyPrw4YOoBhlZX79+FbUhQVZYWJioBhlZycnJohpkZBH5VmiDjC5PT0+t8+2jR49EDf6T9fr1a1HDGGTpijWjo6Nl1hShP401s7Oz8c6dOzJrCtS3b99k1hShJ0+e6Iw1xQxjkCWVNcUMY5AltfaRWVO4pLKmmGEMsv5E1vTx8fmjWJN4Fgsba759+1br2kcKawYHB+uENbOysmTWFKGvX7+KGsYg609kzcePH8usKVB/KmuKGfwnS1esmZCQoBPWRPzfwHRhY82PHz/qhDUjIiIKJWt6enrqjDW17bNLZU0xg/9k6ZI1pdQ+snSr/Bgc1MP/DcbJ4pCenp4NAIQAAISEhICNjY2OfyNZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkvUnKDQ0FGxtbYn/aYuIoVL/m/pS/wOyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWrMIjeXBQ1h+jyMhIyMnJ0cobGxsLGRkZWnmTkpIgOTlZK29mZibExsZq5UVECA8P18oLABAWFibJq+1tphEREZCbm6uVNzo6GrKzs7XyxsfHQ1pamlbelJQUSExM1MqbnZ0NUVFRWnkRUWfrFB4eLmmNtX0WY2JiIDMzUytvYmIipKSkaOVNT0+HuLg4rbwqlapQPovh4eGgUqm08kZFRWn9LMbFxWmdb5OTkyEpKUkrb1ZWFkRHR2vlzYtnUYpXV/k2KytLK29CQoLW+TY1NRUSEhK08ubk5EBkZKRWXoDC+SxKrX20zbdJSUla59uMjAyta5/Cmm8jIiJ0lm/T09O18kqpfeR8K04xMTGS8m1qaqpW3rS0NIiPj9fKm5ubCxEREVp5Af7MfFsYWfNPexZ1xZqpqala59ucnJxCyZpSvFKeRZk1xXtl1hQmufYRp8LImrm5uTJrilBhZM3C2mfXZb7VBWtmZ2f/cfk2MjJSEmtq+yzKrClOhZE1k5OTJbFmTEyMVt7C+izqqvYpjKwJoLt1kllTuGTWFCcptU9hZU1Z/z3Jg4Oy/hiFhoaCpaUljBw5Es6dOyeqGZSZmQk2NjbQv39/OHLkiCg4MTIyAnt7e+jevTvs2bMHgoKCBHuNjY2hZ8+e0K5dO9i8eTN8+vRJ8Jelnp4ezJkzB5o0aQKrV6+GN2/eiPqy3LFjB9SpUwf++usvePTokaiC6OrVq1C5cmWYOXMm3Lp1S1RB5O3tDVZWVjB+/Hi4dOmSqIIoJiYGLC0tYejQoXDq1ClRzSCVSgVVq1YFhUIBBw4cEPVlaWJiAs2bN4cuXbqAs7MzBAYGCvYaGhrC0KFDoVWrVrBx40bw8fERtcZLly6FBg0awPLly+HFixei1vjQoUNQs2ZNmD9/Pty/f19UQXTv3j2wtbWFadOmgVKpFFUQffv2DcqXLw+jR48GNzc3UXCSmpoK1tbWMHDgQDh27JiogkhfXx9q164NPXv2hL1790JwcLBgr4mJCXTu3Bk6dOgAW7duhS9fvoj6uVOmTIFmzZrB2rVr4f3796KK3k2bNkG9evVgyZIl8PTpU1EAev78eahatSrMmTMH7t69K+pZfPnyJVSoUAEmTZoEV65cEdUMCgsLA0tLSxgxYgScPXtWVDMoKysLbG1toV+/fnDo0CHR+bZhw4bQrVs32LVrF/z48UOUt2/fvtCmTRtwcnICPz8/Uc/iggULoFGjRrBy5Up4/fq1qGdxz549UKtWLVi0aBE8fPhQVL69fv06VKpUCWbMmAE3b94U1Qzy8/MDKysrGDduHFy8eFFUMyghIQHKly8PQ4YMgZMnT4puBlWrVg0cHR1h3759EBoq/AZtExMTaN26NXTu3Bl27NgBAQEBgr2GhoYwatQoaNmyJaxfvx68vb1FPYurVq2C+vXrw9KlS+H58+einsVjx45B9erVYd68eXDv3j1RzaCHDx+Cra0tTJkyBTw8PEQ1g4KCgsDS0hJGjRoF58+fF5Vv09LSwNraGgYMGABHjx4V1QwyMDCAunXrQo8ePcDFxQV+/vwp2GtsbAzdunWD9u3bw5YtW8Df31/wOunr68OMGTOgadOmsGbNGnj37p2oNd66dSvUrVsXFi9eDI8fPxb1LF68eBGqVKkCs2bNgtu3b4vKt2/fvgUrKyuYMGECXL58WVTtExUVBZaWljBs2DA4ffq0qGZQbm4uVKpUCfr06QMHDx4U1QwyNjaGJk2agIODA+zcuRO+f/8u2GtkZAQDBgyA1q1bw6ZNm8DX11dUvl28eDE0bNgQVqxYAa9evRKVb/ft2wc1a9aEhQsXgpeXl6ja586dO1CxYkWYPn063LhxQ1Tt8/nzZyhfvjyMHTsW3N3dRTWDkpKSwMrKCgYPHgzHjx8XVfvo6elBjRo1oFevXuDq6gohISGCvSYmJtC+fXvo2LEjbNu2Db5+/SrYa2BgAOPHj4fmzZvDunXr4MOHD6KexXXr1oGdnR38888/8OzZM1H59vTp01CtWjWYO3cueHp6isq3T58+hQoVKsDkyZPh2rVromofKaxJ1D5SWXP37t2iWbNXr15as+bcuXOhcePGsGrVKtGs6ezsnGesKab2kcKasbGxecaav379Euw1NjaGFi1aaMWaBgYGFNb8+PGjqDVetmyZ1qx5+PBhrVnz/v37YGNjA1OnTtUpa4qtfQojazo5OeUJa965c0dU7fPq1SvJrDl8+HA4c+aMKNbMzs6GihUrasWaxsbG0KhRI+jatWuBs+bChQt1wpo3btyQxJrly5cvlKzZqVMn2L59uyjWNDAwgNGjR0tiTXt7e61Y8/jx45JY08bGJk9YU0ztk56eDhUqVChUrKmnp6dmzdWrV8Pbt28LjDUvXbqkNWu+e/euULJm06ZNtWJNQ0PDPGPNly9fisq3+/fvl8SaRJ/9+vXrBc6agwYNEs2a+vr6ULNmzULHmuvXr9cJaz579ixPWFPbPrs2rGloaAj169eXxJpt27bVijXnzZsniTVr166tFWteu3ZNa9b8+PEjhTXF1D6xsbFQvnx5rVgTEfOENXfs2AHfvn0T7DU0NIRhw4ZpxZoAoGbNZcuWFShrenl5yawpUHTWFNtnJ1hz8eLF8OTJE1H51s3NTRJrWltbw8SJE0WzZnh4uGTW7Nu3Lxw6dEh07SOFNfv166cT1pT1HxQiysETAGADAAgAGBISgrIKrxQKBRJraWBggB07dsRt27bh169feb1z5sxRewEAmzdvjuvWrcMPHz6gSqXi9Do7O1O8dnZ2+M8//+CzZ88wJyeH03v16lWKt2rVqjh37lz09PTEzMxMTq+3tzfFa2VlhZMnT8Zr165hamoqpzcyMhLNzMzU3lKlSuHIkSPx3LlzGB8fz+nNyMhAGxsbtdfCwgL79++PR44cwYiICE6vSqXCli1bqr3GxsbYvXt33LNnDwYFBXF6ERGHDx+u9urr62O7du1w8+bN+OnTJ951WrZsGeXzatKkCa5atQrfvHnD6z106BDFW7t2bfzrr7/w0aNHmJ2dzem9f/8+xVupUiWcOXMm3rp1CzMyMji9AQEBaGBgoPaWK1cOx48fj5cuXcLk5GROb3x8PJYoUULtLV68OA4dOhRPnTqFsbGxnN7s7GysWbOm2mtmZoYKhQIPHDiAv3794vQiIjo4OKi9hoaG2KVLF3R2dsZv377xeqdMmaL26unpYatWrXDjxo348eNH3nXatGkT5bNu0KABLl++HF+8eIG5ubmc3vPnz1O8NWrUwAULFuD9+/cxKyuL0/vq1SuKt0KFCjh16lRUKpWYlpbG6Q0NDUVjY2O1t3Tp0jh69Gh0c3PDxMRETm9qaipaWlqqvUWLFsWBAwfisWPHMCoqitOrUqmwYcOGaq+JiQn27NkT9+7di8HBwZxeRMT+/ftT8m2HDh1w69at+OXLF17vggULKJ9Xs2bNcO3atfj+/XveNd6zZw/FW69ePVyyZAk+ffqUN9/euHGD4q1SpQrOmTMH79y5w5tvfX19UU9PT+0tX748Tpo0Ca9cuYIpKSmc3ujoaCxSpIjaW7JkSRwxYgSeOXMG4+LiOL2ZmZlYqVIltdfc3Bz79u2Lhw4dwvDwcE6vSqXCtm3bqr1GRkbYtWtX3LVrF/748YPTi4g4ZswYSr5t06YNOjk5oZ+fH+86rVq1ivJZN2rUCFeuXImvX7/mfRaPHz9O8daqVQsXLVqEDx8+5M23Dx8+pHgrVqyIM2bMwJs3b2J6ejqn9/v372hoaKj2li1bFseNG4cXL17EpKQkTm9iYiKWKlVK7S1WrBgOGTIET548iTExMZzenJwcrFOnjtpramqKjo6OuH//fgwNDeX0IiL27NmTkm87d+6M27dvx4CAAF7vjBkzKPm2RYsWuH79evT29uZd461bt1I+a3t7e1y6dCk+f/6cd40vXrxI8VarVg3nzZuH9+7d48237969o3itra1xypQp6OHhwZtvw8PD0dTUlFL7jBo1Cs+fP48JCQmc3vT0dLSyslJ7ixQpggMGDMCjR49iZGQkp1elUmHTpk0p+bZHjx7o4uKCP3/+5PQiIg4ePJiSb9u3b49btmxBf39/3nVavHgx5fNq2rQprlmzBt++fcvr3bdvH8Vbt25d/Pvvv/Hx48e8+fbOnTsUb+XKlXHWrFl4+/Zt3trn8+fPqK+vr/ZaWlrihAkT8PLly7z5NjY2FosVK6b2lihRAocNG4anT5/mzbfZ2dlYrVo1Sr7t06cPHjx4EMPCwji9iIgdO3ak5FsHBwfcuXMnfv/+ndc7YcIEyrPYunVr3LRpE/r6+vKu07p16yifdcOGDXHFihX46tUr3mfx9OnTFG/NmjVx4cKF6OXlxZtvnz17RvHa2tri9OnT8fr167z59ufPn2hkZKT2lilTBseMGYPu7u68tU9KSgqWKVOGUvsMGjQIjx8/jtHR0Zze3NxctLOzo+TbXr16oaurq6A+gBTWnDt3LuXzKijWvHbtGsVbkKxpbm5OybcjR47Es2fPas2ahw8f1po1d+/eLYg1R4wYQal92rZtqzVrNm7cWDBrHj58mOItDKyZkJCgM9bs2rUrpfaRypobNmwQxJpOTk6Uz7pBgwa4bNkyrVlz/vz5BcKaJiYmaq8U1ixSpEihYM2FCxdSPi+CNd+9e8e7xi4uLhQvwZpPnjzRijVnz54tiDX9/Pw0WHPixIlasWaJEiVw+PDhglmzcuXKlNqnMLDm6tWrKZ91QbHmo0ePKF6CNW/cuKE1a164cIGXNZOSkhhZ88SJE1qz5r59+7RizU6dOglmzZkzZ1LybUGx5qVLlyjewsKa1tbWlHyrLWsaGxtjjx49cM+ePYJYc8iQIZR82759e/z333+1Zs3Vq1cLYs39+/dTvIWBNePi4nTGmp06daLkW4I1AwMDeb1srOnj48O7TuvXr6d81gRrvnz5kvdZPHPmDMUrhTVtbGxw2rRpglgzODhYZ6xpb29PybeFgTV37txJ8eYFa969e5e39vn48SPFS7Dm1atXRbNmyZIlRbGmra2t2iuWNVu1akXJt926dSsQ1ly+fDnl8yoo1vTy8qJ4fwfWFFL75DVr7tixQxBrTp06lZJvpbBm/fr1BbOmm5sbxVsYWDMtLQ3Lly9PqX0KijUHDBhAybcEa37+/JnXqyvWvHnzJsVbUKwpS7cKCQkhr7sN5sVMXF78R/7rAfLg4H9Gb968oSRPcvA1g379+kX5kiOHra0tZzOI/iVHjrJly+LYsWNZm0EqlQobNWrE6C1WrBgOHjyYsxk0cOBARq+pqSn27t2bsxm0aNEiRq+QZtDevXsZvUKaQbdu3WJdJ75m0KdPnyhfcuTgawbFxMRg0aJFGb1EM4htIywrK4vSUCUHXzNIpVJh+/btGb1EM+jIkSOszaCxY8cyeoU0g9asWcPoJYYuuZpBJ0+eZF2nJk2acDaDHj9+zOqtU6cOZzMoKCiI0lAlB18zKCkpCUuXLs3o5WsG5ebmYt26dRm95GYQ20ZY7969Gb1CmkGzZs1i9AppBm3fvp31WWzdujVu3LiRtRl0+fJl1nVq2LAhLl++nLUZ9P79e1YvMXTp5eXF+CyGh4dTBpfJwdcMSk9PxwoVKjB6+ZpBKpUKmzdvzugV0gwaOnQoa77lawb9888/jF5yM4htI+zAgQOsnzVfM8jT05PVSzSD2IYuv379SmmokoOvGRQfH4/Fixdn9FpZWeGkSZNYm0HZ2dlYvXp1Ri8xdMnVDOrcuTOj18LCAvv168fZDJo0aRJrvuVrBm3YsIE13/I1g86ePcu6TuRmENOz+OLFC1YvXzMoODiYMrhMjooVK3I2g1JSUrBcuXKMXqIZdPHiRcZmUG5uLtavX5/RSzSDuIYu+/bty+g1MzNTD12yNYPmz5/P6BXSDNq1axdrvm3ZsiVnM0ipVLKuE18zyMfHh9VbvXp1zmZQVFQUWlhYMHr5mkGZmZmUhio5+JpBKpUKW7duzegV0gwaNWoUo1dIM2jFihWs+bZDhw64ZcsW1mbQ0aNHWT9rYuiSrRlEb6iSo169erh48WLWZlBgYCCloUoOvmZQQkIClixZktHL1wzKycnBWrVqMXqFDB50796d0Stk8GDatGmMXiGDB//++y9rviUGD9iGLt3d3VnXiRg8YBu65GPNhQsX4oMHDxjzbVhYGGUzmRz5zZqNGzdm9OY3a/7111+s+fZ3YE2mZ9Hf35+XNT09PfOFNatUqcLoJR/wyw/WHDduHKOXfMCPjTXXrl3L+izmJ2s+efKE1UtmTaZnUQprJicnC2JNttonP1jTzMwM+/TpgwcOHGBlzdmzZ7Pm2/xkzStXrrCuE3HALz9YMyIiQmvWzMjI0BlrDhs2jNFrYmKSr6x58OBB1s+6efPmnAf88pM158yZ81uyZpcuXRi9+c2aGzduZM23umZNtj57SEgIJ2sSB/zygzUbNGjA6BVywC+/WLNz586crLl7927WfJvfrMlW++Q3a1asWJHRS7AmV589P1nTxcWFlTVXrlzJmm+JA375wZoPHjxg9datWzffWDMxMVESa9auXZvRm9+sOX36dEYvwZpcB/yksOaFCxdY16lRo0acB/zykzWnT5/OyZrkQ7LkyG/WHDRoEKM3v1nT1dWVNd8SrMnWZ799+zbrOuUna8bGxnKyJtcBPymsiYjYoUMHRi/5MpnfjTVPnTrFuk75zZrkwWVyVKpUCWfNmsXaZ5fKmvXq1WP0Fi9eHIcNG8Z5wC+/WJM44MfGmjt27GB9FonLZPKDNT98+MDq/Z1Zs0WLFoze/GZNWbqTPDgoDw7KkiAfHx9UKpWUk5RsQW8GBQYGolKppNwUwhb0ZlB4eDgqlUrWxEsviIhm0I8fPzAxMRGVSqXGqSC2gojcDMrMzESlUqlxwxpbEM0g4gTu7du38ciRI4K89GbQ48eP8eLFi6xAQg56M+jt27fo4eFBOUnJFvRmkL+/PyqVStZBS3LQm0E/f/5EpVJJOS3LFvRmUHR0NCqVStZClxz0ZlBKSgoqlUpcsmQJr5feDMrNzUWlUqlxywhb0JtB9+7dw9OnT7M2Y8lBbwY9f/4cr1y5QjlJyRZEM4g4gevt7Y1KpRKrVq3K66U3g75+/YpKpZK1AUQO8gncqKgoDA0NRaVSSTkxwhb0ZlBcXBwqlUrK7VtsQW8GZWRkoFKpZIUZetCbQTdv3tQ4acsW9GbQw4cP0c3NjRVIyFG5cmV1MygjIwNfv36NHh4elJOUbEFvBvn6+qJSqWQFEnLQm0Hfv39HpVLJ2nAnB70ZFBERgUqlEkeOHMnrpTeDkpKSUKlUapwKYnsWybc9ZWdno1KpZG0e0YPeDLp79y4eO3ZMkJc4gUs0g548eYKXLl2inKRkC3oz6N27d+jh4cE6+EMOejPo8+fPqFQqsVmzZrxeejMoODgYlUolOjo68nrpzaCYmBhUKpWsmyrkIDeDvn79imlpaahUKjVu/GFbY3ozSKlUsjbr6WFvb085gXv//n08c+YMazOWHPRm0IsXL/Dq1auUk5RsQW8Gffz4EZVKJeUkJVvQm0Hfvn1DpVKJ7dq14/XSm0FhYWGoVCopN+GxBf1m4YSEBFQqlawD0+SgN4OIfEs/9c4W9GbQrVu3NG4QZgt6M+jRo0d44cIF1kMm5KA3g968eYMeHh6sgz/koJ/A/fTpEyqVStZBS3LQm0E/fvxApVKJ3bp14/WST+CGhYVhZGQkKpVKym0wbEFvBiUnJ6NSqcS///5b0LNIbgbl5OSgUqlkHVSgB70Z5OnpiSdPnmRtxpKD3gx69uwZXrlyhXJrD1uQm0FpaWn44cMHVCqVlBti2YLeDPry5QsqlUrWBhA5iGYQsREWEhKCSqWSdYOTHPRmUGxsLCqVSsqJaLYgBg+I257S09NRqVRq3C7LFvSbhW/cuME6GEYP+s3CDx48wPPnz7MO/pCDuFmYGDx4+fIlXrt2jXJrD1vQBw/ygjXJN4WwRX6w5rx583i9BGsStz1lZWUVKGuSD/gVFGuSbxYmsybb5hc58oM1x48fz+uls2Zqaqpk1qTfMsIWBGsSB/x0zZrkW3vYgn7ALyAgoMBYk3yz8J/MmmXLluX1EqxJHPDz8/MrUNY8ePDgb8GaW7ZsEbRO9JuFpbLm5cuXCw1rRkdHq1mTfDMTW+QHa9Jv/GFb4xYtWlAO+F2/fl0Sa549e1YQa9JvFtY1a7INtpMjP1iTbRObHGTWJPfZC5I1iQN+umZNtkFLctBvFg4KCioQ1iTfLFwYWZOoffKCNdkuNCAHwZrEAT+iz14QrEk+4Kdr1mQbDKNHfrAm2+APOYi32Fy9ehVTUlJ0wprh4eFq1iS/4Yst8oM16TessQX9ZuE7d+5IZk22wR9y0N9iQ7Am2+APOfKDNXv16sXrpb/FJi9Yk+2ACjnIrEkc8CtI1iRfJvP8+XO8evUq6yETcuQHa7Zp04bXS79Z+NevX38ka7q7u7MeMiEHwZrEAb+8YE3y20jYgn6zMNFnLwjWJL/FhmBNtoug6M9iXrKmLN1KHhyUBwdlSRD5FQhiwtDQUFAhwJaEa9SooZUXALT+ucSXpbZeKysrQc0IpihVqpSgzTamsLCwEFRYM4WxsTHryRi+0NfXZz1RLCR0tcZsJy+FRLly5QQ1I5iiePHirCd7+cLMzEzr39vQ0FDQsCFTSH0Wpfz70PbfJcD/mkFCmhFMUaZMGUHNX6YoWrQo62lCvjAxMRE0GMEUBgYGkp4JXT2L2v69AP+DEyHNCKYoWbKkoMFOprCwsKC85k9MGBsba/0s6uvr6+xZ1PZ3BvhfvhXS/GWKsmXLsp765ItixYpRXgEnJkxNTSXlW13VPrrKt9bW1oKaEUxRqlQp1lP2fFGkSBFBAyxMYWJionW9Z2BgUChrH6n5lu3GC74oUaKEoIYTU5ibmwvaNGcKIyMjSbWPlDXWVb61tbUVtPHNFGXKlBHU/GWKYsWKCdpQZQpTU1Od1D5/KmsK2Wxjij+RNaXWPtp6Cytr/mm1T4UKFQola0qpfWTWFB5SWNPc3FxnrFkYa5/Cypra/tuUmm91tcZSah+ZNcVFYcy3lpaWMmuKCJk1hYeuWBNA2rOoq3xrZWUl6IAZU/yJrKmrZ1FKvpVZs+DWWCprCjlgxhSlS5fWmjWLFCmiM9b802ofYshdfqWx7pQfg4N6+L/BOFkc0tPTswGAEACAkJAQsLGx0fFvJEsbzZo1C1xcXHT9a8iSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSVShlamoKXbp0gVWrVkGzZs10/ev8MQoNDQVbW1vif9oiYqjU/6ah1P+ALFmyZNGlp6cH8lDy7y95nf77ktdYlqzfQ/KzKEuWLFmyZOWN5O/UwiF5nf77ktdYlqzfQ/KzKEuWLFmyZOWN5O/UwiF5nf77kte4cMjMzAwcHBxAoVBA7969wdraWte/kiyJkgcHZf0xql+/PvTr1w9evnwJ4eHhvP9/IyMj6NChAygUCjA1NYWbN2+Cr68vfPv2jderp6cHrVq1AoVCAba2tnDhwgX4/v07fPz4UdDv2rBhQ1AoFNC4cWM4duwYREVFwfPnzwV5a9asCQqFAhwcHMDV1RXS0tLA09NTkNfGxgYcHR1BoVDA6dOnITk5GTw8PAR5y5QpA7169QKFQgGPHj2CkJAQuHXrFmRkZPB6ixYtCt27dweFQgE/fvyADx8+wOPHjyE2NpbXa2JiAl26dAGFQgGZmZnw4MEDePv2LYSEhPB6DQwMoF27dqBQKKBEiRLg4eEBnz9/hs+fPwv6m5s3bw4KhQJq1qwJZ8+eheDgYHj37p0gr52dHSgUCmjdujUcOnQI4uLi4PHjx4K8VatWBYVCAY6OjrB7927IzMyE27dvC/JaWVmBo6MjODo6wtWrVyE2NhY8PDxApVLxekuWLAm9evUCR0dHePfuHQQEBICnpyekpKTwei0sLKBr166gUCggMjISXr16Bc+ePYOoqCher7GxMXTs2BEUCgXo6emBp6cneHt7w48fP3i9+vr60Lp1a1AoFGBlZQWXLl2Cb9++ga+vL68XAKBx48agUCjA3t4eTp48CeHh4fDq1StB3tq1a4NCoYCOHTvCgQMHICkpCby8vAR5K1asCAqFAhQKBRw+fBjS0tLg+vXrgrzlypWD3r17g0KhgDt37kBERARcv34dsrOzeb3FixeHHj16gEKhgM+fP4Ovry88ePAAEhISeL3kIjEpKQmePHkCr1+/hl+/fvF6DQ0NoUOHDuDo6AgWFhZw48YN8PPzg4CAAF6vnp4etGzZEhwdHaFKlSrg5uYGQUFB8OHDB14vAECDBg3A0dERmjVrBkePHoXo6Gh49uyZIG/16tVBoVBA9+7dYe/evZCeng53794V5K1QoYI63547dw6SkpLg2rVrgrylS5dW59tnz55BUFAQ3L59G9LT03m9RYoUUedbImc9efIEYmJieL0mJibQuXNnUCgUkJOTA/fv34f379/Dz58/eb0GBgbQtm1bUCgUULp0abh69Sp8+fIF/P39Bf3NzZo1A4VCAbVr14YzZ85AaGgovHnzRpC3Xr164OjoCG3btoVDhw5BfHw8PHr0SJC3cuXK6mdx7969kJmZCTdv3hTktbS0VK+xUqmE6OhoUCqVkJuby+stUaIE9OzZExQKBXz48AG+fv0K9+7dg+TkZF6vubm5Ot/GxMTAixcv4MWLFxAREcHrNTIyUudbIyMjuH37Nnz8+BG+f//O69XX11fXPhUqVICLFy9CYGAg+Pj48HoBABo1agQKhQIaNWoEx44dg8jISHjx4oUgb61atUChUEDnzp1h//79kJycDPfv3xfktbW1VX+nHj9+HFJTU0GpVAryli1bFnr37g2Ojo7w4MEDCA0NhZs3b0JmZiavt1ixYupnMSAgAHx8fODhw4cQHx/P6yVO8SkUCkhLS4NHjx7BmzdvIDSU/1CZoaGhuvYpVqwYKJVK8Pf3hy9fvvB69fT01LVP9erV4dy5c/Dz5094//49rxcAwN7eHhQKBbRo0QKOHDkCsbGx8OTJE0HeatWqgUKhgF69esGePXsgIyMD7ty5I8hrbW2tfhYvXLgACQkJcO3aNUENqFKlSqlrn1evXsH379/h7t27kJqayuu1sLCA7t27g6OjI4SFhcGbN2/g6dOnEB0dzes1NjaGzp07g6OjIyAi3Lt3Dz58+ABBQUG8Xn19fWjbti04OjqCpaUlXL58Gb5+/QqfPn3i9QIANG3aFBwdHcHOzg5OnToFv379gtevXwvy1qlTBxQKBXTo0AEOHDgAiYmJ8ODBA0HeSpUqqfPtgQMHID09HW7cuCHIa2lpqa59bt26pa59cnJyeL3FixdX51tfX1/w9/eH+/fvQ1JSEq/XzMxMnW/j4uLg+fPnBc6aFStWBHd3d9Gs6ejoCE2aNBHNmjVq1ACFQgHdunWDvXv3yqzJobxizRo1asC5c+cgJCQE3r59K8hLsGarVq3g8OHDWrFm7969Yc+ePZCVlQW3bt0S5P2dWPP58+cQGRnJ6yWzpr6+Pty9e7fAWbN+/fpw4sQJnbFmenq64NqHzJp3796F8PBw0azp6OgIX7580Yo1HR0dISUlBR4/flxgrNmiRQtQKBRQtWpVOH/+vCjWrF+/PigUCmjevDkcOXJEJ6x5/vx5SExMLHDWJGpEbVgzOzsbvLy8CiVrJiQkwMOHDwV5fwfW9Pb2hi9fvuiMNX18fCAwMJDXm1es2bBhQzh+/HihYM0yZcqo860U1vz27Rt8/PixwFmzePHi4OHhUeCs2bJlSzh8+HCBs6ajoyNcvHhRa9Z8/fo1BAYGFhhrdurUCRQKhVas2aZNG1AoFGrWDAgIAD8/P14vAECTJk1AoVAUKtYsV66cOt/mBWt6eXlBYmIir5fMmvHx8fDs2bMCZU1HR0eoVKkSuLu7w48fP8Db25vXC/B7sOaZM2cgKSmpwFkzKCgI3r9/rxVrZmVlgZeXl872NQuKNatUqaJ+Fnfv3i2KNcuXL69e4ytXrkBcXJwo1iSeRSmsGRUVBS9fviyUrBkREQEvX74U5CVYs1OnTrB//36tWNPR0RGOHDmiFWs6OjqCp6cnhIeHw40bNyArK4vXW6xYMfW+pljWNDU1Ve9rJicni97XbN++PSgUCihSpAhcv35dZ6wZExMDT58+FeQlWLNHjx7g4uKiNWt27twZzMzMBPlkFRLlxfuO/+sBADbw/98RHRISwvImaVmFQfHx8Vi8eHHWd7KXLl0ax4wZg25ubpiYmEjxZmdnc74rvkiRIjhw4EA8duwYRkVFafzszp07s3pNTEywZ8+euHfvXgwODtbwTpw4kdVrYGCAHTp0wK1bt+KXL180vBs2bOB8D32zZs1w7dq1+P79e1SpVBTvmTNnOL316tXDJUuW4NOnTzEnJ4fiff78Oae3SpUqOGfOHLx79y5mZmZSvMHBwWhsbMzqLV++PE6aNAmvXr2KKSkpFG9KSgqWLVuW1VuyZEkcMWIEnj17FuPi4ije3NxcrF+/PqvX3Nwc+/Xrh4cOHcLw8HCNz7pPnz6sXiMjI+zWrRvu2rULf/z4oeGdN28eq1dfXx/btGmDTk5O6Ofnp7FOO3fu5PysGzdujCtXrsTXr19jbm4uxevh4cHprVWrFi5atAgfPnyI2dnZFK+Pjw+n19bWFmfMmIE3b97E9PR0ijcqKgrNzc1ZvWXLlsVx48bhxYsXMSkpieLNzMxEW1tbVm+xYsVwyJAhePLkSYyJiaF4VSoVtmrVitVramqKjo6OuH//fgwNDdVYp5EjR7J6DQ0NsXPnzrhjxw4MCAjQ8K5YsYLVq6enhy1btsQNGzagt7e3xhofOXKE87OuX78+Ll26FJ8/f66xxl5eXpzeatWq4bx58/DevXuYlZVF8X779g0NDAxYvdbW1jhlyhT08PDA1NRUijchIQFLlizJ6i1VqhSOGjUKz58/jwkJCRRvTk4O1qxZk9VbpEgRHDBgAB49ehQjIyM1Putu3bqxeo2NjbFHjx7o4uKCP3/+1PBOmzaN81ls3749btmyBf39/TXWafPmzZyfddOmTXHNmjX47t07Da+7uzunt27durh48WJ8/PixRr59/fo1p7dy5co4e/ZsvH37NmZkZFC8v379QhMTE1avpaUlTpgwAS9fvozJyckUb1paGpYvX57VW6JECRw+fDiePn0aY2NjKV6VSoWNGjVi9ZqZmWGfPn3w4MGDGBYWprFOAwcOZPUaGRmhg4MD7ty5EwMDAzW8ixYt4nwWW7dujZs2bUJfX9//x95Zh0W5dW18DZ12C4gYoGJgd4sIM3Zgd3d3d3d3d7did2MHoigIYiHds74/3rPn28PTMzAj+tzXta73+B5uBmefZ7N+a6+9hrFOa9as4X2vy5Urh5MnT8b79+8znsWzZ8/yeosXL44jR47Eq1evMvbbV69eoUKh4PQ6ODhg//798cyZM4z99sePH2hvb8/pzZUrF3bt2hUPHTrEyH2SkpLQ2dmZ02tvb49t2rTB7du34/fv3xlrXLt2bU6vpaUlent749q1a1nz665du3J6TU1NsV69erh48WJ89+4dwzt9+nTe97py5co4c+ZM9Pf3Z6zxzp07eb3u7u44fvx4vH37NuNZvHHjBq/XxcUFhw4din5+fozcJygoCM3MzDi9+fPnx969e+OJEycY+21UVBTmzJmT05s9e3bs2LEj7tu3DyMiIrS8qampWLJkSU6vra0ttmjRArds2YJfv35lvNfe3t6cXgsLC2zcuDGuWrUKg4KCGN5BgwZxek1MTLBWrVo4f/58fPXqFWOdlixZwvteV6hQAadNm4YPHz5keI8ePcrrLVGiBI4ePRqvX7/OeBafPHnC63VycsKBAwfiuXPnGPttWFgYWltbc3rz5MmD3bt3xyNHjjD22/j4eCxYsCCnN2vWrNiuXTvctWsX635bqVIlTq+1tTWqVCrcsGEDfvnyhbFO7dq14/SamZlhgwYNcNmyZfj+/XuGd/z48ZxehUKB1apVwzlz5uCzZ88Y67Rhwwbe97ps2bI4adIkvHv3LmO/9fPz4/UWLVoUhw8fjpcvX2bkPm/fvkUTExNOb8GCBbFfv3546tQpjIuL0/KKYc3OnTtzsmbRokU5vRnJmr169eL0ZiRr7t27l9drbNY8duwYK2vmyZOH00tynz179qQ7azZr1ozTa25ujo0aNcIVK1bghw8fGF59WHPFihW877WHhwcna546dYrXm5GsaWtry+nNSNasXr06p5ew5rp164zCmrNmzWJlza1bt/K+1xnFmoGBgUZjTVdXV06vEGs2btyY05uRrLlgwQLe97pixYo4bdo0fPToUbqy5sOHD3m9hQoVwkGDBhmcNbNmzYq+vr6crFm+fHlOb0ay5ujRo3mfxYxizXPnzvF6CWteuXKF8SwagjUPHjzIypqFCxfm9Nrb22Pr1q0zhDW7devG6TU1NcW6dev+cax58+ZNXm9GsWZ0dLQo1ty7d2+6s6aPjw+nl7DmypUrWevsGcma5cuXx6lTp7Ky5rFjx3i9bm5uGcKaX79+NRprVq5cmdMrxJq+vr6c3oxkzY0bN/K+12XLlsWJEyemO2u+e/dOkDX79u37x7FmgwYNOL0ZyZpz5szhfa8Ja7LV2fVhzbt37/J6CWteuHCBsd8GBwcbjTXLli3L6bWxscFmzZplCGsOHz6c0/snsyZf7pORrOnk5MTpJay5Y8cO1txHH9bs1KkTp9fMzAzr1auHS5YsMThrli5dmpM1r169yuvNKNaMjIz841mTrc7ev39/3mcxo1hTlvEUHBxMr5MDpkdPXHp8k789QG4c/Gs0depUxoZHCmQ3b95kJIm0tm3bxvCSZowLFy4wgI3WtWvXGN68efNiz549WZNEWoGBgQy450sSaUVGRmKOHDm0vCRJ5CqQEaWkpKCbm5uWVyhJpOXl5cX4xVSjRg3OAhmtAQMGsCaJXAUyWgsXLmR4+ZoxaB0+fJjh5SuQ0Xr06BHDSzdjpE0SaYWGhqKVlZWWlzRjsCWJtOLi4jB//vyMJNHHx4czSSRSq9VYoUIFLS9pxliyZAlrgYxWmzZtGElilSpVOAtktMaMGcOZJLIVyGitW7eO4eUrkNE6f/48w8tXIKP1+vVrBtzzNWPQ+vnzJ2bJkkXLK1QgI0pKSkIXFxdGksjXjEGrbt26jGexVq1auGDBAtYkkVb37t0Z7xdpxhBKEmfOnMnwlihRAseMGcNaIKO1a9cuhpfvQILWrVu3GN48efJgjx49WAtktD59+oTm5uZaXr4CGa3o6GjMlSuXlleoQEaUmpqK7u7uWl6hAhktpVLJeBZJgez58+e86zRkyBDG+0WaMe7du8e73y5btozhLVasGI4YMYL1QILW8ePHGV7SjHH69GlGgYzW06dPGV6+xn9a4eHhjGIqfSDBViAjSkhIQAcHBy0vOZDgKpARqdVqrFKlCmO/rVu3LmeBjFb79u0Zf2e+ZgxaEydOZHjd3d05C2S0Nm3axPDyNWPQunz5MsPL1/hPKyAggAH3dOM/334bERGB2bJl0/KSZozNmzezFsiIkpOTGU3LpPGf60CCVsOGDRn7bc2aNXH+/PmsBTJaffr0YbxffI3/tObOncvwurm5cRbIaO3fv5/h5SuQ0bp37x7Dy1cgoxUSEsIopvI1Y9CKjY3FvHnzanmFGv+J1Go1litXjrHf8jVj0GrRogVjv+Vr/Kc1YsQIxvtVpkwZzgMJWqtWrWJ4yYEEW4GM1unTpxneAgUKYN++ffHkyZO8++2LFy8YxVS+Ahmt79+/o52dnZZXqEBGlJiYiIUKFdLyCjVjEKnVaqxZsyZjvyUFsjdv3nB6ERE7d+7MeL/4Gv9p6cOa27dvZ3gNwZofPnzgZE22Zgxa+rJmiRIlGPstXzMGrfRmTb5mDFqLFi1ieA3Bmo8fP2Z4+Rr/aenDmvHx8bysyVcfU6vVWLFiRcazaAjWHDt2LOP94mvGoKUPa164cIHh/dNZk+2CrKFYs0ePHoz3i6/xn5Y+rLl7926Gl68Zg9bt27cZXkOwZkxMjNFYU6VSMZ7FP501T5w4wfAaijXTXpAVasYg0pc1q1atythv+ZoxaKU3a/I1Y9DavHkzw/snsCZfnT2jWJPrkjmtRo0aMfZbQ7DmvHnzGF6+Zgxa+rDm/fv3GV6ZNbnXeOTIkYz3i6/xn5Y+rHnmzBmGl68Zg9bLly+NxpppL8gaijW7dOnCeL+MzZpCdfbr168zvIZgzaioKAZrCjX+E+nLmk2aNGE8i3yN/7QGDhzIeL8MwZpHjhxheA3BmmFhYZysydb4TyujWJOr8Z9W27ZtGWtsCNZcv349w2sI1nzz5k2mZM169eppeYUa/2npw5qzZs1iePkumdPKCNbkavyn9fnzZ6OwpizjSm4clBsHZekhcitHSpJIRH7BkSRRTIGMFpkAUa5cOVEFMlpk2qDYAhktMgHCwcFBVIGMFpk2mCtXLuzSpQvr7VAukQkQfLdDuUQmQAjdDmUTmTZI3w4VKpAR0RMgyO1QoQIZLTJtkCSJQgUyWmQCBEkShQpktMi0QZIkHj9+nDdJpEWmDYptxqBFJkDY2tpqCmR8SSItMm3QwsJCdDMGEZkAQRfIhJJEInraIH07VOyzSCZA8N0O5RK5lUMniXzARotMGyRJolCBjBaZAEGSRKECGS0ybZAkievXrxedJJIJEORAYunSpYIHEkRk2iBdIGO7HcolMm1QbDMGLTIBgu92KJfItEG+26FcIhMg6NuhfAUyWmTaIH0gwVcgo0UmQNC3Q/kKZLTIBAj6QEKoQEZETxusVKmSqAIZLTIBolSpUqIKZLTItEG6GUPsfksmQIgtkNEi0wbFNv7TIhMghG6HsolMgJDS+E9Epg3St0OFCmRE9AQIcjtUqEBGi0wbJAcSQgUyWmQCBDmQECqQ0SITIMQ2/tMi0wbFNmPQIhMgxDb+0yLTBoVuh7KJTIAgBTKu26FcItMG6duhYp9FMgGCvh0q9lkkEyDEHkjQItMGyYGEUIGMFpkAYWtriy1bthQskNEi0walFMiIyAQIKc0YRPS0QbGN/7TItEHSjME2iYhLZAKE2MZ/WmTaIGnGYJtExCUyAYJvEhGXyLRB+kBCbO6jL2sWLVpUb9YU24xBi0yAMDRrkgkQmY018+TJYxTWJBMg9GFNsc0YtMgECLHNGLTIBAh9WJNuxpDCmra2tkZhTTIBwtisKdSMQYtMgNCHNcU2Y9AiEyDENmPQolmTNGNIYU1XV1edWZNMgDA0a5IJEIZmTTJtMD1YU6gZg1Za1hTTjEFETxvUhzXFNmPQItMGxTb+09KHNcm0wczGmoULF04X1hTTjEGLTBt0dXUV1YxBi2ZNMc0YtPRhTTJt0NCsSaYN0qwp1IxBpC9rkmmDYi+Z00rLmkLNGLQIa4ptxqBFpg2KbcagRbOmmGYMWmTaoDFYk0wb1IU1ybRBQ7MmmTYotvGfVlrWFGrGoEWmDRLWlNKMkZY1ly1bZjDWJNMGDc2aZNqgPqxJGv+lsCaZNij2kjktMm2QZk2+xn9aaVlTTOM/ET1tsHLlyqIa/2nRrCmm8Z8WmTaY2ViT5D66sqaUS+ZEZNqglMZ/IjbWFGr8p0WmDRLWFGr8p5UerCm28Z8WmTZoaNYk0walNP4TGZM1ybRBfVhT7CVzWX+O5MZBuXFQlh66ffu24O1QLr1+/VrwdiiXwsPDBW+Hcik+Ph6XL18uOkmkpVarcfXq1ZKSRFrbtm2TVCCjdfjwYUlJIi0/Pz9JBTJaDx8+lFQgoxUYGCipQEYrIiICV65cKbpARispKQmXL18uOkmkpVarcd26dZKSRFq7d++WlCTSOnnypKQkkdb169clFchoPXv2DHfs2CE6SaQVEhIiqUBGKyYmBpcvXy46SaSVmpqKK1eulFQgo7V582bB26FcOnDggODtUC6dO3dOUjMGrbt37wreDuXS27dvBW+Hcun79++SDiRoJSQk4PLly0UXyGip1Wpcs2aNzqO6d+zYIalARuvo0aOSCmS0Ll++LKkZg9bjx48lNWPQCgoKErwdyqXIyEhcuXKl6AIZrZSUFFyxYoWkAhmtDRs2SDqQoLVnzx5JBTJap06dwtOnT+u03968eVNSgYzWy5cvJTVj0AoLC5PUjEErLi4Oly9fLvpAglZqaiquWrVK8HYol7Zu3SrpQILWwYMHdc59Lly4IKnxn9b9+/clFchoBQQESCqQ0fr586ekAhmtxMREXL58uehmDFpqtRrXrl0reDuUSzt37pTUjEHr+PHjgrdDuXT16lVJBxK0/P39JR1I0Pr8+bOkxn9a0dHRuHz5ctHNGLTIfiulQEZr48aNkgpktPbt2yepQEbrzJkzkpoxaBmbNXXJffRlzVWrVklqxqClL2tKafynZSzW/PDhg1FYMzk5WS/WXL9+vdFYU0ozBq30YE1dch+ZNaXp/PnzerHmvn37jMKaUpoxaJHcR2ZNcTIma65YscJorCmlGYPW3r17dWbN06dPS2rGoPWvsSbJfYzBmocOHfrnWHPVqlU6sSaps+vKmuvWrZPU+E9r165derOmLrmPvqwppRmDVmZlzU2bNhmFNc+ePas3a+qS+xiTNZctWya68Z8WOdc0BmseOXJEZ9a8dOmSzqz56NGjTMmaK1as0Ik1Ef836V3XOntmZM3nz5/rzJpfvnzRmTVjY2ONzpq61tn1OdeU0vhPS1/W3LJlyz/FmrKMq4xoHFTg/xrjZPFIoVA4AEAwAEBwcDA4ODgY+SeSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFn/gkJCQsDR0ZH80RERQ/T9nib6fgNZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLVuaR3Dgo659RZGQk6DphMyoqClJTU3XyxsbGQlJSkk7epKQkiIuL08mLiBAZGamTFwDg9+/fOnv1fV1d10mfNY6OjoaUlBSdvPHx8ZCYmKiTNyUlBWJiYnTyIqJe65QZ1zgqKgrUarVO3piYGEhOTtbJm5iYCPHx8Tp51Wo1REVF6eQFMO466fO6+jyLuu63cXFxeu23sbGxOnn13W+NtU767rf6PIu67rcJCQmQkJCgkzclJQWio6N18gIY93nSx2uM/TY2Nvaf228z4xrru9/qmvskJyfrtd/+a+ukb+5jjP02NTVVr/32X8t99GFNfXMfY7FmZs19ZNYUL2N65dxHvP61/PZfZM1/se6jz34r5z7SXvdf2m/l3Eea/kXW/NeeRWOyppz7iJcxcx/5XFPa6+rq1Tf3MQZrAmTO3EdmTWnKjGucWfdbY7GmrL9PcuOgrH9Gz58/B2dnZxg4cCCcO3dOEpxERERAoUKFoHv37nD48GFJxSBEhJIlS0K7du1g165d8PPnT9FeMzMzqFOnDqhUKli/fj18+fJFtFehUEC3bt2gQYMGsHTpUnj//r1oLwDA1KlToWrVqjB79mx49uyZpF+WW7ZsgbJly8LEiRPh7t27khKiq1evQrFixWD48OFw+fJlSQnRx48fwdHREfr27QunTp2SlBDFxcWBi4sLdO7cGQ4cOCDpl6VCoYBy5cpBq1atYNu2bfDt2zfRXlNTU/Dx8YEmTZrAmjVr4PPnz5Jed9CgQVCnTh1YtGgRvHnzRtI6LVy4ECpVqgTTp0+Hx48fS/IePHgQSpUqBWPHjoWbN29KSogePXoELi4uMHjwYLhw4YIkOAkPDwcnJyfo2bMnHDt2TFJClJKSAsWLF4f27dvDnj17ICIiQrTX1NQUqlWrBs2aNYNNmzZBWFiYaK+JiQm0a9cOGjVqBCtWrICPHz+K9gIAjB07FmrUqAHz5s2DFy9eSFqnNWvWgIeHB0yZMgUePHgg6Vk8d+4cuLq6wqhRo+Dq1auSAPTNmzdQqFAhGDBgAJw5c0bSfvv7928oVKgQdO3aFQ4dOiQJThAR3N3doW3btrBjxw748eOHaK+ZmRk0bNgQfHx8YN26dRASIn6qs0KhgJ49e0K9evVgyZIlEBAQINoLADBjxgyoUqUKzJo1C54+fSppjXfu3AmlS5eGCRMmwJ07dyQ9i7du3YKiRYvCsGHD4NKlS5LgJDg4GJycnKBPnz5w8uRJScWg+Ph4KFKkCHTq1An27dsnCeZMTEygYsWK0LJlS9iyZQuEh4eL9pqamkKzZs2gcePGsGrVKvj06ZNoLwDA0KFDoXbt2rBgwQJ4/fq1pHVaunQpVKhQAaZNmwaPHj2S5D169CiUKFECxowZAzdu3JD0LPr7+0PhwoVh0KBBcP78eUn77Y8fP8DJyQl69OgBR48elVQMSk1NBTc3N/D19YXdu3fDr1+/RHvNzMygZs2a0LRpU9i4cSOEhoaK9pqYmEDHjh2hYcOGsHz5cggMDBTtBQCYOHEiVK9eHebMmQPPnz+XtE4bN26EsmXLwqRJk+DevXuS9ls/Pz8oXrw4jBgxAq5cuSIp93n//j04OTlBv3794PTp05Jyn5iYGHB2doYuXbrAwYMHJe23CoUCypQpA61bt4bt27fD9+/fRXvNzMygcePG4O3tDWvXroXg4GBJr9uvXz+oW7cuLF68GN69eyfaCwAwd+5cqFy5MsycOROePHkiaY337t0L7u7uMH78eLh165ak/fbu3btQpEgRGDJkCFy8eFHSfhsaGgpOTk7Qu3dvOH78uKTcJzExEYoUKQIdOnSAvXv3Ss59KleuDM2bN4fNmzfD169fJXlbtWoFnp6esHLlSggKChLtBQAYNWoU1KxZE+bPnw+vXr2StE4rVqyA8uXLw9SpU+Hhw4eSnsVTp06Bm5sbjB49Gq5fvy5pv33x4oVRWFOtVkPJkiWhbdu2sHPnTsmsWbduXb1Ys379+gZnza1bt0KZMmV0Ys1r167pzJpBQUHg5ORkcNY0MTEBDw8PvVlz9erVkllz8ODBRmHNQ4cOQcmSJXVizcePHxuFNZOTk43Gmr6+vkZhzbVr14KHhwdMnjwZ7t+/b1DWdHJygv79+0tmzcjISHB2dtaZNUuVKgVt2rQxOGv26tVLZ9acOXOm0VnTz89PUu7z+fNno7CmqakpVKhQAVq0aCGZNU1MTKB58+Y6s+awYcOgVq1aBmfNY8eOZUrWdHV1BV9fX53q7LqypkKhgE6dOkHDhg1h2bJlmYY1L126pDNrBgYGGo01y5YtaxTW7N+/P9StWxcWLVoEb9++Fe0F0I819+3bB+7u7jBu3DjJrHnv3j29WbNXr16SWTMpKQmKFi1qFNZs3bq1UVhz5cqVGtaUWmdPL9Y8e/aspNzn169fRmVNpVKpE2t2795dZ9acNm1apmRNcq4pNfdJL9bcunWrZNZUKpU6sSYAwKBBg6B27dqwcOHCf4I1v337lm6sKaXObmpqCtWrV08X1vzw4YNoLwDAuHHjoEaNGjB37lyDsub58+ehePHiMHLkSLh69aqkZ/Ht27dQqFAhnVlT13NNAAB3d3ejs6bUOrusv1CIKIdAAIADACAAYHBwMMrKvGrYsCGStbS1tcXmzZvj5s2b8evXr4LePn36aLwWFhbo6emJK1euxKCgIEHvvHnzNF4TExOsWbMmzp8/H1+9eoVqtZrXu3//fo0XALB8+fI4depUfPjwIaampvJ679+/r+V1c3PD0aNH4/Xr1zE5OZnXGxISghYWFhqvk5MTDhw4EM+dO4cJCQm83tjYWMybN6/GmydPHuzevTseOXIEo6Ojeb1qtRrLlSun8WbNmhXbtWuHO3fuxB8/fvB6ERFbtGih8VpbW6NSqcT169fjly9fBL0jR47UeM3MzLBBgwa4dOlSfP/+vaB31apVGq9CocCqVavi7Nmz8dmzZ4JrfObMGa11KlOmDE6cOBHv3r0ruMYvXrxAhUKh8RYtWhSHDx+Oly9fxqSkJF7v9+/f0c7OTuMtWLAg9u3bF0+dOoVxcXG83sTERHR2dtZ4c+bMiZ07d8YDBw5gZGQkr1etVmPNmjU1Xjs7O2zVqhVu27YNv337xutFROzSpYvGa2lpiU2aNME1a9bg58+fBb1Tp07VeE1NTbFOnTq4cOFCfPPmjaB3+/btWutUqVIlnDFjBj5+/Fhwja9du6blLVWqFI4dOxZv3ryJKSkpvN4PHz6gmZmZxlu4cGEcPHgwXrhwARMTE3m9UVFRmCNHDo03X7582LNnTzx27BjGxMTwelNSUrBEiRIab7Zs2bB9+/a4Z88e/PXrF68XEbFJkyYar42NDTZr1gw3bdqEYWFhgt4BAwZovObm5tioUSNcsWIFfvz4UdC7aNEirf22Ro0aOG/ePHz58qXgOh05ckRrnTw8PHDKlCl4//59wWfx8ePHWl5XV1ccOXIkXr16VXC/DQsLQysrK43X0dERBwwYgGfOnMH4+Hheb3x8PObPn1/jzZ07N3bt2hUPHTqEUVFRvF61Wo0VK1bUeLNkyYJt2rTBHTt2iNpv27Rpo/FaWVmhj48Prlu3DkNCQgS9Y8eO1dpv69Wrh0uWLMGAgABB7/r167X22ypVquCsWbPw6dOngmt84cIFrXUqXbo0TpgwAe/cuSP4LL558wZNTEw03iJFiuCwYcPw0qVLgvvtz58/MUuWLBpvgQIFsE+fPnjixAmMjY3l9SYnJ2ORIkU03hw5cmCnTp1w//79+Pv3b14vImK9evW09tuWLVvili1bMDw8XNDbo0cPrdyncePGuGrVKvz06ZOgd9asWVrPYq1atXDBggX4+vVrwXXavXu31jpVqFABp02bho8ePRL03r59W8tbokQJHDNmDN64cUNwjT99+oTm5uYar7OzMw4aNAjPnz8vmPvExMRgrly5NN68efNijx498OjRo4K5T2pqKpYuXVprv/X19cXdu3fjz58/eb2IiCqVSiv3adq0KW7YsAFDQ0MFvUOHDtXabxs2bIjLly/HwMBAQe+yZcu0nsXq1avjnDlz8Pnz54LrdOLECa11KleuHE6aNAnv3bsnuN8+ffpUy1usWDEcMWIEXrlyRfBZDA8PRxsbG43XwcEB+/Xrh6dPnxbcbxMSEtDR0VHjzZUrF3bp0gUPHjwoKvepWrWqxmtvb4+tW7fG7du34/fv33m9iIgdOnTQ2m+9vb1x7dq1oth04sSJWrlP3bp1cfHixfj27VtB7+bNm7Xe68qVK+OMGTPwyZMngmt85coVLa+7uzuOHz8eb926JfgsBgQEoKmpqcbr4uKCQ4YMwYsXLwrmPr9//8Zs2bJpvPnz58devXrh8ePHRe23xYsX13izZ8+OHTp0wL1792JERASvFxGxUaNGGm9mYc0DBw5orVN6sOa1a9dEsaalpaXGmx6sefjw4QxnzZYtW2rtt/qwZv369UWz5urVq7X2W0Ox5suXL/8o1hST+6jVaqxVq5ZW7qMva65evVoUa06bNk1rv9WHNStWrIjTp08XxZrXr1/X8kphzY8fPxqNNUuWLKmV+xiKNQcOHKiV+6QHa7548UIn1pw8ebJRWLN///6iWbNAgQIaryFZs23btlq5j7FZ09/fX3CNL168qLVO6cGafn5+gvvtr1+/0pU1O3bsiPv27ZPMmra2ttiiRQvRrNmzZ0+t3MdQrLlnzx6tdUov1hR6Fj9//vxHsGbWrFnR19cXd+3aJYo1mzZtqpX76MOaDRo0wGXLlolizeXLl2s9i/qwZtmyZUWz5rNnz7S8Uljz27dvRmPNatWqabz6sKalpaUk1pw0aZJW7mMs1ixVqhSOGzdOFGu+f//eKKyZkpJiNNbs27ev1n4rhTXnz5+vtd+mB2s+ePBA8Fl88OCBlldf1hwwYACePXtWcL+Ni4vDfPnyabz6sGaWLFmwbdu2BmHNUaNGaeU+hmLNs2fPaq2ToVjzx48ffwxrtmzZErdu3SqKNbt27aq13+rDmrVr1xbNmjt27NBaJ31Ys2TJkjqzprOzs4Y1hZ7FqKgozJkzp8ZrSNb09vbWeNODNZcvX44fPnwQ9C5evFhrvzUWaxYvXlw0a8oyroKDg+m1c8D06IlLj2/ytwfIjYN/jW7cuKG1AdIJkVDjQVBQkNYvOTpIMej27dusvyyjo6O1fsnRIVQMSk1N1folR0eBAgWwd+/evMUgHx8fVq+YYtCgQYNYvWKKQUuWLGH1iikGHT16lNUrphj05MkTVi+AcDHo69evaG1tzeoVKgbFx8djwYIFWb2FChXiLQap1WqsXLkyq1dMMahdu3asXlIM4ms8GD9+PKvX2toaVSoVbzFo48aNrF4xxSA/Pz/OZ7FatWq8xaB3795pFVTpECoGRUREYNasWVm9QsWg5ORkLFq0KKtXTDGofv36rF4xxaBevXqxesUUg+bMmcPqFVMM2rt3L6uXFIMWLVrEWQy6e/cu57MoVAz6/PmzVuMyHULFoJiYGMyTJw+rV6gYlJqaimXLlmX1iikGNWvWjNUrphg0fPhwzv1WqBi0YsUKzv1WqBh06tQpzv1WqBj0/PlzzjUWajz49u0b2trasnrd3Nxw1KhRnMWgxMREdHJyYvUKFYPUajVWr16d1Zs7d27s1q0bbzGoU6dOrF4xxaDJkydz7rdCxaCtW7eyesUUg65evcq53woVgwIDA7UKqnQIFYMiIyMxe/bsrF6hYlBKSgq6urqyesUUgxo3bszqFVMM6tevH6tXTDFowYIFnPutl5cXbzHo0KFDnPutUDHo4cOHnM+iUDEoNDRU6zCZDqFiUNqCKh10MYhtv1Wr1Vi+fHlWr5hiUKtWrVi9YopBo0ePZvWSYtDGjRs5i0Fr165l9YopBp07d47zWaxevTrOnTuXsxj0+vVrrYIqHULFoB8/fqC9vT2rV6gYlJSUhIULF2b1imk8qFOnDud+K9R40K1bN879VqjxYMaMGaxeMY0HO3fu5NxvhRoPbt68ybnGQo0HGcWaLi4uOHToUF7WLFWqFKs3o1lz8ODBrN6MZs1jx46xesWwpr+/P+d+m5GsmZCQIMiaXE2XfKwp5oKfr68vq1dM40FGsCa54MfHmpcuXeJ8Fv9W1mzQoAGrVwxr9u7dm9VLWJOv6ZKPNckFPy7W3LdvH6tXX9YkF/y4WDM4ODhDWLNw4cI6s2a+fPkEWbN58+as3oxmzZUrV3Lut4Q1uZouxbAm1wW/58+fc+Y+Qo0HxmTNGjVqsHozmjWnTJnCud/+yazJlfsQ1rxz547OrMl1wS8lJQXd3NxYvYQ1T548KZk1xVzw69+/P6v3T2bNR48ece63Gc2a9CVZOoQaD/RlzdatW7N66Qt+XKw5ZswYVq++rEku+HGx5vnz5zmfRX1Ys1y5crys+fPnzz+ONXPlyiXImt27d+fcbwlrctXZ9WHNXbt2ce63hDXfvXvH6hVizZkzZ/KyJt24TEfp0qVx/PjxvKxJNy7TQbMmV+7DxZr58+cXZE2lUsm532Ykay5dupTVS7MmV509o1nz4cOHrN7w8HBB1uQaJiPEmnwX/NRqNVapUoXVqy9rtmvXjpc1J0yYwOr9k1kz7SVZOjKaNYsVK8bqpVmTK/fJKNYUuuA3d+5cVq+YYTJ8rFmnTh1e1rx37x7ns5iRrBkbG5spWVOW8SQ3DsqNg7L0UHBwMPr7+2vdsuOKtMWgb9++ob+/v9atZq5IWwz6/fs3+vv7c/6CpCNtMSguLg79/f21bhNwRdpiUEpKCvr7++OmTZsEvWzFoOfPn+Pp06cFvWzFoLdv3+Lt27c5C3V0pC0Gffz4EZ88eaJ1y44r0jYehIaGor+/v9ZEF65IWwz68eMH+vv7cxYH6EhbDIqKikJ/f3+tm5RckbYYlJCQgP7+/rhw4UJBL10M+vTpE6rVavT392dMZmILtmLQq1ev0M/PjzNZpSNtMej9+/f44MEDzkIdHWmLQZ8/f8YnT55wNoXQkbYY9PXrV/T39+dMVukgxaCjR49iTEwM/vr1C/39/bWmSHBF2saDmJgY9Pf35zz8oiNtMSgpKQn9/f21plJyBVvjwbNnzzibadM+i2mLQW/evMEbN25wFuroSFsM+vDhAz569IizKYSOtMWgkJAQ9Pf35yzU0ZG2GET2W67iAB1pGw/IfsvV+ENH2mJQfHw8+vv7a91c5wpSDCJNl6mpqejv789ZcKeDrRj04sULPHfuHGehjl7jtMWgd+/e4d27dzkLdXSkLQYFBQXhkydPOAt1dKQtBpH9lutghI60jQc/f/5Ef39/zqZnOtIWg6Kjo9Hf319rag9XpC0GJSYmor+/P2ezAR1sxSB/f3/GFGC2oItBpOny1atXeOXKFc6DETrSNh68f/8eHz58yNkUQkfaYhDJfbgKdXSkLQaFh4ejv78/enp6CnrTFoMiIiLQ399fa2IhV6QtBsXGxqK/vz9noyUdaYtBycnJ6O/vj+vWrRP1LKYtBj179owxnYDrWUxbDHr79i3eunWLs1BHR9pi0MePH/Hx48echTo6SDGI5D5fvnxBf39/rFSpkqA3bTHo+/fv6O/vrzWtmStIMYhMFo6MjER/f3+tm5RckbbxgOy3XAUgOtIWg0juk/a2LFuwNR68fPkSL1y4wNkUQkfaYlBAQADeu3ePs1BHR9pi0KdPn/DJkyecTSF0pC0GhYWFob+/P+fBCB10MSgmJkaz39JTJLgibTGI5D5ch1900I0HdO7D1dhOB2k8oKc9PX36lPOAkw7SeEBPFn79+jVeu3aNs1BHB5ksTBoPAgMD8eHDh5yFOjrSNh6Q/bZMmTKCXpo16dzHWKw5ffp0Qa+VlZWGNUNCQtKNNcXkPoQ1yQW/9GBNrqYQOooWLao1WZjkPvREF64g057SkzWHDRsm6KVZMzw8PF1YM+1kJrb4E1mTqymEDsKa5IKfIVmTbjxID9akJ4VwBVvjwbNnzzgPONM+ixnBmlxNIXRkBGvS05q5Im3jAcl9jMWa27ZtE/UskmlPhmZNMlk4PVmT/qQKrkjbeGBs1uRqNqAjo1iTqymEjgoVKmgu+KnVak3uYyzW5GrCo+NvYs2TJ08Kev9E1uS6gEBH2gt+6cGaXAMN6EjbeEByH31Yk+siER1sjQcvX77Eixcvisp9MoI1uZpC6MgI1uzYsaOgl7Bm2jq7sVjz8OHDgl62T7HRlzUfPXokijVdXV21WJPkPvqwJj1Biyto1qTr7PR0fK4wNmvSF/z0Zc07d+6IZk0yWTg1NVWT+xiLNelPBuKKP4U1Se6jD2teunRJVJ2dsCZdZ//TWZMeJpNerMnVaEmHjY0NNm3aFDdu3KiV+8isyR6ENckFv/RgTa5LJnQQ1iTDZIzJmrKMK7lxUG4clKWHxBxssoWtrS26u7vr5LWwsNAaTy0lTExM0MPDQycv+WWpq9fNzU1UMYItChUqJAqA2CJPnjxaY6KlRNasWbU+VlVKWFtbiwIvtjAzM9N5nRQKhV5rrOvPDPC/YhD9USZSomDBglofVyMlcubMKerQnC3s7e1FFSTZwtLSkvPGhVCYmpoa7VksVaqUqOIvWxQuXFhU8Zct8uXLJwpy2SJ79uyimkLZwsbGJlPut7r+twXwv2IQ/VEmUsLJyUnro/qkRO7cudHFxUUnb5YsWXTeb62srHR+v/Tdb/V5FsuUKSNYcOKKIkWKaH2UiZQoUKCAqAI/W+TIkUNU4Zgt7OzsdH4WLS0tdX6vjbnflixZUuujTKSEs7Mz5s6dWydv3rx5sVChQjp5s2XLJqpYxRY2NjaiLtOwhbm5uc7vtb65jz77bfHixbU+ykRKODo6iio4sUWuXLm0PgJOSmTJkoVz8rhQ6LPfGvNZdHd3F3XYxhYuLi6iir9skT9/flEXl9giR44cWh87JSUyK2vq8yzKrCk+ZNaUFvqwpp2dncyaEsJYrJktWzajsKY+uY+xWVPMwTdbyKwpPvRlzdKlSxuNNR0cHHTyGos19cl9/lXW1DX3kVlTWujDmg4ODkZhTXt7e5k1JYSLiwvmyJFDJ68+rJk9e3aZNSWEMVlTzGUJtpBZU1rIrCk+jM2aYpqs2SKzsqYxch9jsybfJHdZGa+MaBxU4P8a42TxSKFQOABAMABAcHAwODg4GPknkqWLBg0aBKtXrzb2jyFLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLVqZU9uzZoUmTJtCuXTtQqVSgUCiM/SP9EwoJCQFHR0fyR0dEDNH3e5rp+w1kyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS9bfrQIFCoBKpQKlUgn169eXmwYzueTGQVn/jPLlywclSpSA0NBQiIyMFOXJmTMneHt7g729PVy6dAl+/vwJP378EOW1s7ODxo0bg4uLCxw/fhxiYmIgNDRUlNfS0hLq168PlSpVgj179kBycjJ8+vRJlNfU1BRq1qwJnp6esGXLFjAxMYGAgABRXgCASpUqgUqlgkOHDkFycjK8fv1atLdUqVKgUqng/v37EBYWBoGBgZCUlCTKW7hwYVCpVBASEgKvXr2C4OBgiI2NFeXNly8fKJVKUKvVcOvWLfj27RtERESI8mbLlg2aNGkCuXPnhnPnzsHv37/h27dvorw2NjbQqFEjKFmyJBw6dAji4+MhJERcQ7e5uTnUrVsXatSoAbt27YLU1FT4+PGjKK+JiQlUq1YNlEolbNy4EczNzeHt27eivAAAHh4eoFKp4Ny5cxAdHQ3v3r2D1NRUUV5XV1dQqVTw4sUL+PTpE3z8+BESEhJEeR0dHUGlUsGvX7/A398fQkNDISoqSpQ3d+7c4OPjA5aWlnD16lX48eMH/Pz5U5Q3S5Ys4OXlBQ4ODnDq1CmIjo6GsLAwUV4rKyto2LAhlCtXDvbv3w+JiYnw+fNnUV4zMzOoVasW1K9fH7Zt2wYAAIGBgaK8CoUCqlSpAkqlEvbs2QNqtRrevHkjygsAULp0aVCpVHDjxg348eMHvH//HpKTk0V5ixQpAiqVCj5+/Ahv376Fz58/Q1xcnChvgQIFQKlUQkJCAty/fx++fv0Kv3//FuXNkSMHeHt7Q7Zs2eDixYvw69cv+P79uyivnZ0deHp6QtGiReHYsWMQGxsLX758EeW1sLCA+vXrQ5UqVWD37t2QkpICQUFBorwmJiZQs2ZNaNy4MWzZsgVMTU3h3bt3orwAABUrVgSlUgnHjx+HhIQEePPmDYidBF2iRAlQqVTw+PFj+PLlC3z48AESExNFeQsVKgQqlQrCw8Ph+fPnEBISAjExMaK8efPmBR8fH1AoFHDz5k34/v07/Pr1S5Q3a9as0KRJE8iXLx+cOXMGIiMjITw8XJTX2toaGjVqBO7u7nDw4EFISEiA4OBgUV5zc3OoU6cO1K5dG3bs2AFqtRo+fPggyqtQKKBatWqgUqlg8+bNYGZmJulZLFeuHKhUKrh48SJERkZK2m+LFy8OKpUKXr9+DR8+fIBPnz5BfHy8KK+DgwMolUqIioqCx48fS9pvc+XKBd7e3mBjYwNXrlyRlPvY29tD48aNoVChQnDy5ElJ+62lpSU0aNAAKlSoAPv27YOkpCRJuU+tWrWgYcOGsHXrVlAoFPD+/XtRXgCAypUrg0qlgv3790NKSoqkNXZ3dweVSgV37tyB8PBwSfuti4sLqFQq+Pz5M7x+/VpS7pM/f35QKpWQlJQE9+7dk7TfZs+eHby9vSF79uxw8eJFiIiIEJ372NraQqNGjcDV1RWOHDkCcXFxkvbbevXqQdWqVWH37t2Sc5/q1auDt7c3bNq0CczMzCTtt+XLlweVSgWnT5+G2NhYePv2LajValFeNzc3UKlU8PTpUwgODpa03zo5OYFKpYIfP37A06dP4cuXLxAdHS3KmydPHvDx8QEzMzO4fv265P3Wy8sLChQoAKdPn4aoqCj4+vWrKK+1tTU0bNgQypQpAwcOHJC035qZmUGdOnWgTp06sH37dgCQnvuoVCrYsWMHKBQKSc9i2bJlQalUwtWrV+HXr18QEBAAKSkporxFixYFlUoF79+/h4CAAEn7bcGCBUGpVEJsbCw8fPgQwsLCDMqaRYoUgWPHjv0zrKlUKuHBgwcGZc28efOCUqkERNSbNaXkPunBmjVr1oSdO3dKyn3+BNZ8+fIlBAUFGYw1c+XKBT4+PmBlZWVw1mzQoAF4eHjozZpSch+FQqHJffRhTcICfztr2traQuPGjTMda1aoUAFUKpXMmiJkbNZUKpWwZcsWg7JmsWLFQKVSwdu3byEwMFAn1oyOjoZHjx4ZnDWdnZ3hxIkT/xRr3r59G759+6YTawYHB0vOffRlzSZNmkDOnDnhwoULBmXNunXrQvXq1XWqsxubNZ89ewafP3+WWZNHhDXr1q2rc51dV9YsU6YMqFQqo7FmXFychoEyG2tKyX3SgzWVSiUcOXIEkpKSJOU++rCms7MzqFQqCA0NhZcvX0rOff5F1lSpVLBhw4ZMx5oRERHw5MkTg7Gmvb09eHl5gZOTk+Q6u8yahmfNrFmzgp+fn0FZk66z68KaXl5esHnzZp1ZU6VSgYeHh9ws+DcpPT7v+G8PAHCA/z4jOjg4WPAzpWX9uUpMTERHR0fez2UvWbIkjh07Fm/evIkpKSkar1qtxurVq/N6nZ2dcfDgwXjhwgVMSEjQeu2OHTvyevPmzYs9e/bEo0ePYnR0tJZ38uTJvN5s2bJh+/btcffu3fjz508t75YtW3i9NjY22KxZM9y4cSOGhoZqea9cucLrNTc3x0aNGuHy5csxMDBQy/v+/Xs0NTXl9CoUCqxevTrOnTsXX7x4gWq1WuP9/fs3Zs+enfe1PTw8cPLkyXj//n1MTU3VeFNSUtDV1ZXXW7x4cRw5ciRevXoVk5OTtX5uT09PXq+DgwP2798fz5w5g/Hx8Vrefv368Xpz5cqFXbt2xUOHDmFUVJSWd/78+bxee3t7bNOmDe7YsQO/f/+u5T148CCv18rKCn18fHDdunWMPezhw4e8XlNTU6xXrx4uWbIE3717p+X98uULWlpa8q5xlSpVcObMmejv76+1xnFxcZgvXz7e1y5dujSOHz8eb9++zXgWPTw8eL0uLi44dOhQ9PPzw8TERK2fu1WrVrze/PnzY+/evfHEiRMYGxur5R01ahSvN3v27NixY0fct28fRkREaHnXrFnD67W1tcUWLVrgli1b8OvXr1rec+fO8XotLCywcePGuGrVKgwKCtLyvnr1ChUKBafXxMQEa9WqhQsWLMBXr15prdOPHz/Q3t6e97UrVKiA06ZNw4cPH2p5k5KS0NnZmddbokQJHDNmDF6/fl3rWVSr1Vi7dm1eb6FChXDQoEF47tw5xn7btWtXXm+ePHmwe/fueOTIEcZ+O336dF5v1qxZsV27drhr1y7Gfrtz505er7W1NapUKtywYQN++fJFy3vjxg1er5mZGTZo0ACXLVuG79+/1/IGBQWhmZkZ77NYrVo1nDNnDj5//lxrnaKiojBnzpy8r122bFmcNGkS3rt3T2u/TU1NxZIlS/J6ixUrhiNGjMArV65gUlKS1s/t4+PD6y1YsCD269cPT506hXFxcVreQYMG8Xpz5syJXbp0wQMHDmBkZKSWd8mSJbxee3t7bN26NW7btg2/ffum5T169Civ19LSEps0aYJr1qzBz58/a3mfPHnC6zU1NcW6deviokWL8O3bt1resLAwtLa25vVXqlQJZ8yYgU+ePNFa4/j4eCxYsCCvt1SpUjhu3Di8desWY7+tXLkyr7dw4cI4ZMgQvHjxImO/bdeuHa83X7582KtXLzx+/DjGxMRoecePH8/rzZ49O3bo0AH37t2Lv3790vJu2LCB12tjY4PNmzfHzZs3Y1hYmJbXz8+P12tubo6enp64cuVK/Pjxo5b33bt3aGJiwuk1MTHBmjVr4rx58/Dly5da6xQREYFZs2blfW0PDw+cMmUKPnjwQOtZTE5OxqJFi/J63dzccNSoUXjt2jVG7lO/fn1er6OjIw4YMADPnj3LyH169erF682dOzd269YNDx8+zMh9Zs+ezevNkiULtm3bFnfu3Ik/fvzQ8u7du5fXa2VlhUqlEtevX48hISFa3rt37/J6zczMsH79+rh06VIMCAjQ8n7+/BktLCw4vQqFAqtWrYqzZ8/Gp0+faq1xTEwM5smTh/e1y5QpgxMnTsQ7d+4w9tsyZcrweosUKYLDhg3DS5cuMfbbZs2a8XoLFCiAffv2xZMnTzJyn+HDh/N6c+TIgZ06dcL9+/fj79+/tbwrVqzg9drZ2WHLli1x69atGB4eruU9deoUr9fCwgK9vLxw9erV+OnTJy3v8+fPeb2mpqZYu3ZtXLhwIb5580Zrnb59+4a2tra8/ooVK+L06dPx8ePHWl4prHnjxo10Zc1OnTrxevVhzaxZs6Kvry8ra27dupXXqy9rNmzYkJU1AwMDM5Q1y5Urly6smfZZbNy4Ma83PVjz4MGDjNxnwYIFvN70YM21a9emK2uGhoailZUV7xrrw5ru7u6crFm+fHleb0ax5ujRo3m9fwJrps19Xr9+neGsOXXqVFbWLFy4MK9XH9Z0cnLCgQMHsrJmt27deL18rDljxgxeb0ax5s2bN3m96cWaz54901qn6Ohog7Dm5cuX05U1Bw8ezOvVhzXt7OywVatWrKx57NgxXq++rFmnTh1W1vz69avOrJmQkGAQ1rxw4QJjv/X19eX1pgdr7tmzh8GaGzdu5PWmB2uuWLECP3z4oOX9k1nT1dWVkzUbNGjA680o1pwzZw6vl4819+3bx+tND9ZcsmQJgzWDg4MznDUnTJjAypply5bl9erLmn369El31ly5ciWvN71YM22d/fnz57y5T3qx5qNHjxis6eTkxOtND9Y8f/68TqzZo0cPVtacMmUKr1cf1rS2tsamTZuysubVq1d5vRnFmpGRkXqxppubG683PVjz9OnTjNynf//+vN70YM3t27czWPPQoUO8Xn1Zs27durh48eJ0Z838+fPzvnZGsWbr1q15vRnFmmvXruX18rHm+fPneb3pwZrz589nsObPnz8zlDXd3Nxw9OjRDNZERKxTpw6v909kzV27dvF6+VhTlvEUHBxMr5MDpkdPXHp8k789QG4c/Gu0bt06xobHlyTSunDhAmsCUb16ddZmDFqvX79mhfty5cqxFsho/fz5E7NkycLw8jVjECUlJaGLiwvD6+DggP369WNNEmnVrVuX4c2VKxd26dKFNUmk1b17d4aXNGOwJYm0Zs6cyfBaWlqit7c3a5JIa/fu3QwvnSSmLZDRunXrFusvxcqVK+PMmTMZBTJanz59QnNzc4aXJIlpC2S0oqOjMVeuXAwvSRLZmjGIUlNT0d3dnTNJPH78OCNJpKVSqViTRNKMkTZJpDVkyBDWJJEUyNImibSWLVvGmiRyNWPQOn78OGuSWLNmTdYkkdbTp09Z17h8+fKaJJHrWQwPD2ctpvIliUQJCQno4ODAmySmLZARqdVqrFq1KmeSyFYgo9W+fXvOJJGtQEZr4sSJnEni+vXreZPETZs2MbzkQGLp0qWMAwlaly9fZt1vSYEs7YEErYCAAFa4J80Yd+/e5VzjiIgIzJYtG8NbtGhRHD58OOuBBFFycjIWL16c4S1YsCD27duX9UCCVsOGDRnenDlzYufOnfHAgQOMAhmtPn36MLz0gUTaAhmtuXPnsu635EAibTMGrf3797Put+RA4s2bN5ze+/fvsz6LlSpVYm3GoBUSEsJaTC1VqhRr4z+t2NhYzJs3L8NLN2Nw7bdqtRrLlSvH8JJmjGPHjjEOJGi1aNGC4SWN/2wHErRGjBjB8JJmjE2bNjEOJGitWrWK4SWN/2wHErTOnDnDut/WqFED582bxyiQ0Xrx4gUr3JMDibQFMlrfv39HOzs7hpccSLA1/hMlJiZioUKFGF5yIMHWjEGkVquxZs2aDC9f4z+tLl26MLx8zRi0pk6dyvDSjf9pDyRobd++nXW/Jc0YaQ8kaF27do11v61SpQrOmjWLcSBB68OHD6wHyaVLl9YcSHA9i5GRkZgjRw6Glz6Q4HoWU1JSsESJEgwv34EErSZNmjC85ECCrUBGa8CAAQyvra0ttmzZkrVARmvRokUML1/jP63Dhw+zPoukGeP169ec6/T48WPW/ZY0/qc9kKAVFhbGWkwlzRhpDyRoxcfHsxZTSeM/24EEkVqtxooVKzK8efLk4TyQoNWmTRuGl+9AgtbYsWMZXvpAgi/3MRZrvnnzhpU1uZoxaOnDmsnJyVikSBGG1xCs2aNHD9b99k9mzdu3b7M+ixnNmjExMaysydf4T8TFmnzNGLT0Yc2hQ4cyvHQzRkax5okTJ1j3W0Owpo2NDcObHqzJ1oxBpC9rdujQgeHla8agxcaafM0YtDZv3szw0o3/fyJr/v7922is2ahRI4bXEKw5b9481v22SZMmrI3/tPhYkzRjcElf1mS7IMt1yZyWGNbky32MxZojR45k3W/FsObq1asZXkOw5suXLzlZk60ZgxYfa3JdMidKTExkvSDr6OjI2fhPZEzWnDZtGut+mx6smbYZg9b169dZ99v0YM20zRi0oqKieFmTrRmDKCUlhbVpma8ZgxYba/I1Y9AaOHAgw8vXjEFLH9Y8cuQI67P4p7NmgQIFGN70YE22Zgxabdu2ZXgJa7I1Y9DiY02hZoz169ez7rcNGzbEZcuW/ZGs+evXL6OxZr169Rhe0vivL2umbfynNWvWLIaXZs20jf+09uzZw/DyXTKnxceabI3/tD5//szJmmyN/7T0Zc3SpUszvH86ay5fvpz1WUwP1kzb+E/r2bNnrGtMWDNt4z8tIdZka/wnSkhIYL0gK5Y1q1WrxvDyNf7T0oc1J02axPCmF2vy1dnZLsj+6ayZkpLCypr0JXO+/VaW8SQ3DsqNg7L0ED0Bgi6Q8SWJRPStHL7boVwi0wb5bodyiUyA4LsdyiV62iDX7VAu0b/guG6HcomeNigmSaRFT4AgSaJQgYyIngAhtkBGi0wbJEmiUIGMFpkAIbZARotMG6QLZHxJIi16AgTX7VAu0bdy+G6HsomeNsh3O5RN9AQIsUkiET1tUGySSItMgCBJolCBjBaZNig2SaRFJkCQJFGoQEaLngBBN2OIWWN62iDf7VA20RMgxDZjENHTBvluh7KJngDBdzuUS2TaIN8kIi6RaYMmJiaa26F8BTJa9ASIihUrChbIaNHTBrluh3KJngAhpkBGi542yHc7lE30BAixzRi0yAQIvtuhXCLTBsU2Y9AiEyD4bodyiZ42yHU7lEv0BAhyO5SvQEaLnjbIN4mITfS0Qb7boWyiJ0CIbcagRaYNim3GoEUmQPDdDuUSPW2QNGOkvR3KJXoCBNftUC7REyD4boeyiZ4AIfZAgoieAEEOJIQKZLTItEGxBxK0yAQIciAhVCCjRaYN8t0O5RI9bZBuxhDjpSdAiGnGoEVPG+S7HcomegIE3+1QNtHTBvluh3KJTIDQ5XYomQAhtvGfFpk2yDeJiEv0BIiyZcsKFsho0dMGxRTIaNETIMQ2YxAZkzXJBAhDsyY9AYKwJl8zBi19WJOeAME3iYhNxmRNMgFCbDMGLX1Yk0yAyEysSU+AENP4T0tf1iQTIAhrCjVj0NKHNckECLGN/7SMxZr0BAhDsyaZAGFo1iQTIPgmEXGJTIAgrCnUjEFLH9akpw2KacagpQ9r0tMGMxNrkmmDhmZNetogYU2+Zgxa+rAmPW1QbDMGET1tUGzjP5G+rEmmDRqaNelpg5mZNYUumRPpy5pk2qDYS+a09GFNMm1QbOM/LXraoJjGf1r6sCY9bVDMJXNa+rImmTZIs6bYOruxWJNMGxTbjEFLX9YkuY+hWZNMGxTb+E9kTNYk0wbFXjKnpQ9r0tMGxVwyp6UPa9LTBsU2/hPR0wYNzZpk2qChWZOeNpiZWJNckBXb+E+kL2uSaYNiG/9p6cOaZNqg2MZ/WvS0QTGXzGnpw5r0tEFDsibi/08bpC+Z/+msSU8bFNP4L+vPUUY0DppBBkqhUOQBgMr/RaX/Iud//3o7InaT+P28AKDPf98vNwB8B4D7ALABEc+l048t6y/VjRs3oEOHDqBSqaBq1apgamoq2vvy5UuoUKECTJ06FerUqQOWlpaivd++fQNbW1s4duwYNGzYEGxtbUV7ExIS4Pv377B7927w8vKCHDlyiPYiIrx48QI2btwIPj4+kD9/ftFeAIBbt27B8uXLQalUgouLiySvn58fzJo1C1QqFZQsWVLS59tfunQJBg0aBCqVCipUqAAmJiaivXfv3gWlUgnr16+HGjVqgJmZ+C0uMDAQihQpAmfOnIF69eqBlZWVaO/v379BrVbDoUOHoFGjRpAlSxbR3uTkZPj06RPs2LEDmjRpArly5RLtRUR4/PgxrFu3Dnx8fMDBwUG0FwDg6tWrsHjxYlCpVFCsWDFJ3osXL8KkSZNApVJBmTJlJK3x1atXoXv37qBSqaBy5cqSnsUnT55A7dq1YeHChVCrVi2wsLAQ7f3y5QvkypULTpw4AQ0aNAAbGxvR3tjYWIiKioJ9+/ZB48aNIVu2bKK9arUa3r59C1u2bAFvb2/ImzevaC/A//67XrVqFSiVSihUqJAk76VLl2D+/PmgUqnA1dVV0jr5+fnByJEjQalUQvny5SV5b968CW3btgWlUgnVqlWT9Cy+efMGSpcuDRMmTIC6detK2m9//PgBlpaWcOTIEWjUqBHY2dmJ9iYmJkJYWBjs2rULmjRpInm/ffr0KWzYsAF8fHygQIECor0A//v9tGzZMlAqlVCkSBFJ3osXL8KMGTNApVJBqVKlJK3T5cuXoX///qBSqaBixYqS9tv79++Dl5cXrF69GmrUqAHm5uaivUFBQeDo6AinTp2C+vXrg7W1tWhvVFQUJCYmwoEDB6Bx48aS9tuUlBQIDAyEbdu2gbe3N+TOnVu0FwDgwYMHsGbNGlAqleDo6CjJe+XKFVi0aBGoVCooXry4JO/Fixdh/PjxoFKpoGzZspLW+Pr169C5c2dQqVRQpUoVSfvts2fPoGrVqjB79myoXbu2pP02LCwMsmbNCsePH4cGDRpIyn3i4+Ph169fsHfvXmjcuDFkz55dtFetVsOrV69g8+bN4O3tDfny5RPtBQC4ffs2rFixAlQqFTg7O0vy+vn5wZw5c0ClUkGJEiUk77dDhw4FlUoF5cuXl/Qs3rlzB5o3bw4qlQqqV68uab999+4duLm5wejRo6Fu3bqScp9fv36BQqGAw4cPQ6NGjcDe3l60NykpCUJCQmDnzp3QpEkTyJkzp7DpPyEiPHnyBNavXw8+Pj5QsGBB0V6A/z0TS5cuBaVSCUWLFpXk9fPzg6lTp4JSqYTSpUtLWuMrV65Ar169NLmPlDV+9OgRNGjQAJYuXQq1atWStN8GBwdDvnz54OTJk1C/fn1JuU9MTAzExsbC/v37oXHjxpA1a1bR3tTUVAgICICtW7eCt7c35MmTR7QXAODevXuwevVqUCqV4OTkJMl76dIlWLhwoSb3kSI/Pz8YM2YMqFQqKFeunKQ1NiZrWltbw9GjR6Fhw4aSch99WfP58+dGYc2LFy9mOtb88OEDuLi4GJw1U1JSICgoCLZv3w7e3t6ZhjUvXLgAEydONDhr+vv7Q61atWDBggUGZ83IyMhMx5p+fn4wb948UKlU4ObmZjDWvHXrFrRu3RpUKpXBWdPc3Fwn1kxKSvpnWVOpVEKlSpUyDWsmJCTIrClSxmLNr1+/QpYsWXSqs+vDmogIr169gk2bNoGPj4/MmgIKCAgAV1dXGDVqlEFZMzk5WW/WXLduHSiVSoOy5sWLF2HKlCmgUqkMypqPHz+GevXqwZIlS2TWFKHLly/DggULQKlU6lRn14c127dvr6mzZxbW/Pbtm8yaInXv3j3w8fGBtWvXSs599GHNyMhISElJgYMHD4Knp6fBWBPgf7WutWvXglKpzDSsee3aNejWrZvBWTM0NBRy5sxpFNZ88+aNzqx5584dWLlyJSiVSp1yH31Yc8SIEZrcx5Cs6e7uDuPHj/9nWFPW3ycF/m+iXsZ88/91A3NJdOOg4n9P9Tr4X9MglzYAQD/MgL+QQqFwAIBggP8lxFJ/icmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFmyZMmSJUuWLFm6KCQkhL505oiIIfp+T/Et7/orGAAu6OidBf/fNPgEANrD/6YOtv/vz/Dfv5+pzw8oS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJk/e3K6MbBGQCgAoB8iOgEAH2lfgOFQlEUAMb898eHAFADEfch4gNE3AcANf/7/wEAxioUCmmfuyDrn5E+wyj/Na8xX1v2SvNm1p9b9v75ry17DeM15mvL3szx2rLXMF5jvrbsNYzXmK8tezPHa8tew3iN+dqyV5o3s/7csvfPf23ZaxivMV9b9maO15a9hvEa87Vlr2G8xnxt2Zs5Xlv2GsZrzNeWvZnjtWWvYbzGfG3ZaxivrL9TGdo4iIhTEfEUIobr8W2GAwD5EPHBiBif5jXiAGDwf380A4BheryWrL9Y58+fhxYtWsCWLVsgPFzaf5IvX74ELy8vWLVqFQQFBUnyfvv2DTw9PWHBggXw+vVrSRtxYmIiqFQqmDZtGjx8+BDUarWk1+7UqROMGTMGrl+/DikpKZK8o0aNgoEDB8K5c+cgMTFRknfx4sXQo0cPOHLkCMTExEjy7t27F9q1awe7du2Cnz9/SvLevHkTVCoVbNiwAUJDQyV5AwMDwdPTE5YtWwaBgYGSvJGRkdC4cWOYM2cOPH/+XNIap6SkQIsWLWDSpElw7949yWvcu3dvGDFiBFy5cgWSk5MleadMmQL9+vWDU6dOQXx8vLCB0tq1a6FLly5w4MABiIyMlOQ9ceIEtGrVCrZt2wbfv3+X5H38+DF4e3vDmjVrIDg4WJI3NDQUGjVqBIsWLYK3b99K8sbFxUGTJk1gxowZ8OTJE0lrjIjQrl07GDduHNy6dQtSU1MlvfaQIUNgyJAhcPHiRcnP4ty5c6FXr15w/PhxiI2NleTdvn07dOjQAfbu3QsRERGSvH5+ftC8eXPYvHkzfP36VZL3zZs30LhxY1ixYgV8/PhRkvfnz5/g6ekJ8+fPh5cvX0pap6SkJGjatClMmTIFHjx4IPlZ7NKlC4waNQquXbsmeb8dO3YsDBgwAM6ePQsJCQmSvMuXL4du3brB4cOHITo6WpL34MGD0LZtW9i5c6fk/fbOnTugVCph/fr18OXLF0neT58+gaenJyxduhQCAgIkeaOjo8HLywtmz54NT58+lbTGqamp0KpVK5gwYQLcuXNH8rPYr18/GD58OFy6dEnyfjt9+nTo06cPnDx5EuLi4iR5N2zYAJ06dYL9+/dL3m9Pnz4NLVu2hK1bt8K3b98keZ89ewZeXl6wevVq+PTpkyTv169foVGjRrBw4UJ48+aNpHVKSEgAHx8fmD59Ojx+/Fjyftu+fXsYO3Ys3Lx5U/KzOHz4cBg8eDCcP39e8n67YMEC6NGjBxw9elRy7rNr1y5o37497N69G379+iXJe/XqVWjatCls3LgRwsLCJHkDAgLA09MTli9fDh8+fJDkjYiIAE9PT5g7dy68ePFC0jolJydDs2bNYPLkyXD//n3J+2337t1h5MiRcPXqVcnP4sSJE6F///5w5swZybnPqlWroGvXrnDo0CGIioqS5D169Ci0adMGtm/fLjn3uX//Pvj4+MC6desgJETaJw4EBwdDo0aNYPHixfDu3TtJ3tjYWGjSpAnMnDkT/P39Ja2xWq2GNm3awPjx4+H27duS99uBAwfC0KFDwc/PD5KSkiR5Z82aBb1794YTJ05I3m+3bNkCHTt2hH379sHv378leY3Fmt+/f9fkPq9evTI4a44ePdoorNm9e/dMxZofPnwwCmumpqZCy5YtYdKkSXD37t1MxZqdO3c2Cms2adIE1qxZA58/f5bk1Zc1vb29Mx1rzps3D3r16gXHjh0zKGteunQJmjdvDps2bTIKa86bNy9Tsea4ceOMwpqHDh3SsOaPHz8keY3NmrNmzTIKaw4bNgwuXbokOffRhzU3btyoM2ueOXPGKKwZHh4Onp6esHDhQsl1dn1Zs0OHDjB27Fi4ceNGpmHN3bt3g6+v7z/DmikpKdC8eXOdWbNHjx4wcuRInXIffVhz9erV0LVrVzh48KBBWfPBgwfg7e0Na9eulVxn/9dZU2ruow9rXrhwQcOaUnMfY7KmUqmEqVOnGpw1R48erWFNqbmPPqy5b9++dGFNqbmPvqzp5eUFc+bMgWfPnhmUNfv06QPDhw+Hy5cvZxrWPHnypIY1peY+mZU1fX19dWbNoUOHwpAhQ+DChQsGZc0dO3ZA+/btYc+ePQZlzbdv34Knp2emY82uXbvqzJqy/kKRW8SGCABwBgD8L7aJ+HoFAIT89/WvBb72zX9fFwwAinT+uR3Izx0cHIyyMqdSU1PR3d2d/PeHlStXxpkzZ6K/vz+q1WpBv0ql0njd3d1x/PjxePv2bUxJSRH0DhkyRON1cXHBoUOHop+fHyYmJgp6ly1bpvHmz58fe/fujSdOnMDY2FhB7/HjxzXeHDlyYMeOHXHfvn34+/dvQe/Tp081XltbW2zRogVu2bIFv379KugNDw9Ha2trBAC0sLDAxo0b46pVqzAoKEjQm5CQgA4ODggAaGJigrVq1cIFCxbgq1evBNdJrVZj1apVNT93hQoVcOrUqfjw4UNRa9y+fXuNt0SJEjh69Gi8fv06JicnC3onTpyo8RYqVAgHDhyI586dw4SEBEHvpk2bNN48efJg9+7d8ciRIxgdHS3ovXz5ssabNWtWbNeuHe7atQt//vwp6A0ICEBTU1MEALS2tkaVSoUbNmzAL1++CHojIiIwW7ZsCABoZmaGDRo0wGXLlmFgYKCgNzk5GYsXL44AgAqFAqtVq4Zz5szBZ8+eiVqnhg0bav7OZcuWxUmTJuHdu3cxNTVV0NunTx+Nt1ixYjhixAi8fPkyJiUlCXrnzp2r8To4OGC/fv3w1KlTGBcXJ+jdv3+/xpszZ07s3LkzHjhwACMjIwW99+/f13jt7e2xVatWuG3bNvz27ZugNyQkBC0sLBAA0NLSEps0aYJr1qzBz58/C3pjY2Mxb968CABoamqKderUwUWLFuHbt28FvWq1GsuVK6f5uStVqoQzZszAJ0+eiFrjFi1aaLylSpXCcePG4a1bt0TttyNGjNB4CxcujEOGDMGLFy+K2m9XrVql8ebLlw979eqFx44dw5iYGEHvmTNnNN7s2bNjhw4dcM+ePfjr1y9B74sXL1ChUGj22+bNm+OmTZswLCxM0Pv9+3e0s7NDAEBzc3Ns1KgRrlixAj9+/CjoTUxMxEKFCmn225o1a+K8efPw5cuXovbbmjVrav7OHh4eOGXKFHzw4IGoZ7FLly4ar6urK44aNQqvXbsmar+dOnWqxuvk5IQDBgzAs2fPYnx8vKB3+/btGm/u3LmxW7duePjwYYyKihL0Xrt2TePNkiULtm3bFnfu3Ik/fvwQ9H748AHNzMwQANDKygqVSiWuX78eQ0JCBL2RkZGYI0cOzX5bv359XLp0KQYEBAh6U1JSsESJEpr9tmrVqjhr1ix8+vSpqGexSZMmmr9z6dKlccKECXjnzh1RazxgwACNt2jRojhs2DC8dOmSqP120aJFGm+BAgWwT58+ePLkSVH77eHDh7Vyn06dOuH+/ftF5T6PHz/WeO3s7LBly5a4detWDA8PF/SGhYWhlZWVZr/18vLC1atX46dPnwS98fHxmD9/fs1+W7t2bVy4cCG+fv1a1LNYsWJFzc9dsWJFnD59Oj569EjUGrdp00bjLVmyJI4dOxZv3Lghar8dO3asxuvs7IyDBg3C8+fPi8p91q1bp7Xf9uzZE48ePSpqv71w4YLGmy1bNvT19cXdu3eL2m/fvHmDJiYmCABoY2ODTZs2xY0bN2JoaKig9+fPn5glSxbNftuwYUNcvnw5fvjwQdCbnJyMRYoU0TyL1atXx7lz5+KLFy9ErVPdunU1f+dy5crh5MmT8f79+6KexR49emi8xYsXx5EjR+KVK1dE7bezZs3SeB0dHbF///54+vRpUfvt7t27Nd5cuXJh165d8eDBg6Jyn9u3b2vlPq1bt8bt27fj9+/fBb2fPn1Cc3NzzX7r4+ODa9euFcXxMTExmCtXLs2zWLduXVy8eDG+e/dO0GtM1hw6dKhRWPPEiRMM1ty7dy9GREQIevVlTRsbGy3WXLly5R/Pmh06dNB43dzcDMaamzdvznSs+fv3b1bWfP/+vaBXX9Zs1KiRFmtOnDjRIKw5b948jbdgwYLYt2/fTMGalpaWfwxrPn78OMNZc+TIkQzWvHDhgqj9dvXq1YzcxxCs+fLlSw1r2tjYYLNmzQzGms7Ozpr9tkaNGpmCNadNm8ZgzTNnzmQ4a16/fp3Bmjt27Mhw1oyKimKw5pIlS0SzZsmSJTX7bZUqVQzGmgMHDtR4ixQpYjDWPHLkSKZkzQIFCmix5oIFCwzCmm3bttVizTFjxhiENdevX6/x5s2bF3v06CGaNS9evGgU1vz16xcra4qts+vDmvXq1WOw5r179/5o1tyzZ48Wa3bp0sUgrPn582ct1vT29jYYa5YuXTrTseby5csZrHn8+PEMZ81nz54xWHPz5s0GYU1HR0dN7lOzZk2cP3++aNasVq2a5ucuX768wVhz0qRJRmHNK1eusLKmmNzHWKyZkpLCYM3Zs2cbhDX79u2rxZrDhw83CGseOHBAZ9Z88OCBVu5jKNaMi4vDfPnyMVjzzZs3gl59WbNly5YM1rx58+YfzZpnz57Vyn3at28vmjVlGVfBwcGatQMAB0yPnrj0+CaiX0x646AL9fXrBL52PfW1hdP555YbB/8SHTx4kH6IGHDCVwx6+PAhqzd37tzYtWtXPHToEGcx6MuXL5pfcnRkyZIF27Rpw1sMon/J0UEOwtatW8dZDFKr1ejh4cHwmpmZYb169QSLQa1atWJ4xRaDRo0axfp+0cUgrl+Wa9asYfWSYpCfnx9nQnTu3DlWLykG8R2EvXr1SlNQpYMUg/iaLn/8+IH29vYMLykGbdmyhbMYlJSUpCmo0mFhYYFeXl64atUqzmKQWq3G2rVrM7z0QRhfMahbt26s71eFChVw2rRpvMWg6dOns3pLlCghWAzauXMnq1dMMejGjRusXroYxAUnQUFBmoIqHXQxiOsgLCoqCnPmzMnwiikGpaamagqqdJBikFDTpY+PD+uzWL16dZwzZw4+f/6cc50GDRrE+n6VK1cOJ02axFsMWrJkCauXHIRduXKF81k8evQoq5c0XfIVg548ecLqFVMMCgsL0zQu0yGmGBQfH48FCxZk3W+FikFqtRorV67M8NLFIL6DsHbt2rH+nUkxiK/pcvz48axeUgziOwjbsGEDq5cUg/iaLv38/Fi9+fPnx169evEWg969e6cpqNJBDsL4ikERERGYNWtWhpc0XfIVg5KTk7Fo0aKs+62np6dgMah+/fqs+62YYlCvXr1Y3y9SDOI7CJs9ezarV0wxaO/evaxeJycnHDhwIJ49e5Zzv7179y6rlxSDDh8+zLnffv78WdO4TAcpBvE1XcbExGCePHkYXmtra81BGFcxKDU1FcuUKcPw0k2XfMWgZs2ase63VatWFSwGDR8+nPX9KlOmjGAxaMWKFazeokWLChaDTp06xeoVUwx6/vw5q5cuBnHlPt++fUNbW1uGlxSDtm7dylkMSkxM1BRU6RBTDFKr1Vi9enXW/bZOnTq4cOFC3mJQp06dWP/O5CCMrxg0efJkVi9puuQrBm3dupXVW7hwYRw8eDBvMYguqNIhphgUGBioKajSIaYYFBkZidmzZ2d4xTQepKSkoKurK8NLNx7wNV02btyYdb8ljQd8B2H9+vVjfb9I4wFf0+WCBQtYva6urjhy5Ei8evUq535rLNYMDQ3VHCbTYQjWLF++POt+m9GsOXr0aNb3i7Am30GYsVjz9evXnKwpdMGPizXppks+1ixcuDDDS1/w+xNZc8aMGaxemjW5nkV9WPPmzZus3oxmzejoaFbWtLa2xqZNm+KGDRsMzpqk6ZKPNQcPHsz6fpELfhnFmseOHWP1ZjRrfv36VZA1uXKfhIQEVta0tLTMcNb09fVl/TtXrlxZ8IIfH2sKNV1u3LiR1evi4iJ4we9fZM0GDRqw7rcZzZpz5sxh9RLW5Gu63LdvH6uXvuCnC2uSpkuu/TY4OJiVNcVc8NOXNcuWLcvw/umsuXLlSlZverAmX9Pl8+fPWXMfwpp8TZf6sqaTkxPrfivUdKlWq7FGjRqs+y254JdRrDllyhRWb0az5tWrV1m9fzprurm5MbyENYUu+PGxplDTZf/+/VnfLw8PD8ELfvqw5qFDh1i9fzprkkuydKQXa/I1XbZu3Zp1vyWsydd0qQ9rrl27ltVbpEgRwabL8+fPs3oLFCggeMFPH9b8+fNnhrImX+5Tp04d1mfR2KzJV2fftWsXq7dQoUI4aNAg3qZLIdbka7oMCgrSNC7TkTVrVvT19eW94Kcva5YqVYp1vxUzTEapVLI+ixnNmkuXLmX1phdrcuU+/v7+rF5js6ZQnb1KlSoML2FNsRf8ZBle/2LjoA/19cMEvnY49bXe6fxzy42Df4GSkpIwNjZWM3mHK+hiEIGT5ORkjI+PRy8vL14vXQwiN3BTUlIwPj6eEyrohCjttKfU1FSMj4/H+fPn83oBmMUgtVqN8fHxWrfPucLNzY1xAzc+Ph7v3bsn6GWb9pSQkICfPn1ihQo66Bu4JCFKTEzE379/a25DcgVbMSgpKQnj4uK0bkOyBVsxiKwxG1TQwVYMImvMBRUk2IpBZI3pGwFcQYpB5AYuWWP69jlXsE17SkhIwOfPn7MWVOlgKwYlJibi169fNbchuYLtBm5SUhJGR0drbkNyBX0DlyREZJ3oyTtswVYMIuvUvXt3Xi9bMYisE1ezJB1pi0FknXbs2CHoZSsGxcfHa90+5wpnZ2dNMYjASUJCAr5//54VKuhgm/aUmJiIP3/+xNy5c/N62YpB5Fmkb0OyBSkGbdy4kbHfskEFHWzTnsgaczVL0s9i2hu4ZI0XL14s+F6nnfZE1pi+fc4V5AYuXQyKj4/HR48eCXrZikEJCQkYEhKiuQ3JFWzFoMTERIyMjGRt3qGDLgaRpkuyxvTkHbZgm/ZE1pie8soWbMUgsk5cB1j0GlepUkXrBi5ZJ65mSTpKly7NuIEbHx+vNemMK9hu4CYkJODr169ZC6p0sE17SkxMxPDwcM1tSK5gKwYlJSVhTEyM5jYkV7AVg8g60VNe2YKtGESexd69e/N62aY9kTXmOsCiI20xiKwxffucK9iKQfHx8Vq3z7mC7QZuQkICfvz4kfWiCB1sN3ATExMxIiJCM3mHK9imPZFnkb4NyRb0DVxSDCJr3Lx5c8FnMW0xiKwx1wEW/SymLQaRNaZvn3NF2mIQWWP69jlXsE17io+PR39/f9aCKh1sxaCEhAQMDQ3VTN7hClIMom/gktyH7aIIHaQYRN/AJetET95hC7amS7JOnTt35vWyTXsi68TVLElH2snCZJ22bNki6GWb9hQfH6816Ywr2CYLJyQk4Nu3b1mbd+ggk4WPHz+ulfv8+PGDtaBKB1vjQXqwJj15hy0Ia9LTntKDNbkOsOhIO+2JrDF9+5wrMoo12QqqdLBNe0oP1qxUqRKvl23aE1ljesorW6QXa5KmS7LGXM2SdGQEa7548UKQNdmmPRmaNdPmPsZiTa4DLDrSTnsyNGvSTZeGYs20057Is8h2UYSOjGJNrgMs+lnkYk2uZkk6MiNrksnCaVkzKipKNGvSF/wMwZps057IOk2YMEFwjfVhTbZpT/Hx8VqTzrgiI1jz27dvkliTzn30ZU168g5bGJs16WlPZI25LubR8SeyJttFETr4WJNtKAEdfKxJT3lli4xiTa6LeXSk/RQbssYnT54U9HKx5tOnTwVZk+2Cn6FYM+20J7JOtWrV4vVmFGtyNUvSkRGsyXUxjw4u1nz37p1BWDNtnT02Npb1oggdbE2X6cGa9CeKsAXbZGFDsSbbZOH4+HitqdpckVGsyda8Q4exWZO+4EfWeMyYMbze9GDNtJOF4+PjtSadcQXbZGFjsmZMTIxerElPeWULPtakp7yyRUaxJtfFPDrYJgvHx8dzDoGhg4s1AwMDWS+K0ME2WTgxMRF//fqV4ayZdpgMWWN6yitb/ImsyTUEhg421pRlXP2LjYP9qK9vLfC1ramv7Svx53IQiIrke8uNg5lX9McYSInKlSsLNgxyhbu7u9ZoWinh4uKiNWJaSuTPnx+7du2qk5cUg4RAlS1IMUgIVNmCFIOEihFsQQ7ChAr8XFGhQgXBwjFXuLm5CSblXFGoUCHOm4hCQW7g6uIlxSChxIktSDGIbYKMUJBikFDxly1IMUioqMgVZcuWFWyM4IpixYpx3tAXioIFC2p9TI6UIDdwhQqDbEGKQeSj2KQEKQYJJcdsQYpBQgUnrqhUqRJ6e3vr5C1VqhTr5BoxUbhwYezYsaNO3nz58um835JiENtEA6EgxSAhUGULcgO3QoUKkr2kGMQ2eU9MeHh4YNOmTXXyurq6an3UjZRwcnISLGZyBSkGCRUj2IIUg4QawtiCHIQJNaGwBSkG0R9zITbIQRjbDWwxUbp0acHDAa4oUqSI4CEfVxQoUEDn/ZYUg4QORdmCFIPYJhoIBSkGCTX9sQUpBrFNghITFStWZJ0wJCZKliwpeNGCK5ydnXXeb/Pmzatz7kOKQeSj2KQEKQYVK1ZMspcUg9imBAkFKQaxTZ8RE+XKlWOdaiImihcvzjkJVygcHR11fhbJQZhQEwpbkKZLtokGQkEmC9MfNSw2SOMB22QSMaEva+qa+2Rm1mSbaCAU5CDMGKxZvnx5mTVFhsya0sJYrEmmPf1rrKlr7mMs1iQX/IQawtgiPVhT6EIvWxibNXXNfTIzawo1obAFueDHNgFcKDIza+qT+xiDNcmn2BiDNStUqCCzpsggrCnUgMsW6cGaQhdFucJYrOng4KDzfpserCl0+YgtZNaUFvqwJqmzs03PE4r0YE22CYlCQVhTqJmMK/RlTV3r7PqyptBlK64grEk+9ltK6Mua9evXNwprlilTJtOyptBgIbbIzKwp1KDNFZmZNeWPNDauMqJxUIH/a5wziBQKhTMAfPzvj9sRsZvA148GgAX//bEJIp7j+domAHDmvz+OQsTFEn4u0W9CcHAwODg4iP1yWX+QBg0aBKtXrzb2jyFLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLVqaTqakp1KxZE1QqFTRr1gyKFi1q7B/pn1FISAg4OjqSPzoiYoi+39NE32+QwbKi/jlJ4GsTqX+2zoCfRZYsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbL+SdnZ2UG+fPkgb968kD17dmP/OLL01J/eOJhA/bOFwNdaUv8cL/F1HAWiksTvJ+sPlJWVFdjb24OZmZloj7W1NahUKvD19QU7OzuwsBD6z/D/ZWZmBg0aNIBevXqBra0tWFlZCZv+k0KhgGrVqsGQIUPA1tYWbGxsRHsBAMqWLQujR48GGxsbsLW1leQtVqwYjBgxAvLmzQv29vaSvAULFoR+/fqBu7s72Nvbg0KhEO3NmTMndOnSBerUqQP29vZgamoq2mtnZwetWrWCZs2agZ2dHZibm4v2Wlpagre3N3Tu3Bns7OzA0tJS2PSfTE1NoU6dOtCvXz/JawwAUKlSJRg2bJhOa1yqVCkYO3Ys2NjYgJ2dnSRv4cKFYciQIeDs7Cx5jfPlywe9evWCihUrgr29PZiYiP81kj17dujQoQN4enqCnZ2dpGfRxsYGmjdvDm3atJG8xubm5uDp6Qndu3eXvMYmJiZQs2ZNGDRoENja2oK1tbS+9PLly8PIkSPB1tZW8rPo6uoKo0aNghw5ckheJ0dHRxgwYAC4urpKfhZz584N3bp1gxo1akhe4yxZskDbtm3Bx8dH8hpbWVmBUqmEDh066LTf1q9fH/r06aPTflu1alUYOnSoTs9imTJlNPut1GexaNGiMHz4cChQoIDkNS5QoAD06dMHypYtK3mNc+TIAZ06dYJ69erptN+2bNkSWrRoIflZtLCwAC8vL+jatatO+23t2rWhf//+Oj2LFStWhBEjRui0xiVLloSxY8eCnZ2d5DV2dnaGwYMHg4uLi+Q1zps3L/To0QMqV64s+VnMli0btG/fHry8vCQ/i9bW1tC0aVNo166d5GfR3NwcGjZsCD169JC8xgqFAqpXrw6DBw/WaY3LlSsHo0aN0mm/LV68OIwcORJy584teZ0cHBygf//+UKpUKcnPYq5cuaBr165Qq1Ytyc+ivb09tGnTBlQqlU77rY+PD3Ts2FHyGpuamkK9evV02m8BACpXrqxz7uPu7g5jxozRab91cXGBoUOHgpOTk+Q1zp8/P/Tu3Rs8PDx0yn06duwIDRs2lLzGtra20KJFC2jVqpVO+23jxo2hW7duOuU+tWrVggEDBuj0LFaoUEHn3KdEiRIwevRoyJo1q+Q1dnJygoEDB0KxYsUkr3GePHmge/fuULVqVclrnDVrVmjXrh14e3vrtN/qy5q9e/f+51izdOnSOrFm586djcKaTZo0MRprDh8+XGZNETIma9aoUUNn1vTw8DAqa7q5uRmFNZVKpcyaIlSkSBEYNmwYFCxYUGZNAZmYmEDt2rV1zn0yM2tWqVJFp9zH19fXaKzZs2dPmTVFKD1ZU5c6e2ZkTV1zn/RgzfLly8usKUL61Nll1vz7WZPU2fPly2cU1qxbt67OrNm8efN/ijXHjRuXqViT1NmNwZqNGjUyGmvqmvsQ1syZM6fMmgIyJmuWLl1a5zo7Yc1Lly7B9+/fYd++fdCpUyfImTOnpO8j6w9UenzesdgAAGf4/89a3ibi6/tRX99a4GtbU1/bN51/bgfyvYODgyV+wrSsP0nJyclYpEgR3s9mL1iwIPbt2xdPnTqFcXFxWv769evzenPmzImdO3fGAwcO4O/fv7W8PXv25PXa2dlhq1atcNu2bRgeHq7lnT17Nq/X0tISmzRpgqtXr8ZPnz5peffs2cPrNTU1xTp16uDChQvxzZs3Wt47d+4IfpZ9xYoVcfr06fj48WNUq9Ua7+fPn9Hc3JzXW6pUKRw7dizevHkTU1JSNN6YmBjMnTs3r9fZ2RkHDx6MFy5cwISEBI03NTUVy5Qpw+vNmzcv9uzZE48dO4YxMTFaf+emTZvyerNly4bt27fHPXv24K9fv7S8w4YN4/Xa2Nhgs2bNcNOmTRgWFqblXb58Oa/X3NwcGzVqhCtWrMAPHz5oeU+ePMnrNTExwRo1auC8efPwxYsXWuv0/PlzwTX28PDAyZMn4/379zE1NVXj/fbtG9rY2PB6XV1dceTIkXj16lVMTk7WeBMTE9HR0ZHX6+joiP3798czZ85gfHy8xqtWq7FatWq83ly5cmHXrl3x0KFDGBUVpfV+dezYkddrb2+Pbdq0wR07duD379+1vJMmTeL1WllZoY+PD65btw5DQkK0vFu2bOH1mpmZYb169XDJkiX47t07Le+VK1d4vQqFAqtUqYKzZs3Cp0+faq3x+/fv0dTUlNdfunRpnDBhAt6+fVvrWfz9+zdmz56d11ukSBEcNmwY+vn5YWJiosabkpKCxYsX5/UWKFAA+/TpgydOnMDY2Fitv7OnpyevN3v27NixY0fct28fRkREaHn79u3L67W1tcWWLVvili1b8OvXr1re+fPn83otLCywcePGuGrVKgwKCtLyHjx4UPBZrFWrFi5YsABfv36ttU4PHjwQfBYrVKiA06ZNw0ePHml5v3z5gpaWlrzeEiVK4JgxY/DGjRtaaxwXF4f58uXj9RYqVAgHDRqE58+f19pv1Wo1enh48Hrz5MmDPXr0wCNHjmB0dLTW+9WqVSteb9asWdHX1xd37dqFP3/+1PKOGjWK12ttbY1NmzbFDRs24JcvX7S8a9as4fWam5tjw4YNcdmyZRgYGKjlPXv2rOCzWL16dZwzZw4+f/5ca51evXqFCoWC11+2bFmcNGkS3rt3T2u//fHjB9rZ2fF6ixUrhiNGjMArV65gUlKSxpuUlITOzs68XgcHB+zXrx+ePn1aK/dRq9VYu3ZtXm/OnDmxS5cuePDgQYyMjNR6v7p27crrtbe3x9atW+P27dvx27dvWt7p06fzei0tLdHb2xvXrl2Lnz9/1vLu2LGD12tqaop169bFxYsX49u3b7W8N27cEHwWK1eujDNmzMAnT55orXFQUBCamZnxet3d3XHcuHF469YtrWcxKioKc+bMyestXLgwDhkyBC9evKi136ampmLJkiV5vfny5cNevXrh8ePHGbmPt7c3rzd79uzYoUMH3Lt3L2O/HTRoEK/XxsYGmzdvjps3b2bkPosXL+b1WlhYoKenJ65cuRI/fvyo5T169Civ18TEBGvWrInz58/Hly9faq3TkydPBNe4fPnyOHXqVHzw4IHWsxgWFobW1ta8Xjc3Nxw9ejReu3ZNK/eJj4/HggUL8nqdnJxw4MCBePbsWUbuU6lSJV5vnjx5sHv37nj48GFG7tOuXTteb5YsWbBt27a4c+dO/PHjh5Z3/PjxvF4rKytUKpW4fv16Ru6zYcMGXq+ZmRnWr18fly5digEBAVpePz8/Xq9CocCqVavi7Nmz8dmzZ1pr/PbtWzQxMeH1lylTBidOnIh3797VWuOIiAjMmjUrr7do0aI4fPhwvHz5stZ+ayjW3L9/P4M1e/XqxeslrLl169Z0Zc29e/fyek1NTbF27doZwpoWFha83pIlS/5xrNmsWTNeb3qxZmhoqJZ3xYoVvN4/lTVtbW15vcWLF88Q1qxevTqvN6NYc/LkybxemjXT1iYNxZr+/v5aaxwYGGg01nR1deX15s+fH3v37p3urNmvXz9er62tLbZo0YKVNRcsWMDrzSjWfPjwoeCzmF6sST+LUljz3Llzfwxrjh49mtdrbW2NKpVKJ9Y0MzPDBg0a4LJly/D9+/da3nPnzgk+i9WqVcsQ1rS3t+f18rFm4cKFeb0FCxbMENbs1q0brzejWHPnzp28XsKaixYtMjhrlipVipU1o6OjjcaaPj4+vN6MYs0lS5bwes3NzTlZ89ixY7zejGLNr1+/imLNUaNG6cSajo6OOGDAAFbWrFy5Mq83d+7c2K1btz+KNTdu3MjrzSjWfPfunUFY89KlSwzWLFq0KK+3QIEC2LdvXzx58iQj98lo1mzZsiUra86ZM4fXa2FhgV5eXunOmnfv3hV8FjOKNfPkycPr5WPNsmXL8nrTgzV3797NyH2GDx/O6yWsuXHjRp1Zc/ny5Yw6+6lTpwSfxerVq+PcuXP/KNZ0cnLi9To4OGQIa3bq1InXm1GsuXXrVsFnkYs1r169KrjGVapUwZkzZ+rMmuPHj2ewZmRkpCBruri44NChQ9OdNRs3bszr/RNZ89ChQ7xePtaUZTwFBwfT6+SA6dETlx7fRPSLSW8cVFJfP0zga4dTX+udzj+33Dj4l2jbtm2sm17FihVZC2S0rl27xuotWbIkazMGrcDAQFa452rGoBUZGYk5cuRgePPmzYs9evTAo0ePMgpkRCkpKejm5sbwkgIZW5JIy8vLi+ElzRhsSSKt/v37M7ykGYMtSaS1cOFC1gSCK0mkdfjwYdZ1KleuHE6ePJlRIKP16NEjVi9JEtMWyGiFhoailZUVw0uSxLQFMlpxcXGYP39+hpckiWwFMiK1Wo0VKlRgeOkCWdokkVabNm0YXrpAxrfnjRkzhuGlmzHSJom01q1bx/peV65cmTVJpHX+/HlWr7u7O2uSSOv169escM+VJNL6+fMnazGVL0kkSkpKQhcXF84kka1ARqtu3bqcSeLmzZsZSSKt7t27cyaJbAUyWjNnzuRMEufPn4+vXr3iXKddu3axrhMpkD18+JDTe+vWLVYvaca4fv26FrDRCgoKYm1aJs0YaQ8kaEVHR2OuXLkYXtKMwXYgQZSamoru7u6s+227du1w165djAIZLaVSybrfch1I0BoyZAjDy3cgQWvp0qWs+y05kEhbIKN1/Phx1nUqW7Ysa4GM1tOnT1m9XM0YtMLDw1mLqXzNGEQJCQno4ODA8PI1/hOp1WqsUqUKw0s3/qc9kKDVvn171v22SZMmuGbNGsaBBK0JEyaw7rd16tRhPZCgtWnTJtb3ulKlSjhjxgxGgYzW5cuXWb3kQCJtgYxWQEAAK9yTA4kLFy5w7rcRERGYLVs2hpccSLAVyIiSk5OxWLFiDC9fMwathg0bMrx8jf+0+vTpw/DyNWPQmjt3Lut+S5ox0h5I0Nq/fz/rOnl4eOCUKVMYBxK07t27x+p1dXVlPZCgFRISwlpMJQcSaQtktGJjY1mLqXwHEkRqtRrLlSvH8JIDCbYCGa0WLVowvORAgq3xn9aIESNY91tSIEt7IEFr1apVrPstV+M/rdOnT7OuE2nGuHPnDucav3jxgvUgmTRjpD2QoPX9+3fWpmXS+M92IEGUmJiIhQoVYnhz5MiBnTp1Yj2QIFKr1VizZk3W/ZbrQIJW586dGV76QCJtgYzW1KlTWZ9FciDBVyDLCNbkavyn9eHDB6OxZokSJRheQ7DmgAEDWPfbP5k1Hz9+zOrVlzXZmjFoxcfHc7ImVzMGkTFZc+zYsQwvX+M/LX1Y88KFC6xeQ7BmlixZGF7CmsePHzc4a5JmDD7W7NGjB+t+y9WMQYuLNUkzBh9r7t69m3WdaNbkehb1Yc1Pnz4JsiZX7hMTEyPImly5j76sqVKpWPdbfVlz6dKlvKy5bNky1v2WqxmDljFZk+2CrCFYs2rVqgyvIVhz4sSJrPstYc20zRi0Nm/ezPpe68uabM0YtLhYk27GkMqafM0YRMnJyawXZP901pw3bx7rfpvRrHn//n1WL2HNtM0YtPRlzbx58zK8fM0YRHysydWMQYuLNbkumdMaOXIk636b0ax55swZ1nX601mT7YIsYU22ZgwiLtakL5nzsWaXLl0YXsKabM0YtPhYU6gZY/v27azrxNX4T8tYrBkVFWU01mzSpAnDS7MmX+6jD2suWrSI9VnkumRO68iRI6zrVK5cOdbGf1pcrMnV+E8rLCzMaKxZsWJFhvdPZ83169ezvteENdM2/tMSYs20jf+03rx5w8uaaRv/aenDmlwXZPka/2nVq1ePdb/NaNacNWsW636b0ax5+/ZtVq+xWZOvzp6amoqlS5dm3W/btWvH2vgv68/Qv9g46EJ9/TqBr11PfW3hdP655cbBv0D0LzixBTJa5FaO2GYMWmTaIN/tUC7REyC4bodyiZ42KCZJpEVPgCC3Q/kKZLToaYN8t0PZRE+AIEmiUIGMiJ4AQZJEoQIZLTJtkO92KJfoCRCkQMaXJNKipw1y3Q7lEj0Bgut2KJfoWzl8t0PZRE8bpJNEvgIZET0Bgu92KJvoaYN8t0O5RCZA8N0O5RI9bZDrdiiX6AkQXLdDuURPgOC6HcoletqgmGYMWvQECL7boWyipw3y3Q7lEpkAwXc7lEtk2qDYAwla9LRBcjuUr0BGi54AwXU7lEv0tEG+26FsoidAiGnGoEVPgBDbjEFET4Dgux3KJTIBgu92KJfoaYNct0O5RE+A4LodyiV62iDX7VAu0RMgyIEEX4GMFj1tkO92KJvoaYN8t0PZRE+AEFsgo0WmDYptxqBFT4AgzRhpb4dyiZ42yHU7lEv0BAiu26FcoidA0AcSYnIfetog3+1QNtETIPhuh3KJTBvkux3KJTIBgu92KJfoaYNct0O5RE8bFNOMQYueACGm8Z8WPW2Q73Yom+gJEHy3Q9lETxvkux3KJTIBgr4dylcgo0VPgCAHEnyN/7ToaYPkQIKvQEaLngAhpvGfFj1tUEzjPy16AgTdjCFmvzUma5IJEIZmTXoChKFZkxwkE9Y8cOCAwVlTTDMGLTIBQmzjPy19WJOeAJGZWJNMgDA0a5IJEIQ1V6xYoTNrCjVj0KInQIhpxqBlLNakJ0AYmjXJBAhDsyaZAEGzJl8zBi16AkSZMmUEmzFo0awpphmDFj1tUEwzBq2/jTXFrBM9bTA9WJOvGYMWPW2QsCZfMwYtfVmTXJAV24xBRE8bFNv4T6Qva5Jpg4ZmTXraoLFZU2ydnZ42SFhTqBmDiI01hZoxaJFpg4Q1hS6Z09KHNelpg2Ia/2nR0wYNyZr0tEFDsyaZNmhs1hS6ZE6LnjZYokQJwWYMWvqwJj1t0NCsSaYN/gmsKbbOTk8bJKzJ1/hPi401+Rr/adHTBg3NmuSCrNjGfyJ62qChWZOeNmhI1qSnDYq5ZE4rvVlTqPGfiJ42SFhTqPGfiIs1+Rr/aZFpg2Ib/2npw5r0tEExl8xp0dMGDcma9LRBQ7MmmTaYmViTnjYolTVlGVf/YuOgAgC+/Pf1rwW+9vV/XxcCAIp0/rnlxsG/QOfPnxe8Hcql58+fC94O5VJ4eDj6+vqyfgSxkOLj47FTp06SCmREarUa+/XrJ3g7lEuTJk2SVCCjtWLFCknNGLQOHDggeDuUSzdu3BC8Hcql9+/fS0oSaUVERKCvr6/oJJFWUlISdu3aVVKSSKRWq3HYsGGsHwslRrNnz5ZUIKO1ceNGwduhXDp58qSkAhmthw8fCt4O5VJISAj6+vqKbsagFRMTgx06dBC8Hcqm1NRU7NWrl+DtUC6NHTtW8HYolxYvXqxJEqU+i7t27WL9WCgx8vPzk3QgQevVq1eCt0O59P37d/T19RW8HcqmhIQE7NSpk6QCGZFarcaBAwfqPKp76tSpgrdDubRmzRrB26FcOnz4sODtUC7dvn1b8HYolz5+/Ijt27cXXSCjFRkZie3btxe8HcqmlJQU7N69O+tHEIvRiBEjJDVj0Jo7d66kZgxaW7ZskdSMQevMmTOCt0O55O/vL6nxn1ZoaCj6+vqKPpCgFRcXhx07dmT9WCghpaamYp8+fQRvh3JpwoQJgrdDubRs2TJJBTJae/fuldSMQevq1auSCmS03r59K+p2KJt+/vyJvr6+grdD2ZSYmIhdunSR1PhPpFarcfDgwYK3Q7k0Y8YMSY3/tNatWyfpQILW8ePHWT+CWIzu3bsneDuUS58/f0ZfX1+dbodGR0dj+/btJRXIiFJSUrBHjx6Ck4i4NHr0aEmN/7QWLFggOImIS9u3bxecRMQlY7Om2GYMWunBmlIa/2npw5orV67MdKwZGBhoFNZMTk7Gbt26ZTrW3LRpk6RmDFr6sOajR49k1pSgJUuWsH4EsRjpw5qXLl2S1IxBK71YU5fcp3PnzkZhzWnTphmFNY8cOZIpWdPX11dSMwZRZmXNrVu36syaZ8+eNQprhoWFaVhTTDMGLX1YU61WY9++fSU1Y9AyFmvu27fPKKz57t07UVNv2aQPayYlJenFmkOGDJF0yZyWPqy5fv16Sc0YtPRhzfv370tqxqBlTNbs2bOnpGYMWvqw5sKFC43CmhcuXNBcMpdZU1iTJ082CmsePHhQ0iVzWjdv3jQKa/7+/Rt9fX1FN/7T0oc1Ef93OU5K4z8tY7HmqVOnjMKaX758MRpr9u7dW9Ilc1rjxo2T1PhPSx/W3L17t6TGf1r6sObr168lNf7TyqysKcu4yojGQQX+rzHOIFIoFM4A8PG/P25HxG4iPGsAoP9/f6yGiHdZvqYqANz5749rEHGg/j+t1vd3AIBgAIDg4GBwcHBIz28vS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJkyZIlS5YsWbJksSokJAQcHR3JHx0RMUTf72mi7zcwgJYBQMp//7xSoVBY0//yvz+v/O+PKf99vSxZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiWLRWYZ+c0VCkVNAChK/V+5qH8uqlAoutFfj4jb0n4PRHynUCgWAcA4AKgIALcUCsV8AAgEgCIAMBYAPP778oWIGJBufwFZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiVLlixZsmTJkiXrL1NGTxzsBQBbqVhI/bsaaf7dVp7vMxEAtvz3zx4AsA8AHvz3v6RpcDMATEqvH1zW36e7d+/C0aNHISYmRrL3zZs3sHv3bvj165dk77dv32Djxo0QFhYm2ZuQkACrV6+GwMBAyV5EhPXr18OLFy9Al48k37lzJ9y7dw/UarVk77Fjx+DKlSuQnJws2Xv58mU4ffo0xMfHS/Y+fvwYDh48CFFRUZK9Hz58gO3bt8P3798le3///g3r1q2D4OBgyd7k5GRYvXo1vHv3TrIXEWHTpk3g7++v0xrv27cPbt26BampqZK9p0+fBj8/P0hKSpLsvXnzJhw/fhxiY2Mle1+8eAF79+6FiIgIyd4vX77A5s2b4evXr5K9sbGxsHr1aggKCpLsVavVsHbtWnj16pVO67R9+3Z4+PChTs/i4cOH4fr165CSkiL8xWl08eJFOHfuHCQkJEj23r9/H44cOQLR0dGSve/evYNdu3bBz58/JXt//PgBGzZsgC9fvkj2JiYmwurVq+H9+/eSvWS/ffbsmU5rvHv3brh7965Oa3zixAm4fPmyTvvt1atX4dSpUzrtt/7+/nDgwAGIjIyU7P306RNs27YNvn37JtkbFRUFa9euhc+fP0v2pqamwpo1a+DNmzc6rdPmzZvh8ePHOnkPHDgAN2/e1Gm/PXv2LFy4cAESExMle2/fvg3Hjh3Tab999eoV7NmzR6f9NiwsDDZt2qRT7hMfHw9r1qyBjx8/Svaq1WpYt24dvHz5Uqd12rFjBzx48ECnZ/Ho0aNw9epVnfZbPz8/OHPmjE777cOHD+HQoUM65T7v37+HHTt2wI8fPyR7f/36BevWrYOQEOkT8JOSkmD16tUQECD9vhciwsaNG+Hp06c6rfHevXvhzp07Oj2Lp06dgkuXLumU+1y/fh1OnjwJcXFxkr3Pnj2D/fv3w+/fvyV7g4ODYcuWLRAeHi7ZGxMTA2vWrIFPnz5J9pL99vXr1zqt09atW+HRo0c6eQ8ePAg3btzQ6Vk8f/48nD9/Xqf91tisGRoaKtmrL2uuW7cOnj9/LrOmCH38+NEorJmSkgJr1qzJdKx55swZuHjx4j/FmmvWrJFZU6Tu378Phw8fNgprrl+/XifWJLnPv8Sa165dy5SsuWbNGqOw5pYtW2TWFKmvX78ahTVJ7qNrnd1YrHnp0iWjsGZgYKBRWJPU2TMja+paZ9eXNfft2yezpkgdOnRIZk2RMiZr7tq1yyiseeXKlUzHmpGRkbB27VqDsyYAwKZNm+DJkyeZijVv3bplFNYMDQ3NtKypa+6jL2uePXvW4KwZEBAAO3fuzHSsuWHDBp1ZU9ZfKETMsACAbQCAYkPE9/MGgGMA8AUAEv/732MA0CSD/x4O5GcMDg5GWZlTP3/+RHt7e7SwsEAvLy9ctWoVfvr0SZQ3KSkJXVxc0MTEBGvVqoULFizA169fo1qtFuWvU6cOAgBWrFgRp02bho8ePRLt7d69OwIAlihRAseMGYM3btzAlJQUUd4ZM2YgAKCzszMOGjQIz58/jwkJCaK8u3btQgDAvHnzYo8ePfDo0aMYExMjynvz5k0EAMyWLRv6+vri7t278devX6K8QUFBaG5ujjY2Nti0aVPcuHEjhoaGivJGR0djrly50NzcHBs2bIjLly/HwMBAUd7U1FQsVaoUKhQKrF69Os6dOxefP38uep2USiUCAJYrVw4nTZqE9+7dw9TUVFHewYMHIwBg8eLFceTIkXjlyhVMTk4W5V26dCkCADo4OGC/fv3w9OnTGB8fL8p7/PhxBADMlSsXdunSBQ8ePIiRkZGivP7+/ggAaG9vj61bt8bt27fj9+/fRXnDw8PR2toarays0NvbG9euXSt6b01ISMCCBQuiqakp1q1bFxcvXozv3r0T5VWr1VilShUEAKxcuTLOnDkT/f39Ra+xr68vAgC6u7vj+PHj8fbt26KfxQkTJiAAoIuLCw4dOhQvXryIiYmJorybNm1CAMD8+fNjr1698Pjx4xgbGyvKe+nSJQQAzJ49O3bs2BH37t2LERERorwBAQFoamqKtra22Lx5c9y8eTN+/fpVlDciIgKzZs2KFhYW6OnpiStXrsSgoCBR3uTkZCxWrBiamJhgzZo1cf78+fjq1SvR69SgQQMEACxfvjxOnToVHz58KNrbu3dvBAB0c3PD0aNH4/Xr10U/i3PnzkUAQCcnJxw4cCCeO3dO9H67b98+BADMkycPdu/eHY8cOYLR0dGivPfu3UMAwKxZs2K7du1w586d+OPHD1He4OBgtLCwQGtra1SpVLhhwwb88uWLKG9sbCzmyZMHzczMsEGDBrh06VJ8//69KK9arcZy5cqhQqHAqlWr4uzZs/HZs2ei16l58+YIAFimTBmcOHEi3r17V/R+O2LECAQALFq0KA4fPhwvX76MSUlJorwrV65EAMCCBQti37598dSpUxgXFyfKe/r0aQQAzJkzJ3bu3BkPHDgger99/vw5KhQKtLOzw1atWuG2bdvw27dvorzfv39HW1tbtLS0xCZNmuCaNWvw8+fPoryJiYlYqFAhNDU1xTp16uDChQvxzZs3orxqtRpr1KiBAICVKlXCGTNm4OPHj0WvcefOnREAsFSpUjh27Fi8efOm6P12ypQpCABYuHBhHDx4MF64cEH0frtt2zYEAMyXLx/27NkTjx07Jjr3uXbtmib3ad++Pe7Zs0d07hMYGIhmZmZoY2ODzZo1w02bNmFYWJgob2RkJObIkQPNzc2xUaNGuGLFCvz48aMob0pKCrq5uaGJiQnWqFED582bhy9fvhS9Tl5eXggA6OHhgVOmTMH79++Lfhb79++PAICurq44atQovHr1quj9duHChQgA6OjoiAMGDMAzZ86Izn0OHz6MAIC5c+fGrl274qFDhzAqKkqU99GjRwgAmCVLFmzTpg3u2LFD9H4bGhqKVlZWaGVlhT4+Prhu3ToMCQkR5Y2Li8P8+fOjmZkZ1qtXD5csWYIBAQGivGq1GitUqIAKhQKrVKmCs2bNwqdPn4pe4zZt2iAAYOnSpXHChAl4584d0c/imDFjEACwSJEiOGzYMLx06ZLo/XbdunUIAFigQAHs06cPnjhxQnTuc/78eQQAzJEjB3bq1An379+Pv3//FuV9/fo1mpiYoJ2dHbZs2RK3bNmC4eHhorzGZM26desiAGCFChUMypozZ840CmveunWLwZo/f/4U5TUma7q7u2tYc86cOQZjzSFDhiAAYLFixXDEiBF45coV0c+isVjz6dOnRmNNBwcHLdZ8+/atKK++rNm+fXst1rx169Yfz5qXL1/WsGaHDh0MyprZsmUzCms2bNiQwZpin8U+ffposea1a9cMwpr79+/XYs3Dhw8bhDVDQkI0rKlUKnH9+vU6sWb9+vUNypotWrQwCmuuWrXKKKz54sULvVjTzs5Ow5qrV682GGvWrFlTU2efPn26wVhz6tSpmY41P3z4YDTWLFGihBZrvnjxwiCsOWDAAA1rjhw5UhJrLlq0SMOa/fv3NxhrPn782CisGR8fnylZc+zYsVqs6efnZxDWvHDhgoY1O3bsiPv27TMYa2bJkgUtLCywcePGmYY1e/TowWBNsc+iPqy5e/duBmuKzX30Yc1Pnz6hubk5WltbY9OmTXHDhg2iWTMmJkbDmg0aNMBly5YZjDVVKhUCAJYtW9agrLls2bJMyZo2NjZoaWlpcNasWrWqhjVnzJiBT548MQhrTpw4UcOaQ4YMkcSamzdv/udYs3jx4pmONefNm6dhzQEDBuDZs2dF77eyjKvg4GC6z84B06MnLj2+yd8ecuPg36NJkyYxGlbFFoO2bNnC8JJikNBB2JUrVxheUgw6efIkbzHo/fv3aGpqquUlxSChg7Dfv39jtmzZtLykGLR161beYlBKSgoWL15cy2tpaYleXl64evVqQThp1KiRlldKMahv376M90tsMWj+/PkMb8mSJUUVgw4cOMDwii0GPXjwgOEVWwwKCQlBS0tLLa/YYlBcXBzmy5dPyyu2GKRWq9HDw0PLS4pBy5cvxw8fPnB6ERFbtmyp5SXFoLlz5woWg0aNGsV4v8qVK4eTJ08WLAatXr2a4RVbDDp79izDK7YY9PLlS1QoFFpescWgHz9+oJ2dnZZXbDEoKSkJnZ2dtbx0MYjv95JarcZatWppeelikFDTZdeuXbW8dDFI6CBs2rRpjPeaFIOEmi537NjB8BYpUgSHDh2Kfn5+vM/i9evXGd4CBQpg7969BYtBHz9+RDMzMy2v2GJQVFQU5syZU8tra2uLLVq0ECwGpaSkYMmSJbW8dDFICE68vb0Zz6LYYtDAgQMZ75fYYtDixYsZXlIMEmq6PHr0KMNbqFAhHDRokOBBGCmo0kGKQUJNl2FhYWhtba3lJQdhu3bt4i0GxcfHY4ECBbS8YotBarUaK1WqxNhvxRaD2rZty3gWq1WrJqoYNG7cOMb7JbYYtGHDBoZXbDHo4sWLDC9dDOLLfd6+fYsmJiZaXlIMEjoI+/XrF2bJkkXLSxeD+HKf5ORkLFKkiJaXFIPENF3Wr19fy0tyn0WLFgkWg3r27Ml4v8QWg2bPns3wlipVCseNGydYDNqzZw/DK7YYdOfOHYZXbDHo8+fPaG5uruUVWwyKiYnB3LlzM/ZbUgziy31SU1OxTJkyjP2WFIOEDsKaNm3K2G9JMUio6XLYsGGM96t8+fI4ZcoUfPDgAe+zuHz5coZXbDHo5MmTDC9dDOLLfZ4/f87w5s6dG7t164aHDx/mzX2+ffuGNjY2Wt4sWbJg27ZtBRsPEhMT0dHRkbHfimk8UKvVWK1aNS2vlMaDjh07MvZb0nggdBD2J7EmOQjLaNbMnj27lpcchG3dulUw99GHNT09PRn7be3atf9o1jx48CDD6+zsjIMHDxY8CNOHNb98+cLJmkIX/IzJmq1atWI8i+SCX0ay5po1axhecsEvI1nz1atXGcaafAdh+rJm7dq1GfttvXr1RF3w04c1p0+fznivS5cuLeqCnz6seePGDdb9VgxrBgUFGYU1U1NTjcaagwYNYrxfhDWFLvgZizWfPHnC8Iq94KcvaxYsWFDLS1/wy0jWbNeuHeNZFMua48ePZ7xfhDWFch99WNPPz4/hJawp1HSpD2uSS7K0l7CmUNOlMVmzV69ejPeLXPDLSNbcu3cvw1u4cGGDsKaFhYWWl2ZNvtwnJiYG8+TJw9hvmzdvLpj76MuazZo1Y+y3NWvWFHXBTx/WXLFiBcNLLvj9yaxpa2ur5TUUa1avXl3LS7OmUNOlPqw5efJkxvtFWPPOnTs6saaYC376sGZgYCCDNcVe8NOXNV1dXRn7rSFYs1+/foz3SyxrLliwgOElrCl0wU8f1nz48CHDS1hT6IJfRrCmmAt+XKxJLvhlJGuOHj2a8X4ZgjXPnTvH8BqKNe3t7Rn7rVjWLFy4sJaXsKZQ06W+rNmtWzfG+yX2gp8+rLlz506Gl1zw+1NZMzo6mpc1xTZdyjK85MZBuXFQlp4ikyDSbr4k+IpB5HYOl1eoGESmDrKFUDGITIJgCzLtadmyZawHYWTqIFsIFYPIJAiu4CsGkamDXEGKQWw3cMkkCC4v3w1cMgmCy8t3A5dMHeTy2tvb897AJZMg2EJo2hOZOsgWQsUgMgmCK/iKQeR2DleQYhDbQRiZOsgVfMUgMgmCy5svXz7s1asX60EYmTrI5SXFILamS3oSBFsIHYSRqYNsQYpBXDdwySQIthCa9kQmQXAFuYHLVgwiUwe5gq8YRG7ncHn5ikFsBVU6+IpBZBIEl1eoGESmDrKFlZWVphjEdgOXTB1kC1IM4rqBSyZBsIXQDVwydZArypQpo7mBm3aNySQIruCb9kSmDnJ5+YpBZBIEl5evGEQmQXB5hYpBZOogWwgVg8gkCLagi0FsB2Fk6iBXkGIQW9MlmQTBFSVLluSc9kSmDnJ5+W7gkqmDXF6+aU9kEgSXl2+yMD11kC2EikFkEgRbCBWDyNRBrmeRrxhEJkFwBV8xiEyC4Aq+ycJk6iCXlxSD2G7gkkkQXF6+G7hk6iCXlxSDuG7gkkkQbCE07YlMHeR6FvkmC5Opg1zBVwwikyC4gm+yMJk6yBV8xSAyCYLLmz9/fs5iEJk6yOWli0Fpmy7JJAguLykGcd3AJZMg2ELoBi6ZOsgWpPGA6wYumQTBFXyThcnUQa7gmyxMJkFweQsVKsQ57cmYrEkmQbCF0GRhfViTTIJgC8KaXNOe9GFNMgmCK4oVK8Y57cmYrOnu7s7pFZr2pA9rkkkQbPGnsiaZBMEVfBf89GVNBwcHTi/fBT99WZNMgmALoWlPxmJNMgmCKzKSNdNekqWDsCbbQZi+rEkmQbAFYU2uaU9kEgRbCE170oc1ydRBrqCnPaUna5Kpg1zeP5U1ydRBthCaLKwPa5Kpg1zB9yk2+rAmmTrI5RVizbSNy3RkJGuSqYNskZGsSaYOcj2LfJ9iYyzWJFMHubx80570Zc0SJUpweoWmPenDmmTqINezyMeaZOogV2QUa7JdkqWDb7KwPqxJpg5yefk+xcaYrEmmDrKF0LQnfViTTB3kioxkzbSXZOlIL9Zky330YU0ydZAthD7FRh/WJFMHuYLvgp8+rEmmDnJ5+ViTTB3k8mYka5Kpg2yRkaxJpg5yBd+n2BiTNdNekqWD74KfvqxJpg6yRUayJpk6yBZCrEmmDnIF32ThjGRNvk+x0Zc1016SpUNomIyxWJNMHWQLXScLy8p4ZUTjoAL/1xgni0cKhcIBAIIBAIKDg8HBwcHIP5EsXTRnzhzYt28ffPz4EWJiYgS/3sLCAurXrw9KpRKSkpJg69at8OXLF/j165eg18TEBGrUqAEqlQpy5coFS5cuhe/fv8PXr19F/awVK1YEpVIJpUuXhmnTpkFkZCR8/vxZlLdEiRKgUqmgQYMGMGrUKIiPjxf92fbOzs6gVCpBpVLBjBkzICIiAl69eiXKmzdvXvDx8QGVSgW7d++Gt2/fwsuXL0GtVgt6s2XLBl5eXqBSqeDOnTtw7do1CAgIgISEBEGvjY0NNGzYEFQqFYSFhcHBgwfh06dPEBUVJeg1NzeHOnXqgEqlAlNTU1i/fj2EhYXBjx8/BL0KhQKqVasGKpUKHB0dYf78+fDz508IDQ0V9AIAlCtXDpRKJVSuXBkmTpwI0dHREBQUJMpbvHhxUKlU4OPjA0OGDIGkpCR49+6dKK+Dg4NmjZcvXw6hoaHw4sULUd5cuXKBt7c3qFQqOHHiBPj7+8Pr168hJSVF0Gtvbw+NGzcGlUoFL168gHPnzkFgYCDExcUJeq2srKB+/fqgUqkgKioKdu3aBcHBwfD7929Br6mpKdSqVQtUKhXY29vDypUrITw8HL59+ybmrwyVK1cGlUoFrq6uMHPmTIiIiICQkBBRXnd3d1CpVFC7dm0YM2YMxMbGwocPH0R5XVxcQKVSgVKphAkTJkB0dDS8efNGlDd//vyaZ3Hz5s3w4cMH0WucPXt28Pb2BqVSCVeuXIE7d+7A27dvISkpSdBra2sLjRo1ApVKBR8+fIATJ05I2m/r1q0LKpUKUlNTYfPmzZL22+rVq4NKpYK8efPC4sWLJe235cuXB5VKBeXKlYMpU6ZI2m/d3NxApVKBp6cnDB8+HBITEyEgIECU18nJCVQqFahUKpgzZw78/PkTXr58KcqbJ08ezRofOHAAXr58Ca9evYLU1FRBb9asWcHLywuUSiU8ePAArly5Au/fv4f4+HhBr7W1tWa//fbtG+zfvx8+f/4MkZGRgl4zMzOoU6cOKJVKsLKygjVr1sDXr1/h+/fvgl6FQgFVqlQBlUoFhQsXhrlz58KvX7/gy5cvgl4AgDJlyoBKpYJq1arB+PHjISYmBj5+/CjKW7RoUc06DRs2DBITE+Ht27eivAULFtTst6tWrYKQkBDRz2LOnDk1++2ZM2fg0aNH8ObNG0hOThb02tnZafbb169fw5kzZ+DDhw8QGxsr6LW0tNTst3FxcbB9+3YICQmBiIgIQa+pqSnUrFkTlEolZM+eHZYvXw7fvn2D8PBwUX/nSpUqgUqlgpIlS8L06dPh9+/fEBwcLMpbqlQpUCqVUK9ePRg9ejTExcVBYGCgKG/hwoU16zR16lT4/fs3vH79WpQ3X758mmdxx44dEBAQAC9evAAxfJUtWzZo0qQJqFQquHHjBty8eRPevXsHiYmJgl4bGxvNfhscHAxHjhyBoKAgiI6OFvSam5tr9luFQgEbNmyA0NBQ+Pnzp6DXxMREk/sUKFAAFi5cCD9+/ICwsDBBLwCAh4cHqFQqKF++PEyePBmioqLg06dPoryurq6gVCqhSZMmmmdR7H7r6Oio+Z26aNEiCA8PF73f5s6dW/MsHjlyBJ4/fy56v82SJYvmWfT394eLFy+K3m+trKygQYMGoFKp4NevX7B3715J+y3JfWxsbGD16tWicx+FQqHJfYoWLQqzZ8+WlPuULl0aVCoV1KhRA8aNGycp9ylSpIhmvyXPsdjcp0CBAqBUKkGpVML69evh06dPovfbHDlyaNb44sWLcO/ePdG5j52dHXh6eoJSqYSAgAA4deqUwVkzd+7csGTJEkm5T4UKFUClUunFmg0bNoSRI0cahTX37NkDb968MQhrWltbQ6NGjUCpVMLXr191Zk0zMzNYt26dZNZUKpXg5ORkUNYsVqyYZs+UWZNffwJr1qpVC8aOHSuZNck66cOaW7ZsgcDAQEmsSXIffVjz48ePcPz4cdG5T3qxZr58+WDRokWSch/Cmh4eHpJzH8KajRo1ghEjRujMmnPnzoUfP35IZk2lUgkHDx7UmTUfPnwIly9flsSaJPf5/v27ZNasXbs2qFQqvVjTxcUF5syZYxTWHD58OCQkJBicNc+ePQsPHz7UiTXfvHkDp0+flsyaSqUS4uPjdWbNHDlywLJlyySxZsWKFUGlUkGpUqV0Zs369evDqFGjZNbk0b/KmmSN9WHNo0ePwrNnzwzOmhEREbBnzx7Ruc+fwJo1a9aUnPsQ1lQqlTBmzBidWXPDhg0QFBQkiTXJs+jn56cza75//x5OnjwpiTXr1asHKpXKaKxZpkwZmDp1qs6sOWLECEhISNCJNWfOnAm/fv0yOGvevXsXrl69ajDWJLmPubm5zqxZqFAhmDdvniTWLFu2LKhUKr1YU6VSweDBg/961rS0tNTst8ZgTaVSCa6urjBr1iyDnmuSdZo4cSJERUXpxZovX74UlfvQrHn16lW4ffu2wVlTrVbDpk2bJOU+xmZNXc81yRrXq1cPLC0tRflkpb9CQkLA0dGR/NEREcU95DySGwdFSG4c/Ds0aNAgWL16tbF/jH9CCoVC1C/z9PbKkiZ5nf5+yWucOSSv098veY3/fsnrlDkkP4t/v+Q1/vslr3HmkLxOf7/kNc4cktfp75e8xn+/5HXKHJKfxb9f8hr//ZLXOHNIXqe/X/IaZw7Z2tqCp6cnqFQq8Pb2hrx58xr7R/qnlBGNg2b6fgNZsmTJSit9finLv9ANJ3md/n7Ja5w5JK/T3y95jf9+yeuUOSQ/i3+/5DX++yWvceaQvE5/v+Q1zhyS1+nvl7zGf7/kdcockp/Fv1/yGv/9ktc4c0hep79f8hpnDsXGxsKzZ8+gUKFCULhwYciTJw8oFApj/1iy9JCJsX8AWbL+ZBUsWBD69u0LPXv2lOzNmTMndO7cGUaNGiXZa2dnB61atYIZM2ZI9lpaWkKTJk1g8eLFkr2mpqZQp04dWLRoEWTLlk2yv1KlSjBjxgwoWbKkZG+pUqVg3LhxUL9+fcnewoULw5AhQ6Bdu3aSvfny5YNevXpB//79JXuzZ88OHTp0gPHjx0v22tjYQLNmzWDOnDmSvebm5uDp6QnLly+X7CXj5ufNmwcFCxaU7Pfw8IApU6ZAxYoVJXtdXV1h1KhR4OPjI9nr6OgIAwYMgC5dukj25s6dG7p16wbDhg2T7M2SJQu0bdsWpk6dKtlrZWUFSqUSFi5cKNlrZmYG9evXhyVLloCNjY0kL/monVmzZkHRokUlv3aZMmVgwoQJUKtWLcneIkWKwLBhw6Bly5aSvQUKFIA+ffpA7969JXtz5MgBnTp1gjFjxkj22tnZQcuWLWHWrFmSvRYWFuDl5QVLly6V7DUxMYHatWvDwoULIVeuXJL9FStWhOnTp0OZMmUke0uWLAljxoyBRo0aSfY6OzvD4MGDoUOHDpK9efPmhR49esCgQYMke7NmzQq+vr4wceJEyV5ra2to2rQpzJs3T7LX3NwcGjZsCMuXLwcTE2lps0KhgOrVq8PcuXPByclJ8muXK1cOJk+eDJUrV5bsLV68OIwcORJUKpVkr4ODA/Tv3x+6d+8u2ZsrVy7o0qULjBgxQrLX3t4e2rRpA9OmTZPstbS0BG9vb1i0aJFkr6mpKdStWxcWL14M9vb2kv2VK1eGmTNngpubm2Svu7s7jB8/HurWrSvZ6+LiAkOHDoU2bdpI9ubPnx969+4Nffv2lezNnj07dOzYEcaNGyfZa2trCy1atIDZs2dL9lpYWICnpycsW7ZMstfExARq1aoF8+fPh3z58kn2ly9fHqZOnQoeHh6SvW5ubjB69Gjw8vKS7HVycoKBAwdCp06dJHvz5MkD3bt3hyFDhkj2Zs2aFdq1awdTpkyR7LW2tgaVSgULFiyQ7DUzM4MGDRrAsmXLwMLCQpKXfNTO7NmzoXDhwpJfu2zZsjBp0iSoXr26ZG/RokVh+PDh0KxZM8nezMyaS5YskexNL9YsVaqUZK8+rElyH31Yc8CAAZK92bJlg/bt2+vFmnPnzpXsNTc3h0aNGmVa1vT29pbsJazZtWtXyV5js6au+229evX0Zs1ixYpJfu3SpUvrzZqtWrWS7M3MrKnLfpserDlt2jSDs2ahQoVg0KBBRmPNSZMmSfamF2uamppK8qYXa1apUkWyl7Bm06ZNJXsdHBygX79+RmHN1q1by6wpUunBmv369ZPsJaw5duxYyV5jsmbNmjX1Zs3y5ctL9qYHa3bu3FmyNzOz5tKlS/ViTRcXF8mvXaZMGZg4caJerNm8eXPJXmOz5syZMyV704s1s2fPLtmfHqzZoEEDyV7Cmr6+vpK9efPmhZ49e+rFmhMmTJDsTQ/WXLFihWTvn8Ca+pxrGoM127RpY5RzTcKatra2krzpxZq1a9eW7E0P1uzTp49kL2HN0aNHS/Ya81yzVq1asGDBAnj9+jUEBATA0qVLoW7dunLT4N8gRJRDIADAAQAQADA4OBhlZV7Fx8djgQIFkKwnW1SsWBGnT5+Ojx8/RrVarfGq1WqsWLEir7dkyZI4duxYvHnzJqakpGi9dtu2bXm9zs7OOHjwYLxw4QImJCRoeceOHcvrzZs3L/bs2ROPHTuGMTExWt7169fzerNly4bt27fHPXv24K9fv7S8Fy9e5PXa2Nhgs2bNcOPGjRgaGqrlffPmDZqYmHB6zc3NsVGjRrhixQr88OGDlvfXr1+YJUsWTq+JiQnWqFED586diy9evNBap+TkZCxSpAjvz12uXDmcPHky3r9/H1NTU7Veu169erze4sWL48iRI/Hq1auYnJys5e3Rowev18HBAfv3749nzpzB+Ph4Le+sWbN4vbly5cKuXbvioUOHMCoqSsu7Z88eXq+9vT22adMGd+zYgd+/f9fy3r59m9drZWWFPj4+uG7dOsb+9/nzZzQ3N+f0mpqaYr169XDJkiX47t07LW9MTAzmypWL06tQKLBKlSo4c+ZM9Pf311rj1NRULF26NO/PXbp0aZwwYQLevn2b8Sw2bdqU1+vi4oJDhw5FPz8/TExM1PIOHTqU15s/f37s3bs3njhxAmNjY7W8y5cv5/Vmz54dO3bsiPv27cOIiAgt74kTJ3i9tra22KJFC9yyZQt+/fpVy/vs2TNer4WFBTZu3BhXrVqFQUFBWt7w8HC0sbHhfRZr1aqFCxYswNevX2utU0JCAjo6OvK+doUKFXDatGn46NEjxn5brVo1Xm+JEiVwzJgxeP36dcaz2KFDB15voUKFcNCgQXju3DnGfjtp0iReb548ebBHjx545MgRjI6O1vJu3ryZ15s1a1Zs164d7tq1C3/+/KnlvXLlCq/X2toaVSoVbtiwAb98+aLlff/+PZqamnJ6zczMsEGDBrhs2TJ8//69lvf379+YLVs23mexWrVqOGfOHHz+/LnWOqWkpGDx4sV5f+6yZcvipEmT8N69e4z9tlGjRrzeYsWK4YgRI/DKlSuYlJSk5e3bty+vt2DBgtivXz88ffo0xsXFaXnnzZvH682ZMyd26dIFDxw4gJGRkVreAwcO8Hrt7e2xdevWuH37dvz27ZuW98GDB7xeS0tL9Pb2xjVr1uDnz5+1vCEhIWhpacnpNTU1xbp16+KiRYvw7du3Wt64uDjMly8f72tXqlQJZ8yYgU+ePGE8i+XKleP1lipVCseNG4e3bt1i7LctW7bk9RYuXBiHDBmCFy9eZOy3o0aN4vXmy5cPe/XqhcePH2fkPqtXr+b1Zs+eHTt06IB79+5l7Ldnz57l9drY2GDz5s1x8+bNGBYWpuV9+fIlKhQKTq+5uTl6enriihUr8OPHj1reHz9+oJ2dHafXxMQEa9asifPnz8eXL19qrVNiYiI6Ozvz/tzly5fHKVOm4IMHD7SeRbVajbVq1eL1urm54ahRo/DatWuM/bZr1668XkdHRxwwYACePXuWkftMmzaN15s7d27s1q0bHj58mJH77Nixg9ebJUsWbNu2Le7cuRN//Pih5b1+/Tqv18rKCpVKJa5fvx5DQkK0vB8/fkQzMzNOr5mZGdavXx+XLl2KAQEBWt6oqCjMkSMHp1ehUGDVqlVx9uzZ+PTpU8Z+W7JkSd6fu0yZMjhx4kS8e/cuY7/19vbm9RYtWhSHDx+Oly5dYuy3AwcO5PUWKFAA+/TpgydPnmTkPosXL+b15siRAzt16oT79+/H379/a3mPHDnC67Wzs8OWLVvi1q1bMTw8XMv7+PFjXq+FhQV6eXnh6tWr8dOnT1resLAwtLa25vSamppi7dq1ceHChfjmzRstr76sWalSJV5verDm+fPnGbnPuHHjeL3pwZq7d+9m5D76sObbt28FWbNhw4a4fPlyDAwM1PIKsaZCocDq1av/cazZs2dPXi8fa86ePZvXS7Nm2txHH9a8c+cOrzc9WHPx4sWsrJk7d27eNdaHNd3d3XH8+PHpzprDhg3j9WYUa548eZLXm1Gs+e3bN51ZMzExUTRrPnz4MF1Zs2PHjrxeJycnHDhwoM6s2b17d1bW3LJlC6/3T2XN7Nmz8z6LGcWanp6evN70YM1Tp04xWHP+/Pm8Xn1Y087ODlu1aoXbtm1LV9b88uWLIGvWqVMnQ1jTw8OD1/snsuaaNWt4vTRrpq2z68Oar169ylDWrFGjBs6bN7tegAkAAQAASURBVI/BmklJSRnKmq6urhnCmtOnT+f1ZhRr3rhxg9ebkayZM2dOTi8fa6ampopizQkTJuCdO3fSlTUHDRrE680o1jx69Civ909lzYIFC/K+dnqw5o0bNxj7bbt27Xi9+rJmjx498OjRo4zcZ8OGDbxePtb08/Pj9VpbW2PTpk3TnTUjIiIwa9asvM9iRrFm/fr1eb1/Imvu3buX10tYc/v27Tqz5tq1a1lZ08LCgvdZ1JU1AQArV67MyZplypTh9f6JrLlixQpeb0ax5vPnz3m96cGa8+fPx1evXqUra1avXp3XW6JECRw9enS6s+bkyZN5vRnFmrKMp+DgYHqdHDA9euLS45v87QFy4+Bfo5UrVzI2PDpJTFsgo3Xq1CmGlySJy5YtYySJtJ4/f86Ae5IkshXIaH3//h1tbW0Zr81XICNKTExEJycnhpevQEakVquxRo0aDK+DgwNnMwatTp06Mby5cuXCLl264MGDBxlJIq0pU6YwvHQzRtokkdbWrVsZXlIgW7t2LaNARuvq1asML2nGWLx4MaNARiswMJC1mEqSxLQFMlqRkZGsxVSSJLIVyIhSUlLQzc2N4eUrkNFq3Lgxw8tXIKPVv39/1iSRqxmD1oIFCxheukCWNkmkdejQIdYk0dPTE1euXMkokNF69OgRa5JImjHSJom0QkND0crKiuEvX748Tp06FR8+fMj5LMbFxWH+/PkZXjc3N84kkUitVmP58uU5k0S2Ahmt1q1bcyaJbAUyWqNHj2Z4+QpktNauXcu636pUKly/fj3vfnv+/HmGly6QpT2QoPX69WvW/ZYUyJ49e8a5xj9//kR7e3vGa/M1YxAlJSVh4cKFGV5SILt8+TLnfouIWKdOHYa3YMGC2LdvX9YDCVrdu3dneHPmzImdO3fGAwcOMApktGbMmMHw0gcSaQtktHbt2sW63zZp0oS1QEbr1q1brPstV4GMVlBQEOtBcqVKlVgLZLSio6NZi6l8zRhEqampWKpUKYaXbvzn22+VSiXDy9eMQWvw4MEML1/jP62lS5ey7rfNmjXDTZs2MQ4kaB07dozh5Wv8p+Xv78+635IDibQFMlrh4eGsxVQPDw/OAhlRQkICazGVHEiwFciI1Go1VqlSheF1dHTkLJDR8vX1ZXj5Gv9pTZgwgeHla8agtXHjRoaXbsZIeyBB69KlS6z7LWn8T3sgQSsgIICR+5BmjFmzZjEOJGhxFVNJ4/+dO3c4n8Xk5GQsVqwYw1ukSBEcNmwYa4GMVoMGDRhevgIZrd69ezO85ECCrUBGa86cOQwvX4GM1r59+xhevgIZrXv37rE+i1zNGLSCg4NZi6lcjf+0YmNjMU+ePAwvacZgO5AgSk1NxbJlyzK8pPGf7UCCVvPmzRle0vjPdiBBa8SIEQxv1qxZ0dfXV7BApg9rnj59mnW/FcOaL168YM19uJoxaGVW1uzcuTPDS5oxMpI1t23bxvCKZc1r164xvHyN/7QCAwNZD5LFsiZb07K7uztnMwaRvqzp5eXF8BqCNRcuXMjw6sOapBnDmKyZthmDlr6sWaFCBYZXH9bka8agNWbMGIZXLGuuW7eO4eVrxqClL2umPUg2FGu6uLgwvPqwZoECBbBv37548uT/sXeWYVU1XR9fpNgdKNgFFnZ3C9jdhd3d3R3YndjdLXaL3aIgSIh0c9b74bn2eWfvs2vORo7czv+61ofnw/8WmWeP81uz1prTf4w1586da+DlWFOsGIOUqVjz27dvoqwpVYxBKiIiQrRBNrlYU+7so4U1R4wYYeBNDtYUK8YgdfLkSdH9Vg1renl5ie63Uk3mpLSypp2dnYFXrhiDk1bW7NKli4E3JVhz69atovutsawp12ROSitrijXIyjWZc5JiTbliDFKNGjUy8GphTbliDFILFy408KplzYMHDxp4U4I1fX19/xhrKp19xBpkk4M1xYoxSGlhTXd3dwOvXOE/qdTKmgUKFDDwqmXNWrVqGXjlmsxJaWHNmTNniu63Uk3mpORYU6zwn5QW1vzy5Ysoa0oV/pPSypoODg4G3pRgzSFDhojut8nBmnJ59qNHj4p+i8nBmsLCf1JaWDMmJkaSNaUK/zlJsaZc4T+pDh06GHj/dta8dOmSgVeu8J+UVtYUa5BNDtYUK/xn+jvECgdZ4SCTBpETINQWY3Aiu3LUJshIcRMg5LpDpcR15XAJMqVDIiluAoRcd6iUyAkQag6JpMhpg3LdoWIiJ0Bwh0SlYgxOZFcOd0hUSpCR4iZAcIdEpQQZKa4rR20xBilu2iDZHSqXICPFTYCQ6w6VEtmVU758edHuUCmREyDkukPFRHblqD0kciInQKg9JJLiunLIQ6JcgowUN21Q7SGRFDcBgjskKhVjkOK6ctQmyEiREyDkukPFRHblcMUYag+J5LRBue5QMZETIOS6Q6XETRuU6w6VEjcBguwOlUuQkeK6cszNzfUXEnIJMlLkBAjuQkIuQUaKnADh6OioWIxBipw2KNcdKiZyAoRcd6iUuAkQXIJMrDtUStwECLnuUClxEyDkukOlxE2AkOsOlRI5AYLrDpVLkJEipw2SFxJqvkVyAgTXHaqUIONEToBQW/hPipsAIdcdKiVuAgRZjKH2DM5NGyQL/+UuJEiREyCkukOlRE6AkOsOFRM5AULthQQncgIEdyFx8uRJ1fstNwFC7YUEKW4CBHchoVSMQYqbNkheSMglyEhxEyDkukOlRE6AUFP4T4qcAKGmGIMUOQFCrjtUTOS0QbnuUClxEyDI7lC5BBkpbgKE2gsJUtwECLlJRFLiJkBwFxJKCTJS5AQI7kJCLkFGipwAobYYg5MpWZObAJHSrMlNgCBZU64Yg5QW1iQnQHCsKVeMQcqUrMlNgFBbjEFKC2tyEyDUFmOQMiVrchfJagr/SWllTW4CBMeaSsUYpLSwJjcBgmNNpWIMUqZiTXICBFn4/6dZk5wAkdKsyU2AMIY1uQkQHGsqFWOQSk7WVCrGIKWVNbkGWbXFGJxMyZqDBg0yYE21Zx8trHn48GED1pQrxiClhTXJaYMca8oVY5ASsqaaYgxOWlmzXbt2etZUU/hPSgtrctMG1TaZkzIla3JFyxxrKhVjcNLKmnXq1OGxplIxBiktrMlNG1TbZE5qz549+v1WTeE/KS2s6e3tbRLWJKcNkqyp9uxjKtZcsWIFjzWVCv9JaWHNZ8+e8fLsSsUYpLSyJtcgm5pYc/LkyQasKVf4T0oLa5LTBjnWlCv8J6WFNckGWbVN5pwSEhKwaNGi+rOPmsJ/UlpYs3///iZhTW7aYGpjTa5omWNNpcJ/TlpZs1WrVnrWVFP4T0oLa3LTBtU2mZPihjGZgjW5omWSNdV8i1pZk5s2qLbJnJSpWJMbxqS28J/p79GfKBy0BCamf0R3796FgQMHgqurKzg5OVG9tf7mzRto0KABrFy5EqpVqwYWFhaqvYGBgWBrawuXLl2COnXqQJo0aVR7Y2NjISYmBo4fPw6NGzeG9OnTq/YiInh7e8P+/fuhWbNmkDVrVtVeAICnT5/Cli1bwNnZGWxtbam8t27dgpUrV4KrqysUKlSIyuvp6QmTJ08GV1dXcHR0pFqnR48eQdeuXcHV1RUqVqwI5ubmqr2fP3+GChUqwMyZM6FmzZpgaal+ewwNDYX06dPDuXPnoH79+mBjY6Pam5CQACEhIXDkyBFo0qQJZMyYUbUXEeHdu3ewe/duaN68OeTIkUO1FwDgwYMHsGHDBnBxcQE7Ozsq782bN2Hx4sXg4uICxYoVo/Levn0bRowYAa6urlC2bFmqNX7+/Dm4uLjApk2boEqVKlTf4o8fP6Bw4cJw5coVqF27NlhbW6v2RkVFASLCqVOnoGHDhpAuXTrVXp1OB76+vnDgwAFo2rQpZMmSRbUXAODFixewfft2aNGiBeTOnZvKe+fOHXB3dwcXFxcoUKAAlffmzZswa9YscHV1hRIlSlCt0/3796Ffv37g6uoK5cuXp/K+e/cOateuDYsXL4bq1atTfYvBwcGQI0cOuHDhAtSrV49qv42Li4PIyEg4duwYNG7cGDJkyKDai4jw6dMn2Lt3LzRv3hyyZcum2gsA8PjxY9i8eTM4OztD3rx5qby3bt2C5cuXg4uLCxQpUoTK6+npCRMmTABXV1coVaoU1To9fvwYOnbsCK6urlCpUiWq/dbb2xtKly4NkydPhpo1a4KVlZVqb3h4OKRJkwbOnj0L9evXh7Rp06r2JiUlQWBgIBw6dAiaNm0KmTJlUu0F+N9ZYOfOndCiRQvImTMnlffevXuwfv16cHFxAXt7eyrvzZs3Yf78+eDq6grFixen8t65cweGDBkCrq6uUK5cOao1fvnyJTRt2hTc3d2hatWqVPutv78/2Nvbw+XLl6FOnTpU+21MTAwkJCTAyZMnoWHDhlRnH51OB9+/fwcPDw9o1qwZ9X77/Plz2LZtG7Ro0QLy5MlD5b19+zasXr0aXF1doWDBglTemzdvwrRp08DV1RUcHByo1unBgwfQs2dPcHV1hQoVKlB9ix8/foSqVavCvHnzoEaNGlT7bUhICGTOnBnOnz8P9erVozr7xMfHQ1hYGBw9ehQaN25Mffb58OED7NmzB5o3bw7Zs2dX7QX431lx06ZN4OzsDPny5aPyenp6wtKlS8HFxQWKFi1K5b19+zaMGTMGXFxcoEyZMlRr/OzZM2jTpg1s374dKleuTLXGPj4+ULx4cRg7dizUrl2bar+NjIwEc3NzOH36NDRo0IDq7JOUlAT+/v5w8OBBaNq0KWTOnFm1FwDg1atXsGPHDmjRogXkypWLynvv3j1Yt24duLi4QP78+am8np6eMGfOHP3Zh0amZM08efLAxYsXoW7duinKml++fIF9+/ZBs2bNqM8+ycGaLi4uULhwYSqvqVjzy5cvUL58eZgxY0aKsmZiYiL8+vULjhw5Ao0bN6Y6+5iSNT09PWHhwoXg6uqaoqzp5eUFzs7OsHHjxhRnTZ1Ox1hTpe7duwd9+/bVn31SkjWzZ89uFGvGx8dDRESESVjzyZMnJmHNW7duwfjx41Mda1pbW8OZM2egQYMGjDUVZCrW/Pnzp0lYExHh27dvRufZTcWanp6eMHXq1BRnzU+fPkGVKlVg7ty5KcqaCQkJEBoamupY8+bNm7BkyRJwdXVNUdZ8+vQptG7dGrZt2wZVqlRJNazp5+dnEta8e/euSVjz3r17MGDAgFTHmtHR0XD8+HFo1KgR9dkntbLmpEmTjGbNLl26pDhrhoWFQbp06eDs2bPQoEGDFGNNAIC3b9/Crl27oEWLFqmGNe/cuQPDhw9Pcdb08/ODQoUKpTrW9PLygm3btoGzs3OKs+aMGTPA1dUVSpYsmWKs+f79e6hZsyYsWrTon2FNpv+ezPB/E/WYZGRmZmYHAD4A/zsQ0/5DxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMRkjHx9fcnGMXtE9NX631Rfts7ExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExJTqxQoHmZiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJj+IbHCQaZ/RkFBQZCUlGSUNyQkBOLj443yRkREQFRUlFHeuLg4+P37t1FeRISAgACjvACg2WvsM+iBgYGg0+mM8gYHB0NiYqJR3tDQUIiNjTXKGxUVBREREUZ5ExIS4NevX0Z5U/MaG/st/vr1CxISEozyhoeHQ3R0tFHemJgYCAsLM8qr0+kgMDDQKC+A6dZJizc4ONjoNf79+zfExcUZ5Y2MjDR6v42Pj4eQkBCjvKn5WzR2v9XyLYaFhRm930ZHR0N4eLhR3sTERAgODjbKC6B9nbR4jV1jU519tOy3sbGxEBoaapTXlPvtz58/Ne23pjj7aN1vIyMjjfL+q2cfU+23MTExRnm1nH2SkpIgKCjIKC/Av7ff/v79m7EmpZexpjolJib+c/utlm+RsSa9V8u3qGWNU9vZh7EmnVIjayYlJTHWpFBqZE1ETLX7LWNNdUqt+21QUBBjTQql1jVmrKle/9p+mxpZE+Df+xZDQkIYa1J6TXGvyViT6V8XKxxk+mfk7e0NefLkgV69esGRI0eokkExMTFgZ2cHHTp0gF27dlHBiYWFBZQuXRqcnZ1h48aN4Our/olxa2traNKkCdSvXx+WL18OHz58UO01MzODIUOGQNWqVWHu3Lnw/Plzqn8sly5dCqVLl4bJkyfD3bt3qQ5ER44cgaJFi8LIkSPhypUrVHDy5MkTsLOzAzc3Nzh16hTVgSggIADy5MkD3bp1gwMHDlAlgxITE6FQoULQpk0b2L59O9U/llZWVlCpUiVo2rQpuLu7g7e3t2qvpaUltGvXDmrXrg1LliyBt2/fql4nMzMzmDhxIlSsWBFmzZoFjx8/poKTDRs2gIODA4wfPx48PT2pDkQXL16EggULwtChQ+HChQtUB6J3796Bra0t9OnTB44dO0Z1IAoPD4e8efNCp06dYO/evdRwUqJECXB1dYXNmzeDn5+fap+1tTXUqVMHGjZsCKtWrYLPnz+r9pqbm0Pfvn2hevXqsGDBAnj58iXVtzhnzhwoV64cTJs2De7fv0+1xnv37oXixYvDmDFj4Pr161RwcufOHbC3t4dBgwbBmTNnqJJBPj4+kCdPHujZsyccOnSICk7i4uIgf/780K5dO9i5cyfVfmtpaQlly5aFFi1awPr168HHx0e118rKCpydnaFu3bqwbNkyeP/+vWqvmZkZjBgxAipXrgxz5syBZ8+eUa3xypUroVSpUjBp0iS4c+cO1X574sQJKFy4MIwYMQIuX75M9S16eXlBvnz5oH///nDy5EmqZFBwcDDY2tpC165dwcPDgyoZlJSUBIULF4bWrVvD1q1b4efPn6q91tbWUK1aNWjSpAmsWbMGvn79qtpraWkJnTp1gpo1a8KiRYvg9evXVOs0ZcoUqFChAsyYMQMePXpE9S1u3boVSpQoAePGjYObN29S7bdXr16FAgUKwJAhQ+D8+fNUyaBPnz6Bra0t9O7dG44ePUqVDIqMjIR8+fJBx44dYc+ePVQXYRYWFuDg4AAuLi6wadMm+PHjh2qvtbU1NGjQABo0aAArV66Ejx8/qvaam5vDgAEDoFq1ajB//nzw8vKiWuOFCxdC2bJlYcqUKXDv3j2qb/HgwYNQtGhRGDVqFFy9epXq7PPw4UOwt7eHAQMGwOnTp6nOPn5+fpAnTx7o3r07HDx4kGq/TUhIgAIFCkDbtm1hx44dVMkgKysrKF++PDRr1gzWrVsH3759U+21tLSE1q1bQ506dWDp0qXw7t07qrPP2LFjoVKlSjB79mx4+vQp1RqvXbsWHB0dYeLEiXDr1i2qb/Hs2bNQqFAhGD58OFy8eJFqv339+jXY2tpC37594fjx41Rnn9+/f0PevHmhS5cusG/fPupkULFixaBly5awZcsW8Pf3V+2zsrKCWrVqQaNGjWD16tXw5csX1V4LCwvo0aMH1KhRAxYuXAivXr2iWqcZM2aAk5MTTJ8+HR4+fEi13+7cuROKFy8OY8eOhRs3blCdfTw9PSF//vwwePBgOHfuHNXZRwtrRkdHa2bNFi1awIYNG6jOPtbW1tC0aVNNrFmlSpUUZ82jR49CkSJFUpw1AwMDk401ac4+VlZWULlyZaNY08LCQs+aixcvhjdv3qQYa27cuDHZWJPm7GMq1jQzM9PEmnXr1jUJa86dO1cza44ePRquXbuWYqzp6+sLefLkgR49eqQ4a5YrVw6aN28O69evh+/fv6v2amXNkSNHmoQ1T548aTRrvnjxQs+aJ06cSDHW1Ol0mlmzcePG1KxpYWEBnTt31sSa5cuXT3HWvHbtmklYMyoqKllY05g8e8OGDY1iTTMzMxg4cCBUq1YN5s2bl2pY88GDB2BnZ2cUa/r7+6d61qTNs3OsOWvWLHjy5AnVGru7u2tmzWHDhqU4a9ra2kLnzp1TlDWtra1NxpozZ85MFtakzbNrYc1v377pWfPw4cMpxpqWlpaaWbNevXpGsebQoUNTHWs+ffoU8uXLp2dNmrMPyZrG5NmTgzXXrl1LzZrt27c3ijUBACZNmgQVKlSAmTNnpihrXrp0KdlYk+bsk5ysSZtn18Ka/fr107PmixcvjGLNqVOnUrPmvn37jGbNu3fvgp2dHQwcONAo1rS1tU0W1qQ5+2hlTRcXl2RhTdo8O9N/UIjIQiEAwA4AEADQx8cHmVKvnJ2dkVtLKysrbNSoEa5evRq/fPmi6B02bJjea2ZmhjVq1MCFCxfiq1evUKfTyXpXrFih9wIAOjk54fTp0/Hhw4eYlJQk6z1+/DjPW7x4cRw7dizeuHEDExISZL3Pnj3jee3t7XHw4MF47tw5jImJkfX+/PkT06ZNq/fmyJEDe/XqhUeOHMHw8HBZb0xMDObLl0/vzZQpE3bo0AF3796NQUFBsl6dTodVqlTRe21sbNDZ2Rk3bNig6vvr1KmT3mthYYH16tXD5cuX44cPHxS9kydP5v2+qlSpgnPnzsXnz58rrvHmzZt53tKlS+PkyZPx7t27mJiYKOu9cuUKz1u4cGEcOXIkXrlyBePi4mS9Hz58QHNzc73X1tYW3dzc8NSpUxgVFSXr/f37N2bOnFnvzZYtG3br1g0PHDiAv3//lvUmJCRg0aJF9d706dNjmzZtcPv27fjz509ZLyJigwYN9F5ra2ts2rQpuru7o7e3t6K3f//+eq+5uTnWrl0blyxZgm/evFFcp/nz5/N+1xUrVsSZM2fi48ePFb0eHh48r4ODA44fPx49PT0Vv8X79+/zvAUKFMChQ4fihQsXMDY2Vtb7/ft3tLa21ntz5cqFffr0wWPHjmFERISsNzIyEnPlyqX3Zs6cGTt16oR79+7FX79+yXqTkpKwbNmyem/atGnR1dUVN2/ejH5+frJeRMRWrVrpvZaWltiwYUNctWoVfv78WdE7evRo3n5bvXp1XLBgAb58+VJxndasWcP7XZcrVw6nTZuG9+/fV9xvz5w5w/MWK1YMx4wZg9euXcP4+HhZ78uXL3nefPny4cCBA/HMmTMYHR0t6w0MDMT06dPrvdmzZ8cePXrgoUOHMCwsTNYbFxeH9vb2em/GjBmxXbt2uHPnTgwMDJT16nQ6rFGjht6bJk0abN68Oa5fvx6/f/8u60VE7N69O2+/rVu3Li5btgzfv3+v6J0+fTrv91W5cmWcM2cOPnv2THGNd+zYwfOWKlUKJ02ahHfu3FHcb69fv87zFipUCEeMGIGXL19W3G8/f/6MFhYWem+ePHmwf//+eOLECYyMjJT1hoWFYdasWfXerFmzYteuXXH//v0YEhIi601MTMQSJUrw9tvWrVvj1q1b0d/fX9aLiNi0aVPe2adx48a4Zs0a/Pr1q6J30KBBvP22Zs2auGjRInz9+rXiOi1ZsoT3uy5fvjzOmDEDHz16pPgtHj58mOctUaIEjhs3Dm/evKm43z5+/JjnzZ8/Pw4ZMgTPnz+vePbx8/NDGxsbvTdnzpzYu3dvPHr0qOLZJzo6GvPkycM7+3Ts2BH37NmDwcHBsl6dTocVKlTgnX1cXFxw06ZN6OvrK+tFRGzXrh1vv23QoAGuWLECP378qOgdP348b7+tVq0azps3D728vBTXeMOGDbzfddmyZXHKlCl47949xTW+cOECz1u0aFEcNWoUXr16VXG/ffv2LZqZmem9efPmxQEDBuDp06cV99vg4GDMmDEj7+zTvXt3PHjwIIaGhsp64+PjsVChQnpvhgwZsG3btrhjxw4MCAiQ9ep0OqxTpw5vv23WrBmuW7cOv337JutFROzduzdvv61Tpw4uXboU3759q7hOc+bM4f2uK1WqhLNnz8YnT54oevfs2cPzOjo64oQJE/DWrVuK++3t27d53oIFC+KwYcPw4sWLimcfb29vtLS01Htz586Nffv2xePHjyvutxEREZg9e3a9N0uWLNi5c2fct2+f4n6blJSEpUqV0nvTpUuHLVu2xC1btqg6+2hhzeHDh/O+xZRizRMnTvC8HGtev37daNY8e/as0ax5+PBhxbNPbGysKGvu2rXrj7Nm586ded9iSrHmli1beN7UzJoeHh5Gs+a2bdtUsWbDhg31Xo41165dazRrLl68WBVrLliwgPe7pmHNAwcO8LwlS5ZMEdb08fExGWuWK1dO7yVZ88ePH7JeRGnW/PTpk6JXijVfvHihuE5r167l/a7LlSuHU6dONZo1R48erZo1ybNPSrJm/vz59V5a1qxZsybv7JNSrDljxgze75pjzadPnxrNmrdv31bcb2/cuMHzcqx56dKlv5o1S5YsyTv7tGrVKkVYc/Dgwbz9NqVY88iRIzwvDWs+efKE501J1rS1teWdfTp27Ii7d+82mjU3btyoijXbt2/P22+1sGbVqlWNZs0yZcqoZs2LFy/yvEWKFEkR1vz165dJWBMRsW7durz9NjWw5t69e3nelGRNKysrvTe1sKaLiwtvv00p1ly5ciXvd82x5oMHD/4oaz5//pzn1cqaPXv2NIo1M2bMiO3bt1fNmlWrVuXtty1atEgR1pwyZQrv95VSrHn16lWel4Y1P378yDv7pCRrFitWTO/VyppNmjRRzZpubm68s0+tWrWMZs0KFSqkCGs+ePCA500p1oyKipJkTaWzj1bWbN26Ne/sQ8OaY8aM4e231atXx/nz5/9x1jx79izPm1KsyWRa+fj4kOtuh8lRE5cc/5H/egArHPzP6OHDh7zNk4xSpUrhxIkTJZNBvr6+vH/kyChUqBAOHz5cMhkUFRWFuXPnFvXmyZMH+/XrJ5kM0ul06OTkJOrNkiULdunSRTYZ1KZNG1GvmmTQ2LFjRb1qkkHu7u6iXjXJoHPnzkmuE5cMkroIe/XqFe8fOTKUkkFBQUGYIUMGUa+9vT0OGTJEsugyLi4OCxQoIOrlkkFSRZc6nQ5r1aol6iWLLqUORD179hT1qkkGzZw5U9RraWmJ9evXl00G7dq1S9SrJhl08+ZNyTVWSgZ9+fKFd5lMhlIyKCwsDLNlyybqVUoGJSYmooODg6hXTTKoefPmol4uGbR9+3bJZNCQIUNEvdbW1tisWTN0d3eXTAYtW7ZM8lvkii6lkkFHjx6VXKdKlSrhrFmzJJNBT58+lfQ6ODjIJoP8/f15CVUylJJBMTExvIQqGUrJIJ1Oh5UqVZLcb7lkkNRFWIcOHST3W6Vk0MSJEyX3Wy4ZJFV0uXHjRslvkUsGSRVdXrp0SXKdnJyccNq0aZLJoHfv3vEuk8ngii6vX78u+i3++vULM2XKJOq1s7PDQYMGSSaDEhISsEiRIqJeNcmgevXqiXrVJIP69u0rud8qJYPmzZsn6lWTDNq3b5/kOiklg+7evSvp5ZJBUkWX37594yVUyeCSQVJFl5GRkZgjRw5Rr62tLfbv3x9PnjwpmgxKSkrC0qVLi3qzZs2qmAxydXUV9XJFl3LJoJEjR0rut0rJoFWrVknut0rJoFOnTkmuE5kMEvsWvby8JL1KyaCAgABMly6dqDd//vyyyaDY2Fhe4TIZSskgnU6H1apVE/VyySC5osuuXbuKetOmTasvupRKBk2dOlXUyyWDVq5cKZkM2rZtm+R+W61aNdlk0LVr1yTXqWzZsrLJIGFClYyiRYvKJoNCQ0MxS5Ysol6lZFBCQgIWL15c1Kum8KBx48ai3gwZMigWHgwYMEDUq6bwYNGiRZL7bd26dXHp0qX47t07Ue+hQ4ck10mp8EAra6ZJk0bUy1jTUOvWrZPcb/8ka75+/VqWNeUa/LSyZsGCBUW9OXPmlG3w+5Os6ezsLMuas2bNktxv/yRrenp6Sq4xyZpi36IW1gwPD1dkTamLsMTERHR0dBT1/mnWHDp0qKiXbPD7E6x57NgxyXWqWLHiX8uaefPmFfWSrCl19tHCmh07dhT1pk2bFlu2bCnb4KeFNTdt2iT5LdaoUUO2we/y5cuS6/QnWTMkJMRkrFm/fn1R79/AmlJFl/v375dcpz/Jmt+/f5dlTbkGP62sWaZMGVEvV3Qpx5otW7YU9f5p1ly9erXkfvsnWfPFixeSXo41pfLsf5o1jx49KrnfVq9eXdT7p1lz2rRpol6u6PJPsaawSZaMv5U1ExMTFVlT7uyjhTUHDhwo6uVYc926dSnOmlzRpRRrPnr0SNL7J1lT2CRLxp9mzbZt24p6/wbWlCq6PH/+vOQ6lS9fXrbBTwtrBgcHy7Km3DAZraxZu3ZtUa8a1uzVq5eo90+z5u7duyX3W441pc4+Wljz69eviqx55cqVFGdNbpiM1H7bokULyf32T7Lm8uXLJb/Fv4E1xb5Ff39/XuEyGX+aNStXrizqzZw5M3bu3Fm2wU8LazKZTqxwkBUOMmnQvn370M3Njdf5JRXCZNClS5fQzc2N120iFWQyKDAwEJ8+fYpubm68Dk6pSJMmDS8Z9P37d3Rzc5Pc8MkQJoOio6PRzc2N1wEhF1WqVOFNexo9ejSvsl4uSpcuzZv2NG/ePOzRo4cqrzAZtGnTJuzfv79k8ogMYTLo6NGj6ObmJnmAIkOYDLp58ya6ublJHpLJECaD3rx5g25ubpKJJzKEyaCAgAB0c3PjTf2SCmEyKCkpCd3c3LBZs2aqftdcMojrwJ00aZJkoZMwhMmgZcuWYZ8+fVR5yQ7c2NhY3LVrF7q5uUkmj8jIlSuXvgM3IiICz549i25ubpKXo2QIpz09ePAA3dzceB1FUiFMBn3+/Bnd3Nx4XbpSIUwGhYWFoZubm2SxEhliyaBhw4ZJFsEIQ5gMmjVrlmTCSxjCZJC7uzv269dPMnlEBpcM4oouDxw4gG5ubrzOL6kQJoOuXLmCbm5ukglCMrhk0I4dOzAwMBCfP3+Obm5ukiBEhjAZ9OPHD3Rzc+N1BkoF2YH77t07jIuLQzc3N2zUqJGq37UwGTR27FjJZIgwHB0decmghQsXSkK2MITJoC1btmD//v0lk0dkCJNBJ06cQDc3N8lkPRnCZNDt27fRzc2N100tFcJk0Lt379DNzY3XNSYVXDKI68ANDg5GNzc3yctzMrhkENmBO2DAAElQFoYwGTR16lTeRFy5ECaDVq5ciX379pVMHpEhTAbt2bMH3dzcJJNHZAiTQRcuXEA3NzfJQlwyhMmgR48eoZubG29SolQIk0He3t7o5uYmebFKBpkM+vDhA0ZGRqKbm5vkhR0ZYsmgESNG8CbYyEWZMmV4Hbhz587lTUaRiyJFivA6cNevX4/9+/eXTB6RkTdvXl4H7uHDh9HNzY03ZUQqhMmg69evo5ubG2+SjFSQk4UDAgLw5cuX6ObmJlngSYZwsrC/vz+6ublJXuYIv0UyGRQfH49ubm7YpEkTVb9rYTJowoQJvKkZcsElg7iiyyVLlvCmMchFgQIFcNiwYfqLsO3bt2P//v0lCxXI4JJBXNHlqVOn0M3NjddpKxXCZNC9e/fQzc1N8gKcDGEy6OPHj+jm5obly5dX9FpZWfEmC//+/Rvd3Nx4UxblvkXhZOHBgwfzpvfJBTdZmCs8mD59Onbp0kWVV1h4sGbNGuzXr59koQIZZOFBdHR0irMmdxFmDGtyRZcca5IT+KSCY01u2lNMTEyKsaZwsvD8+fMli9mE8SdYk5wyIhVC1vT09DSKNf39/Y1mza9fv2JgYKBRrPn69etkYU2p5LMwSpYsyWvwW758uVGsGRMTQ8Wa5LQnxprKv2uONbkGP2NYkyu6TC2syU17CgwMRC8vLyrWJKc9JQdrShVICEPImuPGjUsR1ixYsKCeNWNjY3Hr1q0mZc3ChQsrejnW3LJlC/r7++P79+9ThDXFpj0NHDhQNWsKJwvTsKbwFRstrLl3794UZ82goCB8/PixUazp4+OTLKxJvqAit8amYk3htKcNGzb8U6z58+dPo1kzISHBKNbkpj2ZkjXd3NwkCxXIEDb4nT59moo1ycnCtKxJvmJDw5rCV2ySgzXJ6X1yIWTNGTNmmIQ19+/fj25ubpJF8WRwrMk1+CUHa0oNUiBD2ODn4+NDxZrkZGFa1hS+YpNSrCl8xYZjTanhM2Rwk4VPnjyJkZGReOzYMaNYMyQkxOSsSU6YlgqONckGP1rWJCcLpzbWDA8P17OmVCEuGULWfPjwoUlYMzw83CjW5Br8tLJmt27dVHmFr9isW7dONWsKh8nQsKawwe/q1atGsWZAQECysKZUgz4ZQtbk8uzGsiaTacUKB1nhIJMGSVW2K4WVlZWqf5Cl/rFUk8iQCi1eNdAmFfb29qouNsUiR44cqg64YpEpUya0s7MzymtjY2P039nCwkKyw+1Pr5Ox/98CAFVFN1Jha2urKrknFtmyZVN1mSIW6dOnl5zMqBTW1ta8J6towtzc3GTfopY1LlCggKrknljkypVLsutTKTJnzizZ3aIUadOmNfr/m5aWlkZ/i6l1v82XL5+q5J5YZM+eHXPmzGmUN2PGjKogRizSpEmjab9Njd9ioUKFVF2miEWePHlUJffEImvWrKoSCmKRPn16VUkjsdBy9jHlfmvsvxEA/0sGqUnuiUXOnDlVNS2IRaZMmVQlcMXCxsZG1aWoWGjdb9UUKUmFljOXlv02b968vKf6aCJbtmyqLlPEIkOGDKouzMQiTZo0Rv//OrXutwULFlSV3BOL3Llzq0ruiUWWLFlUXV6LRbp06Uyy35ry7KNlv2WsmXLrpOXP/RdZ01RnHy3/pmr5FrWypppCErFIraypZZ1MyZpqLjbFgrEmXfxrrGmqsw9jTbrQevYxFWua6uxj7N8XgLEmbaRW1jQ2z66VNY09+zDWpAstrJkxY0bGmhShZb9NrayZGu81tbKmmoZNsdDKmsbm2Rlr0gV70tj0+hOFg2b4v8I4JhmZmZnZAYAPAICPjw/Y2dmZ+CdiMkbDhg2DdevWmfrHYGJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYkpVsrKygnr16kHnzp2hV69eYGFhYeof6Z+Sr68v2Nvbc//THhF9tf43zbX+B5iY/qsyNzeHWrVqwaJFi2D8+PHU/goVKsCMGTNgyZIl1N6SJUvCuHHjYNu2bdRee3t7GDJkCBw5coTamzNnTujduzccPXoUsmXLRuXNlCkTdOzYEfbs2QNOTk5UXhsbG3BxcYFNmzaBq6srldfS0hIaNGgAK1euhIEDB1J5zczMoFq1ajB//nyYPn06lRcAoGzZsjB16lRYvXo1tbdo0aIwevRo2LNnD7U3b968MHDgQDh16hS1N1u2bNC9e3c4ePAg5M+fn8qbIUMGaNu2LezYsQNq1qxJ5bW2toZmzZrBunXroFOnTlReCwsLqFOnDixduhRGjRpF5QUAqFSpEsyePRsWLFhA7XV0dISJEyfCxo0bqb0FCxaE4cOHw8GDB6m9uXPnhn79+sHx48chffr0VN4sWbJAly5dYN++feDg4EDlTZcuHbRq1Qq2bNkCTZo0ofJaWVlBo0aNYPXq1dC7d28qr5mZGdSoUQMWLlwIkyZNovICADg5OcH06dNh+fLl1N7ixYvD2LFjYceOHdReOzs7GDx4MBw/fpzamyNHDujVqxccOXIEcuXKReXNmDEjdOjQAXbv3g2VK1em8trY2ICzszNs3LgRWrduTeW1sLCA+vXrw4oVK2DIkCFUXjMzM6hatSrMnTsXZs2aReUFAChdujRMnjwZ3N3dqb2FCxeGkSNHwr59+6i9tra24ObmBqdOnQJzc7pjc9asWaFbt25w4MABKFy4MJU3ffr00KZNG9i+fTvUrVuXymttbQ1NmzYFd3d36Nq1K5XX3NwcateuDUuWLIGxY8dSeQEAKlasCLNmzYJFixZRex0cHGDChAmwZcsWam/+/Plh6NChcPjwYWpvrly5oE+fPnDs2DHInDkzlTdz5szQqVMn2Lt3L5QtW5bKmzZtWnB1dYXNmzdDixYtqLyWlpbQsGFDWLVqFfTv35/Ka2ZmBtWrV4cFCxbA1KlTqbwAAOXKlYNp06bBqlWrqL3FihWDMWPGwK5du6i9+fLlg0GDBsGJEyeovdmzZ4eePXvCoUOHIF++fFTeDBkyQLt27WDnzp1QrVo1Km+aNGmgefPmsH79emjfvj2V18LCAurWrQvLli2D4cOHU3kBACpXrgxz5syBuXPnUntLlSoFkyZNgg0bNlB7CxUqBCNGjAAPDw9qb548eaB///5w8uRJSJMmDZU3a9as0LVrV/Dw8IBixYpRedOlSwetW7eGbdu2QcOGDam8VlZW0KRJE1izZg306NGDyquVNcuXLw8zZsyApUuXUntLlCihmTWPHj1K7U0u1ixfvjyV929gzRkzZlB5Af7HmlOmTDGKNYsUKQKjRo0ymjUHDBhgUtasVasWlZexJp20sGbmzJmhc+fOsG/fPnB0dKTypk2bFlq2bKmZNfv06UPl/RtYc+fOndTe5GDNw4cPQ+7cuam8HGvu2rXLaNbcsGEDtGnThsrLseby5ctNxprGNJsnF2vSXrIlF2vWq1ePykuyZrdu3ai8HGsuXrzYaNacOXOm0aw5fvx4xpoq9Dew5sqVK6m9ycGaJ0+epPZmz54devTooZk1q1evTuVlrEknjjVPnDhhNGvu378fihcvTuXlWHPr1q2aWLNnz55UXnNzc6hZs6ZJWXP79u3U3uRizezZs1N5k4s1W7ZsSeXlWHPFihUwaNAgKi/HmvPmzdPEmmvWrKH2Jgdrnj59mtr7N7Bm586dqbzm5ub/JGv27dsXjh8/DhkyZKDyJhdrNm3alMqbXKw5efJkKi9A6mfN4OBguHTpEvTt25cVDf5XlBxjC//rAeyp4v+EYmNj8cePH7JPOGTMmBE7dOiAu3fvxqCgIL03Pj4ew8LCZEco29jYoLOzM27cuBF9fX313oSEBIyMjMR69erJjrGtX78+rlixAj9+/Kj3JiYmYmRkJPbu3Vt2jG3VqlVx3rx56OXlpX9XXqfTYWRkJM6aNUt2nGyZMmVwypQpeO/ePUxMTNT/2ZGRkbhr1y7FMbajRo3CK1euYFxcnN4bHR2NN27ckPXmzZsXBwwYgKdPn8aoqCi9NyYmBj98+CA7xjhbtmzYvXt3PHDgAP7+/VvvjYuLw6CgIMyRI4ekN3369NimTRvcvn07/vz5k7fGERERWKZMGUmvtbU1Nm3aFN3d3dHb29tgnVxcXCS95ubmWLt2bVyyZAm+fftWv05JSUkYGRmJw4YNk/19VaxYEWfNmoVPnjwxWOPly5fLeh0cHHDChAl469Yt3hpHRUXhkSNHZL0FChTAYcOG4cWLFzE2Npa3xo8ePZL15sqVC/v27YvHjx/HiIgI3rf47ds32SdzMmfOjJ07d8a9e/fir1+/eGv8+/dv2Wdv0qZNiy1btsQtW7bgjx8/eN9iREQEVq1aVdJrZWWFjRo1wlWrVuHnz58N1rhz586y32KNGjVwwYIF+PLlS4N1mjx5suzvq1y5cjht2jR88OABJiUl8b7FjRs3ynqLFSuGY8aMwevXr2N8fDxvjS9evCjrtbOzw0GDBuHZs2d5I6VjYmLw1atXsk84ZM+eHXv27ImHDx/GsLAw3hr7+/vLPuGQMWNGbN++Pe7atctgvw0PD5cd7Z0mTRps0aIFbtiwAb9//85b48jISGzUqJGk18LCAuvVq4fLly/H9+/f673ct9i/f3/Z31eVKlVw7ty5+OzZM4M1njdvnqy3dOnSOGnSJLxz547Bt7hv3z5Zb6FChXDEiBF4+fJlg/321q1bst48efJg//798eTJkxgZGclb40+fPmGaNGkkvVmzZsWuXbuih4eHwX4bHBwsO94/Xbp02Lp1a9y2bZvofuvk5CT7LTZp0gTXrl2LX79+NfgWW7duLek1NzfHWrVq4eLFi/HNmzcG++2oUaNkf18VKlTAmTNn4qNHjwy+xVWrVsl6S5YsiePHj0dPT09MSEjgrfHJkydlvfnz58ehQ4fi+fPnMSYmhrdOT58+lX2+KleuXNinTx88evQohoeH875FX19f2SccMmXKhB07dsQ9e/ZgcHAwb41DQ0Nln2GwsbFBFxcX3LRpk+jZp1atWpJeS0tLbNCgAa5cuRI/ffpksMbdu3eX9JqZmWG1atVw/vz5+OLFC4Nvcdq0abK/67Jly+LUqVPx/v37Bmu8bds2WW/RokVx9OjReO3aNd5+Gx0djVeuXJH15s2bFwcOHIinT5822G/fvn0r+1xg9uzZsUePHnjo0CEMDQ3lrVNAQIDs81UZMmTAdu3a4Y4dOzAgIID3LYaHh6ODg4OkN02aNNi8eXNct24dfvv2zWCNmzdvLum1sLDAOnXq4NKlS/Hdu3d6L/ctDho0SPb3VblyZZw9ezY+ffrUYI0XL14s63V0dMSJEyfi7du3DfbbAwcOyHoLFiyIw4cPx0uXLhmcfe7fvy/rzZ07N/br1w9PnDjB229jY2Px69evsk/mZMmSBbt06YL79+/HkJAQ3hqHhITIPuuYLl06bNWqFW7duhX9/f156xQREYGVK1eW9FpZWWHjxo1xzZo1+OXLF4NvsX379pJec3NzrFmzJi5cuBBfvXplsN+OHz9e9vdVvnx5nD59Oj58+NDgW3R3d5f1Fi9eHMeOHYs3btww2G/Pnj0r67W3t8fBgwfjuXPnDPbbFy9eoLm5uaQ3R44c2KtXLzxy5IjBfquVNeWeCNHCmhYWFnrW/PDhg8Ea9+nTR9KbXKx59+7dZGXNmzdvynptbW3Rzc0NT506leysKfd0J2NN/n579OhRWW9ysOaxY8dSnDVdXV1x8+bNoqxZrVo1Sa8Sa3bp0kX2W6xevfofYc1NmzbJerWwZr58+SRZ8/Xr1ynCmoGBgbxvUStrNm7cWNLLseayZcuMYs3KlSvjnDlzRFlz/vz5st4/xZq3b9+W9cqx5ufPn03GmuXLl5f9FpODNV+/fm2w344ePVr296WVNceNG4c3b95MVtZ89uyZLGvmzJkTe/fu/UdYU+654+RiTbE8e48ePSS9Sqw5ffp02d/1n2LNq1evynq1sCZ39jl48KAoa8o93amFNa2trbFZs2Z/hDUHDx4s+/uqVKnSH2HNgwcPynr/JGumTZtW0pscrLllyxb08/PjrZNW1uzQoYOkVytrOjk5SbLmunXrZL1aWNPOzu6PsKafn5/JWLN+/fqy36IYa3LrpIY1586di8+fPzf4FmfPni37u9bCmoULF8aRI0cmO2t+/PhR9mn6rFmzYrdu3f4Ia5YtW1bS+ydZc/jw4bK/LzHW5NZpxYoVsl6ONcXy7FpY8/Hjx7JerazZqVOnFGdNS0tLbNiwIa5atUo0z85Ykx8cax46dMiANX/+/KmJNeWeDuZYc/369cnOmm5ubrK/Ly2sWapUKVHWZDKt/sRTxSYvyksNAaxw8D+juXPnGmx4UodEofbu3Wvg5Q6JJ0+e5B0Shbpz546BlzskChNkQnl7extcbHCHRGGCTKiIiAiDIjrukChMkAmVlJSEpUuX5nm5Q6KwGENMYodNLkH2+PFjWe+IESMMvFLFGEKtXLnSwMslyC5cuMA7JAollmjjijGEh0Shnj9/LntIJBNkQgUEBBjAvdQhUajY2Fi0s7NTdUgUSqfTGRTRcYdEYYJMTGKHzXLlyokmyISaMmWKgVcqQSbU1q1bRQ+JAwcOxDNnzvAOiUKJJdqkijGE+vjxo8Fhk0uQ7dy5k3dIFOr3798Gh02uGEN4SBQqISEBixUrZnBIrFu3Li5btoyXIBOTWBEdd0gkE2RiEjtscodEYYJMqIULFxp4uQuJS5cuye63Yok27kJCmCAT6sGDBwZeqQSZUL6+vgZwL1WMIVRUVBTmypWL55VKkAml0+kMiui4BNmiRYt4FxJiErvYKF++PM6YMcPgQkKoMWPGGHhLlCgheiEhlFhRh729PQ4ZMsQgQSaUWKKNu5AQJsiEevXqlcHFBnchIUyQCRUUFITp06fnebkLCWGCTKi4uDiDIjqpwn+hdDqdwcWGVDGGmMQuNsjCf7k1njlzpoGXK8a4evWq7H67c+dOA69U4b9QYok2qQsJoT5//mxwsZEhQwZs27atwYWEUGFhYQZFdOSFBJkgEyoxMdHgYsPc3Bzr1KljkCATU7NmzQz+zpUqVRJNkAk1ZMgQA69UMYZQS5cuNfBKJciEEku05c6dW7TwX6inT58aeLlijH379vESZEL5+fkZFNGRhf/khYRQMTExaGtra7DfNmrUCFevXs0rxhBKp9NhxYoVDb7FGjVq4MKFC3kJMjGJXWxwFxLCBJlQEyZMMPByFxLCBJlQYg0EUoX/Ql26dMnAmyNHDtFiDKHevn1rcLEhVfgv1K9fvwwuNshiDDmujo+PN2jYkir8F5NYER1X+E9eSIipb9++Bt7SpUvj5MmTDS4khNLCmmJFHSnBmt++fRNlTbFiDKGkWFOsGEMoKdYUK/wXk6urq8HfmWRNuW9RC2uKFXWQrCl39lFiTbmzj5eXl+h+a0rWFBb+C6XT6QwuNqSKMcQkxppSxRhCTZ061cCbEqx57do1A29qYE1hEV1KseaAAQMMvKVKlRItxhBKjDXJYgxa1pQqxhDq4cOHBt6UYk1hEV1KsWabNm0M/s5qWXPs2LEGXo41hcUYQmlhzXPnzhl4pYoxhJJiTbFiDKGCgoIMiuikijGEMiVr9uzZ0+D3lVysKfctihV1JAdrCosxhPry5YsBa6ZPnx7btm2L27dvl2XN8PBwSdYUFmMIpZU1xYropIoxhNLCmsuWLTPw/u2s6e/vL8uacmcfraxZqVIlg29RrMlcTFKsKVaMIdTEiRMNvFLFGEKZijXfvXtnEtZMSEgwKKJLLtYkizHEJMeaSsUYYs3qHGsKC/+F0sKad+/eNfBKFf4LpYU1IyMjUyVrjhw50sCbHKwpLPwX6tSpUwZeqSZzoeRYU1j4L1RAQIBBER3Hmps2bVJkTWERXUqxZteuXQ3+zinBmmINBH8Da8qdfUJDQ2VZkyz8F0qONYWF/2ISK6ITazIXkxbWXLRokYFXLWseOnTIwJtSrCls2EoJ1mQyrVjhICscZNKg0NBQzJo1q/6QqCZBxikxMVH/D1yFChVUJchINWnSRH9IVFOMQWrgwIEI8P8JMqVDIimuQ06qO1ROhw8fRgDp7lA5cdMBpLpD5fTjxw9MkyaNZHeonKKjozFPnjy8Q6JSgoyTTqfTdyRzh0SlBBmptm3b8g6JSsUYpMaNG4cA/O5QOWAjtX79egRQX4xB6vz58/pDoppiDFJv3rxBMzMzye5QOQUHB2OGDBkku0PlFB8fr+9IFusOlZNOp8PatWsjgHR3qJx69eplcEiUS5CR4jrkuEOiUoKM1O7du3mHRKUEGSluEp1Ud6icvn79ipaWlqoTZKTCw8Mxe/bsvGIMsjtUTklJSejo6IgA0t2hcmrRogUCSHeHyombxiLVHSonbhoLeSEhlyAjdfz4cQSQ7g6VE5dMJS8k1J5V/P39MW3atJLdoXKKiYnBfPnySXaHykmn0+k7ktUWY5Dq1KkTL0GmVIxBatKkSbwEmbA7VE6bN2/WJ8jEukPlxE2ik+oOldP79+/R3NxcsjtUTr9//8bMmTPzukOVEmScyGQqdyGhVPhPqkGDBggg3R0qp379+vESZEqF/6S4Djm1hf+kPDw8eAkyYXeonO7du8dLkCkVY5D6/v07Wltbqy78JxUZGYk5c+aU7A6VU1JSkr4jWao7VE6tWrVCAPUXEqS4yZ9cd6hSgozUmjVr9Akyse5QOZ0+fdogQSZXjEHq5cuXBgkyuWIMUoGBgZguXTpeMYbShQSnuLg4fTJVrDtUTjqdDmvUqKFPkNF2h3br1g0BpCcRyYmbxiI1iUhO27dv1++33IWEXIKM1PXr1/VnH+5CQi5BRurz589oYWGhn0S0Zs0a2QsJUlpZk+tIVluMQYpjTbWF/6S4yZ+piTW56QCpmTXVFGOQateuHQKoL/wnRbKmmmIMUlpY88KFCyZjzYwZMxqwppp10sqaderU4bGmUjEGKe6VCY41lYoxSGlhzT179ujPPmqKMUhxrKm28J+Ut7d3qmRNZ2dnA9ZU+y1qYU1uGgvHmkrFGKSErKlUjEHq2bNnPNZUKsYg9fPnTx5rLl++PMVYs0qVKiZhTW4aS2pizQ8fPiQba6opxuCUkJCARYsW1bOmmiZzUiRrqinGIMVN/jSGNRcsWGAS1uQm0ZmCNXPlysVjTaViDE5irKlUjEFKyJpKxRikuMmfWlmTK8ZQu9+eOXPGZKyZPn36VMea3CsTapvMSQlZU6kYg9SOHTt4rKlUjEFKyJpKxRikxFhTbTFGWFiYnjXVFv5z0sqaTZs2NQlrLlmyJNWxJtcgy7GmUuE/KSFrqin856TT6bBChQomYU1u8qcxrLlhwwaTsObbt28NWFPt2YdjTa7wf+nSpYqF/5zi4+OxUKFCPNZUKvznZErWnDNnjp411RT+k9LCmtzU85RmzYiICE2sWapUKZOwJjf5k2NNpcJ/UlpYk8m0+hOFg5bAxPSP6NWrV7B69Wpo3rw55MiRg8r74cMHGDNmDLi4uEC+fPmovIGBgdCsWTNYt24dFC1alMobGxsLRYoUAS8vLyhTpgyYmZmp9iIiWFtbw71796By5crU78uHhobClStXoHbt2mBtbU3l/fLlC5w6dQoaNmwI6dKlo/K+evUKdu3aBU2bNoUsWbJQexcsWAAtWrSA3LlzU3m/fv0K/fr1AxcXFyhQoACVNzQ0FKpXrw7z58+HEiVKUK1TQkIC5M6dG548eQLly5enXmOdTge3bt2C6tWrU69xQEAAXLhwAerVqwdp0qSh8n748AGOHTsGjRo1ggwZMlB5X758CRs3boTmzZtDtmzZqLxv376FKVOmgLOzM+TNm5fK6+fnB+3atYOdO3dC4cKFqbxRUVFQqlQpePnyJZQqVYpqnXQ6HWTIkAEePHgAlSpVAnNzc6o/Ozo6Gq5fvw41a9YEKysrKq+Pjw+cPXsW6tevD2nTpqXyvnnzBjw8PKBJkyaQKVMmKu+rV69gxYoV0KJFC+r99uPHjzB8+HBwdnYGe3t7Km9wcDA0bNgQVq5cCcWLF6fyxsXFQf78+eHZs2dQrlw56m/RwsIC7ty5A1WrVqX+FkNCQuDy5ctQp04d6v328+fPcPLkSWjYsCGkT5+eyvvq1SvYvn07NGvWjHq/ffPmDcyZMwecnZ2p99tv375Bz5494dChQ1CwYEEqb3h4OFSqVAlmzpwJJUuWpFqnpKQkyJ49Ozx69AgqVKhA/S3Gx8fDzZs3oUaNGmBpSXeE9vPzg/Pnz0O9evXAxsaGyvvu3Ts4fPgwNG7cGDJmzEjlffnyJbi7u0Pz5s0he/bsVN7379/DhAkTwNnZmfrs8/PnT3B1dYXNmzdDkSJFqLwxMTFQokQJePHiBZQuXZp6v02bNi3cv38fKleuTL3GERERcO3aNahVqxb1fvvt2zc4ffo0NGzYkHq/ff36NezZsweaNm0KmTNnpvK+evUKlixZAi1atIBcuXJReb98+QIDBw4EFxcXyJ8/P5U3JCQEateuDYsXL4YSJUpQeePj4yFv3rzw9OlTcHJyot5vAQBu374N1apVo95vg4OD4dKlS1CnTh3qs8/Hjx/hxIkT0KhRI6P2261bt0KzZs0ga9asVN43b97AzJkzwdnZGfLkyUPl9fX1hU6dOsHevXuhUKFCVN7IyEgoV64cTJ48GRwdHan328yZM8PDhw+hYsWK1N9ibGws3LhxA2rWrEm93/748QPOnTsH9evXp95v3759CwcPHoQmTZpQ77daWXP06NGaWNPd3R2KFStG5U0O1rx79y5UqVLln2DN169fm5Q1582bR82aiYmJqZY1jx49Co0bN6ZmzVevXsGGDRtMwppt27aFHTt2ULNmdHQ0ODo6moQ1o6KiUiVrLl++HFq0aAE5c+ak8mplzQYNGsCKFSuoWTM+Pl4Ta5qbmzPWVKnv379Djx494ODBg0axZsWKFWHGjBng4OCQoqyZkJDwz7Hm+PHjNbHmpk2bqPPsMTExULx4caNYExHBxsYG7t27B1WqVElR1vT29jaaNd+8eWM0a75+/RoWL16cqlgzISHBZKwZFBSkiTWPHz8OjRs3Nmq/3bJli9GsOWPGDHB2dgZbW1sqr1bWLFu2LLx69YqxpgqZkjWbNm0Ka9euNYo1CxcuDM+fP4eyZctSf4tWVlapkjV37txpEtbs27cvHDt2LMVZM1euXEaxJuf39PSE6tWrU3+LWljz/fv3JmHNd+/eweTJk41iTX9/f2jbti1s376dOs9uatY09uyjlTX3798PTZs2pWbNly9fGs2anz59gqFDh4KLi0uKs6a9vb1J7jWZ/nsy4w7ETNIyMzOzAwAfgP9tVnZ2dib+iZiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJj+Bfn6+pJFqvaI6Kv1v0lXHszExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExJSqxQoHmZiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJj+IbHCQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiamf0iscJDpn5Gnpyds2LABfHx8qL1v3ryB5cuXw4cPH6i9gYGBMG/ePHj+/DkgIpU3NjYWZs+eDXfu3IGkpCQqLyLCokWL4MqVKxAfH0/lBQBYt24dnDx5EqKioqi9+/btAw8PD/j9+ze19/z587Bt2zb4+fMntffBgwewdu1a8Pb2pvZ+/vwZFi9eDG/evKFep9DQUJg9ezY8fvwYdDodlTchIQHmzJkDnp6ekJiYSOVFRFi2bBlcuHABYmNjqbwAAFu2bIGjR49CREQEtffIkSOwd+9e+PXrF7X32rVrsGnTJvjx4we19/nz57By5Ur49OkTtffHjx8wf/58ePHiBfUaR0VFwaxZs+D+/fvUa6zT6WD+/Plw7do1SEhIoPICAKxZswbOnDkDMTEx1N5du3bBoUOHICwsjNp76tQp2LlzJwQGBlJ7b9++DevXr4fv379Te9+9ewfLli2Dd+/eUa9TcHAwzJ07F54+fUrtjYuLg9mzZ8Pt27eN2m8XL14Mly5dgri4OCovAMCGDRvgxIkTRu23Bw4cgP379xu13168eBG2bt0K/v7+1N7Hjx/DmjVr4OvXr9Reb29vWLRoEbx69Yp6ncLDw2H27Nnw6NEj6m8xKSkJ5s6dCzdu3KDebwEAVqxYAefOnTNqv922bRscOXIEwsPDqb3Hjh2D3bt3Q3BwMLX3xo0bsHHjRvD19aX2vnz5ElasWAEfP36k9vr7+8O8efPAy8uLeo1jYmJg9uzZcO/ePepvUafTwYIFC+Dq1atGnX3c3d3h9OnTEB0dTe3du3cvHDhwAEJDQ6m9Z86cge3bt0NAQAC19969e+Du7g7fvn2j9n748AGWLFkCb9++pV6nkJAQmDNnDjx58oTaGx8fD7Nnz4Zbt24ZdfZZsmQJXLx40aj9dvPmzXD8+HGIjIyk9h46dAj27dsHISEh1N4rV67Ali1bwM/Pj9r79OlTWL16NXz+/Jna+/37d1iwYAG8fPmSep0iIyNh9uzZ8ODBA6P223nz5sH169eNOvusWrUKzp49a9TZZ8eOHXD48GGj9tsTJ07Arl27ICgoiNprStacO3cuPHv2LMVZc+HChXD58uUUZ839+/enOtb88uWLSVgzMTER5s6dmypZc8+ePSnOml5eXiZjzdmzZ6c61ty9e7dJWPPOnTuwbt06k7DmnDlzjGJN7uxjCtbcuHEjY02V4ljz4cOHjDVVyFSs+fPnT5OwJiLCggULjM6zm4o1z549axLW/Pjxo0lYk8uzG8uaS5cuNRlrGptn18Kaz549g1WrVjHWVKmdO3eahDVv3brFWJNC69evT3Ws+fDhQ5OwZlhYmNF5di2sCQCwbNkyOH/+PGNNFfLz80u1rGns2UcLa54+fRp27NiR4qz5/v17WLp06T/Fmkz/QSEiC4UAADsAQABAHx8fZEqdioiIwOzZsyMAoJOTE06bNg0fPHiASUlJit6kpCQsVaoUAgAWK1YMx4wZg9evX8f4+HhVf7azszMCANrZ2eGgQYPw7NmzGBMTo8o7fPhwBADMkSMH9uzZEw8fPoxhYWGqvCtWrEAAwIwZM2L79u1x165dGBQUpMp74sQJBAC0sbHBFi1a4IYNG1T////Zs2cIAGhhYYH16tXD5cuX44cPH1R5f/78iWnTpkUAwCpVquDcuXPx2bNnqNPpFL2xsbGYL18+BAAsXbo0Tp48Ge/cuYOJiYmKXp1Oh1WqVEEAwMKFC+PIkSPx8uXLGBcXp+rn7ty5MwIA2traYv/+/fHkyZMYFRWlyjt58mQEAMyaNSt27doVPTw88Pfv36q8W7ZsQQDA9OnTY+vWrXHbtm348+dPVd6rV68iAKC1tTU2adIE165di97e3qq8Hz58QHNzczQ3N8datWrh4sWL8c2bN6rW6ffv35g5c2YEAKxQoQLOnDkTHz16pOpbTEhIwKJFiyIAYMmSJXH8+PHo6emJCQkJqn7uhg0bIgBg/vz5cejQoXj+/HmMjY1V5e3fvz8CAObKlQv79OmDR48exYiICFXeBQsWIABg5syZsVOnTrhnzx4MDg5W5T1w4AACAKZNmxZdXFxw06ZN+OPHD1Xe+/fvIwCgpaUlNmjQAFeuXImfPn1S5fXx8UFra2s0MzPDatWq4fz58/HFixeq1jgyMhJz5cqFAIBly5bFqVOn4v3791Xvt+XKlUMAwKJFi+Lo0aPx2rVrqvfbVq1aIQBgvnz5cODAgXjmzBmMjo5W5R09ejQCAGbPnh179OiBhw4dwtDQUFXetWvXIgBghgwZsF27drhz504MDAxU5T1z5gwCAKZJkwabN2+O69evx+/fv6vyvnz5Es3MzNDCwgLr1q2LS5cuxXfv3qnyBgYGYvr06REAsHLlyjh79mx8+vSpqjWOi4vD/PnzIwCgo6MjTpw4EW/fvq16v61ZsyYCABYqVAiHDx+Oly5dUr3fdu/eHQEA8+TJg/369cMTJ05gZGSkKu+MGTMQADBLlizYpUsX3L9/P4aEhKjy7tixAwEA06VLh61atcKtW7eiv7+/Ku+NGzcQANDKygobN26Ma9aswS9fvqjyfv78GS0sLNDc3Bxr1qyJixYtwlevXqlap7CwMMyaNSsCAJYvXx5nzJiBDx8+VPUtJiYmYsmSJREAsESJEjh27Fi8ceOG6v22adOmCABob2+PgwcPxnPnzqk++wwePBgBAHPmzIm9evXCI0eOYHh4uCrvkiVLEAAwU6ZM2KFDB9y9e7fq/fbIkSP6s4+zszNu3LgRfX19VXmfPHmi32/r16+PK1aswI8fP6ry+vn5oY2NDZqZmWHVqlVx3rx56OXlpWqNo6Oj0dbWFgEAy5Qpg1OmTMG7d++q/hYrVKiAAIBFihTBUaNG4ZUrV1Tvt+3bt0cAwLx58+KAAQPw1KlTqs8+48ePRwDAbNmyYffu3fHAgQOq99sNGzbozz5t2rTB7du3Y0BAgCrvxYsX9Wefpk2boru7O3779k2V9+3bt2hmZobm5uZYu3ZtXLJkCb59+1bVOv369QszZsyIAIAVK1bEWbNm4ZMnT1R54+PjsVChQggA6ODggBMmTMBbt26pWmNExLp16yIAYMGCBXHYsGF48eJF1WefPn36IABg7ty5sW/fvnj8+HHVZ585c+bo99vOnTvjvn378NevX6q8e/fu1Z99WrZsiZs3b0Y/Pz9V3tu3b+v320aNGuGqVavw8+fPqrze3t5oZWWFZmZmWL16dVywYAG+fPlS1TqZkjVdXFxMwporV640YE21Zx8trPn8+XMD1nz//r0qb3Ky5qRJk6hYs2rVqnrWHDFiRIqx5pQpU1Ida378+FF/9klp1ixWrBiPNW/evJkirOnm5qZnzd69e6cK1nzw4IFJWDMqKspkrNm6dWsea54+fVo1a44ZM4bHmgcPHjSaNXfs2KF6vz179qyeNZs1a4br1q1TffbRwppBQUF61qxUqVKqYc0ePXqYhDV37txpMta0tLTUs+bChQupWDNbtmx61pw+fXqKsWazZs1MwppLly79a1hTbZ5djDWfP3+eIqxZsWJFPWuOHDkSr1y5ovpb1MKaEyZM0LNmt27dqFhz48aNycqaas8+b9++1efZU5o1CxcuzGNNmjx7crLmsWPHVJ995s6dqz/7dO7cGffu3ZsirHnnzh39ftuwYcMUZc0cOXIgAGC5cuVMzppqzz4jRowwCWuePHlSf/Zp0aIFVZ5dC2sGBATwWHPOnDlUrGlnZ4cAgKVKlUpR1uzSpYtJWHPr1q0GrKn27JPcrPn69WvVrJklSxaTsGajRo30rDlkyBA8f/686rOPFtZcuHCh/uzTsWNHKtY8ePCgSVjT19fXgDXV5tm1sKZOp0MnJycea169evWvZ013d3c9a7Zt25aKNZlMKx8fHwQALuwwOWrikuM/8l8PYIWD/xktWrSI/Ih4yaDjx4/LJoMOHTpk4OWSQfv27ZNNBj18+NDAyyWDtmzZInsg8vX1xTRp0vC83EXY6tWrZZNBUVFRmDt3bp7XzMwMa9SooZgMIv+RI8PJyUlVMqhNmzYG3uLFi6tKBo0dO9bAqzYZtG7dOgOv2mTQuXPnDLxkMkiu6PL169doZmbG83LJIKWLsKCgIMyQIQPPqzYZFBcXhwULFjRY46pVq+LcuXNlk0E6nQ5r165t8HcuU6YMTp48WTEZ1LNnTwMvV3SplAyaNWuWgdfW1hbd3NwUk0G7du0y8KpNBnl6ehp41SaDvnz5gpaWljyv2mRQeHi4PqHKBZkMkrsIS0xMREdHR4Ofm0sGPX78WPbQ27x5cwOv2mTQ0KFDDbwFChTAoUOH4oULF2STQcuWLTPwckWXSsmgY8eOGXi5izClZNDTp08NvGnTpkVXV1fFZJC/vz/a2NgYfItqkkExMTGYN29eg29RTTJIp9NhpUqVDH5utcmgjh07Gni5ZJDSRdjEiRMNvGqTQZs2bTLwcsmgQ4cOySaDLl++bODlkkFKRZfv3r1Dc3Nznldt0WVISAhmypSJ5+UuwpYtWyabDEpISMAiRYoY/NyVK1dWlQyqX7++gVdtMqhv374G3kKFCqlKBs2bN8/AmydPHn0ySO7ss3//fgMvmQySO/vcvXtXdL9Vkwz6/v07WllZGey3TZo0wTVr1uDXr18lvZGRkfqEKrnf1qpVCxctWiSbDEpKSsIyZcoY/Nxc0aVSMqhly5YG3hIlSuC4ceMUk0EjR4408KpNBq1evdrAmzNnTn0ySO7sc+rUKQOv2mTQixcvDLw2Njb6ZJDcRVhAQACmS5fOYL9VkwyKjY1Fe3t7g/1WTTJIp9Nh9erVDX5uLhl079492TXu2rWrgbdo0aI4atQoxWTQtGnTDLzcRZhSMmjbtm0GXq7oUikZdP36dQMvmQySO/t8+vQJLSwsDPZbNYUHoaGh+oQqud/WqVNHsfAgMTERixcvbvBzc4UHShdhjRs3NvCqLTwYOHCggbdgwYI4fPhwxYuwP8GaXNGl3H776NEjA2+6dOmwZcuWuGXLFtmzjxbWjI6Oxjx58hh8iynBmm3btjXwmoo1c+TIoYo1z58/L7rf/mnWDA4ONmBNtQ1+f4I1uQY/Jdbs1auXgTclWHP37t2i+y3HmnIXYVpY8+vXr38da86cOVORNVu0aGHgdXBwUNXgp4U1ly9fbuBNDazJXSZzkVKsWblyZYOfm2NNpYswLaw5adIkA6/aBr8/wZpqGvzev3//z7Fmv379DLxqWXP+/PkGXo41lYou5VhTqejy3r17Bl61RZdaWTNnzpwG+y3X4Pe3suaoUaMMvCnBmqdPnzbwpgRrBgYGSrKmUoNfXFycJGsqNfjJseaUKVMUWbNbt24G3pRgze3btxt4UwNrck2y5H7LsaZc0aVW1mzSpImB19HRUVWDnxbWXLx4sYGXbPD7G1nzx48fJmPN8uXLG/zcKcGa48aNM/ByrKnU4Ld+/XoDL8eaSkWXcqypNEzmzZs3oqyppsFPC2vGx8cbsCbA/zf4/a2sOXv2bANvSrDmrVu3DLwcayo1+GllTa5JlguONZUa/JKSkpKdNdUOkxk2bJiBNyVY8/jx4wbev4E15fLsMTEx+iZZcr/lWFNtgx9TyosVDrLCQSYNevz4MW7ZssUgAUSGVDLo7du3uG/fPoMEkPBAJJYM8vHxQQ8PD333llRwySCyAzckJAQ9PDywWrVqsl4uGURehMXHx6OHh4doYoEMLhkk7MA9evSovhNBKqQ6cC9evKjvNpEKqWTQ7du3cdWqVbJeqWTQ8+fPcefOnQYJIDLIDlwyGfTx40fcv3+/QQJIeCASSwb5+/ujh4eHvntLKsSSQeHh4ejh4YH16tWT9Yolg3Q6HXp4eGCnTp1kvVwySHgRdurUKf2UEangkkHCi7CrV6/qu/ukgksGCTtwHzx4oJ8WJBVSHbivXr3CPXv2GCSAhAcisWSQt7c3enh4GCSAhAcisWlPQUFB6OHhoe+WlQquA5dMBsXExKCHh4doAR8Z3LQnYTLo8OHDojBDhlQy6Ny5c/qpTlIhlQzy9PTUd1NLhVQy6MmTJ7ht2zaDBBAZUsmg9+/f4759+wyKDcjgkkHCDlxfX1/08PDQd29JhVgyKDQ0FD08PPTTCaRCLBmUkJCAHh4eogXTZEh14B4/flw0eUSGVDLo0qVLOH36dFmvVDLo7t27+ukVUiGVDPLy8sJdu3YZJIDIIJNB5EXY58+fcf/+/QYJIOG3yCWDyIuwgIAA9PDwEE24k8Elg8iiy8jISPTw8NB36ElF8eLFRTtwDxw4oO/ClAqpZNDp06dFk/VkSHXgXr9+XfRChgypycIPHz7ETZs2GSSAyJBKBr158wb37t1rkAASfotiyaBv376hh4eHaAKIDLFk0K9fv9DDw0M/BVgqxCYLx8bGooeHh74jWiqkkkFHjhwRLdIkg0sGCTtwL1y4IHo5SkbWrFmxW7duBh24t27d0k+JlgqpZNCzZ89w+/btBgkgMqQ6cD98+ID79+83SACRITXtyc/PDz08PPSTQqSC68Alk0FhYWHo4eGBderUkfWKJYOSkpLQw8NDP4FCKqSSQSdOnMAhQ4bIeqWSQVeuXBEtRiGDTAaRZ5/79++LFhyRwSWDhB24L1++xN27dxskgMiQSgZ9/foVPTw8DIoNyOCSQcJpT4GBgejh4SFa3EWGWAdudHQ0enh4iF6qkFGsWDHRaU8HDx7UT5eVCqnCg7Nnz+o7baWCnCxM7rc3btwQvZAhQ2qycEqyJll0ybGmWLEBGXKsKXbBSYYca3KTnqVCatqTVtacOnWqrFdq2lNysKa1tbWkV4o1P336ZBLWjIiIQA8PD9GCEjI41iQvwkzJmteuXVPFmmLTnrSw5uvXr3HPnj36KWliITVZWAtrBgcHU7Mm9y2mNGuSZ5+/mTWtra2xWbNmBpOFk4M1xYoNyBCb9sSxZq1atWS9YpOFOdYUu8QmQ441Bw0aJOuVmiz8r7Jm2bJlZX9uscnCycGaYg0qZEhNFtbKmtzUUqmQYs1Hjx6ZhDW/f/9OxZpk0aUW1oyLi6NiTWHRZUqwpti0J7WsKTZZmLGmeHCThbWwpnDaEw1rCosuU4I1xRr8koM1xYq7yJBjTe6VC6mQmix88OBB/XRZqZBjTbEmJDKkXrH5r7OmcLLw79+/VbOmsMFPK2seO3bMJKx5584d0WJrMv4ka3JT0sRC6hUbWtYkiy61sCYiqmJNqQa/f5U1uYncYvEnWVOsgI8MqVdsDh8+jL1795b1Sk0WPnfunH6CsFRIvWLj6ekpOtSEDKkGP62suX//foPCduG3KDZZ2FSsmZiYqIk1mUwrVjjICgeZNEism1kpuA5csSkwSsF14HLPdNEElwxSSrKJBZcMEpvKphRkMkjYsa4U3OjvDRs2KCbZhEEmg5QS3mLBjf7mRtzTBJcMUjqEiAU3+lsJ+sSCG/3NPYFAE2TRJa2XTAbJXWqIBZkMUoI+YZDJoHbt2lH/3FwyiHtShCa4ZJBSwlssuIswpSSbWHDJILHOTaUgO3DlYEIsyNHfSkk2YZDJIO6pLbVBTnsS65JVCi4ZxD0XTBNcMkhssppScMkgpSSbWHDJoD179lB7yWSQ3CWyWHDJoHXr1ilCnzDIDlylhLdYcEWX3NPdNMFNe+KeZ6cJLhmkdMEoFlwyiHtujybIZJBcgk4syGQQ98yo2uCSQatXr1aEPmGQyaAOHTpQ/525Z6bEOvOUgntmSinhLRZcMkgpySYW3GRh7jlpmiCTQXKJVLEgk0GlS5em8pLJIKXiKmGQySCx6b9KwU0WVkp4iwWXDFK6YBSLvHnzopubm2gXtVJwHbjcs0I0QSaD5C41xILswFW6YBQGmQzinpugCS4ZpFRYLhZcMkgp4S0WBQoUwGHDhol22CoFV3ggNiFRKchnpuQKBcSC7MAtWrQolZd8ZkqpkUcYZAcu95QsTSQHayolvMUiOVhTrFNeKcjJwlpYk3tmVG1wrLls2bIUZ02u6FJswrNSJAdrik3sUoq/gTVr1KhB5U0u1lS67BeLkiVL4rhx4zSxJvcUG01wF2GmZE0HBwcqb3KxplJhuVgkB2sqNfKIhSlZkyu6lLtEFguywa9ChQpUXpI1XV1dqX9uU7EmN+1J6YJRLJKLNeUuJ8WCfMVGC2uKTeuRC7LoUmwapVJoYU1u2pOpWJN7Tpom/gbWVCquElvj5GBNsalbSsEVXWphTaWCDrHgWHPfvn3UXsaadF4trMnl2bnnTWkiuVhTqVFdGGSDnxbWVGpiFgtTsyb39CVNJBdryhUsiwVZdKmFNZWKq8SCa/BTKiwXCy2syQ2TMYY1ucnCWljTw8OD2mtq1ly0aJHJWHPGjBnU3n+ZNZUaeYSRXKyp1MQsFtxk4ZS+1+SKLrWyJnvS2LRihYOscJBJg4wpHCQ3QmO9cpPRlEL4ZCZNyHUDKoWZmZkmv5a/s5bfdcaMGU3y58p15SmFXBeRUtAWsQjXmBaUyaA99P0N66TlZ9byLcpNwFSzxrQJZDK0/H8zNX6LWvYeLd+DljUyMzPT9P8RLX9nLeukxavlWzTVfqtljQG0/f+L7bfqQ8vZhe23dKFl7zHVt2hmZqbpzzbVt5ga91st/65ZWFhoOuNq2UP+tW+RsWbqWGPGmim3Tqbabxlrptw6MdZMub9zavwWTcmaclP7lCI17reMNemC7bfqg7FmynkZa9LFv/Ytavm3KbWypqm+xdTImv9inp2xJl2ws4/6MCVr1qpVC69fv27q8p9/Vn+icNAcmJiYROXk5ATTpk2DBw8ewKxZs6i8xYoVgzFjxsD169dh586dVF47OzsYNGgQnD17Fm7cuEHlzZEjB/Ts2RMOHz4MX79+pfJmzJgR2rdvD7t27YLAwEDInDmzam+aNGmgRYsWsGHDBvDx8QFHR0fVXgsLC6hXrx4sX74c3r9/Dy1atKD6uatUqQJz586FZ8+ewZAhQ6i8pUuXhsmTJ8OdO3dg6dKlVN7ChQvDyJEj4fLly3D06FEqb548eaB///5w8uRJePz4MZU3a9as0K1bN/Dw8IDg4GAqb/r06aF169awbds28Pf3B1tbW9Vea2traNKkCaxduxa+fv0KVapUUe01NzeHWrVqweLFi+HNmzfQoUMHqp+7QoUKMHPmTHj8+DFMnDiRyluyZEkYP348eHp6wsaNG6m8+fPnh6FDh8L58+fhwoULVN5cuXJBnz594NixY/Du3Tsqb+bMmaFTp06wZ88eCAwMBBsbG9XetGnTgqurK2zatAl+/PgBRYoUUe21tLSEhg0bwsqVK+HTp0/QoEED1V4zMzOoVq0azJ8/H168eAF9+vRR7QUAKFu2LEydOhXu378P8+bNo/IWLVoURo8eDdeuXYO9e/dSefPlywcDBw6EM2fOwJ07d6i82bNnhx49esChQ4fA19eXypshQwZo164d7Ny5E37+/AnZsmVT7U2TJg00b94c1q9fD9++fYNy5cqp9lpYWEDdunVh6dKl8O7dO3B1daX6uStXrgxz5syBp0+fwogRI6i8pUqVgokTJ8Lt27dh9erVVN6CBQvC8OHD4dKlS3Dy5Ekqb+7cuaFfv35w4sQJ8PLyovJmyZIFunTpAvv374egoCAwN1d/bE6XLh20atUKtm7dCv7+/mBvb6/aa2VlBY0bN4Y1a9bAly9foEaNGqq95ubmULNmTVi0aBG8fv0aunTpotoLAFC+fHmYMWMGPHz4EKZNm0blLVGiBIwbNw5u3LgBW7dupfLa29vDkCFD4Ny5c3D16lUqb44cOaBXr15w5MgR+PTpE5U3U6ZM0KFDB9i9ezcEBARAhgwZVHttbGzA2dkZNm7cCL6+vlCyZEnVXktLS6hfvz6sWLECPn78CE2aNFHtNTMzg6pVq8K8efPAy8sLBgwYoNoLAFCmTBmYMmUK3L17FxYuXEjlLVKkCIwaNQquXr0KBw4coPLmzZsXBgwYAKdOnYIHDx5QebNlywbdu3eHAwcOgL+/P5U3ffr00LZtW9i+fTv4+/tDrly5VHutra2hadOm4O7uDt7e3lChQgXVXnNzc6hduzYsWbIE3r59C23btqX6uStWrAizZs2CJ0+ewJgxY6i8Dg4OMGHCBLh16xasW7eOylugQAEYNmwYXLx4Ec6ePUvlzZUrF/Tt2xeOHz8Or1+/pvJmzpwZOnfuDPv27YPAwECwsrJS7U2bNi20bNkSNm/eDD9+/ICCBQuq9lpZWUGjRo1g9erV8PnzZ6hTp45qr5mZGdSoUQMWLFgAL1++hB49eqj2AiQfa+7atYvKm1ys6e3tTeUlWTMgIEATa5YqVUq1929hzWXLllF5CxUqBCNGjNDMmk+ePKHyZs2aFbp27Wpy1qxatapq79/Amjdv3tTEmhcvXqTycqx59OjRFGVNGxsbcHFxgU2bNoGvry8ULVpUtdfS0hIaNGiQLKzZt29f1V6A5GPNffv2UXlJ1rx79y6VNzlZM3v27Kq9HGuuW7dOM2u2bNmS6ueuVKkSzJ49m7GmCpGs6efnp4k1a9asqdpLsuarV6+ga9euqr0A/2PN6dOnG82aY8eOhRs3bsC2bduovPb29jB48GDNrPn582cqb8aMGU3Omh8+fICmTZuq9iYnay5atIjKy7HmlStXNLHmw4cPqbxcnv3AgQPw8+dPKm/69OmhTZs2ycKaFStWVO1NTtYcO3YslZdkTXd3dypvcrDmsWPH4M2bN1RejjX37t2rmTULFSqk2svl2VetWgWfPn3SxJo9e/ZU7QUAKFeunMlZ09PTk8qbPXv2ZGPNLFmyqPaSrPn9+/cUZ805c+bAs2fPYOjQoVTe0qVLw6RJkzSz5rFjx6i8pmLNdOnSmZw1X79+DR07dqT6uTnWfPTokSbW3LRpE5WXy7NrZc33799TeTNlygQdO3bUs2batGlVe5OLNT9+/AgNGzZU7U1O1pw/fz6Vl2PNq1evmoQ1Dx48CD9+/KDycqy5Y8cO+PnzJ9y6dQvq1atH9d9g+suVHNWH//UANnHwP6HY2Fj08vKS7CoiR1J///6d542Li8MfP35IPitgYWGBdevWxWXLluH79+953oSEBAwNDcUiRYpIVmZzI6mfPXumf5ce8X/vy0dERMiOMudGUt+5c0f/Lj0iok6nw4iICOzdu7eklxtJffnyZYyLi+P93BERETh79mxJLzeS+sSJExgZGcnzRkVFyT7hQI6kDgkJ4XljYmLwxo0bspX3rVu3xq1bt6K/v7/BGn/48EGyE8LKygqbNGmCa9aswS9fvvC88fHxGBgYKPlkKPn04+vXr3nrlJCQgOHh4VimTBnJn7t8+fI4Y8YMfPToESYlJem9SUlJGBERIftkaIkSJXDcuHF48+ZNTEhIMFjj4cOHS3rt7e1xyJAheP78eYyJieH9nSMjI2WfBuBGUh89ehTDw8N53ujoaDxy5IiklxxJHRwcbLDGjx49kvTa2Nigi4sLbty4EX19fXneuLg4/Pbtm2QHBjmS+uPHjwZrHBISIjnKnBtJPW/ePPTy8jL4FsPDw7FatWqSP3fZsmVxypQpeO/ePdE1lntWgHv68erVqxgfH8/7uSMiImSf28mbNy8OGDAAT58+jVFRUTxvVFSU7HPY3EjqgwcPYmhoqMEaX7x4UdJLjqQOCAjgeWNjY/HVq1eSHSvW1tb654++fftmsMb+/v6YJUsWyW+Re/7o7du3Bt9iWFgYFi9eXPLn5p4/evr0qeh+27hxY0kv9/zRrVu3RPdbuSeVuOePLl68iLGxsby/c2RkpOw4cu7px+PHj2NERITBGss9p8I9x7Fv3z789esXzxsTE4O3bt2S9KZNmxZbtmyJW7ZsQT8/P4M1/vTpk2RHk5WVFTZq1AhXr16Nnz9/5nnj4+MxODgY8+TJI/ktcs8fvXr1SvRbLF++vOTP7eTkhNOnT8eHDx+Kfott2rSR9HLPH12/fl30Wxw1apSk187ODgcPHoznzp0T3W/lnkXKkSMH9urVCw8fPoxhYWE8b3R0NJ44cULSmzFjRuzQoQPu2rULg4KCDNb46dOnkhMsyKcfhWfcuLg49PHxkeyW457jWL58OX748IHnTUhIwN+/f2PBggUlf+4qVarg3Llz8fnz56LfotyzWaVLl8bJkyfj3bt3Rb9FuWcFuOePrly5Inr2kXtq0NbWFt3c3PDUqVOi+63c86xZs2bFbt264YEDB/D3798Ga3zlyhVJL/n80c+fP3ne2NhYfPv2rWRHNff80dq1a/Hr1688b3x8PP78+VPyyVDu+aPFixfjmzdvRPdbR0dHyZ+be47j8ePHPC/3LTZr1kzS6+DggOPHj0dPT0/Rs8/gwYMlvfnz58ehQ4fihQsXRPdbuadYuOePjh07JrrfHjx4UNKbOXNm7NSpE+7du1d0v71//76kl3z+6MePHzxvXFwcfvnyRbLblnz+6NOnTwZr/OvXL8lns8jnj168eCG631auXFny5+aeP7p//77ofiv3XDr39OO1a9dE99vx48dLernnOM6cOYPR0dEGayz3TAf39OOhQ4dE99uzZ89KejNkyIDt2rXDnTt3GjzHkZpZs379+pJeJdaUe76XY81Lly4lO2vu2rVL0ks+/fgnWFNqsgL39OPfyJpyT4b+rax59OhRSS/JmmJnH62sKTXRgXz6MblZMyIiAqtXry75c5cpU+avZE25J8r+Btb09vY2WGOtrFmiRAnJn7tSpUo4a9YsfPLkiejZR4k1J0yYIMmabm5ukl7u6Ucp1pR7ZvlPsubt27clvamdNR88eJDsrCn3lDb39OPZs2dFzz5aWPPkyZOSXu7pRynWfPbs2T/Hmj169JD0mpo1PTw8RFnz6tWrkl6ONbdt25bsrBkQECD5ZCj39OOfYs3mzZtLekuWLJmqWVMsz66FNb9+/arImitXrjQJa06dOvWvY83169dLeknWFDv7aGHNFy9emIw1ixYtKvlzc6wplWdXw5q3b99OdtacM2eOpDd37tzYr1+/P8KaN2/elPSmS5cOW7Vq9VeyZtmyZSV/7j/Bmtw6jRgxQtLLsaZUnv1Ps+bu3bv/OtbMnz+/qNfMzAyrVq2a7KzJfYtdu3aV9KZG1kyfPj22bdsWt2/f/kdYM2vWrJLfYp06dXDJkiV/hDWbNGki6XVwcPgjrMlkWrGnilnhIJNG9e3bl7fhyR0ShRIWdcgdEoUSJtrIQ6IwQSbU3bt3RQ+JYgkyob59+8YroiMPicIEmVCRkZGYI0cOg0OiWDGGUElJSVi6dGmDQ+LYsWPxxo0bBodEoYSHTXt7e8liDKFGjhzJ83IJsiNHjhgcEoVatWoVz8sVY4gdEoU6deqUwSHR2dkZN27cqLhveHl5SR4ShQkyoQICAnhFdOQhUZggEyo2NtbgYoM7JAoTZELpdDqDIjrukCiWIBNKeNiUS5AJNXXqVJ5XrhhDKGGiTa4YQ6hr164ZHBKbNm2K7u7uBodEoT5+/Mg7bHLFGGKHRKFCQ0MNLjYqVqwoekgUKiEhwaCIjjwkKn2LwosN7pAoliATasCAATxvrly5sG/fvqIJMqEWLVrE83IXEmLFGEIJE23chYRYgkyohw8fGnyLUsUYQvn6+vIuNsgE2cuXL2XXKSoqCnPnzs37s7liDOGFhFA6nQ6dnJx43mLFiuGYMWNELySEEl5syF1ICDV27FieN3v27NizZ0/RCwmhhEUd5IWEMEEm1Llz53he8kJCmCAT6vXr17yLDe5CQixBJlRQUJDBxUaVKlVEizGEiouLM7jYkCrGEEqn02GtWrV4XrnCf6F69uzJ83LFGCdPnlQ8+8yaNctgv+UK/5X2W2GijSvG2LZtm0GCTChPT0+Ds0+TJk1ELySE+vLlC+9ig7yQECbIhAoPDzcoouMuJIQJMqESExMNLjZKliwpmSATSnixIVeMIdTQoUN5XrkEmVDLli3jeeUK/4U6duyYwdnHxcUFN23aZJAgE+rp06cG+61U4b9Q/v7+vKc2uGKM+fPnG1xICBUTE2NwsVG2bFnRCwmhdDodVqpUieflLiTEEmRCdezYkefNmzcvDhw4UDRBJtTEiRMN9tsePXqIJsiEEiba5IoxhLp8+bLB2Ueq8F+od+/e8S42LCws9MUY7969k/WGhIQYXGxIFf4LlZCQYFBExxX+Cy8kxCS82OAK/y9duqR49vkTrClWjCHU/v37DfbbVq1aiRZjCKWFNb9//85jTbliDKG0sqawiI4rxvibWVNY1JFSrPnixQue18LCwqSsKVaMIZROpzO42JArxhBKC2tOmzbN4OyTEqx5/fp1g/3W1KwpLMYQKjExUZI1hcUYYtLCmgMHDuR55YoxhNLCmocOHeJ55YoxhBJeMqYUa0ZHRxsU0aUUa7Zt25bnzZcvHw4aNEi0GEOoP8GaYsUYQp0/f57n5VhTrBhDKC2sGRwcbMCaUoX/QmllTWERHQ1r9urVi+dNLtZUyrPv3r3b4OyTEqz59etXUdYUK8YQypSs2aJFC4OzT0qwprCoI7WwJllER7KmsBhDKDnWFBZjCKXT6QyK6FKKNSdNmsTzyhVjCGUq1nz//v1fx5rCYgwxaWHNfv368bwca4oV/gtlKta8d++ewX4rVfgvlFbWFBbRSTWZC6WVNVu2bMnzyjWZCyVsVidZU+nso4U1T58+bbDfOjs7ixb+C6WFNQMDA0VZU6zwXyhTsma3bt143pRize3bt/O8KcWanz59kmRNYeG/UKGhoQZFdCnFmsIiOrnCf6G0sKawgUCuyVwoU7Hmjx8/jGZNJtOKFQ6ywkEmDfr8+TNaWlpKdofKKSwsDLNmzUqVIOOUmJiIJUqUoCrGINW0aVPMkSOH6gQZqUGDBsl2h8ppyZIlst2hcjp8+LBsd6icHj9+jGZmZpLdoXLy8/NDGxsbfXeoUoKMFJdMpTkkctLpdFihQgX9IfHkyZOKh0RS7dq1k+0OldP48eMxffr0+gSZ0iGR1IYNG9Da2lp1gozUhQsXZLtD5fT27Vs0NzfndYeq/RaDg4MxY8aMkt2hcoqPj8dChQrxDolKwMZJp9NhnTp1qA6JpHr37i3bHSqnOXPm6A+JmzZtUjwkktqzZ49sd6icbt++TVWMQcrb2xutrKwku0PlFBERgdmzZ5ftDpVSUlISOjo6ynaHysnZ2Vm2O1ROw4cP53WHKiXISK1YsUK2O1ROJ06c4HWHKiXISHHTAaS6Q+X08+dPTJs2LZYqVUp1MQan2NhYzJcvHy9BRrPfVqlShaoYg1Tnzp2pCv9JTZ48WbY7VE5btmyR7Q6V05UrV2S7Q+X04cMHtLCwkOwOldPv378xc+bM+u5QNQkyTgkJCVi0aFHZ7lA5NWzYkKoYg1T//v1lu0PltGDBAl4xhtKFBKkDBw7IdofK6f79+7LdoXLy8fFBa2trXneo2m8xMjISc+XKJdsdKqWkpCQsV66cbHeonFq1akV1IUFq9OjRst2hclq7di1VgozUmTNnZLtD5fTy5Us0NzdXXfhPKjAwENOnTy/ZHSqnuLg4zJ8/v1HdoTqdDmvWrKkv/FdzIUGqe/fuspOI5DRjxgzeJCKas8+OHTuoLiRI3bhxQ38hQZsgMyVrlixZ0iSsOXjwYJOw5pEjR3isqVSMQcqUrGlra0tVjMFJK2u2b9+eqvCflKlY8+LFiyZhzV+/fpmENRER69atq2dNNcUYpEzFmnv37uUVY6Q0a6ot/CellTVLlSplNGu6uLiYhDVXrlypZ001xRiktLDm8+fP9aypphiDlClZs2rVqiZhzSlTppiENa9evUrVZE6KK1pWW/hPSitrFitWjKrwn5QW1nRzc6MqxiBlKtZ88OCBSVgzKiqKx5o0eXatrNm6dWs9a6opxiA1ZswYqmIMUlpY8+zZs1SF/6S0sGZQUFCqZM0ePXpQFf6T0sKaO3fu1LPmqlWrUpw11Rb+kzIlazZr1oyq8J+UFtZcunQpVZM5KS2s+eTJEx5rKhX+kyJZU03hPymtrFmxYkWqwn9SWlhzwoQJvML/1MKaFhYWqgv/SWllzcKFC+tZU03hPyktrNmnTx+qwn9Sc+fOpSr8J6WFNe/cuWMy1syRI0eqY80RI0boWVNN4T/T3yNWOMgKB5k06O3bt1SHRFLfvn2jOiSSCgoKojokkoqJiaE6JJLS6XR48+ZN1YdEoe7cuUN1SCT16NEjqgQZqRcvXlAlyEh9/PiRKkFGytfXl6oYg1RoaCjVIZFUfHy8qslvYtLpdOjp6Ul1SCR17949qkMiqSdPnlAdEkm9fv2a6pBI6suXL1QJMlIBAQFUCTJSkZGRit2hUkpKSsKbN2+qPiQKdfv2baoEGakHDx5QHRJJPX/+3OhD4rt376guJEh9//6dKkFG6tevX1QXEqRiY2OpLiRIcfutsaO67969S5UgI/X48WOqBBmply9fKnaHSunTp09UCTJSfn5+VBcSpMLCwqguJEglJCRo+ha17Lf379+nSpCRevr0KVWCjNSbN2+MPrt6e3tTFf6TCgwMpCrGIBUdHa3YHSolbr819uyjZb99+PAhVYKMlJeXF1WCjNSHDx+oEmSkfHx8qBJkpEJCQhS7Q6UUFxen+exj7H577949o/fbJ0+eGL3fvnr1iupCgtTnz5+pEmSk/P39qRJkpCIiIqgSZKQSExM17be3bt2iSpCR0rLfPnv2THESkZRMyZrGnn0Ya9JJC2v++PHDJKyZkJBAdSFBypSsqeXsw1iTTqmVNWmKMUhpZU2aYgxScXFxjDUpZErWpCnGIKWVNU119tGy3759+/afYk2tZx/GmuqlhTVNnWfXwprG5tn/Rdb09PQ0yX6r5eyjhTXfvXuXKllT69mHsaY6pUbWRNSWZ2esqV5aWVPLfstYU71MyZpa8uxMptWfKBw0w/8VxjHJyMzMzA4AfAAAfHx8wM7OzsQ/ERMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE9O/IF9fX7C3t+f+pz0i+mr9b5pr/Q8wMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTGlHrHCQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiamf0iscJCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6R8SKxxk+mcUGxuryYuIRnnj4uKM9iYkJEBiYqJRXkSEuLg4o7wA2n9fqdFr7DrFx8eDTqczypuUlAQJCQlGeREx1f6uTeHV+i0mJSUZ5dXpdBAfH2+UFyB1/q5Nud8a+y0mJiZq2m9T6+/aFF4t36Kp9luA1Pm7Tq1nHy37LTv70HlN8S2y/TblvFr3W2O/xaSkJHb2ofQy1vzve1Pb2Yftt3RirJl6vIw1/9texpqpx8tY87/vNRVrsrNPynhNxZrs7EPvZaz53/eys89/28tYM/V4/zXWZPrviRUOMv0zunPnDpQtWxamTp0K9+/fp/rH0sfHBxwcHGD06NFw9epVqgNRTEwMlClTBgYOHAinT5+G6Oho1V4zMzOoVasWdO/eHQ4ePAhhYWFU3s6dO0O7du1gx44dEBgYqNoLADBu3Dho1qwZrFu3Dr5//07lXbNmDdSpUweWLl0K7969o/rH8uTJk1CpUiWYPXs2PH36lMrr5eUFjo6OMHHiRLh9+zbVGgcHB4ODgwMMHz4cLl26RAUnCQkJUL58eejXrx+cOHECIiMjVXvNzMygSZMm0KVLF9i/fz+EhIRQefv27QutWrWCLVu2gL+/v2ovAMCsWbOgcePGsHr1avjy5QuVd9u2bVCzZk1YuHAhvHr1imqdrl69Ck5OTjB9+nR4+PAh1YHo06dPULJkSRg7dizcuHGD6lsMDw8HR0dHGDx4MJw7d47qQISIUK1aNejVqxccOXIEwsPDVXvNzMygVatW0KFDB9i9ezcEBwer9gIAjBgxApydnWHjxo3g6+tL5V26dCnUr18fVqxYAR8+fKDyHjx4EKpWrQpz586F58+fU63xw4cPoUyZMjBlyhS4e/cu1bfo5+cHJUuWhJEjR8KVK1eo4CQuLg7Kli0Lbm5ucOrUKer9tm7dutCtWzc4cOAAhIaGUnm7d+8Obdq0ge3bt0NAQIBqLwDA5MmToWnTpuDu7g7fvn2j8q5fvx5q164NS5Ysgbdv31Kt07lz56BixYowa9YsePLkCdW3+Pr1a3B0dIQJEyaAp6cnFZyEhISAg4MDDBs2DC5cuEC13yYlJUHFihWhb9++cOzYMar91tzcHJo1awadOnWCvXv3wq9fv1R7AQAGDhwIrq6usHnzZvDz86Pyzp07Fxo2bAirVq2Cz58/U3l3794N1atXhwULFsDLly+p1vjmzZtQrlw5mDZtGjx48IBqjb29vcHBwQHGjBkD169fp9pvo6KioHTp0jBo0CA4e/YsxMTEqPYCAFSvXh169uwJhw4dojr7mJubQ/v27aF9+/awa9cuCAoKovpzR48eDS1atID169eDj48PlXflypVQr149WLZsGbx//57Ke+zYMahcuTLMmTMHnj17RrXGT58+hVKlSsGkSZPgzp07VPttQEAAODg4wIgRI+Dy5ctU+218fDw4OTlB//794eTJkxAVFaXaa25uDg0aNICuXbuCh4cH/P79W7XXzMwMevXqBa1bt4Zt27bBz58/VXsBAKZNmwZNmjSBtWvXwtevX6m8W7ZsgVq1asHixYvh9evXVOt08eJFqFChAsyYMQMePXpE9S2+f/8eHBwcYNy4cXDz5k2q/TY0NBQcHBxgyJAhcP78eeqzT5UqVaB3795w9OhRiIiIUO01NzcHFxcX6NixI+zZs4d6vx0yZAi4uLjApk2b4MePH1TeRYsWQYMGDWDlypXw6dMnKu/+/fuhWrVqMH/+fPDy8qJa47t376ZK1qxdu7bRrNmpUydo27atUaw5fvx4k7DmqVOnko01ab5FkjUvXrxIdfZJTEyEChUqaGbNffv2UbNmv379NLFmo0aNjGLN7du3Q40aNYxizWvXrpmENSMiIqBUqVJGs2bVqlWNZs3WrVsbzZrDhw/XzJrLly+nZs1Dhw5pYs3SpUvD5MmTjWJNBweHVMeaPXr0SBbW9Pb2pvJu2LAhWVjz8ePHVN/imzdvNLPm0KFDjWbNPn36GMWazZs3Nwlrzps3zySs6enpaTLWLFWqFAwaNAjOnDlDzZo1atTQxJrt2rWDnTt3UrPmmDFjNLFm3bp1UzVr0nyLWlmzYcOGRrNm7969NbPmmjVrqFlz8+bNULNmTVi0aBE1a166dEkTa5YsWdIo1gwLCwNHR0ejWbNy5cpGsaaZmRm4uroazZpDhw5NFtb8+PEjldfDw0Mza06ZMgXu3btH9S36+vpqYs3SpUvDgAEDUpw1O3funCysSZtnX7t2rUlY88WLF3rWvHXrFtW3+OvXL02sWb58eejbty8cP36c+uxjLGsCAPTr1w9atmxpFGvOnj071bHm58+fk401ac4+Wu81OdY0Js/O3Wtu2LCB+uyjlTWrVKliFGs+evRIE2tqudcsV66cyVmT9uzD9B8UIrJQCACwAwAEAPTx8UGm1CmdToe1atVCbi1z5syJvXv3xqNHj2JERISiv2fPnnpvpkyZsGPHjrhnzx4MDg5W9M6aNUvvTZs2Lbq4uOCmTZvwx48fit5du3bpvZaWltigQQNcuXIlfvr0SdHr6emp95qZmWG1atVw/vz5+OLFC9TpdLLeL1++oKWlpd5ftmxZnDp1Kt67dw+TkpJkveHh4ZgtWza9t2jRojh69Gi8du0axsfHy3oTExPRwcFB782XLx8OHDgQT58+jdHR0Yp/5+bNm+u92bJlw+7du+PBgwcxNDRU0Tt06FC9N0OGDNi2bVvcsWMHBgYGKnqXLVum96ZJkwabNWuG69atw2/fvil6jx07pvdaWFhgnTp1cOnSpfju3TtF79OnT/VeAMBKlSrh7Nmz8enTp4pr7O/vjzY2Nnqvo6MjTpw4EW/fvo2JiYmy3piYGLS1tdV7CxYsiMOHD8dLly5hbGysrFen02GlSpX03jx58mC/fv3w+PHjGBkZqfh37tixo96bJUsW7NKlC+7fvx9DQkIUvRMnTtR706VLh61atcItW7agv7+/onfTpk16r5WVFTZu3BhXr16NX758UfReunSJ9y3WqFEDFy5ciK9evVJcp3fv3qG5ubne7+TkhNOnT8eHDx8qfoshISGYKVMmvbd48eI4duxYvHHjBiYkJMh6ExISsEiRInqvvb09Dh48GM+dO4cxMTGKf+f69evz9ttevXrhkSNHMDw8XNHbt29f3n7boUMH3L17NwYFBSl6582bp/fa2Nigs7Mzbty4EX19fRW9+/bt4+239evXxxUrVuCHDx8UvXfv3uWtcdWqVXHu3Ln4/PlzxTX+/v07WllZ6f1lypTByZMn4927dxW/xcjISMyRI4feW7hwYRw5ciReuXIF4+LiZL1JSUlYpkwZvTdv3rzo5uaGp06dwqioKMW/s6urK2+/7datGx44cEDVfjty5Ei9N3369NimTRvcvn07BgQEKHpXr16t91pbW2PTpk3R3d0dvb29Fb2nTp3Se83NzbF27dq4ZMkSfPPmjeI6vXjxgrffVqxYEWfNmoVPnjxR9AYEBGC6dOn0XgcHB5wwYQJ6enoqfouxsbFob2+v9xYoUACHDRuGFy5cULXfVqtWTe/NlSsX9unTB48dO6bq7NO1a1e9N3PmzNipUyfcu3cv/vr1S9E7bdo03tnH1dUVN2/ejH5+forebdu28b7Fhg0b4qpVq/Dz58+K3uvXr/O+xerVq+OCBQvw5cuXiuv08eNHtLCw0PvLlSuH06ZNwwcPHijut6GhoZglSxa9t1ixYjhmzBjVZ5/ixYvrvXZ2djho0CA8e/asqrNP48aN9d4cOXJgz5498dChQxgWFqboHThwoN6bMWNGbN++Pe7cuVPV2WfRokW8s0/z5s1x/fr1+P37d0XvoUOHeGefevXq4bJly/D9+/eK3ocPH/K+xcqVK+OcOXPw2bNnimvs6+uLadKk0XtLlSqFkyZNwjt37ijut9HR0ZgnTx69t1ChQjhixAi8fPmy4n6r0+nQycmJd/bp378/njx5UtXZp23btnpv1qxZsWvXrujh4YG/f/9W9I4dO5a337Zu3Rq3bdum6uyzbt063n7bpEkTXLNmDX79+lXRe+7cOd5+W6tWLVy0aBG+fv1acZ1ev36NZmZmen/58uVxxowZ+OjRI8VvMTg4GDNkyKD3lixZEseNG4c3b95U3G/j4uKwYMGCem/+/PlxyJAheP78ecWzj06nw9q1a5ucNW1sbPSsqebss3v37mRnTS8vL8U1/vr1a7Ky5qhRo/Dq1auq9ltHR8e/ijXVnH2WL1/+z7Fm3rx5DVjz4sWLqs4+lStXTjbW7Ny5M+7bt08Va06aNCnZWLNRo0aqWfPy5cv/NGvmyJGDijX79euXrKy5YcMGVbni/fv3G5x9li9froo17927l2ysWbp0aSrWzJkzZ7Kwpq2tLRVrtmzZMtWx5unTp5OVNWfOnImPHz9W9AYGBiYraw4dOlQ1a1avXj3Vseb27dtNwpqfPn36K1iTO/ucOXNG1dmnSZMmycaa7dq1U82aixcvTjbWrFu3rmrWfPToUapkzfLlyycra6rNs48bN84krHn+/HnefluzZk3VrPnmzZtkY80SJUqoZs34+Pg/wppqzj69evX6a1hzxYoV+PHjR0XvrVu3kpU1p0yZopo1s2fPniysmTdvXhwwYIBq1mzRooXRrDls2DCTsObx48eTnTXV5Nn9/f0xbdq0JmfN3LlzY9++fVWzZqdOnZKNNVu2bIlbtmxRdfbZvHmzSVjz/fv3fxVrnj17VhVrNmjQIFlZc9euXapYc/78+SZnTQDAKlWqqGZNJtPKx8eHXDs7TI6auOT4j/zXA1jh4H9C0dHRePToUd4GKEwGrV27VjQZFBsbi48ePeJBhTAZtHjxYtFkUHx8PHp7e/Ogggy5ZFBiYiIGBwdjgQIFRL0lS5bE8ePHiyaDdDodhoaGYs2aNUW9SsmgsLAwXhKHDKVkUEREBE6ZMkXUq5QMioqK4iXNySCTQWJFlzExMXjx4kVRL5kMErsIi4uLw1evXvGggjwQcckgsaLLhIQE/PHjB+8Ci4xy5crh1KlT8f79+wYHosTERAwJCeEVS5Ihlwzi1rhp06aiXqVkUFhYGC+JQ0b27NmxR48eksmgiIgIXLBggahXKRkUFRXFO8iQoZQMiomJwTt37oh6lZJBcXFx+PHjR94FFhlcMkjsIiwhIQEDAwN5xZJkyCWDkpKS8Pfv31ixYkVRL5cMunTpkmgyKDQ0FNu1ayfq5ZJBJ06cEIWT8PBwXsEAGUrJoMjISFyzZo2ol7sI27p1q2gyKDo6mlegRQZXdCmVDIqNjcWnT5/yoILcb+WSQfHx8fj9+3ceVJAhlwxKTEzEX79+YeHChUW9cskg7lusW7euqJdLBkldhIWFhfGSOGQoJYMiIiJwxowZol4uGbR7927RZFBUVBQvaU6GUjIoJiYGr169KrnfyiWD4uLi8O3bt7wLLHK/rVq1Ks6bN080GZSQkID+/v68YkkyypQpI5kM4r7F0qVLi3qLFCkimwwKDQ1FZ2dnUa9SMig8PByHDBki6lVKBkVGRuKSJUtEvUrJoOjoaDx48KDkfiuXDIqNjcX79+9L7rd16tTBJUuW4Nu3b0W/xS9fvvAusMiQSwYlJiZiUFAQ2tnZiXodHR1xwoQJeOvWLdH9NjQ0FKtWrSrqLViwIA4bNkwyGRQaGspL4pChlAwKDw/nFaeToZQMioyMxA0bNkjut3LJoOjoaF6BlnC/5ZJBYhdhsbGx6OXlxbvAIr9FuWRQfHw8+vr68i6wyOCSQWIXYdzZh7zAIoNLBl2/fl1yv23YsKGoVykZFBYWxkvikMFdhB0+fFjy7DN37lxRL1d0KZUMioqK4iXNhfttixYtJJNBMTExePPmTclvUS4ZFBcXh+/fv0dra2tRv1wyKCEhAQMCAjB37tyiXrnCA26/JYslyVAqPAgNDcVWrVqJernCg5MnT4oWHoSHh/MKBoT7bbdu3SSLLiMjI3HFihWiXq7wYNu2bfjz508Db3R0NK9AiwytrFmrVi2jWbNChQqKrEleYJHxp1mzW7duot7kYk2psw+ZNCfD1Kwp1eCXkJCAfn5+RrFmUlKSImtKNfiZmjUXLlwo6s2QIYMia3p4eIh6k4s1xS7C4uLi8NOnT3+UNcUuwrj9lmzMI0Mra/br188o1lRq8IuMjMS1a9eKev80az579sxkrEleYJGhhjXr1asn6k0O1pS6CIuIiMCZM2eKerWyplyDX0xMDF67dk1yv/2bWZMsliQjuVhT6uxDFqeT8adZkyzQIsPa2hqbNWuG7u7uKc6acg1+HGuSxZJkyLEm9y3+a6xJFmgJ99vkYE2xoss/zZpjxozB69evS559GjVqJOolG/z+Ntbcs2eP5H77J1nzw4cPvGJJMpKDNeXy7EqsKVV0GRoaiq1btxb1amFNpQa/yMhIXLlypahXK2s2adJEljUfP36cKlmTHAJDRnKwplSDX0REBE6dOlXUmxysKTVMJiYmhjd4ggyONaUa/OLi4vD169d/hDW5Bj8p1vz9+zevWJIMOdZERMaagv1WK2tKNfhxrEkWS5KhlTW5YTJS+2379u1FvX8za5LNQGQkF2tK5dn/NGuKFV0qsaa9vb0sazKZVqxwkBUOMmmQVBJFLMhkUGJiIq/rQim4ZNCVK1cwPj5e8lAvFlwyiOvAff78uWqvsAM3LCxMtZdLBpEduGRnjVyQHbhcMkjqICH2jyXXgcslg8gOf6UQJoPIrgul4DpwuWSQVLGiWAiTQWTXhVKQyaCIiAj89OmTai+ZDPr16xfqdDrV3rRp02LLli15HbhS4CYMLhlEduCSHf5ywSWDyA5cqSSKWAg7cMkOf6Xgii65ZJBUsaJYCJNBwq4LuRAmgwICAlR7xZJB6dOnV+UVSwZJFUgJg0wGcUWXZIe/UlSpUoXXgSuVRBELYTKI7PBXisKFC/M6cKUukMTC1tZW34EbFRWFr169Uu0VJoOio6NVe8kOXC4ZJJUoE4ZYMojs8JcLsWSQVHG4WJDJoKSkJF6Hv1JwySDuIkzqAkks8ufPj0OHDsXz589jbGwsr8NfKYTJoG/fvqn2inXgikGfWIhNFi5atKgqr9i0J3KanFyITRaWSqKIhTAZRHb4K4VwsrDUBZJYCJNBjx8/Vu3lkkHcRdivX79Ue8WSQZkzZ1bl5ZJB69at0yeDyA5/ueCSQWQHLtnhrxTCaU9kh79SCDtwyQ5/pRAmg6QukMRCmAx69+6daq8wGRQfH6/aK5YMkipIFQaZDOI6cMkOf7kQSwZJXdiLRfny5XkduGSHv1KUKFGC14ErVawoFsJpT7dv31btFU4W/vHjh2ovOe2J22+lLp+EIVZ4ULJkSVVecrIwV3hAdvjLBVl4wF2EmYo1yQ5/pUhO1gwPD1ftFZv2pIU1yQ5/ufhbWDMhIUHyAkkshJOFtbDm58+fVXszZ86MnTt31jf4pSRrCqc9kR3+ciE27UkLa5Id/kqRnKwpVTwjFqZizTRp0hiwplSBlDDEJgtrYc1Ro0ap9gob/LSwptQFklgIWfP169eqvcnNmuQEK7kgWZO7CNPCmlIX9mLBsSZ3EZaSrMlNe4qNjcUbN26o9ubKlYs3WVgra4oVV4lFcrMmOU1OLsRYc9CgQar/zsnJmocPH1btFU4W1sKaISEhqr1ir9ikFGsKpz1JFYeLRXKy5vr161V7ha/YaGHN9+/fq/YKWTMhIUG1NzlYk5z2VKdOHVVesQY/Law5e/Zs1V7htCdTsaafn59qb3KzplQzjjDEXrHRwprkNDmlEL5ik5KsSU4W9vLyUu1NbtaUagAQhthkYS2sKVUcLhZC1pw8ebJqr3CysBbWvHLlimqvsMFPC2siomqv2GRhU7Fm//79Vf/cycmaUsWKYiF8xUYLawYGBqr2ir1iI1V0LAyONcmiSy2sKdWILBbCycJaWFNqCItYCCcLm4o1Y2JiVHtpJwsz/XmxwkFWOMikQTSXOcJ/OGiKYMgoVqwYTp8+3Sivra2t5EQ3pciUKRPv+TiaSJMmDU6fPl31ZQ4Z5ubmOGjQIMmOL6Vo3749uri4GOWtV68e1SUBGeXKlcPx48cb5S1YsCAVZJORI0cOye4WpUifPr3Ra2xpaYnjx4+XnGSpFH369JGcLqIUrq6uVBd2ZFSvXl1yYpdSODo6SnaLKUW+fPkkuz6VImvWrEavk42NDc6ePVv1ZQ4Z5ubmOHz4cNUJDWF06dJFdQJZGI0bN+Y9t0cTFStWxNGjRxvlLVq0qOQ0BKXInTu30fttxowZjV5ja2trnDx5MubKlYvaa2Zmhm5ubqoTGsJo06YNFUSRUadOHRwwYIBR3jJlykh2yitFgQIFjP4Ws2fPbvQ6pUuXDhcsWKC6cJAMS0tLHDNmjOQkS6Xo2bOn6gSyMFq0aIGdO3c2ylu1alUcPny4Ud4SJUpQXfaRkTdvXqpEChmZM2fWdPaZOXOm6sscMszNzXHo0KFYtmxZo/7sTp068Z6+pImGDRtinz59jPI6OTlJdm4qReHChamK2cjImTOn0ftthgwZjF5jKysrnDhxIubLl4/aa2Zmhv369eM9+00TrVq1orqwI6NWrVpUl7JklCpViir5TIa9vT1VswYZ2bJlM/p8mzZtWpw7d67qyxwyLCwscOTIkZLTRZSiW7dukpMslaJp06ZUBRJkaGVNqanDSpEnTx6Tsea0adM0sabay3NhtGvX7p9jTWPXyZSs2bt3b8npIkrh4uKiiTWNzRk5ODhITsFUinz58hm932bJksWkrCk1XUQptLImTYEEGf8qa6ptUiMjOVhTapqTUqRW1jT27MOxptrCQTIsLS1x9OjRmlhT6tUEpWjevDl26dLFKG9qZU2aYkcy0qRJgzNmzDAJa3bs2FF1sZIwGjRooIk1aYoOyShcuLDR+23OnDmN/hZNzZpqC7WF0bJlS02sOXjwYKO8jo6OVE01ZGhhTS159uRgzRIlShj1Z2tlze7duxvlTa2saex3zLGm2sJBMszMzHDgwIGaWNPV1dUob7169agK0sgoW7asJtacM2eOUV6t95rG/ptqaWmJ48aN++dYU8u9pilZU23hIBnJwZpSkyyVolGjRpruNceMGWOUt0iRIkbvt6ZiTSsrK5w8ebKqJ7qZ/pxY4SArHGTSILX/MHNdlOTTFTSdOWXLluU9XUEzcVD4dAXNFAjh0xU0EwfFnq5Qe5kj9nSF2omD3NMV5DOJag9f5ubmBl2UNMAq7KKkmTgo7KKkmQLBdfVw0wppJg4Kn66gmQLBdfVw0woR1XfmcBMkyKcr1E4cFHu6Qu2lm1gXJc1Bl3u6guuipJkCIeyipJk4aGdnx+uipJkCkSNHDn0XJTdKXe1lTsaMGbFDhw68CRJqJw6KTZBQOwVC7OkKmqSE8OkKmikQwmcSaSYOCp9JpJk4yD1dwXVR0kyByJo1q76Lknu6Qu1lDtlFyU2QUJtcFHsmUe3EQbKLkpsgQZOsFz5dQTMFwsHBgfd0Bc3EQW5aIddFSTMFQuyZRLWFg+TTFdx+q3YKhNgziWonDoo9k6h24qBYFyVNEkf4TCLNxEGui5KbIEEzBUI4rZBm4qDY0xVqL3PEphWqTS6KPV2hduIg+XQF10VJcyEj7KKkmTgo7KKkmQIh7KKkmTiYJ08efRdlZGQk1cRBsacr1E6BSJcuHbZu3Zo3QULtxEGxpyvUFjmIPZNIU6QpfLqCZgqE8JlEmikQ3NMV58+fx5iYGKqJg9wziUePHtU/k6j2MkfsmUS1EwdtbGz0E3u4CRJqL1bFphWmFGsKn0mkmQKRnKxJMwUiuVlTbSHL38Ca3AQJmikQwsn4WliTZgqEcFqhKVlT7RSI5GZNmoKS5GRNmikQHGty0wpTkjWF0wrVToFIbtakmQKRnKxJMwVCyJo0UyCSmzXVThwUm1aohTXVFtSLTStMKdYUPpNIM3EwuVlTbeFgcrOm2iJeMdZU29xCsiY3rVALa9JMHBROK9TCmjQTB/8m1lRbVJbcrEkzcVD4TKIW1qSZOJg7d27etEKaiYNaWVM4rVBtw6jYZHwtrEnToPK3sCbNxMHkZk21Dfpi0wq1sKbaiYPktEJTsybNxMHkZk21hYPp06dPVtZUO3GQY01yWiFN02elSpV40wq1sCbNxMHkZE1EVO39m1hTbYFncrMmzcRB4bRCLaxJM3FQOK0QUf3EweRmTbXDMpKbNWkmDv4trEkzcZBjTW5aIZPpxQoHWeEgkwYlJCRIFpWIFWOQSkxMRC8vLzQzMzPwio20JpWUlIT+/v6i/0iKjbQWeiMjIyU7KLiR1lyCjJROp8PY2FjJyXDCkdZCxcXFSXYzCRNkQsXHx0sm+nLlyoV9+/blJciE67Rt2zZRr1iCTOi9du2aqFcsQSZc4w8fPqClpaWBVyxBJlynX79+YbZs2Qy8YsUYwnWKiYmRvOQUjrQWeuPi4iQ7KISHRLE1lkr05cuXjzfSWmyNpRJ92bNnx549e/ISZMJ1kioqEUuQCdfpwYMHol6xkdZC7/fv39HGxsbAK5YgE65xWFgY2traiv7ZwgSZcJ1iY2OxYsWKol5hMYbYOrVv317UK0yQia2TVNeZsBhDzCtVVEKOtOYSZMI1PnfunKiXK8aQGmmdmJiIr169Ei3SsrKywiZNmvCKMYTrFBAQgBkzZhTdb7kLCS5BJvRGRUVJdutXqFCBlyATrnFcXJxkt74wQSa2xr179xb1ChNkYusklegTS5AJ10kq0Sf2fJLQ6+npKeoVK8YQrvHnz5/RyspKdL/lnk/iEmTCdQoJCRFNApHPJ3EJMuE6xcTESBbUCgv/xdZJalIRdyHBJcjEvFKJPmGCTGyNpRJ9Ygky4TpJNTCIFWMI1+nJkyeiXrEEmXCdfH19MV26dKL7rbAYQ+iNiIiQTLoLC/+FaxwbG4tVq1YV9QoL/8XWSWpKI/d8EpcgE1snqUSf8EJCzCuV6OMuJMgEmXCNL126JOoVS5AJ1/jt27eiF5ViCTLhOgUFBWGWLFlEv0Vhgky4TtHR0VisWDHRn1uYIBN64+LiJLv1hcUYYmvs5uYm6hUW/outk1SiT6wYQ7hOUkUlYoX/wnW6e/eu5H7LXUiIcWpiYiJ6e3ujtbW16LdYv359XoJMuMahoaGixe3chQSZIBOuU2xsrOQUcmGCTGydpCYVCRNkYl6piVLCBJnYGksVlYgVYwjX+F9jzbi4OMlufWHhv9g6aWFNqan+YsUYwnWSKir5L7Om1CUnx5pcMYbYGjdr1kzUmxysyRVjiK3xkiVLRL1/mjUfPnwo6hUrxhB6tbBmeHi4JtaUat40NWvKnX2kikrUsKZUUYlY4b9wnbSyZqZMmUT3W2ExhnCdoqKisEiRIqI/txrWrFevnqhXDWtKTQ1jrGm4xr9///7rWFNYjCHmlZrgp4Y1V6xYIepVw5pSRSV/mjV//Pghyppk4b/U2Ucra0pNIedYkyvGEFunP8WawmIMoVcLa0o1MPztrCk1hVwNazZq1EjU+6dZU2piEMeaZDGGcJ20sKZUs7xYMYbQ6+3tLVqIp4U1AQyLMYTrpJU127RpI+r906wpVVSihjWlikpMzZpk4b/QGxkZKVngJSz8F66xVtbs0aOHqPdvZk2pZvm/gTW5wn/hOhnLmtw6SbGmsPBfzCs1MVUrawoL/4XrJNXA8KdZ08fHRxNr5s2bV/TP/tOs2aFDB1GvqVhTrPBfuMZaWPP169eSrCks/Beu059iTWHhv9CrhTWZTCtWOMgKB5k0SKfT8eCeOyRKJciEIiczKSXIhCJHCSslyIQii+iUEmRCkRcbZIJM7JAo1MePH/VwTybIxA6JQv3+/ZsH92XLluV1h8opISGBB/dKh0ShyMlMefPm5XWHKol8DoU8JIolyIQiR/pyh0SpBJlQBw8eNDgkSiXIhCIPm0rFGEL5+vry4F4uQSZUVFQUD+6VijFI6XQ6HtxzCbJLly6JAptQJNwrFWMIRT7LqHRIFMrd3Z13SBR2h8qJLKJTOiQK9fr1az3cc4dEqQSZUEFBQTy4L1++vGSCTKi4uDge3CslyEjpdDoe3Nvb28smyIQiR4KTxRhq9lvySRMuQbZ7927RBJlQu3bt4u23wu5QOZEXG1yCbMWKFaIJMqG+fPmih3ux7lA5hYeH8+Ce6w6VSpCRSkxM5ME9dyEhlSATinxeVSlBJhQ5mUkpQSbUsmXL9F6lBJlQZBGdUoJMqKdPn/KATa4YQyh/f38e3HPFGFx3qJxiYmJ4F8nC7lA56XQ6HtwLu0OVRE5mUir8F4p8JozrDpVKkAlFTgFWSpAJRRbRcRcSq1atEr2QEOrdu3d6uFcqxhAqJCSEB/dyhf9CJSQk8OBeqRhDKHIKsFLhv1B9+/blnX2E3aFyIqcAk92hYgkyofbt28c7+3AXEmIJMqHIIjquO1QqQSbU9+/feRfJcgkyoSIjI3kXyaVLl5ZNkJFKSkridcsqJciEIp+8USr8F4qcAkwWY6jZb8kiOrLwX81+SxbRccUYa9euFS3GEOrFixe8/Vau8F+ogIAA3kUydyEhliATKjY2Fu3t7fXekiVLqk6QmZI1yYatlGRN8mJDqRhDKC2sGRoa+lex5unTp1Xtt+QUYKViDKG0sCZZRKdUjCGUqVgzOjqaNyUtJVmTnAKckqxJNmxxrClVjCGUqVgzODiYx5pyxRhCaWVNcgqwUjGGUFpYk5wCTMuaZBFdSrLm169fDVhTqhhDKK2sST4xplSMIZSpWJNs2PpXWJO8SFZqMiel0+l4k5k41pQqxhBKC2uSU4CVijGE0sKaZBGdUjGGUP8ia5JTgJUK/4XSwppkEZ1Sk7lQZBGdUjGGUFpZM2fOnHqvUjEGKa2sSU4B/htYU02enSyiS0nWDAwMNGBNqWIMobSyJjkFWKnwXyhTsSZZRJeSrPnp0ydR1lSTZ9fCmomJiaKsKVX4LxQ5BZgs/P/TrEkOB1Eq/BdKC2s+evQoVbImOQU4JVmTnAKsVPgvlBbWJIvolAr/hXrz5o2eNZUK/4XSwprx8fEmY01yCrBSk7lQf4I11dQ03bp1y4A1pQr/mf4uscJBVjjIpEGXLl2iKsYg9fbtW3RyctJ3hyodIEgFBwdj+fLlZbtDpRQfH4+1atWS7Q6Vkk6nwzZt2lAdEkkNGzYM27Zti9u3b1d1SCS1aNEi/SFRTYKM1P79+w1GdavV3bt3qRJkpLy9vbFcuXKqizFIRUREYKVKlaiKMTglJSVhgwYNZLtD5dStWzeDUd1qNXHiRH13qJoEGSl3d3eqQyKpU6dOYY0aNVQnyEg9f/5cX/ymJkFG6ufPn+jk5ESVIOMUExOD1apVo0qQcdLpdOjs7ExVjEFqwIABBqO61Wr27Nmy3aFy2rFjh35Ut5oEGamrV6/KdofK6cOHD+jk5ISTJ09WlSAj9fv3b6xQoQLVhQSnhIQErFOnDrq5ueHJkyep9ltExA4dOlAlyEiNGjWKqhiD1PLly6kSZKQOHTpk8CyUWj148IDXHUrzLfr4+KCTk5Nsd6iUIiMjsXLlyvruUDXAxikpKQmbNGmCffr0UZ0gI9WrVy/9hYSaBBmpqVOnoqurK27atIl6v92wYQM2bNhQdeE/qXPnzlEVY5B69eoVOjk5qU6QkQoMDEQnJyeqYgxOcXFxWKNGDarCf046nQ5btmxJVfhPavDgwfruUNqzz4IFC6gK/0nt2bNHfyGhJkFGytPTEytXrqw6QUbq8+fPWK5cOdUJMlJhYWFYsWJFfYKMZr9NTEzEevXqUSXISHXu3JmqGIPUuHHjqAr/Sa1atYqqGIPU8ePH9d2hahJkpJ48eUJ1IUHKz88PnZyccNy4caoSZKSio6OxatWqVAkyTjqdDps1a0ZVjEGqb9++VAkyUjNmzKAqxiC1detWg2eh1MpUrPnr1y89a9KefbSwJuL/kt7du3dXXYxBSgtrLl68mKoYg9S/yJoNGzZMday5bt06qsJ/UlpY08vLC52cnFQXY5DSwprcBKvUxppz5syhKvwnpYU1r127pmdNNcUYpJKDNWmKMTglJCRg3bp1qYoxSKVG1jx8+HCqY82oqCisUqUKVeE/p+RgTZpiDFJaWHPjxo1UTeakzp8/bxLWDAoKMhlrtmrVKtWx5t69e6mKMUhpYc0vX76YjDXr169vNGt26dLFJKy5evVqk7EmTZM5KVOyZvPmzU3CmjNnzjQJa16+fDnVsiZN4T8pLaw5fPhwqsJ/UlpY08PDg6rwn9S9e/f+Odbs3r07VZM5KVOx5unTp6kK/0lpYc2AgACTsaaLi4vRrDlw4ECqwn9SWlhz586dVE3mpLSw5sePH9HJyUl14T8pU7Jmx44djWZNJtPqTxQOmuH/CuOYZGRmZmYHAD4AAD4+PmBnZ2fin4jJGCUkJICVlVWKexMTE8HCwgLMzMyovUlJSWBubm6UFxEhKSkJLC0tqb0Apvt9pUav1jU2MzMDc3Nzai9b45TzalljnU4HiAgWFhZG/dmp8feVGteJfYupw6v1WwQAo9YYIHX+vlLjOrH9NnV42X773/eybzF1eBlr/ve9bL/973vZfps6vOxb/O97GWumDq+pWBMRQafTsf02Bbxsv/3ve9nZJ3V42bf43/eaao0BUufvy5TrZOz3wPbb1OFNrfstk2nl6+sL9vb23P+0R0Rfrf9NVjioQqxwkImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJickU+hOFg8aVgjMxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMaVKscJBJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJqZ/SKxwkImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYnpHxIrHGRiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJi+ofECgeZ/hn5+flBXFycUd6goCCIjIw0yhsWFgYhISFGeWNjY8Hf398oLyKCt7e3UV4AgK9fvwIiGuX99u0b6HQ6o7w+Pj6QkJBglNff3x9iYmKM8v769QvCw8ON8kZGRkJQUJBR3oSEBPDx8THKi4jw9etXo7wAAN7e3kav8ffv3yEpKcko748fPyA+Pt4ob0BAAERFRRnl/f37N/z+/dsob3R0NPz8+dMor06ng2/fvhnlBdD2LXp7e2v6FhMTE43y+vn5QWxsrFHe4OBgiIiIMMobHh4Ov379MsobFxcHP378MMprym9Ry37r6+tr9H778+dPo/fbkJAQCAsLM8obFRUFgYGBRnmTkpKM3m8BQNO/qabcb409+wQGBhq934aGhhq938bExBh99tHpdCZbJ1Ptt/7+/ibZbyMiIiA4ONgob3x8PPj6+hrl/VfPPtHR0UZ5Q0JCIDQ01ChvVFQUBAQEGOVNSkoy6dlHyxprOfsw1lSv1MiaWs4+pmLNxMRExpoU0nL20cKaMTExjDUplBpZMz4+XhNrmup8y1hTvbSypinPPow11Sm1foumZE1jzz5aWDMhISFVsua3b9/+KdaMjo5mrEmh1MiacXFx4OfnZ5Q3te63pjr7pEbWBEi9eXbGmuplyrwPY0110nr2YfrviRUOMv0zCgwMhJw5c0K7du1g586dVMmgpKQkyJ8/PzRv3hzWrVsH379/V+1NkyYNVKhQAerWrQtLly6Fd+/eqf7HMk2aNNC6dWuoVKkSzJ49G54+faraa2ZmBpMmTYJSpUrBxIkT4fbt21QHoi1btkDhwoVh+PDhcOnSJSo4uXTpEuTNmxf69esHJ06coDoQffjwAXLlygVdunSB/fv3Ux2IIiIiIHfu3NCqVSvYunUrVTLIwsICihYtCo0bN4Y1a9bAly9fVHttbGygdu3aULNmTVi0aBG8evVK9TpZWVlB7969oXz58jBjxgx4+PCh6gORmZkZLFiwAEqUKAFjx46FGzduUMHJ/v37IX/+/DB48GA4d+4c1YHo7t27kCdPHujVqxccOXKECk58fHwgR44c0KFDB9i9ezdVMig+Ph7y5csHzs7OsHHjRqpkkLW1NZQpUwbq168PK1asgI8fP6r22tjYQPPmzaFq1aowb9488PLyUr3G5ubmMHLkSChTpgxMmTIF7t69S/UtrlmzBooWLQqjRo2CK1euUMHJ6dOnwc7ODgYMGACnTp2iSga9ePECcuXKBd26dYMDBw5QJYNCQkIgV65c0LZtW9i+fTtVMggRoWDBgtC0aVNwd3enghMbGxuoXLky1K5dG5YsWQJv375VvU7W1tbQqVMnqFixIsyaNQuePHlCtd9Onz4dHBwcYMKECXDr1i0qONm+fTsUKlQIhg0bBhcvXqTab69fvw62trbQt29fOHbsGFUy6NOnT5AzZ07o3Lkz7Nu3jwpOoqOjIU+ePNCyZUvYvHkzVTLIwsICihcvDo0aNYJVq1bB58+fVXttbGygfv36UKNGDViwYAG8fPlS9TpZWFiAm5sblCtXDqZNmwYPHjygAtDFixdD8eLFYcyYMXD9+nWq/fbw4cNgb28PgwYNgrNnz1Ilgx4+fAi5c+eGnj17wuHDh6n2258/f0LOnDmhffv2sGvXLqpkUGJiItjZ2UGLFi1gw4YNVMmgNGnSQLly5aBevXqwfPlyeP/+vWqvjY0NtGzZEqpUqQJz5syBZ8+eUe2348aNg9KlS8PkyZPhzp07VPvt+vXroUiRIjBixAi4fPky1X57/vx5yJcvH/Tv3x9OnjxJdfZ58+YN5MyZE7p27QoeHh5UZ5/Q0FDIlSsXtG7dGrZt20aVDDIzM4NChQpBkyZNYO3atVRJOxsbG6hevTrUqlULFi9eDK9fv6Y6+3Tr1g0qVKgAM2fOhMePH1OdfebMmQMlS5aE8ePHw82bN6n22927d0OBAgVg6NChcP78eaqzj6enJ9ja2kKfPn3g6NGjVMkgb29vyJkzJ3Ts2BH27NlDtd/GxsaCra0tuLi4wKZNm6iSQdbW1uDo6AgNGjSAlStXwqdPn1R706ZNC40bN4Zq1arB/Pnz4cWLF1T77dChQ6Fs2bIwdepUuH//PtW3uGLFCihWrBiMHj0arl69SrXfHj9+HOzs7GDgwIFw5swZqrPPs2fPIHfu3NCjRw84ePAgVeGBFtbU6XSaWbNOnTpGsWabNm2MZs3JkyeDo6NjirPm5cuXeaxJc/b5G1hz9erVKcaalpaW0KdPHyhfvjxMnz49RVnTw8PDJKzp6+ub6lgzTZo00KJFCz1rPn/+PMVYc+3atZpZ083NzSSs2aZNmxRnzSpVqhjFmlZWVgasSfMtamXNggULwrBhw+DChQspxpqfP3/Ws+bevXtTjDUtLS2hRIkS0LBhQ6NZs3r16inOmkuXLjUJaz569IjHmjRnHy2smZSUlCysuWzZshRjTTMzMxg/fjyUKlUKJk2a9E+wZlhYmNGsaW5uDkWKFNGzJs2ltFbW7N69u541Hz16ZBRrjhs3jpo19+zZAwUKFIAhQ4ZQs+atW7fA1tYWevfu/U+wpo2NjclYc+XKlUaz5okTJ/Ssefr06RRjzaCgIMiZMye0bdsWduzYkWKsaWNjYzRrWltbQ9u2bf9p1qQpuiRZc8uWLSnOmjVq1ICFCxemGGsCACxYsACKFy+e4qx57969VMeaadKk4bHmhw8fqLxaWHPUqFFQpkwZmDx5stGsOXLkyH+CNQHAZKzZuXNnPWvS5tlnzJihZ01PT0+jiy6Z/iNCRBYKAQB2AIAAgD4+PsiUetWmTRvk1tLMzAyrVauG8+fPxxcvXqBOp5P1jhkzRu8FACxbtixOnToV79+/j0lJSbJed3d3nrdo0aI4evRovHbtGsbHx8t6z549y/Pmy5cPBw4ciKdPn8bo6GhZ76tXr9DMzEzvzZ49O/bo0QMPHjyIoaGhst6goCDMkCGD3pshQwZs27Yt7tixAwMDA2W9cXFxWKBAAb03TZo02Lx5c1y3bh1+//5d1qvT6bBWrVp6r4WFBdapUweXLl2K7969k/UiIvbo0YP3+6pUqRLOnj0bnz59qrjGM2fO5HkdHR1x4sSJePv2bUxMTJT17tq1i+ctWLAgDh8+HC9duoSxsbGy3ps3b/K8efLkwX79+uGJEycwMjJS1vvlyxe0tLTUe7NkyYJdunTB/fv3Y0hIiKw3LCwMs2XLpvemS5cOW7VqhVu3bkV/f39Zb2JiIjo4OOi9VlZW2LhxY1y9ejV++fJF1ouI2KxZM963WKNGDVy4cCG+evVKcZ2GDBnC+32VL18ep0+fjg8fPlT8FpctW8bzFi9eHMeOHYs3btzAhIQEWe/Ro0d5Xnt7exw8eDCeO3cOY2JiZL1Pnz7leXPmzIm9evXCI0eOYHh4uKzXz88PbWxs9N5MmTJhhw4dcPfu3RgcHCzrjYmJQVtbW73XxsYGnZ2dcePGjejr6yvr1el0WKlSJb3X0tIS69evjytWrMAPHz7IehERO3TowFvjqlWr4rx58/D58+eKazxx4kTe76tMmTI4efJkvHv3ruK3uHHjRp63SJEiOGrUKLxy5Yrifnvp0iWeN2/evOjm5oanTp3CqKgoWe/bt2/R3Nxc782WLRt269YNDxw4oLjf/vr1CzNlyqT3pk+fHtu0aYPbt2/HgIAAWW9CQgIWKVJE77W2tsamTZuiu7s7ent7y3oREevVq6f3mpubY+3atXHJkiX49u1bxXXq27cv7/dVsWJFnDVrFj558kTRO3fuXJ7XwcEBJ0yYgJ6enorf4r59+3jeAgUK4LBhw/DChQuK++3du3d53ly5cmGfPn3w2LFjGBERIev99u0bWllZ6b2ZM2fGzp074969e/HXr1+y3sjISMyRI4femzZtWnR1dcXNmzejn5+frDcpKQlLly7N228bNmyIq1atws+fP8t6ERFdXV1532L16tVxwYIF+PLlS8V1GjFiBO/3Va5cOZw2bRo+ePBAcb9dtWoVz1usWDEcM2YMXr9+XfFbPHXqFM9rZ2eHgwYNwrNnzyqefby8vHjeHDlyYM+ePfHw4cMYFhYm6w0ICMB06dLpvRkzZsT27dvjzp07Fc8+sbGx/8feWUZHkXVr+E1CEkiwkBAIxNDgrsGCQ4SZgRncHQYGdxtkYHC3wW1wd3d3dw3uFkKs9/3Brfqq/VR3kibDftaqde8H85LurtTp/ew6pw55e3tr1T7BwcE0Y8YModqnVKlSWrVPUFAQjRs3jm7evGkyS0TUoEEDrfdcvHhxGjZsGJ0/f97sOR4wYIBWNm/evNS3b186evSo2fF23rx5WtksWbLQH3/8Qbt376aoqCiT2X379mllvby8qHXr1rRx40az4+3t27fJwcFBzrq5uVHDhg1p+fLl9O7dO5PZd+/eUdq0abXG259//pnmzZtntvaJiYmhnDlzao231apVo6lTp9L9+/dNZomIqlatqjXeli1blv7++2+6evWq2fPUtm1brc+rSJEiNGTIEDp9+rTZa/Hvv//WyubKlYt69uxJBw8eNDverly5Uivr6+tLHTt2pO3bt5utfU6dOqVX+zRv3pzWrl1rdrx9/PgxOTk5adU+devWpSVLlpitfSIiIihDhgxa421oaCjNnj2bnjx5YjKr0WioUKFCWrVPpUqVaOLEiXTnzh2TWSLrXLNHjx5an5fkmsePH7fYNffu3Wt2vN22bZtWVo1rXr16Vcs106VLR40bN04U1/T399cab2vUqEHTp0+nhw8fmsxa65pNmzbV+rySgmseOnRIKyu55vr16xPUNT9+/GjQNefMmZPgrlmzZk2ta1GNa/7+++9an1ehQoUSxTXXrVunlU0s13z27JlR13z16pXJrCnXNNc7tdY169atq3WOS5YsScOHD09w15w9e7ZWNmvWrNSlSxfas2eP2drHGte8ceNGknTNihUratU+kmteu3YtQV1zxIgRWtmk4JqPHj3Sc8169eolimvmz59f61pMLNfs0qWL1ucVH64p0me3xjUvXbqklZVcc9WqVQnumj4+Plq1T82aNS12zQoVKgi7ZsOGDbXesxrXHDhwoFY2sVxz//79erWP5Jrmah9Trmmu9nn//n28u+aUKVMS3DXbtWun9XkVLlyYBg8enOCuuWrVKq1sfLmmudrn8ePH5OzsrFX7iLrmly9fKGPGjFq1j+SaIn12a1yzdu3aWuOt5JoXL15MUNecPn26VjZ79uzUtWtXi1wzU6ZM1LZt2wR3zdevXxt1TXO1j7WuWa5cOa3xNrFc888//9TKxodr7ty5M0Fd8/79+3quWb9+fVq2bFmCu2aePHnkrKOjI1WpUuW7d83x48drZW3lmh4eHonmmpkyZdIab0NCQmjmzJmqXVPqs48fPz7BXbNv375an1e+fPkSxTV3796tlfXy8koU12RsS3h4uPK8e1N8zImLj3/kv36AJw7+J5g1axYVKVJEa/BUHn5+fvT7778bbAZt2LBB6waD7mGqGXTs2DGqVq2a0aypZtC9e/coLCxMa9BWHspmkO6NsIiICKpVq5ZWkaw8zDWDGjVqpHXTTXkom0GGboR1796dsmTJYvQ9S80gQ5Mux4wZQ3nz5jWaNdUMWrRoERUvXtxoVroRtmXLFj052bFjh9YEGt1DmnRpqBl0/vx5Cg4ONppNlSoV1alTx2Az6OnTp1SrVi2tm6PKw1QzSKPRUK1atbSaEsrDXDOodevWWsWX7mGqGTRgwADKkSOH0aypZtDUqVOpYMGCRrNSM2jXrl16BdHKlSupdOnSRrNSM8jQpMuDBw9SlSpVjGalZpChG2E3btyg0NBQo1mpGWRo0uW7d++oVq1aWg1C5SHdCDPWDKpbt65WE1h52NvbU5kyZYw2gzp37ky+vr5GX7epZtCIESO0btjpHgEBAUabQXPmzKGiRYsazZpqBm3atElLsnUPU82gkydPak1K1T1MNYMePnxIYWFhWg1C5WGqGfT161eqVasWpUqVymBWagZNmDCBbt++rXeOmzZtqtV4Uh5SM2jEiBEGm0G9e/emrFmzGn3P+fPnp/79+xtsBo0bN05rQpruYaoZtHTpUipZsqTRrKlm0O7du7VuIukepppBly5dopCQEKNZU82gly9fUq1atbQahMrDXDPo559/Jjc3N4NZZTPI0KTLdu3aaU0q0z2kZpChG2GDBw/WaiDrHlIz6PDhw3rj7fTp07Uak7qHv78/derUyWAzaO3atVSmTBmj2QwZMlDLli0NNoOOHDmi1bjWPUw1g27fvk1hYWFaDULl4eLiQrVq1aI5c+bo3Qj7+PEj1apVi1xdXQ1mzTWDGjRoQOnTpzd6LZpqBnXt2lWruah7mGoGjRo1SqtppXtIzaD9+/frjbfz58/XaoboHlIzaOvWrXrj7datW6lChQpGs1IzyNCky7Nnz2o1y3QP6UbYokWL9JpBjx8/prCwMK0GofIw1QyKiYmhWrVqUZo0aYxei6aaQS1bttSa5KB7lChRwmgzqG/fvpQ9e3ajWVPNoEmTJlGBAgWMZk01g5YvX651s0/3MNUM2rdvH1WuXNloVmoGGZp0ee3aNbO1zy+//ELz5s2j58+fa2XfvHlDtWrV0moQKg9p4sHUqVMNTjyoU6cOubu7G8xKN8JGjx5tcOJBx44dtW6s6h5FixalIUOG0JkzZ/SyQ4cOpVy5chnN5sqVi3r16mVw4oGtXPP48eM2cc0vX74Iu6ahG2HWuGaPHj3MuqaxBX7WumaJEiWMZk255s6dO23ims+ePbOpa2bOnNno65Zc09CNsIEDBwq5pqEbYda45qpVqygwMNBo1tQCv/hwTVO1j7EFfj+ia86dO1fINQ3dCLPGNU+dOiXkmoYW+Im6pqEFfpJrKif/KQ9zrtmsWTOTrikt8Itv1xw/frzWhDTdQ1rg9z255uXLl23qmsob4MpDck1jC/yscc0hQ4aYdc3evXsbdM0ZM2b8UK756dMnYdc01GdPDNc0NOny77//tso1TfXZTbnmtm3bzLqmsQV+1rpmrVq1tCbiKo/kyZNTcHCwQdeMjY21mWv269dPyDUN9dmtdU1TfXbJNQ0t8PueXVNa4Bffrvn777+bdE1pgV98u+bs2bNt5prVq1c3mlW6pm7tc//+fZu5ZuPGjc26prEFfta6pqk+e44cOYw+TGbx4sU2cc0LFy6YdM2UKVMmiGsSkbBrGpp0+T27prTALz5d89ChQyZd09QCP2tc8/379zZ1TeXDiXQPU675119/CbmmoUmX1rjm5s2bqXz58kazkmsamnQZH65prs9uyDWjoqLMuqa0wM+QazK2hScO8sRBxgp0Z/ObOlxdXalTp07yl6zubH5Th5OTEzVs2FAegHVn85s67O3tKTg4mK5du0ZE3wo30SwACgwMpGPHjhHRt6fJqcnmz5+ftmzZIn9exgTK0JElSxZatGiR/OVu6ga27pEhQwYaP368XCwrZ/ObO9KmTUt9+vSRpUZ3Nr+pw8XFhdq2bSs3GHRn85s6HB0d6ddff5WLId3Z/KYOOzs7qly5Ml24cIGIiO7cuaPqPBUvXpwOHDhARN9u5qjJ5sqVi9auXSufJ1NNJ93Dx8eHZs+eLRfLphqxuoeHhweNGDFCFtdWrVoJZ1OlSkXdunWTpUZ35bipI3ny5NSsWTO54P3333+Fsw4ODlSrVi25EXT8+HFVn3WFChXo9OnTRPRtVbGabKFChWjnzp3ytWisKWnoyJ49O/3777/yOTYlq7qHl5cXTZ48WS6Wa9WqJZx1c3OjQYMGyU0k3ZXjpg5XV1fq2LGjfDN78uTJwlknJyeqX7++LJ+6K8dNHfb29lSjRg26evUqEX17Qqua81S6dGk6evQoEX1raKjJ5s2blzZu3CifJ2PNDEOHv78/zZ8/XxYiUw0+3cPT05NGjx4ti6vuynFTR5o0aahXr16y1OiuHDd1pEiRglq1aiXfXJk/f75wNlmyZFS7dm258a67ctzUYWdnR5UqVaLz588T0TeJUnOeihYtSvv27ZOvRWPNLkNHQEAArV69Wj7HphrAukfmzJlpxowZ8nhr6qaI7uHu7k7Dhg2TxVV35bipI2XKlPTHH3/IDd3Ro0cLZ52dnalJkyZys0935bipw8HBgUJDQ+VG0JkzZ1Sdp7Jly9KJEyeI6FsDWU22QIECtG3bNvkcG7tBYOjImjUrLVmyRD7HhQsXFs5mzJiRJk6cKNc+ypXj5o60adNS//795fG2Z8+ewlkXFxdq166d3GDQXTlu6nB0dKS6devKNzq3b98unLW3t6eqVavSpUuXiOhb00rNeSpZsiQdOnSIiIiio6NVZXPnzk3r16+Xz5Opm6q6h6+vL82ZM0ceb01NNNA90qdPT6NGjZJrn2bNmglnU6dOTT169JBrH92V46aO5MmTU4sWLeSbK4sXLxbOJkuWjH7++We58X7kyBHhrJ2dHQUFBdHZs2eJiOjJkyeqzlORIkVo9+7d8rVo7Ka7oSNHjhy0fPly+Rybuhmje2TKlImmTZsm1z6mGua6R7p06WjIkCFy0z6xXVPqS6xfv144G5+u+fHjR1XZ+HRNUzewdY8MGTLQuHHjEt01U6RIQW3atJFvrvzzzz/CWUdHR6pTp068uObdu3dVnafvxTUrVaoknI1P1/zrr7+Es87OztS0aVN5Yok1rnnixAlVn3X58uXp1KlTRJS4rpktWzZatmyZfI5NTQrTPeLTNbt27SqcjU/X3Lx5s3BW1zWvXr2q6jzFp2samzRo6PDz86N58+bFi2s2atRIOJs6dervwjUPHDggnI1v1zQ2qdTQkTNnTlq1alW8uKapxQe6h7u7Ow0dOlR2zfbt2wtnrXXNxo0by665evVq4ayDgwOFhITEi2u+fftWVfZ7cc06deoIZ+PTNWfMmCGcdXR0pN9++02e5GWNa968eVPVeSpRogQdPHiQiL4tUlOTjU/XNDXRQPeIT9ccOnSocNbWrnnmzBki+vYQBjXnKT5d09REFN0jU6ZMNHXq1HhxzU6dOglnbemaNWvWlF1TdzcQc0d8uqaxiUqGjixZstDChQvla9Ea16xXr55wNk2aNFqu2a9fP+FsfLrmnj17hLPx6ZpEpCprS9ccPny4XPu0bt1aOBufrrl8+XLhrIODA4WFhcmL+6xxzZcvX6rKFixYkHbs2CGfY2OTfw0d8emaP/30k3DWzc2NBg4cGC+uOWXKFOGsLV2zVKlSdOTIESL69mRHNVld12RsS0JMHEwGhvlBSJkyJVKlSoVPnz4Z/W+KFCmCsLAwhIWFoXDhwrC3twcApEiRAmnTpsX79++NZnPlyiVnS5cujWTJvl1eTk5OcHd3x5s3b4xmfX195WyFChWQPHlyAICDgwM8PDzw5s0baRKrHp6enggJCUFoaCiqVq2KVKlSAfi2N72HhwfevXuHuLg4g9k0adKgRo0aCAsLQ40aNeDu7i7/nbu7Oz59+oTo6GiD2RQpUqBKlSoIDQ1FaGgoMmXKJP9d2rRpkSJFCkRGRhrMJkuWDBUqVEBoaCjCwsKQLVs2+e9SpUqFlClT4vPnzwazdnZ2KFmypPx55cuXD3Z2dgAAV1dXpE6dGh8/fjSYBYCCBQvKP7d48eLyOU6ePDnc3Nzw7t07o9ns2bPLP7ds2bJwdHQEADg6Opo9x5kzZ5Z/bqVKlZAiRQoAgL29PTw8PPD27VtoNBqDWXd3dwQHByMsLAzVqlVDmjRp5L/z8PDA+/fvERsbazCbMmVKVK9eHWFhYahZsyY8PT3lv0uXLh2ePXuGqKgog1lnZ2dUqlQJYWFhCA0NhY+Pj/x3adKkgYuLC758+WIw6+DggLJly8rZgIAArddk7losXry4/HkVKlRIPscuLi5IkyYNPnz4YDSbN29eOVuqVCk4ODjI7yddunR4+/at0ay/v7/Wtejk5ATg2++sh4cHXr9+bTSbIUMG+edWqVIFrq6uAMSuxbRp06JmzZrytejm5ib/nYeHB6KjoxETE2Mw6+LigqpVqyIsLAwhISHImDGj/Hdubm5Injw5vn79ajDr6OiIoKAg+TxlyZJF/rvUqVPD1dUVERERBrP29vYoXbq0nM2TJ4+qa7Fw4cLyZ12kSBFV421AQID8c8uUKaNqvPXx8ZGzFStWVDXeenh4ICQkRL4WpfFW+jtT12KqVKnk8bZmzZrw8PCQ/87d3R3v3r0zOt4mT54clStXll935syZ5b8TGW/LlSsnf9bZs2fXek3mxtsSJUrI2fz586u6FvPnzy9nixcvrnUtmhtvs2XLJmfLlSunNd6auxYzZcqkNd66uLgAEBtv06VLh+DgYISGhqJ69epImzat/HfSdWzsWnR1dUX16tURGhqKkJAQrfHWzc0Nzs7ORsdbJycnVKxYUT7Hfn5+8t+ZG2/t7e1RtmxZ+T0HBATI50lkvC1atKhW7SNlRa7F3Llza9U+0jl2cnIyO976+flpjbfOzs4AxMZbT09PrfE2ZcqUAMRrH+V4my5dOvnv3N3dERkZabL2kcbb4OBgvdrH3HhboUIF+RxnzZpV/jtz462dnR1Kly4tv+e8efOqrn2kz7pYsWKqap8cOXLI2TJlyqiqfby9veXXXLFiRbn2ER1vlbVP6tSptf7O3Hgr1T7BwcFa4226dOnw6tUrk7WPcrz19vaW/06k9pHG29DQUOTMmVPrNZkabwHI421oaCgKFiyoarzNly+fnC1ZsqSq2idLlizyOS5fvryq2sfLy0t2gSpVqqgab93c3LSuRd3x9uXLlyZrn2rVqsm1T4YMGbT+XVPXopOTk1bt4+/vL/+dSO0TGBgof165cuVSNd7+aK6ZOnVqrdonMV2zfPny8ntOTNcsUKCAVu3DrmneNaVz7OvrK//d9+yaefLkkc8Tu+b37ZrS51W0aNFEdU1l7fM9uKb0e8mu+T8k1wwNDUW5cuXka9HWrvn27VuTrinVPsHBwXq1T0K6ZpkyZeTPml1TzDVDQ0NRs2bNeHVNU9ei5JrS62bXND3euru7a423tnDNkJAQ1X32cuXKye85sV1T+rmJ6ZoZM2aUf27lypXl2ud7dk1HR0et8dYWrhkaGqq6zx4frhkaGoqgoKDvxjU/fvxosvapUqWKfI7V1j4J4ZouLi7frWtmypRJPseVK1dOdNcMDQ1FcHBworqmbu2jfE1JwTXLly+vqvZJKNd0d3dHVFTUd+ua0nuOL9cUuRZz5sypVfskdddk/oPEx+zD//oBfuLgf4Y//vhDa3a0qa0ndZk4caJWVtoOZOLEiWYf0bpx40atrLT15F9//WVwOxAlhp4EUaBAAaPbgSh58eIFpUiRQm/mvrHtQJR8/fpVb6WccjsQ3cfTK9FoNHrbipjaDkSXBg0aaGVNbQeiS//+/fVm7pvaDkTJ3LlztbLKrSdv3Lhh8jzt27dP7zyZ2g5Eye3bt/VWF5vaelLJu3fv9B7p7e/vT507dza4HYiSmJgYvcdyK7cD0X08vS66j8dOkyaNvB2I7lZourRp00YrmyJFCqPbgegyatQoray57UCUrFy5Uu9aNLUdiJKTJ0/qnWNTW08qefz4sd5j26XtQA4cOGDyWoyIiCBPT0+trLe3N3Xo0MHgI7GVaDQava1jTG09qcsvv/yilU2VKhX99ttvBrcD0aV79+56462xrSd1mTZtmt61aGo7ECVbt27VO8clS5Y0uh2IkitXrug9tt3U1pNKXr16pffEDlPbgSiJiorSe/S6qa0nlWg0Gr0tJ9zc3KhRo0a0YsUKve1AdGnSpIlWVtoOZP78+XrbgegyZMgQvfG2evXqNG3aNIOPp1eycOFCray9vT2VK1fO6HYgSg4ePKh3LZraelLJvXv39B7bbmo7ECUfPnzQ2z7K19fX6HYgSmJjY/VWJpvaDkQX3UfVm9p6UpeOHTvqjbdhRrYD0WXs2LF6tY+p7UCUrF27Vu9aNLX1pJJz587pneOCBQvSwIEDDW4HouTp06d6W9aY2npSSWRkpN7WQqa2A1Gi0Wj0tjIwtR2ILr/99pte7WNsOxBdevfurZU1tx2IklmzZumNt6a2nlSya9cuvfMkbQdy/vx5k+f4+vXrek/xlLYDMbT9kpI3b97obaFgautJJdHR0Xpb7mXMmJFat25tcDsQXXS3fzG19aQuLVu21Mqa2g5El+HDh+vVPtWqVaMpU6YY3HZbybJly/TGW1PbgSg5evSo3jk2tR2IkocPH+ptEWZq60klnz590ntKgI+PD3Xs2JG2b99usvaJi4vTe+Kyqa0ndQkLC9PKStuBLFmyxGztY41rTpo0SW+8NbX1pBJjrmls60klhp4EocY1dbesSSzX1N2+O7Fcc8CAAXq1j+SahrZCU6Lrmvb29rJrGtp6UklCuKaxrSeVWOuauttfJpZrtm3bVq/2EXXNv//+W2+8TQzXPHXqlN45NrX1pBJrXVP36eeSa27dutVs7WMr1+zRo4de7WNs60ldrHHNbdu26Z0nU1tPKrHWNXWf2BEfrmlo60kl1rpm06ZNtbKmtp7UxRrXXLRokd54a41rmtp6Uok1rvnx40ebuabulrCmtp7UxRrXHDdunF7tY61rGtt6Uok1rvns2TM918yePbvRrSeVWOuaurv7KF3TXO1jjWv26dNHb7wVdU3d3X3MbT2pxBrXvHHjhlHXNLT1pBJrXDMmJoayZcumlbXGNU1tPamLNa6pu7uPcuvJhHTNY8eO6Z3jxHDNz58/W+Wauk/BMrX1pC7WuKbu7j6SaxraelIXa1xTd3cfqc9uqWvmz58/UVxTd0vpxHJN3d19Ess1582bp3ctWuuaf/75Z4K65vv37/Vc08/Pjzp16pTgrqm7u09ScE3d3X2Urnn58uUEdU3dJ7VKrrl//36LXLN9+/YWu2bTpk0tds1ff/01wV1Td3cfpWua67Nb45pXr161iWsytoW3KuaJg4wVPHnyhJydneUi0dxkDCVfvnyhjBkzqmqQSWg0GipcuDC5urpS7dq1hSZjKKldu7ZWg8xckaikZ8+ecoNszJgxZotEJdKWAkWLFhUqEpVIWwrkzp1bqEhUcu3aNbKzsxMuEpW8fv2aUqZMSZ6entSyZUuhBplEdHQ0+fv7qyoSJTQaDZUvX14uEkUaZEqaNWumqkhUMnToULlIHDlypNkiUYm0pYDUIDNXJCo5fPgwAf+bjGGuSFRy//59SpYsmXCRqOTjx4/k7u6uqkiUiIuLozx58mgVieYaZEqCg4NVFYlKOnXqpKpIVCJtKVCiRAmhBpkSaUsBqUg0NxlDyfnz5wn4X4Ns9+7dwkXis2fPKEWKFHKDbOPGjWYbZBKRkZGUOXNmeTLG8uXLVY23xYsXJ1dXV/r555+FbkgoqVevHjk5OVG1atVo6tSpZm9IKOnbty/Z29tT2bJlafTo0WYbZEqkLQWUNyREr0VpSwHphoS5BpmSmzdvkr29vXxDwlyDTMm7d+8oTZo08g0JkckYElIzVdkgM3dDQkmlSpVUTcZQ0rp1a1UT/5X89ddfWhP/zd2QUCJtKVCgQAEaMGCA2RsSSqSt0kVvSCh59OgROTk5Cd+QUPL582dKnz69fENCpEEmERcXRwUKFNC6IWGuQabkp59+km9IiEz8V9K1a1f5hoQ08V8UaUsBaTLGuXPnhM+xtKWANPHf3A0JJZcvXybgf5Mxdu3aJVz7vHz5klxcXChDhgzUqlUroRsSElFRUeTj46PqhoSERqOhwMBArRsS5hpkSho1aqTqhoSSQYMGad2QMDcZQ4m0fV3hwoWFJv4rkbZKDwgIkCdjiI63d+/eJQcHB/Lx8RGa+K/k/fv35ObmJk/GELkhIREbG0sBAQHyZIzFixebbZApqVatmjzxf9asWapqn/bt21OyZMmoYsWKNGHCBLOTMZSMHj1a64aEuQaZEmn7OumGhLkGmRJp+zrphoSaBtn34JqiE/+V1KlTx2LX7NWrl01cc8eOHXquKXotWuuaqVKlihfXFJn4L2GtazZv3lzVZAwl1rjmkiVLbOKaDx48sNg1P336RO7u7uTu7p7orhkSEqLlmuYmYyixxjUnTJhgtWuKTvxXYo1rPn/+3GauWaJECXJxcZFd09xkDCX16tWTJ/6rdc1+/frFm2uam4yhxBrXvHXrFtnb2wtPxlBirWtmz549ybnmyJEjbeKa0vZ1kmuam4yhRHLNTJkyUbt27cxOxlDy+fNn8vT0tNo1RSdjKLHGNbt166a3yFwUa1xzy5YtNnNNV1dXi13T19dXdk21fXZrXLNx48aya6rtsw8aNEjVxH8lCxYssNo1lRP/E8M1P3z4YDPXrF69ulWu6eDgYJFrjhkzxmLXXLNmjeyaIpMxlFjjmtICWdFF5kqsdc0iRYokOdecOXOmlmuam/ivxBrXvH79upZrmpv4r0TpmqIT/yWio6MpS5YsVrum6MR/Jda45rBhw7QWmSeWa0pbpVvjmpkzZ6b27dur6rNb65p58+aVXVNk4r8Sa1yzc+fOsmuKLDJXIrmm6MR/JRs2bEhyrvn161c911TTZ7fGNevXrx8vriky8Z/5fuCJgzxxkLGCCxcuqCoSldy5c8fs6lBjvHz5UlWRqCQyMlJohYQhNBoNrV+/XrhI1GXr1q2qikQl+/btU1UkKjlx4oSqBpmSK1euqGqQKXn48KGqyRhK3r17p6pIVBIdHU3r1q0TLhKVaDQa2rhxo6oiUcmOHTtUNciUHDp0SFWRqOTMmTOqGmRKbt68qapBpuTp06dmV4ca4/Pnz6oaZEri4uJo3bp1wkWiLps3b1ZVJCrZs2ePqskYSo4dO2ZxkXjx4kVVNySU3Lt3T9UNCSWvXr1SdUNCydevX2ndunXCDTIl0nirpkGmZNu2bapuSCg5cOCAqhsSSk6dOmV2dagxrl27ZnZ1qDHCw8NV3ZBQ8uHDB1U3JJTExsbSunXrhG9I6LJp0yZVNySU7Nq1S1WDTMnhw4dVNciUnDt3TtVkDCW3bt1SNfFfyfPnz1VNxlDy5csX2rBhg0W1jzTeWlP7qLkhoWTv3r2qbkgoOX78uKoGmZJLly6papApuX//vqoGmZI3b96omoyhJCoqyqraZ8OGDRaPtzt27LDY5w4ePKjqhoSSM2fOqLohoeT69euqbkgoefz4saoGmZJPnz6ZfRKRMaTxVvSGhC6bNm1SdUNCye7du1U1yJQcPXrU7JOIjGFr17Sk9omMjLR4vNVoNLRu3TpVkzGUsGuKY41rxsTEWFz72No11UzGUHL27Nkk55oRERGqbkgosdY1t2zZkiRdU81kDCXWuObr169VTcZQItU+7Jpi2NI11UzGUMKuqY7bt28nOdeMjz57UnPNy5cvW+yaDx48sIlrWttnt6VrWtNnt8Y11UzGUJJUXXPz5s1J1jUtuRZt6Zrr16+3uPaxxjW3bdtmE9c8efIku6YKNm7caHHt86O55rNnz9g1VXDs2DFVE/+VWOuaaib+K0mqrsnYloSYOGhH3ybGMSaws7PzBhAOAOHh4fD29rbxK2IYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmF+BB4/fgwfHx/pf/oQ0WNr/017a/8BhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGSDjxxkGEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmF+IHjiIMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMP8QPDEQYZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIb5geCJgwzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzzA8ETBxmGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRjmB4InDjI/DDdu3MCjR48syj58+BA3btwAEanOvn79GufOnbMo+/XrVxw5cgSxsbGqs0SEgwcPIioqSnUWAI4ePYrPnz9blD19+jTevn1rUfbSpUt49uyZRdnbt2/j3r17FmWfPHmCK1euWHSe3r9/j1OnTkGj0ajOxsTE4NChQ4iJiVGdJSIcOnQIX79+VZ0FgOPHj+Pjx48WZc+dO4fXr19blL169SoeP35sUfb+/fu4deuWRdkXL17gwoULFp3jiIgIHDt2DHFxcaqzGo0GBw8eRHR0tOosABw5cgRfvnyxKHvy5Em8f//eouyFCxfw4sULi7I3b97Ew4cPLcqGh4fj+vXrFp2nt2/f4uzZsxZdi1FRUTh8+LDF4+2BAwcsHm+PHTtm8Xh75swZvHnzxqLs5cuX8fTpU4uyd+7cwd27dy3KPnv2DJcvX7boHH/8+BEnT5606BzHxsbi4MGDFo23AHDo0CFERkZalD1x4gQ+fPhgUfbcuXN49eqVRdnr168jPDzcouyDBw9w8+ZNi7KvXr3C+fPnLTrHkZGROHr0qE3G26NHjyIiIsKi7KlTp/Du3TuLshcvXsTz588tyt66dQv379+3KPv48WNcvXrVovP07t07nD592qJrMTo6GocOHbKqvrW09jl27Bg+ffpkUfbs2bMWj7dXr17FkydPLMreu3cPd+7csSj7/PlzXLx40aJz/PnzZxw/ftyiazEuLs6q8fbw4cNW1T6WjrcXLlzAy5cvLcr+iK5pTe3DrinOhw8fLHbN2NjYJOualtY+165dY9dUga1c8+LFi1a55oMHDyzKWuuaZ86csbj2scY1rent2co1r1y5kiRd88SJExadY2trH1u55vnz561yTUtrn6TomvFR+7BrimGNa0p9dlu45vHjx61yTWv67Na45u3bty3K2to1La19kqprWtpnt8Y137x5Y5Vr2qrPbivXvHz5MrumCqypfWzpmpb22a1xzZcvXyZJ1zx8+LBVtY819zUtrX2sdc1r164lSde0tPZh/nvwxEHmh8HJyQnZsmVDwYIFMXDgQFXNIDc3NwQGBiJnzpzo1q0b9u3bJ1wQubm5oVGjRvDx8UH79u2xZcsW4YIoefLkGDFiBDJkyIAmTZpg1apVwnJiZ2eHlStXwsPDA3Xq1MHChQtVFUTHjx+Hh4cHatasiRkzZqhqBj169Aienp6oUKECxo0bp6oZFBsbi8yZM6N48eIYNmyYqmZQypQpkTdvXuTNmxd9+/ZV1QxKly4dqlWrhqxZs+KPP/7A7t27heUkTZo06NChAzJnzozWrVtjw4YNwgWRo6Mjpk6dCk9PTzRs2BDLly8XbgbZ2dlh69atcHd3x88//4y5c+eqKoguXrwIDw8PVK1aFVOmTFHVDHr9+jU8PT1RpkwZ/P3336qaQQ4ODvDz80PhwoUxePBgVc2gNGnSoFixYggICEDPnj1x8OBB4YIoXbp0qFOnDvz8/NCxY0ds375duCBydXVF//794eXlhebNm2Pt2rXCzSB7e3ssWrQI6dOnR926dbFkyRJVzaD9+/fD3d0doaGhmDVrlqobYXfu3EH69OlRqVIlTJw4UVUzKCIiAl5eXihVqhRGjBihqhmUPHly5MiRAwUKFED//v1VNYPc3NxQvnx5ZM+eHV27dsXevXuF5SRt2rRo1qwZfHx80LZtW2zevFm4GeTs7IwxY8YgQ4YMaNy4MVauXKlqvF23bh3c3d1Ru3ZtLFiwQFUz6NSpU3B3d0eNGjUwffp0Vc2gp0+fwtPTE+XLl8fYsWNV3QjTaDTw9vZGsWLFMHToUJw9e1Y4mzp1ahQoUAB58uRBnz59VMlJunTpULNmTWTJkgWdOnXCzp07hcfbVKlSoUuXLvDy8kLLli2xfv164WZQsmTJMGvWLKRPnx7169fHsmXLVDWDdu7cCXd3d9SqVQtz5sxR1Qy6evUqPDw8UKVKFUyePFlVM+j9+/fIkCEDAgMDMWrUKFXNIEdHR2TJkgWFChXCoEGDVDWD0qZNi5IlSyJnzpzo0aMH9u/fr6r2qVevHnx9fdGhQwds27ZNuPZJkSIF/vzzT2TMmBHNmjXD6tWrhZtB9vb2WLZsGTw8PPDbb79h0aJFqmqfw4cPw93dHcHBwZg5c6aqZtD9+/eRPn16BAUFYfz48aqaQVFRUciUKRNKlCiB4cOHq2oGubi4IFeuXMiXLx/69eunqhmULl06VKpUCdmyZUOXLl2wZ88eVeNt27ZtkTlzZrRp0wabNm0Srn2cnJwwceJEeHp6olGjRlixYoWq2mfTpk3w8PDAL7/8gvnz56uqfc6dOwcPDw9Ur14dU6dOVdUMevHiBTw9PVGuXDmMHj1aVTOIiODr64siRYpgyJAhqppBqVOnRqFChZA7d2706tVL1Y2wdOnS4aeffoK/vz9+//137NixQ1Xt06tXL3h5eaFFixZYt26dcO3j4OCAefPmwcPDA/Xq1cPSpUtVTTzYs2cP3N3dERYWhn/++UfVjbAbN27Aw8MDlStXxqRJk1RNPPj48SMyZsyI0qVLY+TIkbh06ZLwObbWNcuUKWOVa3p7e6Ndu3aqXfOvv/6y2DVXrVql5Zpqah9rXDM8PDzJu+auXbuEa5/UqVOjY8eOFrlmsmTJMG3aNHh6eqJBgwb4999/LXLNn376CXPnzlVV+1y6dMkq18yQIYNFrmlvb58kXXPAgAHImDFjorvmgQMHrHJNDw8PVKxYERMmTEg010yRIgVy5syJ/PnzJ7prtmjRAt7e3qpd08nJSc81RW+E/Rdc888//7TYNXv37q3aNYODgy12za5du1rkmg4ODpg9e/YP55pZs2aVXVPNAr+0adOiVKlSVrmm1GffunVrorimnZ0dli9fjvTp0+PXX39NVNd88OCBTVzT1dUVuXPnTlKu6ejoiEmTJsmuqbbPvmnTJrnPPm/evER1zQwZMqBs2bKqXROAVa5ZpEgR5MqVK9Fds3fv3la5Zvr06S1yzb1798aLa06cOFHVAj9rXNPZ2RnZs2dHwYIFMWDAgERzzbRp06Jx48YWu+bIkSMtds3Vq1db7JonTpyIN9dUM+lS1zXVTLpUumafPn1w5MgR4fHW3d3datfMlCkTWrVqlWiuCQDbtm2Dh4dHorvmmzdvrHJNf39/i12zePHiFrmmm5ublmtu27Yt0Vxz8eLFsmsuXrxYlWsePHgQHh4eCAkJSVTX/PLlCzJlyoSSJUsmqmumS5cOFSpUsIlrjh071irX9PDwQO3atTF//nyLF/gx/xGIiA8zBwBvAASAwsPDiUmaXLhwgYoXL07SuQRAnp6e1KJFC1q3bh19+vTJaPbWrVsUGhqqlU2TJg3Vq1ePli5dSq9fvzaaffLkCbVq1UormyJFCgoLC6N//vmHnjx5YjT7/v176t+/v1Y2WbJkVLlyZZo0aRLduXPHaDY6OpomT56slbWzs6PSpUvTyJEj6dKlS6TRaIzmV65cScmSJdPKFyxYkAYMGEAnTpyguLg4o9m9e/eSm5ubVjZHjhzUrVs32rdvH0VHRxvNnjx5kgICArSymTNnpnbt2tGWLVvoy5cvRrNXrlyhcuXKaWXd3d2pSZMmtGrVKvrw4YPR7L179+i3337TyqZKlYrq1KlDCxcupJcvXxrNvnjxgn7//XetrLOzM9WsWZNmzJhBjx49Mpr99OkTDRs2TCvr4OBAFSpUoHHjxtHNmzeNZjUaDc2ePVsrC4CKFy9Ow4YNo3Pnzpk8x5s2baLkyZNrZfPmzUt9+/alI0eOUGxsrNHsoUOHyMvLSyubJUsW+uOPP2jXrl0UFRVlNHv27FkqWLCgVjZjxozUqlUr2rBhA33+/Nlo9saNG1StWjWtrJubGzVs2JD+/fdfevv2rdHso0ePqGnTplpZFxcX+umnn2ju3Ln07Nkzo9k3b95Qz549tbKOjo5UtWpVmjJlCt2/f99o9uvXrzR27FitrL29PZUpU4b+/vtvunr1qsnztGTJErKzs9PKFy5cmAYPHkynT582eS3u3LmTUqVKpZUNCAignj170sGDBykmJsZo9tixY5QlSxatrK+vL3Xs2JG2bdtGkZGRRrMXL16kUqVKaWXTp09PzZs3p7Vr19LHjx+NZu/cuUM//fSTVjZ16tRUt25dWrx4scnx9unTp9S2bVutbPLkySkkJIRmzZpFjx8/Npr98OEDDRo0SG+8rVSpEk2YMIFu375tNBsbG0tTp07VG29LlixJI0aMoIsXL5o8x2vWrCFHR0etfP78+al///50/Phxk+d4//795OHhoZXNli0bde3alfbu3WtyvD116hTlyZNHK5spUyZq27Ytbd68mSIiIoxmr169ShUrVtTKpkuXjho3bkwrV66k9+/fG80+ePCA6tWrp5VNmTIl1a5dmxYsWEAvXrwwmn358iV16dJFb7ytUaMGTZ8+nR4+fGg0GxERQX/99ZfeeFu+fHkaM2YMXb9+3eR5mjt3rt54W6xYMRo6dCidPXvWZHbLli2UIkUKrWyePHmod+/edPjwYZPj7ZEjRyhz5sxaWX9/f+rUqRPt3LmTvn79ajR77tw5KlKkiFY2Q4YM1LJlS1q/fr3J8fbmzZtUs2ZNrWzatGmpfv36tGzZMpPj7ePHj6l58+Z6422tWrVozpw59PTpU6PZt2/fUp8+ffTG2ypVqtDkyZPp7t27RrNRUVE0YcIEvWsxMDCQRo0aRZcvXzZ5nv79919ycHDQyhcqVIgGDRpEJ0+eNHkt7t69m9KkSaOVzZkzJ3Xv3p32799v8lo8ceIEZc+eXSvr4+NDHTp0oK1bt5ocby9fvkxlypTRynp4eFDTpk1p9erVJmufu3fvUu3atfVqn19//ZUWLVpEr169Mpp9/vw5dejQQW+8DQ4OppkzZ5p0po8fP9Kff/6pdy0GBQXR+PHj6datW0azcXFxNGPGDL1rsUSJEjR8+HC6cOGCyXO8fv16cnJy0srmy5eP+vXrR0ePHjV5LR48eJA8PT21slmzZqUuXbrQnj17TNY+Z86coXz58mllvby8qE2bNrRx40aT4+21a9eoSpUqeuNto0aNaPny5fTu3Tuj2YcPH1KjRo20sq6urvTLL7/QvHnz6Pnz50azr1+/pm7dumllnZycqFq1ajR16lR68OCB0eyXL19o9OjRerVP2bJlafTo0XTt2jWT52nhwoV6tU+RIkVoyJAhdObMGZPZ7du3k6urq1Y2V65c1KtXLzp06JDJ2ufo0aPk5+enlfXz86Pff/+dduzYYXK8NeWaa9eutYlrzp492yau+ddffyW4a6ZLl04rm1iuWb58ea2sqGvev39fzzVTpkwp7JqdOnXSq31EXPPz5880fPhwvfFWcs0bN24YzZpyzaFDhyaoax4+fNiga3bu3FnINQsVKqSVtcY106ZNSw0aNEhw1+zVq5de7RMfrnnlyhWzrmlvb6+Vjw/XPHDgQIK6ZunSpbWykmuuWbPGItf87bffbOKaFStWFHLNadOm6Y23oq65du1ak65p6lq0xjVPnz6dIK65YsUKs65Zv359vfFWxDVfvXql55pOTk5Uo0YNmjZtmlnXHDlypN54a41rFi1alP78888Ed01vb2+trKhrnj9/3qRrmqp9bt68ScHBwXrj7ffumhMnTtS7Fq11zYEDBwq5Ztq0abWy1rimt7c3tW/fnl1TB3Ouef78eZPneMOGDQnimrt37zbrmvnz59fKirrm9evX9VxT6rNb6po///yzkGt2795db7wVcc3IyMgf0jVLlCihlY0P11yyZIlZ12zdurVW1lrXrFSpEk2cODFBXXPVqlV6rlmgQAGLXTN79uzCrpkrVy6tbHy5pqnaJym6JhHFu2vmyZOH+vTp8127ZvXq1fVqHxHXDA8Pt5lrjhs3Tm+8FXXNpUuXGnXNU6dOmXXN1KlTa2VFXfP48eN6rin12RPaNX/++WetbGK55uDBg/XG28RwTca2hIeHK8+dN8XHnLj4+Ef+6wd44uB/At2JXbqHk5MTVa9endatW6c3EI4fP95k1t7ensqVK0dz587VK0rWrVtnMgt8awaNGzdOTxAuXLhgNps7d24aNGiQnqx/+PDBbNbf35+6dOlisLBwd3c3mZWaQYaEu1ixYiazkpycOnVKL1u3bl2T2RQpUlCtWrVo586detm+ffuazDo6OlLlypXp33//1TvHhgpV3S/L0qVL04wZM/SKkt27d5v9rAsWLEgjR47Uk/U7d+6YzebIkYP69OlDb9680cpqNBqzWW9vb+rYsaPBIt/f399kVmoGXb16VS+r28TVPaRm0JEjR/Syujc3dQ9nZ2cKDg6mjRs36p2nESNGmMxKzaCFCxfqFZ7//vuv2c+rRIkSNHHiRD1BOH78uNls3rx56c8//9QrHl+8eGE2mzVrVurevbvBJrZuQ0L3kJpBhhqcupMUdA+pGXT+/Hm9bK1atUxmpWbQ3r179bK6zXbdQ2oGrVmzRu8c6zYGdA+pGTR79my98XbTpk1mP+siRYrQ6NGj9QThypUrZrO5cuWiAQMG6DXOvnz5Yjbr6+tLnTt3NthUyZAhg8ms1AwyJNy6IqN7SJMuT5w4oZdt2LChyWyKFCkoNDSUtm3bppcdOHCgyazUDFq2bJneOZ4/f77JrJ2dHZUqVYqmTZum15DZv3+/2c+6QIECNGLECL3x9uHDh2az2bNnp169ehlsYuuKru6ROXNm6tChg8EbSrqNet1DagZdunRJL1u1alWTWelG2MGDB/Wy7dq1M5mVJl1u2LBB7zzpNmJ1D+lG2Pz58/XG21WrVpn9rIsVK0bjx4/Xq33OnDljNpsnTx4aPHiwXu3z5s0bs1l/f3/q1q2bwSa27sQ/3SNjxozUunVrgw3OwoULm8xKzaAzZ87oZXVvqOgeUjNo9+7delndSe26h9QMWrFihd45nj59usms1AyaOXOmXu2zfft2s591oUKFaNSoUXrN0Rs3bpjN5syZk/r166fXOIuOjjab9fHxoU6dOhn0Nt0bo7qH1Ay6du2aXlZ3cYruITWDjh07ppdt1qyZyazUDNqyZYteVvfGl+4hNYOWLFmid44XL15sMis1gyZPnqw33h45csTsZ50/f34aOnSo3o2KJ0+emM1my5aNevToYbCJ7ezsbDKbKVMmateuncEGp26jXveQJl1euHBBL6t7A1v3kCZd7t+/Xy8r6ppr166NV9dcv3692c+6aNGiNHbsWL3axxrX/Pjxo9msn58fdenSxeANfGtcU3eCpu5hrWuGhYXRjh079LLWuOY///xj9losXbo0TZ8+PV5d8+7du2az8eGahmofa1yzUqVKJrOSax4+fFgva41r6i4w0T2kG2Hx7ZonTpwwm7XGNbNkyZIgrqk7SUH3SCjX7Nq1q8ms5JqrV6+OV9fcvHmz2c/amGtevXrVbDYgIID69+8f766ZMWNGk9n06dMniGvqTibRPeLDNZcuXRqvrnngwAGzn3WBAgVo+PDhejeGrXVN3QllukemTJmoffv2BifTWOOaupOldQ9Trtm+fXuTWck1169fH6+uuXr1arOfdUK45tu3b81m48M1Dd3ctcY169SpYzIrTbrctWuXXtYa1zQ0AU/3WgwMDIx317x586bZrDHXjImJMZtNKNfUnTCkeySUaw4dOtRkVnLNRYsW6V2L5lwT+Fb7xLdrPn361Gw2a9asCeKauXPnNplNKNfUndile8SHa86ZMydeXfPixYtms7lz56aBAwfqTYqz1jV1Fz3oHp6entSyZUuDD+ywxjV1F8nrHqZcs1+/fmavxYRwzT179pj9rBPCNYnIbNYa15RqnytXruhlrXFN3Ym0uoc06TK+XXP58uVmP6/ixYvHu2u+fPnSbNaUa6ZMmdJkNmPGjAnimroLxXSPhHLNKVOmmMxa65qFCxeOd9eMjIw0mzXlmoxt4YmDPHGQsYJRo0YZLRrNzXJfsmSJ3tN+lANujx49jM5y37t3r97sdunw8fExuaL65s2bRm9+eXh4ULNmzYzOcv/06RMVKFDAYFY5y93YCr+KFSsabFyJzHJv1KgRubi46GWVs9yNrfDr06eP3ipKQGyW+5QpU4xOwJFWVB87dszgipM1a9aQj4+PwaxyRbWhFSeGVm9Kh7SietOmTQZX+D169EhvFbZ0KFdUG1rhp9Fo9Fa4KIuf2rVr0/z5842u8AsJCdFbeS4VP9WrV6dp06YZXeHXtm1bg4WfJJumVlQPHTrU6M1Ccyuq586dq7ciSDpy585tckX19u3bjUqFn5+fyRXVFy9epJw5cxrMSrJp7Mmlb968MVropkmTRl5RbUigiIgCAwP1VkIC/5tEa+rJpb/99pve6itAbEV1165d9Vb1SNdiYGAgjRw50uiK6rFjx1L69OkNvmdzK6r//fdfo822HDlymFxRffDgQcqaNavBrHJFtaEVfnfu3DHaADK3ojoyMlLvKZrSoVxRbWyFX5UqVfRWQgL/u7FpakV1s2bNDN7wU66oNvbk0v79++s9HVY6SpQoQcOGDTO6onr69OlGb0KZW1G9YcMG8vX1NZiVnlxqbEX16dOnKUeOHAazUqN948aNBlf4PX36lPLmzWswK7KiumjRokbHW3MrqmvVqqW38lwab6UV1cZW+HXo0EHvaS7SeCutqDb25NIRI0YYHW+VK6oNXYsLFy6kTJkyGcxKK6qNPbl0165dRmsfX19f+v3332n79u0Ga5+rV6/qPQ1KOd5KK6oN1T7v3783WfvUrVvX5IrqcuXKGZwgmjx5cgoNDaXZs2cbrX0aNGig96QPQHtFtbEVfj169DB4I0m6sWlqRfXEiRP1nkwgHeZWVK9cudLoeGtuRfXRo0cpW7ZsBrPmVlTfv3/faO0jNfeMPbk0OjraaO2jXFFt7GkyNWrUMFj7SM09U08ubdmypdHxtkKFCjR27FijK6oHDx6st2pdOqQnlxpbUT1r1iyj423evHlNrqjesmWL3lMNpMPf319eUW2o9jl//rzR8TZDhgwmV1S/fPnS6OIFkRXVJUuWNFj7KFdUG3uazC+//GLwZpByRfW9e/cMZjt37myw9hFZUW3ONQcNGpQgrrlv3z6TrmlqRbU1rvn582ej422qVKkS1DUbN26coK5p7Mml1rjm2rVrzbqmsSeXWuOa4eHhJmufRo0aWeyav/zyi1nXNFb7JHXXNHQtWuOaly5dSlDXXLp0qUnXNFT7iLhm3bp1DbqmyJNLu3btarT2scY1CxYs+F265t27d426pru7e4K6ZtWqVc26prGnyVjjmgMGDEgQ15SeXJoQrnnmzBmbuaaxBdguLi6yaxp7mow1rtmxY0eLXfOvv/4y65rGnlxqjWvu3r3bbJ89IVzzw4cPSdI1e/bsaRPXXLVqlVnXNPbkUmtc88GDBxa7ZkxMjEnXNPfkUmtcs1WrVkbH2/LlyyeYa86ePdto7WPu6V3Wuqax2ic+XNNUn90a16xdu7ZJ1zTVZ7fGNf/+++8Ecc2cOXOadU1jtU9Cu6ap2ic+XNNYn92Yazo4OCSoa06dOtWka/br1y9BXPPkyZNGXVNaQJQQrklESdI1hw0bZtY1jT251BrX3LFjh1nXNPbkUmtc8+3bt1a5ZpkyZYy6prkdGa1xzW7duhmtfaQdGRPCNZcvX54grpk5c2Zq37690drHGtf8+vWrWdc09+RSxnbwxEGeOMhYQUxMjNwAEpmMoUvlypXlIlHk8fZK2rRpI1+8olupSSi3upAmYxgrEnVZsWKFnBXdSk3i5MmTwkWiLuHh4XLhJlIkKomIiJCbEiJFopK4uDj5S04qEk01yHSRHiMsFYkij7eXUG7lJvp4ewnlFqe5c+cWery9xNatW+WsNBnD3OPtJS5fviyLsui23RKvXr2SGxrKrdSMFYlKoqKi5Eau6LbdEhqNRt4mQ3QrNSVNmjTRKxLNPd5eQvm4Z6lINPd4e4mFCxfKWdHH20soV72LPt5e4u7du/JNAtGt1CQ+fPggN/pFH28vERsbKzcHRB9vr6RGjRryeCuybbcS5XYm0rbd5rYTkVBu82XuhoQua9askbOi23ZLnD17Vs5KNyTMPd5e4unTp7JEiT7eXuLLly+ysIo+3l5Co9HIE+lEJmPo8uuvv8rjrei23RK9e/eWPy/RrdQkZs6cKWdFt+2W2Llzp5w1d0NCl+vXr8uiLLptt8SbN2/kmznKGxKmtvaRiI6OlqVTuiFh7vH2SipUqCCPtyKPt1fSokULebwtVaqUqsfbK7e6EN22W2Lp0qVyVnQrNYmjR4/KWdGt1CQePHgg3yQQ3bZb4tOnT3ITWHQrNYm4uDi5USdtpTZ9+nSTW/sokbassbe3l29ImNtKTeKPP/6QP69ixYoJbaUmodzmS3QrNYmNGzfqNcjMbaUmoXzCmuhWahIvXryQb9iJTPxX8vXrV7lZL03GMLeVmoRGo6GSJUvK463IVmpKGjRoIF+L0lZq5rYTkVBuLSS6bbeEcss96YaEua3UJPbu3StnzU3G0OX27dvyTQLphoS5rdQk3r17Jzf6RbdSk7DWNaUtwhLbNUeNGpXkXPPx48d6rmluKzUJQ65pbis1CeVEOmtdU3QrNQnlVm5qXVO57YzoVmoS1rjmlStX4t01TW3tIxEVFSXfxI4P1zS3lZoSa1xzyJAhWq4pspWahDWuefDgwXh3TZHa58OHD/IkB0tcU7oxEl+uaW4rNYmOHTvquaa5rdQkdF1TZCs1ibVr18aLa5qbjKGLNa4ZGRlpM9eUtutLbNecNWtWvLqmua3UJKx1TWkii+SapiZjKNF1TZGt1JQEBQXFi2uq3UrNGtdctmyZTVzz4cOH8eKaykXmoq4pTdCKD9cU2bZbwhrXnDRpkpw1t8hcF2tcU/mEtcR2TWmigiWuWapUqXh1TXPbdksMGDAgXlzT3GQMXfbt2xdvrimybbeEta4pTfyJL9cU7bMrt86MD9cU7bOvXLnSYtc8deqUnmua27ZbwlrXlCb/iW7bLaHrmuYm/uvyyy+/xLtrilyL1rjmtm3bDLqmSO1jzDVFap9Xr17JEwfjwzXNbdstodFoqGzZsvHimuYm/utijWsuWrTIJq557969eHdNkdrHWtesWbOmTVxTuaW0Na6pnPgvMt4ytoUnDvLEQcYKdu7caXJ1qCkuX74srw4VaZApefHiBdWtW9fk6lBjREZGUoMGDWjKlCnCRaKERqOhdu3amVwdaooBAwaoapApmTx5sqoGmZJVq1apmoyh5PDhw6oaZEru3LlD9erVM7k61Bjv3r2junXrmlwdaozo6Ghq2rSpydWhxtBoNPTHH3/QX3/9JdwgUzJ8+HBVDTIlc+bMMbk61BSbN29W1SBTcubMGVUNMiWPHz+munXrCk/GUPL582eqX7++ydWhxoiLi6NWrVqZXB1qit69e5tcHWqKcePGqSoSlSxZsoQ6d+4s3CBTsmfPHlU3JJRcv37d7OpQY7x69Yp+++034QaZkq9fv1KjRo1UNcgkNBoNdejQQdVkDCWDBw82uTrUFNOnTze5OtQUa9euNbk61BTHjh2TV4eKNMiU3L9/n+rWrSvcIFPy4cMHqlevnsnVocaIjY2lZs2aqZqMoaRr166qGmRKRo4cqWoyhpJ58+apapAp2bZtm6rJGEouXLigauK/kmfPnlHdunWFJ/4r+fLlCzVo0MDk6lBjxMXFUZs2bVTdkFDSr18/k6tDTTFx4kRVDTIly5cvVzUZQ8mBAwdUTcZQcvPmTbOrQ43x5s0bqlu3rvBkDCVRUVHUuHFjVRP/JTQaDXXq1Mnk6lBTDB06VNXEfyWzZs1SdUNCyYYNG0yuDjXFyZMnqWnTpsIT/5U8evSI6tata9Hq0E+fPlG9evVUNcgkYmNjqUWLFqom/ivp0aOHqon/SkaPHq1q4r+SRYsWmXwSkSmscc0rV65Y5Zq//fab8GQMJZGRkdSwYUOLXbNt27aqJmMoscY1p0yZwq4pSExMjM1cc8SIEVa5pprJGEqscc2zZ8/axDUjIiKStGuKTsZQsnTpUotdc+/evaomYyixlWtGRUWxa6rAlq5Zt25dVZMxJJKqa86fP99i19y+ffsP5ZoajYbatGmjajKGkh/NNW/dumUT14yOjqYmTZpY7ZqikzGUWOuaaiZjKLHGNU+dOqVqkbmSpOqaPXv2tNg1x4wZYxPX3LVrl6pF5kps6ZrSfU3Rif8S0n1NS11z4MCBSc41jxw5YrFr3r1712rXVDPxX8Ia1yT6NkFczcR/JT+aaz558sRmrtm6dWtVi8yV9O7dW9XEfyXjx4+3yjXVTPxXYq1rqpn4rySpuiZjWxJi4qAdfZsYx5jAzs7OG0A4AISHh8Pb29vGr4hhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIb5EXj8+DF8fHyk/+lDRI+t/Tftrf0HGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZJOvDEQYZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIb5geCJgwzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzzA8ETBxmGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRjmB4InDjIMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzDMDwRPHGQYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGYHwieOMgwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwPxA8cZBhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhfiB44iDzw3D06FEsW7YMb9++VZ29fv065syZg6dPn6rOvnz5EpMnT8a9e/dUZ79+/Yrx48fj8uXLICJVWSLC5MmTcfLkSWg0GtU/e968edi/fz9iYmJUZ1evXo2tW7ciMjJSdXb37t1YvXo1Pn78qDp75swZLFq0CK9evVKdvXfvHmbOnInw8HDV2ffv32PChAm4deuW6mxMTAzGjx+PCxcuWHSOp0+fjmPHjiEuLk71z16yZAl2796N6Oho1dmNGzdi48aNiIiIUJ09ePAgli9fjnfv3qnOXrp0CfPmzcPz589VZ588eYKpU6fiwYMHqrMREREYP348rl27pvo8aTQaTJw4EWfOnLHoWvznn39w6NAhxMbGqs6uWLECO3bswNevX1Vnt2/fjnXr1uHTp0+qs8ePH8fSpUvx5s0b1dmbN29i9uzZePLkiers69evMWnSJNy5c0d1NioqCuPGjcOlS5csuhanTJmCEydOWHSOFyxYgH379lk03q5btw5btmyxaLzdu3cvVq1ahQ8fPqjOnjt3DgsXLsTLly9VZx8+fIgZM2bg0aNHqrMfP37E+PHjcePGDdXnKTY2FuPHj8e5c+dUZwFg5syZOHLkiEXj7dKlS7Fr1y5ERUWpzm7evBkbNmywaLw9fPgw/v33X4vG26tXr2Lu3Ll49uyZ6uyzZ88wZcoU3L9/X3U2MjIS48ePx9WrVy0abydNmoTTp09bdC3OnTsXBw4csGi8XbVqFbZt22bReLtz506sWbPGotrn1KlTWLx4MV6/fq06e/v2bcyaNQuPHz9WnX379i0mTpyI27dvq85GR0dj/PjxuHjxokXj7bRp03D8+HGLrsVFixZh7969FtU+69evx+bNm/HlyxfV2f3792PFihV4//696uyFCxewYMECvHjxQnU2PDwc06ZNw8OHD1VnP3/+jPHjx+P69euqz1NcXBwmTJiAs2fPWjTezp49G4cPH7boWvz333+xc+dOi8bbrVu3Yv369fj8+bPqrC1dc9KkSbh7967qbFJ1zTVr1rBrCiLVPufPn09Srrlp0yabuObly5fZNVWwYsUKbN++PdFd88SJE1iyZIlNXHPixIkWuaZU+9jCNRcuXMiuKQi7pjqOHDliE9d8/vw5pkyZYlGf3RrXJCJMmjQJp06dYtcU4M6dOzZxTanPbo1rWlr7WOOaGzZswKZNmxLdNS9evIj58+cnOdecOHGiTVxz+fLlNnHNY8eOYdmyZRbVPrZ0zXHjxtnENefPn8+uKciHDx8wYcIE3Lx5U3XWGtcEgBkzZuDo0aNJyjUPHTpkE9d8+vSpzVxz0qRJFrvmnDlzcPDgQZu45tq1axPdNW/dupUkXXPq1Kk4ceKERdci8x+EiPgwcwDwBkAAKDw8nJikybt37yht2rRkb29P5cqVozFjxtD169dJo9GYzcbExFDOnDkJABUtWpT+/PNPOnv2rFCWiKhKlSoEgHLnzk29e/emw4cPU2xsrFC2bdu2BID8/f2pU6dOtHPnTvr69atQdtSoUQSAMmTIQC1btqT169fTp0+fhLIrV64kAJQ2bVqqX78+LVu2jN68eSOUPXnyJAEgFxcXqlWrFs2ZM4eePn0qlH38+DE5OTmRo6MjValShSZNmkTKEi9UAACGvklEQVR3794VykZERFCGDBnIzs6OAgMDaeTIkXT58mWh86TRaKhQoUIEgAoVKkQDBw6kkydPUlxcnNDP/uWXXwgA5ciRg7p370779++n6OhooWz37t0JAHl7e1P79u1p69atFBkZKZSdNm0aASAPDw9q2rQprV69mj58+CCU3bZtGwGgVKlS0a+//kqLFi2iV69eCWWvXLlCdnZ2lDx5cgoODqaZM2cKj4+vXr2ilClTkoODAwUFBdH48ePp5s2bQtmoqCjy8/MjAFSiRAkaPnw4nT9/Xvgcly1blgBQvnz5qF+/fnT06FHha7FJkyYEgLJmzUpdunSh3bt3U1RUlFB2yJAhBIC8vLyodevWtHHjRoqIiBDKLlq0iACQm5sbNWzYkJYvX07v3r0Tyh48eJAAkKurK/388880b948ev78uVD23r17lCxZMnJycqJq1arR1KlT6cGDB0LZDx8+ULp06cje3p7Kli1Lo0ePpmvXrgmdp9jYWMqdOzcBoCJFitCQIUPozJkzwtdijRo1CADlypWLevXqRYcOHaKYmBihbMeOHQkA+fr60u+//07bt28XHm/HjRtHAMjT05NatGhBa9euFR5v165dSwAoTZo0VK9ePVqyZAm9fv1aKHvu3DkCQClSpKDQ0FCaPXs2PXnyRCj79OlTSp48OSVLlowqVapEEydOpDt37ghlIyMjycvLi+zs7KhUqVL0119/0aVLl4SvxWLFihEAKlCgAA0YMIBOnDghfI5/++03AkDZs2enbt260b59+4TH2z59+hAAypw5M7Vr1462bNlCX758EcrOmjWLAJC7uzs1adKEVq1aRe/fvxfK7tq1iwBQypQpqU6dOrRw4UJ6+fKlUPb69etkb29Pzs7OVLNmTZoxYwY9evRIKPvmzRtKnTo1OTg4UIUKFWjs2LF048YNoWxMTAxly5aNAFCxYsVo6NChdO7cOeHaJygoiABQnjx5qE+fPnTkyBHh8bZly5YEgLJkyUKdO3emXbt2CY+3w4cPJwCUMWNGatWqFW3YsIE+f/4slF22bJlc+zRo0ID+/fdfevv2rVD22LFjcu3z008/0dy5c+nZs2dC2YcPH5KjoyM5OjpS1apVacqUKXTv3j2h7OfPn8nDw4Ps7e2pTJky9Pfff9OVK1eEzlNcXBzly5ePAFDhwoVp8ODBdOrUKeFrMSwsjABQQEAA9ejRgw4cOCA83v7xxx8EgHx8fKhDhw60bds24dpn0qRJBIDSp09PzZo1ozVr1tDHjx+Fsps2bSIAlDp1avrtt99o8eLFwuPtxYsXCQAlT56cQkJCaNasWfT48WOh7IsXL8jFxYWSJUtGFStWpAkTJtDt27eFsl+/fiVvb2+ys7OjkiVL0ogRI+jixYvC422pUqUIAOXPn5/69+9Px48fF74WGzZsSAAoW7Zs1LVrV9qzZ4/weDtgwAACQJkyZaK2bdvSpk2bhGufefPmEQBKly4dNWrUiFasWCE83u7bt0+ufX755ReaP38+vXjxQih7+/ZtcnBwICcnJ6pevTpNmzaNHj58KJS1pWtWrVpVzzVFr0VrXPPvv/+2iWueOnVKrn1q1apF//zzT6K7ZunSpS12zYIFCyaqa/bo0SPJuebVq1fJzs6OnJ2dE901/f39ZdccNmyYxa7Zt29fVa7ZtGlT2TX/+OOPJOGahw4dsolrfvz4MV5d8/Tp08LXYs2aNbVc8+DBg8Lj7e+//y67ZseOHS12zebNm6tyzXXr1sm1T926dRPNNZ89e5YkXbNu3brx5pqbN28Wds3Zs2druebKlSstds0FCxYIu+aNGze0XHP69OnCrvn27VvZNcuXL5+orlmxYkWbuOaIESOSnGs+evRIyzUnT55ssWuOGjVKlWvmz59fds1BgwYlmmt26dLFYtecPHmyTVzz0qVL8eqat27dEsp+/fqVfHx8tFzzwoULFrvmsWPHEsU1Bw4cKLtmmzZtEs019+/fH6+uKVr7vH///rtxTTV99nbt2hEA8vPzo06dOtGOHTssds1169YJ1z6rVq2S++z169enpUuXJpprOjs7k6OjI1WuXFmVa3758oUyZsxoE9esXbt2vLqmaO0zffr0eHVN0dpH1zXV9Nlfv36t5Zrjxo1LNNcsV64cAaC8efMmqmv++eefFrvm4sWL49U1RWuf+/fv67nm/fv3hbKGXPPq1avCrpknT54k55rjx4+Xax+1rsnYlvDwcJLmrwHwpviYExcf/8h//eCJg/8NpBuUuofUDDp27JjR7MSJE8nOzk4vK90I27Fjh9EvjvXr15O9vb1eNl26dNS4cWNavXq10S/4ixcvGsymTJmSateuTQsWLDAqvh8+fCAHBwe9rLOzM9WoUYOmT59uskGRMWNGvayyGWSqWShJo+4hNYNMyWuDBg0MZqVm0Llz54xmpRuUuoe/vz917tyZDh48aDQ7Z84cg+dYkpPNmzcbPcd79uwxeJ6UzSBjxfadO3cMniflpEtjTSiNRkPJkiXTyyqbQaZuzuTIkUMvK026HDVqlMkbpZI06h6FChWiQYMG0bVr14xmpRuUukfOnDmpR48edPLkSaPZkSNHGjxPUjNo9+7dRs/TihUrDGalZtC6deuMXosnTpwweI6VzSBjhdiLFy8MnmOpGTRz5kyTUpQ2bVq9rNQMGj9+vMmbM5I06h7SpEtT8ipJo+6RP39+6tevH128eNFoVpoMq3tIky6PHDliNDt16lSj422bNm1o+/btRs/x5s2bjY63jRo1opUrVxottq9evWrwPEnNoHnz5hmVoi9fvhjMKptBphoU3t7eelmpGTR69GiTzUJJGnUPqRlkSl6lybC6R+7cualXr1505swZo1npBqXu4efnR7///jvt37/faHbhwoUGz7E06XLjxo1GherAgQMGz7E06XLp0qVGxffhw4cGz1OKFCkoLCyM/vnnH5NS5OzsbPBalJpBphoU0g1K3fFWagaZahZK0qh7SM2gK1euGM1Kk2F1jxw5clC3bt3o+PHjRrNjx441eJ6kZtDOnTuNXourV682eJ6kG2Fr1qwxOt6ePXvWYFZqBi1cuNBo7fPmzRujtY806dJUQ9jDw0MvK026HDdunMlmYfHixQ1+1sWLF6dhw4aZvFEq3aDUPaRm0Pnz541mpRuUukeWLFnojz/+oMOHDxvNzpw50+A5zpgxI7Vu3Zq2bNli9Bzv2LHD4HlSNoOMjbc3btwwOt7+/PPPNHfuXKPjbXR0tMGsctKlqZszWbJkMTjeli1blv7++2+TzULpBqXuIU26vH79utGsdINS9wgICKCePXvS6dOnjWaHDRtm8DxJzaC9e/caPU9Lly41Wvs0b96c1q9fb3S8PXr0qNHaR5p4YGy8ffLkidHaJzQ0lGbNmmXyBlzKlCkNjrfSxANTN2ekG5S6422pUqVoxIgRJm+U1qpVy+B5KlCgAPXv358uX75sNGvKNbt27Zpgrrlhw4YEdU1jTf+PHz/azDVLly5t8LO2pWt26tSJDhw4YDQ7d+7cBHHN+vXrm3TNu3fvJohrVqlSJUFds1q1agY/64R2zVGjRsW7a3p4eJh1zZMnT35XrqmcdGnq5kzhwoUNftbWuKa0wM+Ua0o3KHUPa1zTy8uL2rRpQ9u2bTN6jrds2fJduubUqVNNuqaPj49eNj5cc8iQISZdU7pBqXt8z6558ODBBHVNU7VP8uTJ9bLx5ZqmbpQGBwcb/KxFXFO6Qal7WOOa0qRLU665Zs2aBHFNaYGfMdd8+/ZtknTNevXqGczGh2seOnTIaHbWrFkJ6prGap+bN29a7JoxMTEJ4prSAj9TrlmpUiWDn3VCu+bw4cOTnGs+ffo0wVxzwoQJJvvsBQoUMDjeWuOa0qTLS5cuGc1Kk2F1j/hwTVN9dnOuuWrVKqO1z6VLl2zmml5eXgbHW2td888//zTpmtJkWN1DxDWlybC6R0K75t69exPUNU312b9X17x69arRrDQZVvewxjWlPrsp11y5cqXB82SNa0p9dlOu+fLlS6tc083NzeC1GB+uaar2qVOnjsFsfLimqT77tGnTkpxrRkZGWuWajG1JiImDvFUx88OQI0cOpEqVSuvPvLy8ULFiRQQFBaFgwYJGsz4+PkifPr3Wn7m5uSEoKAgVK1ZEyZIlYWdnZzCbPn16+Pj4aP2Zi4sLypcvj4oVK6JcuXJwcHAwmHV1dUXOnDm1/szJyQmBgYHy606ePLnBrIODAwoUKKD1Z/b29ihevDgqVqyIihUrIm3atEbfc+HChfX+rGDBgnI2Y8aMqrK5cuWSs1myZDGazZs3L5ydnbX+zNfXV36/uXPnNprNkiWL3nvy9PSUs4Zel4SXl5fee0qdOjUqVKiAihUronTp0kbPsZubm957SpEiBcqVK4egoCBUqFABjo6OBrMpUqTQe0/JkiVDqVKl5M/L1dXV6OvWfU92dnYoWrSo/Lvp7u4unAWA/Pnzyz/X29vbaLZgwYKwt9f+CsmePbuczZ49u9FsQECA3nvKnDmznM2fP7/RrJ+fn957cnd3l99v8eLFjZ4nT09PvfeUMmVK+VosU6aM0WsxderUeu/J2dkZZcqUkc+x7u+thJOTE/Lly6f1Zw4ODihZsqT8nlOnTm30PRs6T4ULF5bfs6enp9FskSJF9P4sT5488s/18/Mzms2XL5/e762/v7/8c3PlymU0mz17dr33lCFDBvnnFipUyGjW29tb7z2lTZtWvhZNjbceHh7w9fXV+jMXFxeUK1cOFStWRPny5ZEsWTKDWRcXFwQEBGj9maOjozzeVqxYES4uLgaz9vb2eu9JOd4GBQXBzc3N6Hs2Nt5Kn7WXl5eqbEBAgPxzs2bNajSbJ08eve8QHx8f+efmzZvXaNbf3x/p0qXT+jMPDw85W7RoUaPZjBkzIlOmTFp/lipVKvkcBwYG6o0vEmnTptV7T8mTJ0fZsmXl9+zk5GQwmzx5cuTJk0frz3TH25QpUxp93cbGWynr4eEhnAW+XWMi422BAgX0xqZs2bLJ7zdHjhxGszlz5tR7T15eXvJ50q0TlPj6+uq9p3Tp0iEoKAhBQUEoUaKEqvHW1dVVHm/Lli1rdLxNmTKl3nuSah/pZxurfZIlS6b3HWJvb48SJUpYPN4WKlRIqPYxNN7mzp1bzvr7+xvN5s2bV+/31s/PT86aqn2yZcuGNGnSaP2ZVPuYG28zZcqEDBkyaP1ZmjRp5M/ZVO2TLl06vfck1T4i463ud4ijoyNKly4t/24aG2/t7OwMXovFihWT37Pu2KTEWO0j/dzMmTMbzRYqVEjv88iRI4f8c7Nly2Y0mytXLr335O3tLWfVjrfK2qdYsWJGz1OGDBn03pNyvC1btqzR8TZNmjR678nZ2VkebytUqGB0vHV2dtZ7Tw4ODihVqpT8unW9TImh81SkSBF53NP1MnPZvHnzyj9Xt05Qkj9/fr3f2yxZsshZXS9TYsg1M2bMKDTeWuOaHh4e8eqaytonKCgIKVKkMJh1cHDQ8+f4cs2goKAk45rp06eXz5Oh7wEJLy8vvXrOGtdU1j7ly5dPdNeUsknFNTNlyiSf48R2zQoVKiAoKCjRXbNEiRLy67bENaXPWrdOUJIQrilldb1MSUK4pvRZlSpVyug5dnd313tPoq7p6uqaIK4pve7EdM2cOXPKWVOumTt37h/eNaXaR8qqqX3iyzWDgoL06gQl35NrKmsfU66ZPn36BHFN6T2bck1DffYf1TWDzPTZM2XKpPeerHXNsmXLIigoyGTt8z26ppRNTNdU9tlt5ZplypRJENd0cnKKd9cU7bMnhGuK1D4J6Zqmah8R1zRV+ySUawYFBSW6a0qflynXzJMnD7umwjWDgoKs6rPbwjXN1T7x7ZpSn13ENXXHW2tc08nJCWXKlJHHW2Ou6ejoqPeevhfXNFX7JKRrmqp9MmfOrPee4sM1g4KCzI63tnJN5j9IfMw+/K8f4CcO/ie4e/cuJUuWTF6ppeYRse/fvyc3Nzd5pZaaR8TGxsZSQEAA+fj4UMeOHVU9Hp+IqHr16vLKATWPxyciat++vbxSa/HixcJbAxERjRkzxqLH4xN9e9KQJVuxERGdOXPGoq3YiL493SR58uRaW7GJnmPpceDS4/H37t0r/EhujUZDRYoUkVdqbd68WfhxzUTfVkBIK7XUbEdCRNSrVy9ydXWVV2qJPh6fiGjGjBkWPR6f6H+rP8uXL6/q8fhE37bddHBwsOjx+K9fv6ZUqVJZtO13dHQ0ZcmSRX48vpqt2DQaDZUvX96irdiIiJo3by4/Hl/NVmxEREOHDpUfj69m228ioiVLlmit1BJ9PD4R0ZEjR7RWaok+Hp+I6MGDB+To6Civ1FLzePxPnz6Ru7u7RY/Hj4uLozx58lj0eHwiopCQEIsej09E1LlzZ4u2YiMimjBhgkVbsRF9W/2pXKkluh0JEdH58+fJ3t5eXqkluh0JEdHz588pRYoU8kotNduRREZGUubMmS3a9luj0VCJEiXklVpqHo9PRFS/fn2LHo9PRNSvXz+LtmIj+vZUW0sej0/0vycNqd2KjYjo1q1b5ODgYNG23+/evaM0adJYtO13TEwMZc+eXd72e8eOHapqn8qVK8tPBVGzHQkRUevWrbWeCiK6NRDRt6faSk8FUbMVGxHR8uXLLdqKjejbU20t2YqN6NvKMmdnZ4u2Yvv8+TN5enpatBVbXFwcFSxY0KJtv4mIfvrpJ4u2/SYi6tatm9a232pqnylTpmg9FUR0G1qib6s/lU8FEd2KjYjo8uXLZG9vT8WLF1e9FdvLly/J1dWV8ubNq3ortqioKPL19ZWfvq1mKzaNRkOBgYGUIUMG1VuxERE1btzYoq3YiIgGDx5s0VZsREQLFiywaNtvov891VZ6KojodiRE1rnmhw8f4sU11W7FRmSda3bo0IFSpUolPxEtsVxzzZo1NnHNp0+f6rmm6LX45csX8vLysolr/vrrr/Himmq2YiP69lRba11T7VZsRNa55ps3b2zimkREFSpUIE9Pz0R3zWHDhmm5ppraR+maarZiI9J2TTVbsRH9zzUt2YrNWtfMmzevVa7p7u6e6K45ceLEeHNN0a3YiIguXLgQb66pZiu2r1+/UubMmeUnolnimtIT0RLTNfv3708uLi6J7prSk4aSmmvmyJEjXlxz7dq1qmqfNm3aWLTtN5F1rrlixYok55oRERE2c82ff/45XlxTbZ996tSpWtt+q3HNrVu3WrTtN5F1rvnq1StydXW1aNtva12zTJkySc41Fy5cGG+uKbrtN5G+a6rZ9lvXNdVs+x0bG0u5cuVKcq45duxYm7jm2bNnvwvX3LNnj6prsWjRonKfXc2230TarrlixQpVtU/v3r0t2vabyDrX3LlzZ5J0zaxZs9rENVu0aGG1a0pP31ZT+yxdutRi1zx69KhF234TWe+aHh4eNnHN0NBQm7gmY1t4q2KeOMhYwY0bNyw+fw8fPlQ1GUPJq1evVDXIlERGRqqajKFEo9HQ4cOHhYtEXY4dO6aqSFRy5swZVUWiksuXL6tqkCm5ffu2qgaZkidPnqhqkCl5//49nTlzxqJsdHQ0HTlyRFjYlEjnWE2RqOTEiROqikQl586ds/gRxdeuXVNVJCq5d++eqgaZkhcvXqhqkCn5/PmzqgaZkri4ODp06JBwkajL0aNHVRWJSk6dOqWqSFRy8eJFk9vhmOLmzZsmt+AwxaNHj1TdkFDy5s0bOn/+vEXn+OvXr6puSCjRaDR06NAhq8ZbNQ0yJWfOnFHVIFNy5coVVQ0yJXfu3FHVIFPy9OlTVZMxlHz48EHVZAwlsbGxdPjwYYvGW6JvNzjVNMiUnDhxQlWDTMn58+dV3ZBQcv36dVUNMiUPHjxQ1SBT8vLlS1UNMiVfvnxRNfFfSXyMt5bWPqdPn1Z1Q0LJpUuXVDXIlNy6dUtVg0xJeHi4qgaZkrdv36pqkCmJiopSdUNCibW1z/Hjxy2ufc6ePWtx7XP16lVVE/+V3L17V1WDTMmzZ89UNciUfPr0SVWDTElsbKxV1+KRI0csrn1Onjxpce1z4cIFixtktnLN169f28w1ra192DXFsMY1Y2JikqxrWlr7WOOa9+/ft4lrRkREJFnXtLT2sdY11UzGUGKta6qZjKEkKirKZq55/Phxdk1BPnz4oGoyhhJrXfPw4cM2c01La58fzTWl70V2TTEeP35sE9eU+uxJzTWt6bNb45r37t1j11SBNX32H9E1bdlnZ9cUQ3JNS65Fa1yTyPrah11TDGtd09rax1auaWntY41rhoeHq5r4rySpuiZjWxJi4qAdfZsYx5jAzs7OG0A4AISHh5t8zC3DMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDxBePHz+Gj4+P9D99iOixtf+mvfn/hGEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmGY/wo8cZBhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhfiB44iDDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzD/EDwxEGGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiG+YHgiYMMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAM8wPBEwcZhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEY5geCJw4yDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwzA8ETxxkGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhmB8InjjIMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMD8QPHGQ+WHYtWsX2rRpg02bNuHLly+qsleuXEGjRo2wYsUKvH//XlX25cuXqFu3LubPn48XL16oyn79+hWNGjXCtGnT8ODBA1VZIkK7du0wZswYXL9+HUSkKj9w4EAMGTIEZ86cgUajUZWdMmUKevXqhUOHDiE2NlZVdtWqVfj999+xY8cOREVFqcoePnwYLVq0wLp16/D582dV2bt376J+/fpYunQp3rx5oyr7/v171KtXD//88w+ePn2qKhsTE4OmTZti0qRJuHv3rqosEaFLly4YOXIkLl++rPocjxgxAgMGDMCJEydUn+M5c+age/fu2LdvH2JiYlRlN2/ejHbt2mHLli2IjIxUlT179iyaNGmCVatW4cOHD6qyT548Qd26dbFw4UK8evVKVTYiIgL169fHjBkzEB4eriqr0WjQqlUrjBs3Djdv3lSVBYA+ffpg2LBhOH/+vOpzPH78ePTt2xdHjx5FXFycquyyZcvwxx9/YPfu3aqvxb1796J169bYuHEjIiIiVGWvX7+Ohg0b4t9//8W7d+9UZV+/fo169eph3rx5eP78uapsVFQUGjVqhClTpuD+/fuqskSEDh064O+//8bVq1dVn6chQ4Zg8ODBOH36tOprccaMGejZsycOHjyoerxdu3YtOnbsiO3bt+Pr16+qssePH0fz5s2xdu1afPr0SVX2wYMHqF+/PpYsWYLXr1+ryn78+BH16tXD7Nmz8eTJE1XZuLg4NG/eHBMmTMDt27dVZQGgW7duGDFiBC5evKj6HI8aNQr9+/fH8ePHVV+L8+fPR9euXbF3717V4+327dvRtm1bbN68WXXtc+HCBTRu3BgrV65UPd4+e/YMdevWxYIFC/Dy5UtV2cjISDRs2BDTp0/Hw4cPVWU1Gg3atGmDsWPH4saNG6rPU//+/TF06FCcPXtWdXbixIno3bs3Dh8+rPpaXL58OTp16oSdO3eqHm8PHjyIli1bYv369aprn1u3bqFBgwZYtmwZ3r59qyr79u1b1K1bF3PmzMGzZ89UZaOjo9GkSRNMnjwZ9+7dU5UlInTq1AmjRo3ClStXVJ+nYcOGYdCgQTh16pTq8XbWrFno0aMHDhw4oPpa3LhxIzp06ICtW7eqrn1OnTqFZs2aYc2aNfj48aOqbHh4OOrWrYtFixaprn0+f/6MevXqYebMmaprn7i4OLRo0QLjx4/HrVu3VGUBoGfPnhg+fDguXLig+hyPGTMG/fr1w7Fjx1SPt4sXL0aXLl2wZ88eREdHq8ra2jUtqX3iwzVHjx6Na9euJaprTp061SaueeTIkSTnmrGxsWjWrFmSdM1u3bpZ5Jpbtmyx2DXPnTtnM9ds0KABZsyYgUePHqnKfg+ueeTIkUR3zVatWmHDhg2J7pp169bF3LlzVY+30dHRVrlmx44dk5xrrlu3Lsm65qxZs/D48WNVWWtds3v37jZxzQULFsiuqbb2scY1L168aLFrPn/+HPXq1Ut01yQitG3bFmPHjrWoz26Na06aNMli11yxYoVNXPP27ds2cc2YmBirXLNz584YNWqURbWPta7ZvXt37N+/P1Fd8/Tp02jatClWr16d6K5Zv359i12zZcuWNnHNsWPH2sQ1d+/eLbum2trHlq7ZsGFDTJ06NdFdc9CgQTZxzdWrV8uuqbb2Ubqm2trn3r17Frvmhw8fZNdU22e3xjUBoEuXLvjrr79w6dKlRHXNuXPnJjnXfPr0KerVq4eFCxeqrn2sdc3WrVtb5ZpDhw7FuXPnVJ/jCRMmWOWanTt3xq5duxLVNW/cuIEGDRrYxDUbN25sE9dk/oMQER9mDgDeAAgAhYeHE5M0mTdvHknnMXny5BQSEkKzZs2ix48fm81u27aNkidPTgDIwcGBgoKCaPz48XTr1i2z2dOnT5OHhwcBIDs7OypZsiQNHz6cLly4QBqNxmT24cOHlCVLFvl158uXj/r160fHjh2j2NhYk9kvX75Q/vz55WzWrFmpS5cutGfPHoqOjjb7uqtVqyZnvby8qE2bNrRp0yaKiIgwm23Xrp2cTZcuHTVq1IhWrFhB79+/N5sdPXq0nHV1daVffvmF5s+fTy9evDCbXb58Odnb2xMAcnJyourVq9O0adPowYMHZrP79u2jVKlSEQCyt7encuXK0ZgxY+j69etmz9Ply5fJy8tLft1FixalP//8k86cOWM2+/z5c8qRI4eczZ07N/Xu3ZsOHTpEMTExJrMajYaKFCkiZ/38/Oj333+nHTt20NevX82+5zp16shZT09PatGiBa1bt44+ffpkNtuzZ085myZNGqpXrx4tXbqU3rx5YzY7ffp0OZsiRQoKCwujf/75h54+fWo2u2HDBnJ0dCQAlCxZMqpcuTJNmjSJ7t69azZ77NgxSpcunXwtli5dmkaOHEmXL182e55u375Nvr6+8usuWLAgDRw4kE6ePElxcXEms+/fv6c8efLI2Rw5clD37t1p//79Qtdi+fLl5ay3tze1b9+etmzZQl++fDGbbdasmZz18PCgpk2b0urVq+nDhw9ms0OHDpWzqVKlojp16tDChQvp5cuXZrMLFy6Us87OzlSzZk2aMWOG0Hfojh07yMXFRR5vK1SoQOPGjaObN2+azZ49e5Y8PT3ln128eHEaNmwYnT9/3uw5Dg8Pp6xZs8rZvHnzUt++feno0aNmx9uoqCgqUKCAnM2SJQv98ccftHv3boqKijL7uoODg+VsxowZqXXr1rRx40ah8bZTp05y1s3NjRo2bEjLly+nd+/emc2OHz9ea7z9+eefad68efTs2TOz2VWrVpGDg4M83larVo2mTJlC9+/fN5s9ePAgpU6dWh5vy5QpQ3///TddvXrV7Hm6du0aZc6cWX7dhQsXpsGDB9Pp06fNXouvXr2igIAAORsQEEA9e/akgwcPmh1viYiKFy8uZ319faljx460fft2ofG2Xr16cjZ9+vTUvHlzWrt2rdB427dvXzmbOnVqqlu3Li1ZsoRev35tNjt79myt2ic0NJRmz55NT548MZvdvHkzOTs7y+NtpUqVaOLEiXT79m2z2RMnTpC7u7s83pYqVYr++usvunTpktlzfO/ePfLz85Nfd4ECBah///50/Phxs+f406dPlDdvXjmbPXt26tq1K+3du1dovK1UqZKczZQpE7Vt25Y2b94sNN62bt1aq/Zp3LgxrVy5Uqj2+euvv+RsypQpqXbt2rRgwQKh8Xbp0qVkZ2cnj7c1atSg6dOn08OHD81md+/eTa6urvJ4W758eRo7dizduHHDbPbixYuUMWNG+XUXK1aMhg4dSufOnTN7jp8+fUrZs2eXs3ny5KE+ffrQkSNHzI63MTExVKhQITnr7+9PnTt3pl27dgldiz/99JOczZAhA7Vs2ZLWr19Pnz9/Npvt2rWrnE2bNi3Vr1+fli1bRm/fvjWbnTJlipx1cXGhWrVq0Zw5c4TG27Vr11KyZMkIADk6OlKVKlVo8uTJdO/ePbPZw4cPU9q0aeVrMTAwkEaNGkVXrlwxe55u3rxJ3t7e8usuVKgQDRo0iE6dOmX2Wnz79i3lypVLzubMmZN69OhBBw4cEBpvAwMD5ayPjw916NCBtm3bRpGRkWazjRo10qp9mjVrRmvWrKGPHz+azQ4aNEhrvP3tt99o0aJF9OrVK7NZQ645c+ZModrHGtc8c+aM7JoAqESJEjZ3TZHaxxrXbN++/X/CNUePHk3Xrl1LUNd88eIF5cyZU87mypWLevXq9d27Zq9evSx2zRkzZljsmhs3biQnJ6f/hGvu27cvwV2zefPmctbd3Z2aNGlCq1atSnDXXLRokUHXfPTokdmsNa557tw5i13z8ePHVrlmwYIFLXbNkJAQg64pUvtY45oTJkzQqn1++uknmjt3bqK4Zpo0aZKca5YoUcKga4rUPsZcU6T26devn8Wu+c8//+i5pmif3RrXPHnypJZrlixZkkaMGEEXL15MUNf8/Pkz5cuXT85my5YtSbjmyJEjDbqmSO1jjWvu2bOHUqZM+d245uHDh82Ot7GxsXqu2alTJ9q5c2eCu2a3bt1s4prr1q1Lcq757t07m7lm48aNtVxT6rMntGvOnz9fa7wNDg5ONNdMnz59knPN6tWrx7tritQ+Y8aMsdg1V6xYoeWa1apVo6lTpya4a165coUyZcokv+4iRYrQkCFDEtw1iYhdMx5cU6TPbsw1T5w4YXa8/fDhg55rduvWTdg1K1SoIGczZ85M7dq1SxTXHDZsmFbtk1iuuXPnTpu5ZrZs2eLVNXft2iU03jK2JTw8XD53ALwpHubE8RMHmR8G5coDjUaDuLg4+VCTlf639G+YgxQztIkIcXFxcl4kq8yr/bm671nKivzs+MoqP2e1n7X0HizNWvNz1WR1z5OU02g0QjP0DWXj4uKEsrqftXSu1Gbj4/dD9Pc6Ps+x2qzu9WTtObb0PFmbteQcK3+uLc6xRqMRWqmnO2YqfzfNvWdDY6al51iZTczrWPlzLTlPiZU19FmJfj8Z+/2w9DyJZg29btHfLd3XrXy/ifmdas05tuS7zZqslI+P71Q1322GspZei5aeJ+X3kzW/H2qvJ2uyut+pasdbNeOebo1qq+9Ua77blDlLz5M1Y6Yl17H0b8XH96IICVE32eJ70dLfD0u/F6X/nRjZ+PxOjY9rMbFdU/n7kRjfi7pZ0d8ta1zTVE8gKdU+8fF9nNA9Ad3zYesxU7Ruiq9sfJxjS8Zba74XLal9dF+HNfWtrWofW3ynKp1PdNzT/blqvheVHmLt96Kl17G1421SPMdqv9t0s9Zcx5aeYzWuGZ/fqfH13ZbYtXF8facmpGtKed2spd+L1p5jS13C0s9a+TMT2zUtvY6l1xEf36nWuIQ19YulHmLN70dinGND9a0tvlNt9b1o7e+HpZ5qyXeb8v+3xjXVfLd9T64ZH99tiX2O1Y6ZhvrsIq9ZykhY+50qWjcBxj/rpFI3WdtPUGbVuqbauim+XEL5uyX6+8X8t0hm6xfAMImFr68vWrZsibCwMFSpUgUpU6YUzvr5+eHnn39GaGgoatasiXTp0qnKBgUFoXr16ggODkamTJmEsxkyZECpUqXQtWtXhIWFIWvWrMLZFClSIDAwEI0aNUJYWBjy5s0LOzs74XyJEiVQqlQphIWFoVixYrC3F59nnC9fPnTv3h1hYWEoU6YMHB0dhbNZs2ZF+/btERYWhooVKyJFihTCWV9fXzRu3BhhYWGoVq0aUqdOLZz19/dHjRo1EBoaiuDgYHh4eAhnfXx8UK5cOVSqVAkhISHw8fERzqZLlw6lSpVChw4dEBoaipw5cwpnAaBcuXKoU6cOQkNDUbBgQVXnuHDhwggICEBYWBhKliwJBwcH4WyuXLnwxx9/ICwsDOXLl4eTk5Nw1s/PD61bt0ZYWBgqV64MV1dX4ayvry9+++03hIWFoUaNGkibNq1w1t/fH5UrV0bNmjUREhKCDBkyCGczZcqE0qVLo3fv3ggNDYW/v79wNlWqVAgMDESLFi0QFhaGXLlyqTpPpUuXRuXKlREaGooiRYqouhYLFCiAXr16ISwsDKVLl0ayZOJf+9mzZ8fvv/+O0NBQBAUFIXny5MJZX19ftGjRAqGhoahatSpSpUolnPXz80NoaCjCwsJQs2ZNuLu7q8pWqFABVatWRUhICDJnziyc9fT0RKlSpeTf62zZsglnHR0dERgYiPr16yMsLAz58uVTdY6LFy+OokWLIiwsDMWLF1d1jvPkyYNu3bohLCwMZcuWVTXeZsmSBe3atUNYWBgqVaqkarz18fFBw4YN5fE2TZo0wll/f39Uq1YNISEhCA4Ohqenp3DW29sbZcqUQVBQEEJDQ+Hr6yucdXNzQ6lSpdCmTRuEhYUhICBAOAsAZcuWRa1atRAWFoZChQqpHm+zZs2KsLAwlCpVStV4GxAQgM6dO8vjrbOzs3DWz88PrVq1kmsfteNt7dq15fHWzc1NOOvv749KlSqhRo0aCAkJQcaMGYWzXl5eCAwMRM+ePREaGoosWbIIZ11cXBAYGIimTZsiNDQUefLkUXWeSpUqhXLlyiEsLAxFixZVXfv06NFDrn3UjLfZsmVDhw4d5NpH7XjbtGlT+VpUM976+/sjJCRErm8tqX2qVKmC0NBQVeOth4cHSpcujU6dOiE0NBQ5cuQQzjo4OKBcuXKoW7cuwsLCkD9/flXnuGjRosifPz9CQ0NRokQJVddi7ty50bVrV4SGhqJcuXKqah9/f3957KlcuTJcXFyEs76+vqhfvz5CQ0NRvXp11bVPlSpVEBwcjODgYFW1T+bMmREYGIgKFSogNDQUfn5+wtnUqVOjdOnS8vgTEBCg6jwFBgaiRo0aCAsLQ+HChVVlCxYsCB8fH7n2UXOOc+bMiU6dOiEsLAwVKlRQNd5a45r+/v5WuWaFChVQvXp1hISEJJprJk+eHIGBgXItkJiumTdvXpu4po+Pj8Wu6efnJ7tmzZo1kT59elU/11LXdHd3R6lSpeT3nJiuWaRIEYtdMyAgwGau+euvv9rENQMDA1G2bFmrXDM0NBS5c+dONNfMnz8/evbsibCwMAQGBiaqazZv3hxhYWGJ6pq+vr4oX7681a4ZGhqK7NmzC2cdHR1RpkwZq1yzSJEiNnPN0NBQVK5c2SLXlGofta4p9V8tcc3AwEBUrFjRJq4ZFhaWpFzT19fXJq7p5+eHihUryrWPl5eXcNYa13R1dUVgYCCaNGmCsLCwRHXN/PnzJ0nXDA4OtolrlipVSv6OUeOa9vb2KFu2rNx3LlCggKpzXKxYMYtdM1euXOjSpQvCwsIS3TXr1auHsLAwm7hm+fLlE901y5QpY5Vrent7IzQ0VHWfPT5cU+qzJzXXDA0NVdVnjw/XLFmyZJJ0Tan2sfS+piWuWaZMGVSqVAmhoaGJ7ppSLZCYrmnL+5rx4ZrBwcGq+uzWuGbKlClRunRpNG/e3CLXLFWqFCpWrIiwsDCL7mta45odO3ZEWFhYorqmv7+/zVyzdOnSVrtmaGio6j4789/DTmS26Y+OnZ2dN4BwAAgPD4e3t7eNXxHDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzzI/D48WPlhG8fInps7b/JWxUzDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwzA8ETxxkGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhmB8InjjIMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMD8QPHGQYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYX4geOIgwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMw/xA8MRBhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhvmB4ImDDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDPMDwRMHGYZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGOYHgicOMgzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMMwPRDJbvwCGSWhevXqFZcuWAQDs7e3RoUMHODo6CmWjoqIwa9YsEBEAoGnTpkiXLp3wz549ezYiIyMBAD/99BOyZMkinF2+fDlevHgBAAgKCkKhQoWEs1u3bsXt27cBAEWKFEH58uWFs0eOHMGZM2cAANmyZUNYWJhw9vLly9i7dy8AIH369GjUqJFw9tGjR1i3bh0AwNnZGe3bt4ednZ1Q9sOHD1iwYAEAwM7ODm3atIGLi4tQNjY2FjNnzkRcXBwAoH79+siYMaPw654/fz4+fvwIAAgODkbOnDmFs2vWrMHjx48BAGXKlEHx4sWFs7t378bVq1cBAPny5UOVKlWEs6dOncKxY8cAAL6+vqhdu7Zw9saNG9ixYwcAIE2aNGjRooVw9tmzZ1i5ciUAIFmyZOjQoQMcHByEshEREZg7d658LbZs2RKpU6cWyhIRZs6ciejoaABAnTp14OPjI/y6lyxZgjdv3gAAqlSpgnz58glnN23ahHv37gEAihcvjjJlyghnDx48iPPnzwMAAgICULNmTeHs+fPncfDgQQBAxowZUb9+feHsvXv3sGnTJgCAi4sL2rZtK5x98+YNlixZAuDbeNu+fXs4OTkJZaOjozFr1ixoNBoAQOPGjeHh4SH8s+fMmYOIiAgAQFhYGLJlyyacXblyJZ49ewYAqFChAgoXLiyc3bFjB27cuAEAKFSoEIKCgoSzx44dw6lTpwAAWbJkwU8//SScvXr1Knbv3g0ASJcuHZo2bSqcDQ8Px9q1awEATk5O6NChg/B4+/HjR8yfPx/At/G2devWcHV1FcrGxcVh5syZiI2NBQDUq1cPXl5ewq974cKFeP/+PQCgRo0ayJUrl3B23bp1ePToEQCgdOnSKFmypHB27969uHz5MgAgT548qFatmnD2zJkzOHLkCADA29sbv/76q3D29u3b2Lp1KwAgVapUaNWqlXD2xYsXWL58OQDAwcEBHTp0QLJkYmV/ZGQk/vnnH3m8bdasGdzc3ISyRITZs2fj69evAIBffvkFfn5+wq972bJlePXqFQCgUqVKKFCggHB2y5YtuHPnDgCgWLFiKFu2rHD28OHDOHv2LAAgR44cCAkJEc5evHgR+/fvBwB4enqiYcOGwtkHDx5gw4YNAIDkyZOjffv2wtl3795h0aJFAL5di+3atUPy5MmFsjExMZg1a5Zc+zRs2BCenp7CP3vu3Ln4/PkzACAkJAQ5cuQQzq5evRpPnjwBAJQrVw5FixYVzu7cuRPXr18HABQoUACVKlUSzp44cQInTpwAAPj5+eGXX34Rzl6/fh07d+4EALi5uaFZs2bC2adPn2LVqlUAAEdHR3To0AH29mJr9z5//ox58+aBiGBnZ4eWLVsiVapUQlmNRoOZM2ciJiYGAPDrr7/C29tb+HUvXrwYb9++BQBUq1YNefLkEc5u2LABDx48AACULFkSpUuXFs7u378fFy9eBADkypULNWrUEM6eO3cOhw4dAgBkypQJdevWFc7euXMHW7ZsAQC4urqiTZs2wtkf0TW3bduGW7duAQAKFy6MChUqCGfjyzU9PDzQuHFj4eyP6Jpr165FeHg4ANu5po+PD+rUqSOcvXnzJrZv3w4gcV3zy5cvmDNnjnwttmjRAmnSpBHKWuuaS5cuxevXrwEkHde8cOECDhw4AMC2rtmuXTs4OzsLZX9E1zx+/DhOnjwJIHFd8/Hjx1izZg2Ab67Zvn174drn06dPmD9/vlz7WOOadevWRaZMmYRft9I1q1evjty5cwtnfzTXfPnyJf79918AP6ZrFi1aFOXKlRPOsmvaxjXLli2LYsWKCWd37dqFa9euAbCda6ZNmxbNmzcXzv6Irrlx40bcv38fgO1c08vLC/Xq1RPOxqdrqumzR0VFYfbs2XLt8yO45tGjR3H69GkA7JoiKF2zZs2aCAgIEM5a45p79uzBlStXANjONVOnTo2WLVsKZ58/f44VK1YASHzXnDVrFqKiogAAtWvXhq+vr/Dr/tFc8/79+9i4cSMAIEWKFGjXrp1wNj5ds1GjRkifPr3wz44v1yxfvjyKFCkinFW6ZsGCBVGxYkXhLPMfhoj4MHMA8AZAACg8PJyYpEWrVq1IOn8AaNy4ccLZv/76Syv7+++/C2f//fdfrWzNmjWFs8ePHyc7Ozs5mzdvXoqNjRXKPnjwgFKkSCFnPT096f3790LZjx8/UsaMGeWss7Mz3b17VygbFxdHhQoV0nrPhw8fFsoSEdWqVUsru2jRIuFs165dtbJDhgwRzk6ePFkr27RpU+Hs5s2btbLlypUTzl68eJEcHBzkbLZs2ejr169C2efPn1Pq1KnlbJo0aejly5dC2cjISMqSJYucTZYsGV25ckX4dQcGBmq9523btglnGzVqpJWdNm2acHbgwIFa2R49eghn58+fr5X95ZdfhLP79+/XyhYpUoTi4uKEsrdv3yYnJyc5mylTJvr8+bNQ9t27d+Th4SFnXVxc6NGjR0LZmJgYyp07t5y1s7OjU6dOCWWJiKpVq6b1nleuXCmcbdeunVb277//Fs6OHj1aK9u2bVvh7OrVq7Wy1apVE86ePn1aa7zNlSsXxcTECGXDw8PJxcVFzrq7u9Pbt2+Fsp8/f6bMmTPLWScnJ7p165ZQVqPRUNGiRbXe8759+4SyRES1a9fWys6bN08427NnT63sgAEDhLMzZszQyjZs2FA4u337dq1s6dKlhbNXr16lZMmSyVk/Pz+KjIwUyr58+ZLSpk0rZ1OlSkXPnz8XykZFRVG2bNnkrL29PV24cEH4dVeoUEHrPW/atEk426xZM63spEmThLNDhw7Vyv7xxx/C2cWLF2tlw8LChLOHDx/WyhYsWFC49rl37x45OzvL2YwZM9LHjx+Fsh8+fCBPT085mzx5cnrw4IFQNjY2lvLnz6813h47dkwoS0QUHBys9Z6XLVsmnO3UqZNWdvjw4cLZ8ePHa2VbtmwpnF2/fr1WtmLFisLZ8+fPk729vZzNkSMHRUdHC2WfPn1KKVOmlLNubm70+vVroeyXL1/I19dXq/a5du2aUFaj0VDJkiW13vOuXbuEskRE9erV08rOmjVLONu3b1+tbJ8+fYSz//zzj1b2t99+E87u2bNHK1uiRAnSaDRC2Rs3bpCjo6Oc9fHxoYiICKHsmzdvKF26dHLW1dWVnjx5IpSNjo6mnDlzao23Z8+eFcoSEVWqVEnrPa9du1Y427p1a62sNa7ZsWNH4ezy5cu1sjVq1BDOWuOaDx8+1HLN9OnT28w1Dx06JJQlIvrpp5+0sonlmlOmTNHKNmnSRDhrjWteunRJyzWzZs1qE9d0cHCgy5cvC7/uMmXKaL3nxHLNQYMGaWW7d+8unLXGNQ8cOKCVTSqumSdPHq3a5+TJk0JZIutcs3379lrZUaNGCWfj0zWrVKkinP1eXNPR0ZFu3rwplLXWNevUqaOVnTt3rnC2V69eWllrXLNBgwbC2R07dmhlS5UqJVz7WOOar1690nPNZ8+eCWXj2zU3btwonG3evLlWNrFcc8mSJVrZ0NBQ4ay1rpk8eXI5myFDBlWumSFDBjlrjWsCoKNHjwpliYhCQkK0skuXLhXOWuOaEyZM0Mq2aNFCOBvfrhkVFSWUtaVrlipVSus979y5UyhLZJ1r9uvXTyvbu3dv4Wx8umbx4sWFx9ubN2/azDUDAgK0xtszZ84IZYni1zXHjh0rnB05cqRWNrFc88SJE3quKVr7WOOanz59Ii8vLznr7OxMd+7cEcrGt2suXLhQONutWzetbGK55pYtW7SyZcuWFc5a45ovXrzQc80XL14IZb9+/Rqvrrl161bhbOPGjbWyU6dOFc5a45oLFizQyv7888/C2fh2zU+fPgllbema1atX13rPK1asEM5a45pjxozRyrZp00Y4u2bNGq2sta4p2md//Pgxubq6ytl06dLRmzdvhH82830QHh6u/P3xpviYExcf/8h//QBPHEyynD17Vksa1RQjT5480ZJGNcVIREQE+fj4aGVFixGNRkMlSpTQy4oWI7/99pteVrQY6dOnj15WtBiZPXu2Xla0GNm1a5deVrQYuX79upY0AqAUKVIIFSOvX78mNzc3raxoMRIdHU05cuTQe92ixUjFihX1sqLFSMuWLfWyosXIiBEj9LKixciyZcv0sqLFyLFjx7SKGDXFyIMHD7SadIB441v3BqV07N2712w2Li6OChYsqJcVbXyHhYXpZfv37y+U7dKli15WtPE9adIkvaxo43vTpk16WT8/P/ry5YvZ7IULF/TGW9HG9/PnzylVqlRaWdHGd2RkJPn7++u9btHGd+nSpfWyEydOFMo2bNhQL9u5c2eh7IABA/Syoo3vefPm6WULFCgg1PjWnQwLiDe+b926pSWNwLfG9/37981m3759qyWN0iHS+I6JiaFcuXLpZUUb37o3KAHQsGHDhLJt27bVy4o2vv/++2+9bFBQkFB21apVelnRxvepU6f0xtu0adPSq1evzGZ1b1AC4o3vz58/U6ZMmfRet0jjOy4ujooUKaKXnTlzptkskf5kWEC88d2jRw+97K+//iqUnT59ul5WtPG9bds2vay3t7dQ4/vKlStaNyiBb43vx48fm82+fPmS0qRJozfeijS+v379qnWDUjrWrFljNktEVL58eb2saOO7adOmetkOHToIZf/880+9rGjje9GiRXpZ0ca37g1KAOTh4UHv3r0zm717967WZFhAvPH9/v17rcmw0nHw4EGz2djYWMqXL59eVrTxXbNmTb3s4MGDhbK///67XrZx48ZC2XHjxullRRvf69at08tmyZJFqPF97tw5m7jmly9fbOaadevW1ct269ZNKBvfrlm4cGEh19y9e7de1paueeLECbNZa11T9wYlABo5cqRQVnfhJWCda1auXFkoq7vwEkg811TeoARs65pz5swxmyXSX3gJWOea9evXF8rqLrwEEsc1dRdeAqCUKVPS06dPzWYTwjU3bNhgNkukv/ASSBzX1F14CYBCQkKEsgnhmh8+fDCb1b1BCVjvmkeOHDGb1V14KR2J4Zq6Cy8BUPPmzYWyupNhAetcM3v27EKuqXuDEkg811ROhpWOHTt2mM0mhGv26tVLKKu78BKwzjWLFSsmNN7qLrwEEs81lZNhgW+1z+nTp81mE8I1x4wZI5TVXXgJWOea1atXF8rqLrwEQHny5Elw19RdeAl8W8x8+/Zts1ndhZfSYY1rLliwwGyWSH/hJZA4rqm78BIAlSlTRigb366ZOnVqIdfUnQwLWO+aW7ZsMZs1tPASSBzX1F14CYB++uknoazuZFjAOtf08vISck3dhZdA4rmmcuGldCxfvtxslij+XbN169ZCWd2Fl4B1rhkQECDkmroLLwHbuuaePXvMZg1NhgWsc81+/foJZXUXXgKJ45q6Cy8BkK+vb6K4pnIyLPDNNc+fP282q7vwUjqscc0JEyYIZXUXXgLirsl8PyTExEGxZ1czTBLl7t278uNhJT59+iQ/utUUT58+lR8PKxEXFyc/ntcU7969kx8BrER6zLYpvn79Kj/mWW0WgLxFcXxl79y5I02gVZ19/Pgxvnz5YlH2zZs38vawpnjw4IH8aHyJyMhIeQtgUzx//lx+HLcEERl8Pbp8+PBBfuS6EpHPOiYmRn6svtosEP/n+P79+/J2Lmqzz549w6dPn8xmDf0eGfsMdXn06JG8FYlETEyMvA2eKV6/fi1vf6BE5POKiIiQt7hQmyUi3L1716IsEP/n2NBnKJp99eoV3r17ZzZ77949vfH28+fPePr0qdns06dP5a1IJDQajbwVjCnev38vbzejRHS8lbYUUpsFEma81f0MRbNPnjzR+84Szb57987gZ6jLw4cP5W3YJIx9hrq8fPlS3vrJ3OvR5dOnT3j+/Lnen4t81sa+t2053up+hqLZ58+f48OHD2azhsZbY5+hLoa+t2NjYw1+Z+li7Htb5PMy9r0t+lkbGiusOU8iv5fG/rvw8HB5Oxe1WWPfWboY+t6OiIgQqn0MfW+LjrfW1D7R0dEGv7dtdS3eu3dP3s5FbdbQd5Zo9v3793j58qXZbHh4uLwViURUVBQePnxoNmvse1vk8zL2vS2S1Wg039V4+/DhQ73PUDT78uVLodonIVzTUP2oy9u3b9k1YVvXNPQZ6vLixQt2TXz/rmnoe9vYZ6iLLV3ze6p9Ess1db+3IyIihFzz2bNnNnHNqKio78o1DX1niWatcc23b99+965p6Hv7R3PNFy9e2Mw1Rfrsb9++ZdfEt+8sS2ufxHBNY312dk3xrGjtY41rPnr0SM+ToqOjv3vX/J767LZyTdE+u6Hv7cRyze+p9rGVaxr7DHWxlWt+/PjR4j77f8k1DX1nGcJWrvnmzRuLXfPLly/smvj2nSVS+1jrmpb22Y19b3/vrsn8x4mP2Yf/9QP8xMEkTdmyZbVmTbdq1Uo4q/sIYtEVDET6jyDOmTOn8GNidR9BrOYxsbqPIHZ0dKQbN24IZe/cuaO3wldkBQPRt0cQp0+fXiv7zz//CGV1H0EMgPr27SuUJSKqUaOGVrZevXrCWd1HEJcsWVL4Efm6jyD28fERWsFApL/djegKBiKiM2fOaK1ysbe3p3PnzglldR9BDIDWr18vlI2IiCBvb2+t7Pjx44WyGo2GihUrppVVs/W37nY3wcHBwlnd7W7y5csnvCXJzJkztbKenp5Cq+WJiHbu3KmVdXZ2pnv37gllr127prfCV3Trb93tbgDQ4sWLhbJRUVGUPXt2reyff/4plCXS3+6mWbNmwlnd7W7Kly8vnB02bJhWVnS1PJH+djeiq+WJiI4ePaqVVbP1t+52N4DYanki/e1uAND06dOFsoa2u+nZs6dQlkh/u5vatWsLZzt37qyVFV0tT6S/3U3mzJmFt2PbsGGDVtbFxUW4ntPd7kZ0tTwR0bNnz/SebrJq1Sqh7JcvX8jPz08rO3r0aKGsoe1u2rVrJ5QlIqpfv75WVs3W37rb3eTOnVt4S5I5c+ZoZUVXyxMR7d27VysrulqeSH+7GwC0f/9+oezbt2/J3d1dKzt//nyhrO52NwBo4MCBQlkioipVqmhl1Wz9rbvdjehqeSL97W78/f2Ft2NbsWKFVjZ16tTCW3/rbnfj4OBAFy9eFMo+evRIb4Xv5s2bhbK6290AoMmTJwtl4+LiqHDhwlrZLl26CGWJiH7++WetbK1atYSzutvdFCxYUHhLkqlTp2plRVfLE+lvd5MiRQrh7dguX76stcLXzs6Ojh8/LpTV3e4GAP37779CWd3tbgDQiBEjhLJE8eualSpVEs4OHjxYK5tYrnnw4EGtrKOjI12/fl0oG9+uOXv2bKFsTEwM5c2bVytrjWvWrVtXONuhQwetrJqtv61xTd3tblKmTCm8HVt8u+a6deuEsrZ0zV9//VUrW7NmTeFsfLum6HZstnRN3aebJJZrBgUFaWWbNm0qnG3RooVW1hrXzJYtm/B2bEuXLtXKJpZr3r9/X881t2/fLpS11jULFCigle3Ro4dQlogoNDRUK2uNaxYtWlS49pk4caJWVs3W39a4pu6uDXZ2dnTq1CmhbHy75t9//y2U1Wg0ers2JJZr9u/fXytrS9e8deuWUPbWrVvx6prz5s0TykZHR+vt2pBYrtmmTRutbGBgoHA2Pl0zVapUwq558uTJeHXNTZs2CWU/ffqkt2uD6Nbf8e2aYWFhwtnu3btrZa1xzYwZMwpv/b1161atbGK6pu6uDcuWLRPKxrdrtmzZUjjbpEkTrWxiuebChQu1smq2/rbWNXWfpLl7926h7Pv37+PVNfv06SOUJdLftSGxXHPs2LFaWTVbf1vjmro7BNrb29PZs2eFsk+ePIlX1xw3bpxQVqPRUPHixbWyieWavXv31sqqcc1Zs2ZpZa11zbt37wplr1+/Hq+uuWjRIqFsVFSU3q4Narb+jk/XLFeunHB2+PDhWllrXDNNmjT08uVLoeyxY8e0sg4ODsKuyXw/JMQTB+1IYMb9j46dnZ03gHDg2wxxb29vG78iRg3nzp3DgAEDAAD29vZYsGABPD09hbJPnz5F69at5RUFY8eORb58+YSyX758QePGjeUVBT169ECVKlWEskSEli1byis/GjZsiCZNmghlAaBPnz64dOkSAKBy5cro2bOncHbSpEnYuXMnACBPnjwYP368cHbFihVYtGgRACB9+vRYuHAh7O3FHmy6f/9+jBkzBgDg7OyMpUuXImXKlELZGzduoFu3bgAAOzs7zJo1C76+vkLZN2/eoFmzZvKKgmHDhqF48eJC2ejoaDRp0kRemdKhQwfUqlVLKCv999KKyNq1a6NNmzbC2aFDh+LEiRMAgNKlS2Pw4MHC2dmzZ2PDhg0AgKxZs2L69OnC2Q0bNmD27NkAgDRp0mDJkiVwdHQUyp48eRJ//vknACBZsmRYtGgR0qVLJ5R98OABOnbsKF+LkydPRs6cOYWynz59QuPGjeWV13379kWFChWEsnFxcWjevLm8SqxFixaoW7euUBYAunfvjuvXrwMAatSogS5dughnx4wZg/379wMAChUqhFGjRglnFy1ahBUrVgAAMmXKhLlz58LOzk4ou2vXLkycOBEA4OLigqVLlyJFihRC2YsXL6Jv374Avo23c+fOhZeXl1D2+fPnaNWqlbyactSoUShUqJBQ9uvXr2jcuLG8mrJr166oXr26UJaI0KZNG3kVVr169dC8eXOhLAAMGDAA586dAwBUqFBBfv8iTJkyBdu3bwcABAQEYNKkScLZ1atXY/78+QAAd3d3LFq0CA4ODkLZQ4cOyb9PTk5OWLJkCVKnTi2UvX37Nv744w8A38bb6dOnI0uWLELZd+/eoWnTpvJKwCFDhqBUqVJC2ZiYGDRt2lR+kkTbtm3xyy+/CGUBoFOnTvLK2lq1aqFDhw7C2eHDh+PYsWMAgBIlSmDo0KHC2blz52Lt2rUAAD8/P8yaNUs4u2XLFnl8TpUqFZYuXQonJyeh7JkzZzBo0CAAgIODAxYuXAgPDw+hbHh4ONq1ayePt+PHj0eePHmEsp8/f0aTJk3klYC9evVCpUqVhLIajQYtWrSQV9o1adIEDRs2FMoCQM+ePXH16lUAQNWqVdG9e3fh7Pjx47Fnzx4AQP78+eV6RIRly5Zh6dKlAIAMGTJgwYIFwuPt3r17MW7cOABA8uTJsXTpUri6ugplr169Ktd3dnZ2+Oeff4Qd5dWrV2jRooVc+4wYMQJFixYVykZFRaFx48byk3s6deqEkJAQoSwAtGvXTl4R+euvv6JVq1bC2cGDB+P06dMAgLJly8r1vQgzZszA5s2bAQDZs2fH1KlThbPr1q3DnDlzAABubm5YvHgxkiVLJpQ9duwYhg8fDgBwdHTE4sWLkTZtWqHs3bt30blz52/SbmeHKVOmIHv27ELZDx8+oEmTJvLq9QEDBqBs2bJC2bi4ODRt2lReldu6dWvUqVNHKAsAXbp0kVephoSEoFOnTsLZUaNG4dChQwCAokWLYsSIEcLZBQsWYNWqVQAAb29v+ZyJsH37dkyZMgUA4OrqiqVLlyJ58uRC2fPnz6N///4ArHfNMWPGIH/+/EJZXdfs3r07qlatKpS11jX79u2LixcvAgAqVaqEXr16CWdt5ZoHDhzA6NGjASS+azZv3lyufYYOHYoSJUoIZePTNX/55Re0bdtWOBtfrpklSxbMmDFDOLtx40a5VkpM13z48CE6dOggX4uTJk1CQECAUNYa19RoNGjWrJnsms2bN0e9evWEsoDtXHPx4sVYvnw5AMDLywvz5s1LFNe8dOkS+vTpA8C2rtmlSxfUqFFDKAt8+x61hWtOnToV27ZtA5C4rnn48GGMHDkSgGWu2aVLF7n2scY1Bw8ejNKlSwtlY2Nj0aRJE5u45ogRI3D06FEA7JrmiIiIQOPGjW3imr169cKVK1cAsGuag13TctdMmzYtlixZkiiuee/ePXTq1MnmrtmqVSv8+uuvQlmAXXP+/PnIkCGDUPbZs2do3bq1XPskpmu2atVKfppvgwYN0LRpU6Es8N9wzSVLliBVqlRCWVu5ZkxMDBo3bpzkXPOff/7B+vXrAVjnmqlTp8bSpUstds2FCxfC3d1dKGutazZp0kR+wmlScc2xY8di3759AGznmilSpMCyZcsSxTVfvHiBli1bJjnXHDhwIM6ePQsAKF++PPr16yecZb4PHj9+DB8fH+l/+hCR+UeEm4EnDgrAEwcZhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYW5AQEwfFpswzDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDPOfgCcOMgzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMMwPRJKbOGhnZ+drZ2c3zs7O7rqdnV2EnZ3dWzs7u1N2dnY97ezsXGz9+hiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRjmeyaZrV+AGuzs7EIALAOQRvHHLgCK///R2s7OLpiI7tni9TEMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzDM906SeeKgnZ1dQQCr8G3S4GcAAwAEAqgMYM7//2cBALba2dmltMmLZBiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYZjvnKT0xMFJ+PZ0wVgA1YjouOLv9tnZ2d0GMAZALgDdAQxL9FfIMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMN85SeKJg3Z2dsUBBP3//5ynM2lQYjyA6////3e1s7NzTIzXxjAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzBJiSQxcRDAz4r/f4Gh/4CINAAW////dMP/JhoyDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMwDPP/JJWtisv9//+NAHDWxH93UPH/lwWwO8FeEZNk+Pz5M/bu3QsAsLe3R2hoKOzs7ISyGo0GW7ZsAREBAKpWrQoXFxfhn71r1y5ERkYCAMqUKQMPDw/h7JEjR/DmzRsAQKFCheDn5yecPX/+PB49egQAyJkzJ3Lnzi2cvXnzJm7cuAEA8Pb2RtGiRYWz4eHhOHfuHAAgXbp0KFeunJnE/3j79i0OHz4MAHB2dkaNGjWEs1+/fsXOnTsBAHZ2dggODkayZOLD25YtWxAXFwcAqFixIlKnTi2c3bdvHz59+gQAKFmyJDJmzCicPXHiBF68eAEAyJ8/P7JmzSqcvXz5Mu7duwcAyJo1K/Lnzy+cvXv3Lq5cuQIAyJgxI0qWLCmcffbsGU6dOgUASJ06NSpWrCic/fjxI/bv3w8ASJYsGUJCQoSzsbGx2LZtm3wt1qhRA87OzsL57du3Izo6GgBQrlw5pEuXTjh76NAhvHv3DgBQtGhReHt7C2fPnDmDJ0+eAABy586NnDlzCmevX7+OW7duAQB8fX1RuHBh4ezDhw9x4cIFAICHhwfKlCkjnH316hWOHTsGAHBxcUHVqlWFsxEREdizZw+Ab+NtSEgI7O3F1ihoNBps3boVGo0GAFClShW4uroK/+zdu3fjy5cvAIDAwECkT59eOHvs2DG8evUKAFCwYEH4+/sLZy9cuICHDx8CAHLkyIE8efIIZ2/duoXr1789LDlz5swoVqyYcPbJkyc4c+YMACBt2rSoUKGCcPbdu3c4dOgQAMDJyQk1a9YUzkZFRWHHjh0Avo23NWvWhKOj+EOet27ditjYWABAUFAQ0qRJI5zdv38/Pn78CAAoUaIEvLy8hLOnTp3Cs2fPAAB58+ZF9uzZhbNXrlzB3bt3AQBZsmRBgQIFhLP37t3D5cuXAQAZMmRAqVKlhLMvXrzAiRMnAAApU6ZE5cqVhbOfPn3Cvn37AAAODg4ICQkRrn3i4uKwdetWebytVq0aUqRIIfyzd+7cia9fvwIAypYtC3d3d+Hs4cOH8fbtWwBAkSJF4OPjI5w9e/YsHj9+DADIlSsXAgIChLM3btzAzZs3AQA+Pj4oUqSIcPbRo0c4f/48AMDd3R1ly5YVzr5+/RpHjx4FACRPnhzVq1cXzkZGRmLXrl0Avl2LISEhcHBwEMoSEbZu3SrXPpUrV0bKlCmFf/bevXvx+fNnAECpUqWQIUMG4ezx48fx8uVLAECBAgWQJUsW4ezFixfx4MEDAED27NmRN29e4eydO3dw9epVAICXlxdKlCghnH369ClOnz4NAEiTJg2CgoKEs+/fv8fBg98U1dHREcHBwcLZmJgYbN++HUQEOzs71KhRA05OTsL5bdu2ISYmBgBQoUIFpE2bVjh78OBBvH//HgBQrFgxZM6cWTh7+vRpPH36FACQJ08e5MiRQzh79epV3LlzBwDg7++PggULCmfv37+PS5cuAQDSp0+PwMBA4ezLly9x/Pi3TQ1cXV1RpUoV4Sy7pm1c083NDeXLlxfO/uiumS9fPmTLlk04ayvXfP78OU6ePAmAXVOEH801v3z5gt27v7V5bemapUuXhqenp3DWVq55+/ZtXLt2DQCQKVMmFC9eXDhrK9eMjo7Gjh075NrHVq5ZvHhxZMqUSTjLrvnfd81z584hPDwcABAQEIBcuXIJZ23lmm/evMGRI0cA2NY1K1WqhFSpUgn/bFu55qVLl3D//n0A7Joi/Giu+eDBA1y8eBFA0nJNZe2TmK559OhRvH79GgC7pjnYNW3jmqlSpUKlSpWEs7Z0zR07diAqKgqA7VxTbZ/dVq6p7LOnSJEC1apVE85a45pEhC1btljsmnv27EFERAQA27mm2tqH+Q9DRN/9AeAVAAJwwcx/5/b//x0BWKXi3/c2cxST/t3w8HBikha9e/cmxe8FLViwQDg7a9YsrezgwYOFszt37tTKNm7cWDh77do1SpYsmZwtU6aMcPbVq1eUNm1aOZslSxb6+vWrUDYqKopy5MghZ1OnTk0vXrwQ/tkVK1aUsw4ODnT58mXhbIsWLbQ+ry1btghnhw8frpWdOnWqcHbp0qVa2W7duglnjx49qpX96aefhLP379+n5MmTy9nChQtTXFycUPbjx4+UIUMGOevl5UWfPn0SysbGxlLBggXl7P+1d+dhcpVV4oDPx76OooiOgoIgEPZdQFZBEYGRwQ10QBQX1EFk+yG4sAyDisoyuAwiKq4IihsiI0sS9iUIiBAIOwQIIewJS7bv90ctqaqu7nyVqnQnqfd9njx9q/ue27db+3DPrXO/s+yyy+aHH364+Lz33HPPemxKKV9//fXFsV/4wheafl+//vWvi2NPO+20ptiTTz65OPaPf/xjU+wnP/nJ4thbb701L7bYYvXYXXbZpTj28ccfzyuuuGI9dp111snTp08vin3ppZfyW97ylnrsa17zmvzUU08Vxc6ePTtvvfXW9dgll1wy33333cXnvd9++zX9vi677LLi2GOPPbYp9uyzzy6O/dGPftQUe8wxxxTHXnHFFU2x++67b3Hs3XffnZdccsl67NZbb51nz55dFPv000/n1772tfXYN7/5zfnFF18sip0+fXped91167ErrLBCfuyxx4rPe9ddd63HLrbYYvmWW24pjv30pz/d9Pv6wx/+UBz79a9/vSn21FNPLY79zW9+0xR7yCGHFMfecMMNOaVUj91jjz2KYx9++OG83HLL1WM33HDDPHPmzKLYF154Ib/xjW+sx77+9a/Pzz33XFHsrFmz8mabbVaPXWaZZfL9999ffN7//u//3vT7uvrqq4tjDz/88KbYn//858Wx3/3ud5tiTzzxxOLYv/zlL02xBx54YHHs7bffnhdffPF67I477lgcO3ny5PyqV72qHrvWWmvlV155pSj25Zdfzm9961vrsa9+9avzk08+Wfy9t99++3rsEksske+8887i2P3337/p93XJJZcUxx533HFNsd///veLY3/60582xR511FHFsVdeeWVT7Pvf//7i2Pvuuy8vvfTS9dgtttiiON8+++yz+XWve1099k1velOeOnVqUezMmTPz+uuvX49dfvnl88SJE4vP+z3veU/Ttc9NN91UHPu5z32u6fd1wQUXFMd++9vfboo95ZRTimN/97vfNcUefPDBxbE333xz07XPbrvtVhz76KOP5uWXX74eu9566+UZM2YUxU6bNi2vttpq9diVV145P/PMM0Wxs2fPzltuuWU9dqmllsr33HNP8Xl/8IMfbPp9jRkzpjj26KOPbortptb86le/Whz7t7/9rSl2uGrNKVOm5JVWWqkeu8Yaa+SXXnqpKLbXteY//vGP4thPfOITTb+vbmrN//mf/ymO/eUvf9kU+8UvfrE4tpta88EHH2yqNTfZZJMRqzUfeuih4vPea6+9mvLtcNWap59+elPsf//3fxfH9rLWfOc731kcO2nSpBGpNXPOeZtttqnHLrnkkvmuu+4qju2m1vzyl7/cFPvDH/6wOPacc85piu2m1vzwhz9cHDthwoS81FJL1WOHq9acMWPGAlNr/v73vy+O/cY3vtEU202t+Z//+Z/FsTfeeOOI1JpTp05tqjVXWWWVEas1r7rqquLYI444oim2m1rzhBNOKI69+OKLm2I/9rGPFcf2stZcc801O6o111xzzXpst7XmHXfcURx7wAEHNP2+hqvWPPfcc5tijzzyyOLYXtaam2++eUe15iqrrFKP7abWXG655Tp6/3D33XdvuvYZqVrzm9/8ZnHshRde2BTbTa357ne/uzj20UcfzSussEI9djhrza222qoeO5K15o9//OPi2LPOOqsptpta86Mf/Whx7Pjx45vusw9XrTl9+vQBteakSZOKv3cva80///nPxbEnnXRSU+xw1ZrXXntt07XPv/3bvxXHdltrvuENb6jHvuENb8jPP/98UeysWbN6Wmted911xbGHHnpo0+96uGrNP/3pT02xBx10UHHsbbfd1nTt002tufbaa3dUa66++ur12OGsNT/ykY80/b4uvfTS4the1ppf+tKXimNHjx7dFNtNrfn2t7+9o1pz5ZVXrseuttpqxbUmC45HHnmk8f8/q+Ze9OT14iDz819ELNPwQ19UsP/U6r7XdfA9cuk/jYMLl3vuuacpcXZyMfLMM880Jc5OLkZmzJiR11tvvabYTi5GdttttwH/3/vVr35VFHvwwQcPiC29GDnllFMGxJZejPz2t78dEFt6MXLTTTc1Xah2cjEyceLEpjcoO7kYmTp1an7Tm97UFFt6MTJ79uy8xRZbDPiZSy9G3v/+9w+ILb0YOeqoowbEll6M/OAHPxgQW3oxcskllwyILb0YaX2DspOLkdZm2IjyG9+vvPJKXmuttZpiF1tssfz3v/+96GfeaaedBvzMpTe+DzzwwAGx3/nOd4piTzzxxAGxpTe+f/7znw+Ife9731sUe/XVVw+I3WCDDYpufN9///1NRWNE+Y3v5557rukNyojISy+9dNGN75kzZ+aNNtpowHmX3vjeY489BsT+7Gc/K4o95JBDBsQef/zxRbGnnnrqgNjSG99/+MMfBsTusMMORbGtb1BGlN/4fuyxx5pu0kVUbnxPnjx5rrEvvvhi0xuUEeU3vlubYWv//vrXvxb9zPvuu++A2O9973tFscccc8yA2NIb32efffaA2H322aco9vLLLx8QW3rju7UZNqL8xvdTTz2VX/Oa1zTFlt74nj59el5nnXWaYju58b3LLrsM+JnPP//8othPfepTA2JLb3yffPLJA2I/85nPFMWed955A2JLb3xff/31A659Ro0aVXTj++GHH87LLrtsU+zKK6+cn3766bnGvvDCC/lf//Vfm2JLb3zPmjUrb7rppgN+5tGjR5f8yHnvvfceEFt64/uwww4bEPuVr3ylKPbMM88cEFt64/uiiy4aELvtttsWxba+QRkRefXVVy+68f3EE080vUEZUX7j++WXX85rrLFGU+ziiy+eb7vttqLz3m677Qb8zKU3vv/jP/5jQOwZZ5xRFPu1r31tQOyhhx5aFPuTn/xkQGzpje+xY8cOiN14442Lbnzfe++9TW9QRnRfaz744INzjZ0xY0bTG5S1fDscteZnP/vZAbEnnXRSUexI1Zrjxo0bcO3TTa250kor5SlTpsw1dtq0aXnVVVdtil1yySXz+PHj5xrbba35gQ98YEDsWWedVRTb+uBlRHe15oc+9KGi2NYHLyNGttZ89NFH5xo7P2rNCy+8sCi29cHLiO5qzc9//vNFsa0PXkYMT63Z+uBlRKXWfPbZZ+ca29oMGzF8tWbjg5e1f8NRa7Y+eBkR+YADDiiKnR+1ZsnDzK0PXkZ0X2v+85//nGvsSNaarQ9eRkQ+4ogjimJbH7yM6K7W3GyzzYqufUay1mxsho2oXPvceOONRT9zr2vNb3zjG0WxrQ9eRgxPrdn64GXE8NWajc2wEZVac8KECXONnR+15jnnnFMU2/rgZUR3teZHPvKRotjWBy8jIm+zzTZFsb2uNVdcccXiWrPxwcuI7mvNP/3pT0WxrQ9eRgxPrdn64GVE5L322qsodqRqzdYHLyO6rzWvvfbaop+58cHL2r/hqDW/9a1vDYj9xCc+URTb+uBlRHe15tve9raiWrP1wcuI4as1Gx+8rP3729/+VvQz97rWPProo4tiWx+8jOiu1txqq60W+FqzsRk2olJr3nzzzUU/c2MzbO1fN7Xmt7/97aLY1gcvI7qrNXffffei2NYHLyMir7/++iNWa953331zjW198LL2r5ta89xzzy2KbX3wMqK81mTBMT8aB8vW2RxZjWuZTy3Yf1r1Y/m8LRZZV111VX1kTM2kSZPqyxkP5bbbbqsvqV3z0ksv1Zf5H8rDDz9cH0NQk3Ouj/AcyrRp0+rLlzeqLZM7N+2+Rzexl19+ea3BtuPYG2+8sT7qYyhXXHHFgO9x77331kcEDOW6666rL+Nb8/TTT8fNNw811bzirrvuqi+3XDNjxowYM2bMXGOfeOKJ+ji0RiW/6xkzZtRHt3QaG9H7/43HjBlTH+fSaeytt95aXwp5KO2+xyOPPFJfPn4o48aNq48wqJk6dWrbv5NW999/f33sS83s2bPry/wP5dlnn62Pi2hU8rvOOddHt3QaG9H+d12SPwbb79prr62PVhpKu9/LXXfdVR/JMpSrr766PjKmZvLkyfVRDkO5/fbb68vb17zyyitt/05aPfroo/URTI1Kfl8vvfRSffnyRiP1t3jFFVfUlzTvNHbcuHH1peeH0u57tPs7aeeGG26oj4ypGezvpNWECRPqS5/XzJw5s77M/1CmTJlSX6K+UcnvetasWW1z+kj9b3zllVcOuC4pjb399ttj0qRJc40dO3ZsfWRMzWB/J61uueWW+vimmhdffLE+Um4oDz74YNxzzz1Nnyu99nnhhRfixhtvHPD50t91u9w1Uvn2+uuvH/B30k6766t2fyftXHPNNfWRMTVTpkypj7Eayh133FEfpVYzffr0+oijoTz++ONtr6FLftevvPJKfXRLp7ERvf9bHD16dH2cS6ext9xyy4AaoZ123+Ohhx6qj+sYyk033RTPPfdc0+eef/75+liVodxzzz31kc41s2bNantd0urpp5+uj+dpVPK7nj17dtucPlL/G7e7LimNvfPOOwfUCO1cddVV9ZExNcNRa7a7hu7XWrP176Sddtc+3dSazzzzTFGtOX78+Jg4cWLT54ar1myX09Wa7d18880LZa25IF379GOtWfK7fvnll9Wa0VmtWRuXV6PW7Cy2m1rzn//8Z1GteeWVV/a81mz3d9Kq3TV0P9aa11133YC/k3ZGqta8884762Nka9SancWOVK35wgsv1MeXD6XdNfRw1Zq9vs++sNaatRH1Q7ntttsGXEMPR6354osvqjWjMk63Nop3KCNVa06ePFmtGZW/k9p4+6GMHTt2RGrNBx54YJ5rzeeee26er30WtVqzNvp8KCNVaz722GNxxx13DPj8gl5rsojrRffh/PwXEavFnG7JnxXs/3B133s7+B5GFS+i2j0h08mIn8bl4iM6Gyfb+oRMJyN+Wp+Q6WTZ5dbVGDoZ8dO6XHxE+bLL7Z6QKR0n2+4JmdIRP+2ekNl1112LYnMe+IRMJyN+Wp+Q6WTZ5dbVGDoZJ9vuCZnLL7+8KHb8+PEDnpApHSf75JNPNi0XH1E+4qfdEzKdLLvcuhpDJyN+Wp+Q6WTET+sTMiuuuGJ+/PHHi2Jbn5DpZMTPtddeO+B/49Jxsu2ekCkd8dPuCZnSlQ7brcbQyYif1idkOhnx0/qETCfjZFtXY+hkxE/raLKI8nGy7VZjKB3x0241htIRP62jySLKx8nOnj27abn4iM5G/LSOJutknGzragydjPhpXY2hkxE/7VZj+L//+7+i2AkTJgxYjaF0xE/raLKI8nGy7VZj6GTEz7ve9a6m2E7GybauxrDqqqvmadOmFcW2rsbQyTjZ1tFkKaU8bty4oth2qzGUjvhpHU0WUT5Ott1qDKUjflpHk0V0Nk62dTWGTkb8tK7G0MmIn9bRZEsttVS+9957i2LbrcZQOuLnn//854DVGErHybZbjaF0xE+71Rg6GfHTOJosIvJ2221XHNu6GkMnI35aR5N1Mk62dTWGTkb8tI4miyhf6bDdagylI37arcZQOuJn5syZeYMNNmiK7abW7GTET+tosuGqNVtXY+hkpcNe15qlq+q3jiaL6K7W3GWXXYpicx44mqyTET/d1JqtqzF0MuLn0ksvHfC32E2tWbqqfutosojhqzVbV2PoZMRPL2vNTsbJto4m67bWLF1Vv3U0WcTw1Jqto8kiylc6zLl5NFlEd7VmJ+NkW0eTDWet2XrtU7rSYa9rzU7GyW677bZNscNVa7aOJhuuWrN1DHZE+TjZ1tFkEd3VmqWr6s+YMSOPGjWqKXa4as3WMdidjJPtda1Zuqp+6xjsiO5qzdJV9VvHYEcMX63ZOga7dKXDnHtfa5aOk/3rX/864G+xm1qzdFX91jHYEeUrHfa61uxknGzrGOxua83ScbKtY7CHq9ZsHYMdUb7SYa9rzU7GyY5Urdk6Bnska83SlQ5bx2BHdFdrlq6q3zoGO2L4as3WMdgjWWtedtllRbGtY7Ajuqs1S1fVnz59el577bWbYoer1mwdg93JONnWMdjd1pqlq+pfd911A659uqk1S1fVbx2DHVG+0mGva83SVfVzHjgGu5tas3RV/ZwHjsGOKK81WXD066ji1zX80OcV7P9Edd/be3gOq9bOQePgwueyyy7La6+9dl577bXzuuuuW/wGZc4533XXXXmdddapx1955ZXFsVOmTMkbb7xxPfaXv/xlcez06dPzDjvsUI8tHYFQ88EPfrAeW3ojtuawww6rx+69994dxZ566qn12He84x1F40hqzj///HrshhtuWPwGZc6Vi5Fa7DrrrJNvv/324tgHH3wwjxo1qh5fOo4k58rFyBZbbFGPLb1QzblyMfLud7+7Hvu1r32tODbnnD/2sY/VYz/+8Y93FPuVr3ylHvue97ynuGjMuVIY1GK33HLL4qIx58qb/rXY9dZbLz/88MPFsbfddlvT3+INN9xQHDtp0qS8wQYb1GN/+9vfFse+9NJLedttt63Hnn766cWxOef8vve9rx5bOnKm5nOf+1w9tpNiJOfK6M1a7E477VRcNOZcGXVci91kk02KxpHUjB49uinfljbD5lwZLb/uuuvW46+44ori2GeeeSZvuumm9djSN0Vyrtz43nnnneuxpTcGavbbb796bOmN2JojjzyyHrvXXnsVF40553zGGWfUY7fZZpviojHnnC+88MJ67AYbbFDcDJtz5cZ3Y7699dZbi2MfeeSRvN5669XjL7roouLYqVOn5q222qoe+4Mf/KA4dtasWXn33Xevxx577LHFsTnnfNBBB9VjS0d81Rx//PH12He9613FRWPOlTeharGbb7550TiSmksuuaQeO2rUqPzAAw8Ux95xxx1N+faaa64pjp08eXLeaKON6rG/+c1vimNffvnlvN1229VjS0cg1Oyzzz712NIbsTVf+MIX6rGdvPGVc6UBpxa7/fbbF79BmXPOv/rVr+qxG220UfEblDnnfNVVVzX9Ld55553Fsffdd1/TtU/pOJKcKze+N9tss3ps6ZsiOVdufO+666712BNPPLE4NufKGNxa7Kc+9amOYo855ph67Hvf+96O8u33vve9euzb3/724mbYnCs3Ymqx66+/fvEblDnn/Pe//73+t7jOOusUN8PmXBktv/7669e/d+lNupwr4/623nrreuyZZ55ZHDt79uy855571mNLR87UfOYzn6nHlo74qvmv//qveuw73/nO4jcoc640PNZiN9100+I3KHOuNJj3qtYcO3ZscexTTz01YrXmhz70oYWu1rzgggtGpNZ86KGHmq59Lr744uLYXtaapQ3PNQceeGBPas3ddtuto1rzrLPOGpFa8x//+EfT32Lpg5c597bWPO2004pjcx65WvPrX/96PXbHHXcctlpzzJgxC0StWTr+KeeRrTWPOuqoBaLWLH2DMuecb7rppqZrn25qzdKGkJwH1pqlDXg5d19rfvKTn6zH7r///h3F9rLWLH2DMufKw8wjUWs++eSTTbXmeeedVxzby1qzdLxpzaGHHjoiteavf/3rEak177///gWi1ixteK7Zf//9R6TW/P73v1+P3WqrrUas1ixths25P2vNk046qR678847LzS1ZuO1Tze15i9+8Yvi2OnTp+cdd9xxRGrNww8/fKGrNa+//voRqTVfeOGFplqzdNRwziNba371q1/tSa25xRZbdFRrXnzxxU21ZmkzbM7d15obbrhhPbb04YOce1trHn744R3Ffv7znx+RWvMXv/hFPXbjjTcubobNube1ZumDlzn3ttYsHe1e002tyYJhfjQOplxpjFtgpZSWiYja+uh/yTnvOZf9p0bE8hFxfc55mx6dw6oR8UhEZQnaVVddtReHBQAAAAAAAAAAgCFNnDgxVltttdrL1XLOE4fav8Ri3R5gfss5vxwRU6ovh+zYSymtFJWmwYhqox8AAAAAAAAAAAAwxwLfOFg1vvpxrZTSEkPst26bGAAAAAAAAAAAAKBqYWkcvLr6cfmI2HyI/XZs2L5m/p0OAAAAAAAAAAAALJwWlsbBPzRsf7zdDimlxSLigOrLZyNi9Pw9JQAAAAAAAAAAAFj4LBSNgznnGyPiqurLg1JK27TZ7YiIGFXdPiPnPGNYTg4AAAAAAAAAAAAWIkuM9Al04NCojB9eNiL+llI6OSqrCi4bEftGxKer+02IiO+MyBkCAAAAAAAAAADAAm6haRzMOd+SUvpwRPwiIv4lIk5us9uEiNgj5/zCsJ4cAAAAAAAAAAAALCQWilHFNTnnP0fERhFxWlSaBF+MiGcjYlxEHB0Rm+ac7x2xEwQAAAAAAAAAAIAF3EKz4mBNzvmhiDi8+g8AAAAAAAAAAADowEK14iAAAAAAAAAAAADQHY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0Ec0DgIAAAAAAAAAAEAf0TgIAAAAAAAAAAAAfUTjIAAAAAAAAAAAAPQRjYMAAAAAAAAAAADQRzQOAgAAAAAAAAAAQB/ROAgAAAAAAAAAAAB9ZImRPoGFxOK1jccff3wkzwMAAAAAAAAAAIA+0tKztvhg+3Ui5Zx7cZxFWkppi4i4aaTPAwAAAAAAAAAAgL62Zc55XLcHMaoYAAAAAAAAAAAA+ogVBwuklJaOiA2rL5+MiFkjeDp07g0xZ8XILSNi0gieC0ApuQtYGMldwMJG3gIWRnIXsDCSu4CFjbwFLIzkLli0LR4Rr6tu355zfqXbAy7R7QH6QfUX3fXyjoyMlFLjy0k554kjdS4ApeQuYGEkdwELG3kLWBjJXcDCSO4CFjbyFrAwkrugLzzUy4MZVQwAAAAAAAAAAAB9ROMgAAAAAAAAAAAA9BGNgwAAAAAAAAAAANBHNA4CAAAAAAAAAABAH9E4CAAAAAAAAAAAAH1E4yAAAAAAAAAAAAD0EY2DAAAAAAAAAAAA0EdSznmkzwEAAAAAAAAAAAAYJlYcBAAAAAAAAAAAgD6icRAAAAAAAAAAAAD6iMZBAAAAAAAAAAAA6CMaBwEAAAAAAAAAAKCPaBwEAAAAAAAAAACAPqJxEAAAAAAAAAAAAPqIxkEAAAAAAAAAAADoIxoHAQAAAAAAAAAAoI9oHAQAAAAAAAAAAIA+onGQRVpK6c0ppW+nlManlKallJ5OKd2YUjoypbTcSJ8f0B9SSpullI5NKf01pfRISumVlNLUlNKElNJPU0rbd3i896SULkwpTawea2L19Xvm188AUJNSOiWllBv+7VQQI28Bwy6ltHJK6f+llK5JKU2q5p/HUko3pJS+lVLapuAY8hcwLFJKS6WUDkopXZJSeryhbrw7pfTjlNLWhceRt4CupJRWSSntmVI6sXova0pD/ffTeThe13kppbRcSumo6r39p6v5cXz13v+bOz0nYNHTi9yVUlompfS+lNKZ1brx6ZTSjOrH61JKx6eU/rWDc5K7gEH1+pqr5djLpZTubzjegx3EyVvQZ1LOeaTPAeaLlNIeEfHLiHjVILvcHRHvzTnfP3xnBfSblNLYiNihYNefR8Qnc87ThzhWioj/jYhPD3GcH0bEwdl/4IH5IKW0cUSMi4glGj69c855zCD7y1vAiEgpfTAifhARrx1itz/mnPceJF7+AoZNSmm1iPhLRGw4l11Pi4gj2uUdeQvolZTSUDni3JzzgYXH6UleSimtGZUcuc4guzwXER/JOV9ccl7Aoqnb3JVS2igiro6IFefyrV6Iyn388+dyPLkLGFKvrrkGOfa3I+KIhk89lHNefS4x8hb0KSsOskiqvql9flSaBqdGxJcjYtuI2CUizq7utk5E/CWltMKInCTQL95U/fhYRJwRER+IiK0iYpuIODwiHq1+ff+I+OlcjnVSzLnZektE7Fc91n7V11H9+n/14LwBmqSUFovKddQSETG5MEzeAoZdSumAiDgvKk2DkyPihIh4V0RsHhF7RMQXIuLSiJgxxGHkL2BYpJSWiOamwX9ExIFRqRnfHREnRsS06tcOi4gjBzmUvAXMD49ExN/mMbbrvFS9d39RzHkD++yo3OPfNir3/KdG5T2AC6pNPwAR85a7/iXmNA1eExHHRKWO3CwidouIsyJiVnWfX6WUdh/sQHIXMA+6ueZqklLaNCK+GBEvR6XZuSRG3oI+ZsVBFkkppdERsVNEzIyIHXLO17V8/aiIOKX68ric84nDe4ZAv0gpXRQRP4uI3+WcZ7X5+spRuRGxdvVTO+Scr2qz31oRMT4qDTvjqvu91PD15SJibERsEZXct27O+b4e/zhAH0spfTEqq9zcFRG/j8oN1IhBVhyUt4CRkFIaFZU3opeOiKsiYq+c83OD7LtUu9We5S9gOKWU3h8Rv62+vC4itm+tHVNKm1e/tmREPBMRq+ScZzZ8Xd4CeialdEJE3BQRN+Wcn0gprR4RD1S/XLT6Ta/yUkrp+Ig4rvry/+Wcv9Xy9W0i4srq9xmdc35n+U8KLEq6zV0ppW0j4tCIOCHnfOcg+7wvKvfEUkTcFxFvG2Ql6OND7gLmohfXXG2OuXhE3BCVh2e/FhEHRcRbYi4rDspb0N+sOMgiJ6W0ZVSaBiMizmltGqz6TlRuXEREfDGltORwnBvQf3LOe+acz2/XNFj9+pRoXi78A4Mc6rCYMxr0kMabrdXjvBgRh1RfLhGVp4kAeqI6Pq+2CsRnI2LQseoN5C1gJJwZlabBKRGxz2BNgxER7ZoGq+QvYDi9o2H76+1qx5zzzVFZ/SEiYqWIWLdlF3kL6Jmc83E554tyzk90cZiu81L1nv2h1Zfjo3JPv/Vcr4uIc6ovd642WgN9qNvclXO+Nuf84cGaBqv7/DEiLqy+XDMiNmndR+4CSvXomqvVoVFpGrw7Ir5ZEiBvARoHWRTt3bD9k3Y75JxnR2UFsIjKDded5u8pAQxpTMP2mq1fTCmliHhf9eVdOefr2x2k+vm7qy/3rsYB9ML3I2KFqDzpOGZuO8tbwEhIKa0blTEqERHfrT6g0ekx5C9guC3VsH3/EPs1rsS1dG1D3gIWND3MSztFxKur2+dW7+m389OG7X06PV+ADo1u2B5wLz/kLmCEpJTeEhG1KYufHeKB2VY7hbwFfU3jIIui7asfp0XEzUPsN7Zhe7v5dzoAc9X4RlG7C/I1IuJN1e2xbb7eqPb1VSNi9e5OCyAipfShiNgzIp6OiKMKw+QtYCR8sGH7gtpGSmmllNLbUkqvLTiG/AUMtwkN228dYr/aG9M5Iu5p+Ly8BSxoepWXtm+zXzvjovJeQIT7/MD8t3TDdrt7+XIXMFK+HxHLR8TPc86j57ZzA3kL+pzGQRZFo6of7805zxxiv7vaxACMhB0btu9q8/VRc/l6DPJ1uQ3oSkrp1RFxRvXl0TnnJwtD5S1gJGxd/fhcRIxPKX00pXRbVBqfJ0TElJTS/Sml41JKKwxyDPkLGG6/jojnq9tHp5QWb90hpbRpROxRfXlezvn5hi/LW8CCpld5qeg41fcAaquyym3A/NaTe/lyF9BLKaV9I+K9EfFMRBzZYbi8BX1O4yCLlJTSMhGxcvXlxKH2zTk/E3O64lebn+cFMJiU0mIR8aWGT53fZrfGHDVkbouIRwaJA5gXp0TEGyLi2og4p4M4eQsYCetVPz4YEWdGxC8iYqOWfdaIiOMj4rqU0hvbHEP+AoZV9cGMAyPipYh4R0TclFI6IKW0dUpp15TScVFZ9WGpiLg1Ig5vOYS8BSxoepWXaq+n5ZyfLTzO61JKSw+5J8A8SiltHHMe5rgj53xnm93kLmBYpZRWiojTqy+/lHOe3OEh5C3ocxoHWdSs2LA9tWD/WuPgYKtNAMxvh0XEVtXt3+ecx7XZp5PcNq1hW24D5llKabuI+GREzIyIg3POuYNweQsYCa+pflw3Ij4fEc9GxMERsUpELBMRW0bEX6v7bBARF1Qf4mgkfwHDLuf8+4jYIioPamwSEedGxHURcWlUmp1fjErD4HY550kt4fIWsKDpVV6qHaeT+/ztjgPQtWqDzI8iorY69LGD7Cp3AcPtWxHx+qjUkGfPQ7y8BX1O4yCLmmUatqcX7P9K9eOy8+FcAIaUUtoxIr5RfTk5Ij47yK6d5LZXGrblNmCepJSWiogfRkSKiNNyzrd3eAh5CxgJy1c/Lh0RsyJi95zzWTnnJ3POr1Qf0Ngz5jQPbhsR+7QcQ/4Chl1KacmI+EhE7BWV669Wr4+I/SJipzZfk7eABU2v8lLtOJ3c5293HIBe+G5UHvSIiDg35/ynQfaTu4Bhk1LaISI+EfP28H+NvAV9TuMgi5qXG7aXKti/toTuS/PhXAAGlVJaPyJ+HxFLROVC+0M55ycG2b2T3Na4NLjcBsyrYyNiVEQ8HBEnzEO8vAWMhMbcc0HO+frWHXLOsyPiqIZP7TfEMeQvYL5LKS0fEZdFxJcj4rURcUpUrsOWjohXRcS7I+LqqKya+ueU0qEth5C3gAVNr/JS7Tid3OdvdxyArqSUjonKVI6IiJujssL9YOQuYFhUV0KtPfx/Rs75H/N4KHkL+pzGQRY1LzRslyyPW1uRomTpXYCeSCmtERF/i4iVorIazn4557FDhHSS25Zv2JbbgI6llNaNiGOqLw/JOU8bav9ByFvASGjMPX8dbKec8x0R8Wj15ZZDHEP+AobDCRGxQ3X7oJzz0Tnnu3LO03POz+ecL42InSNidFTeEDo1pbRRQ7y8BSxoepWXasfp5D5/u+MAzLOU0mci4uTqy7ujsrL9UPfK5C5guHw5ItaJiEci4vgujiNvQZ9bYqRPAHop5/xySmlKRKwcEasOtW9KaaWY8x+3R+b3uQFERKSU3hiV1STeGBE5Ij6Rc/79XMImNmwPmdsiYrWGbbkNmBeHReXpwvsjYrmU0r5t9tmgYfudKaU3VLf/XL15Km8BI+GRiKjlo4lD7Vjd900RsUrL5+UvYNiklFJEfLz6ckLO+dx2++WcZ6aUvhqVlQcXq8YcVv2yvAUsaHqVlyZGxNsjYvmU0qtzzs8WHOfJnPMrQ+wHUCyltF9EfL/68qGI2DXn/ORcwuQuYLgcXf14WUTsWSkvB6j1QizfcJ9/cs75ioZ95C3ocxoHWRSNj4jtI2KtlNISOeeZg+y3bksMwHyVUlo5Ii6NiLdWP3VIzvlnBaF3NmyvO+heA78utwHzojZu4K0R8euC/b/asL1GREwLeQsYGXfEnBUEF5/LvrWvt9aL8hcwnF4fEa+pbt8yl31vbthuzD/yFrCg6VVeujMi3t+w3/XtDpBSWiIi1hzkGADzJKX0bxHxs6g8tPF4ROySc57bA2oRchcwfGqjhT8ecx5IG8zKMede/9iIaGwclLegzxlVzKLo6urH5SNi8yH227Fh+5r5dzoAESmlV0XE/0XEetVPfSnn/L3C8Aci4rHq9o5D7RhzRlw9GhEPdnKOAD0kbwEj4cqG7TUH3aui9iDHoy2fl7+A4dTYvDy3B7yXHCRO3gIWNL3KS1c3bA91nC1izmo67vMDXUsp7RIR50fl+uypiHhXzvm+wnC5C1jYyFvQ5zQOsij6Q8N22+76lNJiEXFA9eWzETF6/p4S0M9SSstFxF8iYrPqp/475/zN0vicc46IP1ZfrptS2nqQ77N1zHlS+4/VOICO5JwPzDmnof5FxAkNITs3fO3B6jHkLWAk/CkiZlS39xlsp5TSjhHx2urLqxq/Jn8Bw+zpiHi+ur1NdQWHwTS+gfNAbUPeAhY0PcxLYyLiuer2x9Ig8/ci4sCG7d93fMIADVJK20Ylhy0dleu03XLOd3RwiDEhdwHDYG738Kv38R+q7v5Qw+d3ajnUmJC3oK9pHGSRk3O+Mea8+XNQSmmbNrsdERGjqttn5JxntNkHoGsppaWicgH9juqnzsg5f2UeDnV6zFlV4syU0rIt32fZiDiz+nJmdX+AkXR6yFvAMMo5PxURP6q+fFdKad/WfVJKK0ZzvjmrzaFOD/kLGAY559lRecgsIuKNEfHldvullFaKiMaHzy5q2eX0kLeABcvp0WVeyjlPj4j/qb4cFRFHtu5Tvfd/UPXl2JzzTd2eONC/UkqbROXabPmImBYR780539zJMeQuYGEjbwHJw6UsilJKm0ZlidxlI2JqRJwclVUFl42IfSPi09VdJ0TEFjnnF0biPIFFX0rpdzFnxZsrIuKLETHUf3yn55wnDHKsr0fEl6ovb4nKG0f3RWUU39ERsWn1a1/POR/b3ZkDDC6ldHxEHFd9uXPOecwg+8lbwLBKKb0uIsZFxJuj8ib0/0bEhVFZKWLDqOSe2so2P8g5f26Q48hfwLBIKa0bETdHxHLVT/05Is6NiPsjYpmI2DoqdeSbq1+/POe8a5vjyFtAT6SUtouItRo+tXJEfKu6fU3MeVAjIiJyzj8d5Dhd56XqQx/jImLt6qd+GBHnRcRLEbFzRBwbEStUX2+bc7614EcEFkHd5q6U0poRcW1ErFL91GERcdlcvu3knPPkNucidwFz1atrrrl8jwcj4i1RWXFw9SH2k7egj2kcZJGVUtorIn4REf8yyC4TImKPnPO9w3dWQL9JKXX6H9pBL96rY9bPjohPDBF/TkR8urpyBcB80UHjoLwFDLuU0qiojC1ea4jdfhwRBw+2+rz8BQynlNKuEfHrqLxRNJQrIuIDOedn2hxD3gJ6IqX004j4WOn+1TF47Y7Tk7yUUlorIi6OiLcNssvzEfHRnHPraqxAH+k2d6WUDoyIn3T4bU/IOR8/yPnIXcCQenXNNZfv8WAUNA5W95W3oE8ZVcwiK+f854jYKCJOi0qT4IsR8WxUuuWPjohNNQ0CC5Oc8+yc80ERsUdE/DEiHouI6dWPf4zK6IRPehMIWFDIW8BIyDmPj4hNIuKoiLghIp6OSu6ZGBG/iYh35pwPGqxpsHoM+QsYNjnny6KyGurRETEmIp6MiBlRWc3hgYg4PyL2johd2zUNVo8hbwELlF7lpeo9/E2jkiPHReUe/4sRcXdU7v1v5A1sYEEjdwELG3kL+pcVBwEAAAAAAAAAAKCPWHEQAAAAAAAAAAAA+ojGQQAAAAAAAAAAAOgjGgcBAAAAAAAAAACgj2gcBAAAAAAAAAAAgD6icRAAAAAAAAAAAAD6iMZBAAAAAAAAAAAA6CMaBwEAAAAAAAAAAKCPaBwEAAAAAAAAAACAPqJxEAAAAAAAAAAAAPqIxkEAAAAAAAAAAADoIxoHAQAAAAAAAAAAoI9oHAQAAAAAAAAAAIA+onEQAAAAAAAAAAAA+ojGQQAAAAAAAAAAAOgjGgcBAAAAAAAAAACgj2gcBAAAAAAAAAAAgD6icRAAAAAAAAAAAAD6iMZBAAAAAAAAAAAA6CMaBwEAAAAAAAAAAKCPaBwEAAAAAAAAAACAPqJxEAAAAAAAAAAAAPqIxkEAAAAAAAAAAADoIxoHAQAAAAAAAAAAoI9oHAQAAAAAAAAAAIA+onEQAAAAAAAAAAAA+sj/B9HOgQN100L/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACg4AAAPhCAYAAAArHcafAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gUZdcG8LP0HjqhKwiCoqIoqKiooIQSBGJlrfRQFFEEgUiX3nsJvZPQe+8t9BZaaAmhhJaQXvZ8f+DMNztlZ2Y32SVv7t91Pdennx7F7LvDc595ioWZCQAAAAAAAAAAAAAAAAAAAAAAAACyhmye/gUAAAAAAAAAAAAAAAAAAAAAAAAAgPtg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIXk8PQvIDOwWCy5iei1//40iojSPPjLAQAAAAAAAAAAAAAAAAAAAAAAgKwjOxGV+O+PzzJzkqv/QCwcNOY1Igrx9C8CAAAAAAAAAAAAAAAAAAAAAAAAsrR3iOiYq/8QXFUMAAAAAAAAAAAAAAAAAAAAAAAAkIXgxEFjooQ/OHr0KJUuXdqTvxYAAAAAAAAAAAAAAAAAAAAAAADIIu7cuUO1a9cW/jTK0d9rFBYOGpMm/EHp0qWpXLlynvy1AAAAAAAAAAAAAAAAAAAAAAAAQNaUpv+36MNVxQAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIAAAAAAAAAAAAAAAAAAAAAAAAkIVg4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhGbpw0GKxsMGx28A/y8disay0WCwRFosl6b//u9Jisfhk5H8DAAAAAAAAAAAAAAAAAAAAAAAAwP+S5/7EQcsz04loExG1IKKyRJTrv//bgog2WSyW6RaLxeLBXyYAAAAAAAAAAAAAAAAAAAAAAABAppDDTf+eqUQ0xcFfj3Pw1wYTUfv//vgkEY0gojAiqkxEfxHRm//99Sgi6uvyrxQAAAAAAAAAAAAAAAAAAAAAAADgf5i7Fg7eZ+ZzZossFstL9GxxIBHRMSL6iJkT/vvzEIvFspaI9hDR20TU02KxzGHmsHT5FQMAAAAAAAAAAAAAAAAAAAAAAAD8D3reryr+nf5/cWNXyaJBIiJi5ngi6vrfn+Ygom7u+6UBAAAAAAAAAAAAAAAAAAAAAAAAZD7P7cJBi8ViIaIv/vvTi8x8WO3v++//f+m/P23+Xx0AAAAAAAAAAAAAAAAAAAAAAAAAqHhuFw4S0YtEVPa/P96j8/cKf70cEb2QUb8gAAAAAAAAAAAAAAAAAAAAAAAAgMzOXQsHv7JYLJcsFkuCxWJ5arFYrlgslnkWi+UTBzXVJX98UeefL/3r1TX/LgAAAAAAAAAAAAAAAAAAAAAAAIAsLoeb/j2vyP78pf/GjxaLZTUR/czM0bK/p7zkjyN0/vnhGnWGWCyWcjp/i7fZfyYAAAAAAAAAAAAAAAAAAAAAAADA8yijFw7GE9FaItpBz04FjCWiEkRUj4g6ElExImpORGssFstnzJwiqS0o+eNYnX9PnOSPCzjx6wzX/1sAAAAAAAAAAAAAAAAAAAAAAAAAMr+MXjhYlpmfqPz/t1kslolEtImI3qRnCwn9iWiC5O/JI/njZJ1/T5Lkj/M68esEAAAAAAAAAAAAAAAAAAAAAAAAyBIydOGgxqJB4a/ds1gsXxJRKBHlIqKuZL9wMFHyx7l0/lW5JX+cYPKXSaR/vbE3EYU48c8FAAAAAAAAAAAAAAAAAAAAAAAAeK5k9ImDDjHzNYvFso2ImhDRSxaLpQwzR/73l59K/la964fzS/5Y71pjtV9HhKO/brFYzP4jAQAAAAAAAAAAAAAAAAAAAAAAAJ5L2Tz9CyCiC5I/Liv5Y+livnI6/wzpiYHhLv+KAAAAAAAAAAAAAAAAAAAAAAAAAP5HPQ8LB7WO85MuKKym88+Q/vVQ1345AAAAAAAAAAAAAAAAAAAAAAAAAP+7noeFg69I/jhS8sfXJX9eT+ef8dF///c2Ed1In18WAAAAAAAAAAAAAAAAAAAAAAAAwP8ejy4ctFgslYjos//+9Boz3xb+GjMzEa3570+rWSyWdzX+Ge/S/584uOa/OgAAAAAAAAAAAAAAAAAAAAAAAABQkWELBy0Wi6/FYsnh4K+XIqIgIsr53/9rssrfNo6IUv/744kWiyWv7J+Rl4gm/venqf/9/QAAAAAAAAAAAAAAAAAAAAAAAACgQXNhXzqYSEQ5LRZLMBEdomdXCCcQUXEi+piIOhJRsf/+3v2ksnCQmS9bLJZRRNSLiN4mogMWi2U4EYURUWUi6klEb/73t49k5isZ9R8DAAAAAAAAAAAAAAAAAAAAAAAA8L8gIxcOEhGVIaKu/w0twUTUlpmTNP56HyIqSUSt6dkiwaUqf08gEfV14dcJAAAAAAAAAAAAAAAAAAAAAAAAkCVk2FXFRPQTEfUjos1EdJmIHtGz64SfENFZIppORO8z85fM/ETrH8LMNmZuQ0RNiGgNEUUSUfJ//3cNETVm5rbMbMu4/xT4X3D06FHatGkTJSYmmq69dOkSBQcH09OnT03X3r9/nxYsWEAPHz40XZuYmEiBgYF0+/Zt07XMTHPmzKGrV6+ariUiWrp0KZ0+fZqY2XTt+vXr6dChQ5SWlma6ds+ePbRjxw5KSUkxXXvq1Clat24dxcfHm669fv06LVu2jKKjo03XPnnyhObMmUP37983XZuSkkKzZs2iW7duma5lZpo/fz5dvHjRqc8pODiYjh8/7lTtli1baP/+/ZSamqr/N8scPHiQtmzZQklJWuvFtZ0/f55WrVpFsbGxpmtv375NixYtokePHpmujYuLo8DAQLpz547pWpvNRoGBgXTt2jXTtUREixcvpnPnzjn1Oa1Zs4aOHj1KNpv53yJ37txJu3fvduq7eOzYMdq4caNTz9srV65QUFAQxcTEmK598OABzZ8/nx48eGC6NikpiWbNmkURERGma4Xn7eXLl03XEhEtX76cTp065dRnvHHjRjp48KBTz9t9+/bR9u3bKTk52XTt6dOnae3atU49b2/dukVLly6lJ0+emK6NiYmhOXPm0L1790zXpqWl0axZs+jGjRuma4mIFixYQBcuXHDqc1q5ciUdO3bMqe/i1q1bae/evU49bw8fPkybN2926nkbGhpKK1eudOp5e+fOHVq4cKFTc5+EhAQKDAykyMhI07U2m41mz55NYWFhpmuJiJYsWUJnz5516jNet24dHT582KnPeNeuXbRz506nnrcnTpyg9evXU0JCgunasLAwWr58uVNzn0ePHtHcuXMpKirKdG1ycjLNmjWLwsPDTdcyM82dO5cuXbpkupaIKCgoiE6ePOnUZ7xp0yY6cOCAU8/bAwcO0LZt25z6Lp49e5bWrFlDcXFxpmvDw8Np8eLF9PjxY9O1sbGxFBgYSHfv3jVdKzxvr1+/brqWiGjhwoV0/vx5pz6n1atXU0hIiFPfxe3bt9OePXucet56Oms6M/dxNWvOnj2brlxx7tKHrJY1b9y44ZGsmZqaSrNmzaKbN2+arvV01ty3b5/bs+aFCxeQNU1Yu3atx7Lmhg0bnJr7uJo1582b55G5D7Kmca5mzdmzZ7s098lsWXPbtm1OZ80jR47Q5s2bnZr7uJI1796965GsKcx9MlvW3L17t0ey5rVr1zySNV3ts8+bN89jWXP//v1uz5rnzp2j1atXZ7qsGRgYiKxpkCezpit9dley5rJlyzyaNZ2Z+3gqa0ZHR3skaxIRzZ8/n0JDQzNV1jx06JBHsmZkZGSmzZrOzn1czZq7du1ye9a8evUqrVixItNlzblz5zqdNeF/EDNj6AwiKkdETEQcHh7OkDlFRUVx/vz5OX/+/Ny8eXOeNWsW37lzx1BtUlISV6xYkXPlysWff/45T5gwga9fv26o1mazcd26dTlbtmz8wQcf8LBhw/j8+fNss9kM1f/www9MRPzmm2/yP//8wyEhIZyWlmao9p9//mEi4pdffpn//PNP3rNnD6ekpBiqnTt3LhMRV6hQgTt16sSbNm3ihIQEQ7W7d+9mIuISJUrwzz//zMHBwRwTE2OoNiwsjHPkyMGFChXir7/+mhcsWMAPHjwwVBsdHc1FixblPHnycNOmTXn69OkcERFhqDY1NZWrVavGOXLk4E8//ZTHjh3LV65cMVTLzOzj48MWi4XfffddHjJkCJ8+fdrwZ+zv789ExK+//jr36dOHDx06ZPgzHjlyJBMRv/TSS9ytWzfesWMHJycnG6oNDg5mIuIyZcpw+/bted26dRwfH2+o9vjx40xEXLRoUf7+++952bJl/OTJE0O1kZGRnCdPHi5QoAC3bNmS58yZw/fu3TNUGx8fz6VLl+bcuXOzj48PT548mW/evGmo1mazca1atTh79uz80Ucf8ciRI/nixYuGapmZv/zySyYifvvtt3nAgAF84sQJw5/xX3/9xUTEr7zyCvfs2ZP37dvHqamphmqnTZvGRMQvvPACd+3albds2cKJiYmGards2cJExN7e3tymTRtetWoVx8bGGqoNDQ3lbNmyceHChfnbb7/lRYsW8aNHjwzVPnz4kAsWLMj58uXjZs2a8cyZMzkyMtJQbXJyMleqVIlz5szJDRo04PHjx/O1a9cM1TIz16tXjy0WC7///vs8dOhQPnfunOHP6ZdffmEi4po1a3JAQAAfPXrU8Hdx0KBBTERctWpV/uOPP3j37t2Gn7cLFy5kIuLy5cuzv78/b9y40fDz9sCBA0xEXLx4cf7pp584KCjI8PP2xo0bnDNnTi5UqBB/9dVXPH/+fI6KijJU+/TpUy5evDjnyZOHmzRpwlOnTjU8R0pLS+MaNWpw9uzZ+eOPP+bRo0fz5cuXDdUyMzdt2pSJiGvXrs2DBg3iU6dOGf6Mf/31VyYirlGjBv/999988OBBw9/FsWPHMhFxpUqV+LfffuPt27dzUlKSodo1a9YwEXHp0qW5Xbt2vHbtWo6LizNUe+rUKfF5a7VaeenSpYaft/fu3eO8efNy/vz5uUWLFjx79my+e/euodrExEQuV64c58qVixs2bMiTJk3iGzduGKq12Wxcp04dzpYtG3/44Yc8YsQIvnDhguHP6bvvvmMi4lq1anG/fv342LFjhmt79+7NRMTVq1fnHj168N69ew1/F2fNmsVExBUrVuTOnTvz5s2bDT9vd+7cyUTEJUuW5F9++YVXrlzJT58+NVR75coVzp49O3t5efE333zDCxcu5IcPHxqqffz4MRcuXJjz5s3Lvr6+PGPGDMPP25SUFK5SpQrnyJGD69evz+PGjeOwsDBDtczMDRo0YIvFwu+99x7/+++/fPbsWcOfU7t27ZiI+I033uC+ffvy4cOHDT9vhw4dykTEVapU4e7du/POnTsNz32WLVvGRMRly5blDh068Pr16w3PfY4cOcJExMWKFeMffviBly9fztHR0YZqIyIiOFeuXFywYEH28/PjuXPn8v379w3VxsXFccmSJTl37tzcqFEjnjJlCt+6dctQrc1m45o1a3L27Nm5Xr16PGrUKL506ZKhWmbmFi1aMBHxO++8wwMHDuSTJ08a/oy7d+/ORMSvvvoq9+rViw8cOGD4eTtp0iQmIn7xxRf5119/5W3bthl+3m7YsEGc+7Rt25ZXr15teO5z7tw5tlgsXKRIEW7VqhUvXrzY8NwnPbJmzpw5+bPPPjOdNT/44APOli0b161b161Zs1+/fh7Jmnv27MmUWbN69epi1hwzZozTWXPw4MGmsmanTp3ErNm7d+9MkTVPnDjhkayZkJCQrlkzNDTU8Of01Vdf2WXN48ePuz1rdunSxVTW3Lp1KxMRlypVilu3bu3WrFmoUCGPZM2PP/7Y6azZunXrdMuau3btMvy8XbRokV3W3LBhg9NZc8WKFYbnPjdv3rTLmvPmzcsUWdPX19cjWXPcuHEeyZqnT5+2y5pLlizhx48fG6q9d+8e58uXT8yagYGBTmfNiRMnmsqa7777rpg1hw8f7ras2adPHyYirlatWpbNmrdv3zZUm5KSwlWrVrXLmlevXjVUy6zMmmfOnDH8ObVv317Mmn369DGVNYcNGyZmzd9//91tWfPo0aMey5qlSpV6LrKmmT77H3/8YZc19+/f73TW3Lp1q+Hn7caNGz2WNQsUKMD58uXjL774ItNkzR9//NEjWXPevHkeyZrXrl2zy5rz5883nDVjYmLssua0adPcljUbNWrEFouF69Sp43TWfO2110xnzVGjRjERceXKlTNN1rxz547Hsubbb7/tkazZs2dPMWv+9ddfprLm9OnTPZI1L1686JGsmZKSwpUrV34usuaRI0cMfxcHDx7sdNYEzwoPD2dh/RoRleP0WBOXHv+Q//WBhYP/O3r16iX9EplqBs2YMUNRKzSD9F6Ebdu2TVErNIP0XoRdunSJs2XLZlcrNIPWrFnjsBn06NEjLlSokF1tkSJFDDWDhN/kpLVmmkGffPKJXa2w6NJIM6hNmzZ2tcKiSyPNoCFDhih+1m+99ZahZtDixYsVtUabQYcOHVLUGm0G3bp1i3PmzGlXa7QZFBsbyyVKlLCrFZpBei/C0tLS+PXXX7erFZpB06dP120GNWvWzK5WaAaNHTtWtxnUrVs3u1qhGTRkyBDdZtD48eMVP2th0aVeM2jdunWKWqPNoDNnzihqjTaD7t+/z/ny5bOrNdoMSkpK4vLly9vVFihQwFAzyGaz8XvvvWdXa6YZZLVa7WqlzSC9RZd9+/ZV/LyMNoNmz56tqH311Ve5Z8+eus2gXbt2KWpffPFF7tq1q24z6OrVq5w9e3a7WmHRpV4z6MmTJ1ykSBG72sKFC/N3332n2wxKTU3lqlWr2tWaaQZ9/vnndrVmmkEdOnRQPG+NNoOGDx+u+FkLzSC9F2ErVqxQ1ArNIL1FlyEhIYra8uXLc6dOnXQXXd6+fZtz585tVys0g/QWXcbHx7O3t7ddrXTRpaPnrc1m4zfffNOuVngRZqQZ1LJlS8Xz9pNPPjHUDPrzzz8Vz1ujzaApU6YoftbSZpCj7+KmTZsUtUabQRcuXGCLxWJXK20GOZr7PHjwgAsUKGBXa7QZlJyczC+88ILieduyZUuePXu2w2aQzWbjjz76SDH38fHx4UmTJuk2g3766SfFd1FYdKnXDBowYIDiZ12rVi3u37+/bjNo/vz5itrq1asbagbt27dPUWu0GXT9+nXOkSOHXa3RZlBMTAwXK1ZM8bwVmkGOXoSlpaXxK6+8onjeGm0GNW7cWPG8FZpBeosuu3TpovguCs0gvUWXo0ePVvysa9asyX379tVtBq1atUp17tO9e3fetWuXw+/iyZMnFbXlypXjjh076i48uHPnDufNm9eutnjx4vzjjz/qLjxISEjgsmXL2tUWLFiQv/zyS92FBzabjd955x3F87Zx48aGFh588803irmP0YUHnsqa27dvV9S6mjXbtm2rmzUfP37MXl5edrXCizBns2bz5s0NZc1PP/1U8bx9HrKmo+/ikiVLFLWuZM0KFSoYzpq5cuWyqxWyZnBwsNuzprDoUi9rfvHFF4q5j7DBz5msKWzw08uaEyZMUPysXcmaL730kqGsefbsWUVtZsia77//vl1temRNIxv8AgICFD+vd955x9AGP09lzbCwMI9lzZdfftmu1l1Zs2PHjornrZA19V6EZUTWNLLB79ixY4paoxv8tLKmkQ1+nsyafn5+iuet0azZo0cPxfPWHVlz8+bNiloha27fvt3prKm36PLBgwdcsGBBu1oha+pt8MuIrCls8NPLmj///LPiu+iOrLlgwQJFrTuy5o0bNxxmTUdzn6dPn6Zr1sybNy83a9bM0Aa/Jk2aKJ63DRo0MLTBTytrGtngN2bMGMXP+nnPmnfv3vVY1qxdu7bieZseWVNv0eXff/+t+HkJWVNvg19GZE0jG/wuX77ssaz50ksv2dW6K2u2bdtW8bw1mjX//fdfxc9ayJp6iy4dZU29RZeHDx9W1ApZc9OmTRmaNUuWLGlXmxmy5u+//6543roja65fv15R666smT9/frtaIWvq9dmTkpK4QoUKdrVC1pwzZ47TWXPy5Mm6WfP7779XPG9dyZpGD5OZM2eOolbY4Pe8Zs3o6GinsyZ4FhYOYuEguGDu3LncqFEjxYNXOrSaQRs2bBBX5WsNrWZQSEgIt2rVSrEwTDq0mkE3btxgq9XKRYsW1azVagbFx8ez1WpV/MYsnxAJzSD5i7AOHToowq58QiQ0g+Qvwvr27asIUfIhNIPkO3AnTJigmJzLR+XKlVV34C5dulSxmE0+ypQpo7oDd8eOHfztt986rNU67ens2bNstVoVzXrpkJ72JG0G3b17l61Wq2KSLB1apz3ZbDa2Wq1cqVIlzVpHzaBu3bopJtjyodUMGjJkiGLiJh9CM0j+ImzmzJmK5rN8VKxYkbt06aJ4EbZ69WrFAhr5EJpB8kWXBw4c4FatWikmUNLh5eXF3377rWIH7pUrV9hqtSoW4kqHVjPoyZMnbLVaFU0J6ciZM6fmaU+tW7dWNPrl30Wt05569uzJtWrVcvjzEk57kjeDRo8ezfXq1XNYq9UMmj9/vqLhJR/SZpA0nGzevJm//vprh7VCM0j+Iuz48eNstVoVzXrpkDaDpOEkPDycrVarokEoHblz5+bGjRsrXoQlJSWx1WrlihUratYKzSC1HbidOnXiV1991eF/c+3atVVPe+rfvz/XqVPHYa3WaU+TJ0/m+vXrO6zVagatWLFCEbLlQ6sZtHv3bv7uu+8UzXrp0GoGXbhwga1Wq2JhmHRIm0HSF2FRUVFstVoVL2SkQ9oMkr8I+/777xWNJ+mQNoPkiy67d+/ONWvWdPjz0moGDR06lD/44AOHtVrNoMDAQPbx8XFYq7UDd926deJJq1pDugNX+rw9fPgwt2rVStGslw6t056uXbvGVquVCxcurFmr1Qx6+vQpW61WLleunGato2ZQu3btuFq1apq1jk4W7tOnD7/99tsOf15aJwuPGzeOP/74Y4e1QjNIvuhy0aJF4imcWkNoBsl34G7btk3RuJYPrWbQqVOn2Gq1Kpr10iHdgSt93kZGRrLValUsRpEOrR24KSkpbLVa+cUXX9SsdXSycNeuXfm1115z+N+s1QwaOHCgYjG+fGg1g6ZNm8afffaZw1rhZOGtW7fazX2Cg4PF0xi0hlYzaN++fdyqVStFs146hGaQfAfupUuX2Gq1Kl6OSoew8GDmzJl2z9tHjx6x1Wrl0qVLa9YKCw/UduD+/PPPXKVKFYffRa0duD169FC8PJcPrdOeRo4cyR9++KHDWq2ThT2dNeXNeunQOlnYbNaU9kI8mTUDAgIMZU210548lTV37tzpkax57969TJE15Rv8hgwZwnXr1nVY6yhrNmzY0GGto6wpX0AjH1ob/IxmTbXTnoSsKX85Kh1aJwt7Mmv26tXLI1lzwYIFHsmaJ06cMJw15YsuIyIiDGVNtUWXRrOm1mlPnTt31s2aWicLu5o1GzRo4LBW62ThFStWcPPmzR3WplfWlM59PJk1f/jhB0NZU22Dn9GsqXba07Bhw3SzptZpT7Nnz3Zb1pTOfY4cOeKRrBkbG5tps6Z8c798aJ0svGjRIvEUTq2hddqTkayptcHPbNaUzn1cyZqpqakey5qDBg1yS9aUL7pcuXKl4awp3+DnjqyptsHPaNbUOu3J1az51ltvOfx5Ocqa8gXA8uEoa8o3McrH85Y1b968aThryhddmsmaahv8OnbsaChrqm3wcyVrTpw4UTdrap0svGzZMt2sqXWysCtZ89y5cx7JmsxsKmvKF126I2uqbfAzmjXVNvi5kjUPHjzokawZHR2tmzUd3WLTpk0bt2RN+aLLMWPGGM6a8kWXZrKmfNHlli1bdOc+z2vWlG9ukQ5nTxaGjIeFg1g4CC7o3Lmzwwe2fAgvwubMmcMjRowwVSu8CJs4caLqKXaOhnQHrtoKc70h7MBV20WgN4Rm0NmzZx3+JqM2hGbQwYMHdZsZ8iE0gzZu3KjbxJUPoRm0ZMkS8Yoeo0M4+nvmzJniMfVGh7QZtHr1alO10mum1E6P0BvCosvLly+brhV24J44ccLhZEBtCM2g3bt36zad5ENoBq1Zs0Y8NtnoEJpBCxYs4IEDB5qqFZpBU6ZMUd3t4WhIm0HClb9mhtAMUttBqTeEo78vXLig2NGjN4QduEeOHOEaNWqYqhUWXW7dulU3rMqHsAM3KChIvKLH6BCaQbNnz1Y9VcnREJpBEyZMEK8FMTqkzaC9e/ea/pyEZtCFCxdM1wrNoDNnznCpUqVM1QrNoP379+s2FuVDuGZq/fr13KpVK1O1QjhZvHixeB2s0SHswJ0+fbp4TL3RId2Bq3aSi94QduAKV7+YGcIOXLVdsnpDaAYdP37c4UsgtSE0g3bt2qXbAJYPoRm0atUq8Yoeo0NoBs2bN0+8DtbokDaD1E4WcDSkiy7VdjPrDeGaKeGqLTNDWHR5/vx5h00UtSE0gw4dOqS7UEk+hGbQli1bdBfEy4fQDFq2bJl4RY/RITSDAgMDVU/wdTSkzSDhWhCjQ9oM2r9/v+nPSbhm6uLFi6ZrhZOFT5065fBFn9oQFl3u3btXd0GZfAiLLtetW6c4UVJvCNdMLVq0iP/55x9TtUIzaNq0aRwYGGiqVtoMEq5hMjOEhQdqp/XoDWHhwcWLFx02ytSGsPAgJCTE4QtZtSG8CNu+fbvuyxj5EBYeBAcHi1f0GB3plTXVThZwNNIra547d850bXplTfmJknrDk1mzSZMmPGPGDJ48ebKpWlezprDoUu30CL3xPGRNvRdu8pFeWVO4DtboSI+sOWLEiEybNfUWR8hHemXN3377zVRtemXN5cuXm6r1dNbs3r07nz592uFCNrXhatb88ccfef369YoTJfXG85A11U5y0RvplTUdvQhWG+mRNXfu3Km7qVc+hLnPypUrFbcX6A1Xs+bnn3/OkyZN4oULF5qqdTVrChv81G4h0RuezpqbN2/WXaQgH+mRNWfNmqV6qpKjkR5Zc8iQIeIV62aGsOjSk1lTb0GZfLiSNYXTnhYtWiReB2t0eDprCldsmq11NWt27dqVjx49ytWrVzdV60rWFBZdBgcHe+y9pitZc/fu3aY/p/TKmsWLFzdVm15ZU2/BkHwIiy6XLFkiXgdrdLiaNYUNfmvWrDFVm15Z88qVK6ZrPZ01V69erbi9QG+4kjWFW2wmT57Mc+fONVXratYUFl06kzWFDX4XLlxwuBlHbaRX1tQ77EI+0iNrBgYGqp7g62h4Omv27duXQ0NDTddKsyZ4VkYsHMxGAKBQqFAhatq0Kfn5+VHTpk0pe/bshmvz5MlDDRs2JD8/P2rRogXlyZPHcG2OHDmoXr165OfnR35+flSkSBHDtRaLhd59912xtnz58oZriYhee+01sfaVV14xVVu5cmVq2bIl+fn50dtvv22qtkyZMtSiRQvy8/OjevXqmaotWrQoNWvWjPz8/KhRo0aULZvxR1qBAgWocePG5OfnR82aNaOcOXMars2VKxc1aNBA/Izz589vuDZbtmz04Ycfij/r4sWLG64lInr77bfF2sqVK5uqrV69ulj7+uuvm6qtWLGi+Bm/++67pmpLlSpFzZs3Jz8/P/r000/JYrEYrvXy8hK/i40bNzb1GefNm1f8LjZv3pxy585tuDZnzpz0ySefkJ+fH7Vs2ZIKFSpkuNZisdD7778v/qxLly5tuJaIqGbNmmLtyy+/bKq2atWqYu2bb75pqrZcuXLid/GDDz4wVVu8eHH64osvyM/Pjz777DNTn3HBggXF76Kvry/lyJHDcG3u3Lnps88+E7+LefPmNVybPXt2u+dt0aJFDdcSEdWuXVusrVixoqnaGjVqOP28rVSpkvhdfOedd0zVli5dWvyMP/nkE1O1RYoUcfp5mz9/fvLx8SE/Pz/64osvnH7etmzZkgoUKGC4Nlu2bPTBBx+IP+uSJUsariUieuutt8Tal156yVRttWrVnH7eVqhQQfyM33vvPVO1JUuWFL+LDRo0cPp526RJE6efty1atDD1vM2RI4f4vPXz86PChQsbrrVYLPTee++JtWXLljVcS0T0xhtviLXVqlUzVfvSSy+Jn1OtWrVM1ZYtW1b8Ln744YemaosVKyZ+Fxs2bGjqM5bOfVx53rZs2ZLy5ctnuDZ79uz00UcfOT33eeedd8TaF1980VTtq6++Kn5ONWrUMFX74osviv/eOnXqmKqVzn3MPm8LFy4sfhfNPm/z5cvn9PM2Z86c9Omnnzo198mWLRvVrVtX/Hl5e3sbriUievPNN8XaKlWqmKp9+eWXxdqaNWuaqi1fvrz4v4+6deuaqi1RooTTcx9Xs+bnn3/ukaxZp04dZE2D8ufPLz5vXZn7IGvqy+xZ08/Pj7y8vAzXejJrVqlSRfyc3J01he9iZsyaLVu2pGLFihmuJUq/rPnqq6+aqs2KWbN+/foez5pmn7eezJrC8zarZE1pnz0zZs2PPvrIVG1Wz5qVKlUyVetK1nzhhRfEWndnTV9fX2RNg6RZ0+zcx5Ws6UqfPatnzerVq5uqfR6ypo+Pj1uzpnTu486sWatWrUyXNaVzn/r167s1awrPW09mzTJlyhiuJbKf+2S1rNmsWTNkTfjfkB6rD//XB+HEwf8JJ0+eVL2bXhhax0QzM1++fNnhiXRax0QzPzsmduHChZpXFRcpUkQ8Jlp6HSMz8+PHj3nFihWax+tLj4m+e/euXW1ycjIHBQVpXkni6JhoZua1a9dq7r5wdEw087Nrf7/77jvNn5fWMdHMz643dLSqX+uYaOZn1zj9+++/mrUVKlRQPSaamTksLIxnzpypWat1TDTzs+uGly5dqnmkt9Yx0czPrlUMCgri8uXLq9ZKj4mWXpHB/Oz6qKCgIM0THqW7NeVXZDAzb9y4UfPYZUfHRDMz79mzh3/55RfNn5fWMdHMzMeOHeNevXpp1modE83MHBoaymPHjtWsLVu2rOox0czMt27d4nnz5mnu5BZ2a8qPiWZmfvDgAS9fvlzzOhNht6b8mGhm5oSEBA4KCtK8BkHrmGjBqlWrNK+O0TsmeuvWrQ53F2tdScT87LotR6fnaF1JxPzsWpEBAwZo1mpdScT87Pj0KVOmaNZ6e3tz27ZtFdcxMj+7kmTRokWau0e1riRifnb0+ooVKzRP/8uXLx83b96cZ82aZXclEfOz60yCgoI0j8gXdmtOmDBBcSUR87NrerROlZPu1pRfScT87DoCR6c5CLs15VcSMT+74qd79+6atVpXEjE/u8pg+PDhmrXly5dXvZKImfn69escGBioeX2U1pVEzMz379/nZcuWae5Y07qSiJk5Li6Og4KCNHclCqfQTp8+nSMiIhSfU1BQkOZVXdKTga5cuaKo3bRpk+YVP9JTaOVXEjEz7927l9u2bav5s3799de5d+/eiiuJmJ9d392nTx/NWmG3pvxKImbmixcvOjyRTnolkXzuEx4ezgsWLNC8PkrrSiLmZ9fOrFixQvM0Kq0riZifHa8fFBSkuQtcultTeiWRYM2aNZpXGWTLlk08hVZ+HSMz8/bt2x2eZCWcDHT8+HFF7cGDB7lLly6atcKVRPv27VM8b0+fPu1w16pwHaP8SiJm5qtXrzo8lUXYrblq1SrF3OfOnTu8ePFizeujvLy8+Ntvv+VFixYp5j4xMTG8YsUKzasu8ubNq3olETNzWloaBwUFaZ66Ib2SSH5FBvOza3q0rlRzdCUR87Or7xyd5qB1JRHzsyt+evTooVmrdSURM/P58+d51KhRmrXlypVTvZKI+dlVtHPmzNE8MVU4hXbFihWKuU9UVBQvW7aMCxUqpFornAw0b948uyuJmJ9dLRQUFMSVK1dWrc2dOzc3btxYcSWRYOXKlfz++++r1kpPBpJfScT87GoQR9dtCScDya8kYmbev3+/w9NzhJOB5FcSMT/Lmo5Oh8yorHn79m1euHCh5vVRRrKm1tVC6ZE1J06c6HTWHD58uFNZUzgZSCtrduvWTbM2o7LmtWvXXM6aWifDZfaseebMGdWs6ejkQOEUWmey5ksvvcS///6701mzQ4cO6Z41Hz586HLWrFq1qubzFlnz/125coWnTp2qWetK1hROBlq8eLFm1tQ6/U84GcjVrCm/jpGZef369S5lze+//17z55VVs+b8+fM1s6bWFadC1pw2bZpq1gwODnaYNYWTgbSyptYpnnpZc9++fQ6zpnAykFrWPHHiBLKmZBjJmh9//LHmd9HVrNm/f3/VrHno0CHu2rWrZq1wMpBW1hw8eLBmbUZmzSVLlngsa2pdRfs8Z01HJ2MLWXPXrl2K7+KFCxcMZc0NGzYga7LrWbNjx46atZk5ay5ZskSRNZ88eaKbNZs3b86BgYGaWVPrJiVp1lTrs+tlTeEUWndnTeEUWq2s6eg03ozKmvfu3XM5a2pdKe0oazIzsqZsZHTWLFKkiGqto6yZmJjoUtZcvXq15u0t6ZU1T5w44XTW3L9/v9NZc+vWraazZqlSpbhNmzaaWXPx4sUey5pvvPGGaq1e1gTPwlXFWDgILpIeUavXIJP7/fffFZNErQaZnPx4fkcNMjn5VRmOGmRyZ8+etWuWOWqQyd2/f99uwuhoMYZcUlKS3YRRbzGGlM1mswtveosx5KRNTaFBNmTIENUGmZw8gAlXFag1yOTkVxMJk0S1Bpmc/Oh2aYNMPkmUCwsLs5swOmqQyUVHR9tNGB01yORSU1P55ZdfFmv1GmRyDRs2tJskCg2yixcv6tb6+/vb/byExRhqk0Q5+fH8wmIMtUmiXFBQkF3tCy+8wF27duWtW7cqApuc/Mo+aYNMPkmUi4yM5Dx58igmiWoNMrn4+HguXbq0WOuoQSZns9nsmmV6DTK5L7/80u676KhBJidfXOGoQSYnn5w7Wowht3nzZrtaR4sx5EJDQ+2et0KDLCgoSBHY5B4+fMgFCxYUawsWLMhfffUVz58/X9Egk0tOTrZ7OSFcVTBt2jRDcxbpIqns2bPzJ598otkgk/v555/tfl6OGmRy8mvHHTXI5ORXEzlqkMnJr0h11CCTu3Hjht0mAEeLMeSePn1q93LC0WIMubS0NLuFGXoL/+WkjRS9hf9y8hcMjhb+y8mbIY4WY8jJr2V01CCTO3XqlF2towaZ3N27d+1eTjhqkMklJibavZzQa5BJ2Ww2rl27tt3cx1GDTO7bb7+1e946WvgvJ78KTlj4f+TIEd3nrbwxKSz8V3shIbdjxw67WmHh/4YNG3TnPvKrwx01yOQeP35sd02YowaZXEpKit0mAL0GmVz9+vXtnreOGmRy7dq1s/t5OVqMISdf6ORoMYbc0qVL7WodLcaQk19bIyzGWLNmje7cJzw83O7lhKOF/3JxcXF2LyccLfyXS0tLs2uW5cyZkz///HPNhf9yzZs3t3veupI1HS3GkJs4caJdrZmsuWHDBrtad2XNqKgoj2XNunXr2j1vXc2aWosx5NSyptZiDDn51USOFmPIOcqaenOfsLAwu4UZ7sya0mvHzWZN6Ut76WKMjM6aI0eOtKtNj6ypthhDTn5lnytZ09FiDDlXs2atWrXsnrfuypryxRXuyprya8I8nTXVFmPIJScnc6VKlezmPo4WY8i5kjXlG1UzQ9aUX5HqzqwpvZYxPbKm1sJ/uaZNm9o9bx0t/JeTZ01HizHkXMma8msZ3ZU1792757GsKV2UajZrShfQpFfWVFuMITdr1iy7WkebzOXUsqbWYgy5K1eu2PXZM0vWbNCggd3z1l1ZU77QyV1Z88iRI3a1jhb+y0VERNhlTUeLMeRcyZo2m41r1qxpN/dxtMlczpWsKV/Inxmy5rlz5zyWNStWrCjWupo1HS38l/vhhx/snreuZE1HC//lXMmae/bssat1Z9YsWrSo3fPW01lTbeG/nHwxm6NN5nJaWVNt4b9ccHCwXa2jhf9yjrKm3twns2bNr776yu676K6sOW3aNLva9Miaagv/5UJDQ+367I4W/sPzBQsHsXAQXHDixAkuVKiQ4cUYUnfu3OEiRYqIizH0JolSCQkJXKFCBXGSaKRBJhBeJNepU4cHDx5sqEEm9fXXX4uTRCMNMqmePXuaapBJTZ8+3VSDTGrr1q2mGmRSFy9e5EKFChlukEk9evSIS5QoYWoxhiAlJYWrVq0qLsYwMkmU+vTTT8XFGEYmiVKtW7cWd4caaZBJDR48WJwkGmmQSS1atIhLlizJrVu3NtQgkzp48KCpBpnUrVu3uHDhwoYbZFKxsbFcpkwZsUFmZJIoEF4km2mQSfn6+ppajCH122+/mVqMITV+/HhTizGk1q5dy8WKFeMff/zR9CTxzJkzXKhQIXF3qF6DTOrevXtcrFgxbty4seEGmSAxMZFffPFF/vjjjw03yAQ2m43fe+89Uw0yqVatWplqkEn17dvXVINMKjAw0NRiDKldu3bZLcYw87y9cuUKe3l5ibtD9RpkUk+ePOFSpUrx559/rrk7VEtqaiq/8sor4u5QIw0yqc8//9zUwn+pDh06cLVq1Qw3yKSGDRtmqkEmtXz5clMNMqmjR4+yl5eX4QaZVEREBBcpUsRwg0wqPj6ey5cvb2oxhkAI98LCf7XdoY60bNlSXPhv5IWE1B9//GFq4b/U5MmTTS38l9q4caOpBpnU+fPnuVChQoYbZFIPHjzg4sWLm2qQCZKSkvill14ytRhDYLPZ+KOPPjK1GEPqxx9/NLUYQ6p///6mFv5LzZ8/3+HuUEf27t1rt/Bf74WE1PXr19nLy4u/+OILQw0yqZiYGPb29jbVIBOkpqZyjRo1TDXIpBo1amSqQSbVuXNnUw0yqdGjR5tajCG1cuVKu8UYZp636Zk1zfQcEhISuGLFiqYWYwiEF8l16tQxvBhD6uuvvza1GEOqV69eHsma27Zty5RZ8+WXX/ZI1mzTpo1LWdPMYgypxYsXm1qMIXXo0CGPZc2yZcuaWowhcDVrNmvWLNNlzXXr1olZ08hiDCkhaxpdjCF1//59l7OmmcUYAmGDbGbLmrNnz/ZI1rx69Wq6ZE2jizEEqampXL16dVOLMaQaNmzoUtY0sxhDavjw4R7JmiEhIZkya7799tumNplLSbOmkcUYUn/++We6ZU0zc59NmzY5nTUvXLjgkayZnJzssaz5008/pUvWNLIYQ0rImkYX/kvt27fP1CZzKSFrGl2MIRUTE8OlS5f2SNZs3Lix01mzS5cuHsmaq1atMrXwX8rVrFm0aFGPZU0zC/+lvvnmG49kzRkzZngka166dOm5yJpGFv5L1a9f39Qmcykhaxpd+C81ZMgQZE2D0tLSuGbNmumSNc322bt162Zq4b+UNGsaWfgvJWRNowv/pc6ePety1jSz8F+QlJTElSpV8kjWtFqtTmdN8KyMWDho4WcL48ABi8VSjojCiYjCw8OpXLlyHv4VgTPu3LlDxYoVo1y5cpmuffDgAeXNm5fy589vujY6OpqYmQoXLmy6NjExkaKjo6lUqVKma5mZwsPDqUKFCqZriYhu3rxJFSpUIIvFYro2PDycypYtS9myZTNde/v2bSpVqhTlyJHDdO3du3epcOHClCdPHtO1jx49opw5c1LBggVN18bGxlJSUhIVK1bMdG1KSgpFRUVRmTJlTNcyM926dYsqVqxoupaI6NatW1S+fHm3f8aRkZFUokQJypkzp+na+/fvU8GCBSlv3ryma588eUIWi4W8vLxM1yYkJNDTp0+pZMmSpmttNhvdvn2bypcvb7qW6Nl30ROfcUREBJUuXZqyZ89uuvbu3btUtGhRtz9vY2JiKC0tjYoUKWK6NikpiR49ekSlS5c2Xevq89ZT30VXnrf37t0jLy8vtz9v4+LiKCEhgYoXL266NjU1le7du0dly5Y1XUvkue9ieHg4lSlTxqnvYmRkJBUvXtyp72JUVBTlz5+f8uXLZ7rWU3MfV5+3rnxOrtTevn2bvL29nX7eFilShHLnzm269uHDh5Q7d24qUKCA6dqnT59SSkoKFS1a1HRtcnIyPXjwAHMfg1yZ+zx+/JiyZ89OhQoVMl0bHx9PcXFxVKJECdO1aWlpdOfOHadzc2ac+2TGrJmUlERPnjzJdFnz1q1bVK5cOWRNA1yZ+2TW+S2ypjmZ8XnrytzHU1kzOTmZHj58iKxpUGbMmmlpaXT37t0slTVdmftkxqzJzBQREZHpsmZERAR5e3s7PffJbFnT1T57ZnzeZsWsGRkZmaXmPpk1az5+/Ji8vb1N12bF95qemvt4KmsSeXbuk9met5k1a966dcsjv6ciaxrn6vMWPEuWTcozc4Sr/0wsHDQACwcBAAAAAAAAAAAAAAAAAAAAAADAEzJi4aD5JdUAAAAAAAAAAAAAAAAAAAAAAAAAkGlh4SAAAAAAAAAAAAAAAAAAAAAAAABAFoKFgwAAAAAAAAAAAAAAAAAAAAAAAABZCBYOAgAAAAAAAAAAAAAAAAAAAAAAAGQhWDgIWcb27dvpzz//pD179lBqaqqp2nPnzlGnTp1o06ZNlJiYaKr2/v371LZtWwoODqanT5+aqk1MTKT27dvTggUL6MGDB6ZqmZl+//13mj59Ot2+fdtULRHRoEGDaMyYMXTlyhXTtVOnTqXBgwfT6dOniZlN1a5cuZJ69+5Nhw4dorS0NFO1Bw4coG7dutGOHTsoOTnZVG1YWBi1b9+e1q1bR/Hx8aZqnzx5Qm3atKFly5ZRdHS0qdqUlBTy9/enOXPm0P37903VMjP17NmTJk+eTDdv3jRVS0Q0cuRIGjFiBIWGhpr+nObOnUsDBgyg48ePm67duHEj/fXXX7Rv3z7T38UTJ05Qly5daMuWLZSUlGSq9vbt29S2bVtatWoVxcbGmqqNi4ujtm3b0qJFi+jRo0emam02G3Xt2pVmzpxJd+7cMVVLRPTPP//Q+PHj6dq1a6ZrJ06cSEOHDqVz586Z/pyWLl1KAQEBdPToUbLZbKZqd+3aRX/88Qft3r2bUlJSTNWGhoaSv78/bdiwgRISEkzVPnjwgNq2bUtBQUEUExNjqjYpKYnat29P8+bNo6ioKFO1zEx//PEHTZ06lcLDw03VEhH9+++/NHr0aLp8+bLp2pkzZ9KgQYPo1KlTpj/j1atX099//00HDx40/bw9fPgw/fbbb7R9+3bTz9sbN25Q+/btae3atRQXF2eqNiYmhtq2bUtLly6lJ0+emKpNS0ujTp06UWBgIN29e9dULRFR7969adKkSXTjxg3TtWPGjKHhw4fThQsXTH9O8+fPp379+tGxY8dMfxe3bNlCPXr0oL1795p+3p4+fZo6d+5MmzdvNj33uXPnDrVt25ZWrlxp+nmbkJBA7dq1o4ULF9LDhw9N1dpsNvrtt99oxowZFBkZaaqWiGjAgAE0btw4CgsLM107efJkGjJkCJ05c8b0Z7xixQrq06cPHT582PRnvHfvXvr9999p586dpp+3ly9fpg4dOtD69etNP28fPXpEbdq0oeXLl5ue+yQnJ1OHDh1o7ty5Tj1ve/ToQVOmTKFbt26ZqiUiGjZsGI0aNYouXbpkujYwMJAGDhxIJ0+eNP0Zr1+/nnr16kX79+83/bwNCQmhX3/9lbZt22Z67hMeHk5t27al1atXm37exsbGUps2bWjx4sX0+PFjU7VpaWnUuXNnmjVrllPP2759+9KECRPo+vXrpmvHjRtHw4YNo/Pnz5v+nBYvXkz//PMPhYSEmP4uejJrtmnThoKCgjySNadNm0YRERGmaolcy5rTpk3LdFnz2rVrHsmaqampmTZr9u/fH1nTAFezZr9+/VzOmmfPnnV71uzevTvt2rXL7VmzTZs2tGLFCtNZMzk5OctlzTVr1mTKrNmmTRtasmSJU3MfV7PmxIkT3Z41FyxY4HTW3Lp1q0ey5t27d8WsaXbu40rWZGbq1q0bzZgxw6k+uytZc8qUKZkua165csUjWTMlJYU6duxIc+fOdWru40rWHD58uNNZc/bs2TRgwAA6ceKE27Nm165daevWrW7Pmm3btnU6a3bp0oVmzZrl1NzHlaw5fvx4j2TNHTt2ZNqsOX/+fLdnzcGDByNrGhQdHU1t27alZcuWme6zu5I1iYh69epFkyZNylRZc9OmTR7JmpGRkR7Lmr/++qtLWdPZuY8rWXPZsmXUt29fOnLkiFuz5sWLF6ljx44eyZodOnTwSNaE/0HMjKEziKgcETERcXh4OEPmlJSUxBUrVmQi4iJFinCrVq148eLF/OjRI91am83GdevWZSLifPny8RdffMGzZs3iO3fuGPp3//DDD0xEnCtXLv788895woQJfP36dUO1/fr1YyLibNmycd26dXnYsGF8/vx5ttlsurVz585l4X+7b775Jv/zzz8cEhLCaWlpurV79uwRa19++WX+888/ec+ePZySkqJbGxYWxjly5GAi4goVKnCnTp1406ZNnJCQoFsbHR3NRYsWZSLiEiVK8M8//8zBwcEcExOjW5uamsrVqlVjIuJChQrx119/zQsWLOAHDx7o1jIz+/j4MBFxnjx5uGnTpjx9+nSOiIgwVNupUycmIs6RIwd/+umnPGbMGL5y5Yqh2pEjRzIRscVi4XfffZeHDBnCp0+fNvQZBwcHi5/T66+/zr179+ZDhw4Z+oyPHz8u1lauXJm7devGO3bs4OTkZN3ayMhIzpMnDxMRlylThtu3b8/r1q3j+Ph43dqEhAQuXbo0ExEXLVqUv//+e162bBk/efJEt9Zms3GtWrWYiLhAgQLcsmVLnjNnDt+7d0+3lpn5q6++YiLi3Llzs4+PD0+ePJlv3rxpqPavv/5iIuLs2bPzRx99xCNHjuSLFy8aqp02bZr4s3777bd5wIABfPz4cUOf8ZYtW8TaV155hf/66y/et28fp6am6taGhoZytmzZmIj4hRde4K5du/KWLVs4MTFRt/bhw4dcqFAhJiIuVaoUt27dmletWsWxsbG6tcnJyVypUiUmIi5cuDB/++23vGjRIkPPW2bmjz/+WHzeNmvWjGfOnMmRkZGGan/55RcmIs6ZMyc3aNCAx48fz9euXTNUO2jQIPG7+P777/PQoUP53Llzhj6nRYsWiZ9TzZo1OSAggI8ePWrou3jgwAGxtmrVqvzHH3/w7t27DT1vb968yTlz5mQi4vLly7O/vz9v2LDB0PP26dOnXLx4cSYiLl68OP/0008cFBRk6HmblpbGNWrUEJ+3X331Fc+bN4+joqJ0a5mZmzZtKj5vGzduzFOnTjU8x/r111/F7+LHH3/Mo0eP5suXLxuqHTdunPizrl27Ng8aNIhPnTpl6DNes2aNWFujRg3++++/+eDBg4a+i6dPnxZrK1WqxL/99htv376dk5KSdGvv3bvHefPmZSLi0qVLc7t27Xjt2rUcFxenW5uYmMjlypUTn7dWq5WXLl3Kjx8/1q212Wz87rvvMhFx/vz5uUWLFhwYGMh3797VrWVm/u6778S5T8OGDXnSpEl848YNQ7V9+vQR5z4ffvghDx8+nC9cuGDoc5o1a5b4s65Vqxb369ePjx07Zqh2586dYm21atW4R48evHfvXkPfxStXrnD27NmZiLhixYrcuXNn3rx5s6Hn7ePHj7lw4cJMRFyyZEn+5ZdfeOXKlfz06VPd2pSUFK5atSoTEXt5efE333zDCxcu5IcPH+rWMjM3aNCAiYjz5s3Lvr6+PGPGDMPP2/bt24tzn/r16/O4ceP46tWrhmqHDh0qPm/fe+89/vfff/ns2bOGPqdly5aJn9Mbb7zBffv25cOHDxt63h45ckSsrVKlCv/++++8c+dOQ3OfiIgIzpUrFxMRly1bljt06MDr1683NPeJi4vjUqVKMRFxsWLF+IcffuDly5dzdHS0bq3NZuOaNWsyEXHBggXZz8+P586dy/fv39etZWZu0aKFOPdp1KgRT5kyhW/dumWotnv37uLztl69ejxq1Ci+dOmSodpJkyaJP+t33nmHBw4cyCdPnjT0GW/cuFGsffXVV7lXr168f/9+Q8/bc+fOscViYSLiF198kX/99Vfetm2boedtVFQUFyhQgImIvb29uW3btrx69WpDcx9Xs+YHH3zgctbMmTMnf/bZZ27LmvPmzfNI1rx27ZrHsmb16tWdzpqNGjWyy5rTpk1zS9YcNWqU+LytU6cODx482C1Z88SJE5kya7799tseyZo9e/ZUZM3Q0FBDn5MrWXPr1q1OZ82LFy/aZc0uXbq4JWumpKRw5cqVPZI1W7duna5Z0+jcx5WsefDgQUXW3LVrV4ZnzdjYWLus+eOPP/KKFSsMzX1czZq+vr6ZLmuuXbvWY1kzX758LmfNIkWKsNVq5SVLlrgla7Zq1cquzz5x4kS3ZM3AwEDxZ/3WW28ha+r47LPPFFnz9u3bhmpdyZrDhg2zy5pDhgzhM2fOmM6ar7/+Ovfp08dw1jx69KhLWTN37twezZoFChRwa9b8448/0jVrnjhxIsOz5vnz5+2yZteuXXnr1q1uyZovvPCCOPf57rvv3JY1f/zxR6ezZv/+/T2SNffu3euRrBkTE6PImkb77PKs+dVXX/H8+fPdkjU7d+4sPm8/+eQTt2XNlStXip/Ta6+95raseefOnUyZNb/++mtx7uPj48OTJk1yS9acPn26Xdbs37+/U1mzevXqbsuajx498ljW/OSTTzySNQcPHpxuWbNv37585MgRQ99F8Kzw8HDxsyOicpwea+LS4x/yvz4ICwf/Z8yYMUP6JTLVDNq2bZui1mgz6NKlS+JvctIhNIMOHDig+Zvl48eP2cvLS1ErNIMcvQiT/iYnHUIzaM2aNQ6bQZ9++qmiVngRptcMatOmjaLWaDNoyJAhilqjzaDFixcrarNly8YffPCBbjPo0KFDqp+xkWbQrVu3xJfJ0mGkGRQbG8slSpRQ1BppBqWlpfHrr7+uqBWaQcHBwQ6bQc2aNVPUCs0gvRdh3bp1U9QKzaDp06c7bAZNmDBBUSs0g8aOHeuwGbRu3TpFrdFm0NmzZ1U/YyPNoPv374sNVekw0gxKSkri8uXLK2qNNINsNhu/9957ilqjzSCr1aqoNdoMCggIUNQabQbNnj1b9XkrNIMcLbrctWuX6uf0zjvv8IABAxw2g65evSo2VKXDSDPoyZMnXKRIEUWtkWZQamoqv/zyy4pab29vbtOmjW4z6PPPP1fUGm0GdezYUVFrtBk0fPhwRa3RZtCKFStUn7dCM8jRosuQkBDVz1hoBjl6EXb79m2xoSodQjPI0aLL+Ph49vb2VtQKL8I2btyo2Qyy2Wz85ptvKmqNNoP8/PwUtUabQX/++aeiNk+ePNykSRPdZtCUKVNUn7dGmkGbN29Wfd4aaQZduHBBbKhKh7QZpPVdfPDgARcsWFBRKzSDtm/frvm8TU5OFhuq0iFtBmnNfWw2G3/00UeKWqEZtHTpUofNoJ9++kn1eduyZUuePXu2w2bQgAEDFLVGm0ELFixQ/S5++OGHPGLECIfNoH379ql+F2vVqqXbDLpx44bYUJUOI82gmJgYLlasmKLWSDMoLS2NX3nlFUWttBnkaO7TuHFj1eet0Axy9CKsS5cuqs9bI82gMWPGqD5vGzRowOPGjeOwsDDN2lWrVql+F400g06ePKn6GRtpBt25c0dcuCwdVapU4e7du/OuXbs0v4sJCQlctmxZRW25cuW4Y8eODhce2Gw2rl27tqLW6MKDb775RlFbsGBB/vLLL3UXHvz999+qz1sjCw9cyZrbt29X/ZyErOlo0aUns+ZLL72kqC1dujS3bds2Q7Nm27ZtFbX58+fn5s2bZ2jWXLJkierz1kjWPHz4sOpnLM2aWt9FV7NmyZIlFbUVKlTgzp0786ZNmzIsa37xxReKWlezprDBz5ms+emnn+pmzfXr16s+b4UNfhmZNfPnz6+ofemllzI8a77//vuKWmnWdDT3+f777xW17siac+bMUX3e1qtXT3eDnytZMywsTDVrvvLKK9yzZ8/nNms2bNhQUeuOrDlixAhFrTRrOnoR5krWPHbsmOpn7GrW1Nvg52rWfOuttxS1JUqUMLTBz5Ws2aNHD0Xt8541Q0NDPZY1X3zxRUWtkDUdLbp0NWv+/PPPilqhz+5s1hQ2+GVU1ty/f7/qdzGjs+bTp089ljWbNGmi+rw1kjW7du2qqM2bNy83a9ZMd4OfK1lz9erVqt9FIxv8XMmad+/ezZRZ89tvv1XUSrOmo7mPK1lz5syZilpp1nS06NKVrHn58mXNrNmrVy+ns6beBj9Xs2b9+vUVte7Imv/++6/q89bTWdPRosvw8HCHWdPRoktXs+Ybb7yhqC1ZsqS4wS+jsubvv/+u+rx93rOm2tzHHVmzQoUKilohazpadKmXNfUWXTrKmnPmzHH4vP3nn38UtULWnDx5coZlzd27d6t+F4UNfhmVNaOjoz2WNcFzsHAQCwfBBXPnzhV3gDsaaqc9bdiwgVu1aiXutNUaas2gkJAQtlqt4m4TraHWDLpx4wZbrVbV35ilQ60ZFB8fz1arVTXsSodWM6hDhw6qIUo+IRKaQdIXYX379lV9ESSfEAnNIOmiywkTJqguZpOP1157TbEDd+nSparhTT7UmkE7duxgq9WqujBMOsqUKaPYgXv27Fm2Wq2qk2TpkJ72JEyI7t69y1arVTydTWuoNYNsNhtbrVbVlznSoXXaU7du3VQnbtKh1QwaMmSI6kIn+VBrBs2cOVO1qSkf0maQ8F1cvXo1t2rVSnUCJR0VK1bkLl262C26PHDgAFutVtXAKh1qO3CvXLnCVqtVtSkhHV5eXvztt9/a7cB98uQJW61W1cmXdGid9tS6dWvxlEWtkTNnTnEHrrQZ1LNnT65Xr57ud1GtGTR69GjVhpd8CKc9SZtB8+fPF3dBORpqzaDNmzez1WpVbdZLh7QZJIST48ePs9VqVW0QSodaMyg8PJytVqt4WpDWEJpB0hdhSUlJbLVa+dVXX3VYmzt3btVmUKdOnbhOnToOa4VmkHwHbv/+/cUTwxwNtdOeJk+erBqy5UNYdCltBq1YsYK/++471cAqHWqnPe3evZutVqtqYJUOtWbQhQsX2Gq1qr6QkQ61ZlBUVBRbrVbVxpN0SJtB0hdh33//vbgTW2tIm0HSRZfdu3cXd/hqDaEZJN+BO3ToUPFEXEdDrRkUGBjIX375pW5ttWrVFDtw161bx61atVJt1kuHdAeu8Lw9fPgwW61W8WQDrSE97Ul43l67do2tVqt4eoXWUDvt6enTp2y1WsXTh7WGVjOoXbt24u5PraHVDOrTp494go3W0GoGjRs3TjyF09EQmkHSHbiLFi1SXSQlH2rNoG3btrHValVt1kuHWjPo1KlTbLVaVTc+SIfaDtzIyEi2Wq2qL92kQ7oDV3jepqSksNVq5ddee81hrdZpT127dlVdjC8dWicLDxw4UDw1w9FQawZNmzZNPI3B0VBrBgUHB3OrVq1Um/XSIZwsvHXrVvG7uG/fPrZaraovR6VDaAZJd+BeunSJrVaruJtaa6gtPHj06BFbrVauUqWKw1ph4cHMmTPtnrc///yz6stz6RAWHsh34Pbo0YM//PBD3e+i2snCI0eOVF1YKh9qpz2lR9ZUa9ZLx/OQNYVFl2azpnzu40rWDAgIMJw15Rv83JE11U572rlzp0ey5r179zyaNYVbG7SGNGtKX4S5M2tKF12ayZryDX7uypry057ckTWlpz1Js2avXr08kjUXLFhgaO4jZE3p3MeVrHnixAlTWVO6wS8iIsItWVNt0WXnzp3Fk920RkZlzebNm+vWZlTWFE510hrCaU9r1qwR5z6ezJo//PCD4awp3+DnStYcNmyYoaypdtrT7Nmz3Zo1hbnPkSNHPJI1Y2Nj2Wq1iidCaQ2tW2xczZrCCTZaQ+sWG3dlTflpT0azptppT+7OmsLcJzU11WNZc9CgQR7JmitXrjSVNaWLLt2VNeWnPbkra6qd9tSjRw/VBcDy72JWy5pqt9jcvHnTY1mzY8eOullTa4OfK1lz4sSJhrKm2snCy5Yty/CsqXay8Llz59hqtYqnlmqN9M6azM8Ou1BbOCgdGZU11TbVyIfaLTaeypoHDx70SNaMjo52KWu2adPGI1lzzJgxHsmaW7ZsMZQ11Tb4pUfWVDtIQTrUbrFxNWuCZ2HhIBYOgguEI5fNDKEZpHZil94QmkHO/HuFZpBwhLCZITSDhKPAzQ6hGaQ3CVEbwmlPehMJtSE0g/TCl9oQmkFGQrJ8CM0g4XpTM0NoBqmdhqA3hGZQ7969TdcKzSDh+GGzQ7hmSi+cqw2hGaTX0FQbQjPISCNEPoRmkJFJm3wIzaAOHTqYrhWaQWqnfekNoRkkXAFndgjNIL0mm9oQmkF6wU1tCM0gvZcLakPYgWukKSkfQjNIuG7PzBBOe1I7CUpvCM2gXr16ma4VmkEDBw506jMWmkF6DRi1ITSD9Cb1akNoBuktclIbQjPISEiWD6EZpHYird4QmkFqOwL1htAM6tu3r1Ofk7ADV6+RqjaEZpDeiwm1ITSD9AK22hCaQUZeAsmH0AwSrn8yM4RmkL+/v+laoRkkXAtvZgjNIGeft0IzSO8Fo9oQduDqNa3VhtAM0mt2qQ2hGWRk8a98CM0gtRMS9YbQDBKucTMzhGaQ2i57vSE0g4Rr/swOoRmkt/BGbQjNIL0XSGpDaAap7XbXG8IOXCMvCORDaAa1a9fOdK3QDBKujjIzhB24aqdIGRnCwgO9lxpqQ1h4oLcoQ20ICw/0Xi6oDWHhgZGXQPLhStYUXoR5ImvWrVtX9eQaIyM9sqbe4nC14emsKVw5Y2akR9YUrmM0M6Qvwpz5jF3JmsIGP7UTnvVGemRNIy/r5COrZs2//vrLY1lTuIbWzPB01nR27pMeWVPv5ZPa8GTW/PHHHz2SNRs3buzRrKn3ElltIGsaH57MmsIGP09lTb1FpWojPbKm2gmJeiM9sqazffb33nvP6eetq1nz999/192ooTbSI2sa2fQtH8JpT57KmmqnSBkZ6ZE19RZlqA3htCd3Z01hg5+7s6awwc+TWVNvYbnaQNY0PtIjazr7XlM4WdhTWdPI5jb5SI+sqXYCuN4QbrHxVNbs37+/7mJWteFq1uzSpYvuIn61kR5ZU7ja3czI7Fnz6NGjhq5DhoyREQsHsxEAaMqfPz95eXlR3rx5TdfmzZuXvLy8KF++fKZrc+fOTV5eXlSgQAHTtbly5SIvLy/y8vIyXZs9e3YqXLgweXl5kcViMV0v/HuzZ89uurZQoULk5eVFOXPmNF1bsGBB8vLyoty5c5uuTY/POH/+/KZrhc+4UKFCpmtz5szp9GecLVs2sTZbNvO/BXh5eVHhwoUpR44cTtV6eXlRrly5TNcWKFCAvLy8KE+ePKZr8+XL5/R3MU+ePC5/FwsWLGi6NkeOHOLPy+x30WKxuPwZu/pddOYzzp8/PxUuXNhjz1tnPifhM3bme5w9e/Z0+Zw89bx193dR+Iyd+S7mzp2bChcu7NRn7OnnrZeXl1PPW+Ezdva7mFmft858F4XnbeHChZ163grzJme+i+nxvM1Mcx/hM85K30Xhf1vOfMaenvs48xm78l105TP25NwnPZ63znwX8+XLR4ULF3Z71hQ+J1fnPsia+tIjazr7vBV+bzPL089bZE1j0iNrFi5c2GNzH3c/b9Pju+ju+e3zkDWd+ZwKFixIhQsXdup566nvYmbPmp6a+7jyvHUlh3gqazr7vHUla2a1uU96ZM3ChQubrvX03MfVrOnKZ+yprOnu5216ZE1n36UI32NnPifhM3Z31nTleZuVs6Yzvy96en6blbKmK3MfT2VNV96leHLug6xpnCfXkQi1zj5z4TmWHqsP/9cH4cTB/wlLly41dKqc2hUb27dv544dO+peVVyjRg3FFRsnT55kf39/3V2+aldshIeHs7+/v+7x+mpXbMTHx7O/v7/ucc9qV2wwM//555+613zly5dP9YqNYcOG6e6Eypkzp+p1jjNnzuTvvvvOYa1wquLw4cPtrthYtWqVod1uatc57tu3j/39/XV3QahdsREaGsr+/v6615mUL19eccXG/fv32d/fn6tWreqwVnrFhnDku81mY39/f92rLtSu2GA2dqW01hUbY8eO1b12RnrFxpUrV8TaBQsW6O6+0LrOcePGjdyhQwfd3djCFRuHDx8WP+OjR4+yv7+/7q4z4TpH6RUb165dY39/fy5fvrzD2jJlyiiuc4yJiWF/f3/d3fpqV2wwPzt6XW+XjLDbU3rFBvOzqy70jl4Xdh/Jr9iYOnWq7ilHWldsLF++3NBuN7UrNnbu3MkdO3bUPdJb7YqN06dPs7+/v+51JmrXOd6+fZv9/f25cuXKDmtLlSrFbdq04dWrV4vP26SkJPb399fdsaZ2nSPzsyul9XYlSq/YkB75PmLECN2dUNIrNqRHvs+ePVt3p7+w21N+xcbatWu5ffv2utdHqV2xcfDgQfb399fdca92xcalS5fY39+fy5Qp47C2XLlyiis2Hj58yP7+/rq7R6VXbAhHvjM/u1Jab4dwwYIFFVdsMDP/888/utd8CacqTps2zW6+OWHCBG7ZsqXud1HtOsdFixbp7vTXumJjy5Yt3LFjR93ro4TdntIrNo4fP87+/v5cpEgRh7VqV2zcvHmT/f39dU8NU7tiIzY2lv39/XVPhitSpIh4xYZ07tO9e3fd0/+kV2zcvXtXrP3333+5UaNGDmu1rtiYPn267om60is2QkNDxc8pODiY27Zt67CWSP06x927d3PHjh11TxtSu2Lj3Llz7O/vr3udSYUKFRRXbNy9e5f9/f11r3IrWbIkt27d2u6KjdTUVPb399e9WshL5YoNZua///5b9wQc6RUb0qusR48erXvtjPSKDen1YvPmzePvv/9e97uodsXG+vXruX379rqnnqpdsXH48GH29/fnQoUKOawVTlXctWuXOPe5evUq+/v7655iU7ZsWcV1jo8fP2Z/f3/dq4WKFSumuGKDmQ2dRiVc5zhv3jzxig1m5gEDBujuAs+dOzc3btxYccXGpEmTdK/cE066kF/nmB5ZU+/0C7XrHE+dOuWRrJmQkGA6a0rnPq5mTb1rZ4SsKb/O0V1ZU36do5A18+fP77A2vbNmVFRUpsya48aNc1vWlF7nuGnTJsNZs3fv3nbXOaZH1tS7yk16naMw90mPrPn+++87rFW7zpH5WdbUO3EsI7LmihUrDJ0ql95Z88yZM6aypvQ6x8jISLdlzUWLFtnNfXr27Kl7zVdGZU29U460rnP0VNa8fPmyx7Jm586dDWfNefPmeSRryq9zXLx4cYZnTbXrHIWsqXdzQ3pnzbi4uEyZNWfMmOG2rCm9znHPnj2Gs2aPHj3SPWvqndKodp1jemRNvSulHWVNvRMeMyJrbtiwgTt06GA4a0r77O7MmtLrHJ88eZLhWVPos0uvc2Q2njXVrnPMalkzIiLCY1mzR48ehrPmrFmz0i1rzpo1y1DWrFu3Lg8bNswua65evTrDs6ZwqqJa1tQ7wS+9syYzs7+/P7/zzjsOa5+3rLlw4UKPZM2QkBBDWVM4VTG9s2aNGjUc1j6PWVPvRN2MyJq7du3ijh07cp48eRzWCllz3759bs+arVu35lWrVolzn+TkZJeyJngWrirGwkFw0cSJExUPPKFBJp8kyq1fv15RKxy9PWHCBL527Zpm7dmzZxUNL+kkUdogk4uKilKd9AlHb0sniXJJSUmqEwJhkihtkMnZbDbVhoZw7Yi0QaZGLbBKG2TSSaKc2pHzWosx5ObMmaOolTbIpJNEud27dytqc+TIIS7GkE4S5cLCwhQNL+nR29JJolx0dLTq4gphMcahQ4fECYRcamqqamNSmCRKG2Rq1BaVqU0S1ahdDyJMEuUNMrmRI0cqavPnz88tW7bk2bNn200S5YKCglQniWoNMrnjx48rarUaZHKRkZGqkz61xRhy8fHxqgFMWIwhnSTK2Ww21aZVxYoVuUuXLnaTRDVqTQlhMYZ0kqhG7RoXLy8v/vbbbxUNMrmpU6cqavPmzcvNmjXjmTNn2jXI5LZs2aL6vG3QoAGPGzfO7oWEXGhoqOJ5K7yQkDfI5B4+fMgFCxZU/LvVFmPIJScnqx6hrtYgU6P2MqdcuXKKxRhq1JpHQoNsxYoVdg0yObXjyKWLMRw9bxcuXKioFRZjTJ061a5BJrd//35FrXDN0+jRo+0aZHI3btxQXcgvXPMkbZDJPX36lIsXL66oVVv4L5eWlqb6UlatQaZG7QpvtQaZmq5duypqtRb+y40dO1ZRK12MIX0hIbdmzRrV563awn+5U6dOqT5vhcUYFy5c0Pyc7t27p/qCQW3hv1xiYiKXLVtWUStc8yR9ISFns9m4Tp06ilrhhYS0QaZG7doJ4YWEvEEmp3alklaDTG7WrFmqz1tfX1+ePn26w+ftjh07FLXSBpn0hYTclStXFA0vrYX/co8fP2YvlatK1Rb+y6WkpKi+CBIWY+zcudPh81btKifhmifpCwk1ao1c4Zqn5cuX2zXI5IYOHaqo1Vr4L7d06VLV522jRo0UDTK5I0eOqD5v1RpkcuHh4aovGN555x1Fg0wuLi5O9boutcUYcjabjWvWrKmolS78d/S8VWsCqy3GUNO9e3dFrdbCfzlXsuaGDRsUtZ7OmvLFGHJJSUmqL97VFmPIuZo11a4bdUfWnDt3rqLWaNbcs2eP6vPWHVlTbXGF2sJ/OVezplqjX20xhpqMyJpqizHkgoODFbX/61lT7apSo1lTbfGfO7LmtGnTFLVaizHkXM2a8sUVWosx5DyZNdU2Tbgja6pdea618F/Olax54MABRa2QNeWLMeQ8mTXVXsq6I2uqXQvrqayptclc7vTp06rPW3dkTbWFTmoL/+VczZpqi1G0FmPIpXfW1FqMIbdz505FrdZiDDlXs6ba4gp3ZE21Rbxqm8zVtG/fXvV5m9FZc9myZYparcUYcq5kzYiICNWsqbYYQy6js6ajuY/albLuyJqTJk1Sfd6qLfyXcyVrnjt3TjNryhf+y0VFRaku5HdH1lS7pl1t4b8aV7Km2tWunsqaWpvM5a5du+axrFm9enVFrdrCfzWuZM1OnToparUW/st5KmueOHFCUeuOrJmQkOAwa+r12TMqa0oX/qtRuy7dHVlz69atilqthf9yrmZNtYX87sia4DlYOIiFg+CChIQEcdeo0QaZwGaziTvthUmiXoNMSljdbnQxhlSvXr2YyL5BZvR/h9OnTxcnicJiDEeTRKlt27aJDxyhQSbdHerIxYsXxd/g1HaHOvLo0SPxNzijk0RBSkqKuKre6CRRStgVKEwS9RpkUsIuhPz58xtqkEkNHjzYbpKo1yCTWrx4sThJNNIgkzp48KD4GQsNMunuUEdu3bolNlONLMaQio2NFXdOqO0OdSQtLU3c3au2O1SPcFKQdHeoowaZ1G+//WZqkig1fvx4u0mi3mIMqbVr1yomiY4aZFJnzpyxmyTqNcik7t+/L57AabRBJkhMTBRPZzS6GENgs9nEExaNNsikhBP0tHaHOtK3b1/xeau2O9SR2bNni89btd2hjuzatUv8nITdoY4aZFJXr14Vm6mvvvqqboNM6smTJ2IzVXghobcYQ5CamiruKDTaIJP67LPPmMh4g0yqQ4cOTGR8MYbU8OHDmch4g0xq+fLl4vNWbXeoIyEhIeJnbGThv1RERIR4Kora7lBH4uPjxROKhN2heg0ygc1mE3ebGX0hISWcXCG8kNBrkEn9+eefphpkUpMnTxaft0YWY0ht2rTJVINM6vz582IzVbrw38hn/ODBA7GZqrY71JHk5GR+4YUXmMj4wn+BzWYTd2Fr7Q515KeffhLnPkYW/kv1799fnPsILyQcNcik5s+fL34XP/roI90GmdTevXvF7+Lbb7+t2yCTun79uthMNbIYQyomJkbcpW+0QSZITU0VT1NQ2x2qRzgFXGiQmdkd2rlzZ3HuIyz8d/RCQmr06NHi81btJCJHVq1aJX4X1U4ickTaTBVOInLUIJO6c+eO+CLZbIPM1awp7LQvXry4ocUYUp7KmjNmzFBkTaNzH1ey5qVLlxRZ09FiDKn0zppr1qwxnDWFExHcnTWHDBkiPm+NLMaQciVrHjp0SDVrGvkuZkTWNDL3SUtL49dff90ua5qZ+7iSNbt162aXNfUW/ku5kjXXrVsnPm+NLMaQOnv2rEeyZlJSkseypnCCnjRrGp37pHfWdLQYQ8qTWVPYIGt04b/A1awpnAaVmbLmihUrFFnT6NzHlax5+/ZtRdZ0tBhDKr2yptHFGFJ+fn4eyZpTpkzxSNa8cOGCatY08l30ZNYUbtYwuvBfypWsOWDAALs+u95iDClXsua+ffvE76KRxRhSN27c8EjWTEtLE7Om0YX/Uq5kzS5duiiyptG5T3pmTb3FGFInT560m/voLcaQcjVrChtk3Z01hRNLncmaf//9t0ey5vbt2xVZ09HCfylXsqZ0g6zRhf+C9MyaRhb+Swkny7o7ay5ZssRjWVNYtJyZsqZwKq3Rhf9SrmTNCRMmiHMfI5vMpdIraxpZ+C91//59cYOsu7OmcMKiu7NmQECAXdbUW/gv5UrWBM/KiIWD5i9zB8ikDh06RB07diRfX1964403TN27fuHCBWrQoAGNHz+e6tSpQ9mzZzdce//+fSpTpgxt27aNPvroI8qVK5fh2sTEREpKSqI1a9ZQ/fr1Td1zz8x08+ZNWrJkCTVs2JCKFCliuJaI6OTJkzRr1ixq0qQJeXt7m6rdv38/jRs3jnx9femFF14wVbt3717q3bs3+fr6UvXq1U19TkePHiWr1Uq+vr701ltvUbZs2QzXhoWFUa1atah///70/vvvU44cxh+PT548oQIFCtCmTZvo448/pjx58hiuTUlJocePH1NwcDB99tlnVLBgQcO1zEyXLl2iBQsWUKNGjahYsWKGa4mIQkJCaPr06dSkSRMqW7asqdq9e/fSiBEjqGnTpvTSSy+Zqt2/fz/99ttv5OvrS6+99pqpz/j06dPk6+tLM2bMoNq1a5v6jG/fvk2VK1emHTt20Icffkg5c+Y0XBsXF0dEROvWraNPP/2U8uXLZ7jWZrPR7du3admyZdSwYUPy8vIyXEtEdPbsWZozZw41btyYSpYsaar24MGDNHnyZGratClVqFDBVO3evXtpwIAB1LRpU3r55ZdNfU6HDx+mtm3bkq+vL9WsWdNU7aVLl+ijjz6iESNG0HvvvWfqefvgwQMqUaIEbdmyherVq0e5c+c2XJuUlERxcXG0atUqatCgARUoUMBwLTNTWFgYLVq0iHx8fKho0aKGa4mIjh8/TjNnzqQmTZpQ6dKlTdXu27ePxowZQ02bNqVKlSqZru3Zsyf5+vrSK6+8YupzOn78OH3zzTfk6+tLtWrVMvVdvHHjBr3++uvUp08fqlu3rqnnbUxMDOXJk4c2btxIn3zyiannbVpaGkVFRdGKFSvo888/p0KFChmuJSIKDQ2lefPmUePGjal48eKmag8fPkxTp06lpk2bUrly5UzV7t27l/7991/y9fWlKlWqmKo9cOAAde7cmXx9fen111839RmfPXuWfHx8aPLkyVS7dm1T38W7d+9ShQoVaPv27fThhx+amvskJCRQamoqrV27lurXr2/6eRseHk5Lly6lhg0bUuHChQ3XEj37PWb27NnUuHFjKlWqlKnaAwcO0IQJE8jX15cqVqxoqnbv3r0UEBBAvr6+VK1aNVOf05EjR+inn34S5z5maq9cuULvvvsuDRkyhN577z1T38VHjx5R4cKFafPmzfTxxx+bet4mJydTTEwMrVy5kj777DPTz9srV67QwoULqVGjRqaft8eOHaMZM2ZQkyZNqEyZMqZq9+7dS6NGjaKmTZtS5cqVTdXu37+f/vjjD2ratCnVqFHD1Od08uRJatmyJc2ePZveeecdU8/b8PBwevnll+nPP/+kDz74wNTcJzY2lnLkyEHr16+nTz/9lPLmzWu4Ni0tje7evUvLly+nhg0bmn7enj9/nubOnUuNGzemEiVKmKo9dOgQTZkyhZo2bUrly5c3Vbt3714aNGgQ+fr6UtWqVU3/e13JmvXr16dx48Y5nTW3bt1K9erVM501ExMTafXq1dSgQQPTWfP69eu0ePFi8vHx8UjWbNq0Kb344oumal3JmiEhIU5nzWvXrtFbb71F/fr1c2vWTE1NpUePHnkkax49epSmTZtGTZs2dSprDh8+nHx9fd2eNZs2bUrTp093a9aMj48nZs50WfPAgQMey5pt2rQhX19fevPNN92aNYsXL+5U1kxOTvZY1jxx4oRHsub+/fvpr7/+8kjWfO211+jvv/+munXrmvouxsTEUO7cuWnDhg306aefujVrXrhwAVnTIE9lTWamW7du0ZIlS8jHx8etWXP//v00YcIEatq0qVN9dk9kzatXr1KdOnVo8ODBbs2aKSkpFB0djaxp0MmTJ6lFixYeyZrZs2dH1jTx7+3QoQM1bdrUdJ/d1axZunRpp7NmQkKCR7LmiRMnPJY1//7770yVNaOjoyl//vxuz5pERBcvXqT58+dTo0aNTM99XM2aw4YNcyprHjhwwCNZMzIykipVqpQls2aTJk2c6rP369ePfH193Z41P/jgAxo+fLjbs2ZsbKxHsib877HwsxP1wAGLxVKOiMKJnk2IzYZwAAAAAAAAAAAAAAAAAAAAAAAAAGdERERINzKUZ+YIV/+Zxpc0AwAAAAAAAAAAAAAAAAAAAAAAAECmh4WDAAAAAAAAAAAAAAAAAAAAAAAAAFkIFg4CAAAAAAAAAAAAAAAAAAAAAAAAZCFYOAgAAAAAAAAAAAAAAAAAAAAAAACQhWDhIGQZe/fupSlTptCtW7dM1164cIFGjRpFly5dMl17//59GjRoEJ08eZKY2VRtYmIi9e/fn/bv309paWmmapmZhg4dStu2baOkpCRTtUREkydPptWrV1NcXJzp2kWLFtHixYvp8ePHpms3btxIs2bNort375quPXLkCE2YMIGuX79uujYsLIyGDRtG58+fN/05PXnyhAYMGEAhISFks9lM1aakpNDAgQNpz549lJqaaqqWmWnUqFG0adMmSkxMNFVLRDRz5kwKCgqip0+fmq4NCgqiBQsW0IMHD0zX7tixg6ZNm0YRERGma0+dOkVjxoyhK1eumK69ffs2DR48mE6fPm36M46Li6P+/fvToUOHTH8XbTYbDR48mHbs2EHJycmmaomIxo8fT+vWraP4+HjTtfPmzaNly5ZRdHS06dq1a9fSnDlz6P79+6Zr9+/fT5MnT6abN2+arr148SKNHDmSQkNDTX9ODx48oIEDB9KJEydM1yYlJVH//v1p3759Tn0Xhw0bRlu2bHHqeTt16lRatWoVxcbGmq5dsmQJLVq0iB49emS6dsuWLTRz5ky6c+eO6dpjx47R+PHj6dq1a6Zrb9y4QUOHDqVz586Z/pxiYmJowIABdPToUdPP27S0NBo4cCDt2rWLUlJSTNUSEY0ePZo2bNhACQkJpmsDAwNpxYoVFBMTY7o2ODiY5s2bR1FRUaZrd+/eTVOnTqXw8HDTtWfPnqXRo0fT5cuXTdfeuXOHBg0aRKdOnTL9GSckJFD//v3p4MGDTj1v//33X9q+fbtTz9tJkybR2rVrnZr7LFiwgJYsWeLU3Gf9+vUUGBjo1Nzn0KFDNHHiRLpx44bp2itXrtDw4cPpwoULpj+nR48e0YABA+jYsWOmv4vJyck0YMAA2rt3r1PP2xEjRtDmzZudmvtMnz6dVq5c6dTcZ/ny5bRw4UJ6+PCh6drt27fTjBkz6Pbt26ZrT5w4QePGjaOwsDDTteHh4TRkyBA6c+aM6c84NjaW+vfvT4cPH3bqeTto0CDauXOnU8/bsWPH0vr165163s6ZM4eWL1/u1Nxn9erVNHfuXKfmPp7Mms7OfdIja27duhVZ0wBPZc3U1NRMmzXnz5/v9qx5+vTpLJc1J0yY4HLWfPLkielaV7LmgQMHaNKkSR7JmgMGDKDjx4+brk1OTkbWNMGTWbN///505MgRp+c+zmbNMWPGeCRrrly5MtNlzbt373okazIz/fvvv7Rt2zZkTQM8lTVTUlIyZdZctmwZLViwwO1Z8+TJkzR27Fi6evWq6drMmjXHjRuX6bLmvn37kDVNmDJlikey5qZNm2jWrFlOzX2OHj3qdNa8du1apsuaRESjRo2ijRs3ZqqsuXPnTo9kzcjISI9lzSFDhrj0XnPt2rVOZc358+e7lDVnz55N9+7dM13rSta8dOkSjRgxwiNZc8CAAU5nzeHDhzudNeF/EDNj6AwiKkdETEQcHh7OkDk9ffqUixcvzkTEb7zxBvft25cPHz7MaWlpurVpaWn86quvMhFxlSpV+Pfff+edO3dycnKyoX9306ZNmYi4bNmy3KFDB16/fj3Hx8cbqu3atSsTERcrVox/+OEHXr58OUdHRxuqHTt2LBMRFyxYkP38/Hju3Ll8//59Q7Vr1qxhIuLcuXNzo0aNeMqUKXzr1i1DtadOnWIi4uzZs3O9evV41KhRfOnSJUO19+7d47x58zIR8TvvvMMDBw7kkydPss1m061NTEzksmXLMhHxq6++yr169eIDBw5wamqqbq3NZuM6deowEfGLL77Iv/76K2/bto2TkpIM/bq/++47JiL29vbmtm3b8po1azg2NtZQbe/evZmIuEiRItyqVStevHgxP3r0yFDtrFmzmIg4X758/MUXX/CsWbP4zp07hmp37NjBRMQ5c+bkzz77jCdMmMDXr183VHvlyhXOnj07Z8uWjevWrcvDhg3j8+fPG/qcHj9+zF5eXkxE/Oabb/I///zDISEhhr6LKSkpXKVKFSYifvnll/nPP//kPXv2cEpKiqFfd4MGDZiIuEKFCtypUyfetGkTJyQkGKpt164dExGXKFGCf/75Zw4ODuaYmBhDtUOHDmUi4kKFCvHXX3/NCxYs4AcPHhiqXbp0KRMR58mTh5s2bcrTpk3jiIgIQ7VHjhxhIuIcOXLwp59+ymPGjOErV64Yqo2IiOBcuXKxxWLhOnXq8ODBg/n06dOGPuO4uDguWbIkExG//vrr3Lt3bz506JChz9hms3HNmjWZiLhy5crcrVs33rFjh+HnbfPmzZmIuEyZMty+fXtet26d4edt9+7dmYi4aNGi/P333/OyZcv4yZMnhmonTpzIRMQFChTgli1b8pw5c/jevXuGajds2CA+b318fHjy5Ml88+ZNQ7Xnzp1ji8XC2bNn548++ohHjhzJFy9eNFQbFRXF+fPnZyLit99+mwcMGMDHjx839BknJSVxxYoVmYj4lVde4b/++ov37dtn+Hlbt25dJiJ+4YUXuEuXLrxlyxZOTEw09Ov+4YcfmIi4VKlS3Lp1a161apXh5+0///zDRMSFCxfmb7/9lhctWmT4eTt37lzxedusWTOeOXMmR0ZGGqrds2eP+Lxt0KABjx8/nq9du2aoNiwsjHPkyMEWi4Xff/99Hjp0KJ87d87Q5xQdHc1FixZlIuKaNWtyQEAAHz161NB3MTU1latVq8ZExFWrVuU//viDd+/ebfh56+Pjw0TE5cuXZ39/f96wYYPh522nTp2YiLh48eL8448/8ooVKww/b0eOHCk+b7/66iueN28eR0VFGaoNDg4Wn7eNGzfmqVOnGp77Hz9+XJz7fPzxxzx69Gi+fPmyodrIyEjOkycPExHXrl2bBw0axKdOnTL0GcfHx3Pp0qWZiLhGjRr8999/88GDBw1/F2vVqsVExJUqVeLffvuNt2/fbnju89VXXzERcenSpbldu3a8du1ajouLM1T7119/ic9bq9XKS5cu5cePHxuqnTZtGhMR58+fn1u0aMGBgYF89+5dQ7VbtmxhIuJcuXLx559/zhMnTuQbN24Yqg0NDeVs2bJxtmzZ+MMPP+Thw4fzhQsXDH1ODx8+5EKFCjER8VtvvcX9+vXjY8eOGapNTk7mSpUqMRFxtWrVuEePHrx3717D38WPP/6YiYgrVqzInTt35s2bNxt+3v7yyy9MRFyyZEn+5ZdfeOXKlfz06VNDtYMGDWIiYi8vL/7mm2944cKF/PDhQ0O1CxcuZCLivHnzsq+vL8+YMcPw8/bAgQPi3Kd+/fo8btw4vnr1qqHamzdvcs6cOdlisfB7773H//77L585c8bQ5+Rq1qxRo4ZHsuavv/7qdNYcN26cOPdxZ9Y8ffq0x7JmuXLl7LLm/v37nc6aW7dudTprrl692vDcp0+fPuLc57vvvnNb1ty5c6fHsmbhwoUzXdZs3769R7LmsmXL0iVrfvLJJ27NmqVKlWIi4tdee82tWbNFixYeyZqTJk1yOWvmypUrXbJmaGiooc8pKiqKCxQoIGbN/v37uy1rfvDBBx7Jmv369XM6a86bN88jWfPatWuKrHn27Fmns+aRI0cMZ83q1avbZc1du3aZzprlypXjjh07upw1jc59Ro0aJfbZv/zyS7dlzRMnTngkayYkJLiUNd9++22PZM2ePXuKfXZXsmbz5s1NZc2tW7emS9b84IMP3JY1U1JSuHLlyh7Jmq1bt/ZI1ly0aJEia96+fdtQrTxrjh071umsOWTIEMNZMzY2Vsyar7/+Ovfp08dtWdPX1zfTZc21a9d6LGvmy5fPLmueOHHCqazZs2dPU1nz3XffFbNm165dnc6abdq0cVvWDAwMzHJZs2rVqk5nzc8++0zss7uaNYOCggxnzWHDhtn12efPn+9U1mzSpImprHn06FFkTRNZ848//ki3rDl79mzDWRM8Kzw8nIlIGOU4PdbEpcc/5H99EBYO/s8YPny49Etkqhm0fPlyRa3RZlBISIii1mgzKCIignPnzm1Xa7QZFB8fz97e3na1RptBNpuN33zzTcWv2+jCg5YtWypqjTaD/vzzT0Wt0WbQ5MmTFbVGm0GbNm1S1BptBl24cIEtFotdrdFm0IMHD8SGqjCMNoOSk5P5hRdeUPy6jTSDbDYbf/jhh4pao82gn376SVErNIP0Fl32799fUWu0GTR//nxFrdAMWrJkicNm0L59+xS1RhceXL9+nXPkyGFXa7QZFBMTw8WKFbOrNdoMSk1N5VdeeUXx6zbaDGrcuLGi1mgzqEuXLopao82g0aNHK2qNNoNWrVqlqDXaDBIaqtJhtBl0584d8WWyMIw2gxISErhMmTKK562RZpDNZuN33nlH8es22gz65ptvFLVGm0G9evVS1BptBs2YMUNRa7QZtG3bNkWt0WbQpUuXOFu2bHa1RptBjx49Ehuq0uetkWaQtKEqHUabQZ9++qmi1ujCgzZt2ihqjTaDhgwZoqg12gxavHixotZoM+jQoUOKWqPNoFu3bnGuXLnsao02g2JjY7lEiRKK562RZlBaWhq//vrril+30AzSm/s0a9ZMUWu0GdStWzdFrdAM2rhxo8O5z/jx4xW1RptB69atU9QabQadPXtWUWt04cH9+/fFhqr0eWukGZSUlMTly5dXPG+NNINsNhu/9957il+30WaQ1WpV1BptBgUEBChqjTaDZs+erag12gzatWuX6vPWSDPo6tWrnD17drtaYeHBpEmTHC48ePLkCRcpUkTxXfzwww95xIgRDhcepKamig1V6TC68ODzzz9X1FavXt3QwoOOHTsqao0uPHAla65YsUL1eStkTUdzH1ey5u3btx1mzbCwMM3ajMqaffv21V144Ofnp6h1R9acMmWKojYzZM2CBQva1bora3700UeKWiFr6m3wcyVrDhgwQFFbunRpcYOfu7OmkYUHN27c8EjWTEtL082ajr6L6Z01K1SoYChrjhkzRlGbHllTb9HlyZMnFbV58+blpk2b8vTp0zM0awqbZKXP23fffdcjWfOll14ylDX//vtvRa07sub27dsVte7ImtJNstLnbb169XQ3+KWkpPBLL72k+HW7mjWNLDxo27atotYdWXPJkiWK2syQNYVNstLnrTuy5hdffKGoffnllw1t8HMla06YMEFRW6JECf7pp590s+b69esVta5mTSMLD+7fvy9ukpU+b92RNd9//33Fr1uaNR19FzMqa+r12efMmaOodUfWDAsLU82aDRs2zPCs+fLLLyt+3bVq1Xqus+aIESMUte7ImseOHVPU5s2bl5s1a6a7wS+jsua///6rmzXfeustxa/blaxZpUoV7t69O+/atcvhd7FHjx6KWndkzc2bNytqn4es6ajPnpyczC+++KLi1+2OrPnzzz8raitVqmToMBlXsuaCBQsUtcJhMnpZc//+/Ypad2TNp0+feixrNmnSRFErZE29PntGZc3g4GCHWXP16tWKWndkzbt376pmzU8//TRDsyZ4FhYOYuEguGDdunX8+++/Kx680iE0gyZPnmzXDDpw4AD36dOHc+bMqVmr1Qw6f/48BwQEiLuCtIZw2pO0GXTnzh0OCAgQd71rDbVmUEJCAgcEBKg2CKVDqxk0dOhQ1SAkHVrNoKlTp/LXX3/tsFarGbRs2TLu0KGDw1qtZtDWrVvFE2y0hlYzKCQkhPv27at4iS2fEAnNIOlpT1evXuWAgADFb67yodYMevjwIQcEBIgnWmoNtWaQzWbjgIAAcTe11hBOe5I3g0aPHi2eUKI1tJpBs2fPFndiaw2tZtCqVavEkzS1hlYzaPfu3fz3338rGgvyCZFaM+j06dMcEBAg7gpSG1rNoFu3bnFAQIBqmJEOtWbQ06dPOSAgQPXlqHQIzaDt27fbBdBBgwapNoGlQ6sZNHHiRNVFvNIhPe1J2gxatGiR6mIl6dBqBm3YsEHc5aI1tJpBhw4d4r59+yoaC/LvolozKDQ0lAMCAhSNXPlQawbdu3ePAwICVJtH0iFtBgnfxeTkZA4ICBBPktEaWs2g4cOHizvmtYa0GSQNJzNmzBB3BmoNrWbQihUr2N/f32GtVjNo+/bt3LNnT0VjQTpy5swpnvYkbQYdP36c+/btq1gwLf8uqjWDrl27xgEBAYpGrnwIpz1Jm0GPHz/mgIAAfu211xzWajWD/vnnH9WmhHRoNYPGjh2ruqhMOrSaQXPnzlV9eS4dWs2gNWvW8G+//eawNnfu3KrNoH379nHv3r0VjQXp0GoGnT17lgMCAsQTKLRG7dq1Fac93b59mwMCAlQXaUqHWjMoLi6OAwICxFP0tIZWM2jIkCHiaUFaQ6sZNGXKFP7yyy8d1mo1g5YsWSKeaqs1tJpBmzdvVl0EIx1azaAjR45w3759FY0F6dBqBl2+fJkDAgLEEyi0hlozKCoqigMCAsRTRrSGWjMoNTWVAwICVF/ISIf0tCfp83bkyJGqixykQ6sZNGvWLNWXOdKhddpTcHCwatNKOrSaQTt37uRevXopXmJLh1Yz6OTJkxwQEKBYMC0dWs2gmzdvckBAgHjij9ZQW3gQHR3NAQEB/MYbbzis1Vp4MGDAAPH0Cq2htfBg/Pjx4unDWkNYeCB/EbZgwQLxlEWtobXwID2ypvwltnRonSx84cKFDM+ar7zyiiJrJiYmckBAANeuXdthbUZkzWnTpqkuZJEOT2dN+QY/d2VN+QY/IWsKp4xojYzKmsIJJVpDK2vOmTPHI1lzz549bsua0hdh4eHhz33WVNvgN2nSpAzNmsIGP3nW3Lhxo0ey5sWLFzkgIEA8gUJrZFTWFE6S0RoVK1bkLl26KF6EZXTW9PLy4m+//VaxwW/FihXiyW5aIyOzpvwltvy7KJwsLM2a169fdzlrqi0Mkw6trNmvXz+PZM158+YZzpryuc/atWvdkjXlG/zOnTuX4VlT7Rab+Ph4DggIEE/R0xoZlTWFE/i0RkZlTbVFMNIhzZrSPrs7s6b0tCcha6otVJCOjMqaaoscpEN6svDzkDV37drFf//993OfNaUb/GJiYtyWNeUb/CZMmJDhWVM4WVj6vF2/fr14crHWyMisKd+cKx+eypovvPCCmDWl38WhQ4dyw4YNHdZmVNZUWxwqHULWnDlzZrpnTfmCafl3Ue0WG3dkTa1bbDJL1pT22VevXu22rCnd4HfmzBkOCAhQLJiWf8auZk35YTKxsbEcEBCguhBXOrROFnY1a6ot4pWO5yFrSvvsQtYUTnpWGxmZNYWbo7SGkDWlG/xczZrgWVg4iIWD4ILOnTs7fPCpDaEZpNcIURtCM2jgwIGma4VmkHD1pZkhNIOEay7MDGkzSK8BIx/SZpBeo0w+pM2gRo0amf51Cztw9cKX2hCaQXoTc7UhXDOldrqI3hCaQcIVCGaG9Epjs7XSZpBeM1Q+pM0gtdN6HA2hGTRs2DDdCZ/aEJpBeouc1Ea1atX4zz//VN19qTeEZpDaLhO9ITSD1E4J0hvSZpCj0Kc2pM0gvcmifEibQfXr1zdVK20G6TW71IbQDNJ76a42hGbQ4MGDTdcKzSDhSG4zQ9iBq7ZbTG9Im0F6DRj5kF5prBfc5EPaDNJbOKw2hGaQ2qkEekNoBqmdPKE3hGaQcA2tmSE0g9ROrdAb0maQo0aq2pA2g/TCuXxIm0F6TRT5kDaD9F4uqA3hZGG9xrPaEJpBaqfK6g2hGaR2ep7eEJpBajvl9Ya0GeSo4a02hGbQ1KlTdRtl8iFtBuktnlH7jOvUqcODBg3iH3/80fR/s9AM0muEqA2hGfTvv/+arhWaQWq7qPWG0AwSrrA1M6TNIPnJsHpD2gzSa1rLh7QZpPdyQW0IzSC9RU5qQ2gGCdfGmBnCycJqJwfrDWHRpXC9qZkhPVnY0YIOtSE9WVjttB5HQ3qlsd4LJPmQLjz49ttvTf83I2sar5We9qT3klA+noesKVyZZ2a4kjWFK42nT59uutbTWXPChAm6L+zlw9WsKWzw01vkpDbSI2uOHTvWdK2nsqZwsrAns+b3339v+r/Z1azZrVs3p7KmsMFP7WYMvZFeWVNvU518pFfW1HuZqzayYtYUNvg5eomsNlzNmsJpT2q3kDga0qypt2FcbWTGrFm8eHH+6aefeO7cuaZrPZU1pRv89BbPqH3GrmRNYYOf3uY2teFK1hRusZk6darpWiFrClfYmhmZOWv269cPWdPAkGZNvUVw8pFeWVNvEb/a8FTWFPrsnsiawgY/+eloesPVrCncYqO3SVVtCFlTuLrbzEDWNF7ratYUNvi5O2sKt9j8888/pmuzatYcM2aM7kYN+UiPrNm7d2/dBd5qI7NnTVxp7FkZsXAwBwGAptDQUPL29qZ8+fKZrg0LC6OQkBB68cUXTddGRERQSEiI6ToiogcPHlBISAgVKVLEdO3Tp08pJCSEvL29KTU11VRtUlISHTt2jLy9vSk+Pt5UbVpaGp08eZK8vb3p0aNHpmqJiM6dO0fe3t6UkpJiuvbSpUvk7e1NxYoVM11748YNCgkJodjYWNO1d+7coZCQEMqVK5fp2sePH1NISAiVKlXKdG1cXJz4GScnJ5uqTU5OpuPHj5O3tzfFxMSYqrXZbHT69Gny9vamqKgoU7VEROfPnydvb2/KkcP8b1tXrlyhY8eOUdmyZU3X3rp1i44dO+bU/7aioqIoJCSEChYsaLo2JiZG/JzS0tJM1SYkJIjfxYSEBFO1qamp4nfxyZMnpmqZmc6cOUPe3t5OfSeE560zP69r165RSEgIVa5c2XTt7du3KSQkhLJly2a69tGjR3Ts2DGnnh+xsbEuPW+F72JcXJyp2rS0NDp16hR5e3vTw4cPTdUS/f/z1mazma69fPkyhYSEUMmSJU3X3rx5k0JCQkz//kJEdPfuXQoJCaG8efOarn3y5In4OZkVHx8v1iYlJZmqTUlJoRMnTjj1vJV+F535PfXChQvk7e1NefLkMV0rzH0qVKhgujY8PJxCQkKc+t+W8Lz18vIyXevK8zYxMdHpuY/0efv48WNTtcxMZ8+edeo5T0R08eJF8vb2durndf36dQoJCaGqVauaro2MjKRjx4459Xv5o0ePKCQkhEqUKGG6Nr3mPk+fPjVVa7PZxOftgwcPTNUS/f/cx2KxmK4VnrelS5c2XSvMfcw+t4iI7t+/T8eOHaP8+fObro2OjhY/J7PPAencJzEx0VRtamqq+LyNjo42VSt93pqtJULWNMPVuY+ns2bx4sVN17qSNYW5T+7cuU3XZsWsKcx9cubMabrW1awZEhKSqbKmdO6TlbLmsWPHnMqakZGRFBISQtmzZzddi6xpTnpkTWfm1Zk9a7oy9zGbYYjSJ2tWrFjRdK0rWVOY+xQuXNh0raeypitzH1ezpjD3cWau6ErWFPrszvxeLmRNZ54fyJrmuJo1Q0JCqECBAqZrM3vWNDs3JvJc1rx9+zYdO3bMqf9tZdasKXwXXcmaZn/NRJk7azoz98mKWfPq1asUEhJC5cqVM12bHlmzUKFCpmulcx+zz9v0yprO9NmzYtYMCQlx6vkhzZply5alBg0aOPXMh+dUeqw+/F8fhBMH/ydMnjzZ0EpzYffSypUrxSOMg4OD2cfHx+FVxUT2u5eEI+MPHDjAPj4+7OXl5bBWuntJODI+LCyMfXx82NvbW3c1ff369e2OjI+NjWUfHx+uVKmS7mr69957T3Fk/Ndff21oR+Mbb7yhuJ6sa9euulckE6kfGf/vv/9yvXr1dGvVriebPXu2oZ2UwpHxy5cvF48w3rhxI/v4+Di8QoFI/XqyEydOsI+Pj+5uJunuJeHI+Nu3b7OPjw+XK1fOYa1095JwZLzNZmMfHx+uWrWq7n+zsHtJemT8Tz/9ZGgXldpV2D179jR06qD0yHjhmOqxY8fqHlFN9Oy6HPmR8UuWLOGGDRvq7sZWOzJ+165d7OPj4/DKGiL168kuXLjAPj4+urv1pVdhC0fGP378mH18fPiFF15wWCvdvXT+/Hnxc2revLnudY5E/797SXpFR8eOHXWv7CT6/91L0iPj+/fvb2j3efny5blTp052R8ZPmzaNP/vsM91aYfeS9Mj41atXs4+Pj+4OUGH3kvTI+EOHDrGPj4/DK8KI/n/3kvTI+Bs3brCPj4/uDmG168kSExPZx8dH97obrauwv/vuO93rc4nsrycTPuPff/9d94pkov+/nmzHjh3i83b48OGGdrwKu5fWrVsnHhk/b948btiwocPro4j+f/fS0qVLxetytmzZwj4+Pg6v6yN6tpNQfhX26dOn2cfHR/dKxly5crGPj4/dkfH37t1jHx8f3V2J2bJl448++khxZHzjxo11rxcjenZShvzI+NatW+teIUdkfz2Z8Lzt3bu3od2QwpHx0quwJ0yYYGjuo3Y92fLly9nHx8fh9VFE/389mfQq7L1797KPj4/uqQrC9WQzZ84U5z6XL19mHx8f3aP5pSdlCNeTxcTEsI+Pj+6pG9KTMqTXk/n5+fGrr76q+/OqWbOm4nqyzp07615bRaR+PdmgQYN0ryYjsr+eTJj7zJw509CJhWrXk61bt459fHwcXqFApH4VdkhICPv4+Di8JoNI/Xqy8PBw9vHx0b0KRe0q7JSUFPbx8TG007927do8aNAgu+vJvv/+e0MnY6tdhf3nn3/qXt1A9P8nZUivJxs1ahR/8sknurXCSRnS68kWLlzIDRs21D31tEiRImy1Wu2uJ9u+fTv7+Pjo7vJVu57s3Llz7OPjo3sqrtr1ZA8ePGAfHx/dq6e0rifz9fU1tLtY7Srsdu3aGTohSbieTHpFR0BAANetW1e3tkKFCty5c2fevHmzOPdxZ9aUXk9mNmtKrycTsqbeNXBqWTMuLs5w1lS7nsxo1lS7CvvXX3/NEllTmPs4kzWFq1kjIyORNTXG85Q1Q0NDM03WlF5P9rxnTeGUMGezpvx6ssOHDxvOmvLryTJb1hS+i85kTeG7mJmypjD3MZM15deTmcmaateTGc2aateTeSprTpw40fDcJytmTflV2J7KmoMHD0bWVBlqWTM1NdVjWbNHjx6GsqZwSpgzWVM4JWzNmjXi3MdM1pRfhe2prPnw4UOPZc327du7LWtu2rTJLmsamfsIWTM4ONitWVN6Spgw97l27ZrhrCm/CtvVrPnNN99kuqw5Z84cj2TNkydPmsqakydPdjpryq/CNpM15VdhuztrCnOfcePGeSRr7t69O9NkTelV2C1atDCcNeVXYZvJmvKrsAcMGGA4a8qvwnYla65Zs8ZQ1ixYsKDHs6ZwFXZSUpJLWRM8C1cVY+EguEjr2FXhKFnpYgy5ffv2qdaqLcaQu3HjhmozRK1BJhcTE6M6cRMaZMuWLRMniXJpaWn8yiuvKGqNHiXbpEkTRa2wGEM6SVSjdu2E9NoS6SRRTutaWOHaEukkUW7VqlWqtcK1JdIGmdzJkydVa4VJorRBJnf37l3VybkwSZQ2yOQSEhJUGxrCJFHaIJOz2Wyq1xlIG2SRkZGaP+tvvvlGUavWIFOjdgWMdDGGdJIop3WNi3BtiXSSKLd9+3bVWuHaEukkUe7y5cuqzZBy5copJolyjx8/Vg3K0kmi0CCTS0lJUb06T5gkShtkatQCifTaEke/N6ld85M9e3b+5JNPePTo0eIkUY3a9SDSa0tOnTql+RkvWbJE9XMSGmQHDx7U/C4ePnxYtVZYjLF9+3axQSZ369YtzpUrl6JWWIyxdu1azedtbGysaogSFmNIX0jIpaWlqTYIpdeWCA0yNV988YXq81b+QkKN2pVb0hcS0gaZ3IQJE1R/1sILiWPHjmnWrl+/XrW2evXqigaZ3NmzZ1VrpYsxtJ639+/fV21MShdjaD1vk5KSVF/mSBf+O3reqr1UUVv4r0btqHvptSVCg0yN2vV30mtLpC8k5LSu7xWuLZE2yOR27dqlWiu8kJA2yOTCwsJUmyFly5bljh072jXI5KKjo1VfEhQrVox//PFHXr58uebzNjU1VfWlm9rCfzVqjTq1hf9qOnbsqPq8FRZjCC8k1IwYMUL1Zy0sxpC+kJBbsWKFaq1wbYn0hYTcsWPHVGvVXkjIRUZGqr4IUnshIRcfH6+6MUb6QkJokMnZbDbVZn2+fPm4efPmdg0yNWpXi+TMmVO8tkRokKnp0aOH6vNWbTGGnNa1WWoL/+U2b96sWissxtizZ4/m8zY0NFT1xbuwGEP6QkLuwYMHqo1JYeG/9IWEXHJysuqLVem1JcILCTmbzab6glPthYSan3/+WfV5K7yQEBZjqFG7jkn6QsJRg8yVrLl//37V2ozOmk+fPnUpa6q9AHdH1uzatavq81aaNbU+J1ey5urVq1VrPZk15Ysx5BITE1WzptpiDDlXs6baFd7uyJozZ85U/VmnV9bU+i5mZNaULsaQczVrql0brLYYQ41W1hQWY5jNmkT/vxjDUdZcunSpam1GZ83w8HCPZU21l6PplTWFxRhqHGVN+WIMOa1rCoUrMjMya6rNfdyRNStUqKD6vDWSNdUWlLgja6pdfyfNmtLFGHKuZM3du3er1qotxpBzlDXlizHkHGVNYTGGo6yptuDIHVnT399f9Xmb0VkzKChItdZI1jx+/LhqrZA1pQv/5fSypnQxhlx8fLzqYiXpFZnOZE35Ygw1X375paJWbTGGGk9lzS1btqjWZnTWfPjwYYZmTUdzH7XFXWqbzNU4yprShf9qHGVNvcUYCxcuVP2c3JE11RYdPu9Zs2nTpopaadZ01GdXy5rCJvORI0faLfyX07oWVm2TuZyjrClf+C936tQp1Vq1hf9ynsyaahtU3JE1e/furfpdTI+sKV34L7djxw7VWiFrShf+y125ckV17iNkTenCfzlXs6bagnq1hf9qXMma7dq1U9Q+71nzyJEjqrUZnTXj4uIcZk3pwn85vawpXfgPzxcsHMTCQXBBSkqKuIPB6GIMKWEXpdbuUEfat28vfnnVdoc6MnToULFWbXeoI8uWLTM1SZQ6evSoWKu2O9SRiIgI8Tc4I5NEqbi4OHHnpzBJ1GuQCWw2G9esWdNukjhu3DiHk0SpFi1a2E0S9RZjSP3xxx/iz0tokDmaJEpNmjRJrFXbHerIxo0b7SaJ8t2hjpw/f14M98JiDEeTRKmoqCguUKCAYpLoqEEmSEpKEncFSieJjhpkApvNxh988IFikuioQSb1448/KiaJjhpkUv369VNMEh01yKTmzZsn1hpZjCG1d+9esdbIYgypa9euiS+S1XaHOhITE8NFixZlov9fjGF0kpiamiruJlLbHaqnUaNG4vNWbXeoI506dRJ/Xmq7Qx0ZNWqUWCvsDnXUIJMKDg4Wa9V2hzpy4sQJu+etfHeoI3fu3BGbqUYWY0glJCSIzVSjizEENptN3PFudDGG1FdffSU+b9V2hzrSs2dP8eeltjvUkWnTpom1Rl5ISG3dulWsNfJCQurixYvii2S13aGOPHz4UDxNQW13qCMpKSnijjG13aF6hFNCjC78l2rdurX48zKyGENq8ODBYq2wGEO6O9SRRYsWibVqu0MdOXjwoFirtjvUkZs3b4rNVLXdoY7ExsaKJ5tIX0g4apAJ0tLSxJ3URl9ISPn6+orPW7XdoY789ttv4s9LbXeoI+PGjRNr1XaHOrJ27VqxVm13qCOnT59WNMiku0MduXfvnnh6jdruUEcSExPFRctqu0Mdsdls4ukTartD9bRq1Up83gq7Qx01yKT69Okj/ryEk4gcNcikAgMDxVrhhYSjBpnUzp07TTXIpKTNVCOLMaSePHki7u41uhhD4GrWFHY0uztrDhs2TDVrGvkuLl++PF2zpqPFGFIRERHiDm4hazpajCGVXlnT6GIMKWnWNLLwX8qVrDl58uRMlzUfPHjgUtYUTkRIj6yptxhDSp419RZjSPXv398ua+otxpDyVNa8fv16umdNR4sxBKmpqeIGWWHhv6tZ09FiDKnOnTsrsqajxRhS8qyptxhDauXKlXZzH73FGFLSrGlkMYaUq1lTOPXC3Vnz66+/9kjWnD59uiJrOlqMIbVt2zaxtkyZMtyhQwdet26d01nT0WIMqUePHtllTSOLMQTSrGl04b+UcEJaZsqaixcv9kjWvHXrliJrGu2zx8bGiqe6CVlTbzGGIC0tTTyxVMiaeosxpJo1a2aXNfUWY0i5kjXHjx8v1hrZZC4lzZpGFv5LnTlz5rnKmkbeY9psNvHkLWGTubuyZt++fe2ypt5iDClp1jSyGENKukHWbNa8evWqR7Jmamqqx7Jmhw4dFFnT0cJ/KbWs6Wjhv5Ra1nS08F8qJCTEI1lTukHW6MJ/gc1mE08PdiZrtmzZMtNlzU2bNom1wiZzT2VNvYX/guTkZEXW1Fv4L7DZbOIpeM5kzZ9++kn8eRlZ+C8lzZpGFv5LzZ8/3+msKT2MKb2yppE+uyezZuPGjT2SNUePHu2RrAmehYWDWDgILtiyZYvu7lAtZ8+eVVxBbNS9e/fYz8/P8CRRKiEhgb/55hu7o7qNstls3K5dO93doVp69+5tqkEmNW7cOFOLMaSWLVtmajGG1L59+0wtxpC6evWqqUmi1OPHj/nLL780PEmUSk5OZqvVamqSKLDZbNylSxfFtVBGDRw40FSDTGrGjBm6u0O1rF271lSDTOrYsWOmFmNIRUREsJ+fn+7uUDWxsbH81VdfmVqMIUhLS+NffvlFd3eolh49eujuDtUycuRIU5NEqQULFiiuhTJq+/btpl5ISF24cEFxBbFRUVFR7OfnZ3gxhlRiYiJ/++23urtD1dhsNu7QoYPTR3X37dtXd3eolkmTJunuDtUSFBSkuztUy8GDB3V3h2q5fv06f/nll3ZXEBsVHR3NX375pe7uUDWpqan8ww8/mGqQSf3666+mFmNIDRkyxNTCf6lZs2aZWowhtXHjRlML/6VOnTplauG/VGRkJPv5+Rl+ISEVHx/P33zzjakXEoK0tDRu06aNqRcSUj179tTdHaplzJgxphpkUosXLzbVIJPavXu3qQaZ1KVLlwydRKTm4cOH7Ofnp7s7VE1SUhK3atVKd3eoGpvNxp06ddLdHaqlf//+phb+S02dOtXUCwmp1atXK64gNurIkSO6u0O13Lp1i/38/JzaHfr06VP+6quvTDXIBKmpqfzTTz+ZWvgv1b17d1ML/6WGDRumexKRlrlz5yquIDbK01lTegWxUemRNc0sxpByJWuOHz8+02XNsLAwMWuanfu4kjVTUlL4+++/t7uC2ChPZ035FcRGuZI1jx8/7rGs+fXXX2e6rDlq1CjFFcRGuZo1zSzGkPJU1kxKSuLvvvvOI1kzICBAcQWxUa5kzeDg4EybNc0sxhC4mjV/++03j2TNwMDATJc179y5I2ZNs3MfV7KmzWbjNm3amFqMIeWprLlkyRKPZM3Lly97JGsmJyeLWdOZPnvnzp1NbTKXcjVrmlmMIeVK1jx69Kiphf9SWTFrDh8+3CNZc+vWraY2mUsha7ovay5fvtzprLl//36PZM0nT56wn5+fqYX/AleyJvOzG+vMLPyX8lTWXLdunUey5u3btz2eNZ3ps/fo0cPUwn8pV7LmwoULTS38l3Ila4aGhppa+C/lyazZsWNHXEGcSWXEwkELP1sYBw5YLJZyRBRORBQeHk7lypXz8K8IAAAAAAAAAAAAAAAAAAAAAAAAsoKIiAgqX7688KflmTnC1X9mNlf/AQAAAAAAAAAAAAAAAAAAAAAAAACQeWDhIAAAAAAAAAAAAAAAAAAAAAAAAEAWgoWDAAAAAAAAAAAAAAAAAAAAAAAAAFkIFg4CAAAAAAAAAAAAAAAAAAAAAAAAZCFYOAhZxtGjR2nz5s2UmJhouvbSpUu0cuVKevr0qena+/fv08KFC+nhw4emaxMTEykwMJBu375tupaZae7cuRQWFma6loho2bJldObMGWJm07Xr16+nw4cPk81mM127d+9e2rlzJ6WkpJiuPXXqFK1fv54SEhJM116/fp2WL19O0dHRpmufPHlCc+fOpfv375uuTUlJocDAQLp165bpWmamBQsW0KVLl0zXEhEFBwfTiRMnnPqMt27dSgcOHKC0tDTTtYcOHaKtW7dSUlKS6drz58/T6tWrKS4uznRtZGQkLV68mB4/fmy6Ni4ujmbPnk137941XWuz2Wj27Nl0/fp107VERIsXL6bz58879TmtXbuWQkJCnPou7ty5k/bs2UOpqamma48dO0abNm1y6nl79epVCg4Odup5++DBA1qwYAE9ePDAdG1SUhIFBgZSRESE6VrheXvlyhXTtUREy5cvp9OnTzv1GW/cuJEOHTrk1Hdx3759tGPHDkpOTjZde+bMGVq3bh3Fx8ebrr116xYtW7aMnjx5Yro2JibG6edtWloaBQYG0s2bN03XEhEtXLiQQkNDnfqcVq1aRcePH3eqdtu2bbRv3z6nvotHjhyhLVu2OPW8DQ0NpVWrVlFsbKzp2rt379KiRYvo0aNHpmsTEhJo9uzZdOfOHdO1NpuN5syZQ9euXTNdS0S0dOlSOnfunFOf07p16+jIkSNOPW93795Nu3btcmruc+LECdqwYYNTc5+wsDBasWIFxcTEmK599OgRzZs3j6KiokzXJicnU2BgIIWHh5uuZWaaN28eXb582XQtEVFQUBCdOnXKqc948+bNdPDgQaeetwcOHKDt27c79bw9d+4crV271qm5T0REBC1ZssSpuU9sbKzTcx/heXvjxg3TtUREixYtogsXLjj1Oa1evZqOHTvm1Hdxx44dtHfvXqeet65kzcuXL2fKrDlnzhy6evWq6Voi17Lmhg0bMl3WvHHjhkeyZmpqaqbMmlu2bKH9+/e7PWteuHDBo1nT2bmPK1lzyZIlHsmau3btcilrbty40SNZc/78+U5lTWHu44msuWLFCo9kzf3792fKrDlnzhy6d++e6VpkTXMuXryY6bKmMPdxts+e1bLmtWvXPJI1hT67s1lz/vz5HsuazvbZXc2aa9asQdY0yFNZMyQkBFnTBGRN4zyVNYmIFixYQBcvXnTqc3L1vSaypjHp8V7T2bmPq+81d+/e7ZGsGRQU5NTcJ7NmTfgfxMwYOoOIyhERExGHh4czZE5RUVGcP39+zp8/P7do0YIDAwP57t27hmqTkpK4QoUKnCtXLv7888954sSJfOPGDUO1NpuN69aty9myZeMPP/yQhw8fzhcuXGCbzWao/vvvv2ci4rfeeov79evHx44dM1z7zz//MBFxtWrVuEePHrx3715OSUkxVDt37lwmIq5YsSJ37tyZN2/ezImJiYZqd+/ezUTEJUuW5F9++YVXrlzJT58+NVQbFhbGOXLkYC8vL/7mm2944cKF/PDhQ0O10dHRXKRIEc6bNy/7+vryjBkz+Pbt24ZqU1NTuVq1apwjRw6uX78+jxs3jq9evWqolpnZx8eHLRYLv/feezxkyBA+c+aM4c/J39+fiYjfeOMN7tOnDx8+fJjT0tIM1Y4cOZKJiKtUqcK///4779y5k5OTkw3VBgUFMRFx2bJluUOHDrx+/XqOj483VHv8+HEmIi5WrBj/8MMPvHz5co6OjjZUGxkZyXny5OECBQqwn58fz507l+/fv2+oNj4+nkuXLs25c+fmRo0a8ZQpU/jWrVuGam02G9eqVYuzZ8/O9erV41GjRvGlS5cM1TIzf/nll0xE/M477/DAgQP5xIkThj/jv/76i4mIX331Ve7Vqxfv37+fU1NTDdVOnTqViYhffPFF7tq1K2/dupWTkpIM1W7ZsoWJiL29vblt27a8evVqjo2NNVQbGhrKFouFCxcuzN999x0vXryYHz16ZKj24cOHXLBgQc6XLx9/8cUXPGvWLL5z546h2uTkZK5UqRLnzJmTP/vsM54wYQJfv37dUC0zc7169Thbtmxct25dHjZsGJ8/f97w5/TLL78wEfGbb77J//zzD4eEhBj+Lg4cOJCJiF9++WX+888/ec+ePYaftwsXLmQi4goVKnCnTp1448aNnJCQYKj2wIEDTERcokQJ/vnnnzkoKIhjYmIM1d64cYNz5szJhQoV4q+//prnz5/PDx48MFT79OlTLl68OOfJk4ebNm3K06ZN44iICEO1aWlp/Oqrr3KOHDn4k08+4TFjxvCVK1cM1TIzN23alC0WC9epU4cHDx7Mp0+fNvwZd+3alYmIX3vtNe7duzcfOnTI8Gc8duxYJiKuXLkyd+vWjXfs2GH4ebtmzRomIi5Tpgy3b9+e161bZ/h5e+rUKSYiLlq0KH///fe8bNkyfvLkiaHae/fucd68eblAgQLcsmVLnjNnDt+7d89QbWJiIpctW5Zz5crFPj4+PGnSJL5586ahWpvNxnXq1OHs2bPzRx99xCNGjODQ0FDDn9N3333HRMRvv/029+/fn48fP264tnfv3kxE/Morr/Bff/3F+/btM/y8nTVrFhMRv/DCC9ylSxfesmWL4bnPjh07mIi4VKlS3Lp1a161apXh5+2VK1c4e/bsXLhwYf7222950aJFhp+3jx8/Zi8vL86XLx83a9aMZ86cyZGRkYZqU1JSuEqVKpwzZ05u0KABjx8/nsPCwgzVMjM3aNCALRYLv//++zx06FA+e/as4c+pXbt2TERcs2ZNDggI4CNHjhj+Lg4dOpSJiKtWrcp//PEH79q1y/DzdunSpUxEXK5cOe7YsSNv2LDB8PP2yJEjTERcvHhx/vHHH3nFihWG5z4RERGcK1cuLliwIH/55Zc8b948joqKMlQbFxfHJUuW5Dx58nDjxo156tSphjOpzWbjmjVrcvbs2fnjjz/m0aNH8+XLlw3VMjM3b96ciYhr167NgwYN4lOnThn+jLt3785ExDVq1OC///6bDx48aPi7OHHiRCYirlSpEv/222+8bds2w3OfDRs2MBFx6dKluV27drxmzRqOi4szVHvu3Dm2WCxcpEgRtlqtvGTJEn78+LGhWlezZsWKFV3Omh988IHprPnDDz9kuqy5Z8+edM2aRuc+0dHRXLRo0XTJmmPHjnVb1uzUqRMTEb/++utuzZrBwcFZPmtevHjRUC0z81dffeWRrDlt2rR0yZpt2rQxnTWzZcvmdNYsVKiQR7Lmxx9/nG5Z8+jRo4a/i4MGDXI5a5YvX96tWfPmzZti1vzqq6+czppNmjQxnTVr1Kjhkaz566+/Op01x40bl65Z0+jc5/Tp0+mWNWfPnm0qa5YrV86lrCn02Z3NmrVq1TKdNfv06cNExNWrV3dr1ty5c2e6Zk2jffbHjx9z4cKFM13WbN++vZg1+/bt61TWrFKlCnfv3p137dpl+Lu4bNmyTJk1S5Uq5ZGs2aJFi3TLmgcOHDD8XZw0aVK6ZM22bds6nTVbtWplOmsWKFCA8+fPz82bN3dr1vzggw/SNWsa/S7269fP6aw5b948sc/uatYMDg42nDWvXbtmlzUXLFjgVNZs2rQpT58+3VTWrF69ustZ891333Vr1hw1ahQTEb/00ktuzZonTpzwSNZMSPg/9s4yuqpkacMVQYJDEjQ4BHd3d9fBdXAYYHB3h8Edgg8Mg7sESHB3CQmBEBfibqe/H3f1+Xr32dZnn+SQod+16sf98Q4k++6mntpVXfGaWLN27dp61ly3bp3RrLlkyRIm1pw1a5aeNWfNmpVurHnjxo0Mx5rJycmodOnSJmPN9+/fq35OI0aMMAlrTps2Dbm4uKg+b7nMKx8fH4T71wDAAZmiJ84U/5H/evDGwf+OZs+eTb5ETMWg3bt3C7xkMUjpQ9jNmzcNvLgY5OzsLJsQubm5IUtLS4EXF4MuXLggCydhYWEoV65cAm++fPnQwIED0YkTJ2SLQfgfOdKLP4SpKQa1aNFC4M2cOTNq166dqmLQyJEjBV6WYtDy5csNftdqi0F///23gVdtMejRo0cGXrXFIG9vb5QpUyaBlywGycFJTEwMsre3F3jVFoNSU1NRlSpVBF4bGxvUtWtXtGfPHsViUNeuXQVeXAzatGmTYjFo8uTJBu9igwYN0MqVKxWLQZs3bzb4XVerVk1VMejixYsGXrXFoLdv3xp41RaDgoODUbZs2QRetcWghIQEVLRoUYGXLAbJwYlOp0MNGjQQeFmKQQMGDBB4yWKQUtPl/PnzDX5fdevWRUuXLkWvXr2SfcZOTk4G3sqVK6PZs2crFoPu3Llj4C1VqhT6448/FItBX758QVZWVgKv2mJQREQEypMnj8CrthiUkpKCHB0dDc5btcWgtm3bGpy3aotBY8aMMThv1RaD1qxZY/C7xsUgpabLkydPGnhxMUjpQ9izZ88MvLgYdPXqVdnz1tfXF2XJkkXgzZ8/Pxo2bJhiMSguLg4VLFhQ4MVNl0rFIJ1Oh2rUqGFw3qotBvXs2VPgtba2Ri1btlRVDJo+fbrBeau2GLR9+3aD37XaYtDVq1cNvGqLQR8/fkQWFhYCLy4GKTVd/vjxA+XIkUPgxcUgpQ9hSUlJqESJEgIvLgYdOHBA8bxt0qSJwJslSxbUvn17tH37dsXcZ+jQoQbnrdpi0OLFiw1+17Vr11ZVDDp8+LCBt2LFiqqKQffu3TPwqi0Gffv2DVlbWwu8aotBUVFRyNbW1iD3UVMMSklJQRUrVhR4WYpBHTt2NMh9cDHo69evst6JEycanLeNGjVCq1atUiwGbdiwweB3XaNGDbRgwQLFYtDZs2cNvGqLQbigSkbRokXRuHHjFBsPAgICkI2NjcBrb2+Phg4dqth4EB8fjwoXLmxw3qppPNDpdKhOnToGuY/axoPffvvN4LzFjQdKH8LkWFPpQ9iePXsMftdaWXPy5MnI2dlZ9l38/PlzhmTNli1bGuQ+mDWVch8trLlixQqD37UpWFPpQ5gYaxYvXhxNnDhR8UOYt7c3ypw5s8CLWVOp6VKMNXPnzo369eunOOCXmpqKqlatapD7aGFNPOCnxJpTpkwxeBd/dtZ89+6dgZdkTbncRwtrJiYmmpQ1s2TJgjp27KjqQ9jAgQMNcp/mzZurGvBbsGCBwe9LC2vipsufmTXz5s0r8JqKNZVyHznWVPoQNnbsWIPzFrOmUtOlFtb8999/DbxaWXP8+PHo6tWrsrmPn59fhmTNXr16GeQ+pmBNpTr7jh07DH7XpmBNpaZLrayZM2dOgVcra+IBP6XztmnTpgbnrRbWbNq0qSrWXLJkicHv2lysWaJECT1ryuU+Xl5eacKaSgN+qampacKamzdvZmZNsulSiTX/+usvg981HvAzhjXxgJ8Sa7569crAm16sWaRIEYPz1hSsqVRn18Kac+bMMXjGWllTzYCfs7OzgVcra44aNUqRNfGQLOllYc0yZcoY5D7pwZq///67Qe5jCtZUGvA7fvy4gddcrKl2wC8mJgblz59f4FV7mYwUa+IBPyXW7Natm8F5mx6suWXLFoPftVrWvHTpkoE3vVgze/bsAi9mTaWmSznWVGq61Ol0qGHDhga5jxbWVHuZjBhr4gE/JdY8cOCAgVcLa5YsWVIVa3p6eqYZa6ptuuRKf/HGQd44yKVBDx8+RGvXrjU4eMmQKga9e/cO7dq1y6C5i4YTXAwi4cTLywvt37/foOBOw4lYMSg0NBQ5OTmhChUqSHrxbU+7d+8WfAhLTExETk5OBoUFMshiED2Be+zYMf0Na2IhVwy6cOGCQYGQDlwMoidwb9++LfoPMxllypQRncB99uyZfkpXKqRue3Jzc0N79+41KLiTITWB6+fnh5ycnAySIDKkbnuKjIxETk5OBkU+OiESKwbpdDrk5OSE2rVrJ+mVKwadPHnSIIGiAxeD6A9hV69eNUiS6ZAqBt27d08UhMjAxSC66fL169do+/btBkkQGbgYRE/genp6ov379xskQWRI3fYUFBSEnJycDKCTDKkJ3Li4OOTk5GSQ6JJBTuDSxaDDhw8bfDij30WpYtDZs2cNPo7SIVUMunnzpsEHcDqkikGPHz/WT41JhVQx6MOHD2j37t0GBXcy7OzsRItB379/R05OTqhAgQKSXrIYRE7ghoWFIScnJ1S5cmVJLy4G0U2XycnJyMnJyaBhmn4XpSZwjx8/jvr27Sv7+5KawL148SKaMGGCrFfqticXFxfRhiMy8AQuXQx68eIF2rJli0HBnQx82xNdDHJ3d0f79u0zaO4igywGkR/C/P39kZOTEypevLikV6oYFB0djZycnFDt2rUlvXLFoAMHDqAOHTpIesliEN10eerUKTRkyBDZ33WtWrVEb3u6du0amjZtmqy3QoUKohO4Dx48QKtXr5b1St329PbtW7Rz506DgjsZUsWgr1+/ov379xsU3MmQKgaFhIQgJycnVK5cOUmvVDEoISEBOTk5ocaNG0t6yZuF6WLQ0aNH9VPvYiFXDDp37pz+ZgOpwMUg+kPYrVu39LdXSAUuBtFNl0+fPhUt9JMhNYH78eNHtGfPHoOCOxlSE7g+Pj7IycnJoLmLjJw5c4pO4EZERCAnJydUrVo1Sa/UBG5qaipycnJCrVu3lvTKFYNOnDihv2VEKqSKQZcvX9bfJCMVUsWgu3fv6ic4pUKqGPTy5Uu0bds2g4I7GVI3C3t4eKD9+/cbFNzJwMUguukyMDAQOTk5oVKlSkl6pT6ExcbGIicnJ1SvXj1JL248EJvAPXToEOrcubOkV+62p9OnT+tvdZIKqZuFb9y4ob+5SyqkbnsyBWvSBXcy0pI16Q+cZEixZlJSkmrWFLvtSS1rig34XbhwQX9ju1RUrVpV9LanX401o6KikJOTE6pZs6ak11SsSX8IO3nypH57glRoZU2xAb+0Zk2p2560sGZwcDBycnJCZcuWlfSmJWvSH87od9HcrEnfLPz48WPRhnoyMGvSA34srEk3XXp7eyMnJyeD5i4yMGvStz2Fh4erYk2xAT/MmvRHbPpd5Kz5P2HWpJu7yJBizYCAANWsSQ/4YdakG0rIUGJNummIDLktNmnNmlK3PZmLNb99+5ZurEk2XWLWpIfFyJDbYsPCmvSAX3qwptiA39OnT/WbF6RCijU/ffpkVtasXr26pDejsyZdZ2dhTXrA79WrV2ZlTXqQiAwtrCl321NGZM1Hjx6ZlTXp5i4yTMGa9IAfZs1mzZpJerWyptRlMmpYU+pm4Tt37uhv5ZcKqZuFnz9/rpk16eYuMn421kQImZU1p06dKuuVYs379++rYk2xy2Rev36NduzYkaFYMz4+Pt1Yk66znz171qARlw4p1nR2djYba+7ZswdlzZpV0is14KeGNaVuFsasSV8SREZasSaXecUbB3njIJcGKRW76CCLQUrFLjrICVx8Ha/aIItBZ86cYfIC/P8ELl4XzBJkMUiuACMWZDGoVq1aTF6yGETfqqQUZDGIvsVOKchikNg0s1yQxSB8/bnaINdM4SvuWYJsumT1ksUgetJVKchikBy4iQVZDMLX1KsN8upverpOKchiEF57pzbIYhBeN8ESuBgkNpmnFGQxSA76xIK87alSpUpMXrIY1KlTJyYvedsTfYudUpDFIKViFx1kMWjv3r1MXrIYhNf7sAQuBolNQisFWQySa3QUC3LNlFyhTCzINVP4mnq1QTZdKn1coIMsBinBFx3kBC5etaU2yGLQtWvXmJ8TWQySK6SKBVkMkms6FguyGNSqVSsmL1kMUipo0kEWg5QaK+gg10yJ3R4hF2TT5alTp5ifE15pjFc4sQR5s7BcwVssyGKQ3IcJsSCLQXLN4WJBFoPomwWUgiwGrVy5kslLFoPEbuuRC7IYdOHCBebnhNdM4ZV5LEEWgxwcHJi85ARuo0aNmLxkMYi+wVcpyGKQ0scFOshikFLhmQ6yGCQ2sa4UuPEArxRhCbLxQK6hQyzINVNyH4LFgpzAlStaiwW50lipoEkHeduTFtYUuxVfLsjbnrSwJl7hxBJaWJNcMyU3ACAWpmDNI0eOaGJNpQ99dJBrpoxhTTzgd+XKFebnpIU1yZuFtbBm8+bNmbymYs25c+cyeU3BmuvWrTMLa+IBPy2sKdcEJxbkbU9aWFNpSJUOU7EmXjOqNkzFmnfv3mX2kqwp9/FJLLSyJh7wU2pWpEMra+LbnjIqa8p9RBYLU7DmhQsXNLEmXommNsiVxhmJNfFtT2K3wCjFz8Cach/sxcJUrIlX/qoNU7DmypUrRW//VQotrEne9qSFNeWGH8XCVKyJV1CqDVOxpthN3EqBWVPstnWlIFcaa2HN8uXLM3m1sia+7WnUqFFM3p+BNcVuo1QKU7Cmq6srsrOzY/KagjVPnz5tcIOvUpCsqTQ0RQd5s7AW1hS7GVYuTMWajx8/Zvb+DKypNKhBh6lYE69YVxtaWRM3Xd66dYvZS7Km3KURYmEq1pRrDhcLU7Gm2DZEufgZWNPY75p8pfHPId44yBsHuTSItXEQh6OjI3MygcPBwYEZCnDY2dmhLl26GOXNmTMn6t69u1FeXHCTm86VCisrK9SiRQvZ6VypwAU3udtn5KJKlSqykw9yUapUKeZiGY5ChQrJTgXLRd68eZmbBXBgADTGi6ec5W4mkQpccKNX3aiNWrVqMQMYjgoVKsjeaiIXxYoVM1ixozby58/P/GEDR+7cuZmLdDjwx0a5CRWpwABIr15QE7ixlTU5x1GtWjVUv359o7xly5aVvbVPLooUKYLat29vlNfW1tbodzFnzpyyU+NygQGQtYAM8P8AKHcTlFzUqVOHufiMo1KlSsxFTRwlS5aUnd6Wi4IFC2o6b419F7Nly4a6d+/O3DgI8D8AbNu2LXNzKMD/F9xYm2Bw1KhRQ/bGC7koX748c4M4jqJFixqd+9jb2zPDPY5cuXIZ/YxxY6vcTVBSgaecixUrxuzFBTe5iUC5qFq1qsGKQLVRunRp2WlCuShcuLDs7ZtykS9fPqPz2xw5cmjKfdq3b4/y5cvH7MVTzqwfZXHUrl1bdgJbLipWrCh7q4lclChRArVp08Yob4ECBYx+F7XkPrjgJnfLu1Tgj42FChVi9uKPjXK3IchF9erVUd26dY3yamVNY3OfjMqazZs3Z/5IgJ+xFtasXLkyZ02VYW7WZB1ixGFO1jTHeWsK1mRtkAD4f9ZkHXDD8auxppbcB7Nmnjx5mL2mYE25rRpyYU7WNLbuk1FZs1GjRsxNMDhq1KhhdO5Trly5DMmaWnIfc7ImvcpRbWhlTWNzH62saY7z1hSsKXcTlFxkVNY0V529a9eumlhT7hZMqTAFa7I28uP41VgTrzFNb9YE+F9jqxbWZB1UxZFRWdPYbynmZk1jv2uWL1+es6bKMAVrmuO7ZpkyZczGmuaos2PWPHHihOzqZq60FW8c5I2DXBq0ZMkSVRBGTj/hK+ednJyQo6OjqglQPP2Er5y/ceMGcnR0lL2aHwc5/ZSSkoI+ffqEHB0dUa5cuRS99Hqz6Oho5OjoqOo2B3zL2Pnz5/VXINetW1fVZDI5/YRXfPTs2VP2emsc5PQTXvExefJkVcVJcvoJXzm/fv16VYkfOf2EV3ycOHECOTo6qoJHPP30/PlzlJqaih48eIAcHR1VTevTKz6+f/+OHB0dVRVz8fQTvnJep9MhR0dHVYkyOf2Er5xv0aKFKuAVu3J+8ODBqhpEcZK4e/du/YqPuXPnqvr4Tq7Sxis+duzYgRwdHRWLquT0E17xcfHiReTo6KhqspCcfkpNTUWvXr1Cjo6OqqZkyOmnpKQk9OPHD+To6KiqgCS24qN69eqqCsHk9BO+cr5z586qkmxy+glfOT927FhUsmRJRS9OEskr55cvX676vMXTT3iV9qFDh5Cjo6PsyhocderUQUuWLEEvX75EOp0O3bp1S/V5S04/paSkIHd3d9XnLV5vhld8xMfHqz5vCxQooJ9+wudtw4YNVTU6kNNP+Mr53377TVURWWzFx7Rp02TXguAgp5/wlfMbN25Ejo6OsuujAITTT3i92alTp5Cjo6PsmgwcNWrUEFw5//jxY9XnLb5pA08/+fn5qT5vxVZply9fXtV5K7ZKu02bNqoaeXPmzGmwSnv48OGqClfkTRt4xcfChQtVvYvkTRt4xceePXtU5T5iKz6uXLmCHB0dVRUI8E0beL3Zu3fvkKOjo6pCH75pA683Cw8PV33ekjdt4PVmtWrVUnXe4ps2yPVm3bt3V3Xekqu0ce4zceJE1bkPvd5szZo1qp4xedMGXvFx7Ngx1bkPvmkDr/hwdXVFjo6Oqj6AkTdtpKSkIE9PT+To6Kiqabp48eKCFR9JSUnI0dFR1QR5/vz59Tdt4PVmTZs2VXXe5s6dG/Xr10+w3mzAgAGqzlv8QWLv3r363GfWrFmqch/8QYJcpb1161bVuQ++aQOv+Dh37pzq3AevN3vy5AlKTU1Fz58/V537kDdtJCUlocDAQOTo6Ci7RgUHedMGzn0qV64suw4Jh62trcGKj/bt26s+b/FNG3i92ahRo1Sdt/iDxM6dO/XrzUzBmmpyH5o1b968ycSa5CrtjMqavXr1UsWauBnjZ2DNf/75h5k18XozY1gTrzfz9vbOkKw5ZMgQVawptkpbC2vu3LnTLKz5+vVr1blPRmZNcr2ZFtZcsWKF6vMWrzczhjXxTRuYNW/fvq36vK1YsaKANT08PIxizYSEBD1rqsl9xFizUaNG6cqaeL1ZRmTNJ0+eqD5v8Y3WpmLNChUqqMp9TM2aI0aMMJo1Fy1apPpdxKyJ15tpYc2rV6+ahTUjIiJUn7diq7TVsia+0ZpmTbV1dpo1J02a9MuwZnJyMvr69avRrJmcnMzMmuQqbS2sOXDgQNWsSa/SVsuaYqu0t23bpjr3wau0zc2aQUFBqlmzSJEiJmXNDh06mIU1ly5dysSa5CptVtYkV2lrYU03NzezsWa9evXSlTVxnX3KlCmqzlvc+E+y5oYNG5hZE6/SxqypJvehWfPhw4dMrEmu0mZhTXyjNblKWy1riq3SNhdrzps3j5k1cZ1dC2teunQpXVkTr9IODQ1lqrOPGTNGsEq7Ro0aTHV2cpW2FtYcN26cKtbEjf+mYs3Dhw9nONZMSEjQxJpc5hVvHOSNg1wadenSJdEDDyeJZIGM1rt370S9Ys0YtIKDg0WTL5wkkgUyWomJiaLJKlkgw0kiLZ1OJ3kzAr6KFieJYho0aJCol1x7InUVrdTaCbEkkdaBAwdEvWJJIi2p1RFkkogLZLQ8PT1Fi1ZiSSKtyMhIUWDFSSLZjEErJSVF9EYpnCSSBTIxSU3bVq1aVb/2ROoZS129TK49SUpKEvVKXYNOrtjEBTJa//77r6hXLEmk9fz5c1EvuWITJ4m0/P39RYuLZJKIC2S04uLiRKHT0tJSnyTiAhktnU4nOQGKk0RcIBOT1FX3FStWFDRjiGnGjBmySSIukIlJagUMufYEF8hoSa3qwQWyY8eO6QtktD59+iT6kYBsxsAfJGj9+PFDFITItSe4GYNWUlKSKFSQKzbxBwlaOp1OcnKsevXqaMGCBfoCmZiGDRsm6iVXbEq9i0uXLhX1Ojg4oHHjxgkKZLSOHDki6sUfJMgCGa379++LevEHiUOHDkmet15eXqIQRRbIpHKu6Oho0eIR2YyBP0jQSk1NlZzyxc0Yr1+/lnwXpaaiyRWbUu/ipEmTRL147Qn+ICGmv/76S9Qr9kGC1rlz50S9Yh8kaL169UrUiz9IkM0YtAIDA0VhF3+QIAtktBISEkSLsfiDBNmMQUun00nefkE2/ks94379+ol66cZ/Mc2ZM0fUS649kTpvpVatkys2pc5bqTWFeO3J0aNH9QUyWu7u7qJFK7EPErTCw8NFP8iIfZCglZycLFpsIz9I4AKZmKQmqvEHCVwgE5PUSlm6GUNMUuudxZoxaJ04cULUK9aMQUtqjQvZ+I8/SNDy8fERLSCTa0/wBwlaMTExoh9VcOP/+vXr9QUyWqmpqZIT93jFJv4gISapyeZKlSqh2bNn6wtkYpo6daqoF3+QwI3/YpJaN4o/SMgVyKRYU6wZg9a7d+9Ecx+trEk3Y9BKTEwU/Uj5s7PmwoULRb1pzZouLi6iXlOwJtmMQUuONenGf1opKSmiN0qJNWOISYo1yRWbUs943Lhxot60Zk2pVZQ/O2uKNRuYgjXJZgwx9e7dW9SrhTXpZgwx7dy5U9SrhjWvX78u6k1r1gwNDU1T1sTNGGKSuqHNnKxJN2PQklr9S67YNIY1cTOGHGuKNSuZijVxMwat1NRUyds01bCm1I0wac2aGzduFPVi1jx//rzRrEk2Y9B6/fq1qFcra9LNGLTkWJNu/Kel0+kkb/6ih8zFpIU1pVYcmoo1pXIfqTWF5mZNsvGfVnJysuhHf8yaZDOGmKRYk27GEJPUStmfmTWfPHki6k1r1oyNjU1T1sTNGGKSumFJC2vSQ+ZikmJNNc0Yly9fFvWmNWuGhISYjTWlbuFTw5qDBw8W9dJD5mJSYk2y8Z/WwYMHRb2YNcnGf1pyrEk3/tPy9PQUrbP/7KwpdctaWrPmunXrRL2mYE25OvuLFy8kz1utrEk2/tNSYk2y8Z+WTqeTvNVfC2vSQ+Zimjlzpqj3Z2dNqdyHHjKnpZU1xRqXTcGaZOM/188l3jjIGwe5NEin0wmuEqanQ5XUp08fvRc3Y8gliaRmzZql94pNh8pp165deq/YdKicbty4IUgS8XSomv8fu7m56f+BE5sOlVNoaKi+u51MEuUKZFjJycmCqWR6OlRJ5PXragpkpEaMGKH3qmnGILV8+XK9V00zBqljx47pvWLToXJ6+PChIEmkp0Pl9P37d30xVWw6VE4xMTGCKQR6OlROqampguuicZIoVyAjRV69jJNEuQIZqcmTJ+u9YtOhctq0aZNBkkhOh8rpwoULgiRRqUBG6s2bNwJgU2rGIBUUFKSf0BWbDpVTQkKCYKqHng6Vk06nE1zrTU+HKmnAgAF6r9h0qJzmzZun94pNh8pp//79gvOWng6V0+3bt/Ve/EFCrkBGysPDQ/8hWWw6VE4RERGCyT41zRhYeJoae3GBDE+HKolcS0JPhypp9OjReq/YdKicVq9eLThv6elQOf3zzz96r9h0qJyePn0qADalDxKkfH199VOBYtOhcoqNjRVM59HToXLS6XSCldT0dKiSyNURapoxSE2bNk3vVdOMQWr79u16r9h0qJyuXLkiyH2UGv9JffjwQV9MFZsOlVNISIh+Wp6cDpUrkGElJiYKJs/VfJDA0ul0gnVu9HSokoYMGaL3ktOhanKfxYsX671qmjFIHTp0SO9VUyAjdffuXUHuQ0+Hyunr16/6YqrYdKicoqKiBFO29HSonFJSUgRNy/R0qJLIdV30dKiSJkyYoPeyToeuX79e78UfJOQKZKTOnDkjOG+7desm24xB6uXLl0wFMlIBAQH6Yqqaxn9S8fHxgql13IyBbyKSk1bW7Nu3r8lZU03us3v37gzHmmFhYQasqdSMgSXGmkrNGKTI1TMZhTX//vtvs7Cmt7e3yVlTrvEfKzU1FVWpUsUkrKmmGYMUzZpKjf+kNm/eLGBN3IyR1qz59u1bs7EmOSDLyprk+kxTsKZcMwap+fPnG7DmyZMnmVlTTTMGKXJAVitr4maMtGbNlJQUs7HmmDFjTM6aUs0YpE6ePGk0az579syANbds2WI0a8o1Y5CiB2Rr1qyp2IyBRbOmmsZ/Uj179sxwrHn16lWzsOaPHz9MyppKzRhYOp1OsMpWK2sqNWOQ0sKahw8fNgtrfvv27adiTblmDFLkqlI1Q+akxFhTrhmD1IYNG0zCmmoa/0llVNasU6eOWVhz9uzZJmVNucZ/Ujdv3jRgTbnGf1KfP382YE25IXNSpmRNNY3/pLSw5siRIzMcaz569MjkrCnV+E8qJiZGcNOhVtZUavwnRa53ZmXNKVOmmIU1L168aBbWDA4ONjlrqq2zi7GmXOM/qYEDB5qFNZ2cnEzGmkqN/1w/j3jjIG8c5NKga9euKU6HSun9+/eofv36grVQahUSEoLq168vWEGsVomJiah58+ZMBTIsnU6HevfurTgdKqU//viDqRmD1Jo1awzWQqnV33//zdSMQerevXuK06FS+vr1K6pXr57idKiYIiMjUaNGjZiSRKyUlBTUrl07fZKoBthIDRkyxGAtlFrNmjWLqUBGatu2bQYriNXq3LlzBmuh1Orly5eqpkPF5O/vj+rVq6e6GYNUXFwcatq0qeJ0qJh0Oh3q2rWr4nSolMaMGaM4HSqlpUuXGqwgVisnJyeDtVBq5ezsrDgdKiU3NzdUr1491QUyUqGhoahBgwZMzRhYSUlJqFWrVorToWLS6XSob9++Rl/VPXXqVMXpUClt2LBBcTpUSv/884/idKiUHj16ZLAWSq28vLxQ3bp1VRfISEVHR6PGjRsrToeKKTU1FbVv356pQEZq2LBhTI3/pObNm8fUjEFq586dBmuh1Ory5cuK06FSevPmjapbb8UUGBiI6tevr/8gwfIuJiQkoObNmwvWQqmVTqdDPXr0YPogQWrChAmK06FSWrFiBVOBjNThw4eZCmSk7ty5w9SMQcrDwwPVq1dPdeM/qfDwcNSwYUPF6VAxJScnozZt2ihOh0ppwIABitOhUpo+fTpT4z+pTZs2KU6HSunMmTMGK4jV6tmzZwYriNXK19cX1atXz6jp0JiYGNS4cWOmZgys1NRU1LlzZ6bGf1IjR45kavwntWjRIsWbiKS0d+9eg7VQaqWFNT98+KCZNVmaMbASExNRixYtjGbNXr16MTVjkMqIrHn//n2TsKaaZgxSpmJNtc0YpLSw5uzZs41mza1btzI1Y5A6f/48Z00GjR07VjNrqm3GIHXgwAGjWfPWrVtMzRikzMmaLVu2ZGr8J/Xbb79lONY8efKkWVjz+/fvqF69ekazZqNGjZiaMbBSU1NRhw4djGbN4cOHm4U1d+3aZTRrXrp0ianxn9Tbt29NwppqmzGwTMGaLM0YpLSw5sqVK83Cmi4uLr8sa6ptxiA1Y8YMTazJ0oxBSgtrPn/+nKkZg5QW1oyNjUVNmjQxC2v+/vvvJmFNNc0YpLSw5vXr15mGzEllVNbs3bu30aw5efLkDM2aahr/SWllzYYNGzI1/mOZgjVZGv9JaWHNbdu2mYQ1Wevsr169Mpo1AwICzMaa3bp1M1hBrFZjxoxhavwntWzZMqNZ08nJianxn5QW1vz8+fNP8V0zPVmTy7xKi8ZBC/S/xjguGVlYWDgAgA8AgI+PDzg4OJj5b8RljHQ6HVhaWmY4r4WFBVhYWDB78UueEX/mX83Ln3HG8Gp5TgBglBf/2Rnx95URvfxd/O97jX3GpvizuVe9l5+3/30vP2//+15+3mYML38X//te/owzhpfnPv99L38X//tenvtkDC9/F//7Xv6M//teft5mDC9/F//7Xv4uZgwvZ83/vtdc5y2XeeXr6wtFixbF/7MoQshX63+TNw6qEG8c5OLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4jKH0qJxkLeQcnFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXH9QuKNg1xcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcv5B44yAXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcX1y8k3jjI9cvow4cP4O7ubpT327dv8Pr1a0AIMXtDQkLg4cOHkJqayuxNSEgAZ2dnSEpKYvYihODGjRsQFxfH7AUAuHPnDoSHhxvlffjwIQQGBhrlffXqFXh5eRnl/fz5M3z8+NGo5+Tr6wvPnz8HnU7H7I2IiIC7d+9CSkoKszc5ORlu3LgBCQkJzF6EEDg7O0N0dDSzFwDg7t27EBoaapT36dOn4O/vb5T37du38OXLF6O8np6e8PbtW6OecWBgIDx+/NioZxwbGwu3b9+G5ORkZq9Op4MbN25AfHw8sxcA4Pbt2xAZGWmU98GDBxAcHGyU98WLF+Dt7W2U9+PHj/D582ejvN+/f4dXr14Z9YxDQ0PhwYMHRp23iYmJcPPmTUhMTGT24vM2NjaW2QsA4OLiYvR5+/jxYwgICDDK+/r1a/j27ZtRXnd3d/jw4YNRz8nPzw+ePXtm1LsYFRUFrq6uRp23KSkpRp+3AKDpvL137x78+PHDKO/Tp0/B19fXKO/79+/Bw8PDKO/Xr1/hzZs3Rj3j4OBgePTokVHvYnx8PNy6dcuo3Aeft1pyHy3nbVBQkFHely9fwvfv343yfvr0CT59+mTUc/L29oYXL14Y5Q0PD4d79+4Z9S4mJSVpOm9v3rwJMTExzF4AAFdXVwgLCzPK++TJE6PP27dv38LXr1+N8np4eMD79++Nek4BAQHw5MkTo87bmJgYuHPnjlG5T2pqqqbc59atWxAVFWWU9/79+xASEmKU9/nz5+Dj42OUVwtrenl5Gc2aP378MBtrXr9+3ejcRwtrPnr0iLOmSqWkpMDNmzczHGs+efIE/Pz8jPJy1mRTRmVNNzc3o56TVta8f/++Ueet1tyHs6Z6+fv7a2JNFxcXo85bnPtoYU1jcx8trPns2TPOmiplijq7seftw4cPzcKabm5uGY41k5OTMyRrPn78WFOd3VjW/PLlC7x7946zpkpx1lQvU3zXNEfu86uxZmRkpFlYE0BbnV3rd01jWfPdu3dmYc2goCDOmgwyJ2u+fPnyl2JNrv+eeOMg1y+jHDlyQOXKlaFcuXIwffp0pmKQvb09tG7dGooVKwbjxo2DK1euqE6IbG1tYfTo0VCwYEEYOnQonDp1SjWcZM2aFTZt2gR2dnbQp08fOHz4sOpikIWFBVy6dAlsbW2hU6dOsGvXLqZi0Js3b8De3h5atGgBf/31F1MxKCQkBAoVKgT16tWD5cuXMxWDLC0toWTJklClShWYO3cuUzEoT548ULt2bShTpgxMmTKFCU7s7e2he/fu4ODgAKNHj4aLFy+qLgblzp0bZs6cCfnz54dBgwbBiRMnICIiQpU3U6ZMcODAAbCzs4OePXuCk5OT6mKQhYUF3LlzB+zs7KBdu3awbds2pmKQu7s75M+fH5o0aQJr165lKgbFxMRAkSJFoFatWrB48WKmYpCNjQ2UK1cOKlSoADNnzmQqBtna2kLTpk2hZMmSMHHiRLh+/brqhMjOzg6GDBkChQoVghEjRsDZs2dVF4OyZ88OK1euBHt7e+jXrx8cO3ZMdTHI0tISTp06Bba2ttC1a1fYu3cvUzHoyZMnYGdnB61bt4ZNmzaBp6enaq+vry8ULFgQGjZsCCtXrmQqBqWkpEDx4sWhWrVqMH/+fKZiUK5cuaBq1arg6OgIf/75J1MxyN7eHtq3bw9FixaFsWPHwuXLl1XDSd68eWHChAlQoEABGDJkCPz777+qz9ssWbLAjh07wM7ODnr37g2HDh1SXQyysLCAa9euga2tLXTs2BF27tzJVAx6//492NvbQ/PmzWHDhg1MxaCwsDAoXLgw1K1bF5YtW8b0Icza2hpKly4NlStXhjlz5jA1XebLlw/q1asHpUuXhj/++ANu3rzJdN727t0bihQpAr///jucP39eNZzkzJkT5s2bB/b29jBgwAA4fvy46mKQtbU1HDlyBGxtbaF79+6wf/9+pmLQvXv3wNbWFtq2bQtbt25lKgZ9/foVChQoAI0bN4Y1a9YwFYPi4+OhaNGiULNmTVi0aBFTMShbtmxQsWJFKF++PMyYMYOpGGRnZwctWrSA4sWLw4QJE+Dq1atMuc+IESOgUKFCMHz4cDh9+rTqYpCNjQ2sX78e7O3toW/fvnDkyBHVxSBLS0s4d+4c2NraQpcuXWD37t1MxaAXL16AnZ0dtGzZEjZu3MhUDAoMDIRChQpB/fr1YcWKFczFoBIlSkDVqlVh3rx5TMWgPHnyQM2aNaFs2bIwdepUpmKQvb09dOnSBRwcHGDMmDFw6dIl1edtnjx5YOrUqVCgQAEYPHgwnDx5UnUxKHPmzLBnzx6ws7ODXr16wcGDB1UXgywsLMDZ2RlsbW2hQ4cOsH37dqZi0KdPn8De3h6aNm0K69atYyoGRUZGQuHChaFOnTqwZMkSpmJQ5syZoWzZslCxYkWYNWsWUzHI1tYWGjZsCKVKlYJJkybBjRs3mHKfAQMGQOHChWHkyJFw7tw51edtjhw5YMmSJZA/f37o378//P3336pzHysrKzhx4gTY2dlBt27dYN++fUyNBw8fPgQ7Ozto06YNbNmyhelD2Pfv36FAgQLQqFEjWL16NVPTZVJSEhQrVgxq1KgBCxYsgKdPn6p+F7WwJv5ZjWHNfPnyaWLNzZs3G82aly9fBjs7u1+GNfPmzWsS1hw1ahRcuHAhXVjT2tpaz5o9evRIV9b08PAwmjVjY2PBwcFBwJosuU/58uU1sWaJEiXSnTVXrVqlZ82jR48y5T5aWPPp06eaWbNBgwbMrJmammo0a+bOnRuqVauW7qyZL18+mDRpklGsmTlzZk2sef36dZOw5vr165kG/LSwZqZMmfSsOXv27HRjTfxvmrGsOX/+fKNY08rKCo4ePWo0a96/fx/s7OzMzposTZcka06fPp1pwA8zl1bWHDZsWLqxpoWFBZw/fx5sbW2hc+fOGZo11b6LuXPnNhlrstTZtbBmpkyZYO/evXrWPHDggFGs2b59e2bWdHNzM5o1o6KioEiRIlC7du10Zc18+fJB48aNzcKaS5cu1cSatra20K1bN9i7dy8Taz569MgkrLlq1ap0Y82cOXNC5cqVwdHREaZNmwYuLi6q30WtrDlmzJgMz5osdXYtrGllZSVgTZamS5I1J0+ezMyaPXr0MIo1c+XKpWfNgQMHphtrAvyvwTOjsaaNjY2ANVnq7La2ttCsWTOjWNPW1haGDh2qZ80zZ86kG2uePn1aX2ffs2ePUazZqlUrZtb08/PLkKzZsWNHs7Dmzp07TcKaO3bsMLrJnes/IoQQD4UAAAcAQACAfHx8EFfG1ZgxYxB+lgCA8uTJg/r374/+/vtvFBYWJutdvXq1wJstWzbUrVs3tG/fPhQQECDrPXnypMCbKVMm1KZNG7Rlyxb07ds3We/Tp08FXktLS9SoUSO0evVq9P79e6TT6SS9vr6+KEuWLAJ/jRo10MKFC9HTp09RamqqpDcuLg4VLFhQ4C1XrhyaNm0acnFxQcnJyZJenU6HqlevLvAWLVoUjRs3Dl25cgXFx8fL/sw9e/YUeO3t7dHQoUPRqVOnUFRUlKx32rRpAm+uXLlQnz590OHDh9GPHz9kvdu3bxd4s2bNijp16oR27dqFfH19Zb1Xr14VeK2trVGLFi3QX3/9hTw8PGS9Hz58QBYWFnqvhYUFqlevHlq+fDl68+aN7DP+8eMHypEjh+DPrlKlCpo7dy569OgRSklJkfQmJiaiEiVKCLylS5dGU6ZMQc7OzigpKUnSq9PpUJMmTQTewoULo9GjR6MLFy6g2NhY2Z95yJAhAm++fPnQwIED0YkTJ1BERISsd/HixQJv9uzZUY8ePZCTkxMKCgqS9R4+fFjgzZw5M2rXrh3atm0b+v79u6z37t27Bu9ikyZN0Nq1a9GnT59kn9O3b9+QtbW1wF+rVi20ePFi9OLFC1lvVFQUypcvn8BboUIFNHPmTHTv3j3ZdzElJQVVrFhR4C1RogSaOHEiun79OkpISJD9mTt06CDwFihQAI0YMQKdPXsWRUdHy3onTJhgcN7269cPHTt2DIWGhsp6N2zYIPDa2Nigrl27oj179iB/f39Z75kzZwzO29atW6NNmzYhT09PWe/Lly8FXgsLC9SwYUO0cuVK9O7dO9nnFBAQgLJmzSrwV6tWDc2fPx89efJE9ryNj49HhQsXFnjLli2L/vzzT3Tnzh3Fd7FOnToCr4ODAxo7diy6fPmy4nnbt29fgdfOzg4NGTIE/fvvvygyMlLWO3v2bIE3Z86cqHfv3ujQoUMoJCRE1rt7926BN0uWLKhjx45o586dirnWzZs3BV4rKyvUvHlztGHDBvT582dZr5ubG7K0tBT469ati5YuXYpevXol+4zDwsJQrly5BN7KlSuj2bNnowcPHsiet8nJyah06dICb6lSpdAff/yBbt68iRITE2X/3i1atBB4CxUqhH7//Xd0/vx5xfN25MiRAm/evHnRgAED0PHjx1F4eLisd/ny5Qbnbffu3dH+/ftRYGCgrPfvv/82OG/btm2Ltm7diry8vGS9jx49MjhvGzdujNasWYM+fvwo+5y8vb1RpkyZBP6aNWuiRYsWoWfPnsm+izExMcje3l7gLV++PJoxYwZydXWVPW9TU1NRlSpVBN5ixYqh8ePHo6tXryqet127dhV48+fPj4YPH45Onz6teN5OnjzZIPfp27cvOnLkiGLus3nzZoPztnPnzmj37t3Iz89P1nvx4kWD3Kdly5Zo48aN6MuXL7Let2/fGpy39evXRytWrEBv376VfcbBwcEoW7ZsAn/VqlXRvHnz0OPHj2WfcUJCAipatKjAW6ZMGTR16lR0+/ZtxfO2QYMGAm+RIkXQmDFj0KVLl1BcXJzszzxw4ECB19bWFg0ePBj9888/irnP/PnzBd4cOXKgXr16oQMHDqDg4GBZr5OTk8F526FDB7R9+3bk7e0t671z547Bedu0aVO0bt065ObmJuv98uULsrKyEvhr166NlixZgl6+fCn7jCMiIlCePHkE3ooVK6JZs2ah+/fvy563KSkpyNHRUeAtWbIkmjRpErpx44biedu2bVuBt2DBgmjkyJHo3LlzKCYmRtarhTXXrFkj8JqCNTdv3oy+fv0q63327JnBeauVNRcsWJDmrFmjRg2BN71Yc/r06QbnrblZ093dXdb78eNHSdZ8/fq10az58OFD2XcxKSnJ5Kw5atQoVaw5dOhQgfdnYE2l3OfevXsG72J6saatra3Aq4U1ixcvjiZOnIiuXbummPt07NhR4MWseebMGcXcZ+LEiQJv7ty5Ub9+/dDRo0fTlDXPnj1rcN62atXKaNZs0KCBata0sbER+H8G1lTKfX777TeB11SsqZT77NmzxyD30cqa69evV2TNz58/G82a4eHhKHfu3AJvpUqV0oU1W7ZsKfCmF2uuWLHC4Lw1BWsq1dnlWPPDhw+KrJk5c2aBP71Ys2rVqgKvFta0t7dHw4YNU8WaU6ZMMch9fnbWfPfuncF5awrWfPTokewzTkxMTBPWvHjxYpqy5oIFCwTeHDlyoJ49exrNmu3bt0fbt29XrLObkzXz5s0r8GphzRIlSuhZU+ld1MKaY8eOFXjTizX//fdfg9zHWNbEdfZVq1Ypsqafn58Ba1avXt1o1nR0dEwX1uzVq5fBeWsK1lSqs+/YsUPgzSismTNnTsGfXaVKFTRnzhyjWXPy5MnI2dlZNvfR6XSoadOmAm96seaSJUsMch+1rHnkyBGD3Cc9WNPLyytNWPPu3buKuY8pWRPX2Y1lzd9++00Va/71118GuU+XLl3SnDVfvXplcN6mB2tymVc+Pj7kc3NApuiJM8V/5L8ewBsH/xNyd3dHhw4dEhx+NJw0a9ZMtBjk7e2NLl26ZPAhmow6deqIFoNCQkLQ7du3DYoDZEgVg6Kjo5GLiwuqXLmypLdkyZKixaDk5GTk4uJiACQ0nOBiEA0n9+/fN0iCyCCLQTScvHjxwqDIRydEuBhEw8mHDx/Qli1bJL1yxSBPT0/0zz//SHpxMWj16tUGxSA/Pz90/fp1g+IAGTVr1kQLFy40KAaFhYWhO3fuGBQHyChXrhyaPn26QTEoLi4Oubi4oLp160p6yWIQCSc6nQ65uLig7t27S3rJYhANJ48fPzaATjLkikGvX79GS5culfTKFYPc3NzQ3r17Jb1kMYhuuvTy8kLnzp0zKA6QCREuBtFNl0FBQcjZ2dmgOECGVDEoMjISubi4GBQHyChTpgyaMmUKunXrlqAYlJiYiFxcXFDz5s0lvbjpUqwYdPfuXdS/f39Jb758+dCgQYNEi0HPnj1Df/75p6SXLAbRcPLu3Tu0bt06Sa9cMcjDwwMdPXpU0itXDPLx8UFXrlwxKA6QIVUM+vHjB7p9+7ZBcYAMqWJQTEwMcnFxMWh6JgMXg+imy5SUFOTi4mLQaEkGLgadPXvW4Lx98OABGjFihKSXbLqkz9uXL18aNJSQkS1bNtS1a1e0d+9eAzj5+PGjwUdsMnDTpVgx6OvXr+jUqVOC4gD9LkoVgwICAtCNGzcMPkSTIVUMCg8PR3fu3DEoDpAhVQyKj49HLi4uBsVYMuSKQS4uLgYFIDLs7Owki0FPnjwxgE4y5IpBb968MfioQgYuBol9CPv8+TM6cOCApBcXgzZs2GBQDPr+/Tu6cOGCQXGAjLp166Jly5YZFIOCg4PRrVu3DIoDZFSuXFm0GBQVFYVcXFwMigNklCpVSrQYlJSUhFxcXFCrVq0kvYUKFZIsBt27dw8NGjRI0itXDHr+/DmaMWOGpJcsBtEfwt6/f482btwo6ZUrBn358gUdP35c0ksWg+imS19fX3T16lWD4gAZtWrVQosWLULPnz8XeENDQ9GdO3dQkSJFJL0VKlRAM2bMMCgGxcbGIhcXF1SrVi1Jb/HixdGECRMMikGpqanIxcUFdenSRdIrVwx69OgRGjVqlKRXrhj06tUrtGjRIkmvXDHo06dPBg3T9LsoVQz69u0bOnPmjMGHaBxyxaDAwEB08+ZNgw/RZOBiEN10GRERgVxcXAw+RJOBGw/oD2EJCQnIxcXFoPGHDNx4INZ06erqatDYTgb+EHby5EmDxoOnT58aNNOSkTNnTtSrVy908OBBgw9hb9++NfioQgZuutyxY4dB06UpWJP+EE1GWrIm3fRMhilYU+xDmFrWFPsQ9uLFCzRnzhxJL2ZNsQ9hallTbMDP09PToEmTDDnW9Pf3V2RNPOCXFqxZr149SW9asua4ceMkvVpYM2vWrHrWpD+Eubm5oX379kl6TcGaYgN+alkTD/iJsWa5cuUkvf9F1ly/fr2kV4k1jx07JuklWZP+EMbCmvSHsB8/fqA7d+6oYs179+4ZxZpiA36YNemPX2TIsebDhw/Nxpr0R2wy0po16Q/RZJiCNe/cuSPKmg0bNpT0moI1xZou1bKm2IDfmzdv0MqVKyW9WliTHPDjrMnGmnTT5fPnz9HMmTMlvaZgTbEBPy2s6efnl6asiZsupVizdu3akl4p1sS5jxbWHD16tKTXVKxJ19lZWJNuuvz27Rs6e/asKtakmy5NwZplypSR9GphTbkBv4zKmvSAChlpzZr58+eX9JqCNekBP62s+eDBAzRs2DBJrxbWlGu6/PDhA9q6daukV+4yma9fvyqyJh7wk2LN7NmzS/p/NtZECJmVNZctWybpNQVril0m4+Xlhc6fP59mrEleJsPKmnjAz9Ssee/ePU2sSV8SRMbPyJq+vr7oypUrBpeLkKGVNfGAnxhr0k3PZEixJq6zy7EmeZmMUpM7V/qKNw7yxkEuDaJvv1IKshi0du1aJi85gXvixAkmLzmBe//+fSYvOYH79etXJm/WrFkFE7hyBRixfyzJYpAcnIsFWQySAzexIItBckUUscDFoJs3b8o2z4gFWQyipyCVIm/evGjgwIHo+PHjBlPnSoGLQbjpksVL3/YkVwylg77tib79SinwBO7z589li9ZiQRaD5D4giQVZDJL7mCsWZDHo1q1bTF6yGPTp0ycmL10MkoM+OnAxCE/gyjUd04GLQXgCl55IVgrytqc//viDyVu2bFn9BC49laMUZDGInoJUCrIY9PjxYyYvvu3p4MGD6Pv370xeuhhUoEAB1V6yGOTm5ibbBCcWuBj08uVLNGDAACYvLgbdv38fzZ07l8lL3vZE3wChFOQE7pUrV5i85AQufcOZUtDFIKlCqljQxSC5YigddDGoTZs2TH9vshgkV7QWC7IYtGrVKiZv0aJF0fjx49GVK1dkG4fFAheDTp06hVxdXZm8ZNOlh4cHk5eewJUreNNB3ywsB+d00DcL07dfKQVZDJIroogFWQySa54RC7IYRE9BKgVZDKKnzpWCLAb5+voyeTNnzozat2+vv1nYwcFBtZeewJX7MCEWtWvX1k/gyjVIiQV529PChQuZvGQxaP/+/UxeshhE37ijFGTjwfv375m8dOOBXEMHHWTjgaenJypfvrxqL9l48O7dO9lCmVhUr15dP4E7fvx4Jq+jo6P+tictrCk3NCUWpmLNb9++MXlNyZr07VdKYQrWfPDggSbWlGueEQvytidjWBMP+NFT50pBD/ixeE3JmvTtV0phKtaU+4AkFsWKFdPMmqdPn0a3b99m8mLWPHLkiNGsiQf8tLCm3IdgOujbnrSwptwHe7Egb3vSwpqnTp1i8pKs+eTJEyavKVlT7uMTHZg18YCfMayJB/zo26+UolKlSvoBP3OxJn3jjlKYkjWlPiKLhalY8/3797JNGWJBbrGhb1pWCvJmYS2sKfcxVyzI2560sOaXL1+YvD8La8o1pIoFyZpyzeFiQbKmXPOMWJBbbIxlzRMnTqDnz58zeTFrOjk5IT8/PyYvvcVGC2vSt18pBXnbkxbWlGtWFAtTseaNGzeYvCRrfvjwgclL3yyshTUrVKig2ktvsdHCmqzfNcmbhc3Fmg8ePGDympI17ezsVHvpLTbGsuarV68MblpWCpI1Z82axeQlbxbWwpqXLl1i8pqKNQMDA5m8Pwtr0jctKwV5s7AW1pRrHBYLU7Gmm5sbk5e+TEbu0gg66JuFtbBmt27dmP7epmJNuUENsTAVa2r5runt7c3kZdliw5X24o2DvHGQS4NYE2wc2bNnl70NTi4yZ86M6tevb5TX0tJSdlpDKeRucVGKChUqMP2jTkbx4sVRsWLFjPLmz58fVapUyShv7ty5jf6ZbWxsjP5dW1tbG/2MLSwsmGGEDLlpdaUoW7YsE0SRUaRIEdnbZ+TC1tYWVatWzShvzpw5jf59ZcmSxejnZGVlpeldZG2kJaNy5cqyEypyUbJkSYOVRGqjYMGCTB/eycibNy9TUZOMbNmyGX3eZsqUyejnZGlpafSfC/A/gDTWW758eaYCMhlFixZlAmUy7O3tmRpLyciVK5fR/7/OmjWr0e+iuc9blsZBMkqXLi07nSsXhQsXRmXLljXKmy9fPqPP2xw5cpgl9zHneVupUiXZm6DkokSJErLTuXJRoEAB2Rsv5CJPnjxG5z5az1st76KW89bYf18A/vexMl++fEZ5HRwcUKlSpYzy2tnZGawWUxs5c+bUdN4a+z5ZWVlpesZa3sWqVavK3vIuF6VKlWJqkCCjUKFCshPYcpE3b16j83LOmmxRrFgxzpoqIyOzJksTDBm2traazlvOmuqjZMmSsjdByUVGZU1znbdaWTNPnjxGeTMqa5rrvNXyLmZU1jT234kcOXIYfd6akzW15D5aWLN48eJmYc3cuXMbff5ky5bN6N/1r8qaxtbZ7ezsmJoryDAnaxrr1ZrfamXNQoUKGeXlrMkWWnKfChUqyN46LBecNdXHr8qaWursnDXVh1bWZGnyJkMra5oj9zH3d81jx47JrkHmSlvxxkHeOMilQZMmTZJdgUAG2c0fHx+PNm7cqNpLdvNHRUWhs2fPqvaSt5T9+PEDvX79GllbW0uu5yCDnhyPjIxU7aW7+RFCqECBAqoKV3Q3v06nQ/Xq1VM9LUt286empqL+/fur9pLd/ElJSWju3Lmqf9f0lfV79uxR7SW7+SMiIpCzs7NqL9nNHxQUhL58+aL6OZHd/N+/f0c6nQ5ZW1urek70LWUIIVSmTBnVxUlyclyn06HWrVurfk7k5HhKSgoaPXq0ai9eDYuvrF+5cqXq33WBAgX0k+MxMTHo+PHjqr3k5HhYWBh6/Pixai89OR4UFKT6GZOT43hdT+7cuVU9J3pyXKfTMRWg6Svre/Toofo54VvK8GrYqVOnqv590et6tm7dqtpLr4a9ePGiam/OnDkFq2Hfv3+v+jnRk+NxcXFM5y05OY4QQkWKFFF93pKT4zqdDjVu3Fj1cyInx1NSUtDgwYNVe/HkOF7Xs3DhQtW/a/KWstjYWHTgwAHVXnJyPDw8HLm4uKj2Zs+eXT85HhQUhL5//676OYmths2cObPqd5GcHNfpdKh8+fKq30Vyclyn06H27durfk7k5HhKSgoaN26c6t9X8eLFBVfWr1u3jin3wZPj0dHR6N9//2XKffr166df1/P8+XOm3AffUubn54dCQ0OZztvWrVsLVsPa2tqqfhfJyXGdTofq1Kmj+hnjdT1PnjxBqampqE+fPqqfMTk5npSUhGbOnKn6d01OjsfFxaGdO3cy5T54cjwyMhJdu3aN6bzFk+MhISHIzc2NKffBk+Pe3t4oKSlJtZeeHEcIoRIlSqh+TuTkuE6nQ82bN1f9nMjJ8ZSUFDRixAjVXno17NKlS1X/rvG6nvPnz6OYmBh05MgR1V5ycjw8PBw9ePCAKfchJ8f9/PyYzls8OY7X9WTPnl31eUtOjut0OlS5cmXVzxhPjuPcp0uXLqqfE70ezRjWxOt6tLDmuXPnVHvpdT1aWDMqKspsrFm/fv0Mx5p79+5NV9bE63o8PT3TjTXxuh5TsGabNm1UPye8GtYUrLlq1SqzsOaTJ08yJGvWqFGDiTXJ1bAsrIm3gWDW/PPPP83CmpcuXTKaNT98+GA21nRwcEhX1sSrYYcMGZIurEmvhtXCmq6urkysSa6G1cqaWbJkMQtrdujQwWjWHD9+vFlY89SpU+nGmuQ2kLCwsHRjTbwalmRNtc+JZs2+ffuahTV37dqV7qwZHByMPn/+bDRrJicnM7MmuRpWC2u2aNGCiTXJ1bBaWHPZsmUZjjX9/f2Z3kVTsmaVKlXSjTXJ1bB//PFHurAmvRpWC2u+efOGKfchV8May5o49ylYsKBZWHPAgAFGs+a8efOY6uxjxozRr4bVwpq3bt1KF9bE20DI1bDpxZp4NawpWHPMmDFGsWZCQoIm1jxx4kS6sibeBhIcHKyJNfPkycPEmqtWrTIJa/bs2TNdWNPBwUHAmtu2bctwrBkfH8+U+2DWdHd3N0XbDpdG8cZB3jjIpVFS65hwkkgWyGh5eXlJHtxkM0ZqaqqBNzo6WnIdE3mNf1JSkoE3NTVVcjqQbsYQU6dOnUS95Mq4iIgIUe+kSZNEveTKuKCgIFGv1AoYMknEBTJa586dk0wgcJKIC2S05K7IJlfGiXkDAwORjY2NqBcnibhARishIUFyCoIukNHS6XSSUwHkNf7R0dGiv69+/fqJenGB7NixYyg0NFTUO2fOHFEv2Yzh7+8v6t27d6+ol77GX0zOzs6S7yJeGYeTRFru7u6SSWP16tXRggUL9AUyWuHh4ZK3u5HrycXexeTkZMmJJJwk4gKZmFq1aiXqxUkiLpCJ6ffff5dMEslmDDGtXLlS1EsWyKT+bTt+/LhkkkiujBOT3BXZ5Mo4sWfs4+ODMmfOLOol15OLvYsxMTGSE/d4ZRz+IEErNTVVcnKM/iAhJqlr0Mn15OHh4aLeqVOninrJ9eSBgYGiXqkVMPiDBFkgoyW1kgB/kCALZLTevXsnCRXkNf5i3uDgYMnVaHQzBq3ExETJCVCy8V/qvG3YsKGol1xPLnXeDho0SPK8JRv/xSS1bpT+ICGmAwcOiHrxyrhNmzbpmzFoubi4SJ63+IMELpDR8vT0lATtatWqCQpktCIjI1HevHlFvXSBjFZKSorkTTR0M4aY2rVrJ+qlC2RiGjdunKiXbPwPDg4W9UqtgKFXxolJaiUB2fiPP0jQklvHRK4nF3vG/v7+khOg5HpysfM2Li5OcuIef5DAzRi0dDqd5FQj/iCBC2Ri6t27t6iXLpCJacaMGaJeuhlDTDt37hT1ihXIaF2/fl3yvCXXk4s9p0+fPkmet3TjP63Q0FDJiXtyPbnYeZuUlIRKliwp6iVXxsXHx4v+zM2aNRP10h8kxDRs2DBRL/4ggQtkYlq6dKmoF3+QwAUyMUmtWhdrxqAlx5p0MwYtLy8vydsv0po1pW5G+JlZU2oFTFqz5uvXryXPWy2sSTdj0NLKmlKT72nNmlLrRtOaNW/duiX5Lv7MrCl18xfdjCEmOdYkmzHENGrUKFFvWrPmiRMnRL1ijf+05Fb/piVrxsbGpilrnj9/XvK87d69u6hXK2uSzRhikmNNuhmD1uXLlyXPW7oZg5Za1hR7F0NCQtKcNcVyH51Ohxo1aiTqVcOagwcPljxv05I1Dx48KOql15OLSY416WYMWrjhQMz/M7Nm+/btRb1pzZrr1q2TPG9NwZq4GYPWixcvJM9braxJNmPQkmNNuvGflk6nk7y9i27GEJMW1pw5c6ao92dnTancxxSsiZsxaCUlJUne6q+FNelmDDENHz5c1KuVNclmDDFpYU2p1b/pwZpSt7ulNWt27txZ1Es3/ovpjz/+EPXSQ+ZiUmJNsvGf1vnz5yXfxaZNmwoa/2nJsSbd+E8rKCgoQ7Jm//79Rb2mYk2p3Gffvn2S561W1iQb/2l5eHhI1tnVsKbUTeJ04z8trazZunVryfM2LVlz1apVot6fgTVx4z8tX19fRdbEjf+01LAmbvynhS+REfNqZU2y8Z/r5xJvHOSNg1wa1aZNG0GSSE6HKmn06NGCJJGeDpXT6tWrBUkiPR0qp3/++Uc0SZRqxiD19OlTySRRDNhI+fr6oixZshgkiVLNGKRiY2NRgQIF9F48HSpXIMOi/4Gjp0OV1KNHD0GSqFQgIzVt2jS9V00zBqnt27cLkkR6OlROV65cETwnejpUTh8+fBAUU5WSRFIhISGCNWFFihRBY8eOlS2QYSUmJgrW1tDToXLCk+t0kihXICM1ZMgQ0SRRqkBGavHixQZJolwzBqlDhw4ZJIlLly6VTBJJ3b17V+DFzRhSSSKpr1+/Coqp9HSonKKiogSrMujpUDmlpKQIrvUmk0SpAhmpDh066L3kdKhUgYwUuVpebDpUTuvXrxect/iDhFSBjNSZM2cEz4meDpXTy5cvBV56OlROAQEBgmIqLpDh6VA5xcfHC1ZSq2nGwNLpdIIr5+npUCX17dtX76WnQ5U0a9YswXlLT4fKaffu3YLzVumDBKkbN24InhOeDpUqkJFyc3MTFFPxBwmpAhmpsLAwlCtXLr2XnA6VAjas5ORkwdoa/EFCrhmDVIsWLfReNc0YpEaMGCHIfejpUDktX75ccN7S06Fy+vvvvwXPiZ4OldPDhw8FXno6VE7e3t6CYio9HSqnmJgYQTEVf5CQK5BhpaamCtYL4Q8ScgUyUl26dBGct+R0qJImT54sOG/btGkjWyAjtXnzZsG7qNSMQerChQuC50RPh8rp7du3Ai89HSqnoKAgwZowejpUTgkJCYI1YWo+SGDpdDrUoEEDQe5DTocqacCAAYLzFn+QUMOm8+fPF7yLLNOh+/fvFzzjevXqyTZjkLpz547gOVWpUkW2GYMUXUxVasYgFRERISimqmn8x0pJSUGOjo6C3GfgwIGyHyRIaWHNMWPGCM5bU7CmVDMGqZMnTwqekylYU6oZg5QW1oyLixOspFbTjIGllTV79uyp92YU1rx69argOaUXa/748cPkrHny5ElVrNmkSRPBeauFNZWaMUhpYc3Dhw8LnhNuxkhr1vz27ZvZWJMckGVlzY4dOwpyn/RizQ0bNgjO28aNG8s2Y5CiWVOpGYNURmVNciVberLm7NmzBeetKVhTqhmD1M2bNwXPiYU1P3/+LGBNpWYMUqZkTTWN/6S0sObIkSMFuY+pWFPpOWlhzUePHgm8SkPmpLSypr29vd6rhTXVNGOQ6tq1q+C81cKaSs0YpLSw5sWLFwXPCTdjaGVNpXcxODjY5Kypts6uhTUHDhwoOG87deok24xBSgtrOjk5CZ6xFtZUavwn9eXLlwzJmm3bttV705M116xZI8h9tLKm3JA5qWfPngm8LKzp5+cnYE2lIXNSWlmTXHNKNv6nNWtOnz5dkPuYgjXV1Nm1sObHjx9FWVOq8Z+UFtZMSkoyGWuqafwnNXToUL2XlTWXLFkiOG+VhsxJaWHNe/fuCbymYE2pxn9SUVFRggFZU7CmXOM/KS2sOXHiREHu07ZtW9nGf1JaWPPs2bOC56SFNZWGzLl+HvHGQd44yKVB9+/fV5wOlZKXlxdycHAQrIVSq+joaFS6dGnF6VAxpaamojp16gjWQrGoe/fuitOhUpo8eTJTMwapv/76S3E6VErnzp1TnA6V0qtXr5CDg4PidKiYAgMDUdGiRRWnQ8WUkJCAKlSoIFhBrFY6nQ41bdqUKUkkNWjQIMXpUCnNnTvXYC2UWu3du1dxOlRKzs7OitOhUnJ3d0dFihRRnA4VU3h4OCpRooTidKiYkpOTUbVq1RSnQ6XUoUMHxelQKY0ZM8ZgLZRarVy5kilJJHX8+HHF6VApPX78WNV0qJh8fHyQg4OD6mYMUjExMahs2bKK06FiSk1NRfXr11ecDpVS7969FadDpTRt2jTF6VApbd261WAFsVpdunSJ6YMEqXfv3iEHBwfF6VAxBQcHo2LFiilOh4opMTERVapUSXE6VEx4/QtLgYzU0KFDFadDpbRo0SLF6VApHThwQHE6VEouLi6K06FS8vT0REWKFFGcDhVTZGQkKlWqFNMHCayUlBRUq1YtxelQKXXp0oXpgwSpCRMmKE6HSmnt2rVMBTJSp06dYmrGIPX8+XNV06Fi8vf3R0WLFlXd+E8qLi4OlStXTnE6VEz4Nhal6VAp9evXT3E6VEozZ85UnA6V0s6dOxWnQ6V0/fp1pmYMUp8+fUIODg6K06FiCg0NRcWLFzdqOjQpKQlVqVJF8SYiKbVt25apGYPUyJEjFW8iktKyZcsUbyKS0tGjRxVvIpKSuVmTpRkDyxSsSa8gVistrLlx40aDtVBqpYU1X79+nSFZs1mzZoIVxCzSwprz5s3TxJosjf+kbt26lSFZs3r16mZhzbFjx2pmTbXNGKROnDhhNGs+efLEYAWxWmlhzdjYWFS2bFmmZgwsrazZp0+fDMealy9fNlhBrFZaWDMkJAQVL15cE2uyNGNg6XQ61LJlS6NZc9iwYUxD5qS0sObBgwfNxpoODg6aWVNtMwaWVtbs2rWrwQpitdLCmuvWrTMLa7548UITazo4OJiFNRs3bsw0ZE4Ks6baZgxSs2bN0syaapsxSGllzSJFiqhuxiCllTWrVq1qNGu2adPGaNb8/fffTcKarHV2Laz54MEDgxXEamVu1mRp/CfVo0cPo1lzypQpZmHN8+fPm4Q18QpitQoKCkLFihXTzJpqG/+xtLLm4MGDmYbMSWlhzX379pmMNVlyHw8PD02sWbJkSbOwZseOHTWzptrGf1KrVq3SxJosQ+aktLCmr6+vWVgTDxCY4rsmX0GcsZQWjYMW6H+NcVwysrCwcAAAHwAAHx8fcHBwMPPfiMsYRUZGQq5cucDCwoLZGx0dDdmzZwdLS0tmb1xcHGTKlAkyZcrE7E1KSoKUlBTIli0bsxchBFFRUZA7d25mL8D/fl/m8hr7nLR4Y2JiwMbGBqysrJi98fHxYGlpCVmyZGH2pqSkQEJCAuTIkYPZq/UZR0REQJ48eYzymusZR0VFQY4cOYx6F2NjYyFz5sxGvYuJiYmAEIKsWbMye3U6HcTExECuXLmYvQDme05a/1wt5222bNmMehfj4uLA2toaMmfOzOzl5y2boqKiIGfOnEaft1mzZgVra2tmb0JCAlhYWBh13qampkJ8fLxR5y2AeZ/Tr3be6nQ6sLGxYfZqPW/NeWaa4xlrOW/j4+PBysrKqPM2OTkZkpKSIHv27MxenvuwSet5CwBG5T6pqakQFxcHOXPmZPYCmPc5metd5KyZfl5z5T6/GmtmRA7huQ+bMuK/qeZizeTkZEhOTjbLeZsRn5M5WRPA+NyHs6Z6ZcTzFiEE0dHRZjlvM+Iz/hVZ81fLfTIqa/6KuQ9nzfTzctZUr1/t38WMmPvw75ps+hVZk8u88vX1haJFi+L/WRQh5Kv1v8kbB1WINw5ycXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxmUNp0TjI3trMxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcWVYcUbB7m4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4fiHxxkEuLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4url9IvHGQ65fR9+/fISYmxihvYGAghIaGGuUNDw8Hf39/o7wJCQng6elplBchBB8/fgSEkFH+T58+gU6nM8rr7u4OycnJRnm/fv0K8fHxRnl9fHwgMjLSKG9wcDCEhIQY5Y2KigJvb2+jvMnJyfD582ejvFqfsZubG6Smphrl9fDwgKSkJKO8Xl5eEBsba5TX398fwsPDjfKGhoZCYGCgUd64uDj49u2bUV6dTgefPn0yy7v4+fNnSElJMcrr6ekJCQkJRnm9vb0hOjraKG9QUJDR521ERAT4+fkZ5U1MTAQPDw+jvKY4b419F93d3Y1+F799+wZxcXFGeX19fY0+b0NCQiA4ONgob3R0NHz//t0ob2pqKri5uRn9nLSet8a+i1++fIHExESjvFpyn4CAAAgLCzPKGxYWBgEBAUZ54+Pj4evXr0Z5dTqd2XKfz58/G537eHp6asp9oqKijPIGBQUZnftERkaCj4+PUd6kpCRwd3c3yptRcx8t562fnx9EREQY5f3x44fRuU9sbCx4eXkZ5U1NTdWU+3z8+NEsuc+XL1+Mzn04a7LpV2RNY3MfLayZkpKSYVnT2NyHsyabOGuqV0REBPj6+hrlTUpK4qzJIHOxZkxMDGdNBv1qrGnO3IezpnolJydz1mSQn5+f0bkPZ002aWVNY3Mfc7Lmly9fjPL+iqypJffRwprR0dFmYU0A7bnPr8aaxuY+5mRNc5235mTNHz9+GOXNqKzJ9d8Tbxzk+mUUHR0N9vb20L59e9i+fTtTMcja2hpKly4NTZs2hbVr1zL9Y5k9e3Zo2LAh1K5dGxYvXgwvXrxQ7c2SJQsMHToUKlSoADNnzoR79+6p/sfSwsICVq1aBSVLloSJEyfC9evXmRKiEydOQKFChWDEiBFw9uxZpmLQw4cPwd7eHvr16wfHjh1jKgb5+PiAra0tdO3aFfbu3cuUECUnJ0OhQoWgdevWsHnzZqYPYVmzZoWKFStCw4YNYdWqVfD+/XumZ9y+fXuoXr06LFiwAJ48eaI6IcqUKRNMnjwZHB0dYdq0aXDnzh3VcGJhYQHbtm2DokWLwtixY+Hy5ctMcHLp0iUoUKAADBkyBP7991+mYtDbt2/Bzs4OevfuDYcOHWIqBoWFhYGdnR107NgRdu7cyVQMsrCwgGLFikHz5s1hw4YNTMWgbNmyQa1ataBu3bqwbNkyeP36tepnbGNjA71794bKlSvDnDlz4OHDh6rhxNLSEhYuXAilS5eGyZMng7OzM1Mx6ODBg1CkSBEYNWoUnD9/nglO7ty5A/nz54eBAwfC8ePHmeDE09MTbG1toXv37rB//36mYlBcXBzkz58f2rVrB1u3bmUqBmXKlAnKlCkDjRs3hjVr1jAlrtmzZ4emTZtCzZo1YdGiRfD8+XPV72KWLFlg1KhRUL58eZgxYwbcvXuX6bxdv349lChRAiZMmADXrl1jgpNTp05BoUKFYPjw4XDmzBkmOHn27BnY29vDb7/9BkePHmUqBvn7+4OdnR106dIF9uzZw9R0mZqaCoULF4ZWrVrBxo0bmYpBNjY2UKVKFahfvz6sWLEC3r59y/SMO3fuDNWqVYN58+bB48ePVT9jKysrmDFjBpQtWxamTp0Kt2/fZioG7dq1CxwcHGDMmDFw6dIlpvP22rVrUKBAARg8eDCcPHmSqRj04cMHsLOzg169esHBgweZikERERFgb28PHTp0gB07djAVg6ysrKBkyZLQrFkzWL9+PdOHsOzZs0O9evWgTp06sHTpUnj58qVqb9asWWHAgAFQqVIlmDVrFty/f5/pvF22bBmUKlUK/vjjD7hx4wZT7nP06FEoXLgwjBw5Es6dO8d03t6/fx/y588P/fv3h7///pvpvP3+/TvY2dlBt27dYN++fUy5T2JiIhQsWBDatGkDW7ZsYSoGZcmSBcqXLw+NGjWC1atXw4cPH5iecevWraFGjRqwcOFCePbsmep3MXPmzDB+/HgoV64cTJ8+HVxdXZnO202bNkHx4sVh/PjxcOXKFabz9ty5c1CwYEEYOnQonDp1iin3efnyJdjb20Pfvn3h8OHDTMWgkJAQsLW1hU6dOsGuXbuYikEIIXBwcIAWLVrAX3/9xVQMypYtG9SoUQPq1asHy5cvhzdv3qh+xtmyZYMePXpAlSpVwTL2WAABAABJREFUYO7cufDo0SPV76KVlRXMnTsXypQpA1OmTIFbt24x5T779+8HBwcHGD16NFy8eJHpQ9jNmzehQIECMGjQIPjnn3+Ymi7d3d3Bzs4OevbsCU5OThAUFKTaa07WbNSoEdSqVSvdWXP16tVmYc1Hjx5lSNasVKkSNGzYEFauXAnv3r1LF9a0traGKVOmgKOjI/z5558ZhjXfvXv3y7Fmnz599Kz54MGDDMGaLi4uYG9vDwMGDDALa7Zt2zbdWbN58+ZGsWbmzJlh9OjRZmHN06dP61nz9OnT6caaAQEBetbcvXt3hmDNbNmyQZcuXaBq1arpzpq7d+82C2t+/PjRaNaMjIzUs+b27dvTlTXr168PderUgSVLlqQba1pYWMDy5cuhVKlSMGnSpAzDmt7e3j8Fa7LW2Y1lzUyZMsGECRP0rOni4sJ03m7evBmKFSsG48aNS1fWfPXqFdjZ2UGfPn3SlTUBAIoWLZrhWHPevHl61mTNfbSwprOzM+TPnx8GDRoEJ06cSDfWjImJ0dfZt23blmFYc/jw4WZhzX/++ccsrOnr6ytgTZamy+TkZChcuDC0bt0aNm3alG6smS1bNmjfvj1Uq1YN5s+fn26sCQCwffv2DMea4eHhZmHN7NmzQ506dfSs+erVq3RjzUWLFkHp0qXhjz/+gJs3bzKdt4cPH4YiRYrA77//nq6s+fXrV7OxpqOjY4ZjzQ0bNkDx4sVhwoQJcPXqVaObLrn+I0II8VAIAHAAAAQAyMfHB3FlXPXt2xfhZwkAqEqVKmju3Lno0aNHKDU1VdY7a9Ysgbd06dJoypQp6NatWygpKUnWu3v3boG3cOHCaPTo0ejixYsoLi5O1nvjxg2BN1++fGjQoEHon3/+QREREbJeNzc3ZGlpqffmyJED9ezZEx04cAAFBQXJesPCwlCuXLn03syZM6P27dujbdu2oe/fv8t6k5OTUenSpfVeKysr1LRpU7R27Vr06dMnpNPpZP0tWrQQ/My1a9dGixcvRi9evFD0jhgxQuCtUKECmjlzJrp37x5KSUmR9S5fvlzgLVGiBJo4cSK6fv06SkhIkPX+/fffAm+BAgXQiBEj0NmzZ1FMTIys9+HDhwJvnjx5UL9+/dCxY8dQWFiYrNfb2xtlypRJ782WLRvq2rUr2rt3L/L395f1xsTEIHt7e703U6ZMqHXr1mjz5s3I09NT1puamoqqVKmi91pYWKCGDRuiVatWoXfv3ik+py5dugh+5urVq6P58+ejJ0+eKL6LkydPFngdHR3Rn3/+ie7cuaP4Lm7evFngdXBwQGPHjkWXL19G8fHxst4LFy4IvHZ2dmjIkCHo33//RZGRkbLet2/fCrw5c+ZEvXv3RocOHUIhISGy3uDgYJQtWza9N2vWrKhjx45o586div8mJSQkoKJFiwrexebNm6MNGzYgd3d3Wa9Op0P169cX/L3r1q2Lli1bhl6/fq34jAcMGCDwVq5cGc2ZMwc9ePBA8V2cP3++wFuqVCk0efJkdPPmTZSYmCjr3b9/v8BbqFAhNGrUKHT+/HkUGxsr671z547AmzdvXjRw4EB0/PhxFB4eLuv98uULsrKy0nuzZ8+Ounfvjvbv348CAwNlvREREShPnjyC87Zt27Zo69atyMvLS9abkpKCHB0d9V5LS0vUuHFjtGbNGvTx40fF59SmTRvBz1yzZk20aNEi9Pz5c0XvmDFjBN7y5cujGTNmoLt376Lk5GRZ7+rVqwXeYsWKoQkTJqBr164pnrcnT54UePPnz4+GDx+Ozpw5g6Kjo2W9z549E3hz586NfvvtN3TkyBH048cPWa+vry/KkiWL3mtjY4O6dOmCdu/ejfz8/GS9cXFxqGDBgnqvtbU1atWqFdq4cSP68uWLrFen06Hq1asLztsGDRqgFStWoLdv3yo+p549ewp+5qpVq6J58+ahx48fK56306ZNE3jLlCmDpk6dim7fvq143m7fvl3gLVKkCBozZgy6dOmSYu5z9epVgdfW1hYNHjwYnTx5UvG8/fDhA7KwsBDkPr169UIHDx5EwcHBst4fP36gHDly6L1ZsmRBHTp0QDt27EDe3t6y3qSkJFSiRAnBedusWTO0bt065ObmJuvV6XSoSZMmgp+5Tp06aOnSpejly5eKz3jIkCECb6VKldCsWbPQ/fv3Fc/bxYsXC7wlS5ZEkyZNQjdu3FA8bw8fPizwFixYEI0cORKdO3dOMfe5e/euQe7Tv39/9PfffyvmPt++fUPW1taC3Kdbt25o3759KCAgQNYbFRWF8uXLJ8h92rRpg7Zs2YK+ffsm601JSUEVK1YUnLeNGjVCq1evRh8+fFB8Th07dhT8zDVq1EALFy5ET58+VXwXJ0yYIPCWK1cOTZ8+Hbm4uCietxs2bBB4ixYtisaPH4+uXLmimPucOXNG4LW3t0dDhw5Fp06dQlFRUbLely9fCry5cuVCffr0QYcPH1Y8bwMCAlDWrFkFuU+nTp3Qrl27kK+vr6w3Pj4eFS5cWHDetmjRAv3111/Iw8ND1qvT6VCdOnUE5229evXQ8uXL0Zs3bxSfsRxrKr2Ls2fPFnhNwZoXLlxQzH1u3rwp8LKw5ufPn0VZ08nJKV1Z09LSEjVp0sRo1qxVq5Zq1hw5cqTA+zOwplLu8+jRI4PzFrNmaGiorPdnY82VK1eqYs2uXbsKfmYtrFm2bNl0Yc2LFy8KvBmBNRMTEyVZ8/Pnz7JenU6HGjRoIPh7Y9Z89eqV4jMeOHCgwJterOnk5CTwFipUCP3+++9Gs+aAAQP+06zZtm1bwc9MsqbSu6iFNdesWSPwmoI1T58+naas6efnZ8CanTt3Npo1W7ZsqZo1a9SoIThv69evny6sOX36dIH3Z2BNpdzn48eP/wnWrF27NlqyZIkq1hw6dKjAmxFY8969ewa5T3qxpq2trSD3Ucuaqampkqz5/v37NGXNiRMnCrzlypVD06ZNM5o1x40bp4o1z549K/CysOarV68EXlbWtLGxEeQ+GYE1f/vtN8HPbArWdHZ2Vjxv9+zZI/BqZc2BAweiEydOMLNm9uzZUY8ePVSxZnh4OMqdO7cg92nXrl26sGbLli0FP7OpWFPpXVyxYoXAm1FYM3PmzILcp2vXrmjPnj1Gs+amTZtUsWbVqlUF76IW1qxWrZpq1pwyZYrAy8KaW7ZsEXjTizXfvXsn8GphzSxZspiVNZcuXWo0a86ePVsVay5YsEDgLVWqFPrjjz9+atb09PQ0mjW5zCsfHx/yuTsgU/TEmeI/8l8P4I2D/wmFhYUZFAfIyJ8/Pxo2bJhoMSgqKgq9ePFCUDSn4aRv376ixaDY2Fj05csXQSJDhlwxKDExEX3//l1QNCdDrhiUmpqKvL29UadOnUS9SsUgX19fNG7cOMnfl1wxKDAwEK1cuVLSK1cMCgkJQUePHpX04mKQWNNleHg4cnFxkfTiYpDYh7Do6Gj0/v17QSJDBi4GHThwwKAYFB8fj759+yZIZMjIkiULat++Pdq+fbsBnCQnJyNvb2+DBi0yIWratKloMUin0yFvb2+Dj5RkyBWD/Pz8DAp1ZFSsWFGyGBQUFGSQrJIhVwwKDQ01KA6QIVcMioyMRE+ePBEkMmTIFYNiYmLQ58+fUd68eUW9csWghIQE9P37d0HRnAxcDNq8eTP6+vWrwJuSkoK8vb1R69atRb24GLRq1SrRYpCPjw8aPny45O+revXqaMGCBaLFoICAALRo0SJJr1wxKDg4GO3bt0/SK1cMCgsLM2h6JkOuGBQVFYVev34tKJrT561UMSguLg55enoKiuZkyBWDkpKSkLe3t6BoTp+3uBhEN13i85YGR/K8xcUgsaZLX19fg0IdGVWqVEFz5sxBDx8+NHgXAwMD0bp16yS9pUuXRpMnT0bOzs4G7+KPHz/QiRMnJL2FCxdGo0aNEi0GRUREoHv37gmK5mTIFYNiYmLQx48fBUVzMuSKQfHx8cjLy0tQNCeDLAbRH8Lwedu4cWPJd1GuGOTt7W3QEEuGXDHI39/foFBHBi4GiX0ICwoKMvgwQkbx4sXRxIkTRT+EhYaGGhQHyMDFILGmy8jISPTs2TNB0ZwM/CHs6NGjBsWg2NhY5OHhISiak4GbLsWKQTj3IYvm9HnbqlUr0WIQPm/btWsn+S42aNBAshjk4+ODRo0aJfn7kisGBQQEoGXLlkl65YpBISEh6NChQ5JeshgklvvcunVL0ouLQWJNl1FRUejt27eCojkZuBgk9iEsLi4Off36FRUpUkTUi4tBYh/C8HlLFs3JwMWg9evXGxSDcO7Tq1cvyZ9Zrhjk5+dnUKgjo1KlSpLFoKCgIPTXX39JeuWKQT9+/ECnTp2S9MoVgyIiItDDhw8FRXMy5IpBMTExyM3NTVA0p89bXAwSy328vLwERXP6vMWNB/SHMPwuNm/eXPK8xY0HYk2X3t7eaPDgwZK/r5o1a6KFCxeiZ8+eGbyL/v7+Bk0hZJQvXx5Nnz4dubq6iuY+9IcRMooVK4bGjx+Prl69Kpr7yLGmvb29LGu+fPlSUDQnI61Zkyyak2Eq1hT7EKaWNcUG/AIDA9GqVaskvZg1xZoutbKmq6urpFcra0oN+JmCNemiOXneZkTWLFGiBJo0aZLoh7DQ0FB07tw5Sa8pWFNswE8ta+7du1eSNcuVKyfq1cKa5ICfFGvSw5dkaGFNR0dHWdakB77IUGJN+kM0fd6agjXpD2EsrEnXjtWyptiAHz5vu3XrJvmMzcWauOlSijX/+ecfSW9as2bOnDlFvWnNmnSDFg41rEl/pCQDs6bYgJ8W1gwODkY7duyQ9GphTbkBv8jISPT8+fOfjjXxgJ8Ya+J3sX379pLvYlqyJj2AQIYpWFOs6TI8PBzdvn1b0ivHmtHR0WnKmlJNl2pYs1mzZkazJh7wk2LNqVOnSnq1sGbJkiWNZs2CBQvqWZPOfSIiItCjR49UsaZY7qOFNb9//47KlCkjed5qZU2pAT9vb2+D4UsytLAmHvAzJ2uK5T5aWTN//vyS560pWJNuusTnbefOnSXPWyXWHD9+vOTvSytrSg34hYSEoGPHjkl65S6TUWJNuQE/zJrZs2cX9f6MrInQ/95FuiGWjLRkza1bt0p6TcGaYpfJaGHN2NhY5O7uLsuaUgN+algTD/hJsSZ98QT5LqYla9IDCGTIsWZISEiasaadnZ0sa75580YwCE2ft1pZU6zpEuc+NWvWlDxvpVgT5z5SrAnAdpkMV/qKNw7yxkEuDaJv6pALuhhET0/JBS4G4Qnc06dPq/YC/K8YhCdw6ekppSAncENDQ5m8xYsXF0zgShVgxIIuBtWuXVu1ly4GyX2YoIMuBskVysT+scTFoC9fvhjc1CEXdDFIrkFKLHAx6PHjx8jd3Z3Ji4tBt2/fRomJiUxeegJXqhgqFvRtT/RNHXKRM2dOwQQuPT0lF3QxSK5QRgddDKKnp5SCLAbRt0IqBVkM8vf3Z/LSxSAp6BMLXAzCH8IqV66s2ouLQbjpUqoJTizopkv6pg65oCdw6Zs65IK+7en8+fNMv2s8gfvs2TODmzqUgiwGRUVFMXnpYlCBAgVUe+likBSciwVdDJJrgqMja9as+mKQr6+vbKGMDlwMwhO49PSUXNATuHJFa7GoWrWqfgL327dvTF76tiepQqpY0MUgqWKoWNDFICk4Fwu6GETf1CEXdDGIvqlDLshi0KdPn2Q/EooFLga9ePHC4KYOpahYsaJ+Ajc4OJjJS0/gShW8xYK+WVjqQ7BY0DcL0zd1yAVdDJIrlNFBF4PkGlLpoItBV65cYfpdk8Wgjx8/MnlxMejOnTsoLi6OyYuLQXgC18HBQbWXnsCV+hAsFrgYhCdw6Zs65IK+7UmuUEYHfbMwfVOHUpDFIPqmDqXAtz09fPgQeXt7M3npxgOphg6xwDcL48aD8uXLq/bixgPcdEnf1CEXuPEAT+Aaw5r4tictrEnfCqkU5G1PWlgzLCyMyWtK1pT6ECwWpmJNPz8/Tawp95GQDvpmYWNYEw/4eXh4MHnLli2rH/AzJ2vSN3XIBX3bkxbWpG/qkAtTsebLly8NbupQCsya9+/fN5o18YCfFtaUGnAVC3rATwtryg0A0GFK1qQ3ECgFyZr0TR1KYUrWlPr4JBaYNfGHMGNYEw/4yTXB0YFZEw/4mYs16Zs6lIK87Ukra0p9RBYLU7ImfSukXNCsOXbsWNVe+mZhLaxJ3wqpFOQWGy2sGRISwuT9WVhTrgmODlOyplxDKh30FhtjWfPJkyfo06dPTF6SNePj45m89G1PWlizadOmqr30bU9aWHPJkiWqvT8La1IfyRWDvllYC2tWqFBBtZfeYqOFNeUGAOigbxZmZU3yZmEtrPn69WsmrylZ087OTrXXVKz548cP2SY4OmjWnDNnjmovvcVGC2vKNUiJBXmZjBbWTEpKYvL+LKz5+++/q/aakjWPHz/O9PsyFWsGBAQweenLZKQujRALesBPC2vKNcHRYUrWlBt+pONnYc3o6GgmL8sWG660F28c5I2DXBrE8jGHDpZGODpq1apltJflH0c6WApHdBQuXJjpH3UycufOjYoVK2aUN0uWLKhSpUpGeS0tLSU76tP6GbMUcOiQmnJVEyVLljTamz9/fiaIIiNHjhySt88oRaZMmSQnzdSElvdJi1fL31lqmkdNFC1aVHJCRSny5csnWJ/AEjY2Nkwf3smwsrISrFVNz+ek5V1kabKkw9j3AeB/UMRSQCYjV65cTKBMRubMmY3+mS0sLDQ9Jy3nbbVq1Yz2ajlvS5QowdQ4SIadnZ3kdK5SZM+eHZUtW9Yor7W1tabfl7lyHy3nrdStsGqiSJEikjdBKUXevHklp3OVImvWrEzFZzIsLS01nXvmyn2MzfUAtJ23BQoUEKwpZomcOXOiUqVKGeXNnDmz0f+/1nreavFqOT+MzSEA/lf0l7rlXSlsbW2ZGiTIyJYtm9E5m9bcx1znrZbcx9h/mwA4a7JGRmRNe3t7TaxpbC0jo7KmlvPWnKwpdROUUnDWZAutrEmuKWaJX5E1tfx/S0vuw1mTLX411syTJ48m1jQ2F+CsyRbmYs1MmTIZ/f3oV2TNYsWKaWLNQoUKGeXNqKyphX+0fNfUyppStw4rBWdNtuCsyRYZ8bw1F2vmzZtXE2saW2c353mbUVnz2LFj/BZCMyotGgctgYuLy0BZsmSBjh07wo4dO8Db2xv69++v2mtlZQXNmjWD9evXw+fPn2HevHlMf3adOnVg6dKl8OrVKzh8+DCTt1KlSjB79mx48OABPH36lMlbsmRJ+OOPP+DmzZvw7ds3yJIli2pvwYIF4ffff4fz58+Dn58f5M+fX7U3b968MGDAADh+/DgEBARApUqVVHuzZcsG3bt3h/3794Ofnx+0bdtWtTdTpkzQtm1b2LJlC3z79g1GjRql2mtpaQmNGzeGNWvWwIcPH2DNmjWqvQAANWvWhIULF8KzZ8/g3LlzTN5y5crB9OnTwdXVFT5//szkLVq0KIwfPx6uXr0K379/hxw5cqj22tvbw7Bhw+D06dPg7+8PxYoVU+3NlSsX9O3bF44cOQIBAQFQp04d1d6sWbNC586dYffu3eDr6ws9evRQ7bW2toaWLVvCxo0bwcPDA6ZNm6baa2FhAfXr14cVK1bAmzdvYNeuXaq9AABVq1aFuXPnwqNHj8DFxYXJW6ZMGZg6dSrcunULPD09wcrKSrW3cOHCMHr0aLh48SL4+PhAvnz5VHvz5csHgwYNgn/++QcCAgLA0dFRtTdHjhzQs2dPOHDgAPj7+0OzZs1UezNnzgzt27eH7du3w/fv32HIkCGqvVZWVtC0aVNYt24duLm5wZIlS1R7AQBq164NS5YsgZcvX8Lx48eZvBUrVoRZs2bB/fv34fXr10zeEiVKwKRJk+D69evg5eUFWbNmVe0tUKAAjBgxAs6ePQt+fn5QqFAh1d48efJA//794dixYxAQEABVq1ZV7bWxsYGuXbvC3r17wc/PDzp06KDamylTJmjdujVs3rwZPD09Yfz48aq9FhYW0LBhQ1i1ahW8f/8eNm7cqNoLAFC9enVYsGABPH36FC5fvszkdXR0hGnTpoGLiwt4eHgweR0cHGDcuHFw5coV8PHxgVy5cqn22tnZwdChQ+HUqVPg7+8PJUqUUO3NmTMn9OnTBw4dOgQBAQFQv3591d6sWbNCp06dYNeuXeDj4wN9+vRR7bWysoIWLVrAhg0bwN3dHWbNmqXaCwBQt25dWLZsGbx+/Rr279/P5K1cuTLMmTMHHj58CPfv32fylipVCiZPngzOzs7w9etXyJQpk2pvoUKFYNSoUXDhwgXw9fUFOzs71d68efPCwIED4cSJExAQEAAVKlRQ7c2ePTv06NEDnJycwN/fH1q1aqXamzlzZmjXrh1s27YNvLy8YPjw4aq9lpaW0KRJE1izZg18/PgRVqxYodoLAFCrVi1YvHgxPH/+HE6dOsXkrVChAsyYMQPu3r0L7969Y/IWK1YMJkyYANeuXYPv379DtmzZVHvz588Pw4cPhzNnzoC/vz8UKVJEtTd37tzw22+/wdGjRyEgIABq1Kih2mtjYwNdunSBPXv2gK+vL3Tp0kW119raGlq1agWbNm2CL1++wOTJk1V7LSwsoEGDBrBy5Up49+4dbNu2TbUXAKBatWowf/58ePz4Mdy8eZPJW7ZsWfjzzz/hzp074OHhAZaW6ssURYoUgbFjx8KlS5fAx8cH8uTJo9pra2sLgwcPhpMnT0JAQACULl1atTdHjhzQq1cvOHjwIAQEBECjRo1Ue7NkyQIdOnQwCWvOnz9ftRdAyJpHjhxh8pqbNc+dOwd+fn5QoEAB1V5TsOa+ffs0s+bo0aNVey0tLaFRo0awevVqo1izRo0aetY8f/48k9dUrOnt7Z0hWbNnz56qvaZgzeXLl6c7a5YuXRqmTJmSoVmzefPmqr1aWNPS0lLPmp8+fdLEmidOnGDyYta8d+9ehmHN3LlzQ79+/fSsWa1aNdXe/wJrXr16lclLs6aFhYVqrylY899//wV/f38oWbKkai/Nmg0aNFDtxXX2nTt3ambN2bNnq/YCmI41Hzx4wOQ1FWv6+fllSNYcMWKEaq9W1qxZsyYsWrQInj9/DqdPn2bykqz5/v17Jq8pWdPBwUG1l2TNwMBAqFmzpmovzZpdu3ZV7TUVa759+1YTazo7OzN5cZ399u3b8OXLlwzJmo0bN1btNSVrLliwQLUXwPyseePGjXRlTVxn//vvvyEgIAAqV66s2kuzZrt27VR7M2XKBG3atIEtW7bA169fNbHm2rVrVXsBTMea7u7uTN6fhTXr1q2r2otZc9euXZpZc/r06aq9WlmzSpUqetZ0dXVl8tKsaW1trdpLsqavr2+GY00vL690Z83FixfDixcvNLHmmzdvmLzFixeHiRMn6llzwIABTBzDlQFkiu7D/3oAv3HwP6GwsDB09epVye7oAgUKCK7CJRUVFYVevnwpOZFEX4VLCu+mt7e3F/XSV+GSSkxMRN7e3pITOuRVuF+/fhV4U1NTkY+PD+rUqZOoF1+Fi1fO0V3hfn5+aNy4cbId8HjlXGpqqsAbGBiIVq1aJenFawBcXFxQcnKywPvjxw907NgxSS9eOSd2FW5ERARydXWV9NrZ2aGhQ4fq166Qio6ORh8+fJCcAM2ZMyfq06cPOnz4MAoJCRF44+PjkZeXl+QEaNasWVGnTp30a1dIJScnIx8fH1S/fn1Rr5WVFWrRogX666+/kLu7u8Cr0+mQj4+P5DXo9NoV+hkrrZ3Aa1cePnyIUlJSBN7g4GDZq5fx2hW8co5UaGgoOnfunKSXXgNAKjIyEj19+lRyjQteA3DixAkUHh4u8MbGxiJ3d3eUN29eUS9eA+Dk5IQCAwMF3oSEBOTt7S05YUyvNyeVkpKCfHx8UOvWrSXfxSZNmqC1a9eiT58+GTwnX19fNHz4cMnfV61atfRrV2hvQECA7IrDChUq6Neu0M84JCQE7d+/X9JbvHhxwdoVUuHh4bJX3efPnx+NGDFCvwaAVFRUFHrz5o3k6ojcuXOjfv366VfOkYqLi0Nfv36VvG2IXgNAKikpCfn4+EhO9+C1K5s2bUKenp4CL34Xpa5Bp9ebi523kyZNkvx94fXmT548MThvg4KC0Lp16yS9eL35nTt3UFJSksD748cP2ZWyRYoU0a9diYuLE3gjIiLQ/fv3kYWFhajX1tZWsHaFVExMDPr06ZPkbUPk2pXg4GCBNyEhAX3//l3y9ossWbLo1654e3sLvPi8bdy4seR527x5c/0aAFo+Pj6y653J9eZi76Lc2onKlSvr15uLnbdya37o9eakwsLC0KVLlyS9eOXc+fPnRXOf58+fI2tra8nzdsCAAfq1K6RiY2PRly9fJFdRZsuWDXXv3h3t379fMveRmlzNlCmTfu3Kt2/fBF6c+7Rv317yvMVrVz58+CB63o4ePVry94XXrjx79kw091m2bJmkt3z58vo1AGK5z6FDhyS9xYoVQxMmTNCvnCMVHh4uu8KbXm9OKjo6Gr179w7Z2NiIeun15qTi4+PRt2/fJCdA6fXmpPB5K7UCBq+c27hxI/Lw8BB48XkrtXLLwsIC1a9fX792RSz3mTp1quTvi1y7Inbebty4UdJbpkwZwdoVUqGhoej06dOS3sKFC6MxY8boV86RioyMRI8ePZK8iYZeOUcqJiYGff78WfJmW7x2Ba+cI4XPW6npU7xyDq83J4Vzn+bNm0uet3jlnJubG6Ll4+ODhgwZIvn7wuvNX758KXreyq04rFixIpo1axa6f/++aO4jt+anRIkS+rUrdO6jlTVfvXqFMmfOLOo1BWvilXOk8HkrNTVvTtYk15uLnberV6+W9GphTQcHhwzNmnS9Cuc+UutGTcGaeOWc2Hk7Y8YMyd+XFtak15uTCg0NRefPn5f0/sysKXWjQ1qz5ogRIyR/X3KsGRgYqIo17969a/AuhoSEyK6UxbkPXjlHKq1Zk1xvTiotWZNeb04Kv4vdu3eXfBd/RtYMDQ2VXSlrCtbEK+dIYdaUum3IFKyJV86RwudtkyZNJM9bJdaUW++shTXxyjkp1ty5c6ekNy1Z88WLFz8ta+KVc6TSgzXxyjmx3Gf58uWSXi2siVfOSbGm3Arvn5k169atK3nemoI1persac2aeL05KTWsidebi+U+jx8/TjPWJNebk8K5j9TNX2nNmnLrnc3NmmJ19rCwMHTt2jVJrylY89ixY6K5j6enp+TNtlpZE683p+vs+Lzt3Lmz5LuI15tLseb48eMlf19pyZp///23pNdUrEnnPpg1s2fPLuo1N2vi9ea0fHx8UL9+/SSfsRbWJNebi+U+W7dulfTKsWZYWJjZWNPDw8NsrNmmTRtRr6lY8/nz56KsuWTJEkmvOVmTXG9OKjo6Gr1580bypsW0Zk2pm0vTkjW5zCu+qpg3DnJpVN++fQWHnlyBjNasWbMEXrkCGa3du3cbJIlSBTJaN27cEHjlmjFoubm5CcCPLJDRSSKtsLAwlCtXLr2XbMZQeg+Sk5MFHxlxgWzDhg2iBTJaLVq0EPzMdevWlUwSadGJiFwzBi26CIOTRLECGS0aCsgCGZ0k0nr48KFBkihVIKPl7e0taGglC2R0kkgrJiZGcK23XDMGrdTUVEFDK1kg+/jxo+Jz6tKli+Bnxs0Yz58/V3wXJ0+eLPCWL18ezZgxQzRJpLV582bJJJEGNloXLlwQTRLFCmS03r59K/DKFchoBQUFCT4ykgUyOkmklZCQIAA/skBGJ4m0dDqdoKFVqRmDFt1gJVcgo0UXYeSaMWjRzY5FihRBY8aMQZcuXVI8b+mCqK2tLRo8eDA6efKkQYGMloeHhwD85JoxaEVERAhWSGXJkgV16NBBtEBGKyUlRdDQqlQgo0WDX506dSQLZLTGjBkj8MoVyGjRRRiyGUPpvKU/QMkVyGg9ffpU4JVrxqDl6+sr+Mgo1/hPKy4uTgB+cs0YtHQ6neCafNyMsXr1atECGa2ePXsKfuYaNWqghQsXihbIaE2bNk3glSuQ0dq+fbvAK9f4T4tuvpFrxqD14cMHwUdGuQIZrR8/fggaWuUa/2klJiYKPjKSzRj0BwlaOp1O8JFRqfGfFt1ghZsxHj16pPgu0h/85Rr/aR0+fFjglSuQ0bp7967Aiz9IiBXIaH379k3wkZEskCmdt1FRUYIVUnIFMlopKSmCj4xKBTJaHTt2FPzMcs0YtCZMmCDwyjX+09qwYYPAK9f4T+vMmTMGuc+IESPQ2bNnDQpktF6+fCnw4sZ/sQ8StAICAgSFNrkCGa34+HhUuHBhwXkr1fhPS6fTCRpaWQtkWlhz9uzZAq8W1pRrxqBFF0R/BtakmzFopRVrijVj0Bo5cqTAq4U15ZoxaMmxplLu8+jRI4E3PVmTbGhNT9bs2rWr4Gc2BWuKNWPQkmJNsWYMWhcvXhR45ZoxaGlhzeDgYLOxJvmRkZU16Qar9GJN+gMUbvw3hjXlmjFoffnyxWSsKdeMQUsra7Zt21bwM8s1Y9DSwppr1qwReNOLNZ89eybwsrCmn5+f2ViTbGhVavynRbOmXDMGLXqQWQtryjVj0NLCmh8/fjQLayYlJaUJa6qps9MNVlpYU64Zg5YW1rx3755B7iPVjEFLjjWVcp+oqChBQ2tGYc2JEycKvOnFmmfPnhV4tbKmVDMGrYCAAEFDqxbWJJsx0po16WGe9GJNutkxvVjz8+fPkqxJN/7TCg8PFzS0yjX+05JiTanGf1otW7YU/Mxyjf+0aNaUa/yntWLFCoE3o7Am2dCanqxJNrSagjWlGv9pTZkyReBlYU16sE6u8Z+WFtZ89+6dwGsq1lRTZ8+IrLlgwQKB1xSsKTZkTsvUrCnV+M/1c4k3DvLGQS4NwlNuHTp0UJUkkgoODka5c+dGzZo1Q+vXr1dVIMPCH5JxkqimQIal0+lQw4YNUaVKlVQXyEgNGjRInySqKZCRWrhwIVOBjNSBAweYCmSkXFxcmApkpDw9PVG2bNlUF8hIRUZGIjs7O30zhth0qJRSUlJQhQoV9M0YapJEUu3atUPlypWTnA6V07hx4/RJopoCGam1a9cyFchInTp1Sp8kqimQkXr+/DmysbFRXSAj5e/vj3LmzKm6QEYqLi4OFSlShKkZA0un06FatWoJCmQsz7h37976Zgyx6VA5zZgxQ3Y6VE47d+5kShJJXbt2DWXPnh317NlTVTMGqU+fPiEbGxv9BwmlAhmp0NBQlDdvXtS0aVPVBTKspKQkVKpUKVS7dm3VBTJSzZo1YyqQkRo2bBhTgYzU0qVLUYECBVQXyEgdPXqUqRmD1P3795GNjQ3q2rWr6HSonLy8vFD27Nklp0PlFB0djfLnz48aNmzIPK2UmpqKKleurP8goaZARqpTp05MBTJSkyZNYmr8J7Vx40ZkZ2enukBG6ty5c0zNGKRev36NbGxsVDf+kwoMDES5cuViasbAwh+SWRr/sXQ6HapXr55+OlRNgYxUv379mD5IkJo7d67+g4Saxn9Se/fuZSqQkbp16xbKnj276gIZKXd3d2RjY6O6QEYqPDwc5cuXj6lAhpWcnIwcHR2ZmjFItWrViqnxn9SoUaOYGv9JrVy5kqnxn9SJEycEHySUCmSknjx5ov8goaYZg5SPjw/KkSMHatWqlaoCGanY2FhUqFAhpgIZVmpqKqpWrRpTgYxU9+7dmQpkpKZOncrU+E9q69atTI3/pC5fvqxvxjh48CBT7qOFNUNCQkzCmmqbMbB0Oh1q1KiRJtZkacYgpYU1Dx48mOFZU00zBpZW1mzfvr2eNdU0Y5DSwprr1q3TxJoszRikXrx48Z9gTZZ3UQtrzpw50ySsqaYZg9T169c1s6baZgxSWlmzdOnSTM0YpLSw5vDhwzWxJkszBiktrPngwQMBa7LkPlpZs0CBAppYk6UZg1Tnzp2NZs0//vjDLKx5/vx5k7EmS+4TFBRkMtZU04yBpZU1+/fvz9SMQUoLa+7bt08Ta7I0Y5Dy8PBA2bJly3Cs2bp1a5OwpppmDFKrVq3SxJoszRiktLCmr68vypEjh+pmDFJaWBMPyJqDNf/8888Mx5rv37/Xs6aaxn9S5mZNlsZ/UoMHDzaaNRctWmQW1nR1dTUba9rb22tmTbWN/6S0sOb48eOZhsxJaWHN06dPZzjWjI+PNxtr9unTh2nInNTMmTOZGv9J7dq1SzNrqm38J2UK1mRp/MfSyprNmzc3C2tymVe8cZA3DnJp0Pfv35kKZKQCAgKYCmSkwsLCmJoxSMXHxzMVyEjpdDqmf5hoffr0iSlJJOXu7s6UJJL6+vUrU5JIysfHh6lARio4OJgpSSQVFRVl9NmQlJQkelW3Gml9xm5ubkwJBCkPDw+mJJHUt2/fmJJEUn5+fkxJIqnQ0FCmJJFUbGwsU5JIKjU1Fbm5uWl6F431fv782eh30dPT0+gk0dvb2+jzNjAw0OjzNjw8nKlARiohIYGpQEZKp9MxFUFpubm5aTpvWQpkpL5+/cpUICPl6+tr9HkbEhKiOB0qpejoaKYPEqSSk5OZPkjQMtd5++XLF6PPWy8vL6YCGSl/f3+mAhmp0NBQpgIZKXw1vzFKTU01W+6j5bzVkvt4e3szFchIBQUFMX2QIBUZGclUICOVmJjIVCAjZYrcx9hn7OHhYfR5qzX3YfkgQerHjx9GT4fGxMQYnfukpKSYNffRct4am/uYizXDw8PNxppach+trKkl9/mVWDM5OfmXY00vL68MyZoszRikflXWNDb30cKaERERRrNmYmKiJtY0V+6j5bz99u1bhmRNlmYMUikpKZpYU2s94VdizbCwMLOwpk6n03zemoM1PT09zcaaxuY+WlgzKSmJsyaDOGuyibOmemXk75rmqLP/aqyJkPlyH3Oxpr+//y/Jmr9S7hMYGGh0nT2jsiaXeZUWjYMW6H+NcVwysrCwcAAAHwAAHx8fcHBwMPPfiIuLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi+tXkK+vLxQtWhT/z6IIIV+t/01Lrf8BLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi6ujCPeOMjFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXF9QuJNw5ycXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcf1C4o2DXL+MIiIiACFklDcqKgpSU1ON8sbGxkJSUpJR3qSkJIiLizPKixCCyMhIo7wA//t9mctr7HOKjIwEnU5nlDc6OhpSUlKM8sbHx0NiYqJR3pSUFIiJiTHKixAy63PS4tXyLhr7jGNiYiA5Odkob0JCAsTHxxvl1el0GfZd1OI19hlHR0cbfd7GxcVpOm9jY2ON8v6K76KW8zYmJkbTeZuQkGCUNzU1FaKjo43yAvx676LW3MfY8zYxMdHo3Ccjn7da3kUt562x72JcXJzRuU9ycjLPfRik9bw1R+6TmpoKUVFRRnkB+HnLInOy5q/2nDhrsikjPmNzsWZiYiJnTQZpzX20sKax7yJnTTZx1sw43oyW+2hhzV+1zs5ZU70y6jPmrJkxvBntvOW5D5vMyZrG5j5aWBPg13wXOWv+/F4tuY+W8zajsibXf0+8cZDrl9GHDx+gePHiMH78eLh69SpTQhQeHg7FixeHYcOGwalTp5jgBCEEFSpUgL59+8KRI0fgx48fqr3W1tbQvHlz6Ny5M+zatQt8fX1Vey0sLGDYsGHQsmVL+Ouvv8DDw0O1FwBg0aJFUK9ePVi+fDm8efOG6R/LAwcOQNWqVWHu3Lnw6NEjpn8sXV1doUyZMjBlyhS4desWE5x4eXlBsWLFYPTo0XDx4kWmYlBcXByULFkSBg0aBP/88w9TQmRpaQnVq1eHnj17woEDByAoKEi118rKCjp27Ajt27eH7du3w/fv31V7LSwsYOLEidC0aVNYt24dfPr0iek5rV+/HmrXrg2LFy+GFy9eMHlPnToFFStWhJkzZ8K9e/eY4OTly5dQsmRJmDhxIly/fp0pIQoKCoKiRYvCiBEj4OzZs0xwkpKSAo6OjtCvXz84duwYhIWFqfZaW1tDgwYNoGvXrrB3714ICAhQ7bW0tIR+/fpB69atYfPmzfD161fVXgCA2bNnQ8OGDWHVqlXw7t07pue0c+dOqF69OixYsACePHnCBCfXr18HR0dHmDZtGty5c4cJTj5//gzFihWDcePGweXLl5ngJDIyEooXLw5DhgyBf//9l/m8rVSpEvTp0wcOHToEISEhqr3W1tbQqlUr6NixI+zcuRN8fHxUey0sLGDUqFHQvHlz2LBhA7i7u6v2AgAsW7YM6tatC8uWLYPXr18zPeOjR49C5cqVYc6cOfDw4UOm8/bBgwdQunRpmDx5Mjg7OzOdtz4+PlCsWDEYNWoUnD9/nglOEhISoHTp0jBw4EA4fvw4hIeHq/ZaWVlBrVq1oEePHrB//34IDAxU7bW0tIRu3bpB27ZtYevWreDl5aXaCwAwZcoUaNKkCaxZswY+fvzI9Jw2bdoENWvWhEWLFsHz58+Z3sVz585B+fLlYcaMGXD37l2m8/bNmzdQokQJmDBhAly7do0p9/nx4wcUK1YMhg8fDmfOnGH6EJaamgrlypWD3377DY4ePQqhoaGqvdbW1tCkSRPo0qUL7NmzB/z8/FR7LS0tYdCgQdCqVSvYtGkTfPnyRbUXAGD+/PnQoEEDWLFiBbx9+5bpGe/btw+qVq0K8+bNg8ePHzM941u3boGjoyNMnToVbt++zXTeenp6QtGiRWHMmDFw6dIlpvM2JiYGSpQoAYMHD4aTJ08y5T4WFhZQtWpV6NWrFxw8eBCCg4NVe62traFdu3bQoUMH2LFjB3h7ezP9uePGjYNmzZrB+vXrwc3Njek5rV69GurUqQNLly6Fly9fMnlPnDgBlSpVgtmzZ8P9+/eZztunT59CqVKlYNKkSXDjxg2m3CcgIACKFi0Kv//+O5w7d47pvE1KSoIyZcpA//794e+//2Y+b+vVqwfdunWDffv2MeU+VlZW0Lt3b2jTpg1s2bIFvn37ptoLADB9+nRo1KgRrF69Gj58+MD0nLZu3Qo1atSAhQsXwrNnz5jexcuXL0O5cuVg+vTp4OLiwnTempM1K1asCH369IHDhw+nK2sOHz4cWrRoke6sefDgQahSpUqGYs34+HgoVaoUDBo0CE6cOMFUmNXKmp06dYL27dvDtm3bMgxrnj59GipUqJDurBkcHGwW1rSyshKwpr+/v2qvOVlz165dUL16dZg/f75ZWHPs2LHpypoAAJUrV4bevXszs2amTJmgdevWZmHN5cuX61nz1atX6caaDx8+1LPmzZs3Mwxr1q5dG7p3757urDl16lRo3LhxurPm+fPnjWbNt2/f6lmTNffRyprly5eH3377DY4cOZJurGlhYQGDBw+GVq1awcaNGzMMa96+fRvKli1rFtYsWbKkWVizffv2RrPm+PHjoVmzZrBu3bp0Zc1//vkHKlWqBLNmzTILa44cOTJDsWafPn30rMma+2hhzW3btulZ8+nTp+nGmh8/ftSz5pUrVzIMa7Zo0QI6deqU7qy5ePFis7Dm3bt3jWbN79+/61nzwoUL6cqaNWvWhJ49e4KTk1O6sSYAwKRJk6BJkyawdu3aDMOar169+ilYkyX30cqa/fv317Omp6enai8AwJw5c6Bhw4awcuXKdGXNGzdugKOjI/z555/pyprR0dEZkjVHjx6tZ83Pnz8z/Z25/oNCCPFQCABwAAAEAMjHxwdxZVy1adMG4WeZLVs21K1bN7Rv3z4UEBCg6B0zZozemylTJtSmTRu0ZcsW9O3bN0Xv6tWr9V5LS0vUqFEjtHr1avThwwek0+lkvSdPntR7AQDVqFEDLVy4ED19+hSlpqbKep8+fSrwlitXDk2fPh25urqi5ORkWa+vry/KkiWL3lu0aFE0fvx4dOXKFRQfHy/rjY2NRQUKFNB77e3t0bBhw9CpU6dQVFSUrFen06Hq1avrvbly5UJ9+vRBhw8fRj9+/JD1IoRQz5499d6sWbOiTp06oV27diFfX19F77Rp0/Rea2tr1KJFC/TXX38hDw8PRe/27dv1XgsLC1SvXj20fPly9ObNG8VnfOXKFcFzqlKlCpo7dy569OiR4jP+8OEDsrCw0HtLly6NpkyZgm7duoWSkpJkvT9+/EA5cuTQewsXLoxGjx6NLly4gGJjY2W9iYmJqESJEnpvvnz50KBBg9A///yDIiIiZL06nQ41adJE782RIwfq2bMncnJyQkFBQbJehBAaMmSI3ps5c2bUvn17tG3bNvT9+3dF7+LFiwXvYpMmTdDatWvRp0+fFJ/ToUOHBM+pdu3aaPHixejFixeK3rt37wq8FSpUQDNnzkT37t1DKSkpst5v374ha2trvbdEiRJo4sSJ6Pr16yghIUHWGxUVhfLly6f3FihQAI0YMQKdPXsWxcTEyHpTUlJQxYoV9d48efKgfv36oWPHjqHQ0FBZL0IIdejQQXDedu3aFe3duxf5+/sreidMmCA4b1u3bo02b96MPD09Fb3r168XvIsNGzZEq1atQu/evVN8TmfOnBE8p+rVq6P58+ejJ0+eKL6LL1++FHjLli2L/vzzT3Tnzh3FdzEgIABlzZpV73VwcEBjx45Fly9fVjxv4+PjUeHChfVeOzs7NGTIEPTvv/+iyMhIWa9Op0O1a9fWe3PmzIl69+6NDh06hEJCQmS9CCHUt29fwXnbsWNHtHPnTlW50uzZs/VeKysr1Lx5c7Rhwwb0+fNnRe/u3bsFv+u6deuiZcuWodevXys+45s3bwq8lStXRnPmzEEPHjxQfBfd3NyQpaWl3luqVCk0efJkdPPmTZSYmCjrDQsLQ7ly5dJ7CxUqhH7//Xd0/vx5xfM2OTkZlS5dWu/NmzcvGjhwIDp+/DgKDw+X9SKEUIsWLfTe7Nmzo+7du6P9+/ejwMBARe/IkSMF523btm3R1q1bkZeXl6J3+fLlgvO2cePGaM2aNejjx4+Kz+nvv/8WPKeaNWuiRYsWoefPnyu+iw8fPhR4y5cvj2bMmIHu3r2rmPt4e3ujTJky6b3FihVDEyZMQNeuXVM8b2NiYpC9vb3emz9/fjR8+HB0+vRpFB0dLetNTU1FVapU0Xtz586NfvvtN3TkyBFVuU/Xrl31XhsbG9S5c2e0e/du5Ofnp+idPHmyIPdp1aoV2rhxI/ry5Yuid/PmzYLztn79+mjFihXo7du3is/4woULgudUtWpVNG/ePPT48WPFZ/z27VuBt0yZMmjq1Kno9u3biudtcHAwypYtm95bpEgRNGbMGHTp0iUUFxcn601ISEBFixbVe21tbdHgwYPRyZMnVZ23DRo0EOQ+vXr1QgcPHkTBwcGyXoQQGjBggN6bJUsW1KFDB7Rjxw7k7e2t6J0/f77gvG3WrBlat24dcnNzU/Q6OTkZ5D5LlixBL1++VHzGd+7cEXgrVaqEZs2ahe7fv6943n758gVZWVnpvSVLlkSTJk1CN27cUDxvIyIiUJ48efTeggULopEjR6Jz586pyn0cHR0FuU///v3R33//jcLCwmS9CJmPNdesWSM4bzFrvn//Pk1Z89mzZwJvuXLl0LRp05CLi0uasmZcXBwqWLCg3mtvb4+GDh3607Pm9OnTBedterHm1atXBc+JZE2ld9FcrJmUlGTAmgMHDkQnTpxIc9YcOnSoIPdp165durDm4cOHBc+pVq1aGYI1bW1t9V6SNZVyH62s2bFjR0Hu07VrV7Rnz540Z80NGzYI3sWGDRuilStXqmLNs2fPCp5TtWrV0o01bWxs9N70ZM06derovRmFNffs2SP4XdetWxctXboUvXr1Kk1Z8/Pnzwas+ccff5iFNQcMGKCaNVu2bKn3pidrrlixQnDephdrPnr0SODFrKmmzm5O1qxataog9+nbt2+6sOaUKVMEuU/Lli3ThTUvXrwoeE4srPnu3TuBN71YMzExUZQ11dbZtbDmwIED9V7Mmtu3b89QrFmxYsV0Y828efPqvenJmm3bttV7Mwpr/vvvv4LnVKNGDbRgwYI0Z00/Pz8D1hw3bly6sGaNGjUE5y0La/bq1UuQ+6QXa+7YsUNw3mLWVFNn18KaHz9+FGVNZ2fnn5o1mzZtKsh9evTokS6suWTJEsG7mF6see/ePYGXZE2ld9HLy0vAmsWLF0cTJ05UlftoYc3U1FQBa+bOnRv169cPHT16NM1Zc+LEiYLztlWrVmjTpk0/NWu+evVK4GVhTS7zysfHh3x2DsgUPXGm+I/81wN44+B/Rvfv3xccgGQoFYO8vLwEgE9GpUqV0OzZsyWLQdHR0YJ/5MhQKgalpqaiSpUqiXrVFIM6deok6lVTDJo0aZKoV00x6K+//hL1qikGnTt3TtSrphj0+vVryWeMi0HPnj0T/ccyMDBQUFAlQ6kYlJCQgIoUKSLqLVasGBo/fjy6evWqaEKk0+lQ3bp1Rb358+dHw4YNky0G9evXT9Srphg0d+5cUa+aYtDevXtFvWqKQbdu3RL1qikGubu7CwqqZCgVg8LDw1Hu3LlFvUrFoOTkZFSmTBlRLy4GXbx4UbIY1KpVK1GvmmLQqFGjRL34Q9iBAwcki0ErV64U9aopBp04cULUa2VlhZo2bSpbDHr8+LHku6hUDPLx8UGZM2cW9SoVg2JiYlD+/PlFvUrFoNTUVFStWjVRr5piUPfu3UW9aopBU6dOFfWqKQZt3bpV1IuLQZs3b0Zfv34V9V66dEnyvG3UqBFatWqVZDHo3bt3AsAnQ6kYFBISgrJnzy7qdXR0lC0GJSYmomLFiol6lYpBOp0ONWrUSNSrphg0aNAgyfNWqRi0cOFCUa+aYtCBAwckz1tcDHJ3dxf1uri4SJ63SsUgT09PAeCTUaVKFTRnzhz08OFD0XcxMjJSUFAlo3Tp0mjy5MnI2dlZ9F1MSUlB5cuXF/UWLlwYjRo1SrYY1K5dO1GvmmLQuHHjRL1qikHr1q0T9ZLFIKnc59SpU5LvolIx6MWLF5LnrVIxyN/fX9C4TAYuBkk1XcbFxaFChQqJepWKQTqdDtWsWVPUi4tBZ86ckcx9evfuLepVUwyaOXOmqNfGxgZ16dJFthi0c+dOyfNWqRh0/fp1yXexQYMGssWgT58+SZ63SsWg0NBQlDNnTlGvUjEoKSkJlSpVStRLNh5I5T7NmjUT9appPBg+fLioFzceyH0IW7p0qag3S5YsqGPHjrJNl0ePHhX14saD9evXSzYemJM17ezsRL0lS5ZMU9bs3LmzqNdUrCmV+2zcuFHyvMWsKfUhTA1rSg34aWHNoKAgWdaUG/BTy5pSuU+9evVEvXjA72dkzX379ol605o1PTw8BB+TycCsKTXgp4Y1pZouk5OTUdmyZUW9PzNrrlq1SvK8bd++Pdq+fbvkhzAtrPnkyRPJdzEtWTM2NlaSNUuUKKFnTanch2xcJgOzptyAnxbW/PPPP0W9mDX37t2bJqx5+fJlyXcRD/gZw5rVq1dPU9YsXry4qDetWXPw4MGS5y1mTammSzWsKfVN4+DBg5LnrRJrurq6Sj7jevXqyQ74aWVNckiWDDzgl1as2b59e1Hvz8yap0+fFvWSrClVZ8+orFmrVi1RL266lGPNPn36iHrxgF9aseauXbsk38W0Zk2pOvvPzJrNmzcX9WLWlBvw08Kay5YtE/WqGfCTY81mzZrJsuaDBw8k38U6der8tKxZuXJlUW/BggX1rCmV+6hhTanc548//pA8b9OSNc+fPy953jZu3Fj2Mpk3b95IPmM84JdWrOng4CDqNRVrSuU+/fv3F/X+zKx5+/ZtyfMWs6bUgJ9W1iSHZMkoU6aM7ICfHGvipks51mzdurWoV81lMqNHjxb1kqwplftoYc1//vlH8rxNS9b09fVNU9aUGvDTypo9evQQ9ZIDfmqa3LnSV7xxkDcOcmnQpEmTJP9RpoMuBv3111+qvXZ2dmjo0KH6D2Fnz55V7aWLQa9fv1btxcUgPIEbGRmJrKysJAtt9D+WeAIXF4Py58+vygtgeNtTvXr1JIGTDjyBi4tB/fr1U+2li0Fz585V/fsqVKiQoBi0Z88e1V66GOTs7KzaSxaDAgMDDabc5AIXg3DTpU6nU/2MxYpBpUuXVv2Ma9WqpZ/A1el0qFWrVqqfU4UKFQS3PY0aNUq1t3jx4oIJ3BUrVqj+fdHFoOPHj6v20sWgR48eqfaSxSA/Pz8UFBSk+jmJFYNy5cqlyksWg/CHsGrVqqn+XeNiEG667N69u2ovLgbhpsupU6eq/n3RE7hbtmxR7aVve7p48aJqb86cOQUTuO/fv1ftpYtBcXFxTOctXQwqXLiw6ncRF4MwnDRu3Fj1c6KLQYMGDVLtxcUg3HS5cOFC1b8vXAzCTZcHDhxQ7cXFIPwhzMXFhem87d69u77p8vv376q9YhO4mTJlUn3e0jcLlytXTvXvmi4GtWvXTrWXvll43Lhxqn9muhi0du1a1V66GPTvv/8y5T59+/bVN10+f/6cKffBxSBfX18UGhrKdN62bNlSMIGbL18+1edt/fr1Bbc91a5dW/Vzom8W7t27t2ovXQyaOXOm6t8XXQzasWMHU+5DFoOuXbum2ksXg9zc3JjOW7IYlJSUxHTe4mIQbrosXry46vMWF4Pwh7DmzZurfk64GIRvexo+fLhqL33b05IlS1T/vuibhY8cOaLaSxeD7t+/r9pL3yzs5+en+jmRtz3hxoNs2bKpfhfpxoNKlSqp/l3jxgP8Iaxz586qvbjx4M6dOyg5Odko1sS3PWlhzXPnzjHlPuRtT1pYMyoqymysWb9+/QzHmnv37mVmTdx0aQxr4gE/T0/PdGNNesBPC2u2bt1a9XOibxbWwporV65Md9b88eMHevz4cbqzJv4QpoU1q1evzsSa5IAfK2uSA35//vmnWVjz0qVLRrPmhw8fzMaaRYoUSVfWxB/CBg8enG6sSQ74pRdr0gN+Wlkzc+bMZmHN9u3bG82a48ePZ2ZNXGfXwpqnTp1KN9YkB/zCwsLSjTXpm4W1sGafPn1Ue+mbhbWw5s6dO83Cmp8/fzaaNZOTk5lZkxzw08KaLVq0YGJN8mZhLay5dOnSDMea/v7+RrEmrrNrYc3KlSunG2uSTZd//PFHurEmOeCnhTXfvHnDdN6SNwtrZc0CBQqkK2viOnv//v2NZs158+YxsyYe8NPCmrdu3Uo31qQvk0kv1iRvFtbKmqNHjzYLa544cSJdWRM3XQYHB2tizdy5czOxJjngp4U1e/ToYRbW3Lp1a7qwJn2zsBbWjI+PN4o11dwszJX24o2DvHGQS4PIdSQskS1bNsnb4JQiU6ZMkhMXSmFpaSlY68EaUre4qIny5csLrnpmiaJFi0reBKUU9vb2kjdeKEWuXLmM/pmzZs1q9DO2trY2+hlbWFgI1oSyhtTNaGqiTJkyktNiSlG4cGHBKhOWyJcvn2BFBktkz57d6N9X5syZM+S7WKlSJcnpXKUoUaKEYK0QSxQoUEByAlsp8uTJI7iWnyVsbGzMct5aWFhoesbG/rwA/ysGSd1MohQODg6Cq/VZws7OTnLqUyly5swpOb2tFFmzZjX6OVlZWRntBQBN523VqlVVAycdpUqVkpwWU4pChQpJTgQqRd68eY3+dyJ79uxGvxNaz1tjzwAAbedthQoVBGuFWKJ48eKCtUIskT9/flShQgWjvLlz5zb6Z9Zy3poz95GanlQTZcuWlbyZRCmKFCkieRuCUtja2hqd++TIkcPo31eWLFmMfsZWVlaa3kVj/40A+F/xXeo2BKUoWbKkYK0QSxQsWBCVK1fOKG+ePHmM/v8mZ022yKisaexzyqisWbp0aU2sKXXLu1JkVNY0V+6jlTWlbsFUCi2smTt3brOxprFeraypJfdxdHSUvJlEKTIia2bJkoWzJkNw1mQLLXUfLaxZrFgxTaxJrupjCS25D2dNtihSpIjRdXZbW1tUpUoVo7ycNdmiZMmSkrdgKsWvyJpanrGWd7FcuXKSt2AqhTlZ0xx1ds6abMFZky1+RdY0Nr/NyKx57NgxxTXKXGkn3jjIGwe5NIi1cZBcTbt27Vomb9GiRfW39kitX5EKPE1w+vRp2SvIxYK8wvnbt29MXvrWHqnVymJBXuHs4eHBlATR64L69u3L9PcmV9POmjWLyUuuC9qxYweTl5wmkFr1KRXkuqBXr14xeclJysDAQCYvuZr2+/fvTEVg+grnFi1aMP3Z5BXOI0aMYPKSVzhLrZ6TCnJd0KFDh5i8BQoU0E+uS11BLhV4XdCxY8eQm5sbk5ecXPf395dcsSMW5LogT09PpmI9Obn+/v171LVrV6a/N7maVmodgFSQ64Kk1pxLBXlDrNSqT6nAt/acOnVK9gpysciZM6f+hlhvb28mL70uqECBAqq9VlZWgnVBDRo0UO2lV9MOGDCA6e9NrguSWgcgFXhy3dnZGe3Zs4fJS97ac/XqVSZv3rx59TfEvn37lslL3xDL8jGHXhfEUpSgV9O2adOG6e+N1wU9f/5cch2AVOB1Qffu3ZNcByAV5LqgY8eOMXnJScq7d+8yecnVtF++fGHy0rf2sDTx0pOULIUFel1Qz549mf7e5LqgadOmMXnJdUFbtmxh8hYpUgSNHTsWXbp0SXLVp1TY2trqJ9efP3/O5CXXBfn5+TF58WranTt3Im9vb8n1K2JBr6Zt0qQJ059NrqYdOnQok5e8IVZq9ZxUkOuCnJycmLzkuqCbN28yecl1QR8+fGDyZsuWTbAuKEuWLKq9mTJlEqwLYikQ0uuCOnbsyPT3JlfTjh8/nslLrgvSwppS61ekgry1J6OyJktR1FSs+ejRI02sKbXmXCoKFy6sX0178eJFJi95a4/camWx0MKamTNnFtzao4U1W7ZsyfRnm4o1pVbPSYUpWPPs2bNmYU18a48W1mRpVKBv7WFlTXI17eTJk5m8WljTwcFBz5pSqz6lgmTNp0+fMnlNyZosDfWmYE18a8/AgQOZ/t5aWJO8tUcLa167do3Ja0rWVHtLCIDpWPPjx4+obdu2TH9vkjXHjBnD5CVX02phzb///pvJq5U18a09np6eTN6fhTV79erF9Pc2FWtKrTmXClOw5smTJ2VXK4sFyZr+/v5MXvrWHi2s2bRpU6Y/m1xNq4U1Fy1axOT9GVjz48ePTF5TsibL0KdW1iRviDXmu6a5WfPhw4dMXlOyJktTmalY882bN+i3335j+nuTrDl79mwmL3lDrBbWZP2uaSrWDAoKYvL+LKw5cuRIJi+5jUQLax4+fJjJq4U1cZ392LFj6PPnz0xemjVZBkbpG2K1sGa3bt2Y/t6mYk2pNedSYQrW/PfffzV916QazxSD3kbCZV7xxkHeOMilQR4eHrL/wFpbW+sLZHiNAJaPjw+6fPmy5ESS2BoBrJCQEHTnzh1kb28v+WfTawSwoqOjkaurq2zzD71GACs5ORm5urrKFoHINQKxsbGCn/nBgwdo2LBhkl56jQCpFy9eoDlz5kh6s2fPjnr27ImcnJxQUFCQwPvx40fZD9lkkoivtcb6+vUrOnnypKTX0tLSYI0Alr+/P7p+/brsBGjt2rXR4sWL9WsEsPBKE7kJULIZIyUlRe+Ni4tDrq6ushMFuECG1whg6XQ65Orqirp37y7pJdcIREdHC35fjx8/RuPGjZP0kkliaGiowPv69WvZJj4bGxvBGgFSnz9/Rvv27ZP0iq0RwPr+/Ts6f/68ZFEVJ4m4QEY+p6CgIHTr1i3ZiXt6jQBWZGQkcnV1RY6OjpJeskBGvouJiYnI1dUVNW/eXNLr4OCAxo4diy5fvozi4uIEP/O9e/dQ//79Jb30GgFSz549Q3/++aekl14jQOr9+/do/fr1kl6yGYP+t/HLly/o6NGjkl5yjQBeoYTl6+uLrly5IlvIodcIYP348QPduXNHthGPXiOAFRMTg1xdXWWnbOg1AlgpKSnI1dUVdejQQdJLrxEg9fDhQ1nwJAtk4eHhAu+rV6/Q/PnzJb14XS9eI0Dq06dPaPv27ZJeco0AXqGE9e3bN3Tq1CnJa8zF1ghgBQQEoJs3b8rCI7lGgHwXw8PDkYuLi2yBgF4jgBUfH49cXV1lP4AVK1ZMv0YgPj5e8DO7urrKFt3Jxv+oqCiB98mTJ2jixImSXnqNAKk3b96gFStWSHrpNQKk3N3d0YEDByS9+IPExo0b9WsEsLy9vdHFixeRtbW1qJduxiCfcXBwMLp9+7bsxD3Z+E8+46ioKOTq6ip7MwJuxsBrBLCSkpKQq6sratWqlaSXXiNA6v79+2jQoEGSXnKNgFjuM3PmTEkvuUaAzn0+fPggW1ygP0iQ8vT0lB1SkVsj4Ofnh65duyY7AVqnTh19gYx8xqGhocjFxUX2ZttKlSrpmzHI8zY2Nha5urrKTlSTBTLyvE1NTUWurq6oS5cukl6y8T8mJkbwMz9+/Fi2oRY3Y+CVdaRev34t+2GFXllHys3NDe3evVvSS66sw+t6sby8vNDZs2clm5fpxn/yOQUGBiJnZ2eUK1cuyT+bXlmHFRERgVxdXWVvv8Ar61xcXATnbUJCAnJ1dZVttsQfJPDKOlJ3796VbfAimzHo81ap0EcWyOjc5927d2jNmjWSXnplHSlTsGbmzJlFvaZkTfJdxKwpV5A1N2ueOHHCIPd5+fJlmrIm2YxBSitr3rhxQ5Y1cTNGWrCm3A0FWlgzf/78acKab968kf2wQrImnfv8zKxJNmOIsabcTTQ/I2s+f/5ctqnEVKxJ5z5fvnyRHVIxFWu+evVKlDXlGvG0sCbZjCHGmnINB3Ks+ejRozRjTbIZQ4w15QZ0/6us2bBhQ0mvuViTbMagWfPt27do5cqVkl6trImbMdKCNeWGEDhr/r8+fPiANm3aJOmlh8xJmYI1bWxsJP1aWJNs/BdjTblLDaRYE+c+5mLNxYsXS3ozMmviZgwx1pRrfNbKmrgZw5Ss+ezZMzRlyhRJL2dN41iTrrOrYU2y8V+szp6WrEk2/pP6+PGjbNO0Emv++++/kl56yFyMNeUGgn421kQIpQtrHj161OSsuX//fkkvZs1NmzalCWvmzZtX8s/+GVnz/v37shdXkEPmpmbNDRs2SHpNwZq48Z+Ur68vunr1apqyJm78F2NNuUETKdbEdXY51iQb/+nch8u84o2DvHGQS6NoeCOnQ+kkkdbq1asFXrkkkRY9nSOXJNKiJ5NxkihWIKPl6+trAAW1atXSF8jkvLGxsQbNNxUqVBAtkNHS6XQGBVGyQEYnibR69OhhkCTi6VA6SaRFJxNkMwadJNLatm2bQZJITofK6cqVKwIvPR0qp/fv3wsKouR0KF0goxUSEmJQEMVJIl0go5WYmGhQEJUqkNHS6XSocePGAi85HUonibSGDBlikCTiAhmdJNKiP9qTBbLg4GBZL30ThFwzBi1XV1eDJBEXyOgkkdbXr18NCqLkdKjcM46KijJoviGnQ8kkkVZKSorBNKRUkigmuhEOJ4liBTJa9M07+IOEWIGMFv0RCX+QECuQ0aKnc/B0qFiBjNbLly8NzltcIPvw4YPscwoICDBovpFqxqAVHx9vsO4CF8hcXV0Vz1u6IEpOh9IFMlp9+vQReMnpULpARou+eUfugwQtuqiJp0PFCmS0bty4YXDektOhcnJzcxMURPEHCbECGa3Q0FCDgmjVqlVFG/9pJScnGzTfSDVjiIkGdLlmDFr0zTtyjf+0li9fbnDektOhcqIhW67xnxY9mYybMdatW2dQIKP1/ft3g0EPPB1KF8hoxcTEGEwmk9OhcudtamqqQUFUrkBGi/44Idf4T4tukpJrxqBFf0SSa/yndeHCBYPzVqoZg9abN28EXno6VO45BQUFGTTfkNOhcu9iQkKCQUEUT4fSBTJaOp0O1a9fX+Alp0OVzlu6WEZOhyrlPvPmzRN48QcJsQIZLbqoKdf4T+vOnTsGuQ9uxnB3d5f1enh4GBREpRr/aUVERBg03+BmjIcPH8q+i8nJyQaDHlKN/2Kib3mV+yBBy1ysSTezYdYUa8agpZU16YIo2YzByppSzRi0Mipr0sMa6cWaHz58yJCsSX8MlmvGoKWFNemP9unFmvQtWBmFNenmG8yadDOGmLSwJn3zjlwzBi0x1pRqxqB15swZg9xHqhmDljlZk26+SS/WpBszTMWaSrmPFtakb8GSa8agpYU1w8LCDFhTasicllbWpDeKsLAm3ZSaXqxJ3zqYXqzp7e0typpizRi0pFhTrBmDllbWpG95TS/W3Lx5s0Hukx6sSd8AysKawcHBkqxJN2PQ0sqa9JCrXDMGLTHWlGrGoEU3iMs1Y9AyF2t++fLFLKyZkpKSJqwp1vhPi77lFbOmWOM/LSnWFGv8p6WFNZ89e2Zw3ko1/tNSYk25dzEuLs6g+Sa9WJPeKMLCmtOnTzc4b6WGzGlpYU16u4/ckDktKdYUa/yn9ePHD1HWFGv8p2VO1qRveZVr/KelhTXp5mFTsSbd+E/r27dvkqxJN/7TioqKMhj0kBoyp6WVNelGOLnGf1paWJNuWMworEkPeqhlTS7zijcO8sZBLg3y8vJC1tbWghXEckkiqejoaGRra8tUIMNKTU1FFStWlJ0OlVOnTp2YmjFITZw40eCqbrX666+/mJoxSJ09e1Z2OlROeHWv1HSonAIDA5GNjY1gLZRSgQwrPj4eFSlShClJxNLpdKhu3bqCFcRKSSKp3377TXY6VE5z5syRnQ6V0969ew2u6lYrZ2dnBCC8qlvtM3Z3d0eWlpaS06FyCg8PR7lz5xZMhyoBG1ZycjIqU6YMU5JIqmXLlkxJIqnff//dYAWxWq1cudJgLZRaHT9+XHY6VE6PHz/WJ4lqmjFIeXt7o8yZM6Ny5crpr+pWe97GxMSg/Pnzy06HSik1NRVVrVpVdjpUTt26dZOdDpXT1KlTDdZCqdWWLVsEHySUCmSkLl26ZLCCWO0zfvfuHbKwsNB/kFAqkJEKDg5G2bNnl5wOlVNiYiIqVqwYUzMGlk6nQw0bNmRqxiA1aNAgpmYMUgsWLGBq/Cd14MAB2elQOeFiqtR0qJw8PT2RlZWVYDpU7bsYGRmJ8ubNK1gLpfa8TUlJQeXKldNPh6opkJFq166d7HSonMaOHav/IKGmQEZq7dq1TM0YpPCtKORaKLXPCa/ulZoOlZO/vz/KmjWr5HSonHAxleWDBJZOp0M1a9aUnQ6VU69evQQfJJQKZKRmzJghOx0qp507d8pOh8oJr68jVxCrfcafPn1ClpaWqpsxSP348QPlzJmTqfEfKykpCZUsWdLo6dBmzZoJbiJiyX2GDRtmsBZKrZYuXWqwFkqtjhw5IvggoVQgI3X//n3BBwmWApk5WbNSpUpMzRiktLDmpEmTzMKa586dy3CsmZCQgIoUKSJYC8WS+2hhzX79+jE1Y5AyF2veunXrl2PNVq1aCVYQs+Q+5mLNEydOMDVjkNLCmj4+Pihz5syCtVDpxZrVqlUzmjW7d+9uFtbcunWrwQpitTIVa6ppxiBlTtZs1KiRWVhz4cKFZmFNFxcXAWsqNf6T8vT0RNbW1oIVxOnFmuXLl2dqxiClhTXHjRvH1IxBylysiVf3moM1CxUqxDRkjqWVNXv37i1YQczCmjNnzmRqxiClhTWvX78uaMZIL9YMDQ3NkKw5fPhws7Dm0aNHDVYQpxdrZsqUSbCCOCOwZufOnc3Cmhs3bjQLa+LVveQKYrXPOCgoCNnY2DA1/mNpZc169eoxNf6T0sKac+fONVhBrFbmYk08IKt2yJyUVtYsW7asYAUxS+6jhTVHjRplsIJYrVatWsXU+E9KC2vi1b1qh8xJaWHN2NhYlD9/fqYhcyxzsuaff/7JVxBnUPHGQd44yKVB79+/Z0oSSX379k1xOlRKISEhTEkiqfj4eMUJCSnpdDp08+ZN1UkirTt37jAliaQePnzIlCSSevnyJVOBjJSbmxtTgYyUj48PUzMGqfDwcKYkkVRSUhK6efOm6iSRlE6nQ87OzkxJIqm7d+8yJYmknjx5wpQkknr79i1Tkkjqy5cvTAUyUoGBgUwFMlIxMTFMBTJSqamp6MaNG6oLZLRu377NVCAj9eDBA6YkkdSLFy+M/jfv48ePTB8kSHl5eTF9kCD148cPpg8SpBISEpg+SJDSet66uLgwfZAg9ejRI6YPEqRev37NVCAj5e7urjgdKiU/Pz/F6VApRUZGMn2QIJWSkoJu3rypGtho3bp1y+jz9t69e0wFMlJPnz5l+iBB6t27d0wfJEh9/fqVqUBGKigoiKkZg1RcXJzRuU9qaiq6efOm0eetltznwYMHRuc+L168YCqQkfr06RNTgYyUt7c3U4GMVFhYGFMzBqnExETN562xqxFcXV2ZPkiQevz4MdMHCVJv3rxRnA6VkoeHB9MHCVL+/v5MBTJS0dHRTAUyUikpKejGjRuazluWAhmp+/fvG537PH/+nOmDBClzs6Yx76JW1rxx4wZnTZUyF2smJydnWNY0NvfhrMmmjMqaLM0YpLSyJkszBilT5D6cNdVJK2uyNGOQ0sqazs7ORuc+5mLN9+/f/1Ksid/FjMaaL1++/KVYMykpSdN56+zsbDbWNLbOrpU1WZoxSJmTNbXW9jIaa3748CFDsuatW7eMfhe1sKaW3EcLa7569cpo1vz8+bNZWDMiIsIsrIkQ4qzJIHOyppbcx5ysydL4T0oLa37//p2p8Z+UuVmTryDOmEqLxkEL9L/GOC4ZWVhYOACADwCAj48PODg4mPlvxMXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxfUryNfXF4oWLYr/Z1GEkK/W/6al1v8AFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxdXxhFvHOTi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi+oXEGwe5uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uH4h8cZBrl9GqampGdKLEDLKixACnU6n6c/m3rT36nQ6Tc84I/7MGdVr7HPS6XT8XcwAXv4uZhyvlnfRWC/+s7k3fbw89/lve/l5m3G8PPf5b3u1vov8Gf/8Xn7eZhwvP2//215+3mYcL2fN/76Xv4v/bS/PfTKOl+c+/30vP2//216e+2QcLz9v/9tec+Y+XP898cZBrl9Gzs7O0LRpU1i3bh24ubkxHaSfP3+GunXrwpIlS+Dly5dM3vDwcKhXrx7MmjUL7t+/DykpKaq9qamp0KJFC5g0aRJcv34dEhMTVXsBAPr27QsjR46Ec+fOQUxMDJN36tSp0L9/fzh27BiEhYUxedevXw/dunWDvXv3QkBAAJP35MmT0Lp1a9i8eTN8/fqVyfvo0SNo2LAhrFq1Ct6/f8/0nLy9vaFOnTqwYMECePr0KVNCFBsbCw0aNIBp06aBi4sLJCcnq/YihKBdu3Ywbtw4uHLlCiQkJKj2WlhYwPDhw2Ho0KFw6tQpiIqKUu0FAJg3bx706dMHDh06BCEhIUzenTt3QqdOnWDXrl3g6+vL5L106RK0aNECNmzYAO7u7kzed+/eQb169WDZsmXw+vVrpmccHBwMderUgTlz5sDDhw+ZEqKkpCRo2rQpTJ48GZydnSEpKUm118LCArp37w6jRo2CCxcuQFxcnGovAMD48eNh4MCBcOLECYiIiGDyrly5Enr06AFOTk4QFBTE5D18+DC0a9cOtm3bBl5eXkxeFxcXaNKkCaxduxY+ffrE9Jw8PT2hbt26sHjxYnj+/DnTuxgZGQn169eHmTNnwt27d5nP21atWsGECRPg2rVrTOethYUF9O/fH4YPHw5nzpxhPm+nT58Ov/32Gxw9ehRCQ0OZvJs3b4YuXbrAnj17wN/fn8l7+vRpaNWqFWzatAk8PT2ZvM+fP4cGDRrAypUr4d27d0zP2M/PD+rUqQPz58+Hx48fMz3j+Ph4aNy4Mfz5559w584dpvMWAKBjx44wduxYuHTpEsTHxzN5f//9dxgyZAicPHkSIiMjmbyLFi2CXr16wcGDB5nP271790LHjh1hx44d4OPjw+S9fv06NGvWDNavXw+fP39m8n78+BHq1q0LS5cuhVevXjE949DQUKhbty7Mnj37/9g76/Aqju6Pn+Du7hbcPVCglBIkubSlQGlLgCIluDsEtwR3TYJDcIIGCe7ubkGDQ1zu+f1BZ3+T3bm7M3cv95KX/T7Ped63hS8kd7uT+Zw5Zw4cP35caL2Ni4uDH3/8EXr16gX79u0T3vv8/vvv0KlTJ9i2bRuEh4cLeXv16gV//fUXrF27Ft6/fy/knTJlCvz666+wdOlSePnypZB3zZo14OrqCrNnz4aHDx8KeY8ePQq1a9eGyZMnw/Xr14We08OHD6F69erg5eUFZ8+eFXoXP3/+DDVr1oQBAwbA4cOHhdZbs9kMDRs2hG7dusHu3buF9z5t27aF9u3bw6ZNm+Dz58/cXgCAIUOGQKtWrWDlypXw5s0bIe/cuXPB3d0dFi1aBM+ePRPybt++HX766SeYMWMG3L17V8h78eJFqFmzJkyYMAEuX74s9IxfvnwJ1apVg2HDhsHJkyeF3sXo6Gj44YcfoE+fPnDgwAHhvU+zZs3g33//hcDAQOG9T5cuXaBNmzawfv164fV27Nix0Lx5c/Dz84PQ0FAhr5+fHzRu3BjmzZsHjx8/FvLqYc07d+7YhDWPHj0q9C7GxcXBTz/9ZDVrtmzZEjp06ABbtmyxK2tOmzYNmjVrZnfWPHXqVKJkzcaNG0usKbL30cuaI0aM0MWaTZs2hQULFgjvfXbu3Gk1a165csUhrBkbG+sw1uzevbtNWFN077Ny5UqrWfPw4cNQp04dmDJlCty4ccNurPnp0yeoWbMmDBw4UDdriu59EiNrbt682WGsWb16datZs3bt2tC3b184ePCg3VnTw8PD7qy5dOlSaNKkCcyfPx+ePHki5NXLmjVq1Eh0rNmiRQvo1KkTbN261a6s6e3trYs1GzZsaBVrHjt2TBdrVqtWzSGs6erqajVrenh4WM2aQ4cO1c2a1uTZ9bDmpUuXoGbNmjB+/Hi7s2adOnWsZk2TyWQ1a3p6eiY61jxw4IDEmqJ5dkexJjnX7NGjh9XnmtayZr9+/aB169bfDWuGhITYhDVF8+x6WBMAoEOHDtCuXTvYsGGDXVlz4cKFuljzxx9/tPu55uvXr6F69eoOYc3ffvtNYk3RvQ9hTWv2PpMmTdLNmnPmzLE7a1arVg1GjRplV9Y0m83w888/W82af/31l8SaonsfQ/+DQkQjNAIA8gEAAgCGhISgocQps9mM1apVQ/IsixUrhn369MEDBw5gTEyMpr9Vq1aSN0+ePPjvv/9iYGAgRkREaHqHDBkiebNkyYJt2rTB9evX44cPHzS9ixYtkrzp0qXD5s2bo5+fH7569UrTu2/fPsmbMmVKbNy4Mc6bNw8fP36s6b19+zYmSZIEAQCTJk2KdevWRR8fH7x165am9927d5ghQwbp765atSqOGTMGL1y4gGazWdUbGxuLRYsWlbylS5fGwYMH47FjxzAuLk7z765fv77kLVSoEPbs2RP37t2LUVFRmt6OHTtK3ly5cmHHjh1xy5YtGBYWpumdMGGC5M2UKRO2bt0aV69eje/evdP0rlmzRvKmSZMGf/nlF1yyZAm+ePFC03vy5EnJmzx5cvz5559x1qxZ+ODBA03vkydPMHny5AgA6OTkhLVq1cJJkybhtWvXNJ9TWFgYZs+eXfq7K1asiCNHjsQzZ85gfHy8qjc+Ph7LlSsneYsXL479+/fHQ4cOYWxsrObX3axZM8mbP39+7Nq1K+7atQsjIyM1vX369JG82bJlw3bt2uHGjRvx06dPmt5Zs2ZJ3gwZMmDLli1xxYoV+Pr1a01vYGCg5E2VKhW6ubnhggULuH6mXLlyRfImTZoUf/zxR5w2bRreuXNH0xsaGopp0qSRnnGNGjVw3LhxeOnSJc1nHBUVhfnz55f+7rJly+LQoUPxxIkTmu+i2WxGFxcXyVukSBHs3bs37t+/H6OjozW/7r///lvy5s6dGzt37ozbt2/H8PBwTe+IESMSrLd///03rlu3jmu99fX1lbxp06bF3377DX19fbnW2+DgYMmbIkUKbNSoEc6dOxcfPXqk6b137x4mTZoUAQCTJEmCderUQW9vb7xx44bmc/rw4QNmzpxZ+rurVKmCo0aNwnPnzml64+LisHjx4pK3VKlSOGjQIDxy5AjXu+jq6ip5CxYsiN27d8c9e/ZwrbddunSRvDly5MB//vkHN2/ejJ8/f9b0TpkyRfJmzJgR//jjD1y1ahW+fftW0xsQECB5U6dOjSaTCRcvXozPnz/X9J49e1byJkuWDBs0aIAzZ87E+/fva3qfPXuGKVOmlN5FFxcXnDhxIl69elXzOUVERGCuXLmkv7tChQo4YsQIPH36tOZ6azabsVKlSpLX2dkZ+/XrhwcPHuTa+zRv3lzy5s2bF7t06YI7duzg2vsMGDAgwXrbtm1bDAgIwI8fP2p658+fL3nTp0+Pv//+O/r7+2NoaKimd/fu3Qn2Pk2aNMH58+fjkydPNL03btxAJycnab2tV68eTp06FW/fvq3pffPmDaZLl076u6tVq4Zjx47Fixcvaj7jmJgYLFSokOQtU6YMDhkyBI8fP8613tapU0fyFi5cGHv16oX79u3jWm/btWuXYO/TqVMn3LZtG9feZ8yYMZI3c+bM+Ndff+GaNWu49j4rVqxIsN7++uuvuGzZMq69z9GjRxOst66urjh79mx8+PChpvfhw4eYLFkyab2tXbs2Tp48Ga9fv675nD59+oRZs2aV/u5KlSqhl5cXnj17lmvvU7p0aclbokQJHDBgAB4+fJhrvW3atKnkLVCgAHbr1g13797Ntffp0aOH5M2ePTu2b98eN23axLX3mTZtWoK9T6tWrXDlypX45s0bTe+WLVsS7H3c3d1x0aJF+PTpU03vhQsXEqy3P/30E06fPh3v3r2r6X3x4gWmTp1aWm9r1qyJEyZMwMuXL2s+48jISMybN6/0d5cvXx6HDRuGJ0+e5Fpv9bDmH3/84RDWXLx4caJjzffv32PGjBkVrHn+/Pmvzpo//fSTTVgzZ86c2KFDB7uw5tq1axOwZrNmzXDJkiVcex+9rJkiRQqHsGb58uVtypo7d+786qw5e/ZsBWsuX778q7Pm1atXbcKaAIDVq1fnZs3o6GhdrFmrVi2HsObIkSOZrPn+/XtNL4s1ly1bhi9fvtT02po1p0yZYhfWLFGihOQtWbIkDhw40C6s6enp6RDW3LBhg9Wsee7cOSZr3rt3T9P7NVjz1KlTVrFm3759uVnz999/twlrZs2aFT08POzCmnv27HEYa6ZPn96mrMmz9zGbzVi3bl2bsubWrVu/OmuuXLkywd7nl19+waVLlwqzZvLkybFhw4bcrPno0aNEyZpubm4OYc3p06fblDUXLlzIxZoXL160GWvWqFEDx48fbxfWrF69uuQtWrSo3Vhz6NChDmHN/fv3W82ad+7cYbLmzZs3NZ+TXtYsVqxYAtYcNGgQHj161CrW7NGjBzdrdurUKdGx5qlTpxzGmjly5LApawYHB3Ott7/88ovVrNm3b98ErNm2bVvcsGED195HD2vu2LEjwXrbtGlTu7Fm2rRpEx1rtmnTxiGs6efnZzPWdHV1xTlz5nCxpiHHKiQkRHp2AJAPbVETZ4s/5H89wCgc/J/Rzp076ZdIKBl09epVCfDp4EkGvX79OsEPOVYyyFLhQXR0NBYoUEDhpZNBV65cYf6wNJvNWLt2beb3zJMM8vDwYHp5kkFeXl5ML08yyN/fn+nlSQYdOnSI6U2XLp1mMuj+/fsS4NPBkwz6+PEjZsmSReHlSQbFxcVhyZIlmV83TzKocePGTC9P4UHXrl2ZXpIMCgoKsrgh8vHxYXp5Cg82btzI9GbKlAn//PNP1WTQ+fPnmV6eZNDz588xVapUCi9PMigiIgJz586t8PIkg8xmM1apUoX5dfMkg1q0aMH08iSDBg0axPTyJIMWLFjA9PIkg/bu3cv08iSDbt68KQE+HTzJoLdv3yZIqNLrrVYyKCYmBosUKcJcb3mSQfXq1WN+z+XKldNMBv3zzz9ML08yaNy4cUwvTzJo1apVTC9PMuj48eMW11utZNCjR4+kwmU6UqRIoZkM+vz5M2bLlo253moVHsTHx2OZMmWYX3fVqlVx9OjRqskgd3d3ppcnGdSrVy+mlycZNGPGDKaXJxm0bds2i+utVjLo0qVLFtdbrWTQq1evpISqfL3VSgZFRUVhvnz5mO+iVjLIbDZjjRo1mF83TzLozz//ZHp5Cg+GDRvG9ObLlw89PT1Vk0FLly5leulkkKX19sCBA0xv+vTpsUWLFqrJoLt370qHyfL1VisZ9P79e8yUKRPzXdRKBsXGxqKzszPz6+ZJBv38889ML08yqHPnzkwvTzJo0qRJTC9PMmj9+vVMb+bMmTWTQadPn2Z6eZJBT58+lRKq8vVWKxkUHh6eIKFKIkmSJPjDDz+oFh6YzWasWLEi8+uuXLmyZuHBr7/+yvTyFB7069eP6eUpPJg7dy7Ty1N4oIc1r1279tVYc8aMGRYLD6Kjo7FgwYLM9VYPa5YvXx6HDx/+1Vhz1KhRTO/XZs3Dhw8zvd86a5YqVYr5dduCNdUKD7p168b06mXNjh07qhYebNq0ien9llkzMjLSYazZsmVLplcPa+bPn1+TNRcuXMj0EtZUK7oMCgpieukGv6/FmnSTLL3e1q9f/6uy5o8//sj8nr9l1ly9ejXT+7VZ8/HjxzZnTbrBz1LhQXx8PJYtW5b5dfOwpslkYnpJg9/XYs2ZM2cyvV+bNS9fvmxxvXU0a1oqujSbzVizZk3m101YU63BT4s11QoPhg8fzvTaijUt7X0OHjzI9H7rrEk3ydLxtVnz33//ZXptwZrbtm2zmjXXrl1rkTXPnDnD9NINfl+LNXPmzMlcb782a/72229Mrx7WLFCgwFdlzV27djG9tmLNZ8+eMb2vX79O0CRLQi9rkgY/Ndb84YcfmN8zD2u2bduW6S1WrNhXZc3ly5czvV+bNR88ePBVWdNSnp2HNdUuk2nSpAnTW6ZMGc0GPzXW7NmzpyprTp06len92qxJN8nSwcOaL168cBhrVq1alfl124I11fLsgwcPZnr1sqZWg58e1rx165ZF1nRzc/tqrClvkqXX26/NmoYcJ6Nw0CgcNKRDo0ePTtDxYSlYXSjLli1DZ2dnJuzKQ54MCgoKQmdnZ+YPdXnICw9u3LiBzs7OzCIYeciTQZ8/f0ZnZ2fmpk8erGRQ9erVmfDG2hDJk0HNmzdnJmFYGyJ5Mqh3795YuHBhTS8rGTR16lSLh9DyH5byZNC6devQ2dmZmVyUh7zw4Pjx4+js7Jyg295SyJNBjx8/Rmdn5wSdTJZCngwym83o7OzMTGrKg5UMql+/PnPDKA9WMsjDw4NZ0CoPVjJo2LBhzE0M612UJ4Pmz5+Pzs7OzM2XPOTJoMDAQHR2dpY6sdVCngy6ePEiOjs7M0FZHiQZRDpw37x5g87Ozgk69S0Fq/CgQoUKzEN7ebCSQW5ubgm6GS0Fq/DA09MzQVeypWAlg8aPH8+13rKSQcuXL0dnZ2cm7MpDngw6cOAAOjs7MxPI8pAng+7cuYPOzs7Mzbk85IUHkZGR6OzsnKA72FKwkkEuLi4JuvwtBUkG0UWXrVq1StBBZSlYyaB+/foxD6/kwUoGzZgxA52dnZmJJzpI4QGdDNq4cSM6Ozszk4vykCeDTp06hc7OzswCCXnICw+ePXuGzs7OzOSzPFjJoBIlSiS4/cZSsJJBP//8M+bJk0fTy0oGtW/fnplokwcrGTRy5EjuvY+88GDx4sXcex95MmjXrl3cex95Mujq1avcex95Muj9+/fcex9WMqhy5crcex95MuiXX37h3vvIk0Hdu3fn3vvIk0GTJ0/mXm/lyaBVq1Zx731IMojsfQ4fPsy995EXHty/f59770OSQeRm4ZiYGO69D6vwoE6dOlx7H1Yy6M8//+Te+8gLDwYNGsS192Elg2bPns2192Elg7Zs2cK995Eng86dO8e93soLD16+fMm992EVHpQpU4ZrvWUVHjRq1Ih7vW3evHmCm4U7derEvfdp3Lgxzp07Vyo84GVNVuGBvVhTXniQ2FiTHITZmzVJg589WZO+WViENcnNwsHBwRgTE4NPnjxJlKzZtm1bh7DmggUL7MqapMHv0qVLdmNN0uBnC9Z0d3fnZk154YEe1pwwYYLdWTM+Ph4PHjxoNWvevXuXmzXlhQd6WbNWrVp2YU1yszBhzf79+9uFNeWFB3pY8/Tp09x7H3nhgV7WLFmypENY859//rGaNb28vIRYk27w08Oau3fvdghrfvjwIVGyZo8ePRzCmqtXr7Yba9INfg8ePLCaNUlzGy9rygsP9LDmX3/9xb33kRce6GHNOXPm2J014+LiJNbk2fvIWfPVq1fCrEnn2cuUKcO192GxZuPGje3CmuRmYcKaY8aMsQtrVqlShcmaPHsfOWvevHnT7qxJ9j7Vq1fn2vvoYc3UqVNjs2bNEjT42ZM16ZuFEyNrImKiZM3hw4cLsybJs+thzR07dtiNNembhd++fauLNStWrMjNmn/99ZfNWLNr164OYc0VK1bYlTVJnl0Pa0ZFRQmz5qZNm7hucjf09WUUDhqFg4Z0qHv37poLHyuKFStmsdpaK/LmzYuNGjWyyps1a9YEV8WLRLp06RKM2BEJkgzi2dTLgySDeJJOrKhatWqCq55FokyZMgmuEBaJwoULJ7gKXCRy5cpl8RYGrciUKZPF26u0ghyEWeMlySCepKQ8SDKIB2RYUalSJYu3IWhFiRIlEoxjFIn8+fNjw4YNrfJmz549wYhAkciQIYPFrnGtIMkgnmSoPEgyiGdzLQ+SDLJ0K5tWlCtXzuJtX1pRtGhRq9fbPHnyWL3eZsmSRdd6S18zLxIkGcQD2PIgySCewxhWVKlSxWJ3rlaUKlXK4g1DWlGoUCFs0KCBVd6cOXNa7ETUikyZMln9LpJkEA/YyyN58uTYoEEDrgMCeZBkED3iSyQqVKhgsSNQK5ydnROMJBKJfPnyJRgtJhLZsmWz+l1Mnz69rr1P06ZNuRJl8iDJIJ6kEyuqV69u8WYSrShbtmyCsfAiUaRIEaxfv75V3ty5c1u93mbOnNnqvU/atGmtfsYkGcSTeJYHSQbxJAdZUblyZaxcubJV3pIlS1rssteKAgUKWLwtQyty5MjhkL0PKTzgSXjLg9wszJM8lgcpPLDUKa8V5cuXTzA6SiQM1uQP0uDHkwBmhR7WLF26tC7WtHbvo5c1rX0XbcGaPIdA8iCsaemWIK0wWJM/bMGaPIeq8kjMrGnt/jZLliwO2/s0atSIq5BNHomVNQsWLOgQ1syYMWOiZE0XFxeL00+0okKFClitWjWrvAZr8gdhTZ4CXlZUr14dy5UrZ5W3TJkyBmtyhi1Yk6dIgRWJkTWzZ89u9XrraNbkKRqUR2JmTWvX26xZs1r9LqZLl87qZ0xGGn9PrKknz54rVy6H5NlJkbs1Xj2sSfLsjmDN4sWLJ0rWtPbn4vfImkWKFPkuWXPt2rWao6MNfT19jcLBZGDIkCGm0qVLB40aNQJ3d3d48uQJHDp0iNubIkUK+Omnn8BkMkGyZMlg79693N6kSZNC7dq1wWQygbOzM+zcuVPo665atSqYTCaoX78+bN++XchbunRpMJlMYDKZ4JdffhHyFipUSPIOHToUHj9+zO3NmTMnuLu7g8lkghUrVsCVK1e4vZkyZYImTZqAyWSCM2fOwIkTJ7i9adKkgYYNG4K7uzu8f/8eDh48yO1Nnjw5/Pjjj2AymSBTpkywZ88ebm+SJEnAxcUF3N3doUKFCrBjxw5uLwBApUqVwN3dHdzd3YWfcfHixaXn1L59e3j9+jW3N1++fJJ3ypQpcPfuXW5vtmzZwM3NDUwmE2zfvh3Onz/P7U2fPj00btwYTCYT3Lx5E44ePcrtTZUqFTRo0ABMJhPExsbCvn37uL1JkyaFunXrgslkgnz58sGuXbu4vU5OTlC9enUwmUxQq1YtCAwM5PYCAJQrVw5MJhO4u7sLrT0AAEWKFJGeU+/eveHZs2fc3ty5c0vv4qJFi+D69evc3syZM0PTpk3BZDLBoUOH4PTp09zetGnTgqurK5hMJnj+/Lnwelu/fn0wmUyQKlUqofU2SZIk0npbsmRJ4fW2SpUqYDKZoGHDhrBt2zYhb6lSpaRn3LJlS/j48SO3t2DBgpJ39OjR8ODBA25vjhw5pPVj3bp1cOnSJW5vxowZoUmTJuDu7g4XL16E48ePc3tTp04NP//8M5hMJggLC4MDBw5we5MlSwb16tUDk8kE2bJlg927d3N7nZycoGbNmmAymaBq1arC72KFChWk90l0rXZ2dpa8nTt3hlevXnF78+bNK3mnT58Ot2/f5vZmzZpVWm937doF586d4/amT58eGjVqBCaTCe7duwdHjhzh9qZMmRIaNGgA7u7uAAAQFBTE7U2aNCnUqVMH3N3doXDhwsLvYrVq1cBkMkHdunWFfy6WKVNG+qxF/psGAChcuLDkHThwIDx58oTbmytXLmm9XbZsGVy7do3bmzlzZmnvc/z4cTh58iS3N02aNNJ6GxoaCsHBwdze5MmTS+tt+vTphdfbWrVqgclkgjJlygi/T5UrVwaTyQSNGzcWfsYlS5aUPuu///4b3r17x+3Nnz+/9IzHjx8P9+/f5/Zmz55dehc3bdoEFy5c4PZmyJBB2vtcvXoVjh07xu1NlSqVtN5GRkbC/v37ub3JkiWT9j65c+cW3vvUqFEDTCYTVK9eXXi9LV++vPRZi+zXAACKFSsm/Vzs1q0bvHjxgtubJ08eyTt37ly4efMmtzdLlizS3mf//v1w5swZbm+6dOmkd1EPayZPntwhrPnTTz85jDWHDRsGjx494vbagjXd3d11seaHDx+E9j7JkyeX9j6ZM2cWYk0nJydwcXEBk8kEFStWFH4XK1asKL0TelnzzZs33F6aNb29veHOnTvcXpo1t23bZjVr3rp1yyGsmT9/fqtY093dHWrXrm0Va5J3Qg9r9unTB54+fcrttRVrHj582CGsmTp1aqH9Lc2apUqVEt77ENb8+eefhd9FmjVbtWol5C1QoID0jK1hTfIurl+/Xpg1ybvoKNbMnj27w1hT9OexLVjT3d0dZs6cCbdu3eL2EtZ0d3eHPXv2wNmzZ7m9JM9uMpng/v37VrOmk5OTMGv+8MMPYDKZdLFmvXr1HMqaISEh3F6aNX19feHq1avcXlux5uvXr61iTXd3d8iQIYNVrOnu7g7lypWzijXd3d2hSZMmws+4RIkS0nPSw5oTJkyAe/fucXttxZrXrl1zGGuKrreENWvUqGEVa5J3Qg9rdu/eHZ4/f87tzZMnj/T3JlbWFF1vyd6nePHiwu8izZqiz5iwpru7O/z222/w+fNnbi9hTXd3dxg+fLhVrOnu7g6rVq2ymjXPnj0rxJqpU6eGhg0bgslk0s2aou+iLViTcJuIvgXWtPZc093dHW7fvm01a8bFxVnFmu7u7lCgQAFdrCn6c7Fs2bLSZ3348GEhr61Yc/Hixd8Va5YsWdJq1mzYsKFVrEk+axcXF3BychLyG/rGZYvqw//1AOPGwf8JnTp1Cn18fFSrpAsWLJjgWmyia9eu4eLFi1U7kljXYiMiPnr0CP38/FRvd8uYMaPiWmzELzPt/f39sXTp0ha9pDt1yZIl0kgQRMTo6Gj09/fHevXqWfSyrsUmWrt2LbZo0UK1el8+gokoMDAQu3btqvpZk3G/5FpsokOHDqGXl5eqlx73GxMTI3nPnTuHs2bNUvXS12KTkSCIiLdv38Zly5apdoCyrsVGRHz27Bn6+/urdoCyrsVGRPz06RP6+/urdgeS7lT6WmxERLPZjP7+/qqdmKxrsYk2btyIbdq0Uf28yLXYFy9eTPCM9+zZg3379lX1ysf9Eh0/fhwnTpyo6pWPYCK6fPkyLliwQPV6fTLul74WGxHx/v376Ofnp9pxzxrBhIgYGhqK/v7+qjctsq7FRkSMiIhAf39/1c4x+lpsMhKEaNWqVapdWKxrsYm2bt2KnTp1Uv2s5ddiEx04cACHDh2q6pWPYCI6ffo0Tps2TdVLX4tNrqhHRLxx4wYuWbJE9ep1egQTGQmCiPjkyRP08/NT7bgnI5hWrVoljQRBRHz//j36+/urdmOzxv0iIsbGxqK/v79qRzVrBBPRunXr8I8//rDoZY1gItq5cyf26NFD9bOWj2AiOnz4MI4ZM0bVKx/BRHThwgWcO3eu6vgo1ggmRMS7d++ir6+v6hX59AgmMhIEEfHFixfo7++v2gHKGsGEiPj582f09/dXvYWPHsFERoIQLV++XLVLjx73S0YwEW3atAnbtWun+lnLRzAR7d27FwcMGKDqlY9gIjpx4gROmTJF1VuoUKEEI5iIrl69igsXLlS9Xj9nzpyKEUyIiA8fPkQ/Pz/Va+5ZI5gQEd+8eYP+/v6qt1+wRjAhIkZFRaG/v79q1zw9gunBgwcJntPq1auxefPmFr2sEUxE27dvxy5duqh+1vIRTEQHDx7EESNGqHrJuF8ygono7NmzOHPmTFWvfAQT0c2bN3Hp0qWqYxCyZcumGMGEiPj06VP09/dX7binRzDRe58PHz6gv78/VqhQwaKXNYIJETE+Ph79/f1Vu21ZI5iIAgIC8M8//7ToZY1gItq9ezf27t1b9bOWj/slOnr0KI4fP17VS49got/Fixcv4rx581RvoqHH/dJ7n3v37qGvr6/quAoygmndunUJ9j6vXr1Cf39/1duG0qZNK41govc+4eHh6O/vr9qpS4/7JSNBiFasWKHaMcsawUS0ZcsW7NChg+pnLR/BRLRv3z4cPHiwqlc+gonIFqypNlbREms+fvzYIawZExNjF9akRzAR7dixA7t166b6WctHMBHxsKZ8BBPRuXPncPbs2apegzX/Xxs3bkQPDw/Vz8sWrElGMBEdP34cJ02apOrVw5q5cuWSRjDRex9e1pSPYEJMvKy5bds2h7Hm9OnTVb2ENXfv3m01a27atEnBmv7+/qqj71jjfhH5WDNVqlTSuF9670NYU21Khhprrl+/3iGseeTIERw7dqyqN7GzJhk/ifj/rKl2C58tWJMe90vEy5pjxoxRsGZQUJDdWJPe+1y9ehUXLVqUKFlT7cYgW7HmtWvXbMaawcHBXKxJj/sl0sOat27d+qqsmT59elXWVLv11FaseefOnQTPOCAgAP/66y+LXluxpjzPLsKa+/fvT7D3uXTpEs6fP5+LNelxv4i2YU21W/31siYZ98tiTZPKTWnfKmtOnTpV1auHNXPkyKHKmmqjRm3BmvI8O2FNtdu7CGvOnDmTyZotW7ZUfRf1sGaFChUssuaoUaNUvZZY8/z587pZM23atBa9lljz+fPnQqxJ59lFWfPJkycJnpO/v7/q7fpfkzX79eun6tXDmoULF04w7pdID2s+ePAA/fz8VEcG62HNNGnSMFkzMjIS/f39VW8DtxVryvPs27Ztw86dO6t+1rZgTTLul+hbZs0MGTJgq1atbMqacXFxXKz5008/4YwZMxR5dkOOlTGq2CgcNKRT8s05Gc3A2iTKtXDhQsWCSTaJ8gSZXEFBQQqvpU2iXLdu3VLAW968edHT01ORIJPr7du3CnjLmjUrtm3bFgMCAhJsEuWKjY1VwJulYgyW5Bt7OkEm3yTKJQcwuhhDvkmUa9y4cYrPmhRjyDeJcq1evVrhLVOmDA4ZMkSxSZTrxIkT3JtEuR4/fqwoSrW0SZQrLCxMcTU3vUmkE2RyxcfHK8Yjkk2iPEHGkhyykydPjq6urjh79mzFJlGuXr16KTaJloox5GIlrUiC7OzZs6rv4vbt2xVeUowh3yTKdfnyZYWXJMjkm0S5Xr16pTgozJ49O7Zv316xSZQrKipKcTW3pU2iXGazGWvWrMm1SWRJXlwhskkcPny4Yr0lBxLyBJlcy5YtU3zW5cuXZxZjyHXw4EGFly7GUFtv7969q4A3S8UYcn348EFxUEgSZOvXr09wICFXbGys4pr8dOnSYfPmzdHPzy/BgQRL8qQmKcaYN2+e4kBCrn///Vex3tatW1c6kFB7TpMnT1Z81lWrVmUeSMi1fv16hbd06dI4ePBgRYJMrjNnzii85EBCniCT6+nTp4pkmaViDLnCw8MVRamWEmRymc1mReKaLsZ4/vy5RS8i4m+//aZYby0VY8jVv39/xbtICv/lBxJyzZ07V/FZk8J/+YGEXLt27VJ4SeH/oUOHVN/F69evKw4K8+XLh127dlUcSMj1+vVrxUEhOZCQJ8jkio6OVhwUkgMJeTGGXGazWVGwaKkYg6W2bdsq3sX69evjtGnTFAcScrESkyRBdunSJdVnvHz5coXXUuG/XEeOHFF4STGG/EBCrgcPHigOCknhv/xAQq5Pnz4pxkCRwn/5gYRccXFxihFBadOmxd9++01xIMGSfIyL2oGEXN27d1fsferUqcMsxpCLdUhQpUoVKUGm5t28ebPCW6pUKWYxhlwXLlxQeOnCf7X19sWLF4qxJHThv9p6GxkZqTgopAv/tdZbeYG4pcJ/llq1aqXY+zRo0ABnzpypKMaQS4015cUYci1atEjxWethTUvFGHLpYc13794xWZMUY3xN1pQ3a9iLNVmHso5mTXnhv1xPnjyxyJryYgy51FhTXowhV3x8vCJxrZc1LRVjyCU/eE8MrHnlyhWF116sKT8otAVryosxWJIXVxDWZBX+yyUvgiGsySrGkEsPawYHByu8vKx57949h7BmXFzcV2NNrb2PvNApSZIkEmvKizHkUmNNeTGGXAEBAQqvHta0VIwh19OnTxUHhbysGRERoTgotBdryovZ7MWa8+bNU3zWtmBNrTy7GmvKizHkevPmjcNYU16wqJc1STGGFmuOHj1a8Vl/66z58OHDr8Ka8mIMueLi4hRFUrZgTVYxhlx6WJPV+E0XY4iypqXCf7kM1hRjzSFDhijWW3uw5r59+xReXta8ffs2kzVZhf9yabGmVp7dUazZsWNHxXprC9bUyrOvWbNG4eVlzZMnTyq89mJNeQOkpcJ/uSyxJqvwnyX5eFZ7sSbr0hte1gwMDFR47cGaoaGhX4U15YX/cpnNZnRxcUng1cualprM5WKxpqXCf7l8fX0Vn7WlJnO5EiNrGnKsjMJBo3DQkA6FhoZi2rRppU0iT4KMKDo6GgsUKCBUjEFkNpuxVq1aimIMXpEb4XiLMWiNHDkSAf4/QSbvDlWTn58fAljuDlUT+QFnqTtUTffv38ekSZNybxJpffz4ETNnzixtEnkSZERxcXFYokQJoU0irUaNGkmbRJ4EGS1PT09pk8iTIKPl7e2NAAmLMdQ2ibQ2btyIAPzFGLTOnTuHAJa7Q9X0/PlzTJUqlcXuUDWRZKql7lA1mc1mrFy5slSMweoOVdPvv/8utEmkNXDgwASbRK0EGa0FCxYgAH+CjNaePXsQgD9BRuvmzZvo5OTEXYxB682bN5g+fXqhBBlRTEwMFi5cWKgYg8hsNmPdunVVu0PV1L59ewSw3B2qJnKbAukO1UqQ0Vq5ciUC8B9I0Dp27JiUIOvQoYNmgozWo0ePMFmyZNKBhFaCjNbnz58xa9asQgkyovj4eCxTpoxQgoyWm5ubUOE/rZ49eyZIkMm7Q9VEus14C/9pbd26VUqQsbpD1XTx4kUpQcbqDlXTy5cvMXXq1Ba7Q9UUFRWFefPmlQ4keBJkRGazGatXry4dSPAkyGi1bt06QYJMqxiDFukoLFu2LFeCjNaSJUsSJMi0Cv9pHThwIEGCTKvwn9adO3cwSZIkFrtD1fT+/XvMmDFjgu5QrQQZUWxsLBYrVkwq/Oc5kKDVoEED1e5QNZEbisiBhFaCjBa5tbhkyZJcCTJa69atE0qQ0Tp16pRQgoxWSEgIpkiRgrsYg1ZYWBjmyJFDqPCfKD4+HitUqGB1d+ivv/4qVPhPi9wWZukmIjXNmTMnwYGEVoKM1o4dO6QEWZcuXTAwMJB7vb169So6OTlZlSBzJGvWrl3bIaxJbu6zN2seOnQoUbJmyZIlhYoxaOlhTTIJgLcYg5ajWPP8+fMK1uTd++hlzdy5cydgTd4coF7WbNGihcSaPMUYtBzFmnv37nUIa759+9YhrImIWK9ePatZ859//knAmlrFGLT0sOaqVasQgL8Yg5Ze1kyePDl3MQYtR7Kmu7u7Q1hzxowZDmHNS5cuJWBNrcJ/Wq9evcLUqVMLFWMQ6WXNGjVqCBVj0NLDmsOGDRMqxqDlKNYkDbK8Tea09LKms7OzUJM5LT2sSW4oqly5MlcxBi1ykxRvMQYtPax5+vRph7BmeHh4omRNclsYb+E/LT2suXPnTqFiDFp6WPP169cSa/IW/hM5kjXJjXD2Zk1/f/8ErCmSZ9fLmsmSJZNYU6vwn9bHjx8xS5YsQoX/RHpZs3HjxkKF/7T0sCaZ2JCYWVOr8J+WXtasUqWKUJM5LT2sOWjQICnPzlP4T4tcxuQI1iR5dnuzZpEiRRIda5LLmHibzA19OzIKB43CQUM6dObMGaFNIq3bt29rdoda0qtXr4Q2ibQiIyPR19eXO0FGi4wWEtkk0lq/fr1QgozWjh07hBJktA4fPiyUIKN18eJFoQQZrQcPHggVY9B6//690CaRVkxMDPr6+lq1tpjNZly5cqVQgozWpk2bhBJktPbu3SuUIKN14sQJoQQZrevXrytGEPPq2bNnQsUYtMLCwtDPz497k0grPj4efX19hRJktNauXavZHWpJ27ZtU1zVzauDBw9avUk8d+6cYgQxr+7evSuUIKP1+vVrxQhiXkVFReGyZcusXm+XL18udCBBKyAgQLM71JJ27dolVIxB6+jRo5rdoZZ0+fJlze5QS3r8+LFmd6glffz4UTEWilexsbG4bNky7gSZXKtWrRJKkNHasmWLUIKMVlBQkFCCjNapU6c0u0Mt6ebNm0IJMlovXrwQKsagFRERgb6+vtwHErTi4+PRz89PqPCf1rp164QSZLQCAwOFEmS0goODhRJktC5cuCCUIKN17949ocJ/Wm/fvhUqxqAVHR2Ny5Yt4z6QoGU2m3HFihVWj0bYuHGj0IEErT179uDJkyetehePHz8ulCCjdfXqVaEDCVohISFCCTJanz9/tnrvExcXh76+vkIJMlqrV68WSpDR2rp1q1DhP639+/dr3kRkSY5kTZFiDFqJlTV37tyZ6Fjz4cOHDmFNsvfhLcag9T2zpjV7n++RNbdv3y5UjEFLL2uKFGPQ0suaIsUYtKKjo9HX19fqvY8e1tywYYPBmpz6Hllz3759VrPm6dOnhQr/aSVG1jSbzYmSNQ8dOuQQ1rx//75DWJPk2fWwpkgxBi29rClSjEFLL2uKFGPQMlhTTAZr8iuxsuaRI0esZs1Lly45hDU/fPgg1GROSw9rImKiZM2TJ09+d6zp5+enizVFCv9p6WVNkcJ/Wt8raxojiBOnvkbhoBN+KYwzpCInJ6d8ABACABASEgL58uVz8FdkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4a+Bz19+hTy589P/jE/Ij7V+2cm0fsHGDJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YSj4zCQUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZOg7klE4aMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDH1HMgoHDRkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQoe9IRuGgoe9GQUFB0L59e9i0aRN8/vxZyHvt2jVo1aoVrFy5Et68eSPkDQ0NhebNm8OiRYvg2bNnQt6oqCj4448/YPr06XD37l0hLyJC586dYcKECXD58mVARCH/sGHDYNiwYXDy5EmIj48X8s6aNQv69OkDBw4cgNjYWCHv+vXr4d9//4XAwECIiIgQ8h49ehTatGkD69evh48fPwp579+/D7///jv4+flBaGiokPfDhw/w+++/w7x58+Dx48dC3tjYWPj777/Bx8cHbt26JfScEBF69OgBY8aMgQsXLgg/47Fjx8KgQYPg6NGjEBcXJ+RdvHgx9OzZE/bu3QvR0dFC3sDAQOjQoQNs2bIFwsLChLznz5+H1q1bw+rVq+Hdu3dC3mfPnkHz5s1hyZIl8OLFCyFveHg4tGzZEmbNmgUPHjwQ8prNZmjfvj1MmjQJrl27JvycBgwYACNHjoQzZ86A2WwW8vr4+ED//v3h0KFDwu/iypUroWvXrrBr1y6IjIwU8h44cADatWsHGzduhE+fPgl5b968CS1btoTly5fD69evhbxv3ryB5s2bw4IFC+Dp06dC3ujoaGjdujVMmzYN7ty5I+RFROjSpQuMGzcOLl26JPyMR44cCUOHDoUTJ04Ir7dz586F3r17w/79+yEmJkbIu2nTJujcuTNs375deL09efIk/P3337Bu3Tr48OGDkPfRo0fw+++/w7Jly+Dly5dC3k+fPkGLFi1g7ty58OjRIyFvfHw8tGnTBqZMmQI3btwQfk69e/eGUaNGwblz54TfxQkTJsDAgQPhyJEjwuvtsmXLoHv37rBnzx7h9XbXrl3wzz//wObNm4XX28uXL8Mff/wBq1atgrdv3wp5X7x4Ac2bN4fFixfD8+fPhbyRkZHQqlUrmDlzJty/f1/IazaboUOHDjBx4kS4evWq8DMeMmQIjBgxAk6dOiX8jKdPnw59+/aFgwcPCq+3a9asgS5dusCOHTuE19tDhw6Bh4cHBAQECO997ty5Ay1atAB/f3/h9fbdu3fQvHlzmD9/Pjx58kTIGxMTA3/++SdMnToVbt++LeRFROjWrRuMHTsWLl68KPyMR48eDUOGDIHjx48Lr7cLFiyAXr16wb59+4Tfxa1bt0KnTp1g69atEB4eLuQ9c+YM/PXXX7BmzRp4//69kDckJASaN28OS5cuFV5vw8LCoEWLFjB79mx4+PChkDc+Ph7atm0LkydPhuvXrws/p379+oGXlxecPXtW+F2cPHkyDBgwAA4fPiy83i5fvhy6desGu3fvhqioKCGvo1lz4cKFwnsfvazZqVMnGD9+vENZU3Tvo4c1jx07luhYMy4uDtq0aQM+Pj5w8+ZNu7LmuHHjdLFmjx49DNbkkF7WHDhwoNWsOXXqVOjfvz8EBwcL731WrVqlizXbtm0LGzZscBhrhoSECHljYmK+a9YU3fs4kjV///13mDNnjlWs6eHhkehY09fXV2JN0b3P7t27JdYU3fvoYc2XL19KrCmaZ9fDmogIHTt2hAkTJsCVK1fsypozZsywmjXXrl3rENa8e/euxJqiex89rBkbGwt//fWXbta0Zu+jlzV79uwJQUFBdmXNs2fPwp9//pnoWLNdu3YOYc0pU6YYrMkpW5xrWsuaw4cPdwhrBgQE2IQ1Rfc+Dx48gBYtWuhizblz59qVNQEAevbsCaNHj4bz58/blTWXLFliNWvu2LHData8cOGC1az5/Plzh7HmP//8o4s1R4wYAadPn7Y7a3p6esLOnTvtypq3bt367ljT0P+gENEIjQCAfACAAIAhISFoKHEqLi4OixcvjgCAyZMnx4YNG+Ls2bPx4cOHXP6GDRsiAGCSJEmwdu3aOHnyZLx+/TqazWZNb5cuXZD8N1SpUiX08vLCs2fPYnx8vKZ38uTJkrdEiRI4YMAAPHz4MMbGxmp6AwICJG+BAgWwW7duuHv3boyMjNT0nj17VvJmz54d27dvj5s2bcJPnz5pep8+fYopU6ZEAMAMGTJgq1atcOXKlfjmzRtNb0REBObKlQsBAFOlSoXu7u64aNEifPr0qabXbDZjxYoVEQAwWbJk+NNPP+H06dPx7t27ml5ExObNmyMAoJOTE9asWRPHjx+Ply9f5nrGAwYMkD6vcuXK4bBhw/DkyZNcz3jevHmSt1ixYtinTx88cOAAxsTEaHp3794tefPkyYP//vsvBgYGYkREhKb3+vXr6OTkhACAWbJkwTZt2uD69evxw4cPmt43b95gunTpEAAwXbp02Lx5c/Tz88NXr15peqOjo7FQoUIIAJgyZUps3Lgxzps3Dx8/fqzpNZvNWKdOHQQATJo0KdatWxd9fHzw5s2bXM+pXbt20udVtWpVHDNmDJ4/f57LO3r0aMlbunRpHDx4MB49ehTj4uI0vStWrJC8hQoVwh49euDevXsxKipK03vkyBHJmzNnTuzQoQNu2bIFw8LCNL0PHz7EZMmSIQBgpkyZsHXr1rh69Wp89+6dpvfTp0+YJUsWBABMkyYNNmvWDJcsWYLPnz/X9MbFxWHp0qWl9fbnn3/GWbNm4YMHDzS9iIhNmzaV3sVatWrhpEmT8Nq1a1zPqXv37tLnVbFiRRw5ciSeOXOG612cNm2a5C1evDj2798fg4ODudbbzZs3S978+fNj165dcefOnVzr7YULFyRvtmzZsF27drhhwwb8+PGjpvfFixeYOnVqBABMnz49tmjRApcvX46vX7/W9EZGRmKePHmk9dbNzQ0XLFjAtdcxm81YrVo16V388ccfcdq0aXjnzh1NLyJiq1atpO+5evXqOG7cOLx06RLXMx4yZIjkLVu2LA4dOhRPnDjB9S4uWrRI8hYpUgR79+6N+/fvx+joaE3vvn37JG/u3Lmxc+fOuH37dgwPD9f03r59G5MkSSKtt3///TeuXbsW379/r+l99+4dZsiQAQEA06ZNi7/99hv6+vriy5cvNb2xsbFYtGhRBABMkSIFNmrUCOfMmYOPHj3S9CIi1q9fX9r7/PDDDzhlyhS8ceMG13Pq2LGj9HlVqVIFR40ahefOnePyTpgwQfKWLFkSBw4ciEeOHOF6F9esWSN5CxYsiN27d8c9e/ZwrbcnT56UvDly5MB//vkHN2/ejJ8/f9b0PnnyBJMnT44AgBkzZsQ//vgDV61axbX3CQsLw+zZsyMAYOrUqdFkMuHixYvx2bNnmt74+HgsV66ctPdp0KABzpw5E+/du6fpRURs1qyZtN66uLjgxIkT8cqVK1zPqU+fPtLnVaFCBRw+fDieOnWKa72dNWuW5HV2dsZ+/frhwYMHufY+gYGBkjdv3rzYpUsX3LFjB9fe58qVK5I3a9as6OHhgQEBAVzrbWhoKKZJk0Zab3///Xf09/fH0NBQTW90dDTmz59f2vs0adIE58+fj0+ePNH0ms1mdHFxkdbbevXq4dSpU/H27duaXkTEv//+W/qeq1WrhmPHjsULFy5wPeMRI0ZI3jJlyuCQIUPw2LFjXOutr6+v5C1cuDD26tULg4KCuNbb4OBgyZsrVy7s2LEjbt26lWvvc+/ePUyaNCkCAGbOnBn/+usvXLNmDdfe58OHD5g5c2Zp7/PLL7/g0qVL8cWLF5pevazp6urqENacMmWKTVlz165dX501nz17pmDNFStW2IU1K1WqZBPWrFGjht1Yc/78+ZK3aNGidmPNGzduOIQ1Y2JibMqa3t7edmHNMWPGJGDNQYMG2YU1jx496jDWzJo1q1WsGR8fz2TN+/fva3oR9bFmjx49FKx5+vRpq1izX79+GBwczPUubtmyxWas2bZtW7uxZt68eaX1tmnTpnZjzT/++MOmrHn8+HGud3Hx4sVWs+b+/fsVrLlt27avzprv37/HjBkzJmDNZcuWWcWarq6uQqz5008/2YQ1K1eubDfWXLt2rcNYM0WKFDZjzUWLFnGzZvny5W3GmhMmTLALa86ePTsBa/bt29curHn16lWbsGa6dOnsypq1atVSsOatW7c0vYj6WHPkyJE2Y82ePXvanTUzZcqEf/75p91Ys0SJEg5hTU9PT5uy5qFDh7jW2w0bNljNmufOnVOw5saNG+3Omm5ubrhw4UKrWLN+/fpCrPn777/bnDV53kU9rLlnzx4ma/LsffSyZvr06XWzZooUKbBx48Y4d+5cbtasW7eu1azZvn176fOqUqUKjh492i6suXLlSpuzJs/e59GjR4mSNd3c3BSsefXq1a/OmtOnT7cJa+bLlw89PT25WdOQYxUSEiI9OwDIh7aoibPFH/K/HmAUDv7PaNWqVfRLJJQMOnbsGNNbpEgR7NWrF+7bt88inDx69Eg6TKYjd+7c2KlTJ9Vk0OfPn6UfcnSQgzC1ZFB8fDyWKVNG4U2bNi3++uuvmskgd3d3hZc3GdSzZ0+FlzcZNGPGDOZnTSeDLP2w3Lp1K9NLkkFqB2GXLl1iegsUKKCZDHr16pWUUKWDJIM2bdpkcUMUFRUlJVTpIMkgtaJLs9mMNWrUUHhTp04tHYSpJYNat26t8JKDsBkzZqgmg4YNG6bwkqJLrWTQkiVLmJ91+fLlNZNBBw4cYHqLFSummQy6e/euBPh08CSD6IQqHXQyyBKcxMbGorOzs8LLmwxq0KCBwkuSQfPmzVNNBnXu3FnhJckgHx8f1WTQxIkTmZ81OQhTSwatW7eO6SVFl2rJoNOnTzO9PMmgkJAQKaFKB08yKDw8HHPkyKHw8iSD4uPjsUKFCgovbzLo119/VXjpZJBa0WW/fv2Y6y1JBqkdhM2ZM4f5WZNkkFrR5c6dO5neEiVKYP/+/VWTQVevXpUAnw5yEKaWDHr9+jWmTZtW4c2ePTu2a9dONRkUHR2NBQoUUHgzZMiALVu2VE0Gmc1mrF27tsLLmwzy8PBgrrc8ySAvLy/mesuTDPL392c+J55k0KFDh5hekgzav3+/xfX2/v37EuDTQZJBakWXHz9+lAqX6SAHYevWrbO43sbFxWHJkiUVXrroUi0Z1LhxY4WXFF1qJYO6du3KfBfr1KmjmQzy8fFhftY8yaCNGzcyvaVKlZKSQZbexfPnzzO9PMmg58+fY6pUqRRenmRQREQE5s6dm7nekmTQ27dvmV6z2YxVqlRReFOnTo3NmjXDxYsXqyaDWrRowVxvyUGYWjJo0KBBzHexVq1aOHHiRNVk0MKFC5mfdYUKFXDEiBGqyaC9e/cyvaToUi0ZdPPmTekwmQ6eZNDbt2+lhCodPIUHMTExWKRIEYWXt/CgXr16Cm/KlCm5Cg/++ecfhZcuPFAruhw3bhzzs65evTqOHTsWL168aPEZq7HmkCFDVFnz+PHjTK89WDNbtmwK77fOmr169WKut7ZgTbWDsG3btjG9elmTNPhZw5qk6FKNNfPly6fw8jT46WXNP//8U+G1B2suXbqU+Vk7mjXVii7fv3+PmTJlUngJa6odhGmxpp+fnypr/vzzz8z1Vg9rkgY/NdacNGkS87PmYc3169czvV+bNZ8+feoQ1qSbZOmwBWtqNfipsaZW0eXcuXOZn3WlSpU0G/z0sOa1a9ccxpoFCxZkrrc8rPnDDz8ovLZiTbWiy1GjRjHXW8KaakWXaqyp1eB3+PBhplcva2o1+OllzVKlSim8tmJNtb1Pt27dmO/i12bNTZs2Mb16WLNgwYLYo0cP1Ty7FmuqFV1GRkYyWTNjxozYunVrXLVqlVWsSRr81FizZcuWzPVWD2uSBr+vxZpBQUFMr61Y09Le5+3bt1KTLB22YE2tPPuPP/6o8NqCNbUa/PSw5urVq5leUnT5tVjz8ePHDmPNsmXLMtdbwppqex+TycRcbwlrqhVdarGmWtHlzJkzmZ+1XtbUavC7fPky06uHNekGv6/FmjVr1mSut1+bNYcPH85cb23BmmoNfgcPHmR6v3XWJE2ydNBFl9awJk+D37///stcb79l1jxz5gzTW6hQIYk1Lb2LelkzZ86cCq8tWHPJkiVcRe6G7C+jcNAoHDSkQ3PnzmUW37A2RPJk0MaNG9HV1ZW5SZZviEgyiByEHTt2DF1dXZkFR3SwkkH3799HV1dXqVPFUrCSQWFhYejq6oqFCxdW9ZJkkLwDt0WLFsyDIHmwkkE9evTAqlWranpZHbjjx4+XuvzVgpUMWrZsmXQzpFqwkkE7d+5EV1dX5iaZDlYy6Pz58+jq6spMPNHBSgY9e/YMXV1dmYWDdNDJIHIQZjab0dXVlXlIIA9WMsjDw0PqHFULkgyiO3AHDhzIPESSBysZNH36dOkWK7VgdeCuWbMGGzZsyNwk00F34JJk0MGDB9HV1VW6vcJSsJJBN27cQFdXV2aiX/4uypNB79+/R1dXV2YCWf4uspJBzZo1YxbByIOVDPr333+xcuXKml5WMmjUqFHMIil5sJJB8+fP51pvSTKI7sDdsmULurq6St19loKVDDp58iS6uroyQYgOVgfuw4cP0dXVlZlcpIOVDIqKikJXV1dm0koepAOXTgb98ccfzGSIPFjJoN69e0u3MagFue2JTgZNmjRJ6nRTi1y5cknJIAIn/v7+2LBhQ+aBDB2sZNCePXvQ1dVV6qa2FKxk0KVLl9DV1ZVZUE8HKxn06tUrdHV1ZSY06CDJIHkHbuPGjZmgLA9WB2779u2ZhaXyYCWDhgwZwkykyIN1s/CsWbOkmxzUgpUMWr9+Pbq6ujIPZOhgJYMOHz6Mrq6uzIIjOli3Pd25cwddXV2ZsEsHKxn08eNHdHV1lbo/LQWdDKKLLn/77TfmQZA8WMmgbt26MQ8Y5MG6WXjMmDHMg0J5sJJBixcvZiZh5MHqwN2+fTu6uroyD2ToYHXgnjlzBl1dXaWOeUvBSgY9efIEXV1dpRtPLQUrGRQbG4uurq5YrFgxze+ZlQz666+/pBsa1YKVDOrXrx9Wr15d08tKBvn4+DAPJ+RBkkH0bU8rV67Ehg0bMg9k6GB14O7btw9dXV2ZB+B0sJJB165dQ1dXV2ainw7WzcJv3rxBV1dXZqG2/F1k3fbk5uYm3aigFqybhTt27MhMeMmD3CxMFx6MGDFCunFDLViFB7ysSW4WthVrHj9+XIg16YMwPawZHh5uF9Zk3Szcs2fPr86arJuF9bDmrl27HMKaz58/59776GVN+W1Pelhz0KBB3Kwpb/BLjKx58+bNRMmaXbp0EWJN+iCMlzVZDX4LFizg2vvoZU15g9+pU6esZs1Hjx5xs6b8ZmHCmuRmN7VgsWbr1q0dwpqTJ09mNgHIwxasSR+E6WHNy5cvC7EmfdsTYU1y65elcCRrsm4WHjp0qHSztVrYijXJ3kcPax45csRurEk3+H369MlurCm/WVgPa44dO5aLNVk3C+thzcDAQIewZkhICFeencWacXFxwqxJ59n1sGb//v2FWJNu8ONlTdbNwvZiTfltT4Q1yW2YluJbY81OnTrZjTXpBj97sibd4GcP1mTdLMzLmgDsm4VbtmzpENacMGGC1azp6+srzJokz66HNS9cuGA31pQ3+NmDNVk3Cw8aNIgrz/4tsWZwcDDX3sdWrEny7HpZ85dffhFiTbrB71tnTdbNwlu3bk10rBkdHa2LNQ05VkbhoFE4aEiH6PGVvEE6cFnduVpBOnDbtGkj7AX4kgxiVdTzRIkSJZg3/vEESQaxOr60giSDeH7IyIMkg3ggWR4kGdSoUSNhL0kGsToCtYIkg+hrokWiXLlyzNuJeKJo0aLYu3dvq7wkGaSVKGMFSQbxwJc8SDKIB6DkQZJBrG4xrSDJIFYXEk9UrVo1wRgUkShdurRVaw/A/9/2pJVkYwVJBmlt6llBkkE8G3N5kGQQTzJDHiQZRMa4iQRJBrVt29aqz7pixYoJxvyJRPHixZmdiDxBkkFayVBWkIMwnsMFeZCiS54DAnmQMVNNmjQR9pJkED06SiSqV6+OHTp0sMpbtmxZZoc+T5BkkFYilRUkGaQFbqwgySCexLM8SDKI57BOHiQZ9Msvvwh7yUEYPa5GJCpXrsy8uYYnSpYsmeBKf5EgySCthDcrSDKIp3BYHiQZxHMgKw+SDCIjZ0SCJIPIKBORIMkgehyjSFSoUCHBqBuRcHZ2tnq9JckgrSI4VpBkEM9BnzxIMognYSUPkgwiYy5EgiSDrN37VKtWzeq9T5kyZaxeb0nhgdahBitI0aVW0poVpAOX5xBIHqTokid5LA9bsCbrhiGe0Mua1r6LtmBNnsNceehlTTc3N4ewZo0aNb5L1uQpcpJHYmXNKlWqYKdOnazyfq+syXOQIw9Hs6a1e5/ixYtbndszWFMsHM2aWofIrNDDmqTokufQXR6ENXkKleRBii4TI2ta+y7agjV5imfkYQvW5ClikQdhTdYt71qhlzXLly+vizWt3fs4ijXJzcLfG2tau/chNwvrYU2t4nBW2II1eYq05eFo1rQ2z66HNcneR6vQkRV6WbNly5ZcjU/yIKzJupFWK0iDnx7WZN2gyRN6WZMeRy8SjmZNngsY5EFGGuthzb/++suqz0sPa5YqVcrqPDthTa1iVlbYgjV5mi3kkZhZ0xHnmuQymT179hhFhA7U1ygcTAKGDBmyqHLlyoGLiwsUKlRI2Ovs7AwuLi5QokQJYW/+/PnBxcUFKlSoIOzNnj07uLi4QPXq1YW9GTJkgJo1a4KLiwskS5ZMyJsqVSqoUaMGuLi4QLp06YS8yZIlg6pVq4KLiwtky5ZNyOvk5AQVK1YEFxcXyJs3r5AXAKB06dJQs2ZNKFKkiLC3aNGi4OLiAqVLlxb25smTB1xcXKBSpUrC3ixZsoCLiwu4uLgIe9OlSyc94xQpUgh5U6RIAdWrVwcXFxfIkCGDkDdp0qRQuXJlcHFxgZw5cwp5Af7/XcyfP7+wt0SJEuDi4gLFixcX9hYqVAhcXFygXLlywt6cOXNCzZo1oWrVqsLeTJkySc84adKkQt7UqVNL72Lq1KmFvMmTJ5fexSxZsgh56Xcxd+7cQl4AgDJlyoCLiwsULlxY2EvW25IlSwp78+XLBy4uLlCxYkVhb7Zs2cDFxQVq1Kgh7E2fPj3UrFkTatasKbzepkyZUnoX06dPL+RNmjSp1estAED58uXBxcUF8uXLJ+wtVaoUuLi4QNGiRYW9RYoUsXq9zZ07N7i4uECVKlWEvZkzZ7Z6vU2bNq203qZKlUrImyJFCqhWrRq4uLhApkyZhLxJkiSBypUrQ82aNXWttwUKFBD26llvCxQoAC4uLlC+fHlhb44cOcDFxQWqVasm7M2YMaP0nPSst2nSpBHy0nsfPettnjx5hLwA+tbbokWLQs2aNaFUqVLC3rx581q93mbNmlVaM0WlZ++jd70le58cOXIIeQH+f721Zu9TsmRJcHFxgWLFigl7CxcuDC4uLlC2bFlhb65cucDFxcWqvQ+93iZJIpamSJMmjdXrbfLkyXWtt5UqVQIXFxfIlSuXkBcAoGzZsgZrcoqwZs2aNSFt2rRC3m+BNe299yGsWblyZWFvYmRNsvexdr111N6nYMGCDmFNR+19DNYUk61YM3ny5EJevXufKlWqgIuLC2TPnl3IC+B41ixTpoywN7GyJnnGGTNmFPLqZU2y99Gz3lqz90nsrKln7/O9saY1efZvgTWtybOT9fZ7Y01r1ttMmTJJz8lgTW0lVtYkP1PtzZrkXbQ3azoqz26wppjKly8PNWvW1LX3cXZ2FvbqZU1rc3v03kd0vbUVa2bOnFnIm5hZs2bNmg5jTfIz2cnJSfjPMPQNyxbVh//rAcaNg/8T2rFjB/br10+1Spo1Lhjxy7XcI0aMUO1IYo1wQvwy4tTLy0u164x0eIwfPz7BGIMXL16gl5eX5pXN5cqVw2HDhiW4VjsyMhK9vLw0b1UgHR70tdqIX8aKaN1iQzo86Gu1EREXLlyo2eWbOXNmxbXaiF/GVWh1B6ZNmxabN2+Ovr6++PLlS8kbFBSEgwYNUvWyrtVGRDx79iyOHDlSdZwJPcLp5s2b0nO6d+8eenl5aY5BYI0Lfvv2LXp5eWne4EdGOB09elS6VttsNqOXl5fmyAkyLpgeY4D45Wptd3d3VW+OHDmwQ4cOCa7VRkT08/PT7DrLmDGjNMaAXKuN+OXKZq1OhtSpU2OzZs1w8eLF+OzZM8l7+PBhHDZsmGo3NutabUTEK1euoJeXl+p1z6TDQ36t9pMnT9DLy0uzy5c1wunz58/o5eWleasCa1ww4peRalqdhaxxwYhfRhlo3ShFbhPYsGGDdK02IuLq1as1O0DJbQLLly+XrtVG/HJFfv/+/VW9KVOmxKZNm+KCBQuka7URv4wbHjFihOqV3vQYA3KtNiLirVu30MvLS/Pq9erVqyuu1X716hV6eXlpjqsgYwzoEU4xMTHo5eWlec09a4QTIqK3t7dmZyFrhBMi4pIlSzS7fFnjghERN2zYoHkzQpo0aRQjnBAR9+/fj0OGDFEdH8UaF4z4ZQzCyJEjVUe5kdsEpkyZkmCE04MHD9DLy0uzy7dy5crSGAPyLr5//x69vLw0b/AjYwzoEU6IX6651+oszJ8/v2KEEyLizJkzNW9VILcJ0COcEBGXL1+u2XHPGuGE+GUUrVYXJ2uEEyLi0aNHcfjw4arjo+hxwWSEE+KXsTNeXl6qoy7oEU5XrlyRnvGzZ8/Qy8tL8/ZiMi6YHmMQHh6OXl5emmNFihUrhn379k0wwgkRceLEiZqdhawxBohfRhlodfmS2wToEU6IiGvXrtW8+YvcJuDv7y+NFEH8Mo5t4MCBql5ymwA9wgkR8fTp0zhy5EjVDlDWCCfEL2O+vLy8NG84YY0Lfv36NXp5eWneqsAa4RQXF4deXl6aI35Y44IREadOnYpNmzZV9ebMmRM7duyIW7duTbDeLlu2TPOGE3KbAD0yDxFx8+bNmp265DaBpUuXSiNFEL+MJBk6dKjqrafkNoFZs2ZJ4ysRv4x39/LyUr3djdwmMHny5AQjnB4/foxeXl6aXb6VKlVSjHD6+PEjenl5ad6qUKJECcUIJ8QvI9W0brFhjQtGRJw9ezb+9ttvql7WCCfEL6O6tG4bSp8+vWJcMKI4a9J5BcKaKVKksOi1FWvSI5z0sGZUVNRXZ03WCCdExEWLFn111iQjnOSsOXjwYFWvJdY8d+6c3ViTHuFEWFPrVgVbsCY9wgnxC2tq3apgC9akRzghfvus6cIY4RQSEpIoWXPevHmarJk1a1aLrKl1+wVhTXqEE+IX1hwwYICq1xasSY9wQvx/1tS64UQPa7LGBScm1qT3Phs3bvyqrJk8eXKbs+bDhw+FWJMeF0xYU+sGP0usOXr06K/KmqxxwYhfWFPrZtvvmTXpccERERFfnTXz5MmDXbp0wcDAwAR7Hz2suW7dOi7WlI8LRtTHmmfOnHEoa5YuXVrV+7VYU+sGP1uwpjzPLsKa9LhgxK/PmpbGBethzU+fPnGxJmtcMKI+1pwzZ87/JGsmTZpUlTXVRkrbgjXl44J5WZM1LhjxC2tq3Rb/NVgzICDAatbct2+fbtZUu9nWEmvev3/fbqxJjwtGRPTy8tK8LV4va8rHBSN+YU2t2930siYZF2xr1lS7SfxrsGZYWNhXZ828efOip6enIs+uhzXXrFnz1VlTPi4Y8cu44ZEjR35V1mSNCyasqTUW+muwpiHHyhhVbBQOGtKpyZMnKxY8S5tEudavX6/wkk2ivBhDrjNnzii8ljaJcj19+lSxsSebRHmCTK7w8HDFDxqySZwyZQreuHHD4jWyZrOZCWB0MYbaFbQsiCIJMvkmUS5WwVGBAgWwe/fuik2iXHPnzlV4LW0S5dq1a5fCS0Y7yDeJcl2/fl2R1LS0SZTr9evXiqSmpU2iXNHR0VioUCGLm0Q6QSaX2WxmHgRVqFBBUYzBEmuDTRJkBw8eTLBJlGvUqFHMTSKrGEOu5cuXMzeJHh4eGBAQkCBBJteRI0cUXroYg94kyvXgwQNFUtPSJlGuT58+KZKaZLSDfJMoV1xcHLO4gmwS6QQZS6wxP6xNIkusRD/ZJAYFBaluEqdOnarwkgMJeYJMrs2bNyu8loox5Lpw4YLCSxdj0AcScr148UIxroskyGbPno0PHjyw6I2MjFQkNeliDPpAQi6z2cxMPleqVAm9vLwSHEiw1KpVK4W3RIkSOGDAAMWBhFyspISlAwm5Fi1apPBaOpCQKygoSOElBxLyBJlct27dUiQ1yYGEvPBfrrdv3yqSmnQxBn0gIVdsbKzigMFS4T9LrDGWpBiDPpBgiZVcJMUY8gMJucaPH6/wksJ/+YGEXKtXr1Z4yWgH+YGEXCdOnGCut6wDCbmePHmiaNYgox3mzZuXIEEmV1hYmKKAJkmSJNKBBJ0gkys+Pp5ZWFq1alVF4T9LrKQVXYyhtt6yxiJZKvyXa+bMmQovGe2wZcsW1b3P9u3bFV5Lhf9yXblyReElxRjyAwm5Xr16pSigIaMd5AcSckVFRSkOdC0dSMhlNpuZyZCKFSviyJEjEyTIWGKNByEHEvIEmVwjRoxQeC0VY8i1bNkyhddS4b9cwcHBCi9d+K+23t69e1eR1KSLMdTY+MOHD4oCGrrwnz6QkCs2NpY5HrF69eo4bty4BAcSLLHGqpHCf/pAgiXWiA9LBxJyqbHmtm3bVNfbgIAAhVcva5JiDC3WlCc19bImKcbQy5pq7yJrBIw9WHPevHkKr61Yky7GkEsPa75588Yia86YMcNq1pQXY8hlNpuZB0H2YM3Ro0crvN86az58+PCrsSZdjCFXXFwcs7hCL2vKizFYYo0apIsx1NbbadOmKbyWijHkSqysmSdPHsV662jWlBdjyDVkyBCFl7CmvBhDLjXWlBdjyLVv3z6FVy9rsprM5Xr37l2iZE1Ww6g9WHPNmjUKrx7WpJvMrWVNeTGGXGFhYYoCGsKa8mIMufSyZrNmzRRee7DmrFmzmOuto1lTbe8TGhr6VVhTXowhl9lsZo5p18Oaloox5NLDmr6+vgqvPVjz3r17X401tfLsX4s1tfLsaqypVYwxZcoUhdcerHn27FnmequHNVmF/3JFRERgrly5FOstL2tWqlRJ8XXbgzVZBUc0a6rtfdRYUyvPvnv3buZ6q5c1Fy1a9NVYMyYmhsmarMJ/uSyxJqvJnCVWg749WHPFihUKLy9rHj16VOG11GQulxZr0oX/cn369AmzZs2qWG/1sqa88J8lVuP3t86aW7ZsUXjtxZryZg1bsaZant2QY2UUDhqFg4Z06PPnz9IPuMqVK3MlyIji4+OlH3C8xRi0SLcZbzEGLdIxxluMQWv69OkIYLk7VE1bt25FAMvdoWq6ePGitElkdYeq6eXLl5g6deoEm0StBBlRZGSk1B1Tvnx5rgQZkdlslrqYLHWHqql169YIwJ8gozV06FAE4E+Q0VqyZIm0SeQpxqC1f/9+CdhIMYbaJpHWnTt3MEmSJBa7Q9X0/v17zJgxIwKwu0PVFBsbi8WKFUMAdneolho0aJBgk6iVIKNFulR4N4m0Jk6cmGCTqJUgo7V27VoJ2HiKMWidOnVK2iTyJMhoPXnyBFOkSMFdjEErLCxMuvWPJMjo7lA1xcfHY4UKFRDAcneomkinfb58+ZjdoWrq27cvAiTsDlVLkNGaPXs2Avx/d6hWgozWjh07pPWW1R2qpqtXr6KTk5PUHapVjEErNDQU06ZNKx1I8CTIiKKjo7FAgQIIwF+MQWQ2m6UObt5iDFpt2rRBAP7Cf1ojR45EAMvdoWry8/OTEmQ8hf+0Dh06JK23rO5QNd2/fx+TJk1qsTtUTR8/fpS6EVndoWqKi4uTbkUpVaoUV4KMFunu5S3GoNW1a9cECTKtYgxa3t7eigQZ73q7cePGBAkyrWIMWufOnUuQINMq/Kf1/PlzTJUqlcXuUDXRyVTSHaqVICMym81S1yjvgQStFi1aSAkyVneomsjNFaQ7NCAggHu9XbBggSJBplaMQWvPnj2KBJlaMQatmzdvSustT+E/rbdv32L69OmlBJm8O1RNMTExUmcwb+E/rXr16iGAdd2h5AYa3sJ/WmPHjpXWW9ZNRGpauXKllCD79ddfNRNktI4dOybtfVxdXXH27NmqBxK0Hj16hMmTJ+cuxqCllzXJ7eP2Zs2ePXsmOta8dOmSQ1gzKirKJqzJW4xBSw9rDhs2zCGseeDAAd2syVv4T8vWrKlVjEFLD2t27txZYk2eYgxaelhz3bp1DmHNkJAQq1kzPDzcYaz566+/2ow1tYoxaM2ZM0c3a/IWY9DSw5qvX7+Wbr7hLcYg0suatWvXdghrenl5Wc2a/v7+DmPNZMmScTeZ06JZk7fJnCguLk66FSUxsaaPj49DWPP8+fM2ZU21YgxaERERUoOsHtbkLcagpYc1yTQiuhjDHqy5d+/eRMmaRYoUcQhr/vPPP7pZk7cYg9aqVatswpo8xRi09LImaZDlLfwn0suaZFqVvVlzxowZVrPmtm3bErCmVuE/LT2s+erVqwSsyVP4T0SzJm/hP5HZbMYaNWokOtZcunSpQ1iTNMjagjV5Cv+JYmNjpRs4rWFNcmsxb+E/LT2sOWnSJGnvw1P4T0sPa54+fTrRsSbdIMvbZE5LD2uSW2n1siZP4b+hb0dfo3AwGRgy9J3o4sWLMGHCBHB3d4e8efMKeW/dugWdOnUCd3d3cHZ2FvKGhoZCrVq1YOLEiVCuXDmhee9RUVGQPXt2OHHiBFSvXh2SJk3K7UVEiImJgf3790OdOnUgRYoUQl/38+fPYfv27dCgQQNIkyaNkPfGjRuwbt06aNSoEWTKlEnIe+HCBZg3bx40bdoUcubMKeS9cuUKDB06FNzd3aFgwYJC3gcPHkCLFi1g+fLlUKJECaHn9OHDByhdujScP38eKlWqJOSNjY2FNGnSwNGjR8HFxUX4GX/69An27t0L9erVg5QpU3J7AQAePnwImzdvhoYNG0K6dOmEvJcvX4YVK1ZAkyZNIEuWLELeCxcugI+PD7i5uUGePHmEvNevX4cePXqAyWSCIkWKCHmfPXsGDRo0gJkzZ0KZMmWEnlN4eDjkz58fTp8+DVWrVoUkSZJwe81mMwAABAcHQ+3atSF58uRCX/fr169h586dUL9+fUidOrWQ9/bt27BhwwZwdXWFDBkyCHkvXboES5YsgSZNmkD27NmFvWPGjAE3NzfInz+/kPfOnTvg4eEBAQEBULx4cSHvmzdvoFq1ajB69GioUKGC0DOOjo6GzJkzw/Hjx6FGjRrC72JkZCTs27cP6tatK7zehoSEwLZt26BBgwaQNm1aIe/169dhzZo10LhxY+H19uLFizB79mxwc3Ozar0dOHAguLu7Q6FChYS8jx8/hl9++QWWLFkCpUqVEnpOnz59guLFi8PZs2ehcuXKQu9iXFwcpEiRAg4fPgy1atWCZMnEtsHv37+H3bt3w48//gipUqUS8t6/fx82bdoEDRs2hPTp0wt5L126BP7+/tCkSRPImjWrkPfixYswefJkcHNzE9773LhxAzw9PcHd3R2KFSsm5H358iXUrVsXfHx8oGzZskLPODIyEnLnzg2nTp2CatWqCa+38fHxcPDgQfjhhx+E19uXL19CYGAgNGjQQHi9vXnzJqxfvx4aNWoEGTNmFPJeuHABFixYAE2bNoUcOXIIeS9dugQjR44Ed3d3KFCggJD33r178Oeff8KaNWugRIkSQt53795BhQoVYNiwYVCxYkWhZxwTEwPp06eHY8eOQc2aNYXX27CwMAgKCoK6desK732ePHkCW7duhZ9//ll4vb169SqsXr0aGjduDJkzZxbyXrhwAaZPnw5ubm6QO3duIe+1a9egb9++4O7uDoULFxbyhoSEQOPGjWHevHlQunRpoecUFhYGhQsXhjNnzkCVKlWE3sX4+HhImjQpHDp0CGrXri283r59+xZ27doF9evXF15v7969Cxs3bgRXV1er1ttly5ZBkyZNIFu2bEJevazZsWNHq1nTxcUFJkyYAOXLlzdYU0N6WPPy5ctWs+bDhw8dwppxcXGQOnVqOHLkCLi4uAi9i3pZ88GDB1az5pUrVxzKmu7u7lC0aFEhrx7WjIiIcBhrhoaG6mLNgIAAaNSokTBrXrx40WrWvHjxIowePRrc3d3tzppVqlSBUaNGCbNmTEyMw1jz6dOnDmHNCxcuwOzZs6Fp06aQK1cuIa9e1mzWrBksXrzYKtZ0dna2ijXj4+MTJWtevnwZ/Pz87M6aN2/ehC5duuhiTW9vb+E8ux7WRESIi4uDAwcOQJ06db4L1rx8+TKMGDEiUbFmbGysbta0du/z+PFjXay5atUqaNy4sVV7Hz2s2bt3b3B3dxfOsydW1nzz5o3VrHnv3j3YuHEjNGzY0Ko8ux7WHD9+PLi5uUG+fPmEvHpZs2bNmjB+/HirWDNbtmxWs2Z0dLTVrPns2bPvjjV///138Pf3t5o1z507B5UrV7YbawIAfPz4Efbs2QM//vijXVnz8uXLsHz5cqtY8+LFi7pYs3v37lax5vPnz+Gnn36CGTNm2J01EVEXa+7YsQN++uknu7Pm4sWLoWnTpnZnzTZt2sD69evtzpqZMmVyCGsa+t+TE365Uc++f6mTkzcADKT+VX1EPKThaQwA/wJAdQDIDgCvAeAMACxGxD1f6Uslf3c+AAgB+LIhFt2cGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ9bo6dOndIFrfkR8qvfP5C8ttpGcnJwqAEBfgd/v5OTktAgAdgPAbwCQFwBS/Pe/vwHAbicnp0VOIuW3hgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTI0HcquxYOOjk5JQGAJQCQDABCOW3j4ctNgwAAFwHgT/hy6+Cf//0z/Pfr42z3lRoyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUP/m7L3jYO9AKAaANwCgGVav9nJyakYAAz67x/PAUBtRFyHiGcRcR0A/PDfvwcAGOzk5CQ2GN6QIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBn6zmS3wkEnJ6f88P+3AnYFgBgOW1/4cjshAEBPRIykfxERIwCg53//mAwA+uj/Sg0ZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkKH/XdnzxsH5AJAOAJYj4iGt3+zk5OQEAL/894+3EPEU6/f99+9v//ePv/7nM2RIoYMHD8LYsWPh4sWLgIhC3mvXrsGQIUPg+PHjEB8fL+QNDQ2FPn36wL59+yA6OlrIGxUVBX369IGtW7dCeHi4kBcRYdiwYbB27Vp4//69kBcAwNvbG5YuXQovX74U9i5btgxmz54NDx8+FPZu27YNJk+eDNevXxd+TidOnAAvLy84e/YsmM1mIe/9+/dhwIABcPjwYYiLixPyfvjwAXr37g27d++GqKgoIW9sbCz0798fNm3aBJ8/fxbyIiKMGjUKVq5cCW/evBHyAgDMmjULFi5cCE+fPhX2rl69GmbMmAF3794V9u7duxfGjx8Ply9fFn7GFy5cgGHDhsHJkyeF38Vnz55B37594cCBAxATw1O7/v8KDw+H3r17Q2BgIERERAh5zWYzDBo0CNavXw8fP34U8gIATJw4Efz8/CA0NFTYu3DhQpg3bx48fvxY2Ltx40bw8fGBmzdvCj+nw4cPw5gxY+DChQvC3ps3b8LgwYPh6NGjwu/imzdvoHfv3rB3717h9TY6Ohr69u0LW7ZsgbCwMCEvIsLw4cNh9erV8O7dOyEvAMC0adNgyZIl8OLFC2Gvv78/zJo1Cx48eCDsDQwMhEmTJsG1a9eEn9Pp06dh5MiRcObMGeH19tGjR9C/f38IDg6G2NhYIe+nT5+gd+/esGvXLoiMjNQ2UIqPj4cBAwbAhg0b4NOnT0JeAIAxY8bA8uXL4fXr18LeuXPnwoIFCyAkJETYu3btWpg2bRrcuXNH2Lt//34YN24cXLp0SfgZX7lyBYYOHQonTpwQXm9fvHgBffr0gf379wuvt5GRkdCnTx/Yvn278N7HbDbDkCFDYN26dfDhwwchLwDAlClTwNfX16q9z5IlS2DOnDnw6NEjYe/mzZthypQpcOPGDeHndOzYMRg1ahScO3dO+F28c+cODBw4EI4cOSK83r579w569+4Ne/bsEd77xMTEQL9+/WDz5s1WrbcjR46EVatWwdu3b4W8AAAzZsyAxYsXw7Nnz4S9K1asgJkzZ8L9+/eFvbt374aJEyfClStXhJ/xuXPnYMSIEXDq1CnhZxwSEgJ9+/aFgwcPCq+3YWFh0Lt3b9ixY4dV6+3AgQMhICDAqr3P+PHjwd/f36q9z/z582H+/Pnw5MkTYW9AQABMnToVbt++rf2bZdLDmtevX9fNmkFBQXZnzaFDh8KaNWu+G9Y8efJkomPNuLi4RMmaq1atgunTp9udNS9evGiwpoAWLVrkMNYcPXo0nD9/PtGwZkxMzHfHmjt27EiUrNmrVy/YuXOn3Vlz7NixBmty6uXLlw5hTUSEIUOGWJ1ndxRrbtmy5btizdjYWIk1rdn7eHl5OYw1Z8yYAffu3RP26mXN4cOHG6zJKUexZnBwMIwdO9aqPPv3yJo+Pj6wdOlSq/Y+elhz+/btDmHNBw8e6GbNXbt22ZU1AQBGjx4NK1ascMi5ZmJjzefPnzuMNQcPHgzr16+3Ks8+ceJE8PX1hVevXgl79bKmt7e33Vnz1q1bMGjQoETHmiNGjLCaNQ39DwoRv3oAQCsAQAB4CwDZ//t3o//7dwgAPzI8RahfX6jx5y+ifm/hr/D15yN/fkhICBpKnIqMjMQ8efIgAGDevHmxS5cuuGPHDoyIiND0ms1mrFq1KgIAZs2aFT08PDAgIAA/fvzI9Xe3atUKAQDTp0+Pv//+O/r7+2NoaCiXd/DgwQgAmDJlSmzSpAnOnz8fnzx5wuVdtGgRAgAmTZoU69Wrh1OnTsXbt29zefft20feKaxWrRqOHTsWL168iGazWdN769YtTJIkCQIAlilTBocMGYLHjx/HuLg4Te+7d+8wQ4YMCABYuHBh7NWrF+7btw+jo6M1vbGxsVi0aFEEAMyVKxd26tQJt27dimFhYVzfc/369REAMHPmzPjXX3/hmjVr8N27d1zejh07IgBgmjRp8JdffsGlS5fiixcvuLzjx49HAMDkyZNjw4YNcfbs2fjw4UMu75o1axAAMEmSJFi7dm2cPHkyXr9+nes5nThxQnrGlSpVQi8vLzx79izGx8drep88eYLJkydHAMASJUrggAED8PDhwxgbG6vpDQsLw2zZsiEAYIECBbBbt264e/dujIyM1PTGx8djuXLlEAAwe/bs2L59e9y0aRN++vRJ04uI2KxZMwQAzJAhA7Zq1QpXrlyJb9684fL27t0bAQBTpUqF7u7uuGjRInz69CmXd9asWQgAmCxZMvzpp59w+vTpePfuXS7v9u3bEQDQyckJa9SogePHj8fLly9zPeMrV65Iz7h8+fI4bNgwPHnyJNczfvXqFaZJkwYBAIsWLYp9+vTBAwcOYExMjKY3KioK8+fPjwCAefLkwX///RcDAwO511sXFxcEAMySJQu2adMG169fjx8+fND0IiL+9ddfCACYLl06bN68Ofr5+eGrV6+4vCNGjJDW28aNG+O8efPw8ePHXN5ly5ZJ623dunXRx8cHb968yfWcgoODpedUtWpVHDNmDJ4/f57Le+/ePUyaNCkCAJYuXRoHDRqER48e5VpvP3z4gJkyZUIAwEKFCmGPHj1w7969GBUVpemNi4vD4sWLIwBgzpw5sUOHDrhlyxbu9bZhw4YIAJgpUyZs3bo1rl69mnu97dKli7TeNmvWDJcsWYLPnz/n8k6ePFlab3/++WecNWsWPnjwgMsbEBAgvYu1atXCSZMm4bVr17ie09mzZ6VnXLFiRRw5ciSeOXOG6118+vQppkyZEgEAixcvjv3798fg4GCu9TYiIgJz5cqFAID58+fHrl274s6dO7nWW7PZjBUrVkQAwGzZsmHbtm1xw4YN3Huf5s2bS3ufFi1a4PLly/H169dc3gEDBkjrbdOmTXHBggXce/B58+ZJ7+KPP/6I06ZNwzt37nB5d+/eLT2n6tWr47hx4/DSpUtcz/j69evo5OSEAIBly5bFoUOH4okTJ7jexTdv3mC6dOkQALBIkSLYu3dv3L9/P9feJzo6GgsVKoQAgLlz58bOnTvj9u3bMTw8XNNrNpuxTp060nr7999/49q1a/H9+/eaXkTEdu3aIQBg2rRp8bfffsNly5bhy5cvubyjR49GAMAUKVJgo0aNcM6cOfjo0SMu74oVK6S9T506dXDKlCl448YNrud05MgR6RlXrlwZR40ahefOnePyPnz4EJMlS4YAgCVLlsSBAwfikSNHuN7FT58+YdasWREAsGDBgti9e3fcs2cP93pbunRpBADMkSMH/vPPP7h582b8/PmzphcRsWnTpggAmDFjRvzjjz9w1apV+PbtWy5v9+7dEQAwderUaDKZcPHixfjs2TMu77Rp06S9T4MGDXDmzJl47949Lu/mzZul9dbFxQUnTJiAV65c4XpOFy5ckJ5xhQoVcPjw4Xjq1Cmu9fbFixeYOnVqBAB0dnbGvn374sGDB7n2PnpZs1q1arpZM126dMKsOWTIkG+GNS9cuMD1jG/fvq1gzWPHjlnNmkFBQXZlzUyZMuGff/5pN9acMGGCQ1jz5MmTDmPN7Nmz24w1N27caDVrrlixgps1+/Tpk4A1Fy5caBfWDAwMtAlrlitXTog1Q0NDrWbN6Ohoh7Hm33//rZs1U6RIgY0bN8a5c+dys6avr6/NWHP06NF2Y83MmTM7hDVdXV0dwppTpkyxmjU3bNigYM2rV69azZqnT5/mehefPXtmE9bMly8fenp6CrFmpUqVEh1rzp8/3yGseePGDZuyJm+ePSYmxiasmTlzZruy5pgxY6T11tXV1WrW/OGHH4RY8+jRo4mONePj423Omrx7nx49etiMNWfMmMHNmlu2bLEJa5YvX96urJk3b16HsOYff/zhENZcvHixgjVv3brF5d2/f79DWPP9+/eYMWNGiTV79uxpNWt27NhRiDV/+umnRMeaa9eudRhrpkiRQjdr5s+fH7t164a7du3iZs3y5ctbzZq//PKLxJotW7a0mjXd3NyEWHP27NnSelu/fn27sebVq1e/Kdbk3fvUqlXLIaw5cuRI3axJ8uze3t7crGnIsQoJCZHeEwDIh7aoibPFH6L6FwBkAoAX/33Rnah/P5r6ZliFg27Ur/fR+Dv6Ur+36Vf4HozCwf8RzZkzh36JhJJBO3bsUHhJMmjmzJl4//59i96rV69KgE+CNxkUGhqKadOmVfzdFStWxBEjRqgmg6Kjo7FAgQIKr7OzM/br1w+Dg4Mt/rA0m81Yu3ZthZc3GdSmTRuFlzcZ5OXlpfDyJoP8/PwUXt5k0KFDhxRe3mTQ/fv3JcCngySD1IouP378KCVU6SDJILWiy7i4OCxZsqTCy5sMatSokcKbO3du7NSpE27btk11Q9S1a1eFlxRdaiWDvL29Fd60adPir7/+qpkM2rhxo8LLmww6f/68wsubDHr+/DmmSpVK4aeTQZbexYiICMydO7fCy5MMMpvNWLlyZYW3QIEC2L17d9y9e7dqMqhFixYKL0kGbdq0STUZNHDgQIWXJIO0ii4XLFig8KZOnVoqulRLBu3du1fhJQdhWsmgmzdvMtfbmjVraiaD3r59i+nTp1f83TzJoJiYGCxcuLDCW6xYMa5kUL169RRe3mTQP//8o/DSySA1OBk7dqzCy5sMWrVqlcLLmww6duwYc72tV68e+vj4qCaDHj16JB0m01GtWjUcM2aMajLo8+fPUkKVjtKlS+PgwYNVk0Hx8fFYpkwZhZc3GeTu7q7w8iaDevbsqfDyJoNmzJih8PImg7Zu3arw0skgtYOwS5cuMddbkgxSK7p89eqVlFClgySD1Iouo6KipIQqHSVKlMD+/fvjoUOHVNfbGjVqKLyk6FIrGdS6dWuFN3v27NiuXTvNZNCwYcMUXt5k0JIlSxRe3mTQgQMHmOstTzLo7t270mEyvd7yJIPohCoddDLI0rsYGxuLzs7OCi9JBu3fv191vW3QoIHCS5JBWgdhnTt3VnhJMmjdunWq6+2kSZMUXnIQ5uvrq5oMWrduncJLii61kkGnT59mvos8yaCQkBApoUpHlSpVNAsPwsPDMUeOHApvqVKlNAsP4uPjsUKFCgovb+HBr7/+qvDShQdqe59+/fox11tSeKBWdMlizdSpU2OzZs1w8eLFqqy5c+dO5nqrhzVdXFxw4sSJqqz5+vXrRMmaHh4eCq89WNPf35+53tqCNdWKLtVYU6vB7+PHj5glSxaFt2zZspoNfmqsydPg17hxY4XXHqzp4+PDXG8TM2uqHYRpsabaQZjZbMYqVaoovHpZkzT4qa23gwYNUnh5G/wWLlzIXG/twZrkMJleb+3BmkWKFFF4bcGaWkWXaqypdRA2btw4hZewpp+fn9WsOW/ePFXWPH78OHO91cOapMFPizVJkywdvKxZtmxZhdcerNmrVy+F1x6suW3bNoXXFqyp1eCnxppaDX5RUVGYL18+hdcerPnnn38qvPZgzaVLlyq8tmJNtTy7FmuqFV2+f/9eapKlg7CmWtGlGmvyNPj9/PPPCq9e1vz777+/KmuuX79e4aVZU23vo4c1nz59+tVYUyvPTppk6bAFa2oVXbJYM2PGjNi6dWvNBr+5c+cqvHpZkzT4qbHmtWvXbM6aFSpU4GLNggULKry8rPnDDz8ovDRrqu199LDmqFGjFF6aNdX2PizWTJkyJTZt2lQzz3748GGF15GsyXOZTFxcHJYqVUrhtQdrduvWTeG1FWuq7X02bdrEXG95WJMuXKbXW8KaakWXelgzMjLyq7AmT4Nfy5YtFd5vnTWDgoIUXnuxJmmSpcMWrMlbdGnI/kqshYOL//uCjwOAE/XvR1PfDKtw0JP69RYaf0cL6vd2seJrzKcRVcmfbxQOJl6tXbsW27dvr1j85MFKBu3btw+7dOnCTB7RwUoGXbx4ET09PZmFCnQUKlRISgYROAkJCUFPT0+pu89SkGQQ3YEbERGBnp6eUheDpSDJIHkHbv/+/ZkbbDpIMmjJkiUJNkSTJk2SOs4sBUkGyTtwlyxZwjx4l/+wZN32tGXLFuzUqZPmM2bd9nTkyBH09PSUOhEsBenApZNBN27cQE9PT6nT1lKwkkGhoaHo6ekpdVNbClYyyGw2o6enp3QbpqWgk0H0Qdjw4cOlmy8sBUkGyQ/Cpk+fLnW5WApLyaAVK1YwAUz+jGvUqKHowN21axf++++/iuSRPMqVK6fowD1z5gx6enoyk0d0sG57un//Pnp6ekrdJpYiT548ig7cT58+oaenJ7PgiA5LyaDevXtLtyJYCkvJoLFjx0rd9pbCUjJo/vz5zIMgOuhkEH0QFhAQwDxgkAdJBtEduAcPHsQuXbpIXe+WgpUMunz5Mnp6ejKT9XQULFgQe/TokaAD99mzZ+jp6cncJNPB6sCNjo5GT09PZuKJDku3PQ0aNAjr1q2r6qU7cOlkkLe3N/OQQP4uspJBy5YtYyaf5e8iKxm0bds27Ny5syJ5JA9WMuj48ePo6ekpdb1bCpIMog/Cbt++jZ6entKtTpaClQx6+/Ytenp6YokSJVS9JBkk78Dt2rWr1KVrKUgySF50OXLkSGaxEh2Wii5nzZqFv/32m6rX0m1Pq1evljr11YJ1s/DevXuxS5cuzOQRHaxk0Llz59DT05NZFE8H62bhR48eoaenJzNBSAe57Wnbtm3S3icsLAw9PT2l24IsBZ0Movc+ffv2ZRay0GEpGTRhwgRm0ooOkgySd+AuXLhQujHMUpBkkLwDd9OmTVJ3sFqwOnAPHTqEXbp0YR6c0cHqwL127Rp6enoyk/V0sJJBL168QE9PTyxWrJiql3WzcFxcHHp6ejIL6umwlAwaOnQo/vjjj6peSzcLT506FU0mk6rXUjLI399f6hy1FHQyiC663LFjB3bu3FmRPJIHSQbRHbinTp1CT09PZvKIjmLFiik6cO/du4eenp7MQlw6WLc9vX//Hj09PZlJYDosdeD26NGDebBKh6UO3NGjR0u32loKSzcLz507F3///XdVL33bE114YAvWZB2c0WEL1qQPwghrshof6GCxZmRkJDdrsm574mVNVoMfL2uybntyFGsePXr0m2bNbNmyfRXWJDdfWApLrDljxgxN1rTU4KeHNXfv3s3FmqzbnvSw5oMHD7hYk3XbkyNZc9y4cQ5jzQ4dOmi+i1WqVFHc9iTCmvIGvytXrqCnp6d0y4ilYN329Pz58++ONX19faVpAGrvoi1Ykz4Iswdrshr8CGuyiq3psMSa3bp1w+rVq6t6LU2x+d5Y8/z583ZjTbroUpQ15UWXIqwpL7qcMGECNmnSRNVriTUXLVrExZqs2570sObhw4cdwpovX75MlKw5bdo0btaUN/iJsKa8wW/Hjh3477//crGm/LYnW7AmqxCXDhZrfvjw4btgTbroct26dUKsSRddirIm3eBnD9Zk3SxMWJPVTEiHJdYcMGCAdOOppfhfZE1WkSYdLNa8efOmEGvSDX6irCkvuhRhTXmDn17WZBUAy99FFmuuXLlSkzUB2DcL62HNs2fPJhrWpIsuRVhT3uA3btw45qU3dFhizQULFnCzprzBzxasySrSpIN1mYwtWJPcWmopWKwZExOjizUNOVaJrnAQAH4AADMAxAJAOdmvjaa+GVbh4EDq1xtr/D1NqN/b34qvU3MRIGEUDiZekVFbIkGSQTyQLA/SgUtGIIgESQaxboLSCpIMIle2iwSdDNLahLCCJIPIFfciQZJBWhs+VpBkkNbGnBUkGcS60UArSDJo6NChwl5SdDlx4kRhL110Keqlk0FaB8GsIMkgrU09K0gyyM3NTdhLkkFt27YV9pJkELmSWyRIMojVLaYVJBnEul1RK+hkkNYBozzoDlytRBkrSDJIC7BZQW57ImNjRIIkg1gdtlpBkkGsTiKtIMkgMjJcJEgyiNVlrxV0Mkir0JEVZMyU1oE9K8iYKa1kFytIB67WIRArSDKIjCMRCZIMGj58uLCXJIPImGKRoJNBWolUedDJINaNTFpBkkFaCU1WkGSQVuKZFSQZxFP8Kw9yEMbqotYKUnRJRtiKBLntaerUqcJeOhnEugVGK0gySOuQkBUkGaR1uMAKkgxidV9qBUkGeXp6CnvJmKnBgwcLe0kyiIwyEQlyEDZz5kxhL50M0kqGsoJ04JJxaiJBkkFaRaWsIMkg1i3eWkGSQawbZLSCJINYt7JpBSk8sHbvQwoPtA415EGPmdI6mGAFKbokI0VEgoyZ0ipyYoWjWJPc9qSHNadPny7stRVraiWtWaGXNXv27CmN6RIJwpqsGw20gjT46WFN1u0zWvE9syZPAYw89LJmy5YtHcKapMFPD2uybmTSCnLbkx7W1Dp0Z0ViZE0yZsra9dZRrEka/BIja5Jx0iJhK9bUOkSWhy1Yc8SIEbpYk4xnFwnS4GewJl8YrMkfpOjSEaxJbnvSw5paxYqs0MOa5GZhngIYediCNclIRZGwBWvOmDFDF2tqNQCwQg9rktuetIqcWOFo1mTdOqwVtmBNHx8fzcJyVuhlzcGDB2sW8bOCsKa155odO3bUxZqsG2m1whasScbfikRiZU0y0jixsaabmxvzdkWtoFlTq5hVHrZiTa2mKVbYgjX//fdfYa8tWNOa9ZawpjXnmsZI429HX6NwMBl8JTk5OaWAL7cNOgHADES8KvhHpKL+f4zG742m/n9qwb/HkCGLioyMhPDwcHBychL2RkdHQ3h4OERFRVntjYyMFPbGxcVBeHg4RERECHvj4+MhPDwcwsPDSVGtkIjXbDZb7Y2LixP2RkREQHh4OMTEaC0VSkVGRkJYWBikTZtW2KvnGcfGxup+xuHh4cJes9lsk+cUHx9vtTc2NlbYq+cZR0VFQXh4OKRKlUr7N8sUExNj9fsUGxsLYWFhdn8XEVHXMw4LC9P9LlrzjMl6myyZ+NZEz7tInrE17yJ5j/U847CwMKvWW/KcrHkXbfGM9byLSZMmFfY66hnrWW/1vot6fi6S/7b0rLfW/LdFnnG6dOmEveQ56fmZ+j3ufax5xuQ5pUyZUtgbHR0NYWFhEB0drf2bZdLzM1Xv3oese47a+zjqGadIkULYq4dDyLtozXOi30VR2Wq9tfcztgVr6nkX7f1z0RbrbVhYWKJabx3Nmo5Yb23xLurxJibW1LveWsua9DO2N2s6Mu+T2FjTFrk9R7Cmo56xLVjTmueUWFlT7zO2ljXJu2jN10yecfr06YW9BmuKKTGz5veYZ9fDIXrWW0exprXvIln3ROVI1iTv4vfCmrbKJ9ibNR19lmKNvmfWdMR6a+2+iay3qVOLl704ar01WFNMelkzLCzMoXsfa9cgQ9+wbFF9yAr4/xsFHwNAWpVfR3D8jYPGqOLvQMuXL+e6JYB0x9LXcu/atQvbtGmjOaqYjL+kr+U+e/Ysenh4YJYsWVS9OXLkkK7lJtfEPn78GD08PDS7RzNmzIitW7dOcE1sREQEenh4aN7+lzp1amzWrBkuXrwYnz17Jn1eXbt21ew8Jd2x8pEkXl5emh02pDtWPpJk7ty5XDd2sMZfrl+/nqszmYwkCQ4Olq7IP3jwIHp4eGh23LPGX169ehU9PDwwZ86cqt6sWbNi27ZtE1zL/fLlS/Tw8NC8Rph0xy5fvlwaSWI2m9HDw0Pz2vaUKVNi06ZNccGCBQlGkvCMySDdsfKRJBMnTuTqaCTdsfRIkqVLl2peFQ3wpTtWPpJk27Zt2KZNG81ubNZIkhMnTqCHhwdmzJhR1csaf3n37l308PDQ7Gaix1+Sa7k/fvyIHh4emuNR06RJI42/pK/l7tSpk2YnVPLkydHV1RXnzJmTYCQJT3cx3R1LX8s9ffp0zbFEAP/fHUuPJFm5ciVXpxzpjqVHkuzduxc9PDw0x0eR7lh6JMmFCxfQw8NDc4QC6Y6lR5KEhISgh4eH5mh41kiS6Oho9PDwwLJly6p6LY0k6dGjB9asWVPVS4+/pEeSjBkzRvM2B3r85ZUrV6RnPH/+fM2xRAD/3x1Lj4DauHEj/v3335rjo0h3LD0C6vDhw+jh4aE5PipPnjzYpUuXBCNJbty4gR4eHpqd3KQ7NiAgQBpJ8ubNG/Tw8NC8iZN0x8pHkrRt21bzxjHSHSsfScIzJsPS+MspU6ZojiUCYI+/9PX11RxLBMAef7ljxw5s06aN5vgoMpIkKChI2vucPn0aPTw8NG+UypkzJ3bs2DHBCKgHDx6gh4eH5ggF0h1Lj4D6/Pkzenh4aI6sId2xS5cuTTCSpEuXLprjqOnuWHokyYgRIzRvsiLdsfKRJLNmzeK6saNSpUqKkSRr167VHDkOwB5Jsm/fPvTw8NAcH8Uaf3n58mX08PDQHKHAGn/5/Plz9PDw0LwZLn369Irxl7Gxsejh4aF5Aw7pjl24cGGC9bZ3796anf5JkyaVumPpkSTjx4/XHMlId8fSI6AWLVrE1bVKumPpkSSbN2/Gv//+W/PWU9IdS48kOXbsGHp4eGjecMIaSXL79m308PDA3Llzq3rJzSD0SJJ3796hh4eH5sgaevwlvffp0KGD5q0blkaSDBo0COvVq6f5LrK6Y6dOncrVQV6lShUcPXp0ghFQ1rAmeRcJa2rdfsFizXPnzgmxJj2SxF6sScZfirImfQslPfp71KhRXKzJGn/pKNYMDg7mYs28efPalDVfvXrlUNbUGkdtiTUnTZrExZqs8ZeJkTXv3btnV9akx1/qYc1hw4YJsSY9/nL69OlcN2OzWHPVqlXcrCkff8nLmuRmEBZrat3gxxp/+fTp0++ONRcsWGA31qTHX+phzZs3b3KxJmv8JWFNrdtRLLFmu3btNFmT3Axia9bUGskIwGZNPz+//3nWXL16tbT3CQsLE2JN+fhLEdacNWtWgjy7HtacPXs2F2uyxl/qYc39+/dzsWa+fPm+Cmtq3QzHYs24uDhh1qTPCu3FmvLxlyKsKR9/uWXLFmzTpo0ma7LGX9qCNbVGw7NY8/379w5jzcGDB9uNNenxl6KsSY+/FGVNevylvVhTPv6SsKbW7X+WWLNbt24OY02e2yFZrBkQEOAQ1rx27ZoQawYEBFjNmv7+/hJrIiJ6eHhojkclrDl//vxExZpk4oGtWPPkyZN2ZU2SZyesqXXzsSXW7Ny5Mzdrzp4922asOWPGDG7W9PLyshlrBgUFfXesacixSjSjigGgJHy5BRABoJmF3zOa+mZYhYOe1K+30Pj7WlC/t8tX+H7ykT/fKBxM3Fq0aJFiwbO0SZQrKChI4aWvKqcTZHLdunWLCWBkk0gnyOR6+/YtZsiQQeFlFWPIFRsby9y4kavKd+zYIW0SWapfv77CyyrGYKlDhw4KL0mQyTeJcrHGuJBiDPkmUa7Vq1crvPRYLDpBJteJEyeYPxRZm0S5njx5wiwsJZtEOkEmV1hYGHNDQDaJQUFB0iZRrvj4eCxXrpzCSzaJdIKMJdYGilWMwVLv3r0VXroYg94kysUa/2CpGEOu7du3K7z0VeX0JlGuK1euMJ8xuaqc3iTK9erVKyaAkavK6U2iXFFRUczEJGuTKJfZbGYm+skmkU6QscSCTnqTSBJkLLHGwpJNorwYQ65ly5Yx11uSIKMPJOQKDg5mrresYgy57t69ywQwUoxx8uRJi8/4w4cPzOQzKcagDyTkio2NZSatyFXlgYGBUoKMJdaBDOtAgqUuXbow19vmzZsrDiTkYo1Uog8k6ASZXAEBAcx3kRxIqF1VfubMGea7SMZi0cUYcj19+pQJYGQEM134L1d4eDgzGcIqxpDLbDYzExpkLBZd+M8Sa4Q3KcagDyRY6t+/v8JLCv/lBxJyzZs3j7nekrFY9IGEXLt27WK+i2QsFp0gk+v69evMwz5yIEEnyOR68+YN87CPHEjQCTK5oqOjmaDMKvyXy2w2Mw/dyFgsuhiDpbZt2yq8dDGG2nrLGptFF2OoMcjy5csVXnosFp0gk+vIkSPMd5EU/tMHEnI9fPiQedhHxmLRBxJyffr0iZl8Zh1IyBUXF8csViIHEtu2bVNdb1mFuORAgi7GYKl79+4KLzmQkBf+yzVt2jTmessqxpBr8+bNzPWWVfgv14ULF5jPmBRjnDt3zuK7+OLFC0yVKpXCSwr/6QMJuSIjI5kHQaTwnz6QkMtsNjOTi6Twf/Pmzap7H9YhNn0gQRJkLA0ZMoS53rIOJORSY80ZM2aosua+ffuY660e1mQVY8j17t27RMmarJFb9mDNNWvWMNdbW7AmXYwhlxpryosx5AoLC2MevNPFGKKsySrGYIlVqGAP1mSNWf7WWTM0NFSVNeliDLm0WJMuxpDLbDaji4uLwquXNeXFGCyxxsJaKvyXy9fXl7nefm3WvHfv3ldlTbW9z9diTboYgyUWa6ZNmxabN2+Ovr6+qqw5ZcoUhZewprwYQy411tQai3X27Fnmu6iHNVlN5nJFREQwiw55WZNVOGgP1mSNoqRZU23vo4c1d+/ezXwX9bKmvBhDLkusySrGkCsmJsZhrMkacWgP1lyxYoXCayvWVMuza7EmXYwh16dPn5gNxYQ16WIMuSyxJqsYgyVWIa5e1mQ1mculhzW3bNnCXG/twZqswlJbsKZWnp1VxGsL1qSLMVhSY81FixaprreLFy9WePWyJqvwX67bt28nStZkFVvbijXV9j6scek0a9KF/3Kpsaa88F+ukydPMt/Fb501WYXa9mBN1uhfe7BmYGAgc73lYc2rV68ynzFhTbrwXy49rBkdHW1z1mQV/rP0999/K7zfO2taehc/fPjAHNNuC9akC/8NfVtKTIWDi/77Iu8DQGsLsZH6ZsZS/z7tf3+GO/XrfTT+vr7U7236Fb4fo3Dwf0DR0dFShwtvMQaR2WyWOsZ4izFotWnTBgEsd4eqaeTIkdImkdUdqiY/Pz9p0WB1h6rp0KFDkpfVHaqm+/fvSz/gWN2havr48aP0A453k0gUFxcnddqzukO11KhRowSbRK1iDFpdu3aVNok8CTJa3t7e0gaCJMjo7lA1bdy4UXpOrO5QNZ07d07ysrpD1fT8+XPpIJnVHaomOplKbxLVEmREZrNZ6gpkdYdqiXQEWeoOVdPAgQOld5HVHaqmBQsWJNgkahVj0NqzZ4/0nHiKMWjdvHlTSqbyFGPQevPmjdQ1yuoOVVNMTIx0kxSrO1RLpHvTUneomtq3by+tt6zuUDWNHTtWAjZWd6iaVq5cKT0nVneomo4dOyZ5Wd2hanr06JEE9zzFGLQ+f/4sJVPpBJnagQRRfHy81PnJ6g7VEumy5S3GoNWzZ08J2HgK/2lNnz5dehdZ3aFq2rp1q/ScWN2harp06ZLk5TmQoPXy5UspmUq6Q7USZERRUVFSRyGrO1RNZrMZq1evLu19eIoxaJHuPN5iDFrDhg2T1ltSjKF2IEFryZIl0mfNU/hP68CBA5KX1R2qpjt37kjJVFZ3qJrev38vdY3yHkgQxcbGSrdosrpDtUQ6qS11h6qpc+fO0t6H1R2qpokTJ0rr7Q8//KCZIKO1bt066TmxukPVdOrUKUWCTK3wn1ZISIjUpc9T+E8rPDwcc+TIgQDs7lA1xcfHSzd+sbpDtUQ63q3pDu3bt6+03rJuIlLTnDlzpPWWHEioJcho7dixQ3pO5cuX1yzGoHX16lVp78NT+E/r9evXmDZt2gQJMq1iDCK9rEluAbc3a3p5eX0zrKlWjEHr/v370kEyYU21YgxaLNbUKsYgiouLkzrt9bAmb+E/LT2s6ePj4xDWPH/+vMNYk9yUagvW1CrGoCVnTa1iDFqDBg1KwJrTpk2zC2vu3bvXIaz59u1bXaxJbpKyN2v+888/NmNNrWIMWqtWrbIZa2oVY9DSy5qkQdberEkmJ9ibNWfMmGE1a27btk3BmmrFGLRYrKlWjEHr1atXNmNNUozBu96S26ASE2suXbrUIaxJN8jagjV58+yxsbHSLZq2YE2tYgxaLNZUK8agNWnSJGm95SnGoEWzJk/hP63Tp08nOtakG2TtzZr9+vWzGWtqFWPQ2rlzZ6JkzYIFCzqENT08PHSzJm+TOS1/f38Fa6oV/tM6fPiww1iTNMjyFv4T0azJW/hPi9ygl5hYc9OmTTZnTZ530dasqVX4T2Q2m7FKlSpWs2bLli2lvQ9P4T8tmjVJ4T8vay5cuFD6rHmazGnpZU2SZ09MrEluSbQVa/Lm2ceNG2cT1qQL/3m8hhyrr1E4KD5wm08p//vfIgCwluP3j6T+f2EACAeAG9S/K6nhp3/9JsffZ+g71NGjR6F169ZgMpnAxcUFkiZNyu29fv06VK5cGUaNGgX16tWDlClTapv+U2hoKKROnRq2bNkCP//8M6RLl47bGxUVBaGhobBq1Spo0qQJZMmShduLiHD16lVYsmQJNG3aFPLkycPtBQA4duwYzJw5E0wmExQpUkTIGxQUBOPGjQOTyQRlypQBJycnbu/+/fuhe/fuYDKZoGrVqpAkSRJu76lTp8DNzQ0WLlwItWvXhuTJk3N779+/D4ULF4adO3dC/fr1IXXq1NzeDx8+QFxcHGzYsAFcXV0hQ4YM3N7Y2Fh49OgRLF++HJo2bQrZsmXj9iIinDt3DhYsWABubm6QP39+bi8AQHBwMEydOhVMJhMUL15cyBsUFATDhw8Hd3d3qFChgtAzPnToELRv3x5MJhPUqFFD6F28ePEi/PDDDzBlyhSoW7cupEiRgtv77NkzyJIlC2zbtg0aNGgAadOm5faGh4fDhw8fYO3atdC4cWPIlCkTt9dsNsPNmzdh2bJl4ObmBjlz5uT2AgCcPHkS5syZA+7u7lCoUCEh7/79+2Hy5MlgMpmgZMmSwu9iv379wN3dHSpXriz0Lh47dgxatGghrbfJkvFvN27dugVly5aFIUOGwI8//gipUqXi9r558waSJ08OmzZtgoYNG0L69Om5vdHR0fD8+XNYuXIlNGnSBLJmzcrtRUS4dOkSLFq0CNzc3CBv3rzcXgCAI0eOwIwZM8BkMkHRokWFvPv27YPRo0eDyWSCsmXLCj3jAwcOgKenJ5hMJqhWrZrQMz5z5gy4urrCnDlz4IcffhBabx89egT58uWDwMBAaNCggdB6++nTJ4iKioKAgABwdXWFjBkzcnvj4+Ph/v374OfnB02bNoUcOXJwewG+fM/z5s0Dd3d3KFCggJD34MGD4OPjAyaTCUqUKCHkDQoKgiFDhoDJZIKKFSsKPePDhw9DmzZtwGQyQc2aNYXW2ytXrkCNGjVg/PjxULduXaG9z8uXLyF9+vSwdetW+Pnnn4XW28jISHj79i2sWbMGGjduDJkzZ+b2ms1muH79OixduhTc3NwgV65c3F4AgOPHj8Ps2bPB3d0dChcuLOTdt28fTJgwAUwmE5QuXVp4ve3VqxeYTCaoUqWK0Lt44sQJ+OWXX8BkMkHt2rWF1ts7d+5A8eLFoX///lC/fn2h9fbdu3cAALBx40ZwdXUVWm9jYmIgJCQEVqxYAU2aNBHe+1y4cAEWLlwI7u7uwuvt4cOHYfr06eDu7g7Ozs5C3qCgIPDy8gKTyQTlypUTesbBwcHQqVMncHd3h+rVqwu9i+fPn4f69evDtGnToE6dOkJ7n5CQEMiRIwds374dGjRoAGnSpOH2hoWFQVhYGKxbtw4aNWoktPeJj4+HO3fugK+vLzRt2lR473P69GmYO3cuuLu7Q8GCBYW8Bw4cgClTpkjrrchz2rdvHwwcOBBMJhNUqlRJyKuHNW/cuAGVKlUCLy8vq1lz8+bN0LBhQ2HWfPXqldWseeXKFVi8eDG4ubnZlTX37dsHY8eOtTtrnj59Gpo2bQoLFixINKwZFxcnsWaTJk0ge/bs3F69rHnw4EFdrDls2DAwmUxWsWa7du0SFWtGREQ4jDVPnDihmzXd3d2hVKlSwuuttax5/PhxaN68OZhMJqhVq5ZdWTNZsmRWsWZMTIzDWdPd3R2KFSsm5NXDmgcPHoQuXbo4hDXz5s1rNWtGRkbC+vXroVGjRgZrakgPa169ehWqV68O48aNSzSsiYhw7do1WLJkCbi5uUHu3Lm5vQD6WXP8+PF2Z82TJ09Cs2bNrGLNu3fvOoQ1Y2Nj4cmTJ7pZ083NDfLly8ftBfiyB9HDmiNHjgSTyQTly5e3K2vWq1cPpk6danfW/Pz5s0NY89SpU1az5sGDBx3Gmn/88Qe4u7sL59n1smaqVKkSHWsePXoUZs6cCe7u7lbl2a1lzQMHDkC3bt3szpoPHjyAQoUKWc2asbGxEBAQAI0aNbIbawIAnD17FubPnw/u7u7fBWteunQJateuDZMnTxZmzefPn0PmzJkdyppNmzYVzrOfOHECZs+eDSaTSZg1Dxw4AJMmTbKaNfv27Qsmk8nurFm6dGkYPHiw3Vnz2bNnDmFNQ/97csIvN+rZ9g91cvIHgHZW2gsj4iOnL6vAUwDIAwC3ELGUyt93E74UDz4DgPxo42/KyckpHwCEAHzZEItCgyFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmSNnj59Shde50fEp3r/TP4yWwEhYntEdFILABhDWepTv/bovz8DAWDbf79e0snJqSbr7/rv35MbB7fZumjQkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZ+l/SVykctKFmAkDcf/9/jpOTU4I7dv/75zn//WPcf7/fkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmRB33ThICLeAYCp//1jVQA47uTk9IeTk1NVJyenPwDg+H//HgDABxHvOuLrNGTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhhKLkjn6C+DQcADIAQAdAKASAKxj/J5lADDCnl+UIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkylBj1Td84CACAiGZE7AgAbgCwDQCeA0DMf/+7DQCaImInRDQ78Ms0lAh0/PhxWLlyJbx9+1bYe/PmTVi0aBE8e/ZM2BsaGgozZsyAe/fuCXujoqLAx8cHLl++DIgo5EVEmDlzJpw6dQri4+OF/+6lS5fCgQMHIDY2VtgbEBAAgYGBEBERIewNCgqC9evXw8ePH4W9Z8+eBT8/PwgNDRX23r9/H+bNmwdPnjwR9n748AGmTp0Kt27dEn5OsbGxMHXqVLhw4YJVz3ju3Llw7NgxiIuL0zbItGLFCti7dy9ER0cLe7dt2wZbt26FsLAwYe/hw4dh9erV8O7dO2HvlStXYMmSJfDixQth77Nnz2DWrFnw4MEDYW94eDj4+PjAtWvXhJ+T2WyG6dOnw5kzZ8BsFv9RtWjRIjh06JBV7+LatWth165dEBUVJezdvXs3bNy4ET59+iTsPXnyJKxYsQLevHkj7L19+zYsXLgQnj59Kux98+YNTJ8+He7cuSPsjY6OBh8fH7h06ZJV7+KsWbPgxIkTVq23vr6+sH//foiJiRH2btq0CbZv327Vert//35Yt24dfPjwQdh74cIF8PX1hVevXgl7Hz16BHPnzoVHjx4Jez99+gRTp06FmzdvCj+n+Ph4mDp1Kpw7d86qd3HevHlw5MgRq9bblStXwp49e6xab7dv3w6bN2+2ar09evQorFq1yqq9z/Xr12Hx4sXw/PlzYe+LFy9g5syZcP/+fWFvZGQk+Pj4wNWrV61ab2fMmAGnT5+26hkvWbIEgoODrVpv169fDzt27IDIyEhh7549eyAgIMCqvc/p06fB398fXr9+Ley9e/cuzJ8/H0JCQoS97969g2nTpsHt27eFvTExMeDj4wMXL160ar2dPXs2HD9+3Kr11t/fH/bt22fVu7hlyxbYtm0bhIeHC3uDg4Nh7dq18P79e2HvpUuXYNmyZfDy5Uthb0hICMyePRsePnwo7A0LCwMfHx+4fv26VevttGnT4OzZs1a9iwsXLoTDhw9btd6uXr0adu/ebdXeZ+fOnbBp0yb4/PmzsNfRrHn3rvjwBVuw5smTJ+3Omhs2bEh0rPngwQOYN28ePH78WNirhzXj4uISLWtu2bLFYE0OOZI1161bB7t27bJq76OXNZcvX27V3kcva06bNs0q1iR7n++JNQ8cOJAoWdPHxwdu3Lhhd9acP3++Q1gzMDAw0bHmy5cvHcKaiAgzZsyAU6dOJSrW3Lt3r0NY8969ezB//nyr8ux6WDM2NlYXa86ZM8dhrLl161aHsObSpUsN1uTUmjVrHMqa1uTZv0fWXLZsGRw4cMCqvY8e1ty3b5/VrHnu3DmHsObHjx+tzrPrYU0AgLlz58LRo0cN1uTQ8+fPEy1rWrv30cuaGzZssDtr3rlzBxYsWGBVnt2RrDl79myrWdPQ/6AQ0QiNAIB8AIAAgCEhIWgocerDhw+YKVMmTJIkCf7www84efJkvH79OprNZk1vXFwcFi9eHAEAK1WqhF5eXnj27FmMj4/n+rsbNmyIAIAlS5bEAQMG4OHDhzE2NpbL+++//yIAYIECBbBbt264e/dujIyM5PJOnjwZAQCzZ8+O7du3x02bNuGnT5+4vAEBAQgAmCFDBmzVqhWuXLkS37x5w+U9c+YMAgCmTp0a3d3dcdGiRfjs2TMu79OnTzFlypSYLFky/Omnn3DGjBl47949Lm9ERATmzJkTnZycsGbNmjhhwgS8fPky1zM2m81YsWJFBAAsX748Dh8+HE+ePMn9jJs3b44AgMWKFcM+ffrggQMHMCYmhsvbv39/BADMkycP/vvvvxgYGIgRERFc3nnz5iEAYJYsWbBNmza4fv16/PDhA5d3165dCACYLl06bN68Ofr5+eGrV6+4vNevX0cnJydMmTIlNm7cGOfNm4ePHz/m8r558wbTpUuHSZMmxbp166KPjw/eunWLyxsdHY2FChVCAMCqVavimDFj8MKFC9zPuE6dOggAWLp0aRw8eDAeO3YM4+LiuP7utm3bIgBgoUKFsGfPnrh3716Miori8o4ePRoBAHPlyoUdO3bELVu2YFhYGJd3+fLlCACYKVMmbN26Na5evRrfvXvH5T1y5AgCAKZJkwZ/+eUXXLJkCb548YLL+/DhQ0yWLBkmT54cf/75Z5w1axY+ePCAy/vp0yfMkiULOjk5Ya1atXDSpEl47do17vW2dOnSCABYsWJFHDlyJJ45c4b7XWzSpAkCABYvXhz79++Phw4d4l5vu3fvjgCA+fPnx65du+KuXbu419upU6ciAGC2bNmwXbt2uHHjRu71dvPmzdJ627JlS1yxYgW+fv2ay3vhwgUEAEyVKhW6ubnhggULuPcqL168wFSpUmGyZMmwfv36OG3aNLxz5w6XNzIyEvPkyYNOTk5Yo0YNHDduHF66dIn7XaxatSoCAJYtWxaHDh2KJ06c4H4XW7VqhQCARYoUwd69e+P+/fsxOjqayzt48GAEAMydOzd27twZt2/fjuHh4VzeRYsWSevt33//jevWreNeb/ft24cAgGnTpsXffvsNfX19udfbW7duYZIkSTBFihTYqFEjnDt3Lj569IjL++7dO8yQIQMmSZIE69Spg97e3njjxg2u5xQbG4tFixZFAMAqVargqFGj8Ny5c1xeRMT69esjAGCpUqVw4MCBeOTIEe53sWPHjggAWLBgQezevTvu2bOHe70dP348AgDmyJED//nnH9y8eTN+/vyZy7tmzRoEAMyYMSP+8ccfuGrVKnz79i2X9+TJk9Lex2Qy4eLFi/H58+dc3idPnmDy5MkxWbJk2KBBA5w5cybev3+fyxsWFobZs2dHJycndHFxwYkTJ+LVq1e5nlN8fDyWK1cOAQArVKiAI0aMwFOnTnGvt82aNUMAQGdnZ+zXrx8ePHiQe+/Tu3dvBADMly8fenp64o4dO7j3PrNmzZLW27Zt22JAQAB+/PiRy7t9+3YEAEyfPj3+/vvv6O/vj6GhoVzeK1euIABgypQpsUmTJjh//nx88uQJlzc0NBTTpEmDSZMmxXr16uHUqVPx9u3bXN6oqCjMnz8/AgBWq1YNx44dixcvXuReb11cXBAAsEyZMjhkyBA8fvw493r7119/IQBg4cKFsVevXrhv3z7u9XbEiBHS3qdTp064bds27r3PsmXLEAAwc+bM+Ndff+GaNWu49z7BwcHSevvrr7/i0qVLufc+9+7dw6RJk2KKFCnQ1dUVZ8+ejQ8fPuTyfgusWaJECWHW7NKlS6JjzbNnz0p7H8KaT58+5fKyWPPu3btc3oiICMyVK5fVrFmpUiWJNYcNG2Y31hwwYIBDWHP37t1Ws+aNGzccwpoxMTEK1jx//rzVrHn06FHu9bZdu3YOYc0VK1ZYzZpHjx6VWLNZs2a4ZMkS7r2PXtbMmjWrQ1izadOmNmPNnTt3cq+306ZNsxlrLl++3G6smTp1akyaNCn++OOPVrEmAGD16tWFWbNatWoOYc0hQ4ZYzZqLFy9WsOb79++5vCzWfPnyJZf39u3bNmPNKVOm2J01S5YsaVfWnDBhwv8Ea/Lm2RMra/bp0wcBAPPmzYtdunSxijWzZs2KHh4eQqwZGBiY6FgzOjraYaz5999/24w1t27dyr338fX11c2aJM9uDWsmT54cGzZsKMyamTNnxiRJkmDt2rXtypqurq4OYc0pU6ZYzZobNmxwCGs+e/YsAWtOnz7dKtasUaMGjh8/3u6sWbRoUbuy5vz58/8nWPPmzZtcz0kva9atW1dizUGDBlnNmj169BBizTFjxiAAYM6cObFDhw4Ga6ooPj7epqwZHBzMvd726NHDJqzZtm1b3LBhA/fex5BjFRISgqR+DQDyoS1q4mzxh/yvh1E4+L+jsWPH0i+RUDJo5cqVCi9JBm3btk01GXTs2DGFlySD1q5dq5oMevToESZLliyBlySDli1bppoM+vz5M2bNmjWBlxyEzZkzRzUZFB8fj2XKlEngJQdhPMkgNzc3xfdcuXJlrmRQz549FV7eZND06dMVXt5k0NatWxVe3mTQpUuXFF46GaQGJy9fvsTUqVMn8NLJILWiy6ioKMybN28CL28yyGw2Y/Xq1RN4STJowoQJeOXKFdXn1Lp1a8X3XKFCBRw+fLhmMmjo0KEKr7OzM/bt21czGbRkyRKFlzcZdODAAYWXNxl0584dTJIkSQJvunTpuJJB79+/x4wZMybw8iaDYmNjsVixYgm8dDJI6yCsQYMGiu+ZJIO0ii47deqk8JJkkFbR5cSJExXewoULY8+ePTEoKEh1vV23bp3CSw7CtJJBp06dUngzZcqEf/75p2YyKCQkBFOkSJHAy5sMCgsLwxw5ciTw8iaD4uPjsUKFCor1ljcZ9Ouvvyq+Z95kUN++fRVe3mTQnDlzFF6SDNIqutyxY4fCS5JBWgdhV69eRScnpwRekgxasWKF6nobGhqKadOmTeAlB2ELFy5UTQZFR0djgQIFFOtt/fr1NZNBZrMZa9eurVhveZNBbdq0UXxe5cqV40oGeXl5Kby8ySA/Pz+Fl04Gqe19Dh06pPDyJoPu37+v2PvwJoM+fvyImTNnTuBNkSIFNm7cGOfOnauaDIqLi8OSJUsq1tu6deuit7e3ZjKoUaNGiu+5SpUqOHr0aM1kUNeuXRVe3mSQt7e3wsubDNq4caPCy5sMOn/+PHO95UkGPX/+HFOlSqVYb3mSQREREZg7d27FekuSQWpFl2azGStXrqx4F0kySOsgrEWLForvmSSDTp8+rfouDho0SOEtXrw49uvXD4ODg1XfxQULFii8pOhSKxm0d+9ehZc3GXTz5k3Feps+fXps0aKFZuHB27dvMX369Ir1tmnTppqFBzExMVi4cDf3FS8AAQAASURBVGHFu8hbeFCvXj3F98xbePDPP/8ovKTwQOsgTI01tQ7CVq1apfDqYU1yEMbDmsmTJ0/gTQys6e7urvie7cGaM2bMUHhtwZqbNm2ymjW1DsJevXplkTW1GvzUWFOrwc9sNmONGjUU660e1iQNflqsOWzYMIX3W2fNu3fvYtKkSRN47cWazs7OivVWL2vyNPh17txZ4S1TpgxXg9+kSZMUXnuw5unTpxVee7BmeHj4V2NNrYMwNdbUOgjr16+fwktYU6voksWa+fPn52LNnTt3Krx6WZM0+Kmtt69fv9bFmgULFlSst/ZgTQ8PD8XnRbOm2ruoxpr79+9XXW/9/f0VXluwplaDnxprajX4ffz4EbNkyZLAq4c16QY/LdZs3Lix4nvWw5qlSpXiYk0fHx+F11asqbb30WJNtaLLr8WaWg1+ZrMZq1SpongX9bLmiBEjrGJNUnSpxZoLFy5UeO3FmvI8u71Ys0iRIgm8tmJNraJLPaw5btw4hVcva5IGP7X19vjx4wqvXtb89ddfuVgzW7ZsivWWlzXLli2rWG9txZpq72KvXr0UXj2sWaBAAezevTvu3r1bdb3dtm2bwutI1uS5TCYqKgrz5cuXwMt7mYwl1iQNflqs+eeffyq+Zz2sWaxYMS7WXLp0qcLLy5oHDx5UeGnWVNv76GXNTJkyJfDagjV5Gvx+/vlnxfeshzV5L5PRw5rr169XeO3Bmk+fPv1qrMlbdGnI/jIKB43CQUM6tG/fPhw+fLhi4aXDUjLozJkzOHHiRMVGlw5LyaDbt2+jt7c3Zs+e3aLXUjLo1atX6O3tjSVKlLDopZNB9EFYVFQUent7S51floIkg+QduHPmzGFukumwlAxasWKFdDubpSDJIHkH7rZt26TOQEth6banw4cPS932lsLSbU+XLl3CKVOmYJo0aSx66Q5cOhn08OFD9Pb2Vmx06bCUDHr//j16e3tj+fLlVb9uVjLIbDajt7c3/vjjj6peOhlEw8miRYukjiJLUbBgQezRo4fiIGzdunXMzRcdlpJBu3fvZiY06MiYMSO2bt1a0YF74sQJnDBhgmKjS0fq1KmxWbNmig7cGzdu4JQpUxQFJfINEeu2p2fPnqG3t7cisSB/F1kduGFhYejt7S11vVsK0oErTwbNmDGDWYxCh6VkkK+vLxOE6LCUDNq8ebN0K4KlsJQMOnDgAI4cOVLVSyeDaDg5d+4cTpo0CVOmTGnRmzJlSmYy6O7du+jt7Y05c+a06KWTQXQH7uvXr9Hb2xtLlSql+nVXr15d0YEbExOD3t7eimS9PCx14M6dO1fqprYURYoUYXbgrlq1Ctu3b6/qtZQMCgwMZB7m0GEpGXT06FEcO3as4lCFDkvJoCtXruCUKVMwXbp0Fr10Mog+CHv8+DF6e3srCvjosJQM+vjxI3p7e0u3y1oKkgySF136+PjgTz/9pOolySB50eXixYuxZcuWql66A5deb9evXy916VqKHDlySB249Hq7d+9eZqE2HZY6cE+fPo0TJ05UHKrQYSkZdOvWLfT29lYUlNBhKRn04sUL9Pb2ViQW6LCUDIqIiEBvb29F8kgelpJBs2bNkm4ttRSWkkH+/v5Sx7ylIMkgeQfuli1bmMlFOkgySF50GRwcjKNGjVL10kWX9Hp74cIFnDx5siLJR4elDtwHDx6gt7e3dBsMKyzd9vT27Vv09vZWJHLlwbpZOC4uDr29vaVOW0thKRm0YMEC5gE4HeS2p6CgoATv4po1a7BDhw6qXkvJoJ07d+LAgQNVvZaSQceOHcNx48YpDlXosJQMunbtGk6ZMkVRUEIHSQbJO3CfPn2K3t7eUke0pXeR1YH7+fNn9Pb2VhycyaNSpUrMDtxp06ZJt+hZCku3PS1duhT/+OMPVa+lm4U3btzIPFilI3v27MzbnvSy5qRJkxRJPjosseadO3eEWJM+CNPDmtHR0dysybrtiZc1WQ1+vKzJuu1JL2uSbntLYSvWpA/CEgtryg/CFi1ahL///ruqVw9rWmrw2717t3TDtKWwxJonT57kYk3WbU+2YE1y+5ald/FbY00/Pz8h1qT3Pps3b5ZuRbAUlm4WFmFN+UGYCGvKD8Lu3bvHzZry2554WZN12xNhzR9++EHVa4k1582bp8malm570sOaO3bskKZrWApbsSa99yGsKS8oocMSaz558oSbNeUNfrZgTVYhLh2WptiIsia99wkICNBkTfq2p++NNemiy8jISPT29saaNWuqfs+WptiIsKa8wc/f35/ZTEiHJdbcunWrJmtaavDTw5oXL15MdKwZHx+fKFhT3uAnwpryBr/jx4/j+PHjuVhTPsXGFqwpbxaTv4t6WNPSbU96WHPZsmUOY01yy6KlsDTFRpQ16Ty7vVhT3uBHWLNWrVqq37Me1rR0mYwe1ty+fTuzQZ+Or8ma8uYFOiyx5qNHj4RYk86zi7KmvMHP29tbukHYUnxrrLlnzx4u1mTdLPy1WdPSFBs9rBkeHm431pTn2f38/KQpKJbiW2PN8+fP4+TJkxXNC3RYKrrkZU3WzcKENclth5aCxZqxsbG6WNOQY2UUDhqFg4Z0SKsARh50MkgLvlhBOnBZt8BoBUkGkTFdIkGSQayuPq2gk0HyDkqtoJNBWokyedBXf5tMJiEvnQzSSnbJg04GaW0GWEGSQWSMgUiQMVOsmyy1gi66FPXSySC1ZCgr6GSQVoGUPOhkkBZgy4NOBmkd9LGCJIPISBGRIMkgVvelVpBkEKvLRCvoZJAa9LGC7sDVOpiQB50M0trUy4O+7UnrcEEedDKIjPcRCZIMItdqiwRJBrFuVtMKkgzasmWLsJceMyXv6NEKesyUFrjJgx4zpZXQlAdddNmtWzfhZ0ySQVoF3qwgHbhz584V9pJk0OrVq4W99JgptUQqK+hkkFrRMSvoZBCrm1kt6GSQFmDLg04GaR30sYKMmSLjK0WCFF2ybvrRCnLbExlHIhJ0Mkgt4c0KOhmklSiTB50MIqMIeINOBrFuhlULOhmkVeTECpIMYnVCawVJBrFuF9EKchDGurFLK+hkkPzmLK2gx0xpHRLKg04GsW6PUAs6GcS6HU0rSDKIdSuBVpBkEOuWQ60ghQdr164V9tIjjdUKOlhBj5lSOwhmBV10qXVgLw96pDHrth61oG970sOarFtgtILc9qSHNTdt2iTstRVrkjFMvGEL1pw+fbou1mTdyKQVZMyUNaxJGvwSK2tqJa3lkZhZc9CgQXZnTbrBTw9rah1MyIO+7YmMveMNmjVZt/WoxbfAmtbsfQhrklHDIkGzptrhEyv0siZp8Pvtt9+EvHpYE+D/b3vSw5pkPLtI2Io11Q6RWWEL1ly2bJlmcbg8aNbUapqSBz3S2GBN7bAVa7ImAqmFrVhTq8iJFXpZs2/fvrh8+XJhL2FN1o1dWkHf9qSHNbWaceSR2FmTjCgVCcKarJuDtYIeaayHNcnIX97Qw5r0bU9ahWzy+BZYk4yEFglbsObGjRtVC8tZYQvWXLhwoWajhjxo1vT09BTy0g1+elhz9uzZwl5bsCYZ7S4S3wJrsm7FVwtbsSZrspdW6GXNHj166GZNtUsjWGEr1tRzrpkYWdMR55rGSONvQ1+jcDAZGDJkiCmz2QwnTpwARIRMmTIJ+y9evAgAAM7OzsLeW7duASJCaGiosPfJkycQGBgIMTExwt7Xr1/Dzp07AQAgNjZWyPvp0yfYs2eP9P9FFBUVBfv37wcAgBcvXgh54+Li4MiRI0IeIkSE06dPAyJCrly5hP1XrlwBAIAyZcoIe+/duweBgYHw4cMHYe/z589hx44dpLBZSO/evYNdu3YBwJfPXURhYWEQFBQk/Tkiio6OhoMHDwKA+H8f8fHxcOzYMQAASJMmjZAXAODcuXMAAFCwYEFh740bNwAAoHLlysLeR48ewfbt2yE8PFzY+/LlS+kZx8fHC3k/fPgAu3fvBoAvz0xEEREREBQUBIgIr169EvLGxsbC4cOHpf8vIkSEkydPAgBAlixZhLwAAJcuXQIAgBIlSgh779y5A4GBgfDmzRthb0hICAQGBkJcXJyw982bN7Bz505AROH1mqy3iCi8hpD1FhHh9evXQt74+Hg4evQoAAAkSya2haTX27x58wp5AQCuXbsGAADly5cX9j548AACAwOF1x6ALz+TduzYIewDSLjeRkRECHnDw8Ol9Vb0v82YmBgIDg4GRBRef8xmMxw/fhwAANKlSyfkBQA4f/48ICIUKVJE2Hvr1i0AAKhWrZqw9/HjxxAYGCj8cw0AIDQ0VNr7iL7LHz9+tHrvExkZqWvvQ9Zbs9ks5EVEOHXqFAAAZMuWTcgLAHD58mVARChdurSw9+7du7B9+3Z4+/atsPfZs2ewY8cO4Z+JAAnXW9H/Rj5//gx79+4FAID3798Leem9j6iX3vukTJlSyAsAcPbsWQAAyJ8/v7D3+vXrAABQqVIlYe/Dhw9h+/bt8PnzZ2Ev2fsAiP93/f79e9i1axcgovB6GxERAfv27QMAEP65SK+3ov9tmc1mae9jb9a8ffs2AECiZE1EhI8fPwp5bcGaiAhOTk5CXluwJiJC2bJlhb3379+HwMBA4c8KwGBNUellTUSEKlWqCHv1sOarV6+kd9HerEnWW9H1J7GzpjV7H8Kaot8vgGNZ88CBA9LXICI9rAkAcObMGQAAXaxZoUIFYa+tWFN0zbUFa1qTE6D3PqJ/L2FNRIT06dMLeQH+nzWLFi0q7DVYk1+2Ys3s2bMLeQH0s2ZgYKAwdwH8P2uKfr8AAG/fvrV670Ozpp69T2JkzYoVKwp7CWuK7j8AvrBmYGAgIKIu1hTdd+lhzdjYWDh06BAAfHneIvoWWFP0+wXQz5qEYRzBmtacpdCsmSRJEiEvIkp7n8TImtZIL2uS9VZ0X24L1kRESJs2rZAXwLGsGRgYCJGRkcLeb4E1v6dzze3bt+s617SWNcm7mDJlSnB3dxfOlxn6hmWL6sP/9QDjxsH/CU2bNo2reyt9+vSKa73Xrl2LtWvXVh1VDMC+1vvQoUNYu3Zt1TEZAF+6D+TXet+9exdr166teh04APta77CwMKxdu7bqNdMkWNd6N23aFIsVK6bpZV3r3bFjR82RAAAJu2vJtd4jR47EqlWranozZ84sddeSkSYLFizQvMIcIOFNTmR85tatW7F27dqq1wgDsK/1PnPmDNauXRszZcqk6mWNkHr69CnWrl2bqwtcfq33/7F3ltFVZEsbriiuCYFAAgzu7sHd3QYYbHAZXAYY3F0Hdye4uzsEjxDBEghxIS6nvh939fl279N6+iSHDPtdq37cH+8A6ds79VRX7dLpdOji4oJFihSR9Qpd6929e3fJ6+K5KFy4MI4ePZp3rffYsWOxcuXKsl4HBwccPHgw71rvJUuWyK6RBBC+1nvPnj3o4uIiO41NTtdyK02uXr2KLi4usrcqkNO13EqTd+/eoYuLi+zEmtC13uHh4eji4qJo8lToWu/mzZsrmiAXWiH1xx9/KJrOKVSokMG13tOmTcNq1arJeu3s7Ayu9V67dq3i85a+1vvYsWPo4uIiuUIBQHiF1P3799HFxQVz5swp6RVaIfXhwwd0cXFRdPsffa13QkICuri4oLOzs6xX6FrvDh06KLohSWiF1PDhw7FixYqyXvImJ26lydy5cxXdIkGukOJWmmzbtg3r1asnuT4K4H/TXvQKqfPnz6OLi4vkyhqA/017cTc5cSukXrx4gS4uLpJX8wPw1xVzK6S+f/+OLi4u6OjoKPtvrlatGs6ePZu3QqpBgwaSKzu5EFoh1atXLyxTpoys19nZ2WCF1Pjx4xXd5Eve5MStNFGySglAeIXUgQMH0MXFRXJ9FAD/JidufeaNGzfQxcVFdrKQvDXYx8cHERE9PT3RxcUF7e3tJb1CK6SioqIUn7dCK6RatWolubqBC6EVUoMGDcLy5cvLesnpWi73mTFjhuyaHQDhFVIbN25UlPuQ07XcSpMTJ06gi4uL7MS9ra2twQqpR48eoYuLi+zNGUIrpD5//qw496FXSCUnJ6OLi4ui6WKhFVJdunRRdEsAd5PTlStX9LnPqFGjFN32kT9/foN1xQsXLsRatWrJeskVUlzus3PnTqxXr57srafkrcHcSpNLly6hi4uL5HpUAP50LbfS5PXr1+ji4iJ7M5zQCqmQkBB0cXGRXC/GhdAKqSZNmkiureJCaIVUnz59FN247OTkZLBCavLkyYpuGCBvcuJyH3Ox5p07d1Sx5qpVq0zCmrGxsYpzH+4mJ1Ox5pAhQzIca545cyZdWZNbIcWxZoECBWT/3j8Ta/7111+KWZNeIaWFNffu3ctYUySEWLN///6qWPP8+fMmYc1169YpOm+zZ8+uv8nJGNakV0ipYU16hZQpWFNJ7iPEmh07djQLa86bN+8/zZrcTU6mYs2GDRsqyn24m5xMxZoTJkwwmjVXrFhhFta8efOmWVlTSZ2du8nJGNbkbnIyFWvOnDnTLKx58uTJdGdNnU5nEtZUkvtwrHnv3j2TsObo0aMVsyZ3kxOX+yhlzVy5culvcuJyn127dqGLi4ssa2bJkkV/k9N/gTWV5D5CrNm3b990Y03yJqfVq1erYs29e/cazZqbN29OV9YE+P9bg03Fmu3atVOU+5iaNWfPnm00a27ZssUsrPns2TNVrLls2TKjWXPOnDm8dcUuLi6K6uxly5bFKVOm/BSsuXTpUrOw5rVr19KVNd+8eWM0az5+/JjHmmrq7OS6Yi2sOX36dMWsyd0abArWdHV1/eVYk8m8YquKWeMgk0aJXa3LJYlkgYzW06dPBb1CBTJaAQEBgr8suCTx8OHD+iSRVmxsrCDsZsuWTV8g45JEWjqdTrAAxK3V2rBhg75AJiSh1SJkMwaXJApp4sSJgj+vatWq6ZNELoGgJbaKklstQSaJtC5evCjo5ZJEskBG6927d4KFSTJJ5ApktEJCQgSLVlySSBbIaCUmJgoWJbgkcevWrfokkZZOpxO8XptLEtesWaNPEoUkdNU9WSDjkkQhzZkzR/BnzTVjkEkiLbHVEUJJIq07d+6IJonDhw/nJYm0Pnz4IFiYJJNErkBGKyoqSrCgQSaJXIGMVkpKimBhgUwSuQKZkNq0aSOaJJLNGEISW/PDJYlcgUxIK1euFE0S6WYMWmJrBbgC2dWrV0XP2xcvXgh6hZoxaH379k0QlLlmjEOHDuk/SNCKj48XLPSTqyW4DxK0dDqdYHGAXC3x4cMHQS8iYo8ePQTPW+6DBFcgE9K0adMEf17cagmyQEZL7Lp67oMEWSCjdfXqVUEv90GCLJDR8vLyEixMks0YYudtWFiYIERxa7XIZgxaycnJgsBKNmNwHySEJLTKydraWt/4z32QENLgwYMFz1tutQT3QUJIYitgKlasqP8gIfYuiq3NIj9IiL2LDx8+FPSSawy5Ahmtz58/CxYmuQ8SZIGMVkxMjODHnGzZsmHXrl15BTJaqampgkU+oQKZkITWWAo1/gtp3Lhxgj8vrhnDzc1N1Lt27VpBL9eMQX6QoCW2TrJIkSI4ZswY3gcJWq9fvxb0co3/5AcJWkFBQYIfCYQ+SNBKSEgQ/OhGfpCQyn2EPlIKfZAQktAKb+6DBNmMISSx9c5VqlQxaMagJbYWVqgZg9bNmzcFvU5OTgaN/7R8fHwEC5NKVktERkYKFpC5xv+9e/fqC2S0kpOTBT+ccY3/5AcJIbVo0cLAS64x5ApkQho2bJjgz4v7IMEVyIQktv6O+yAhVSATY02hZgxaWllT6KMs2YzxX2NNsRWHPzNruru7S7Im2YxBS4w1hZoxaCUmJgp+kBFqxqAlxZpcM0ZasabYutG0Zs27d+8KetOaNaOjo9OMNclmDCFpYc3Ro0cL/rzoZgwhibGmUOM/LbH1vSRriuU+WlgzMDBQE2sKNTmQrMk1Y9DSypo9e/YUPG+1sibdjEFr69atgt7SpUsbNGPQkmJNuhmDlhbWDA8PF2RNocZ/WlpZs0mTJoLnLT1kLiQtrLlw4ULBnzXHmmQzBq1Dhw4JejnWJJsxaGlhzS9fvgiyplAzBi0p1qSbMWilpqYKNtP+7Ky5bt06QS/JmmLvohbWfPPmjaBXaMiclhxrks0YtBISEgQbjjjWJJsxaOl0OsGGAaFmDCFpYU2x9c5Cjf+0tLDmrVu3BL1aWJNr/E8r1kxJSZFlTa4ZQ0haWHP48OGCP69atWrxmjGEJMWacs0Yx44dE/T+zKwZFxcn2FQm1PhPS4w1ucZ/Odbs2rWr4HlLD5kLSY41ycZ/Wps2bRL0cqxJNv7TunTpkqBXqPGflhbWDA0NNRtrNmjQQPC8pRv/hWQu1ty3b5+gV2jInJYW1vz48aMka5KN/7TkWJNs/KeVkpIi2MCnlDXbtm0reN7SQ+ZC0sKaYqt/GWsaSqfTCQ58cawpV2dnMp9Y4yBrHGTSoNTUVP0vOKHpUDm1a9dO/wJyzRhSSSKpMWPG6L1C06FSWr16taokkRS5n15oOlRKL1++VJUkkgoMDNRP9ypJEknFx8frJxiUJomcdDqdfsKOSxLlCmSkevXqxUsS6elQKf399996r9B0qJS2bdum9wpNh0rp+vXreq/QdKiUvL299cVUoelQKUVEROgnP4WmQ6WUnJysv2HE0tJSnyRKFchINW3a1CBJlCqQkRoyZIhBkijVjEFq0aJFBkmiVIGM1OHDh3lJolwzBqnHjx/rvUqaMUh9+fJF37QsNB0qpZiYGP2UitJmDE6pqan6SVmh6VA5derUSf9vFpoOldL48eP1XnI6VMm7uH79er1XaDpUSufPn9d7haZDpfT27Vu9V2g6VErBwcH6aTOlzRicEhMT9cVUskAm9UGCk06n401C0tOhcurXr5/eKzQdKqV//vlH7xWaDpXS7t279V6h6VApkcVUJR8kSPn5+emLqUo+SJCKjIzU33pBfpCQKpBxSklJ0U9gCk2HyqlVq1b6fzPZjKHEO2LECL1XSTMGqeXLl+u9QtOhUnJ1ddV7haZDpfT8+XPeeUtPh0qJbFoWmg6VEllMVfpBgpNOp9NPUQpNh8qpW7du+n+z0HSolKZMmaL3KmnGIPXvv//qvUoKZKQuX76s9wpNh0rJ09NTX0wVmg6VUmhoqH7SXmg6VEpJSUn6W2SEpkOlpNPpsGHDhvp/Mz0dKqeBAwfqvWqnQ+fPn6/3ch8kpBr/Se3fv1/v5T5ISBXISN2/f19VgYzUp0+f9MVUJY3/pH78+KGfwlbajMHJnKw5duxYs7Dm6dOnTc6aSnKf79+/G7CmXDMGJyHWlGv856SVNXv37q3/N5ON/2nNmtu3b//PsKZUMwYnrazZrFkzHmvKNWOQollTrvGf1OLFi/VeJc0YpMzFmv7+/mZjTe6WEFOxplQzBqkJEyYYsKZUMwapDRs28FhTrhmDlFbW5HIfshkjPViTu7kiI7Hm7NmzzcKat2/fNmBNqWYMUkKsKdX4TyoqKsqANeWaMTilpKTobzpU2vhPSgtrjhw50iysefz4cZOzppI6u1bW5AZklQ6Zc9LKmt27d+explwzBiktrLl582ajWfPKlSuCrKkk99HCmmFhYSZnTalmDFKNGjUyYE2pZgxSQqwp1YxBSgtrHjhwgJf7yDVjkNLKmlzTcnqzJnfraEZizTVr1hiwptI6uxBrSjX+k3r16pUBa0o1/pPSwpoJCQk81lQyZM5Jp9Ppb7JT2vhPSgtrzpgxwyyseePGjQzJmtxtlhxryjX+k9LCmkOHDtV7lQyZk9LCmkeOHDGaNZ88eWIW1oyNjTU5a0o1/pPq3LlzhmPNCxcu8FhTrvGf6ecRaxxkjYNMGnT58mXZ6VAxvX37Vp8kqv3/QFBQELZp00Z2OlRI8fHx2KlTJ1UFMk46nQ779+8vOx0qpsmTJ6sqkJFauXKlqgIZqcOHD6tqxiB19+5dVc0YpHx9fbFNmzay06FCioiIwLZt26pKEjklJSVht27dVCWJnHQ6HQ4bNsxgLZRSzZ49W1WBjNTmzZtlp0PFdObMGVXNGKSeP3+uqkBGKiAgAFu3bq24GYNUTEwMtm/fXnY6VEipqan4+++/y06HimncuHGy06FiWrJkiaokkdTevXsN1kIp1bVr12SnQ8Xk4eGB7dq1U1wgIxUSEoJt2rRR3IxBKiEhATt37qyqGYOTTqfDgQMHGn1V97Rp02SnQ8W0du1a2elQMR07dkx2OlRMDx8+lJ0OFdPHjx+xTZs2vLVQShUVFYXt2rWTnQ4VUkpKCvbs2VNVgYzUiBEjVBXISM2bN09VMwaprVu3qmrGIHX+/HlVjf+kXr16parxn9S3b9+wTZs2ihv/ScXFxWHHjh15a6GUKjU1Ffv166fqgwSpiRMnyk6Himn58uWqCmSk9u/fr6pARurWrVuqCmSk3r9/j23btlXc+E8qLCwM27RpIzsdKqTExETs2rWr7HSokHQ6Hf7555+y06FimjlzpqrGf1IbNmxQ9UGC1MmTJw1WECvVkydPDFYQK9WXL1+wdevWRk2H/vjxA9u3b6+qGYNTSkoK9urVS1XjP6kxY8bI3kQkpoULF6pq/Ce1c+dOgxXESmVu1lTajEHKFKypphmDlBbWXLVqVYZjTT8/P7OwZnJyMnbv3p23glipzM2aapoxSGlhTTc3N7OxZocOHTIsayptxiCllTXVNGOQMhdrJiYmYpcuXczCmtOnTzcLa7q6uhqsIFYqc7OmmmYMTlpZc+TIkWZhzW3bthnNmhcuXDALawYGBpqFNXU6Hfbr109VMwYpc7HmgQMHzMKa3t7eZmHNpKQkTaw5ZMgQVUPmpLSw5saNG1U1Y5DSwppPnz5V1YxBypys2bt371+SNZU2/pP6FVlzypQpGY417927ZxbWjIyMxLZt26pq/OekhTUR/7cpQk3jPylzsebZs2fNwppfv37FNm3amIU1+/Tpo2rInNS4ceNUNf6T0sqaaobMSWlhTU9PT2zbtm2GY81BgwaxFcQZVGnROGiB/2uMY5KQhYWFEwD4AwD4+/uDk5OTmf9GTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTL+CAgICwNnZmfufzogYoPW/aan1P8DExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExJRxxBoHmZiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJh+IbHGQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiamX0iscZCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6RcSaxxk+mX04sULePDgAaSmpqr2+vr6wrVr1yApKUm1Nzg4GM6cOQOxsbGqvQkJCXD06FGIiIhQ7UVEOHr0KHz//l21FwDgzJkz8PHjR6O8165dA3d3d0BE1d6HDx/Cs2fPQKfTqfa+ffsW7ty5AykpKaq9nz9/hkuXLkFCQoJqb2RkJJw4cQJ+/Pih2pucnAxHjhyBsLAw1V5EhOPHj8PXr19VewEALly4AD4+PkZ5b926BW/evDHqGT979gwePXpk1Lvo5eUFN27cgOTkZNXeb9++wblz5yAuLk61NzY2Fo4dOwZRUVGqvTqdDo4cOQLBwcGqvQAAp06dgs+fPxvlvXLlCnh5eRn1nO7fvw8vXrwwyvvq1Su4f/++Uc/Yz88Prl69ComJiaq9oaGhcPr0aYiJiVHtTUxMhCNHjkB4eLhqLyLCsWPHIDAwULUXAODs2bPw4cMHo7w3btyAd+/eGfWcHj9+DE+fPjXqvHV3d4fbt28b9S76+/vDxYsXIT4+XrU3Ojoajh8/DtHR0aq9qampcOTIEQgJCVHtBQA4fvw4BAQEGOW9ePEieHt7G+W9ffs2vHr1yqhn/Pz5c3j48KFR76K3tzdcv37dqNzn+/fvcPbsWaPO2/j4eDh69ChERkaq9up0Ojh69CgEBQWp9gIAnD592ujz9urVq+Dh4WHUc3rw4AE8f/7cqHfx9evXcPfuXaNyn48fP8Lly5eNOm/Dw8Ph5MmTRp23SUlJmnIfV1dX+Pbtm2ovAMD58+fBz8/PKO/Nmzfh7du3Rj3jp0+fwpMnT4x6xh4eHnDr1i2jztuAgAA4f/68UedtTEyM0bmP1vP25MmT8OXLF6O8ly5dgvfv3xvlvXv3Lrx8+dKoZ8xYU50YayqXFtZMSUnJsKz5+vVrs7GmMe8iY0110sqa9+7dM+pd1Mqap06d0pT7mIM1z507x1hToaKjo8HV1dUsrHnixAnw9/c3yquFNe/cuWM0a7q5uZmFNYOCgszCmlpzn1+VNY3JfbSwptY6uzlZ09g6u1bWvHnzZoZkTWNzHy2sefnyZcaaCpWQkABHjhz5pVjz0aNHGY41o6KizMKaANrq7L8aawYGBjLWVKH79++Dm5tburPmhw8f4MqVK78UazL9B4WILGQCAJwAAAEA/f39kSljKjAwEDNnzoz29vbYv39/PHbsGEZFRSnyxsfHY8GCBTFHjhzYrVs33LNnDwYHByvy6nQ6rFGjBmbKlAnbtGmD//77L3758kXx37tnz55oZWWFjRo1wpUrV+L79+8Ve6dNm4YAgDVr1sT58+fjy5cvUafTKfJu3boVAQDLly+P06dPxwcPHmBKSooi79WrVxEA8LfffsO//voLr127homJiYq8Xl5eaGlpiQUKFMAhQ4bgmTNnMCYmRpE3PDwcc+bMiXny5ME+ffrgoUOHMDw8XJE3OTkZixcvjtmyZcPOnTvjzp07MTAwUJEXEbFJkyZoa2uLLVu2xPXr1+PHjx8VewcPHoyWlpZYv359XLp0Kbq7uyt+TgsXLkQAwKpVq+Ls2bPx2bNnmJqaqsh76NAhBAAsXbo0Tp48Ge/cuYPJycmKvA8fPkQAwMKFC+OoUaPw0qVLGB8fr8j75csXtLGxwXz58uHAgQPxxIkTGB0drcgbExOD9vb2mDNnTuzZsyfu378fQ0NDFXlTU1OxYsWKmDlzZmzfvj1u3boVAwICFHkRETt06IDW1tbYtGlTXLNmDfr6+ir2jhs3Di0sLLBOnTq4aNEifP36teJnvG7dOgQArFSpEs6YMQMfPXqk+BmfPXsWAQBLlCiB48ePxxs3bmBSUpIi75s3bxAAsGDBgjhs2DA8d+4cxsXFKfIGBQVh1qxZMW/evNivXz88evQoRkZGKvImJCSgs7MzZs+eHbt27Yq7d+/GoKAgRV6dTod16tTBTJkyYevWrXHTpk34+fNnRV5ExD59+qCVlRU2bNgQV6xYgV5eXoq9s2bNQgDAGjVq4Lx589DNzU3xM965cycCAJYrVw6nTZuG9+/fV3ze3rp1CwEAixYtimPHjsUrV65gQkKCIq+Pjw9aWVlhgQIF8M8//8RTp04pPm8jIyMxd+7cmDt3buzduzcePHhQ8XmbkpKCpUqVwqxZs2LHjh1x+/bt+O3bN0VeRMQWLVqgjY0NNm/eHNetW4cfPnxQ7B0+fDhaWFhgvXr1cMmSJfju3TvFz2np0qUIAFilShX8559/8OnTp4rfxWPHjiEAYKlSpXDSpEl4+/Ztxeft06dPEQDQ2dkZR44ciRcvXlR83gYEBGCmTJnQ3t4eBwwYgMePH1d83sbFxWGBAgUwZ86c2KNHD9y7dy+GhIQo8up0OqxSpQpmzpwZ27Vrh5s3b1aVQ3ft2hWtrKywcePGuGrVKvT29lbsnTRpElpYWGDt2rVxwYIF+OrVK8XPeNOmTQgAWKFCBfz777/x4cOHit/FS5cuIQBgsWLFcNy4cXj9+nXFuY+7uztaWFigo6MjDh06FM+ePYuxsbGKvKGhoZg9e3bMmzcv9u3bF48cOYIRERGKvImJiVi0aFHMli0bdunSBXft2qXqvG3QoAHa2tpiq1atcOPGjfjp0ydFXkTE/v37o6WlJTZo0ACXL1+OHh4eip/T3LlzEQCwevXqOGfOHHz+/Lli7759+xAAsEyZMjhlyhS8e/eu4nfx7t27CABYpEgRHD16NF6+fFnxefvx40e0trZGBwcHHDRoEJ48eRJ//PihyBsdHY158+bFXLlyYa9evfDAgQMYFhamyJuSkoLlypXDLFmyYIcOHXDbtm2qztu2bduitbU1NmvWDNeuXasq9xk9ejRaWFhg3bp1cfHixfj27VvFz2nVqlUIAFi5cmWcNWsWPn78WPF5e/LkSQQALFmyJE6cOBFv3rypOPd58eIFAgAWKlQIhw8fjufPn1ec+5iTNWvWrGkW1pw+fbpZWPPatWsZljWzZs2KnTp1wh07dqQba/75559oaWmJLi4uGYY1Hz16ZDbWzJcvn1lYs2PHjnrWXL16Nfr4+Cj2mos1z507hwCAxYsXT1fWDA4ONhtr1q1b12jW7Nu3L481PT09FT8nLay5a9cuPWtOnToV7927ly6s6evri1ZWVpg/f34cPHhwhmHNli1bmoU1ly1bZhbWfPbsGY81L1y4oPi8/fr1q541+/fvj66uropzH62sWbVqVcycOTO2bds2XVlz8uTJCABYq1atDMOaHh4eZmHNpKQkHmvu3LkTv3//rsirlTUHDBigZ81ly5apYs158+YhAGC1atXSlTXv3btnNta0s7PLcKw5ZswYPWsuWrQI37x5ky6seerUKT1rTpgwIV1ZM0uWLGhnZ4d//PFHhmHNXr16mYU1t23bxmNNNXV2Laz5/v17HmuePn1ace4TERGBuXLlwty5c+Pvv/+erqzZtGlTtLGxwRYtWqQray5atChDsqatra2eNdXU2bWyZqVKlfSsuWXLlnRjzfHjx+vr7AsXLlTFmuvXr0cAwIoVK6Yra759+9YsrJmYmJghWfOff/7Rs+bcuXNVsSaTeeXv749c/xoAOKEpeuJM8R/5rwdrHPzvaMKECeRLpKoYtGHDBp6XLAbJfQg7f/48z6umGPT27Vu0sLDgebli0K1btyQTouDgYMyWLRvPq7QYlJiYiIULF+Z5lRaDdDod1qtXj+fNkSMHdu/eXVExqF+/fjyvmmLQ7NmzeV41xaDdu3cbPCelxaDbt28beJUWg/z8/NDKyornVVoMioqKwjx58vC8SotBKSkpWKZMGZ43T5482LdvXzx8+LBsMahVq1Y8r5pi0MiRI3le7kPYhg0bZItBy5cv53m5pkslxaDjx48bPCelxaDnz58beJUWg759+4aZM2fmeZUWg+Li4tDR0ZHnVVoM0ul0WK1aNZ5XTTGoe/fuPC9ZDPr69aukd8qUKTyvmmLQ5s2bDc5bpcWgy5cvGzynypUr48yZM2WLQZ6engbnrdJiUFhYGObIkYPnVVoMSkpKwt9++43nVVMMatSoEc+bPXt2xcWggQMH8rxqikHz5883OG+VFoMOHDhg8Jy4YtCLFy8kn/H9+/cNvEqLQZ8+fUIbGxue97fffsOxY8fi1atXJc/bHz9+oJ2dHc/LNV3KFYNSU1OxfPnyPK+aYlC7du14XjXFoLFjxxrkPkqLQWvWrDE4b5UWg06fPm3wnJQWg169emXgVVoM+v79O2bJkoXn5YpBck2XCQkJWKhQIZ5XaTFIp9Nh7dq1eV7uQ9i+fftki0G9e/c2yH2UFoNmzJhhcN42adJEUTFo+/btBuet0mLQjRs3DJ6T0mKQt7c3Wlpa8rxKi0FcQZX0Ki0GJScnY8mSJXleNcWgZs2aGZy3SotBQ4cONch9WrdujRs3bpQtBi1evNjgvG3YsCEuX75cthh05MgRg+ektBj05MkTA2/ZsmUVNR74+/ujra0tz1u0aFEcM2aMbONBbGwsOjg48LxKGw9SU1OxcuXKBuet0saDzp07G5y3ShsPpFjTz89P0quFNS9cuGDwnKpUqYKzZs3CJ0+epBlrhoSEGLCmk5MTjhgxIs1Z08XFhefNCKy5Z88eg+dkCtaUa7r08/NDa2trnpdjTbkPYVKseebMmTRlzdatW/O85IBfWrLmihUrDHKf9GBNNzc3A29GYM3q1avzvBxrKvkQJsaaW7dulWXNqVOnGuQ+zZo1UzTgp4U1r1y5YvCcKlWqpJg16dynRIkS6cKaxYoV43nTizUHDRrE85qKNeUG/LSw5oMHDwy85cuXVzTgp5U17e3ted70Ys327dsb5D5KWfOvv/4yyH3SgzXPnDlj8Jw41pSrs0uxplzTZVBQkAFrOjs7//Ss+fvvvxvkPu3atUtz1tyxY4fBeWsq1pR6F7khWdKrhjVz587N83KsKVdn18qazZs3Nzhvu3btqmjATwtrLlmyxOBd5Ab8jGHN6tWrpzlrBgQEmIU1uSFZ+rzlWFOuzq6FNSdOnGhw3v7srPnu3TvBOvvEiRPx1q1bku+iVtYsUqQIz5terPnHH38YnLdKWXPOnDkGuQ/HmnJ1di2seefOHQNverFm3rx5eV5HR0f9gJ8xrNmnT580Z81Ro0YZnLfpwZonTpwweE4ka0q9i6ZmzcKFCytizfj4eFHWPHHiRJqyZo8ePXjeLFmy6Af8jGFNpZfJbNmyxeC85Qb8fmbWzJkzJ89rTJM7U/qLNQ6yxkEmDXrx4oVBkkyH2G1P79+/x/379xsUgMgQKwYFBATgsWPHMF++fKJesWJQREQEurq6GhSAaDgRKgYlJSWhq6srNmnSRNQrVQw6c+aMwUdsMshiEN10ef36dYPiEZ0QccUgegL30aNH+mkTsRArBr1580Y/USQWpUuXFpzA9fPzw8OHD2PWrFlFvWK3PX3//h1dXV3R2dlZ1JsvXz7B255+/PiBrq6uBkkQGWLFIJ1Oh66urti2bVtRr1Qx6MKFCwaFXDoh4opB9Iew27dv62+0FAqpYtCzZ89w9erVks+JKwbRTZceHh64Z88egwIQGVwx6Pr167yE6PPnz3j06FGDAhAZYsWg0NBQdHV1NSgAkUFO4JLFoPj4eHR1dcX69euLeqVuezp58iR27dpV1Cs1gXvlyhWDD2f0uyhWDLp//77+ViexECsGvXz5Uj9NLRZkMYh8F729vfHAgQOYKVMmUa9YMejr16947NgxzJ8/v6iXLAaRcBIZGYmurq5YqVIlUa9YMSglJQVdXV0NinxkZMmSBTt27Cg4gXv27Fns27evqNfGxkbfdEkXg27evGlQPKLfRbHbnh4/fqy/RU8suAlcuhj07t073LFjh0EBiAyxYtDHjx/xyJEjmD17dlEvWQwi4SQ4OBhdXV2xaNGiol6xYlBsbCy6urpirVq1RL1kMYj+EObq6oodOnQQ9WbKlEm0GHTp0iUcMmSIqFeqGHTnzh2DYj0dtWrVEpzAdXNz098kIxYVKlQQvO3Jy8sL9+3bZ1AAIqNYsWKCE7j+/v547Ngxg0ZLMsSKQeHh4ejq6mpQACJDrBiUmJiIrq6uBh84yZAqBp0+fRp79uwp6pUqBl27dg3HjBkj6iWLQfSHsIcPH+KCBQsknxNXDKKbLl+/fm1QlKCDKwbRTZe+vr546NAhg49fZJATuOR5GxgYiMeOHTP4+EWGg4OD/rYn8ryNjo5GV1dXrFq1qqhXbAI3NTUVXV1dDYYXyJAqBp0/fx779+8v6pUqBt26dUt/y4hQSBWDnj59alAgpEOsGOTu7o67du0yKACRIVYM+vTpEx45csSgAEQGVwyimy5DQkLQ1dUVixcvLurlGg/oD2FxcXHo6uqKdevWFfVyjQe7d+82OG9PnDhh8FGFDKkJ3MuXL+OwYcNEvVI3C9+7d08/aSsW3G1PdOOBKViT/vhFxs/Kmk2bNhX1moI1hQb8rl+/juPGjRP1cqwpdNuTUtYUGvDLyKxZo0YNUW9GZ036Q1h6sKbQgJ9S1hQa8ONYs1SpUqLetGTNbt26iXqlWPPq1atmYc1Xr17hv//+K+nlWJP+EKaENYsUKYJjxowx+BD27ds3PHbsGBYoUEDUy7Em3XQZFRUly5piA34ca7Zo0ULUK8Wa586dMwtrPnnyRH+LnlhkZNakmy451qSbu8iQYs3jx48rYk2hpkulrCk04Hf37t00ZU2xm4V/Bdakcx81rEk3XaYHawoN+KUna5K5jxLWJG8WNjVr0g0lZKQla9ID2GRI3SyshjXpAT81rEk3XZqbNelLK8iQGvDTyprDhw8X9aYla27cuFHSq4U1uZuFr169yst9ONakGy3JkGPNChUqiHo51qQH/NSw5vbt2wVZk26YJkMLa0rdLPzo0SODoU86xC6Tefv2rcFgLx1iNwtzrEk3WpIhxppBQUHpxpp006Wrq6vBoDwZJGvSdXatrMndaCn2jMVY8/nz54pYU+gyGS2s+eXLFzx69KjBUB8ZacGaCQkJ6Orqig0aNBD1SrHmqVOnNLEm3aRJhhRrPnjwQDFr0gN+WljTx8cHDx48mGasKTbgx7EmPURNhlbWNOZmYaa0F2scZI2DTBo0evRoycOeDrIYJPdxgQ7y6m+hW+ykgpzAFbo5SyrICVyhKQK5IK/+lirACAVZDJJKFoWCvPqbnjqXC3LN1KRJk1R5yTVTcgkfHWQx6OjRo6q85JopodsjpIJcafzu3TvVz5i87UmqGCoU5G1PjRs3VuUli0H0DWdyQRaD5ACbDrIYxK1EUxrkmimhaWapIItBjx8/VuWli0FS0CcU5JopKTgXCnKlMT11LhfkbU9qz1tyAleukY0OshjErQVRGmQxiFtFoDTIYpDQxLpckGumpBodhYIrBt27dw/r1KmjykuumerVq5cqL7nSmJ68kguy6VKusYIOcgJX6CYXqSAncLnVL0qDLgZJFVKFgiwGlShRQpWXLAZJNaQKBVkMkvqAJBTkSmP6lg+5INdM0TcLyAW50lhomlkqyKZLbq2zmiAncOlb7OSCvFlY6sOEUJA3C0sVrYWCvFlYqqApFGQxSO7jAh1kMYhbC6I0yGKQ0O0RUkEWg16/fq36GZMrjZ2cnFR5yQlcqaYMoSBve6JvOJMLshgk9zGXDrIYJFfsooMsBgndGioV5M3CQrf1SAXdeCBVZBMKcs2U1IdgoSBXGrdp00aVl5zAlfqAJBTkbU9aWFPoZgGpYKxpHGuePn1aE2vStyrJBdl0qZY1yQE/odsjpIIe8FP7jE3FmlLDj0JhKtakb5SUC1Ox5tmzZ1V5yTVTxrImN+CnhTUrVqyoykve9qSFNaWaZ4TCVKy5f/9+VV5TsebLly9VeQH4rCn18UkoyJXGxrAmN+An1RwuFOSAn7lYU+gmF6kwJWtKfUQWClOw5q1btyQ/EgoFucWGvuFMLsgBP24drNIgWXPnzp2qvORtT1pYk1vrrCZ+Btbs0qWLKq+pWHPlypWqvOQWG2NZc8OGDXjz5k1VXnKl8Zs3b1Q/Y/K2Jy2sKdWUIRSmYs2ZM2eq8v4MrPnw4UNVXvpmYS2sWbZsWVVecouNFtYcMWKEKu/PwJpCN2dJhalY88WLFwY3+MoFucXGWNa8evWqwQ1nckGyptSQqlCQA35aWPPYsWOqvKZiTXd3d9XP+GdgTalmRaEgbxbWwppyA4x0kFts0ps1yctkpAZ5hIK8WVgLa0oN4wiFqVhTbmiKjp+BNY39rslWGv8cYo2DrHGQSYPUNrKQvzTo66nV/NJQ22BF/tKg16EpDVtbW9WNBlxYWlpiw4YNDdagqPmlQa+dUhrlypVTnRBwUaRIEcnJXqnInz+/akDnIleuXJLTT1KRJUsWo58xNxVujJcrUKqFKC6qVKmiujDJRalSpVQXvLhwcnKSnCaUCnt7e8mpYKnIkSOH0T/rTJkyGe3lCpT0VeBKo1atWpLTuVJRoUIFLFeunFHeYsWKqYZsLhwdHVU3ZnCRJ08eo8/bbNmyme28bdCggeoCMhfVqlUzWHGsNMqUKSN544VUFC5cWPVHJC4cHBywYcOGRnnNdd5yBUq1jYMA/1+glJrOlYrKlStLTgRKRYkSJQxWlSuNQoUKGZ372NnZmSX30XreNmrUSPImKKmoWbOm5HSuVJQvX17yti+p+O233yRv0JSKAgUKGH3e5s6dW3WhjYusWbMa/R5ryX24AiW9BkVpVK1aVfI2BKkoXbq0wTojpeHs7Gz0eZsvXz6jz9ucOXMa/ZwyZ85s9O9FrkApdcu7WHAFSrUNElxUrFhRddMhF8WLF5e8PVwqtLKmse9iRmZNeu2U0jAna2a03MfcrCl1y7tUZFTWNPYZZ2TWVPvhnYtixYphzZo1jfJqZU1jz1utrKkl92nQoIHkLZhS8SuyprE/64zKmpUqVdLEmsbmPhmVNY3NfczNmmoHirkoWrSoJtY0ts6ulTXNkfuYmzWlbhiSCmdnZ8kb4qUio7JmkyZNNLEmvXJTaWRU1tRy3hr7nExRZzcHa5YtW5axpsLgBi+M8WZk1jT2vLW3tzf6XfxVWVPLd01jWVNLnT2jsmb9+vXx4MGDrHnQjGKNg6xxkEmDZsyYofhDEr0SZcuWLejo6KiokENfU3vx4kV0dHSUvA6cC+6aWm795rt379DR0VHyWn8uHBwceCtRoqOj0dHRUVFXv9A1teXKlVNUYCSnxbgr+lu3bq3oFglyWoy7on/48OGKbt8SWomyaNEixQBHr0TZv38/Ojo6KprypVei3LlzBx0dHRVNrBUqVIi3EuXjx4/o6OioqIBkZ2fHW4mi0+nQ0dFRciUAF0IrUWrVqiV5vTUXQitRunfvrihBF1qJMnHiRMXvInkziU6nw7Vr16Kjo6Pkyhou6JUop06dQkdHR0UFAvJmksTERHz+/Dk6OjoqSnbJWzBjYmIwJCRE8bsotBKlePHiihrLsmbNarASpUmTJooKVzY2NgYrUQYMGKCoAC20EuWff/5R/IzplSg7duxQ/C6WKVNGPy2WnJyMV65cUXzeOjs781aieHl5KT5vyZtJoqOjMS4uDh0dHRUVJoRWolSqVEnReUveTMKtg+vQoYOid5G8BdPHxwcREUeNGqX4vKVXoixbtkzxeUuv3zx8+DA6OjpKriXigl6J8uDBA8XnbcGCBXkrUQICAtDR0VHRzSrktBh3RX+hQoUUnbdCK1Hq1aun6Ly1tbU1WInSq1cvyRWUXAitRJk6darid5FeibJx40bFuQ+9EuXs2bOKz1vyFsyEhAR8/fq14ncxf/78vJUo4eHhis9bciUKl/uULl1a8XnLrUThruhv0aKFotyHvJmEWwf3559/Kj5v6fWb8+fPV/wu0itRdu/erfi8pVei3Lx5U/F56+TkxFuJ4uPjozj3IW/BjIqKwqSkJMXnbY4cOQxWolSvXl3Ruyi0EqVz586Kcx96Jcq4ceMUn7e1a9fW30yi0+lw5cqVinMf8mYSbt2E0vOWvJkkMTERnzx5ojj3IW8miY2NxcDAQMXnbZ48efQ3k3C5T9GiRRWdt+QtmNzq8QYNGijKfYRWovTr10/ReSu0EsUY1uRWomhhzUuXLil+FwsXLqy/mUQra/748cNsrNmmTZsMx5oHDhxIV9Y8f/48xsXF4adPn9KFNbnV43v27DEJa/bo0UPxecvdTGIK1ly3bp1ZWNPNzS3dWZNbB6eFNZs2baqKNdevX28Ua5I3k+h0Opw9e7bid1ELa5I3kyQnJ+PVq1eNZs3379+bjTUrV65sFtYcPXp0urEmdzOJVtZ8+PChKtbkbiaJjY3VzJpOTk5mYc3evXsbzZrTpk0zC2ueO3cu3ViTuwXzx48fGBERkS6sya0eNxVrDhkyRNF5K7R+Uwtr7tmzxyys6evrazRrJicnq2bNvXv3moQ1u3Tpooo1V61apZo1Afi3YOp0Oly1alWGY83v379rZk0l76IQazZs2DDdWHPZsmXo4eGR7qzJ3YKplTXd3d1VsSa5flMra5YvX94srDlixAijWXPx4sWqWZOrs2thzbt376Yba3K3YEZFRSEiphtrcrdgkqypNPehWXPSpEm/BGtydfbQ0FBNrFmiRAlVrLljxw6TsObAgQPThTXJWzBTU1Nx586dGY414+PjNbEmk3nFGgdZ4yCTRl29elXwwOOSxK1bt+qTRFpeXl6CCTZZIOOSRFphYWGCSRBZIHvz5o1gZ3ZycrLo1BndjCEksWkErkB28+ZNTEpKEvQOHjxY0EtelR4XFyfoXbBggaCXTBK5AhmtgwcPCnrJJJErkNESu66eSxLJAhmtz58/CyZfZJLIFchoxcTEiAJ+zZo1eQUyWqmpqaIToOXLl+cVyIQkdvUyVyC7evUqJiYmCnrF1k7QzRhCWrt2raCXvCqdSxJpiV2RTV6VziWJtMTWFJJXpX/48EHQGxQUJAgz9FouoeeUkJAgunaCSxK5AhktnU4nOjXPJYlcgUxIffr0EU0SyQKZkMTWTpAFsujoaEGv2AoYoWYMWmLrQcgCGfdBgpaPj49ggs1Nh65evVr/QYJWRESEYHGAvipd7LwVm7gnr0oXexfF1vxwV6VzBTIhDRs2TNDLfZDgCmRCElu5xX2QIAtktMTW32XLlg27du3KK5DRElsLK1QgoxUQECBYlBBqxqAVGxsrWoihG/9p6XQ60Zu/uGaMe/fuiT5jsTU/dOO/kMRWHHLNGNwHCSFt3LhR0JsrVy79Wi6uQEbr4sWLgl7yg4RY7uPu7i5Y0OA+SKxdu1b/QYJWSEiIYGGB+yBBFshoJSYmiq6doJsxaOl0OtEJP7pAJqT+/fsLep2cnHiN/0KaO3euoJdrxnB1ddUXyGjt3btX9LzlGv/Fztu7d+8KerlmjM2bN+sLZLQ+fPggWOgn13JxBTJa0dHRokUc7oMEVyCjlZKSInrbEPdBgiuQCUlszQ9dIBOS2C3kdDOGkMRWbgk1/tM6efKkoJdsxhA7b1+8eCF63tKN/7QCAwMFC4Rk4z/3QYJWfHw8FixYUPDP5tZycQUyWjqdTvQGYnItl1ju07NnT0Ev90GCK5AJadq0aaLn7aBBg/QFMiGJrRtVUiATY02hZgxaWlgzPDzcbKwpNhWd1qy5cOFC0fP2Z2XNL1++iLIm3YxBS4o16WYMWqmpqaK3X9DNGEJSwppiuY8W1ly3bp2gN61ZU2xNYXqwptiNUlWrVuU1Y9CSY02yGUNIWlhz1qxZgt60Zs1bt26JnremYE2uGYNWZGSk0ayZkpIiy5pcM4aQtLDm8OHDBb10M4aQxFhTqBmDltj6O6FmDFrmYs24uDjRD8JpzZpdu3YV9JqCNblmDCFt2rRJ0MuxJtmMQevSpUuCXqFmDFpaWDM0NFSUNelmDFpaWVPsJr2fmTX37dsnet7SQ+a0tLDmx48fJVmTbMagJceaZDMGrZSUFNHbhipUqMBrxhBS27ZtBb1pzZqrVq0SPW9NwZpiuY8YawoNmdNSwppcMwYtrawpdisUPWQuJC2sOX36dEEv3YwhJC2sKbaK0lSsKVZn/5lZk2v8F9Kff/4p6KWHzIUkx5pk4z8tsVXrHGuSjf+0Hj16JOgVavynpZU1xRrp0po1O3bsKOj9mVnz3LlzouctPWROSwtrBgcHS7Im2fhPSytrit2WSDf+C6lv376CXrrxX0haWHPXrl2CXlOxplivkK+vryBrCg2Z01LCmlzjPy2trNmyZUtBL934z/RziTUOssZBJg3S6XS81TP0dKic+vXrp/cKTYdK6Z9//uElifR0qJR2794tmCSKFchIkb/g6CRR7vpYPz8/3i84LklUsrc+MjKSN/HBJYlSBTJOKSkpWLp0aYMkUapARqpVq1a8JFGuGYPUiBEj9F4lzRikli9frvcKTYdKydXVlZck0tOhUnr+/DkvgaCnQ6X07ds3Htxz06FiBTJSdDGVTBLFgI2TTqfjrc/kkkSpAhmpbt26GSSJUgUyUlOmTDFIEqWaMUj9+++/Bkni5s2bFf1euHz5Mu9d5JoxxJJEUp6enrxiKj0dKqXQ0FDetAg9HSqlpKQk3moiNUmiTqfjXZOv5IMEqYEDB+q9Sj5IkJo3b57eq+SDBKn9+/fzzlvug4RYgYzU/fv3ecBGT4dK6dOnT7xiavXq1XHOnDn66VAp/fjxgzcJqaQZg1NqaiqvmEpPh8qpXbt2ei89HSqnsWPH8s5bbjpUybTS6tWreeet3AcJUqdPn9Z7haZDpfTy5Uveect9kBArkJH6/v07b+qLng6VUnx8PO96fu6DhFQzBiedTsdbL6SkGYNU79699V4lzRik/v77b17uQ0+HSmn79u16r9B0qJSuX7/OO2/p6VApeXt784qp9HSolCIiInhTlNx0qFSBjFNycjKWKFFC7+U+SEg1/pMi1wrQ06FyGjJkCO+87dOnj2SBjNTixYv1XiXNGKQOHz7My3246VCxAhmpx48f885bejpUSv7+/rzpTXo6VEoxMTG8iVV6OlRKqampvBVS9HSonDp16qT3KvkgQWrChAl6L/lBQknus2HDBl7u0759e8lmDFLnz5/nnbdNmzaVbPwn9fbtW33uo6QZg1RwcDDv9gn6JiIpJSYmYuHChfVerhlD6oMEJ3Oy5uzZs83Cmrdv3+a9ixxrijVjkNLCmlFRUQasKdeMwcmcrDly5EizsObx48czJGuSU/4ca0o1Y3DSyprdu3fnsaZcMwYpLay5efNmXu7DNWP8zKwZFhZmFtZERN5qaI41z5w5k+asOX/+fAPWlGr8J3XgwAHeeSvXjEFKK2uSH5K5Zoznz5/LvotaWbN8+fIZjjXXrFljFtZ89eqVAWtKNWOQ0sKaCQkJPNZU0vjPSafT8VYrpidrzpgxwyyseePGDUHWFGvGIGVO1iTXMioZMielhTWHDh2q9yppxiClhTWPHDnCy33kmjFIPXnyxCysGRsbK8iaUs0YnLSyZufOnQ1YU6oZg5S5WPPChQu881ZuyJyUFtYMCQnhsSY5ZJ7WrEmuHM4orLlnzx4D1pRq/CellTXJOnuNGjUkG/9JaWVNciW1ksZ/Uq1btzYLa65YsUKQNZXkPlpY083NTZA1xRr/SZmTNcnV4Uoa/0lpYc2pU6fyWFNuyJyUFta8cuWKIGsqqbN7enrych+5IXNSWlmzWLFiBqwp1fhPSgtrDho0yIA1pRr/SZmLNR88eMA7b+WGzJl+HrHGQdY4yKRB165dk50OFZOXlxdWqFCBtxZKqcLCwrBSpUqqkkROycnJWK9ePdnpUDF17txZdjpUTGPGjFFVICO1bNky2elQMR0+fFh2OlRMjx49kp0OFdPnz5+xfPnystOhQoqJicGqVauqShI5paamYpMmTVQliaT69u0rOx0qpmnTphmshVKqjRs3yk6HiuncuXOqCmSkXr9+jRUrVpSdDhVSUFAQVqhQQXY6VEgJCQlYq1Yt2elQIel0Omzbtq3sdKiYhg4dKjsdKqZ58+apShJJ7dmzR3Y6VEy3bt2SnQ4Vk4+PD1aoUEFxMwapiIgIrFy5sux0qJCSk5Oxfv36qpoxSHXv3t3oq7rHjRsnOx0qplWrVslOh4rJ1dVVdjpUTE+fPsXKlSvLTocKKSAgACtUqCA7HSqk2NhYrF69uux0qJB0Oh02b95cVYGMVP/+/WWnQ8U0Y8YM2elQMW3ZskV2OlRMly5dkp0OFZO7uztWqFBBdjpUSCEhIVixYkXZ6VAhJSYmYp06dWSnQ4Wk0+mwQ4cOqj5IkBo5cqTsdKiYFi9erKpARurAgQOy06FiunfvnsFaKKX68OEDli9fXnY6VEjR0dFYpUoV2elQIaWkpGCjRo1kp0PF1KtXL9npUDFNnjxZdjpUTGvXrpWdDhXT6dOnDVYQK9WLFy/0zW9KCmSkAgMDsUKFCkZNh8bHx2PNmjVVNf5z0ul02KpVK1XNGKQGDx6sqvGf1OzZs2VvIhLTjh07ZG8iEpO5WDM8PBwrVaqkqhmDk1bW7NKli8FaKKXSyppqmjFImYs1v3z5ghUqVDALazZt2pS3gliNzMWamzZtUtX4T0oLa75584axpgrNnz/fYC2UUmlhzdu3bxusIFYqLawZGRmJlStXVtWMwSklJQUbNGhgFtYcP368WVjz+PHjBiuIlcpcrBkXF4fVq1dX1YzBSStrDhgwQFUzBiktrLl161ajWfPy5ctmYc3Q0FA9a6qts2tlzY4dOxqsIFYqc7KmmsZ/UlpY8+PHj1ihQgWzs6ba3Kd3796qGv9JaWHNdevWGawgViotrPny5UusWLGi4mYMUuZkzdatW5uFNefMmWMW1rx+/brBCmKlMidruri4qGr8J6WFNceOHWsW1jxy5IjRrPn48WNVjf+ktLJmtWrVeCuIlcoUrKmm8Z+UuVjz/PnzZmHN4OBgrFixollYs127dgYriJVq2LBhBiuIlUoLa+7du1dV4z8pLazp6+ubIVmzR48ebAVxBlVaNA5a4P8a45gkZGFh4QQA/gAA/v7+4OTkZOa/EZMxSkpKAltb23T3Jicng7W1NVhYWKj2pqSkgKWlJVhaWqr2IiKkpKSAjY2Nai+A+X5eGdGr5RmnpqYCAICVlZVqLyJCcnJyhvt5mdNrY2Nj1HNKTk4GKysro95FnU4HOp0OrK2tVXsBMu7POqO9iykpKWBhYWH0u8jOW3VeLe+iOc5bgIz7s85oz1hL7qPT6SA1NZW9i+ngZblPxvGy3Oe/7WWs+d/3svM243jNlfuw8zZ9vIw1M46XseZ/28tyn/++l+U+GcfLWPO/7WXn7X/fy3KfjONlrPnf9pqTNbXkPkzmVUBAADg7O3P/0xkRA7T+N1njoAKxxkEmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmcygtGgfVtxgzMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTFlWLHGQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiamX0iscZCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6RcSaxxk+mX0/v17+Pr1q1HeL1++gK+vr1HesLAwePPmDSCiam9CQgI8fvwYUlNTVXsREe7fvw/JycmqvQAAjx8/hri4OKO8bm5uEBUVZZT33bt3EBwcbJTX19cXvnz5YpT327dv4OXlZdRzioqKghcvXhjlTU5OhgcPHhj9jB88eACJiYmqvQAAT548gZiYGKO8r169goiICKO8np6eEBgYaJT306dP8OHDB6O8wcHB8O7dO6OeU2xsLDx9+hR0Op1qr06n0/QuPnr0CBISEozyPn/+HKKjo43yvnnzBkJDQ43yent7Q0BAgFHegIAA8PHxMcobHh4Or1+/NuoZJyYmwsOHDzWdt0lJSaq9ANrO2xcvXkBkZKRRXnd3dwgKCjLK++HDB/j8+bNR3sDAQPD09DTqOUVHR4Obm5tR3pSUFHjw4AGkpKSo9gKApvP26dOnms7bsLAwo7xeXl7w7ds3o7yfP38GPz8/o7whISHw9u1bo55TfHw8PHnyxGznbXx8vFHe58+fG537vH37FkJCQozy+vj4gL+/v1Her1+/wvv3743yRkREwMuXL416xklJSWY7b588eQKxsbFGeV++fGl07uPh4QHfv383yvvx40f49OmTUd6goCBwd3c36jnFxMTAs2fPjHoXU1NT4f79+0aftw8fPjQ693n27Bn8+PHDKO+bN2+MPm9/Rda8d+8eY02FMhdrpqSkaDpvzZn7hIeHG+VlrKlO5mLNt2/fZkjWfPXqVYbLfRhrKld0dDQ8f/7c6NwnI7Lm69evGWsqlNY6uxbW1JL7/GqsmZycrDn3+dVY8+PHj0Z5GWuqkxbW9Pb2zpCs+ejRI/ZdU6H8/PyMzn0yImsCmLfOzlhTmbSy5sOHDzXV2bV81zQ299HKmt7e3kZ5tbKm1vPW2NyH6b8n1jjI9MvI2toaihYtCtWrV4e5c+eqKgblypULatasCWXLloUpU6bA3bt3FcNJ7ty5oUePHlC0aFEYPXo0XL58WXFClDlzZpg9ezY4OjrCoEGD4OTJk4oTIgsLCzhw4ADY29tDr1694MCBA6rg5O7du2Bvbw8dOnSAbdu2qSoGffjwAezt7aFZs2awdu1aVcWghIQEcHR0hLp168LixYtVFYOyZMkCpUqVgsqVK8OsWbPg8ePHip9xnjx5oEmTJlCqVCmYOHEi3Lp1S3FClDNnThgyZAg4OzvDiBEj4Pz584oTIhsbG1i9ejXkz58f+vfvD8eOHVMMJxYWFnD69Gmwt7eHbt26wZ49e1QlRG5ubmBvbw9t2rSBf//9V9WHsO/fv0O+fPmgUaNGsHLlSlXFIEQEJycnqFmzJsyfP19VMShHjhxQuXJlKF++PEyfPl1V02WePHmgQ4cOUKxYMfjrr7/g2rVrit/FrFmzwuTJk6FQoUIwZMgQOHPmjOJikKWlJezYsQMcHBygT58+cPjwYVXFoKtXr4KdnR107twZduzYoaoY5OnpCfb29tCyZUtYv369qmJQVFQU5M+fH1xcXGDp0qWqikG2trZQrFgxqFatGsyePVtVMShXrlxQt25dKF26NEyePBnu3Lmj+LzNlSsX9OnTB4oUKQKjRo2CS5cuKS4GZcqUCRYtWgSOjo4wcOBAOHHihOJikIWFBRw5cgTy5csHPXv2hP3796v6EPbw4UOws7OD9u3bw9atW1UVg758+QL58uWDpk2bwpo1a1R9CEtKSoKCBQtCnTp1YNGiRaqaLrNmzQply5aFSpUqwYwZM1TBSZ48eaB58+ZQokQJGD9+PNy4cUMxnOTIkQNGjhwJTk5OMGzYMDh37pziYpC1tTWsX78e8ufPD/369YOjR4+qKgadP38e7OzsoGvXrrB7925VxaDXr1+DnZ0dtG7dGjZt2qSqGBQaGgoODg7QsGFDWLFihapikKWlJRQuXBhq1KgB8+bNU1UMypkzJ1SrVg3KlSsH06ZNg3v37il+F/PkyQNdunSB3377DcaOHQtXrlxRfN5myZIFZsyYAY6OjjB48GA4deqU4tzH0tIS9uzZA/ny5YPff/8dDh48qKoYdOvWLbCzs4OOHTvC9u3bVRWDfHx8wN7eHpo3bw7r1q1TVQyKjY2FAgUKQL169WDJkiWqikGZM2eGEiVKQJUqVeCff/5RVQzKnTs3NGjQAEqVKgWTJk2C27dvK859cuXKBQMHDoTChQvDyJEj4eLFi4pzH1tbW1i2bBkUKFAABgwYAMePH1dcDLKwsIATJ06Avb099OjRA/bu3asq93ny5AnY2dlB27ZtYfPmzao+hH39+hXy5csHTZo0gVWrVqkqBul0OihUqBDUqlULFixYoKoYlD17dqhQoQJUqFAB/v77b1WF2Tx58kCbNm2gePHiMG7cOLh+/bri8zZbtmwwbtw4KFSoEAwdOhTOnj2rOPexsrKCLVu2gIODA/Tt2xeOHDmiqvHg0qVLYG9vD126dIFdu3apyn3evXsH9vb20KpVK9i4caOqpsvw8HBwcHCABg0awLJly8DDw0Pxc9LKmrVq1TIZayrNfTJnzgxz5swxmjUPHjxoFtb8+PGjWVgza9asULp0ac2sOWHCBLh582a6sKa1tTWsXr0aHBwc4I8//shQrOng4GAUawIAODs7ZzjWnDJlip41T58+nW6see3aNc2s2aJFi3RlzUyZMkGxYsWgatWq6cqauXPnhr59+xrFmra2trBo0SIoUKCAUax59OhRk7Dmli1bVH0I08KaycnJetZcuHBhurJmixYtjGbNUaNGGcWaVlZWsGHDBqNZ88KFCz8Fa6ppuiRZc+7cuaoG/HLlygXVq1fXzJpjxoxJN9a0sLCAvXv3Qr58+aB3794ZijXz589vdtZUU2fXwpo2NjawfPlyPWu6urqqYs3jx4+Dvb09dO/eXTVrPn36VDNrNm7cON1Zs2LFimZhzfHjx5uENdXmPpcvXzYJa27YsCHdWbNatWowZ86cdGXNnj17Gs2ac+fO5bGmmtxHC2veu3cP7Ozs9Kypps6uhTUTExN5rKmm6TJLlixQpkwZqFy5MsycOTPdWdPJyQmGDx+ebqwJAHDmzBkea6rJfbSwZlBQkMlYU02dPUeOHFClShWjWbNjx4561rx69Wq6sebOnTvBwcEBfv/9dzh06JCq8/b69etgb28PnTp1gh07dqjKfby8vIxmzejoaChQoEC6s2bu3LmhXr16GZo19+3bZ/SAH9N/RIjIQiYAwAkAEADQ398fmTKuBg0ahNyzBAB0dHTEoUOH4tmzZzE2NlbSO3/+fJ43b9682LdvXzxy5AhGRERIeg8cOMDzZsuWDbt06YK7du3CoKAgSe/9+/d5XltbW2zVqhVu3LgRP336JOn99OkT2tjY6L2WlpbYoEEDXL58OXp4eKBOpxP1/vjxA+3t7Xl/dvXq1XHOnDn4/PlzSW9qaiqWL1+e5y1btixOmTIF7969i8nJyZJ/7/bt2/O8RYoUwdGjR+Ply5cxISFB0jt27Fie18HBAQcNGoQnT57EHz9+SHrXrFnD8+bKlQt79eqFBw4cwLCwMEnvmTNneN4sWbJghw4dcNu2bfjt2zdJ76tXr3hea2trbNasGa5duxb9/PwkvUFBQZglSxa918LCAuvWrYuLFy/Gt2/fSj6nhIQELFSoEO/Prly5Ms6aNQsfP36Mqampol6dToe1a9fmeUuWLIkTJ07EmzdvYlJSkuTfu3fv3jxvoUKFcPjw4Xj+/HmMi4uT9M6YMYPntbOzwz/++AOPHTuGUVFRkt4dO3bwvDly5MBu3brhnj17MDg4WNJ748YNnjdTpkzYpk0b/Pfff/HLly+SXh8fH7SystJ7rayssFGjRrhy5Up8//69pDciIgJz5crF+7Nr1qyJ8+fPx5cvX0o+4+TkZCxZsiTPW758eZw+fTo+ePAAU1JSJP/sZs2a8by//fYb/vXXX3jt2jVMTEyU9A4dOpTnLVCgAA4ZMgRPnz6NMTExkt4lS5bwvHny5ME+ffrgoUOHMDw8XNJ75MgRg/O2c+fOuGPHDgwMDJT0PnnyxOC8bdmyJa5fvx4/fvwo6fX390dbW1veeevi4oJLly5Fd3d3yecUGxuLDg4OvD+7atWqOHv2bHz27Jnsu1ilShWet3Tp0jh58mS8c+eO7HnbuXNnnrdw4cI4atQovHTpEsbHx0t6J06cyPPmy5cPBw4ciCdOnMDo6GhJ74YNG3jenDlzYs+ePXH//v0YGhoq6b1w4QLPmzlzZmzfvj1u3boVAwICJL1v375FCwsL3nnbtGlTXL16Nfr4+Eh6Q0JCMFu2bLzztk6dOrhw4UJ8/fq15DNOTEzEIkWK8P7elSpVwhkzZuCjR49kn7GLiwvPW6JECRw/fjzeuHFD9rz9448/eN6CBQvisGHD8Ny5c7Ln7ezZsw1yn379+uHRo0cxMjJS0rtnzx6eN3v27Ni1a1fcvXu3bO5z584dg/O2devWuGnTJvz8+bOk18/PD62trXnnbcOGDXHFihXo6ekp+ZyioqIwb968vD+7Ro0aOG/ePHRzc5P0pqSkYJkyZXjecuXK4dSpU/HevXuy523r1q153qJFi+LYsWPxypUrsrnPyJEjed78+fPj4MGD8dSpU7Ln7YoVK3je3LlzY+/evfHgwYOy5+2JEyd43qxZs2LHjh1x+/btsrmPm5sbz2tjY4PNmzfHdevW4YcPHyS93759w8yZM/PexXr16uGSJUvw3bt3ks8pLi4OHR0deX92lSpV8J9//sGnT5/KvovVq1fneUuVKoWTJk3C27dvy563PXr04HmdnZ1x5MiReOHCBdnzdurUqTyvvb09DhgwAF1dXWVzny1bthictz169MC9e/diSEiIpPfKlSsG523btm1x8+bNslzs6emJlpaWvHexcePGuGrVKvT29pb0hoWFYY4cOXh/dq1atXDBggX46tUryWeclJSExYoV43krVKiAf//9Nz58+FD2XWzcuDHPW6xYMRw3bhxev35dNvfRwpoLFiwwOG+1subOnTvx+/fvkt4HDx4Y5D5aWXPZsmVpzpoVKlTgecuUKZMurPnXX3/xvD8Da379+lXS+/r1a56XZE1fX19JrxRrvnnzRpY1nZyceH+2VtacMGGCItb8/fffed6MwJo3b940yH3SizVz587N+7NNwZr379+XPW+bN2/O83KsefXqVdnzdtiwYTxverHm0aNHDXKfTp06GcWaNjY22KJFC0WsGRAQkCFZs0uXLjxverHmxo0bDXIfray5ZcsWWdZ89+6dJtbMnj0777ytXbu20axZsWJFxaxZv359nrd48eLpwppz5swxyH1+dtb88OGD2VizbNmyPK9W1hwzZowi1hw1ahTPmxFY88WLFwbnrSlYU67OHh8fnyaseevWrTRlzWnTpvG89vb22L9/f6NYM0eOHNi9e3dFrHn16lWD8za9WDNnzpy8PzsjsObgwYN5XlOw5uHDh2VZ8+DBgzyvVtZs2bIlbtiwQZY1P3/+bMCa9evXV8SaMTExBqxZrVq1dGHNDh068LzpxZpr167leTMKa2bNmpV33tatWxcXLVpkNGvOnDlTEWvWqVOH500v1pw5cybPq4Y1d+7caZD7ZGTWfPHihSxrlipViufVyppjx441mjX//PNPRay5dOlSg9zn999/T3PWfPr0qUHukx6syWRe+fv7k8/dCU3RE2eK/8h/PYA1Dv4n9OXLFzx27Bjv8KThpF27doLFoO/fv+PNmzd5ySqdEDVp0kSwGBQREYFPnz7FfPnyCXqlikGxsbHo5uaGFStWFP17k8Ug8pdlSkoKurm5GRQHyJAqBr169Qr//PNPUS9ZDKLhxNPT06DZgIYTsWKQn58fbt26VdQrVQwKCAjAs2fPinptbW2xdevWuHHjRoNiUEhICN6/f5+XrJLBFYOWL19uUAyKiorC58+fo7Ozs+ifXb16dZw7d65BMSghIQHd3NwMPoyQUbZsWcFikE6nQzc3N+zWrZuoV6oY9PbtW4NGSzLIYhANJ+/fv8dly5aJeqWKQZ8+fcL9+/eLeqWKQd++fcOrV6/yklU6IeKKQXTTZVhYGD5+/Bjz5Mkj+i6KFYNiYmLw+fPnBskqGVWqVMFZs2bhkydPeHCSlJSEbm5u2LRpU1FvqVKlcOLEiXjr1i2Dd/Hly5fYr18/Ua+TkxOOGDFCsBjk7u6O06dPF/VKFYN8fX1x/fr1ol6pYtCXL18MinxkSBWDgoKC8Pbt25gpUybRd1GsGMSdtwUKFBD9s8WKQXFxcejm5oZVq1YV9XLFILrpMjU1Fd3c3LBdu3aiXq4YJNR0+fr1axw+fLio19HREYcMGYJnzpwxOG+9vLwMGtvJ4D6ECRWDPnz4YACdZHBNl0LFoK9fv+KFCxd4H0bIkCoGhYaG4oMHD3gfRsiQKgZFR0fj8+fPsWjRoqJ/b7FiUGJiIrq5uWG9evVEvVLFIDc3N+zZs6eot3DhwqLFoHfv3uGECRNEvVwx6MSJEwbnrbe3N65cuVLUyxWDhD6Eff78GQ8fPizq5YpBW7duNSgGBQYG4vXr13kfRsjgPoStWbPGoBgUHh6OT548QTs7O0Ev13QpVAzicp9y5cqJ/r0rVaokWAxKTk5GNzc3bNGihai3RIkSosWgV69e4cCBA0W9UsUgDw8PgwIQGWQxSCj3+ffff0W9UsUgf39/PH36tKhXqhgUHByMd+/e5TWFkMEVg1asWIFeXl48b2RkJD579sxgAIGMmjVr4rx58wyKQfHx8ejm5oY1atQQ9ZYvXx6nTZtmUAzicp9OnTqJeqWKQW/evDH4+EWGVDHo/fv3uGjRIlGvVDHo48ePuHfvXlGvVDHo27dvePnyZd6HETKkikGhoaH46NEjgwEELshiEN10+ePHD3z+/DkWL15c9O/NNR7QH8K487Zhw4aiXq7xQKjp8sWLFwbFWDK4D2EXL14UzH0mT54s6s2XLx8OGDAAjx8/btB44OPjY1BwJ4Nruty3b5/BeWsK1iQLdWSkNWtWqlRJ9O9tCta8fv260awp9CHM09PToNmADI41jxw5YjRrCg34BQQE4Llz50S9WliTHPBLC9akP4yQkZasSX/8IkOKNb29vRWzJv0h7NOnTwbNtGRIsWZgYKAi1hQa8FPKmkIDfhxrli5dWvTvrYU1uQE/MdakG3/ISEvWpAeJyJBiTX9/fzx58qSo11SsSX8I43IfJaxJN10qZU2hAT+ONemmZzIYa/6/ONakBxC4MBVr0k2XXO5DD3yRIceavXr1EvVyrHnp0iWTs+aqVatEvVpZkxvwE2LNGzduZEjWbNmypag3LVlz1qxZol5TsObu3bszFGtyTZdirFmzZk1Rb7ly5dKMNUePHi3qzeisSTddmoI1S5QoIfr3FmNNLveRY02xAb8XL15gnz59RL0/K2u6urqKetOaNekBBC6kWJPLfZSwJt10ybFmmzZtRL1SrPn69WscMmSIqFcra3IDfvR5++HDB9y2bZuoV+oyGSWsKTbgx7EmOexOv4s/A2sK5T7/NdbMkiULduzYUfAymbRmTbHLZJSwJjfgZ07WpHOf9GJNodxHijUzZcokyZp37tzhDSCQYQrWFBrw487batWqiXq1sqbSy2SY0lescZA1DjJpkBS4CQVZDJL6YC8UZcqU0U/gSiX1QkFO4NJd4nJBTuB+/fpVlZeewBUrwAgFXQyS+hBMB10MkmrKoIMuBtETcnLBFYMePXqEmzdvVuUli0GXLl1S5eWKQefOncN3796p8nLFoKNHj2JERIQqL9l0GRwcLFkMpYOewG3SpIliLzmB6+XlJfmRUCjIYhA9IScXZDFIKqkXCu62p6tXrxpMJMsFWQz68OGDKi9dDBKDPqHgikHbt2/HwMBAgwk5qeCKQdwEbseOHRV76duepMBNKMgJXKkiilCQtz2dOnVKlZcsBtG3X8kFWQwKCgpS5SWLQSEhIZg/f37FXrIY5O/vj3Xr1lXsJYtB3t7ekoUyoWfMFYNevXol2SAlFBUrVtRP4NK3scgFOYFLTyTLRcGCBfUTuF5eXqq8dDFIrJAqFHQxSKoYSgddDJJqgqODLgbRE3JyQRaD6Ak5ueCKQXfv3pX8gCQURYoUwTFjxuDly5fx4cOHqrzkBO7nz59VeekJXLGCt1DQNwtLfQimg75ZuGvXroq9dDFo0qRJqv7NZDGIvo1FLshikFRBUyjIYhB907JccMWgY8eOYWhoqCovVwzimi7piWSpoD+ENWjQQLGXKwZxE7gDBgxQ9fcmb3uSKloLBXmzMH0bi1yQNwvfunVLlZe77enMmTPo4+Ojyks3Hog1dAgF2XgQGBhocPOnVJCNBx8/fsS2bdsq9nKNB9wErlRDqlBUq1ZNf9uTFtY8fvy4Ki/JmvTtV3JBsua3b99UeU3JmlIfgukwFWu+fv1aE2vSt7HIBXmzsFrWJAf83N3dVXnJAT8trBkUFKSJNaU+TNBhStZcuHChKq8pWPPKlSt49+5dVV6ONU+dOmU0a3IDflpYU2rAlQ76tictrDlu3DhV/2ZTsaZU84xQkKxJ334lF9zNwqZgTamPT3RwrMl9CDOGNbkBv759+6p6xrVr19YP+JmLNa9du6bKS972pJU1xT4iC4UpWVOqCY4OeouNVEOqUJA3C2thTXrLhFyQtz1pYc0vX76o8v4srCnVlEHHz8CaN2/eNJo1z58/b3D7lVyQrBkWFqbKS98srIU1pZrg6KBve9LCmnPnzlXl/RlY09fXV5WXvllYC2vSN39KBb3FRgtrqv2uSd4srJY1yZuFtbCmOb9r0rcNSgW9xcZY1vTx8ZEcAKCDZk2pBimhILfYaGHNy5cvq/KaijUjIyNVeX8W1pRqSBUK8mZhLaxJ3/wpF6ZizY8fP6ry0pfJiF0aIRT0gJ8W1pQaAKDDlKy5bt06Vd6fgTWDg4NVedVssWFKe7HGQdY4yKRBahNs8peOmoSRDEtLS6O9ACDZIS4X9KpgNVG0aFFVv9TJcHBwwMKFCxvlzZEjh9F/78yZMxv987K2tjb6OVlYWKhqlKSDXvuiJtR8GKXDyclJFUSRkTdvXsnbZ6QiW7ZskpNmUmFra2uwtkFpmPNdVJPk0lGiRAnRCRW5KFCgABYsWNAob65cuYz+/1eWLFmM/v+1tbW10e+ThYWFpmesphBLh9S0ulwUKVJEVQGZDHt7e1WgTEaOHDlUNZaSkSlTJqPfRSsrK03Pydg/F+B/RWxjvaVLl1bVOEhGwYIFRadz5SJPnjwGK+CURtasWY3+N9va2hr9LprzvDX2/9MA//toKHYTlFzkz59fcjpXKnLmzKmq+ExG5syZjT67MmruY+zPCuB/RWx6PZjSsLOzM1hJpDSyZ89udO6j9bzV8py0nLdacp+SJUuK3vIuF46OjqoaJMjInTu35AS2VGTNmtXo/1/b2NiY7bzVkvuYizXz5cvHWFNFaMl9zMmaappgyNDKmhkx99Fy3hYvXlwTa0rdBCUVGZU1tbyL5mRNej2Y0mCsqS6MPXsAfj3WNGfuY646uxbWdHBw0MSaxp4hjDXVhbOzs9lY09hcQEud3ZysqeW81cqa9CpqpZERWVPru6jlvNWS+xQtWlT01mG5yIisqSX3YaypLhhrqgtzsqaxv88Za6qLIkWK4MGDB9kqYzOKNQ6yxkEmDVLTOMh1XHPX3EqtbaCDXqkida0tHfQ1t2puZKHXd0ZFRak65On1nWpugeDWd3LXiqv5JUdO9yYmJqq6BYKc7o2NjVU1mZMnTx7s27ev/mYTqZVVdJDTvd+/f1c1lcxN93I3m6iZkqNXqqSmpqp6xvT6TjVFYHqlipobB+n1nWpugSCne3/8+KFqMoec7g0NDcVDhw4p9pLTvV+/fsVHjx4p9nLTvdzNJmpuCCCne7mVKmpugahcuTJvpYqaYj29UkXNLRD0ShU1kzn0ShU1kzn0+k6pVeV00NO9am7/pKd74+LiFHsB/n+6l1upoubGQXp9p5pbILjpXm6lipobB/Pnz89bqSK1JocO+hbNXbt2KfbSK1XUTCXTK1XU3EZHrlRxd3dHnU6n6mMOOd2bmpqqqihBTvcmJyerunHQ2dkZR40apV+pouYWCHK6Nzo6WnJtAx3cdC93s4nUuk466JUqz58/V+ylV6qouSFAaKWKmiZecn1namqqKkjnVqrcuHEDk5KSVN04SE73xsbGSq7JoYOe7t20aZNib7Zs2XjrO9XcgMWt79y0aRN++vRJ1Y0slpaW2LBhQ/0tmomJiYq9AP+b7iVXqqi5BYJe36nmxkHuFk1upYqaWyDolSpqboHIlSsXb6XKvn37FHu5lSrcdO/9+/cVe8npXj8/P1U3BNDTvTqdTtUtENx0L7dSRU0Bml6pouYWCHqlilrWJFeqaGFNNbctm5I1o6OjFXsBTMOa3EoVNUVzU7Amt75TC2tKrayig17fqZY1yVs0/fz8FHtNyZqpqamaWFPNLRAka8bHx2tiTakVgXSYgjW5WzQfP36s2KuVNen1nVpYU82HJFOy5vjx4xV7TcWaQUFBqm7AollTzY0sJGt6eXlpZk01DfVaWJPc2JCYmKjqxsGfhTVv376t2Gtq1lRz46ApWJNb36nmxkGaNUeMGKHYS95sopU11Wz2MSVrhoeHK/aakjVTUlI0saaaGwdNyZpS65Hp0Mqa5C2a79+/V+ylWTMpKUmxF8BwfacW1lRz46AW1nRwcOCx5rx58xR7TcWaX79+1cSaam4+51iTXN+phTXVNKOYkjXHjBmj2PuzsKaa2z/p9Z3Gsia3vlNNU5kW1iRv0UxMTFR14yDNmn///bdiL72xQQtrXr9+XbHXlKyp0+lUPeOfhTXV3DjIsSZXZ9fCmmo2+2hlTXJjg5rb6IRYU83AKLexwRSsqebGQVOy5vr16xV7TcGa3C2aWlgzPj5esRfgf6zJbWxgDYPmF2scZI2DTBqUlJSE9+7dEz3wyKvWyR3viIjJycno5+cnOpFEJ4mkUlJSMDw8HPPlyyfoJa9aj4mJ4XlTU1MxPj5e9JckmSSGh4fzvDqdDhMSErBDhw6C3qxZs2Lnzp31BTJaCQkJoutGbWxseFet00pMTMTVq1cLeoUKZPRzkoIScq1XamqqwXOSWjdKN2PQzykgIEB0ApQrkF26dAnj4+MNnlN0dLToBCjdjEE/p/j4eKxTp46gl75qXegZ//7774Je+qp1oWc8Y8YMQS991brQM96+fbugl75qXegZS30AI69aF3rGnp6eokVVukBGP+OQkBDRiXu6QEY/49jYWCxVqpSgly6QCT0nseYf+qp1oec0dOhQQS/ZjPH582fB57R48WJBL33VOq2kpCTJD2DkWi/6GScnJ0s2W3JXrXMFMtr76dMn0UIOedV6QkKCwTOOjIwUbcSjmzHoZxwfHy9akCXXeoWFhQk+4y5dugh66WYMoWc8ceJE0fOWLJAJPeMNGzaIvot0Mwb9jKWghLxqXehdfP36NVpYWAh6yavWhc7bb9++icKjk5OT/qp1ofM2JiZGtEBAfpCIiooSfE7169cX9ObIkUPyqvWEhAT8448/BL10gUzoOc2ePVv0XSTXegl5d+/eLfqc6GYM+hlLNVvSjf/0M/b29kZra2tBL92MQT/jsLAw0cYQuvGffsZxcXGiE29cM8aRI0cwIiJC8Bm3adNG0Es3/gs9Y7F1o/QHCaHntHz5ckEvt9aLLJDRz0nqAxj3QYJr/Kefk9QKmLJly/IKZPRz+vLlC2bJkkXQSzf+088pKipKdAKUbsagvfHx8aIFWXqtl9AzFmv+oRv/hZ7x1KlTBb3kWi9fX1/BZ7x582bR85Zc6yX0jKVWwHBrvbgCGf2M3717J9q8TBfI6GccFBSEOXPmFPQWKlRIv9YrLi7O4DnFxMSI3jJNFsjEzluxQRO68V/oOQ0aNEj0vCWbMYSe0/z580XPW7Lxn1ZSUhLu379f9DmRa72EnrFW1rS1tRX0moI1uWYM+hnHx8eLTs2bkzXJZgyhZ7xmzRrR81YLa9LNGPRzkloB8zOzpljzjylYk2vGEHrGYutGTcGaZDMG/YwzKmuK3UST1qw5bNgwQa8W1uSaMVasWIGenp6Cz0nqAxjd+E8/p7RiTboZg37GkZGRoo14WliTbsYQesZigyY/M2ueP39e9DmZgjW5Zgz6OQUGBqYpa3LNGELPSWzQRAlr9u/fX9CrlTXJxn8hr7lY08fH56dlTa4ZQ+gZizX/mII1uWYMoee0YsUK0fNWC2vSQ+b0c3r27Jmo92dmzVq1aomet2nJmtOmTRP0moo1uWYM+hnLsSbZjEE/Y3d39zRjTbIZg35OsbGxoo3Pac2agwcPFj1vzc2aQnX2pKQkyWZLU7Am1/hPP+OIiAjRm221sCbd+C/0jMUGTejGf6FnLHapQVqzptS60bRkza9fv4oOBJmbNbnGf6HnJHapgVbWJBv/hZ7xjh07RM9bLaxJD5nTz9jLy0sTa+bJk0fQm9asKTZoYirWFKuzL1myRPRdNBdr0o3/9HMyJ2uK3S6ZlqzJZF6xxkHWOMikUe3ateMlieTeezmRkz1yBTJadBOdVIGMFv1hQ6oZg9bLly95XqkCGa3v37/z4J6eDpVSfHw8D+65AplYkkhKp9Px4J6eDpUTOdkj14xBi5zsIadDhQpktOgPG1IFMlr0ZI9UgYyWt7c3D+6lCmS0IiIieBOvUs0YtJKTk3lwL1cgo0VO9sg1Y9AiJ3u4Ahk3HSr3nOgPG/R0qJToZJNLEoUKZLToyR4uSRQqkNHy9/fnwb1UgYxWTEwMD+6lCmS0UlNTeXAvVyCjRU72yBXIaE2YMIH3Lko1Y9CiJ3u4ZgxuOlRK9IcNejpUSm/fvuV5uWYMbjpUSsHBwTy4t7Ozw/79+wsWyGglJiby1ijIFchI6XQ6rFevnt7LfZAQK5DR6tevH++8lSqQ0frnn394Py+pZgxa9IcNqQIZLfoWCalmDFp+fn48uJdq/KcVFRXFg3t6OlRKKSkpPLjnmjF27twpWCCj1apVK17uQ06Hyom8RUKuQEaLbqKTavyndfz4cZ5XqkBGi75FQqpARuvbt2+8NQpSBTJacXFxPLiXasagpdPpeHAv1/hPi7xFQq4Zg9aUKVN4561U4z8t+sMGNx0qVCCjRX/Y4D5ICBXIaHl6evI+JJMFMrnzNiwsjLe2RqpARispKQl/++033nkrVSCj1ahRI17uI9WMQWvgwIG881aq8Z8W/WFDqvGfFv1hg2vG4G4ikhL9YYO8iUgu9/n06RPvQzJZIJM7b3/8+MH7kCzV+E8rNTWVt15IbYFMjDWFmjFojR07lvcuphdr0h821LAmfWOhqVhTLvdJSEhIE9ZUUuvp3bs37100ljUBpJsxaGlhzRs3bvC8vwJrNmvWjHfemoI1hZoxaImxplAzBq0jR47wvFLNGLRo1pRqxqClhTVjY2M1sSa53kwta3bu3JmX+6QXa9JNdKZgTaFmDFpv377l5T5qWDMkJMSANcWaMWhpZU0XFxe9V64Zg5YW1qSb6DIKa5K5j6lYk27GoJWSksK7rVmu8Z8WzZpcM4YS1hw5ciTvvNXCmlLNGLS0sCY9rJ6erEmuSE1P1uzevTvvvNXKmmLNGLSEWFOsGYPWlStXeF6pZgxaUqwpl/tkVNYkB7bIZoy0Zs0DBw7wvGpY88GDBzyvVDMGrU+fPvEuB9HCmlLNGLS0smb79u155216sSbdRJcRWDMoKMjkrCnW+E9Kp9Nh7dq1ebmPVOM/LZo1pRr/adGXg2QE1vTx8eHV2dOTNUuWLKn3moI1N2zYoIg1yctB1LIm3UQn1fhPSwtrPnnyhOdlrCktcmDLVKwp1PhP68KFCzyvGtZ89+6dAWuKNf4z/VxijYOscZBJg54+fWpwVbdSBQQEYL58+fRXdcsVyEjFxsZi0aJF9UmikgIZJ51OhzVr1sTGjRsrLpCR6tq1q8FV3Uo1adIkrFChguICGamNGzeqKpCRunjxoqoCGSl3d3e0s7NT3IxBKiQkBAsUKMC7qlupEhMTsXTp0qqaMTjpdDps1KiRwVXdSjVgwAB9kqikQEZq7ty5WKZMGcUFMlJ79+7VJ4lKCmSk7t69q6pARurDhw9oZ2enuEBGKjo6Gp2cnFQVyDilpKRgpUqVeFd1q1G7du0MrupWqtGjRxtc1a1UK1eulJwOldLJkyexYMGCOHz4cEXNGKRevHiB9vb2vKu6lSowMBAdHBywW7duigtknOLj47FYsWK8q7qVSqfTYZ06dVQVyEj16tVLVYGM1LRp01QVyEht3bpVVTMGqatXrxqshVIqLy8vtLOzE50OlVJ4eDg6Ojpip06dVE8rJScnY9myZSWnQ6XUvHlzdHFxUVwgIzV48GCsWrWq4gIZqYULF6oqkJE6ePAgOjs7Ky6QkXr48CHmy5dPceM/qS9fvqC9vb3iZgxSMTExWLhwYVWN/5xSU1OxWrVq+ulQJQUyUp06dTJYC6VU48aN00+HKimQkVq3bp2qAhmps2fPqiqQkXrz5g3a2dkpLpCRCgoKQgcHB1UFMk4JCQlYokQJVc0YnLgPyWoa/0n17dtXVeM/qVmzZqlq/Ce1c+dOVR8kSN26dUu/FkpJgYyUj48P2tnZYe/evRUVyEhFRkZiwYIFVRXIOKWkpGCFChVUFchItWrVSlWBjNTw4cNVNWOQWrp0qarGf1LHjh1T1YxBylysGRcXp2dNpc0YnLSyZrdu3VQ1Y5DSwpqbNm3KcKwZGhrKY00lzRictLJm48aN9ayppBmDlLlYc9++faqaMUhpYc2PHz+ivb29WVizcuXKqpoxSJmLNVetWqWq8Z+UVta0s7NT3IxByhSsqaYZg5NOp8O6deuahTWnT59uFta8du1ahmVNNc0YpLSw5p9//qmqGYOUFtY8dOiQqmYMUo8ePVLVjEHKlKyp5luNVtbs3Lkz1q5dW3EzBilzsea5c+fMwprBwcGYP39+s7Bm/fr1jWbNfv36qWr8J6WFNXft2qWqGYOUFtb09fVFOzs7xc0YpMzJmq1btzYLay5btswsrPns2TM9aypp/CdlTtasVauWqsZ/UlpYc/Lkyaoa/0lpYc1Lly4ZzZoeHh481lST+2hhzaSkJD1rKm3856SVNQcOHKhqyJyUuVjz3r17ZmNNZ2dns7Bm+/btVQ2ZkxozZoyqxn9SWljz1KlTqhr/SZmCNdU0/nMyJ2v27t3baNZkMq/SonHQAv/XGMckIQsLCycA8AcA8Pf3BycnJzP/jZiMUUhICOTNmxesrKxUe8PDwyF79uxga2ur2vvjxw+wtLSEbNmyqfYmJiZCXFwc5MmTR7UXESE4OBjy58+v2gsA8P37dyhQoIBR3qCgIHBwcAALCwujvPny5QNLS0vV3tDQUMidOzdYW1ur9kZGRkLmzJkhc+bMqr2xsbGg0+kgR44cqr3JyckQFRUF9vb2qr2ICEFBQUY/J3M94+DgYLCzszPqXQwLC4OcOXOCjY2Nam90dDRYW1tD1qxZVXvj4+MhKSkJcuXKpdqr0+kgNDQUHBwcVHsBtD2n79+/Q/78+Y1+F419xlrO24iICMiaNStkypRJtTcmJgYAALJnz67am5SUBDExMZA3b17VXnOet1qecXBwMNjb2xt13mp5F6OiosDW1hayZMmi2hsXFwcpKSmQM2dO1d7U1FSIiIgw6rwF0P6czHHemiv30XLeJiQkQEJCAuTOnVu1V6fTQUhIyC/1LmrJfSIiIiBLlixG5T4xMTGAiEbnPtHR0WBnZ6fam5Fzn4x23mrJfVJTUyEsLMxsuc+vdN7+iqypNb/9lVgzJSUFIiMjGWsqVFhYGOTIkSPdc5/4+HhITEw0Ovf51VgzNDQU8uTJw1hToTJifstYM/28v1ruo4U1M+q7aK7ch7GmOjHWVC7GmurEWFO9N6PV9jIiawJkzHeRsaY6MdZUrozKmkzmVUBAADg7O3P/0xkRA7T+N1njoAKxxkEmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmcygtGgfVt74zMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTFlWLHGQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiamX0iscZCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6RcSaxxk+mUUGBgISUlJRnlDQkIgNjbWKG9UVBREREQY5U1ISIDv378b5UVE+PLli1FeAIDPnz8DIhrl/fLlC+h0OqO8X79+hZSUFKO8379/h4SEBKO8YWFh8OPHD6O8MTExEBYWZpQ3OTkZvn79apQXEeHz589GeQG0PWN/f3+jn/G3b98gOTnZKG9wcDDEx8cb5Y2MjISoqCijvHFxcRAcHGyUV6fTgb+/v1FeAO3vorHegIAASE1NNcobGBgIiYmJRnlDQ0ONPm+jo6ONPm8TExMhMDDQKK8530VznbdBQUFGn7fh4eEQHR1tlDc2NhZCQ0ON8qakpEBAQIBRXgAw63lr7Lv47ds3TblPXFycUd7IyEiIjIw0ypuQkABBQUFGeXU6XYbMfQICAjTlPsaet2FhYRATE2OU98ePH0bnPklJSfDt2zejvCz3UaeIiAhNuU9ISIhR3tTUVM25j7EyZ+6T0VgzMTFRE2v+arlPRmTNlJQUs7GmlndRa+6j5bzVkvsYe97Gx8cz1lQhLbmPVtYMDw83ypuUlPRLsqax76I5WVNL7sNYU7m0sGZUVJRZWDOj1tl/NdZMTk5mrKlCjDXVibGmcjHWVCctrBkeHp7hWBPAfO8iY03lysisaY7cJzQ01OjcJ6OyJtN/T6xxkOmX0ffv3yFfvnzQo0cP2Ldvnyo4SU1NBWdnZ2jXrh1s3rxZ1S/LTJkyQdWqVaFJkyawevVq8Pb2VuXt1KkT1K5dGxYsWACvXr1S/MvSwsICpkyZAhUrVoS///4bHj58qCoh2rJlC5QoUQLGjRsH169fVwUnly9fBicnJxg6dCicPXtWVULk6ekJDg4O0LdvXzhy5IiqYlBUVBTkz58funTpArt27VIFJ5aWllC8eHFo1aoVbNy4UdUvy8yZM4OLiws0aNAAli9fDh4eHoqfk42NDfTv3x+qV68Oc+fOhefPnyuGEwsLC1iwYAGULVsWpk6dCnfv3lWVEB04cACKFi0Ko0ePhsuXL6uCk/v374OjoyMMGjQITp48qSoh+vz5M+TLlw969eoFBw4cUAUniYmJULBgQejQoQNs27ZNVTHIxsYGypcvD82aNYO1a9eCn5+fYm/mzJmhZcuWULduXVi8eDG8fftW8TO2tLSEMWPGQOXKlWHWrFnw5MkTVQC6Zs0aKFWqFEycOBFu3rypCk5Onz4Nzs7OMGLECDh//ryqYtDLly8hf/780L9/fzh27JgqOAkNDQUHBwfo3r077NmzR9V5i4hQpEgRaNOmDfz777+qCrOZMmWC6tWrQ+PGjWHlypXw/v17xV5bW1vo3r071KxZE+bPnw8vX75Udd7OmDEDypcvD9OnT4cHDx6oOm937NgBxYsXh7/++guuXbum6ry9ceMGFCpUCIYMGQJnzpxRVQzy8fGBfPnyQZ8+feDw4cOqikExMTFQoEAB6Ny5M+zcuVPVeWtlZQWlSpWCli1bwvr16+Hjx4+KvZkzZ4ZGjRpB/fr1YenSpeDu7q74OVlbW8PgwYOhatWqMHv2bHj27Jmqd3HJkiVQpkwZmDx5Mty5c0fVeXv06FEoUqQIjBo1Ci5duqTqvH38+DE4OjrCwIED4cSJE6qKQd++fYN8+fJBz549Yf/+/arO26SkJChUqBC0b98etm7dqupDWKZMmaBSpUrQtGlTWLNmDfj4+KjytmvXDurUqQOLFi2C169fqzpvJ0yYAJUqVYKZM2fCo0ePVL2LGzduhJIlS8L48ePhxo0bqt7F8+fPg7OzMwwbNgzOnTunKvd59+4d5M+fH/r16wdHjx5Vdd6Gh4eDg4MDdO3aFXbv3q26GPTbb79B69atYdOmTapznzp16kDDhg1hxYoV4OXlpSr3+f3336FGjRowb948ePHiharzds6cOVCuXDmYNm0a3Lt3T9W7uGfPHvjtt99g7NixcOXKFVXFoNu3b0PBggXhzz//hFOnTqnKfT58+AD58uWD3r17w8GDB1UVg+Li4sDR0RE6deoE27dvV1UMsra2hrJly0Lz5s1h3bp18OHDB8XeTJkyQdOmTaFevXqwZMkSePfuneLnZGVlBSNGjIAqVarAP//8A0+fPlV13q5YsQJKlSoFkyZNgtu3b6vKfY4fPw6FCxeGkSNHwsWLF1XlPs+fP4cCBQrAgAEDwNXVVVXjgVbWLFy4sCbWbNy4MaxatUoVa9ra2kLnzp2NZs2pU6dChQoV0p01r1y5YhbWjI6ONhlrfvr0SbFXC2taW1vDgAEDoHr16jBnzpwMy5pqcp8vX75kONbMlCkTtGrVSs+ab968STfWXLt2rSbWdHJyguHDh6tmzVevXmlmzW7dusGePXtU5T5aWDNz5sxQs2ZNaNSokWrWtLGx0cSaM2fO1MSaxYoVg7/++guuXr2qKvfRypoODg7Qp08fOHToUIZiTRcXF9WsaWVlBX/++afRrLl06VIoXbp0urPmkydPTMaaagb8kpOTwcnJySjWtLW11bPm6tWr0401LSwsYOLEiVCpUiWYMWNGurLmhQsXzMKaERERGY41ra2toU+fPnrWdHNzM4o1p06dqpo19+7dq4k1HR0dYfDgwenKmvHx8eDo6AgdO3ZMV9bMnDkzNGvWzCSsqTb3WblypUlY88KFC+nGmkFBQXrW3Lt3b4ZizVq1ahnFmtOmTTOaNbdu3QrFixdPd9b08vLisaaa3IdkTbW5j6WlJZQoUUIzay5btizdWBMAYOHChVCmTBmYMmVKurLmgwcPzMaahQoVMglr+vr6KvZqZc2xY8fqWfPx48dGseaECRNUs+aZM2c0s+Yff/yR7qxZtGhRs7Bmjx49TMKa9+/fN7qxluk/IkRkIRMA4AQACADo7++PTBlXnTt3Ru5ZWlhYYL169XDJkiX47t071Ol0kt4JEybovQCAVapUwX/++QefPn2Kqampkt4NGzbwvKVKlcJJkybh7du3MTk5WdJ7/vx5ntfZ2RlHjhyJFy5cwPj4eEnv27dv0cLCQu+1t7fHAQMG4PHjxzE6OlrSGxISgtmyZdN7c+bMiT169MC9e/diSEiIpDcxMRELFy6s92bOnBnbtWuHmzdvln2HdDoduri46L1WVlbYuHFjXLVqFXp7e0t6ERH79evH+3nVqlULFyxYgK9evZJ9xrNnz+Z5K1SogH///Tc+fPgQU1JSJL179uzheYsVK4bjxo3D69evY2JioqT39u3bPK+joyMOHToUz549i7GxsZJePz8/tLa21nvz5s2Lffv2xSNHjmBERISkNyoqCvPkyaP3ZsuWDbt06YI7d+7E79+/S3pTUlKwTJkyeq+trS22atUKN27ciJ8+fZL0IiK2atVK77W0tMQGDRrgsmXL0MPDQ/Y5jRw5kvfzql69Os6ZMwefP38u612xYgXPW6ZMGZwyZQrevXtX9l08fvw4z1ukSBEcPXo0Xr58GRMSEiS9bm5uPK+DgwMOGjQIT548iT9+/JD0fvv2DTNnzqz35sqVC3v16oUHDhzAsLAwSW9cXBw6OjrqvVmyZMEOHTrgtm3b8Nu3b5JenU6H1apV03utra2xWbNmuHbtWvT19ZX0IiJ2796dd97WrVsXFy9ejG/fvpV9TlOnTuX9vCpXroyzZs3Cx48fy563mzdv5nlLliyJEydOxJs3b2JSUpKk98qVKzxvoUKFcPjw4Xj+/HmMi4uT9Hp6evLOWzs7O/zjjz/w2LFjGBUVJekNCwvDHDly6L05cuTAbt264Z49ezA4OFjSm5SUhMWKFdN7M2XKhG3atMF///0Xv3z5IulFRGzUqBHvvG3UqBGuXLkS379/L+sdNGgQ7+dVs2ZNnD9/Pr58+VL2Gc+fP5/nLV++PE6fPh3v378ve94eOHCA5/3tt9/wr7/+wmvXrsmet/fv3+d5CxQogEOGDMHTp09jTEyMpPfTp09oY2Oj9+bJkwf79OmDhw4dwvDwcEnvjx8/0N7eXu/NmjUrdurUCXfs2IGBgYGS3tTUVCxfvjzvvG3ZsiWuX78eP378KOlFRGzfvj3vvHVxccGlS5eiu7u77HMaO3Ys7+dVtWpVnD17Nj579kz2XVyzZg3PW7p0aZw8eTLeuXNH9rw9c+YMz1u4cGEcNWoUXrp0STb3efXqFc+bL18+HDhwIJ44cUI29wkKCsIsWbLwcp+ePXvi/v37MTQ0VNKbkJCAhQoV4uU+7du3xy1btmBAQICkV6fTYe3atXnnbdOmTXH16tXo4+Mj6UVE7N27N++8rV27Ni5cuBBfv34t+4xnzJjB+3lVqlQJZ8yYgY8ePZJ9xjt27OB5ixcvjuPHj8cbN27Inrc3btzgeQsWLIjDhg3Dc+fOyZ63Pj4+aGVlxct9+vXrh0ePHsXIyEhJb0REBObKlUvvzZ49O3bt2hV3796NQUFBkt7k5GQsWbIk77xt3bo1btq0CT9//izpRURs3rw577xt2LAhrlixAj09PWWf09ChQ3k/rxo1auC8efPQzc1N1rtkyRKet1y5cjh16lS8d++e7Hl75MgRnrdo0aI4ZswYvHLlimzu8+TJE543f/78OHjwYDx16pTseevv74+2trZ6b+7cubF379548OBB2fM2NjYWHRwceOdtx44dcfv27YpynypVqui9NjY22Lx5c1y3bh1++PBB0ouojTUnTpzI+3mZgjVv3bole95euHCB59XKmv3790dXV1fZ3EcraxYpUoR33rZt2zZdWPOPP/7g/bwyAmveuXOH501P1sybN6/eq5U1W7ZsiRs2bFDEmq1bt+blPlpYs1q1aunCmidOnOB5Mzprfv36VdKr0+mwevXqvNxHDWv26NGDd97WrVsXFy1ahG/evElT1tyyZQvPW7JkSZwwYUK6sKalpaXeq4U1s2fPnm6s2bhxY955m16suWDBAp5XK2uOHTsWr169KnvePnjwgOdVw5qfP3/msWbu3Lnx999/TxfWrFChAi/3adGiRbqw5l9//cX7eWUE1nz9+jXPy7Gmkjq7VtZ0cnLi5T5aWLNJkyaKWfP333/nnbdaWLNixYrpwpo3b97kedOTNXPnzs07b41lTVtbW2zdujVu3LgxzVlz2LBhvJ9XjRo1cO7cuWnOmkePHuV504s1AwICMiRrdunShfcucqyppM6uhTU3btzI82phTScnJxwxYoQi1nz37p0m1syePbvemyNHDuzevXu6sGb9+vV572J6seacOXN4XlOwppI6uxbW/PDhA4818+TJg3379sXDhw+nOWuWLVuWd95qYc369esrZs1Ro0bxfl5qWHPlypU8b3qx5osXL3heU7CmktwnPj7e5Ky5Zs2aNGfNadOm8X5elSpVwpkzZ6Y5a169epXnTS/WZDKv/P39yefuhKboiTPFf+S/HsAaB/8Tio2NNQBHMqSKQfHx8ejh4cEr4pBRoEAB/PPPPwWLQYmJifjt2zfMly+foFeqGJScnIxhYWFYsWJFQa9UMUin02F4eDiviEOGXDEoIiICx4wZI+iVKwZFRUUZFM3JkCoG/fjxA48dOybqlSoGxcXF4aNHj0S9zs7OOGrUKLx48aIBnCQkJKCfnx9mzZpV0CtVDEpKSsLg4GB0dnYW9HIfwvbt22eQEKWkpGB4eDjWqVNH0Ms1XQoVg7hnTDYMkCFXDIqMjDRIZMiESKoYFB0dbdCgRYZUMSgmJsYAHMmQKgbFxcXh69eveUUcMshiEA0niYmJ6O/vz2uWJEOqGJScnIyhoaFYqlQpQa9UMSg1NRXDw8OxRYsWgl65YlB4eDj++eefou9igwYNcPny5YLFoMjISIOiORlSxaAfP37gvn37RL1ly5YVLQbFxsYagCMZUsWg+Ph4fP/+PWbKlEnQK1UMSkxMxMDAQCxQoIDoeStWDEpJScGwsDCsWrWq6HkrVgzi3kWyYYA+b7likJ+fn8EzjoiIwHHjxom+i1LFoKioKIOiORlVqlTBWbNm4ZMnTwTfxZMnT4p6S5UqhRMnTsRbt24JvovPnj3jFXHIkCoGJSQk4MePH3lFHDKkikFJSUkYEhKCRYsWFfRKFYO4d5Es4tDnrVQxKDw83KA5nQu5YlBkZCTOmjVL9GctVQyKjo7Gbdu2iXq5YtCDBw8M3sWYmBgDcCRDqhgUHx+Pb9++5RVxyHB0dMQhQ4bgmTNnBM/br1+/op2dnaCXa7oUKgZxuU+5cuUEvdmyZcPOnTsLFoO4Z0wWcejzVqoYFBERgSNGjBA9b6WKQVFRUQZFczLIYpBQ7nP48GFRr1QxKDY21qAhlozChQuLFoPi4+PRx8eH9wGLDK4YdOLECYNiUFJSEgYFBfGaJcmQKgZx523NmjUFvVwxaOvWrQbFIO68JZvTyZArBkVEROCkSZNEz9s6deqIFoOio6MNGrTIkCoGxcTE4Llz50S9JUqUEC0GxcXF4YsXL3hFHDKkikEJCQn4+fNnXrMkGVLFoOTkZAwJCcHixYsLeqUaD7h3sUmTJoJeucaD8PBwHDhwoOh526hRI1yxYgV6eXkZeCMjIw2K5mTUrFkT582bhy9evBB8xrt37xb1li9fHqdNmybYeGAK1iQ/YJGR1qxZqVIlQe/PwJpCTZdKWVPoQ5hS1hQa8IuLi8PHjx+LerWyptiAnylYs27duoLetGbN6dOni563pmJNodzn4sWLol5TsKbQhzClrHnkyBFR1ixdurToedu1a1fctWtXmrDmkCFDRN9FKdaMioqSZM3q1atLsub+/ftFvXKseffuXVGvqViTzn0SExPx+/fviliTbrqUY80sWbJgx44dBQf8uHeRbBigz1utrCk24KeVNU+dOiXq5Qb80oI1P336xGuWJCOtWbNBgwai560ca9INA1yQrCnUdKmUNYWaLqOjo3H79u2iXq2sKTbgFx8fj+/evcuQrNmmTRvR8zYtWXPp0qWiP2tTsKZQnT02NtagIZYMKdZMSEgwK2vWqlVL9Lxt37690azZtGlTSdacPHmy6Hn7s7Lmy5cv05w1xXKfEiVKCHpNwZqbNm0SZU26OZ08b7WwJjfgZwxrlitX7qdlTbJZkoy0Zs0OHToIeknWFGq6jIiIMBiEJs/btGRNV1dXUW/p0qVFL5NRwpojR44UZc0PHz7wBvPI+BlZE/F/7yLZnE6ft2nJmnSDFhmmYM3r16+nO2tyA35qWZNrujSWNbnLZNKCNRcuXCj6szYVawrlPlpZk2yWJCOtWZO8BIYMrazJDfgJsSaTecUaB1njIJMGjR49WvSwp4MsBgUHB+OqVasUezNlyoRt27bVfwiTasqggy4G0bfmyEWtWrX0E7iRkZGqvNwELlcMEivACAVdDKpRo4ZiL10M6tmzp2IvXQwSSxaFgiwGBQYG4tatWxV76WLQtWvXFHvJYpC7uzv6+Pioek7VqlXTN12mpKSo8tLFILFiqFDQE7hicC4UDg4O+tuefvz4IdoEJxT0BK5UskgHXQw6dOiQYi9dDJJqSKWDLAa9fv0av3//ruo50cUgMegTCq4YxH0IIyfH5YIrBnETuB07dlTs5YpBXNOl2IcJoaCbLtetW6fYS9/2dPbsWcVecgLXy8sL3717p+o5kcWg2NhYVV66GJQ/f37F3qJFi+LYsWP1cCIG50JBF4P69Omj2MsVg7imS6kPE3TQxaBdu3Yp9nLFIG4C99atW4q9XDGIu+3p06dPqp4TPYErVkgVCvpmYbFiqFDQxSAxOBcKuhg0fPhwxV66GLRs2TLFXrIY5O/vL9mUQQdXDOKaLp8/f67YSxaDXr16haGhoaqeccWKFXkTuGIFb6EoXrw477YnsQ/BQlGwYEHeBG7Xrl0Ve+likNiHCaGgi0GbNm1S7KVvFr506ZJiL10M8vT0VPWcuGLQ8+fPMTExUZWXKwZxTZfkTR1yUaRIERwzZoz+Q5jYh2Ch4IpB3ATugAEDFHvp257mzp2r2EvfLCw1AEAHXQySakilg75ZOCAgQNVz4m574hoPxBo6hIJuPCBvKZMLrvGA+xDWtm1bxV6u8YBrujSGNbkPYVpYU6opgw76tictrBkVFaXKq4U16ZuFxZqOhcJUrBkeHq6JNaUGAOggWfPjx49GsSY34Ofr66vqOWlhTXrATwtrNm3aVLGXvllYC2suWrRIsddUrOnj4yP5kZAOU7EmN+CnhTXFBlyFgr7tSQ1r0gN+48ePV+w1JWtKNWXQQbOmu7u7qudkStYU+/gkFKZgTW7Ar2/fvoq9WlmTHPDTwpr0NhCpoG8W1sqaYh+RhcKUrNmyZUvFXpo1xZrghIJkzZCQEE2sKdWUQYcW1gTgD/iFhYWp8mphTfpmYS2s2a1bN8VeU7Lmv//+q9hrKtb08PBALy8vVc+JZM2kpCRV3rJly/IG/LSwZsOGDRV76duetLDmvHnzFHu1sCZ5s7BW1vz69auq50TfLKyFNclbyuRCC2vSA35iA1dCoZU1yQE/LaxJ39AqF+TNwlpZk7yFVy60sCZ9s3CvXr0Ue2nW/PvvvxV7Odbk6uxaWPP69euKvVpZk75MRo33Z2FNsSY4oTAla0oNANBhCtbkmi6DgoJUPSeaNcUujRCKEiVK8Ab8tLBmp06dFHtNyZrr169X7DUVa3p6emr6rhkXF6fKy7GmkpuFmdJerHGQNQ4yaZCajzn0L0s1jXB0kFfiqg2xiRwlITZBoCQKFSqk6pc6GXny5OGtKVYTWbJk4a1jVBPW1taiHfVKQsszVlPAoUNNYxcdYjfAKIkCBQqogigycubMafSfnSlTJqP/f21paanpfdLirVy5stFeNUUFOooUKSI6oSIX9vb2WLBgQaO82bJlU/XhnQwbGxuj3wkLCwtNz0nLGaAGRugg14mojYIFC6oqIJORO3duVaBMRubMmY0+f6ysrDQ9J3Odt8b+fgH4X+FeTeMgGQ4ODqLTuXKRI0cOo///ZWtra/TZlVHPWy25j7Ozs+hNUHKRN29e0elcuciaNavRvye05D5a81st562W3EfNh1E6HB0deatM1ESuXLl4q/rUhJbcR+t5q8VLrlFSG2K3uCiJokWLit7yLhf58uVT1SBBRvbs2Y0+Q2xsbIz+eZmTNbXkPr8aa1pZWTHWVBH58+fXxJrGnvW2traMNVWEVtYUuwlKLrSwprW1tabz9ldkTXJtpprIqKypxavlvNWS+5iLNbNnz85YU0VkVNY09v+b1tbWmmp75mJNLeetOVlTS53d2H+zOd/FjMqa5NpMNZFRWdNc76LYxiclUahQIdFbh+Uio7KmufLbjMiaOXLkYKypIszFmnZ2dppYU0ud/Vc7b7Wy5sGDB2XXNzOlndKicdASmJiYDGRpaQkNGjSA5cuXg7u7O/Tu3VuVv3r16jBnzhx4/vw5zJgxQ5W3bNmyMHXqVLh79y7s2rVLlbdw4cIwevRouHz5Mty7d0+V18HBAQYNGgQnT54ELy8vyJQpk2Jvrly5oFevXnDgwAHw9fUFBwcHxd4sWbJAhw4dYNu2beDr6wvly5dX7LW2toZmzZrB2rVrwcvLC1q2bKnYa2FhAXXr1oXFixfDmzdvYMiQIYq9AACVK1eGWbNmwZMnT2Dp0qWqvCVLloSJEyfCzZs3wdXVVZW3UKFCMHz4cDh//jy8efNGldfOzg769+8Px44dg/fv30P27NkVe7Nnzw7dunWDPXv2gK+vLxQuXFixN1OmTNCmTRv4999/wcfHB2rWrKnYa2VlBY0aNYKVK1eCp6cndOnSRbEXAKBmzZowf/58ePnyJUycOFGVt3z58jB9+nR48OABbNq0SZX3t99+g7/++guuXr0KV69eVeUtUKAADBkyBM6cOQPu7u5gZWWl2JsnTx7o06cPHDp0CLy9vSFv3ryKvVmzZoXOnTvDzp07wdfXF0qVKqXYa2NjAy1btoT169fD+/fvoWHDhoq9lpaW4OLiAkuXLoV3797BH3/8odgLAFC1alWYPXs2PHv2DGbPnq3KW7p0aZg8eTLcuXMH9u/fr8rr7OwMo0aNgkuXLsGTJ09UefPlywcDBw6EEydOgJeXF2TOnFmxN2fOnNCzZ0/Yv38/+Pj4gKOjo2Jv5syZoX379rB161bw9fWFSpUqKfZaW1tD06ZNYfXq1eDl5QVt2rRR7LWwsIA6derAokWL4PXr1zBy5EjFXgCASpUqwYwZM+DRo0ewcuVKVd7ixYvD+PHj4caNG3DmzBlV3oIFC8KwYcPg3Llz8PbtW1XevHnzQr9+/eDo0aPg7e0NOXPmVOzNnj07dO3aFXbv3g2+vr5QtGhRxV5bW1to3bo1bNq0Cby9vaFOnTqKvVZWVtCwYUNYsWIFeHh4QI8ePRR7AQBq1KgB8+bNAzc3N5g6daoqb7ly5WDq1Klw79492LZtmypv0aJFYezYsXDlyhW4deuWKm/+/Plh8ODBcOrUKfDw8AAbGxvF3ly5ckHv3r3h4MGD4OPjA/b29oq9WbJkgY4dO8L27dvB19cXypYtq9hrY2MDzZs3h3Xr1sH79++hadOmir0WFhZQr149WLJkCbx9+xYGDhyo2AsAUKVKFfjnn3/gyZMnsGDBAlXeUqVKwaRJk+D27dtw+PBhVV4nJycYOXIkXLhwAdzc3FR57e3tYcCAAeDq6gpeXl6QNWtWxd4cOXJAjx49YO/eveDr6wuFChVS7M2cOTO0a9cONm/eDL6+vlC1alXFXisrK2jcuDGsWrUKPD09oUOHDoq9AAC1atWCBQsWwKtXr+Cvv/5S5a1QoQL8/fff8PDhQ1i3bp0qb7FixWDcuHFw/fp1uHDhgiqvo6MjDB06FM6ePQvu7u5gaam8TJEnTx7o27cvHDlyBLy9vSF37tyKvdmyZYMuXbroc5/ixYsr9tra2kKrVq1g48aN4O3tDS4uLoq9HGsuW7ZMM2vOnDlTlbdMmTIwZcoUuHv3LuzevVuVl2TN+/fvq/KaijV9fHwgf/78ir2mYs33799rYs2hQ4cq9gL8P2s+fvxYNWuWKFECJkyYADdv3oTjx4+r8mplzT/++MOsrOnr66uJNbt27arYC2Aa1rx//z78+++/qrymYM3Tp0+nO2t26tQJduzYYRRrtmjRAtavXw/e3t7QuHFjxV5TsuacOXNUeUnWPHDggCpvRmbNLVu2gK+vL1SuXFmxVytr1q5dGxYuXAivX7+GUaNGKfYC8Flz1apVqrwka549e1aVl2ZNCwsLxV5Tsaafnx/89ttvir00a9atW1ex19LSUs+a7u7umlhz2rRpqrxaWLNIkSIwZswYuHLlCty+fVuV97/Ams2aNVPspVlz0KBBir0ApmHNW7duaWLNFy9eqPLa29tD//790501M2XKBG3bttWzZrVq1RR7adbs2LGjYi/Az8GaFy9eVOXlWJOrs2cU1mzZsiVs2LABvL29oX79+oq9WlmzWrVqJmHNPXv2qPKSrPngwQNVXpI1PT09zcaaFSpUUOylWbNVq1aKvRxrLlq0CN68eQPDhg1T7AX4OVhTbZ3dVKzp5+eniTVr1aql2EuypoeHhybWnDRpkiqvFtbk6uxXr16Fa9euqfLSrGltba3Ymzt3bvj999/h0KFD4OPjw1hTRhxr3r59WxNrPn36VJWXY83jx4+Dl5cX9OnTRxXHMGUAmaL78L8ewG4c/E8oMDBQ8npt+upgUqGhoXj//n3RiaTMmTPrrw4OCAjgeaOjo/HNmzeYL18+0S52ciUqqfj4ePTw8BDtGCfX1Lx584bX2Z2SkoIeHh7Ypk0b0X8zvRKV1Pv373HYsGGiXm5Nzc2bNzEpKYnn/fDhA86fP1/Uy61E5a5qJ+Xv7y+5WoS8qj0yMpLnDQoKwsuXL4t6s2fPjt26ddNfHUwqPDwcnz17JjoByl3Vzl0dTComJgbfvXsnOgFKr6khlZiYiB4eHlinTh3Rvzd5dTD5jHU6HXp4eGD37t1FvfSaGlI+Pj6SVy9za2quXr2KCQkJPO+nT59w5cqVot78+fPzVqKS+vbtGx45ckTUy62pOXToEIaHh/O8ISEhePv2bdE1LuRK1G/fvvG8kZGR+PLlS9GJe25Nzfr16/HDhw88b1xcHLq7u4tOvHErUZcuXYrv3r3jPafk5GT08PDAZs2aif6bq1atyltTQ8rT0xP79+8v6qXX1JDy8/PDmTNninrpNTWkvnz5gps3bxb12tvb89bUkAoMDJRcG5wjRw7emhpSYWFh+OjRI9HVEeSaGrHzVmz1L7emZvXq1ejt7c3zJiQkoIeHh+hENbkS9fXr17xnnJqaih4eHtihQwfRf3PFihVxxowZ+jU1pN6/f48jR44U9RYvXhzHjx+vX1ND6uPHj7h48WJRr6OjI29NDamAgADcu3evqDdPnjz6NTURERE8b3BwMF67dg0tLCwEveSamu/fv/O8ERER+Pz5c9Hbhug1NaRiYmLQ3d1d9PYLeiUq+ZySkpLQw8MDXVxcRP/N3JoaNzc3g2kpDw8P7N27t6iXW4l67949g3fRx8dHcs0Pt6aGWwtG6vPnz7h27VpRr4ODA28lKqlv377h8ePHRb25cuXC3r1769fUkAoNDcW7d++itbW1oJdcU/P161eeNyoqCl+9eiW6ipJcU0PnPtx5KzZFTq+pEcp9pFZu0StRSXl5eeHgwYNFvfSaGlIfPnzA2bNni3oLFSqEI0aMwAsXLgjmPtu3bxf12tnZYf/+/dHV1RWjoqJ43u/fv+OFCxdEvdyamr1792JwcDDPGx4ejk+ePMEsWbIIermVqJs3b8YvX77wvD9+/MC3b9+KToBaWVlh48aN9WtqSHHnrdQkJrkSVSj36dKli6i3QoUKvDU1pLy9vXHs2LGiXnpNDamPHz9KrlXj1tScOXPGIPeRW2NJrqkROm9v3rwpehNN1qxZeStRSUVGRuKLFy8wZ86cgl4bGxvemhpSsbGx6O7uLjoJzq2pWbZsGbq7uwuet40aNRL9N1erVg3nzJmjX1NDytPTU3LFYZkyZXhrakj5+vritGnTRL3Ozs68NTWkvnz5ghs3bhT10mtqSGllzQcPHqCtra2g11Ss6ePjw/NyrCk2Nf8zsCa3poaUHGsWLFgQhw8frl9TQ0opa3JrakgFBQXhlStXRL1aWNPW1pa3poZURmbNCRMmiHrTkjWPHj0q6jUFa3IrUUkpZc1169ahn58fz8vlPmI30XCsya1ENTVrSq041MKaTk5OacKa379/l1zlZCrWpOu/0dHR+PbtW9Gbba2srDSzJrcS1ZSs6e3tLcma9EpUUlpZU2qNZVqyppubm9lYs379+qL/ZlOwJrcSlZRS1uRWopL6/Pmz5ApvraxJrkQlFRoaivfu3cuQrNmqVSvRf3NasuacOXNEvaZgTW4lKqnv37/jxYsXRb2mYE1uJSopU7Cm1LpRciWqWtakV6KS0sKanz59ShfWpHMfc7Om2M1fpmBNciUqKU9PT+zXr5+o92dlzdOnT4t605o1xW62NRVr0nV27ryVWu9Mr0Ql9f79exw+fLio11SsKZT77N69W9RLr0QlpYQ1yZWopDjWzJYtm6D3Z2RNxP/lPj169BD1piVrSq3wNgVrHjx40CD3CQkJwTt37hjNmq9evcI8efIIem1sbLB58+ZGsaaFhQXWq1fPaNasUqWKKGt6eXlpYs1Zs2aJek3FmkK5T0ZlTbFbC7WyZoUKFfDvv/8WZE0m84qtKmaNg0waRUMB14whlCTS+ueff3jeggUL4rBhwwSTRFp0wiiVJNK6desWz5stWzbs2rUr7tq1yyBJpOXn58dLRMgkkS6Q0YqKiuIlIpaWltiwYUPBAhmtlJQUg0SkRo0aogUyWnQRhmzGkPvFNGLECJ5XqhmD1vLlyw2SxMGDB+OpU6cMCmS06GIZ14whlCTSev78Oc+bJUsW7Nixo2CSSOvbt2+8K5+lkkRacXFxvESESxKFCmS0dDqdQSLCJYlCBTJa3bp143mlCmS0pkyZYpAkihXIaNEJo729vWgzBi26KZUskNFJIi1PT09e0ZtsxpD7vRIaGsq7Yp8rkK1atcqgQEYrKSkJf/vtN97fu1atWoJJIi2dTocNGzYUTBKFCmS0Bg4cyPNKfZCgRQM690HizJkzsuft/v37eV7ug4RQMwat+/fvG5y3XIGM/iBB69OnT7yit62trWiBjNaPHz94RW+yQObh4SH5nFJTUw1WIXDNGM+fP5d9F9u1a8fzlilTBqdMmSL4QYIWXRAtXLgwjh49Gi9fvmwAbLRWr17N8zo4OOCgQYMEC2S06GIZ+UGCLpDRevnypcF526FDB9y6davBBwla379/5xW9uQ8SQo3/tBISEnhFb6lmDFo6nQ5r1arF+3tXrlxZtBmDFv0BSqrxn9bff//N80o1/tOiP05INf7TunHjBs/LNWPs2bNHNvfx9vbmFb25xn+hDxK0IiIieKvDrayssFGjRrhy5UqDAhmt5ORkg6J3zZo1RQtktOgiTPny5UULZLSGDBnC85IFMrnzlv4YLFUgo0UPAUg1Y9B6/Pgxz0s2/tMfJGj5+/vzit5Sjf+0YmJieEVvqcZ/WqmpqQYrPqpWrSr6QYJW586ded7SpUvj5MmTBQtktOiCKPdBQqhARmvDhg0GuY9YMwat8+fPG+Q+YgUyWm/fvuXlPlKN/7SCg4N5RW+y8Z/+IEErMTGRt15IqvGflk6nM2gu55oxHj16JPsuamFNuvHYFKwp1IxB6/bt2wa5jxbWFGvGoKWVNek1p1LNGLS0sCbdfKOFNblmjLRmTTc3N4Pch2NNudxHK2uS69y0sqZUMwYtutkxI7Am/aEwvVgzLCwsTViTbsYQEv3BXw1rDho0iOeVasagpYU1Dxw4wPNKNf7TolmTbMZQwprkIHNGYc327dvzvOnFmmvWrDE4b41lTalmDFqvXr0yOG+VsmZQUJABa4oNmdPSypq1a9fm/b2lGv9paWHNGTNm8LwZgTV9fHx4uY/UkDktraxJr5LTwppSzRi0hg4dyvNmBNZ88uSJwXmbHqwZGxtrctYUa8agpYU1J06cyPNKDZnT0sKa9ABkerFmSEhIhmTNP/74g+eVGjKnpYU19+zZw/NqZU2xxn9afn5+BnV2NaxJrg6XavynpZU1W7duzfOmF2uuWLHCIPfRyppCjf+00oI1165dm+asSa/+TS/WnDp1Ks+rhjW3bNlikPukF2vSdXaxIXNaYqwp1PhPKykpCYsVK8b7e2tlTbHGf1paWHPBggU8r1TjPy0trPngwQOD3MdY1pRq/Gf6ucQaB1njIJMGeXl5oY2NjT5JlCuQkQoLC8NcuXJh9erV9QUypd7k5GQsXry45HSolBo3bswrkMkliaQGDx6sL5AJTYdKaeHChZLToVI6ePCg5HSolB4+fIg2Njai06FS+vz5M2bOnFk/HSpXICMVExOD+fLlU5UkckpNTcWKFSvqk0QlBTJSHTp00E+HKimQkRo3bpzkdKiU1q5dyyuQ0dOhUjp79qyqZgxSr1+/Rmtra32BTC5JJBUUFITZs2cXnQ6VUkJCAjo7O0tOh4pJp9NhnTp1VCWJpPr06aMqSSQ1c+ZMfZKopEBGaufOnZLToVK6efOmPklUUiAj5ePjg7a2tli/fn1cunSpwXSolCIjIzFPnjyqmjE4JScnY6lSpSSnQ6XUokULyelQKQ0bNkxyOlRKS5cuVfVBgtSxY8ckp0Ol9PTpU8npUCkFBARglixZRKdDpRQbG4v58+fHSpUq6QtkSp+xTqfDKlWqqGrGINWlSxdVBTJSkyZNUtX4T2rTpk2S06FSunjxouR0qJTc3d3RxsaGNx2q9DmFhIRgjhw59NOhSgpknBITE7Fo0aL6DxJKCmScdDodNmjQQP9BQkmBjFT//v31HySUFMhIzZ07V1UzBqm9e/eqavwndffuXVXNGKQ+fPiAmTJlEp0OlVJ0dDTa2dlJToeKKSUlBcuVK8ebDlXzLrZp00ZyOlRKo0eP1n+QUFIgI7Vy5Ur9BwklBTJSJ0+e1H+QUNKMQerFixdobW2tb8agp0OlFBgYiFmzZhWdDpVSfHw8FixY0KjpUJ1OhzVq1FDV+E+qZ8+ekjcRSWnatGmSNxFJaevWrao+SJC6du0a74OEmgKZFtYMDw/XzJpqmjFINWnSJMOx5qFDh8zCml++fDEZayppxuCklTU7duyoqhmDlBbWXLdunVlY882bN2hjY5PhWLNu3bp61lTSjEFKC2vOmjVLM2sqbcYgdevWLaNZ09fXF21tbfXNGOnFmikpKViqVCl9M0Z6subw4cNNxppqch8trPns2TM9ayppxiClhTW5AVlzsGbXrl2NZs3JkyebhTUvXbqkasicFM2acs0YpEJDQzFnzpyaWVNpMwYnraw5YMAAVUPmpLSw5r59+8zCmh8/fjQZa6qps2tlzbZt2+pZU0kzBimONZU2Y5BatWqVJtZU0/hPSitrZsuWTfGQOSmtrFmzZk2TsKaSxn9S06dPNwlrKmnGIKWFNd+/f4+2trbYoEEDRY3/pDIqa/75559Gs+aiRYtUDZmT0sKajx49MglrKmn8J8UNyGphTTWN/6S0sOb48eNVNf6T0sKa586dMxlryjX+kwoODjaaNbmmZY41lTT+c9LKmn379tWzppLGf1KzZs1S1fhPateuXZpZU2njP6mMypotW7Y0CWsqafxn+nnEGgdZ4yCTBvn6+qpKEkkFBASoKpCRCgsLU5UkkoqPj1eVJJLS6XTo5uam+BcTrRcvXqhKEkm9fftWVZJIysvLS1WSSOrjx4+qCmSkAgMDVTVjkIqKilKVJJJKSkpSlSSS4p6xsdcDv3r1ShWwkXJ3d1eVJJLy9vZWlSSS+vLli6oCGamQkBBVSSIp7tp2Y55Tamqq5ndRTZJI6vXr16qSRFKenp5GJ4l+fn6qCmSkvn79avR5Gx4eruqDBKmEhARVBTJSOp0Onz9/bvS7+PLlS1XARurt27eqCmSk3r9/r6pARurTp0+qCmSkvn//ruqDBKno6GhVHyRIJScnK5rGF5M5z1s1BTJSPj4+qj5IkPL391dVICMVGhqq6oMEqbi4ONnpUDGZ4rw1Nvd58+aNptxHzQcJUh8+fFBVICP17ds3VQUyUhEREaqaMUglJiaaLffRct6+e/dOU+5j7Hn7+fNno8/boKAgo6dDf/z4oapARiolJUXTu+jm5maW3MfDw8Po3MecrGls7qOVNZXcNiUmxprKpYU1k5OTMyRraj1vMxprxsbGZkjWfPPmzS/HmmqaMUglJiYy1lQhc7KmmmYMUikpKZpZ09h38VdkTWPr7FpY05x1di2s6enp+Uuxprnr7BmRNdU0Y5BirKlOWljTz88vQ7KmmsZ/UlpZ8+XLl4w1FcpcrImImvJbc33X1JL7aGVNY+vsvyprGpv7aGVNY3uIMiprMplXadE4aIH/a4xjkpCFhYUTAPgDAPj7+4OTk5OZ/0ZMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMv4ICAgLA2dmZ+5/OiBig9b9pqfU/wMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTElHHEGgeZmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmH4hscZBJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJqZfSKxxkOmXUVxcnCYvIhrlTUhIAJ1OZ5Q3OTkZkpOTjfIiIsTHxxvlBdD+8zKX19jnFB8fb7Q3MTERUlNTjfKmpKRAYmKiUV5EzLDPSYtXyzM29l1MSkqClJQUo7w6nQ4SEhKM8gJk3OdkrLS8iwkJCUa/i8nJyZCUlGSUl72L6qT1vDX2XUxNTTX6vAXIuM9Ji9ccuU9SUpLRuY9Op/slcx9jZc7ch5236rwZLfdJTU1luY9KL2PNjOFlrKlcGdWb0c5bxprqxFgz43gZa/73vRmNNX/V3MdYMdbMON6Mlvsw1lTvZayZMby/EmsCZNznpMWb0c5bxprqvb8aazL998QaB5l+GT19+hTKli0LU6dOhXv37qn6ZRkYGAglS5aEMWPGwJUrV1QlRImJiVC+fHkYPHgwnDp1CmJiYhR7LS0toUGDBtC7d284cOAAhIWFKfZaWFjA77//Dh07doTt27fDt2/fFHsBAKZNmwbNmzeHtWvXgp+fnyrvpk2boF69erB48WJ4+/atql+WFy5cgMqVK8OsWbPgyZMnqhIiDw8PKF26NEycOBFu3bqlCk7Cw8OhZMmSMGLECLhw4YIqONHpdFClShXo378/uLq6QnR0tGKvlZUVtGzZErp37w579+6FkJAQxV4LCwsYOnQotG3bFjZv3gz+/v6KvQAACxYsgMaNG8PKlSvh/fv3qrx79+6FWrVqwYIFC+Dly5eqnvHdu3ehQoUKMH36dHjw4IGqhOjTp09QsmRJ+Ouvv+DatWuqEqK4uDgoU6YMDBkyBM6cOQOxsbGKvQAAtWrVgj59+sDhw4chIiJCsc/CwgK6dOkCnTt3hp07d8L3799V/bnjx4+Hli1bwoYNG+DTp0+qvKtXr4b69evDsmXLwMPDQ9VzOnHiBFSrVg3mzJkDz549U/Uuurm5QZkyZWDKlClw9+5dVedtUFAQlCxZEkaPHg2XLl1SBSfJyclQsWJFGDRoEJw4cQJ+/Pih2GtpaQmNGzeGnj17wv79+1Wft/3794f27dvD1q1b4evXr4q9AAAzZ86Epk2bwpo1a8DX11eVd9u2bVCnTh1YtGgRvHnzRtUzvnLlClSqVAlmzpwJjx8/VvWM379/D6VKlYIJEybAzZs3VZ23UVFRUKpUKRg+fDicO3dOFZwgIlSvXh3++OMPOHbsGERFRSn2WlpaQtu2baFbt26we/duCA4OVuwFABgxYgS0adMGNm3aBF++fFHlXbx4MTRs2BBWrFgBXl5eqp7TwYMHoWbNmjBv3jx48eKFKu/Dhw+hXLlyMG3aNLh//76q8zYgIABKliwJY8eOhatXr6rKfeLj46Fs2bLw559/wunTp1Wdt5aWllCvXj34/fff4dChQxAeHq7K27NnT+jUqRPs2LEDAgMDFXsBACZPngwtWrSA9evXw4cPH1R5169fDy4uLrBkyRJ49+6dqud05swZqFq1Kvzzzz/w9OlTVe/imzdvoFSpUjBp0iS4ffu2qncxNDQUSpYsCSNHjoSLFy+qOm9TUlKgUqVKMGDAADh+/Liq3MfS0hKaNWsGPXr0gH379kFoaKhir4WFBQwePBjatWsHW7ZsgYCAAMVeAIA5c+ZAkyZNYPXq1eDt7a3Ku3PnTqhduzYsXLgQXr9+reoZ37x5EypWrAgzZsyAhw8fqnoX/fz8oFSpUjB+/Hi4fv26qtwnJiYGypQpA0OHDoWzZ8+qLgbVrFkT+vbtC0eOHIHIyEjFPktLS+jYsSN06dIFdu3aBUFBQar+3LFjx0KrVq1g48aN8PnzZ1Xe5cuXQ4MGDWD58uXg6emp6jkdO3YMqlevDnPnzgU3NzdV7+LPwJonT55MV9bs06cPdOjQAbZt25aurPnvv/9C3bp1MxRrRkREQKlSpczCmq1atcpwrLlv3z6oWbMmzJ8/P11Z8/Pnz2ZhTQsLC6hdu3aGY801a9boWdPd3T3dWPPFixdQpkwZmDx5Mty5cyfdWXPgwIGqWdPKygqaNGliFtacNWuWWVjz6tWrPNZU8y6amzX79esHR48eTVfWHDlyJLRu3TrdWfPQoUNQo0YNo1jz0aNHPNZU8y5qYc2EhAQoV66cnjXV5j7GsqaFhYWeNbdv355hWPPs2bNQpUoVxpoKZE7W3LVrF9SuXRsWLFgAr169SjfW/PDhA5QsWRLGjRuXoVizU6dOZmHNFStWmIU1nz17pmdNtXV2c7Nmr1690p01p0+fDs2aNUt31rx48aLRrOnp6Wk21qxatSr0799fdZ1dC2sCAAwbNgzatm0L//77b4ZhzXv37kH58uXNwpply5Y1C2t27drVaNacMGECtGzZEtavXw8fP35U5dXCmidPnoRq1arB7Nmz05U1Q0JCoGTJkjBq1KgMxZoDBgwwmjWZ/oNCRBYyAQBOAIAAgP7+/siUcdWoUSPknmXevHmxb9++eOTIEYyMjJT1Dhw4UO/Nli0bdunSBXft2oVBQUGy3vnz5+u9tra22KpVK9y4cSN+/vxZ1rt//36919LSEhs0aIDLly9HT09P1Ol0kt779+/rvQCA1atXx7lz56Kbm5us99OnT2hjY6P3li1bFqdOnYr37t3DlJQUSe+PHz/Qzs5O7y1atCiOGTMGr1y5ggkJCZLe1NRULF++vN6bP39+HDx4MJ46dQpjYmIkvYiI7dq103tz5cqFvXv3xoMHD2JYWJisd+zYsXpvlixZsGPHjrh9+3b89u2brHfNmjV6r42NDTZr1gzXrl2Lfn5+st7Tp0/rvRYWFlivXj1cvHgxvn37VvY5vXr1iveMK1eujLNmzcInT55gamqqpPf79++YJUsWvbdkyZI4ceJEvHXrFiYlJUl6ExISsFChQnqvk5MTjhgxAi9cuIDx8fGSXp1Oh7Vq1dJ77e3tsX///ujq6opRUVGSXkTE3r176705cuTA7t274969ezEkJETWO2PGDL03U6ZM2LZtW9y8ebOis3379u16r5WVFTZu3BhXrVqF79+/l/XeuHGD95xq1aqFCxYswJcvX8o+Y29vb7S0tNR7y5cvj9OnT8cHDx7IvosRERGYK1cuvbdYsWL4119/4bVr1zAxMVHSm5ycjCVKlNB7HR0dcciQIXjmzBmMjY2V/Tc3a9ZM782TJw/26dMHDx8+jBEREbLeoUOH8s7bzp07486dO/H79++y3sWLF/PO25YtW+KGDRvw06dPst4jR47wztv69evjsmXL0MPDQ/Y5PXnyhPeMq1WrhnPmzMHnz5/Lvov+/v5oa2ur95YpUwanTJmCd+7cweTkZElvbGwsOjg46L2FCxfG0aNH46VLlxSdt5UrV9Z7HRwccNCgQXjixAn88eOHpBcRsXPnznpvzpw5sWfPnrh//34MDQ2V9U6YMIF33rZv3x63bt2KX79+lfVu2LBB77W2tsamTZvimjVr0NfXV9Z7/vx53nlbp04dXLRoEb5580b2Gb99+xYtLCz0/kqVKuHMmTPx8ePHss84JCQEs2XLpveWKFECJ0yYgDdv3pQ9bxMTE7Fw4cJ6b6FChXD48OF4/vx5jIuLk/TqdDp0cXHRe+3s7PCPP/7AY8eOKTpv+/Xrp/dmz54du3btirt378bg4GBZ7+zZs3nnbZs2bXDTpk345csXWe+ePXt4523Dhg1xxYoV6OXlJeu9ffs2712sUaMGzps3D1+8eCH7jP38/NDa2lrvLVeuHE6bNg3v378ve95GRUVhnjx5eLnP2LFj8erVq7LnbUpKCpYpU0bvLVCgAP755594+vRpRblPq1at9N7cuXPj77//jocOHcLw8HBZ78iRI/XerFmzYqdOnXDHjh0YGBgo612xYgUv92nRogWuX78eP3z4IOs9fvw477x1cXHBpUuX4rt372Sfk5ubG+8ZV61aFf/55x98+vSp7Lv47ds3zJw5s95bqlQpnDRpEt6+fVv2vI2Li0NHR0e919nZGUeOHIkXL15UlPtUr15d782XLx8OGDAAjx8/jtHR0ZJeRMTu3bvzztsePXrgvn37FJ23U6dO1XszZ86M7dq1wy1btmBAQICsd/PmzbzztkmTJrh69Wr08fGR9V65coV33tauXRsXLlyIr1+/ln3Gnp6evPO2YsWKOGPGDHz48KHsuxgWFoY5cuTQe4sXL47jx4/H69evy563SUlJWKxYMb23YMGCOHToUDx79qyi3EcLaw4aNMgsrHngwAGjWfPBgwdpwppy7+KPHz/Q3t5e7y1SpIhJWFNJ7tO+fXuTsWaHDh1w27Ztac6aZ86c4b2LdevWTRfWDAoK0sSaTk5ORrNm7dq1Mxxr7tixw4A1V65caTRrzp8/XxFr+vj4oJWVlUlY87ffflPFmiVLljSaNZs3b24W1lyyZInJWdPd3T3dWXPy5MlGs+aoUaMUsaZOp8MqVarwcp+BAwemC2tOnDjRLKx54cIFo1nz3bt3ZmPNIkWKmIQ18+bNi/369cOjR48qyn3++OMPk7Fm69at04U179y5YzbWzJs3r1lYs3Xr1iZlze3btxvNmuvWrVPEmidOnOC9i/Xq1cMlS5YYxZpVqlRJF9aMj483G2v26NHDLKy5ZcsWk7LmggUL8NWrV4pYk6yza2HNYsWK4bhx49KFNRs3bmwW1lywYEGGY83Pnz+bnDUvX76siDUrVKig93J19pMnTxrFmr169cIDBw4oYs2//vrLJKxpbW2dbqz5+vXrX441f//9d6NZc+bMmbzcp02bNvjvv/+mOWvevHmT95xq1qyZbqyZO3duk7BmgQIF0o01hw0bZnLW/Pjxo6z36NGjRrPm06dPec+4atWqOHv2bHz27Jnsu8hkXvn7+5PPzglN0RNniv/Ifz2ANQ7+Z3Tr1i3eAaimGET/kiMTIrliUGRkJO+XHBlyxaDk5GQsVaqUoFdJMahFixaCXq4YdO7cOdFi0PDhwwW9XOOBVDFo6dKlgl4lxaBjx44JepU0HtC/5MiESK4YFBAQgJkyZRL0yxWD4uLisECBAoJeuWIQXVAlgywGicFJ165dBb1KikGTJk0S9CopBm3atEnQq6Tx4OLFi4JeJcUgd3d3XkGVfBflikGhoaGYPXt2wT9brvEgMTERixYtKuiVKwbpdDps0KCBoFdJMah///6CXiXFoLlz5wp6lRSD9u7dK+hVUgy6e/eu6HnLFYO8vb0FvR8/fuQVVMlnzDUeiBWDoqOjeQVVMipWrIh///23aDEoJSUFy5UrJ+hV0njQpk0bQa+SYtDo0aMFvUqKQatWrRL0KikGnTx5UtBLFoPEPoS9ePFC0KukGBQYGMgrqJIhVwyKj4/HggULCnrlikE6nQ5r1Kgh6FVSDOrZs6egV0kxaPr06YJervFAqhi0detWQa+SYtC1a9dEz1u5YpCXlxevoEq+i3LFoPDwcMyZM6fgny1XDEpOTsbixYsLepUUg5o0aSLoJYtBYrnPn3/+KehVUgxauHChoJcrBu3Zs0c09zl06JCgV0njwcOHDwW9SopBX7584RVUyZArBsXExGC+fPkEvXLFoNTUVKxYsaKgV0kxqGPHjoJeJY0H48aNE/QqKQatW7dO9LyVKwadO3dO9LyVKwa9efNG9LytX78+Ll26VLQYFBwcjFmzZhX0c40HYsWghIQEdHZ2FvTKNR7odDqsW7euoFdJ40GfPn0EvUoaD2bNmiXoVdJ4sGvXLtHzVq7xQAtr+vr6pilrPnr0SPAZp6Sk/HSsqaTxYNmyZYJerazJNR6IfQh79uyZ6Hn7M7Nm1apVBb2mYE2pAb/JkycLek3BmlKNB5cuXRL0mpM15RoPkpKSzMaaAwYMED1vTcGaYh/C9u3bJ+jlWFMq97l3757oeauVNaUaD6Kjo3lDsmRoYU2y8UAs92nbtq2g92dmzVOnTgl6TcWaYgN+gYGBvI/JZJiCNe/evSv6LtasWVPQq4Q1e/XqJejVyppyjQfbtm0T9GphTSWNB+/fv/9pWVMq92natKmg1xSsKTXgt2jRIkGvVtbkGg/E6uyPHj0S9P7srFmpUiVBrxbWJBsPxHKf8ePHC3pNxZpiuY8ca65fv16UNd++fSt63mphTbnGg8TExDRnTbHcp2/fvoJec7Fm5syZ9awpVmdPa9YUG/CLjIzkDcmSoZU1x48fjzdu3BA9b1u2bCnoLViwIA4bNkySNUeMGCHoNRVriuU+rq6uoudtWrLm169ff1rWlBrw69atm+h5q4U1uQE/Mdb8999/Bb1aWbN58+aSrOnh4aGJNcnGZTLSmjUbNmwo6NXCmvb2/8feWYVXkWxvf+HuLiHoMDjBxmdgcA9kYBicBBgcAgR3dwsW3N0huLu7k2AJBBIkhLjs9V3MV/2vdNfurtodssmh3udZF+fiHUL6dFG/1UtyGrLm2LFjrZ639mBNepiMNdZ8/vz5F2HNsmXL6rJmXFzcF2HNfPnyCRW5SyWuZOGgLByUMqGBAwda/aCiDnUyaP78+Zg1a1bmP+rqcHR0xJ49eyrJoL1792LWrFmZl3N1qJNBd+7cwaxZs1qFbDrUyaBPnz5h1qxZrRZm0MFKBhUtWtQq+NHBSgbVqFHDasJc/Y+lOhnUqVMnq8kfdaiTQWPGjOF+xupk0MqVKzFr1qzMpJU61MmgEydOYNasWZkXAnWok0FPnz7FrFmzxusAtxaZMmVCFxcXJRlksVgwa9asVhOidLCSQeXLl4/XlWwtUqRIgX/88Ue8ZFDjxo2tXlTVoU4G9e7dO95kAr1QJ4NmzJjB/YzVyaCtW7dyv4vqZNDly5e530WSDCIfwgIDAzFr1qxW4Y0OVjKoQIECXM+YlQz6+eefud5FVjLon3/+4X4X1cmgIUOGcD+nkiVLxksGLV68mPu8VSeDDhw4wP0u0smgkJAQvH//Pve7qE4GhYeHc5+3rGTQd999x33e/vnnn/E6cOvUqcN93qqTQZ07d+Z+F8uXL4/Dhg1TkkETJkzgfsbqZNC6deu4z1t1MujMmTPcz1idDHr58iX3u8hKBmXPnp37vFUngypVqsR93qqTQc2aNeM+b0kyiHwIc3d3537G6mTQnDlzuN9FdTJo586d3OeterLwjRs3uM9bdTLow4cP3M84ffr0msnChQoV4noXWcmg33//nftdVCeD2rVrx33eqpNBI0eO5H4X1cmgZcuWcb+LJBlEOnCPHDkidPehk0GPHz8WOm9btGihdOBGR0cLnbfqZFCZMmW4njErGVS/fn2ud5GVDOrevTv3u6hOBk2ZMoX7GauTQZs2beJ+xupk0IULF7jfRbrw4OPHj/j69Wuhu4+68CBPnjzcdx914UG1atW4zltSeEBPFm7ZsiX3u1i5cmVl2pPFYhFiTTJZOCFYc9++faZZk+ddVLNmSEhIorMm+RD2559/JiprkgY/M6y5atUq7ndRPe1JhDXVk4WfPXuWJFmzSZMmdmHNmTNnJiprkga/K1euJAprshr8Eos1yWThhGDNoUOH2oU1Dx48aDNrPnjwwG6sWbJkyURhTfVk4S5duiQKa5IGv4RgzbNnz9qNNXPkyJGorEka/Jo3b24za/bv31+INektNmZYc9euXXZhTTL5JqmxZvv27f/nWZNu8Hvy5InNrBkTEyN03qob/MqUKcP9LqpZs0GDBtzvItlikxCsOXXq1CTHmgEBAcKsSTf4mWHNH374IVFYk54sbLFY0MPDI8mx5t27dxOdNUmDX7FixRKNNekGP1dXV5tZc+zYsUKsSTf4mWHNkydPJgprZsyYMR5rImKSZM0+ffoIsybJsxPW5HkX1ay5bdu2RGFNdYNfUFCQKdYsWLAg1zOmt9gkBGu2bt3aLqzp5eWVqKxJ8uxmWDMiIkKYNXknC0t9ecnCQVk4KGVC1jpsjSJ79uxWO5iMImPGjPjrr7/a5E2TJo3VrnGjSJEiRbx1EaJRpUoVrn+UWVG6dOl4KxVFonDhwvFWR4lEnjx5rE6RMoqsWbPizz//bJM3ffr0Nj/jVKlS2ewlcGLrM65YsWK8sesi8d1331ntzjUKBweHeKtRRSJnzpzxVhyLRKZMmWx+J9KmTWvzczL7LlarVo3r0saKsmXLWu2UN4qiRYtiqVKlbPLmy5cv3ooMkciWLRv++OOPNnkzZMhg83NKnTq1zc8pefLkNp8fAP8lg3iBUx3ff/+91W4xo3B0dLQ67csocufObfO7mCVLFpt/X+nSpbP5GadMmdL0ecuTgGFF+fLl4634EokSJUrEG60vEgUKFLA6zdYocuTIEW/1gkiYvfvY67ytWrUqV2KRFWXKlLHaKW8URYoUsdoRaBR58+Y1dfex9R5hr7tP8uTJTd19nJycrE6kNYqSJUvGWyskEoUKFbI68cIocuXKZfN5mzlzZrvcfVKmTGnzn0sKD3gSmqwoV66c1U55oyhWrBiWLFnSJm/+/PmxUqVKNnntxZqpU6e223lrhjVLlSolWZMzkjJrFi9e3CZvwYIFTbGmrXefb5U1CxQoYJO3aNGi8dZmioQ9WdPW37WZ8zapsmahQoWSJGvamoNNqqxZvHhxq5OgjKJAgQJWJwwZRVJlTTPvYlJlTVvP26TKmmaesVnWNJNnl6zJFwnBmvQ6aZFIqqyZFO8+lStX5i4KU4dZ1qTXFItEnjx5rE4sNgqzrGnr3ccsa5p5xmZYs0SJEqZY09Y8u2RNsTDLmvb6rmnreWtP1jTzjCtVqoTr1q0zXIUs9eUkCwdl4aCUCYkWDhYoUAC7deuG+/bts7p211rQ3Rfr1q0T8tLdF8ePHxfy0t0X9+7dE/Kquy+sjcS1FnT3hehHFbrTv0WLFkJeuvvCw8NDyEt3X8ybN0/IS68YsLbq01qkT58enZ2dcdmyZVZXPliLVKlSKZ3+vr6+Ql5194VoEpjuvrC2BtJa0N0XnTp1EvI6ODgo3RfWViFZC7rTf/ny5UJeuvvi4MGDQl660//mzZtCXnrFwJMnT7i6p0iQqXKk018UWOlO/8aNGwt56U7/3r17C3npTv/p06cLeelO/40bNwp56U7/U6dOCXlTp06tdPo/evRIyJs8efJ4nf558uQR8tOd/qJAQqbKnTlzBv/55x8hL93pb20VkrWgO/2trQOwFmSV7/r163H37t1C3nTp0imd/tZW2VsLutPf19dX6GOOutNfNClBd/rXqlVLyEt3+nfp0kXIW7BgQWXFgLW1u9aCTJXbunUrrlq1SsibKVMmpdP/6NGjQl56la+1da7WQt3pL/phle70F/1wRnf6N2vWTMhLd/q7u7sLeelO/9mzZwt5s2XLpnT6W1u/Yi3oqXJnz54V8tKd/o8fPxbyqjv9CxYsKOSnO/1FE6qlSpVSOv3btWsn5C1UqJDS6W9tFZK1oDv9ra2esxZ0p//+/fuFvHSn/7Vr14S86k5/nm5mEvRUudu3bwsXo9Cd/vXr1xfy0qt8u3fvLuSlO/3NsOb69euFvAnFmvfv3xfyJiRrin5USQjWPHz4sCnW9PT0FPLSnf62sCbp9L948aKQl+70tydrWlsDaS0SijWtrUKyFvZmzcWLF9vMmmSqnBnWFC0MK1euXIKwZp8+fYS8CcWamzZtEvLSrHn69GkhL82aDx8+FPKqWVO0oL5KlSrKKl9bWJNMlWvdurWQl6zytSdr7tmzR8ibkKzJM0GGREKx5qVLl7B27dpCXsKaJ06cwK5duwp56e0tZlhz9erVQl6yytcsa1pb52otvhbWbN68uZA3oVhzzpw5Ql7Cmhs3brSZNZcvX47nzp0T8hLW9PT0xCdPngh5yfaWhGBNa2sgrQU9Vc4Ma44cOVLIm1Cs6e3tLeSlWdPaKntrQViTrPI1w5qixSgVKlTA4cOHm2bNHj16CHkTijXNfNe0tlrZWiQUaz58+FC4qIyw5vXr121mzbNnz2LLli2FvDRrDho0SMibJ08edHNzM82aO3fuFPImFGs+ffpUyPu1sKarq6uQl7Dm/v37TbGmtTXn1oKw5po1a0yx5q1bt4S8KVOmxBo1aiisKdIwqp5gboY1mzRpIuRNKNacMWOGkDcps+a0adOUCeZS9pMsHJSFg1ImdPfuXUOgIcUY169fj3fgPX36FLdu3arbkaRe8UcUEBCA+/btw1y5cln1kmKMw4cPY2RkpOL99OkTent76xb/0JfE0NBQxRsdHY3e3t66BQfq0cO0Dh8+jG3btrXqpS+JZO0C0dmzZ3HAgAFWvepLIq3r16/r/gNLXxLJ2gWiBw8eGCaQnJyc4q1dIHrx4gXu3LlTtwO0ZMmS8dYuEAUFBeG+fft0O0DJ2oX9+/djRESE4g0NDUVvb29dKFGv+COyWCzo7e2tm3QnxRhr1qzBoKCgeL/r48eP6xaVkBV/ixcv1px9Fy9e1E0u0JdEsnaB6NatWzh//nyrXvqSSNYuED158gQ3bdqkm1Qll0SydoHo1atXuGfPHsyWLZtVL7kkkrULRB8+fEBvb2/dbmz12gWiyMhI9Pb21k0C0cUYHz9+jPf7OnjwoC540sUYZO0C0enTp3Uvu6y1C0RXrlzBiRMn6r6Lv/32G/OSeO/ePcOPZ5UrV1Y+SNDeZ8+e4fbt23UTOWSd/JkzZ+K9i2/evMF9+/bpfhyhP0jQ521ISAh6e3vrTinJnTs3urq6KmsXiGJjY9Hb2xvr1q1r1Us+SJC1C7SOHDmCHTp0sOplrV0gOnfuHA4ePFj3XVSvXSC6ceMGzpo1S/ddVK/4I3r06BGuW7dOd/S6ep080cuXL3H37t268EhW/J04cQKjo6MV77t379Db21s3QaBeJ08UHh6O3t7eupNGcuTIEW/NDS1vb290dna26qU/SJC1C0QnTpzAbt26WfXSHyTI2gWiS5cu6RZNkw8S9NoFojt37uDixYt138Vq1arFW7tA5OPjg1u2bNEdka9e8Uf0+vVr3Lt3r25hiHrtAlFwcDB6e3vrTkZQr5MnioqKQm9vb93idrrwX33eHjp0SLeglhT+0+vkic6cOaP7YYUU/nt6eiprF4iuXr2KU6dOteqlP0iQtQtE9+/fx5UrV+o+Y/JBgqxdIHr+/Dnu2LFDd23E999/H2/tAlFgYCDu27dPtwOULsag7z6fP39Gb29v3a559Yo/ori4OPT29sYGDRpY9arXLtA6duyYbqKPteKP6Pz58zhs2DCrXnXhP62bN2/qNqnQ6+TJmhuix48f44YNG3SLl8uXL698kKCfsb+/P+7Zs0f3QyX5IEFW/BG9f/8evb29dadf5M+fH//991/cu3dvvLtPREQEent763aukg8SZMUfrQMHDqCLi4tVL2vFH9HJkyd1G8boBBlZ8Ud0+fJlHD9+vFUva508kVnW3LZtm+5aka+NNWNiYrhZc/369Zq7Dy9r0iv+iM6ePYsDBw606iWsSYoxaPGyJr3ij+jBgwe4Zs0a3WdshjXVK/6IeFiTLvynz9uwsDD09vbWnSaTFFkzRYoUuqy5YMECq96EYE16xR8RD2uqV/wRffz4Eb29vXUn0fwvsuakSZN038WEYE2y4o9IhDXJij+it2/fcrMmWfFHxMua9Io/IrOsefToUbuxpl6TypdmTb1pQ2ZYk24yT0jW3L9/v24zEWFNesUfES9r0iv+iL40a6pX/BElRdYkeXa9ggOaNdV5dnux5rVr17hYk17xR3T//n3DpsCvjTVJnl1vYtDXyJoXLlxIFNYk6+SJRFiTrJMnSgjW1Ct8NsOa6nXytMyw5qlTp+zGmkuXLtV9F78ka+pNtk0I1ty5c2e8uw9hTb3idj3WPHLkiG5BrVnWpAv/aRmxJmudPNHDhw8NWVO9Tp7oxYsXuGvXLt2GoK+BNVl5dr0Cr6+RNW/fvs3FmvQ6eSKzrLl37167seYff/xh1fs1subVq1e5WZOskydKCNbUm7RohjXpwn8Wa+pNxDTLmvQ6eamvR7JwUBYOSpmUegoW3R2qviSqpS6u0LskqrVr1y7NBcLaJVGtGzduaA5qujuUviSq9ebNGw2g092hNLCpFRkZqQF0a8UYalksFs2FMWfOnFYTZGq1atVKc0kkxRjqS6JaQ4cOjeelizGM3l81gKm7Q/V07NgxzXOiu0P1nvHjx481gE53h9KXRLU+fvyoAXRrl0S1YmJiNIBOLom7d++Od0lkqWbNmsxLIqsYQ63OnTtrLokkQaa+JKqlvvSlTp3aaoJMLXXnhro7VO85sbqo6O5QvXfRz89PA+h0dyh9SVQrNDRUA+j0JZEGNrXi4uI0HyesXRJZatq0qdVLojpBppY6qan3QUItdaecujtUT/v27dOctz/99BOzGEOtO3fuaD5O0N2hes84MDBQA+h0d6jeeRsVFaVZhUB3hxqdt+pkGd0dqk6QqaX+aE93h6o/SKg1atQozXlLukPVHyTUUhc6qbtD9XTy5EnNu0h3h+o9Y9Y0hzJlyjATZGp9+vRJA+h0gkzvvI2NjdVMwbJWjMGSGt70Cv/VUk/Bogv/1R8k1Jo2bZrm7mOt8F+tbdu2ac5bujtU7zmxppXR3aF67+Lr1681gE66Q9UJMrXCw8M1q2fo7lC989ZisWgK4awVY7D0119/xfPS3aFGdx/1FCw6Qab+IKHWokWLNOct3R2qp0OHDmnOW7o7VO8ZP3jwQHPe0t2hes/4/fv3mo/BdHeo3nkbHR2NRYoUieelu0ON7j7qZJneBwm11FOwMmTIgM2bN8cVK1ZoPkioNW7cOM3dp169eswEmVrqKQEi3aGs6ZDWCv/Vev78uabpii781ztvP3/+rPkYbK3wX624uDjNOlp6EpHR3adRo0aauw+ZRGSUINNjTaO7j7q4IiFYk1WMoRZrWpkZ1rRWjKGWWdZUr/lJLNZUf9BNKNZUF2Oopcea6mIMtZ48eaK5+xDWVBdjqKXHmupiDLViYmKwRIkS8bxmWdNa4b9a6o9ISYE1L126pHnGicGaYWFhX4Q11cUYLKkbcghrsoox1Orfv7/mvG3cuDF6eXl9UdZUT0jSK/xXi8Wa1gr/1QoKCkqSrKn+aE+zptHdR4811cUYaqkLnRKCNVnFGGr5+vpqCuFEWFO95jSxWLNevXrxvInFmuoJoAnFmkZ5dj3WVBdjqGVP1lQXwplhTb1iDLXUU7CSCmuq8+w0a+q9i3qsaZRnj46OxqJFi8bzJgRrsoox1NJjTaO7j7qYTa8YQy0Wa1or/FeLNR0ysVhTPZHODGuSJvMvzZrqAprEYk315hezrGmt8F+tt2/fmmJN9QTQxGJNdYF4QrGmUZ592bJlmrtPUmDNrFmzxvNaK/xXi8Wa1gr/WVI3QJphTbrw3+i8nTx5sua85WXNzZs3a87bxGBNf3//L8Ka6sJ/tSwWi6YQzgxr6hX+q6VmTb3Cf7XUA3Powv8vyZp37961C2tK2VeycFAWDkqZkL+/P6ZJk8Zqd6iewsLCME+ePPESZEaXRCLyD5xIMQatZs2aCRVj0BowYIBmLRSvSOeEte5QPZHVZta6Q/V07949TJYsGfclkVZQUBBmzJgx3looo0siUVRUFBYuXFi3O9SaLBYL/vbbb/FWEBslyGi1b98+3gpio0sirTFjxggVY9Ai0xl5izFokfHH9KhuvUsiradPn2LKlCmtdofqKSQkBLNnz261O1RPsbGxWLp0aaFLIq369esLXRJp9ezZU7c7VE8zZszQrIXifcZktRm9gpj3GZPVD7zFGLQCAgIwbdq0QgkyooiICMyfP79QMQaRxWLBKlWq6HaH6qlly5a63aF6Gjx4sGYtFO9z8vLyQgDr3aF6OnLkCALEX0HMe94+fPgQkydPHm8FsV6CjNaHDx8wc+bMQsUYRDExMVisWDGhBBmtGjVqCBX+03J1dRVKkNGaMGGCUOE/rQ0bNiCA9e5QPZ0/fx4BrHeH6unly5eYKlUqq92hegoNDcWcOXPGWwvFe/eJi4vDcuXKxVtBbJQgo9WkSROhYgxaffv2VbpDeQr/ac2dOzdegsyo8J8WWW3GW/hPi6xY5i38p/X27VtMnz691e5QPUVGRqKDg4Nud6g1WSwW/Omnn3S7Q/XUunVroQ8StEaMGKFZQcz7nEjXKJ0g4/WSVTv0CmLed9HHxwdTpEhhtTtUT8HBwZg1a1ahwn+i2NhY/O6772zuDq1du7ZQ4T+tf//9V3cSkZ6mTJmiWQvF+5y2bNkS74OEUYKM1pUrV2xOkJlhzfDwcMybN69dWLN58+ZJjjUPHDhgF9Z89+6dadYUKcYgMsuaHTp0ECrGoGWGNcnEjMRmzWfPniVJ1mzQoEG8tVCJxZozZ840zZq8hf+0zLJmunTp7MKaVatWTTDWFLn7DBkyJEFYk6cYg5YZ1nz06BEmT56cuxiDVlJlTTc3N5tZc+LEiXZhzQsXLsRjTaNiDFo0a/IUY9AKDQ3FXLlymWZN3mIMWmZYs1+/fkJN5rTMsObevXvtwpqBgYEJxpo8xRhEZlmzTZs28VYQi+TZCWvyFmPQIqskzbAmbzEGLbOsmS1bNruwZp06dRKENXmKMWhNnTo1QViTpxiDlhnWfPXqlcKaPIX/tMyyppOTk11Yc+DAgTaz5sKFC+Oxpkie3Qxr3r9/Px5rGhX+0yKsKVL4TxQdHZ0grMlb+E/LDGuOHTvWLqx55syZBGNNkTx7SEgI5siRwybWjIuLi8eaPIX/tMywZq9evYQK/2kR1uQt/KdF1mgnNdYsUKCAXVjz77//ThDWlCuIk5Zk4aAsHJQyoZs3bwpdEmn5+PgYdodaU2BgoGZUN68iIiK4OiRYslgsuGvXLu5LoloHDhwQSpDROnHihNAlkdalS5eEEmS07t69K5Qgo/XixQuhYgxaHz9+FLok0oqOjsZdu3ZxXxJpWSwW3Lt3r9AlkdahQ4dsPtPOnDkjlCCjde3aNaEEGa1Hjx4JJchovX79WihBRis0NFQoQUYrLi4Od+3axZ0gU8vb21soQUbr2LFjQpdEWhcuXLD5knj79m2hDxK0nj59KpQgoxUUFCT0QYJWZGQk7tq1iztBRouct7aO6j548KBQgozWqVOnhBJktK5cuWLYHWpN9+/fN+wOtSY/Pz+hDxK0yKoL3gQZrZiYGNy5cyd3gkytvXv3CiXIaB05ckQoQUbr7NmzQgkyWjdu3BAqxqD15MkToQQZrTdv3ggVY9AKDw/HPXv22HT3MXve7t+/XyhBRuv48eNCHyRoXbx4UShBRuvOnTtCCTJaz549E0qQ0Xr//r1QMQatqKgoU3efPXv2CBVj0Dp06JBQgozW6dOnhRJktK5evSqUIKP18OFDoQ8StF69eiWUIKP1+fNnoQQZrdjYWNy5cyd3gkytffv2CSXIaB09elSo8J/W+fPnDScRWZMZ1vT19TXFmrbefRKCNW29+5hlTZFiDFpmWPPevXtJjjVjYmJw165dNt19zLLm4cOHJWtyKiwsTLKmgG7fvi1UjEHLDGu+e/dOqBiDFrn72Mqau3fvlqzJKbOsKVKMQYvcfSRr8ikpsqbZPPu3xprPnz+3C2uazbPv3r37m2NNkWIMWpI1xWSGNW/dupUkWdNeeXZ7sebly5ftwpovX75McqyJ+F8DdlJjzevXr9uFNQMCAiRrCujChQtChf+0JGtKJSV9icLBZPhfYZyUjpIlS1YQAPwAAPz8/KBgwYJ2/omkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkvgX5+/uDg4MD+Z8OiOhv9r+Z3Ox/QEpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKKulIFg5KSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSX1DkoWDUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlLfkGThoNQ3I0T85rxJ9eeWXn5vUv25vzVvUv25pZffm1R/bun9+v9s6RXzJtWfW3r5vUn155ber//Pll4xb1L9uaWX35tUf+5vzZtUf27p5fcm1Z9ber/+P1t6xbxJ9eeWXn5vUv25pffr/7OlV8ybVH9u6f36/2zpFfMm1Z9bevm9Zt9lqf8tycJBqW9Ghw4dgoYNG8LixYvB399fyHvv3j34888/YdasWfD48WMhb1BQENSoUQMmTJgAt27dEjqEo6KioH79+jBs2DA4f/48xMXFCf3ZrVu3hn79+sHRo0chOjpayNu/f3/o0qUL7NmzB8LDw4W806dPh7Zt28KmTZsgODhYyLtx40Zo1qwZrFixAt6+fSvkPXv2LNStWxfmz58PL168EPI+ffoUqlevDtOmTYMHDx4IPadPnz5BzZo1YcyYMXDt2jWwWCzc3ri4OGjcuDEMGjQIzpw5A7GxsdzeZMmSgaurK/Tq1QsOHToEUVFR3F4AgBEjRoCrqyvs2LEDQkNDhbwLFy6EVq1awbp16+D9+/dC3j179kDjxo1hyZIl8Pr1ayHv9evXoVatWjBnzhzw9fUV8r5+/RqqV68OkyZNgjt37gg94/DwcKhduzaMGDECLl26JPSMERFatGgB/fv3hxMnTkBMTIzQz92rVy/o1q0beHt7Q0REhJB34sSJ0L59e9i6dSuEhIQIeVetWgV//fUXrF69GoKCgoS8R48ehQYNGsCiRYvAz89PyPvw4UOoUaMGzJgxAx49eiTkff/+PdSoUQPGjx8PN27cEHrG0dHR0KBBAxgyZAicO3dO+Lxt164d9OnTB44cOSJ83np4eEDnzp1h9+7dEBYWJuSdPXs2tG7dGjZu3AgfP34U8m7ZsgWcnZ1h+fLl8ObNGyHvhQsXoE6dOuDp6QnPnz8X8r548QJq1KgBU6dOhXv37gk9p8+fP0OtWrVg9OjRcOXKFaF30WKxQNOmTWHgwIFw6tQpofMWAKBLly7Qs2dPOHDgAERGRgp5R48eDR07doTt27fD58+fhbxeXl7QsmVLWLt2rfB56+3tDY0aNQIvLy949eqVkPf27dtQs2ZNmD17Nvj4+Ah537x5A9WrV4eJEyfC7du3hZ5xZGQk1K1bF4YPHw4XL14Ufhf//vtvcHd3h+PHjwuft3379oV///0X9u7dK3z3mTp1KrRt2xY2b94Mnz59EvKuW7cOXFxcYOXKlRAYGCjkPXnyJNSrVw8WLFgAL1++FPI+efIEqlevDtOnT4eHDx8KPaePHz/Cn3/+CWPHjoXr168LeWNjY6Fhw4YwePBgOHv2rPAz7tixI/Tu3RsOHz4sfPcZOnQouLm5wa5du4TvPp6envDPP//Ahg0b4MOHD0LeHTt2QNOmTWHp0qUQEBAg5L1y5QrUrl0b5s2bB0+fPhXy+vv7Q/Xq1WHy5Mlw9+5doecUFhYGtWrVgpEjR8Lly5eFz9tmzZrBgAED4OTJk8LvYvfu3aF79+6wf/9+4fN23Lhx0KFDB9i2bZvw3Wf58uXQokULWLNmDbx7907Ia2/WHD9+PNy8eTPRWbNv376JzpozZsyANm3aJDnWrFGjhl1Ys0mTJjBo0CA4ffp0kmLNv//+O9FZ88aNG1CzZs1EZ82IiAioU6dOkmPNSZMmQfv27WHLli3Cdx8zrHns2DFo0KABLFy40C6sOW7cOGHWjImJsRtrDho0yC6suXXr1iTLmqNGjUp01uzatSv06NEj0VlzyZIlNrPm/v377cKab9++hRo1asDEiROF8+xmWbNVq1bg7u4Ox44dS1Ks2bx580RnTR8fH6hRo4ZdWLNRo0YKa4q+i4Q1bbn7JARrrl+/PtFZs1atWjB37twkw5qICM2bN7cLa44fP16yJqeio6OhXr16MHTo0ERnzQEDBtiFNTdt2mQza547d05hTdG7jxnWDAkJUVjz6tWricaaAABubm7Qs2dPOHjwYJJhzb1799qFNQMCApIka/bu3Ru6desG+/btS1TWXL16Nbi4uMCqVasSlTUfPXqU5FlT9F2U+h8UqSaVYT0AoCAAIACgn58fSiVNxcXFYYUKFZA8y4oVK+LIkSPx8uXLGBcXZ+h3dnZWvN999x0OGDAAT548iTExMYZed3d3xevg4IDdu3fH/fv3Y0REhKHX09NT8ebKlQs7dOiA27Ztw5CQEEPvvn37FG/mzJmxRYsWuGbNGnz37p2h986dO5gsWTIEAEybNi02bNgQFy9ezPUOBAYGYoYMGRAAMGXKlFijRg2cNWsWPn782NAbFRWFhQoVQgDAZMmS4Q8//IATJkzAmzdvosVi0fVaLBb85ZdflL9zuXLlcOjQoXj+/HmMjY01/LPbtm2reIsVK4Z9+/bFo0ePYlRUlKF31KhRijd//vzYpUsX3LNnD4aFhRl6V65cqXizZ8+Obdq0wU2bNmFwcLCh9+TJk4o3Q4YM2KxZM1yxYgW+ffvW0Ovr64spU6ZEAMDUqVNj3bp1cf78+fj8+XND76dPnzBbtmwIAJg8eXL87bffcNq0afjgwQPD5xQbG4vff/+98nNXrlwZx4wZg1evXjX0IiLWrVtX8ZYqVQoHDRqEp0+f5noXu3fvrngdHR2xV69eePDgQYyMjDT0Tps2TfHmyZMHXV1dcceOHfj582dD77Zt2xRvlixZ8O+//8Z169bh+/fvDb3Xrl1TvOnSpcPGjRvjkiVL8PXr14be169fY9q0aREAMFWqVFizZk2cM2cO+vr6GnrDw8MxX758yrv4008/4aRJk/DOnTtc72KlSpWUn7tChQo4YsQIvHTpEtd5+9dffyneEiVKYP/+/fHEiRMYHR1t6PXw8FC8BQsWxG7duqG3tzeGh4cbehctWqR4c+bMie3bt8ctW7bgp0+fDL2HDh1SvJkyZcK//voLV61ahYGBgYbeBw8eKOdtmjRpsEGDBrhw4UJ8+fKloff9+/eYKVMmBABMkSIF/vHHHzhjxgx89OiRoTc6OhqLFCmi/NzVqlXDcePG4Y0bN7jexT/++EPxlilTBocMGYLnzp3jOm87deqkeIsUKYJ9+vTBI0eOcJ2348aNU7z58uXDzp074+7du7nO23Xr1inebNmyYevWrXHjxo344cMHQ+/Zs2fjnbfOzs64fPlyDAgIMPQ+f/4cU6VKpZy3derUQU9PT3z27Jmh9/Pnz5gjRw7lvP31119x6tSpeO/ePcPnFBcXh2XKlFF+7kqVKuGoUaPwypUrXO9io0aNFG/JkiVx4MCBeOrUKa7ztnfv3oq3UKFC2KNHDzxw4ADX3Wf27Nnx7j4dO3bE7du3c919du3aFe/u07JlS1y7di3X3efmzZvxzttGjRqhl5cXvnr1ytD79u1bTJcunXL3+fPPP3H27Nn45MkTQ29kZCQWKFBAOW9//PFHnDhxIt66dYvrvP3hhx+Un7t8+fI4fPhwvHDhAtczbtWqleItXrw4uru747Fjx7jO22HDhsW7+3Tt2hX37t3Ldd4uXbpU8ebIkQPbtWuHmzdv5rr7HDt2TPFmzJgRmzdvjitXruS6+zx58gRTpEihnLf16tXDBQsW4IsXLwy9Hz9+xCxZsijn7e+//47Tp0/Hhw8fGnpjYmKwRIkSys9dpUoVHDt2LF6/fp3rvK1Zs6biLV26NA4ePBjPnj3Ldd526dJF8RYuXBh79+6Nhw4d4rr7TJ48WfHmzZsX3dzccOfOnRgaGmro3bRpk+LNmjUr/vPPP7h+/Xqu8/bSpUuKN3369NikSRNcunQp193Hz88PU6dOrdx9ateujXPnzsWnT58aesPCwjB37tzKu/jzzz/j5MmT8e7du1znrb1Ys3///nZhTW9vbyZrBgUFGXrNsGZQUJCGNWfOnPnVs2a7du0Ub9GiRRONNVetWpUkWTN79uwa1rx///4XZ8169erFY00PD49EYc3p06cr3ty5c2OnTp2SFGumTJkyUVmzcuXKGta8ePHiF2fNQYMGaVhz3759XHefxYsXa+4+icWayZMnV+4+9evXTzTWLFq0qPJzV61aNUmw5vjx4+PdfTp37oy7du3iuvuYYc1z585pWHPZsmWJwpo5c+aMx5pTpkzhZs2yZcsqP7eTk1OisWafPn3swpq7d+9OkqxZsGDBeKw5YcKERGHNf/75Jx5r9uvXL1FYc9myZfHuPm3btuVmzePHj9uNNbNmzaphTZ48u1nWrFWrloY1z5w581Wz5ubNm+OxZqtWrRKFNf39/eOxZq1atRKFNS0WC1asWDHJseb8+fMVb86cObFDhw64detWrruPGda8e/euhjUXLVqUKKzp6Oio/NzVqlXD8ePHc7Pmr7/+qnjLli2baKw5evRoxZsvX75EY81Tp04xWfPNmzeGXnuyZqlSpeKx5ujRoxOFNXv06BGPNXv27JkorLl9+3abWfP69etM1uS5+5hhzYiICCZr3r59+4uzZosWLTSsefz48a+aNQ8fPhyPNV1cXLhZU8q+8vPzU54dABTEhKiJS4j/yP96gCwc/J/Rjh076JdIKBlE/yNHB/kQtmHDBqtwEhAQoPwjR0f69OmxadOmusmgiIgIzJ8/v8ZLPoTNmzfPajLIYrFglSpVNN7kyZPjL7/8YpgMatmyJfPvzJMMGjx4MNPLkwzy8vJienmSQUeOHGF6STJI70PYw4cPlYQqHTzJoA8fPmDmzJk13rRp02KjRo1w8eLF6O/vz/TGxMRgsWLFNF6SDJo1a5ZuMqhGjRoaL/0hTC8Z5Obmxvx9lStXDocNG6abDJowYQLTW6xYMcNk0IYNG5henmTQ+fPnmV6eZNDLly+VhCodPMmg0NBQJaFKB08yKC4uDsuVK6fx8iaDmjRpwvw7V6lSBceMGYPXrl2z6u3bty/TW7p0aRw0aJBuMmju3LlMb+HChbFXr166yaA9e/YwvaToUi8ZdPv2bavnrVEy6O3bt5g+fXrmeWuUDIqMjEQHBwfmeWuUDLJYLPjTTz8x30WSDNL7ENa6dWvm35kkg/SKLkeMGMH0kmTQiRMnrJ63y5cvZ3pJMsjb29vqeXvixAmmlxRd6iWDfHx8lIQqHeRD2OrVq60mg4KDg5WEqvq8bdCggW4yKDY2Fr/77jvmu1i9enXDZFDt2rWZf2eeZNC///7L9PIkg6ZMmcL08iSDtmzZwvTyJIOuXLnC9GbLlg3btGmDGzduxI8fPzK9/v7+mCZNGo2XJIOWL19uNRkUHh6OefPm1XjpD2HWkkHqhCoJuuhSLxnUvHlz5t+5UqVKhsmggQMHMr3ff/+9YTJowYIFTC9PMujAgQNML08y6N69e0pClQ46GWTt7vPu3TvMmDGjxsuTDIqKisLChQtrvHQyyMfHh+m1WCz422+/Mc/bn376CSdOnKibDOrQoQPz90U+hOklg8aMGcP0lihRAt3d3XWTQWvWrGF6CxQogP/++69uMuj06dNML08y6NmzZ0pClY6MGTMaJoNCQkKUwmU6eAoPYmNjsXTp0szzlqfwoEGDBsy/Myk80PsQ1rNnT6aXFB7oFV3OnDmT6S1SpAj27t0bDx8+bPW81WNNNze3L8qa5GMyHYnBmlWrVmWet1+aNYcMGcL0JgRr6n0IM8Oajx49ssqaRg1+eqxJii5tYU3S4Pc1subEiROZ3i/NmhcuXGB6E4M1c+XKpfGmTp0a69Wrh/Pnz7eZNY0a/MywZr9+/Zhe0uD3pVhz7969TO+XZs3AwECbWTMqKsqQNa19CDPLmm3atGH+nStWrGjY4KfHmkZFlytWrGB66Qa/r5E1SZOs+rz90qxZp04d5t85IVhTr+hy6tSpTC9hTb2iy61btzK9PA1+Zljz1atXVlmTNPh9KdZ0cnLSeL921ly4cCHTW6hQoS/Kmvfv39dlTb08uxFr6hVdRkdH67Lm7NmzdVnz999/Z563pMHvS7Hm2LFjmV7S4PelWPPMmTNM79fMmnFxcbqsadTgZ4Y1e/XqxfSWKVPGsMHPDGvu3LmT6f3aWZM0ydKRUKypV3T5999/M//OhDX1ii6NWFOv6HLJkiVMr4ODgyFrHj16lOnlafAzw5p0kywdicGaf/75J/O8TSjWtPYummHNjRs3Mr2ENfXy7GZZkxQuq8/b5s2b6zb4mWXN8uXLM99FnmEyTZs2Zf6dSYPfl2LNefPmMb0JxZrW7j537tyxet4S1rRWdGlP1vz555+Z7+LPP//M3eAnlfiShYOycFDKhCZPnhxvCoS1YCWD1q5di05OTkwQooNOBpEPYceOHUMnJyelU0Uv1MmgR48eoZOTEzNppQ51Mujz58/o5OTETIaoo2jRopoO3Bo1asTrkLEWrGRQmzZt4nW6WQu6A5ckgwYPHhyvY9VasJJB8+bNYxYLsC5E6mTQtm3b0MnJiZl4Ul+I1MmgixcvopOTk9KJrRd0MiguLg5fvnyJTk5OzII0dZBkEPkQRhJWrI996mAlgxo2bBhv2pi1IMmg7du3Kxeirl27xpvkYC1YyaCxY8cyL5vqYHXgLlu2DJ2cnJhJYDroDlySDDpw4AA6OTkxYZcOVjLo1q1b6OTkxCxWUoc6GfT+/Xt0cnJSugr1gpUM+vnnn5mXPnWwkkEtWrRgwps6WMmgfv36MZMw6mAlg6ZPn871LpJk0IIFC5Rk0IYNG9DJyYn50Y0OVjLo1KlT6OTkxEwuqkPdgevj44NOTk5Kx5leqJNBERER6OTkpHQy6QUrGVSrVi2u85aVDOrQoQPz44Q6WMmgYcOGcZ23rGTQggUL0MnJiZkEpoOVDNq1axc6OTkxC+rpYCWDrly5gk5OTsyP5+pQJ4Nev36NTk5OTFBWR8mSJTUduJUrV2YmvNTB6sBt0qRJvIkb1oKVDOrevTvXectKBk2YMIH77qNOBq1atYr7vFUngw4fPoxOTk5M2KWDNe3p3r173HcfdTIoODgYnZycME+ePIZekgw6evSoct7+9ttvyiQqvWAlg/755x8sXry4oZfVgTtgwIB4kyGtBSsZNHv2bO67D+nAJcmgzZs3o5OTEzPxpH4X1cmgc+fOcd991MmgZ8+eoZOTE/MjgTroZFBMTAxGR0dz331YyaB69eoxPyKpg5UMcnV1xZIlSxp6WcmgUaNGMYs61JEuXTps0qRJvGlPixcvRicnJ2YSmA7WZOF9+/ZxnbesZNCNGzfQycmJmUBWh3qycGBgIPfdhzXt6YcfflAmo+gFq/CgWbNmXHcfVuFB796943WPWwtW4QEva5LJwgnFmsePHxdiTXrakxnWDA0NtRtrtm3bNsmx5vbt2xOVNUnRpZ+fX6KxJmnwS0zWZDX4JUXWvH37dpJkzZYtW3LdfViThUVYkxRdJjZrqicLm2FNX19fbtZUTxY2y5q1a9e2C2sOHz6c6+6TEKxJN/iZYc2rV68KsSY97cksa1apUsUurNmjRw+bWXPixImmWdPo7sNizSNHjiQaa9INfp8+fUo01lQ3+JlhzYEDB3KxJmuysBnW3LJli11Y8/nz5zazZkxMDPfdhzVZ2Axrurm5cbFmlixZsFWrVvGmPYmwpnqysJeXV6KwpnqycFJlzebNmycaa9J59ilTpnDffcyyJt3glxCsyZtnpycLi7Ama7JwUmRNT09PYdYkeXYzrHnp0qVEY011g5+TkxPX3ccMa9KThROCNceNG2cX1jx48GCisiZp8Pvw4QP33YfFmr/88osQa9INfmZY093dPVFYUz1MZuPGjUmONSMjI7lZk0wWPnz4MNekS6kvL1k4KAsHpUzI2uQJo6hYsaLVCUNG8d1331nt3jYKBweHeGNtRSJXrlzx1gGIBEkG8VwW1UGSQTyQrA6SDGJ1bhoFSQaxOgJ5oly5cvHGRItEsWLFsFmzZjZ58+fPb7X7ySiyZ89udUKZUZBkEE9CUx0kGcSTzFAHSQZVq1bNpp+7cuXKzC4knihVqlS8NSgi4ejoiC4uLjZ5c+fOHW8NpEiQokujBAwrSDKIJxGiDpIM4kk6qYMkg+g1biJRoUIFq132RlGiRAmrHUxGUbBgQatTb4wiZ86cNr+LJBnEA27qIB/CeBJW6iBFl/Q6aZGoWrVqvNVRIlGmTBmrnb1GUaRIEasd+kaRL18+m99FkgwySqSygiSDeABbHSQZxJNYVAdJBtFrhUSiUqVK8dbViETJkiWxcePGNnkLFSoUb32cSJi9+7Rs2dLw4xMrSDKIJympDpIM4vngpg6SDGJN3uOJ8uXLY926dW3yFi9ePN6qG5HInz+/zeetmbsPSQbxfEBSB0kG8SSP1UGSQaxOeZ6oUqUKVq9e3SZv6dKlsWHDhjZ5CxcubPPdJ2/evDaft6TwwCjJxgrSgcvzoU8dpAOX56OqOkjRJWsSFE8kVda09V1MCNbk+UCgDjOsCfDfhzAzrFm/fn2bvEWLFrWZNfPlyydZUyAka/IHYU2ej0DqINOeJGvyRY4cOWy+39qbNekVXyKRFFnTzN3HXqxJii7NsOaPP/5o09/ZyckJa9asaZP3W2NNssXGDGvyfPxWB2FNem2mSEjW5A/CmjxF2uogrMnaNsUTVapUYU6W5gl7sqat7yJp8EuKrMmaBMUT9mRNe+bZeRoA1GGGNUnRpT1Ys2zZskmSNa1NwzYKe7OmrXn2pMqatp63hDWNCh1ZkRCsyVPcqY6kypoFChQwxZpmzlsXFxfctm2bnERoR32JwsHkICUlxVTq1Kmhbt264ObmBtWqVRPyJk+eHH799Vdwc3ODWrVqCf/ZlSpVAldXV2jWrJmw9/vvv4eOHTtC+/bthb2FChWCdu3agZubG6ROnVrImzt3bvjnn3/Azc0NsmfPLuTNkiULuLi4gJubGxQqVEjImy5dOmjUqBG4ublB+fLlhbwpU6aEmjVrgqurK/z6669C3mTJksFPP/0Ebm5uUL9+fSEvAECFChWgU6dO0KJFC2Fv8eLFoUOHDuDm5ibsLVCgALRt2xbc3Nwgffr0Qt4cOXLA33//DW5ubpA7d24hb8aMGaFZs2bg5uYGJUqUEPKmSZMG6tevD25ublC5cmUhb4oUKeCPP/4ANzc3qF69upAXAKBq1arg5uYGjRs3FvaWKVMGOnXqBG3atBH2FilSRHnGKVKkEPLmyZMHWrduDW5ubpA5c2Yhb9asWeGvv/4CNzc3KFiwoJA3ffr00KRJE3Bzc4NSpUoJeVOlSgW1a9cGNzc3+PHHH4W8yZMnh19++QXc3Nygdu3aQl4AACcnJ3B1dYXmzZsLe0uWLAkdO3aEjh07CnsdHBygXbt24OrqCmnSpBHy5syZE1q1agVubm6QI0cOIW/mzJmV87ZIkSJC3rRp00LDhg3Bzc0NKlasKORNmTIl1KhRA9zc3OC3334T8iZLlgx++OEHcHNzgwYNGgh5AQDKlSsHnTp1gr///lvYW6xYMZvP2/z580ObNm3Azc0NMmbMKOTNnj07tGzZEtzc3CBv3rxC3gwZMoCzszO4urpCyZIlhbypU6eGevXqgZubG1SpUkXImzx5cvj999/Bzc0N/vzzTyEvAEDlypXB1dUVnJ2dhb2lSpWCTp06Qdu2bYW9jo6O0L59e3Bzc4NUqVIJefPkyaPcfbJmzSrkzZIli3LeOjg4CHnTpUsHjRs3Bjc3NyhTpoyQN1WqVFCrVi1wc3ODn3/+WcibLFky+Pnnn8HV1RXq1q0r5AUAqFixIri5ucFff/0l7C1RogR07NgROnXqJOwtWLCgcvdJmzatkDdnzpzK3SdXrlxC3kyZMil3n6JFiwp506RJAw0aNAA3NzeoVKmSkDdFihRQvXp1cHNzg99//13ICwBQrVo1cHNzg0aNGgl7y5YtC506dYJWrVoJe4sWLaqct8mTi6Up8uXLp5y3mTJlEvJmy5YNWrRoAW5ubpA/f34hb4YMGaBp06bg5uYG33//vZA3derUUKdOHcmanCKs6erqCtmyZRPymmVNct6aYc1ffvlFyJssWTL48ccfbWbN8uXLg6urK7Rs2VLY+zWwZp48eYS8NGsWL15cyEuzpujdJyFY09XVFZo0aSLsNcOahQsXVu4+ic2a5Lw1w5qlS5cW8n4NrOni4iLsLVmyJHTq1Mk0a9py97GVNTNlygTNmzdPsqzZsGFDIS/Af6zp6upqmjWTJUsm5DXLmuS8zZcvn5DXLGuSPHvVqlWFvDRr1qxZU8gLkDCs2a5dO2GvGdbMnTu3ct7aizXLli0r5KVZ05a7jxnWrFChAri6utqUZyes6erqKuz9GlizWLFiQl6aNZ2cnIS8SZU1ixQporyLZlhT9O5jhjXTp0//TbJmp06dbGZN8owTkzXpPLujo6OQ1yxr/vnnnzaft5I1+ZUQrOnq6mrqu2aNGjWEvADmWLN06dLQqVMnaN26tbD3W2bNn376Schr7++anTp1gg4dOgh7HRwclHexYcOGwhwj9ZUrIaoP/9cD5MTB/wmdPHkSx40bp1slTY8uJmsbEBGvX7+Os2fP1u1IYo0uRkT08fFBT09P3S4I0kHo5eWlrG2SDcgPAAEAAElEQVRARAwKCkJPT0/d0cn06GKytgHxv532np6euhXy9OjiW7duxasMX7p0qWGVu3p0MdHmzZvR1dVV10vWNhw7dkwZXYz434qfQYMG6Xrz58+vjC4mY8QREc+fP49TpkzR9WbPnh3btm0bb3QxIuKdO3dw7ty5uh2g9OhisrYBEfHly5fo6empO90tderUmtHFiIjBwcHo6empO21IPbqYPCeLxYKenp6Gnbrq0cVEq1atMuxGIKOLz5w5g7GxsYp3x44d2KNHD12vtdHFx44dw5EjR+p68+TJg25ubvHWNiAiXrlyBWfMmKE70pusbaBXBCIiPnr0COfNm6fbcU/W5CxdulRZ24CIGBAQgJ6enrod96SDcO7cucraBkTEsLAw9PT01O1IIh2EkydPVtbkEC1evNiwa75ixYrx1uQQrV+/Htu3b6/r/e677zRrchD/Wznh7u6u6y1YsKBmTQ4i4unTp3HChAm63pw5c2KHDh3irW1ARLx58ybOnj1bd7x+pkyZlDU5ZEUgIuLTp0/R09NTt+OedBDSaxsQEd+9e4eenp66HaApUqRQ1uQ8fvxY8cbExKCnp6dudyCZjEqvoydavny5YYcfWRFI1uQQbd26Fbt06aLrLVq0KPbt2xePHj2qrG1ARDx06BAOGTJE15svXz7NmhxExAsXLuDUqVN110dly5ZNWZND1jYgIt6/fx/nzZunO3qdXpND1jYgIvr7+6Onp6duxz29JoesCEREDAkJQU9PT91Ji/SaHLK2gWj+/PmGnbqVK1dW1tHT3jVr1hh26ZE1OadPn473Lu7atQt79eql62Wto0f8b63I6NGjdb1kReCOHTvinbfXrl3DmTNn6q4zIR2E9JocRMQnT57gvHnzdEfk02tyyNoGRMS3b9+ip6enbsc96SCcM2eOsrYBETEiIgI9PT11J3/Ra3LI2gYiLy8vwwkW6jU5RJs2bcKOHTvqesmaHHptAyLi/v37ceDAgbreAgUKYLdu3eKtCEREPHv2LE6aNEnXmyNHDmzfvn28dfSIiLdv38Y5c+boThtiraNHRHz+/Dl6enrqdtyTaTULFy5UVgQiIn748AE9PT11pw2RaTX0mhxExNjYWPT09DScjFC1atV4a3KIVq5caThpRL0mh2j79u3477//6npZa3IQ/1upNnz4cF1v3rx5lTU5ZEUgIuKlS5dw+vTpupNoyLQaekUgIuKDBw9w3rx5uh336dOnV9bkkBWBiIivX79GT09P3Y77VKlSYZ06dXDevHnKikBExNDQUPT09NSdtEim1UyZMgXv3bsX7zktXLjQcBo4WUdP1uQQrVu3zrB7vWTJkpo1OYiIe/bswb59++p6HRwclDU59N0nIVhTb5WbNdb09fW1K2vqTaJJCNYk6+jVrOnm5qbrNcuaXbt2TVDWvHv3bqKxJn33IaypN20ooViTrAgkWrVqleEUCmusuXPnTm7WpNfRI37drEnW0VtjTb1VTF+SNY0mBlljzQ0bNgixJv0uirCmt7d3vLtPYrEmvY4e8f9YU29tnjXWfP/+PRdrknX0Cc2aRpP0vhRrDh06VNeb1FmTrAhETBjWNJpSYoY1yTp6Fmv27t1b12uNNU+cOIFjxozR9X5J1tSb7vYlWVNv8ldCsSZZR0+UGKypXkePmDCsqTdt6Euypt60IWusGRcXZ1fW7Natm66XsCa9jh5RjDXpdfSIicOa6nX0iInDmmQdfUKzZtu2bXW9SZ016btPQrCm3mRbwpr0OnpEftYk6+hZrGk0ufRLsObBgwftypp6K6WNWFNvupsZ1kyePLnCmmQdPZGnp6fhthuzrEnW0Scka44aNUrXy1pHj5gwrJktWzar3i/BmuHh4YnGmuo8u1nW7N+/v67XLGuq19EjIt66dQvnzJnzxViTtY4eMWFY02jie7Vq1ZisKWVfyVXFsnBQyqRYCeRy5copl0T6AqHWypUrNV5ySVQnyNQ6ceKExmvtkqiWr6+v5jJBLonqBJlawcHBmstEhgwZsHnz5poEmVqxsbGasc3WijFYUie86ASZ+pKoFguUK1eujGPGjNFcEtWaNm2axkuKMdSXRLW2bt2q8To6OmKvXr00l0S1rl69qvHmzp2beUlU69WrV5rLhLVLolrh4eGaywR9SaQTZGpZLBZNUpNcEufMmRPvksiSesw1uSROmjQJ79y5o/ucPDw8NL8va8UYai1cuFDjJQmyEydOxLskqnXw4EHmJbFbt26aS6Ja9+/f1ySurV0S1Xr37p1mJRsZn6++JKoVHR2tSaTQl0Q6QaaWxWLRfGCgL4l0gowlVmKSXBLVCTK1xo4dq/GSDxLqBJlaa9eu1XitFWOodebMGY3XWjGGWs+fP9ckrkmCbOPGjbrn7efPnzWJa7oYQ++8jYuLw9KlS2vO2zp16qCnp2e8DxIsqQGMFGNMnTpV80FCLVZBWqVKlZQPEnrv4qxZszReax8k1Nq1a5fGSz5IqBNkat24cYN53nbq1EmTIFPrzZs3msS1tWIMtSIiIrBAgQLxvNYSZGpZLBbN6jy6GIP+IMGSOhlCF2OoP0ioxfpgRwr/1R8k1Fq6dKnGW7x4cXR3d9d8kFDr6NGjGq+1DxJqPX78WJO4zpEjB7Zr1w63bNkSL0Gm1sePHzFLlizxvPQHCTpBplZMTIwmkUI+SKgL/1lSF1eoizH01LlzZ83vq2rVqszCf7VYH3NIMcbZs2d1z9uNGzdqvNYK/9W6ePGixkuKMdQfJNR6+fKlJnFN1tSqP0ioFRoairlz59act6wPEmrFxcVpmjXIqjb1BwmW1IVO9AcJdYJMLVaBhJOTE7MYQ6158+ZpvCVLlmQW/qu1b98+jdfBwYFZ+K/WnTt3mHefDh064LZt23TP28DAQE3i2lrhv1pRUVFYqFAhzXnbsGFDXLx4seF5q/6gS9bUqgv/WVJ/CNL7IKGWHmuqizHUMsOaJ0+e1HitFWOoZYY1P336xGRNVjGGWmZZU73+Limw5rZt2zTehGBNdTGGWq9fv9YUiBPWVBdjqKXHmupiDLXMsqb6wztdjPElWXPRokUab2Kw5oMHDzTnLSnGMMuadDGGWmZYExE1HxgIa6qLMViyxpqsYgy1WB/Py5YtyyzGUMsMa549e1bjFWFNdTNyYrGm+iMSKcYwy5rqYgy1WAVphDXVxRhq6bGmuhhDLTOsefPmTY3XWjGGWmZYMzIy8ouxJl2MwZJ6zbIIaw4bNkzz+0oM1jx27JjGSzeZ28qa6mIMtfRYU12MoZY9WZNVAGytyVwtM6y5adMmjTcxWNPPz89m1gwLC7PKmupiDLXMsqa60ImwJqsYQy0zrOnp6anxWmsyV8terBkUFGQ31lQP6bDWZM6SHmsaFWOwipWSAmuy8uyswn+1zLKmujkusVize/fumt8XL2tOnz5d47XWZK6WGda8du2axptYrJkvX754XmuF/2qxWNNa4T9LZliTVRyaGKx56NAhjZc0mX9J1nz//r0p1ixatGg8L2FNdeE/S2ZYs1OnTprfl7XCf7VYrGmt8F+tdevWabxJgTVz5swZz2utyVzq65IsHJSFg1Im9P79e8ycObNySeRJkBHFxMRgsWLFhIoxaFWvXh0B4hdj8HrJ5D7eYgxa48ePRwDr3aF6Wr9+vXJJZHWH6uncuXPKJZHVHaqnFy9eYKpUqbgvibRCQ0MxZ86cyiWRpxiDKC4uDsuWLavbHaon0jVaoUIFrgQZrT59+iAAf4KM1pw5c5RLIk8xBq09e/Yol0SeYgxat27dQgDr3aF6evv2LaZPn95qd6ieIiMjsWDBgla7Q/VksVjwxx9/jHdJNEqQ0SId3LyXRFqk89Nad6ieli9fjgD8CTJax48fRwD+BBmtJ0+eYIoUKbiLMWh9/PgRs2bNKpQgI4qJicHvvvtOtztUT6RTzVp3qJ66du2KANa7Q/VEugJJd6hRgozW5s2bEYD/gwSty5cvI8D/fZAwSpDR8vf3x9SpUysfJIwSZLTCwsIwT5488YoxjD5IEFksFqxYsaJQMQYtMp2RLvznfcYDBgyIlyBTd4fqaf78+QjAX/hPa//+/QhgvTtUT3fv3sVkyZJZ7Q7VU1BQEGbMmNFqd6ieoqKisHDhwkp3KE+CjMhisSidwVWqVOFKkNEiHYW8xRi0yIRF3gQZrdWrVyvnLU/hP63Tp0/HS5AZFf7Tevr0KaZMmdJqd6ieQkJCMHv27Fa7Q/UUGxuLpUqV0u0O1VP9+vURwHp3qJ5Idy/5IGGUIKM1Y8YMBOAvxqC1Y8cOBOAv/Kd1/fp1TYKM97wNCAjAtGnTWu0O1VNERATmy5fPaneoniwWC1apUgUBbOsOJZOpeQv/aQ0ePBgBrE8i0pOXlxcC/N8Hid27d3Oft4cPH473QcIoQUbr4cOHmDx5csyQIQNXMQYte7ImmYrCW/hPywxrki5smjV57z5mWPP8+fMa1tQrxqBlT9YsV66cUDEGLTOsSSabJCXWvH37toY1ee8+ZlnTwcEhHmsaFWMQmWXN1q1bK6zJU4xBy16sSRpkE5s1g4OD7caaZPq4LaxJphYT1jQqxqBlhjW3bNmi3H14ijFomWXNNGnScBdj0LIna5LpjLxN5rTMsOaCBQvswpr37t3DZMmSxWsy5z1v3717p7AmbzEGkVnW/O233xCAvxiDlhnWJBMWkxJrPnv2TMOavHcfs6xZunRpoSZzWmZYs2fPnkLFGLRmzpz5zbFm/vz5hZrMiezJmmR7Cm8xBi0zrHnkyBGhYgxaZljzw4cPCmvyFv4T2ZM1yeS+xGbNDRs2xGNNkTy7GdZ8+fJlPNb08vISYs1cuXIJNZkTmWXNJk2aIAB/4T8tM6w5d+7cJMeagYGB8ViTp/CfyCxrku06vE3mtMyw5ogRIxAgfuE/73m7YsUKu7Cmj4+PXVgzNjZWw5oieXZ7sebUqVMV1uQp/Jf6eiQLB2XhoJQJXbhwQeiSSOvBgweG3aHW9PbtW8PuUGsiaxB4E2S0LBYLLlq0SChBRmvNmjVCxRi0duzYIZQgo3Xs2DGhBBmta9euCSXIaPn6+goVY9D6+PEjLly4kPuSSCs6Ohrnz5/PfUmkZbFYcOnSpUKXRFobNmwQSpDR2rdvn1CCjNaZM2eEEmS07ty5I5Qgo+Xv7y9UjEErNDQU58+fz50goxUXF4cLFiwQuiTSWrlypWF3qDVt3bpV6JJI6/DhwzZfEi9evIjbtm3jTpDRevTokVCCjFZQUBAuXrzYpn+rIyMj0dPTk7sYg5bFYsHFixfbPKp77dq1ht2h1rR7926hYgxaJ06cMOwOtaYbN24Ydoda0/Pnzw27Q63p06dPQsVvtGJiYnD+/PlCCTJaS5cuFSr8p7Vp0yahBBktb29vocJ/WufOnRMqxqB17949ocJ/Wq9fvxYqxqAVHh6O8+fP506Q0YqLi8OFCxcKfZCgtWrVKqEEGa3t27cLJchoHTlyRChBRuvKlSuatVC8evLkiVDhP633798LFWPQImtneD9I0LJYLOjl5WXYHWpN69evF/ogQWvPnj1CHyRonTp1SihBRuvWrVu4ceNG7gQZrZcvXwolyGh9/vwZ58+fz50goxUbG4vz588XKsagtXz5cqEEGa0tW7YIFf7TOnjwoOEkImuyJ2uKFGPQSqqsuXPnziTHmk+fPrULa5K7D28xBi3JmmL6VllTpBiDlhnWvHTpklAxBi2zrClSjEGL3H3swZrr1q2TrMmpT58+aVYQ88osay5btswurLl///4kx5oBAQF2YU2LxYILFy4UKsagZS/WPHr0qF1Y08fHxy6sSfLsZljT1ruPWdYUKcagZZY1RYoxaNmTNRcsWCBZk1OSNcX0rbFmcHCw6Ty7LayJiLhkyRKhwn9a3xprvnr1ym6suXDhQlOsKVL4T8ssa4oU/tMyw5qPHz/+5lhTyr76EoWDyfC/wjgpHSVLlqwgAPgBAPj5+UHBggXt/BNJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJfQvy9/cHBwcH8j8dENHf7H8zudn/gJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUVNKRLByUkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkvqGJAsHpaSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKS+IcnCQSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSmpb0iycFDqm9GRI0egd+/ecPjwYYiKihLy3r17F9zc3GDXrl0QGhoq5A0MDIR27drBhg0b4MOHD0LeyMhI6NixIyxduhQCAgKEvIgIvXr1gnnz5sHTp0+FvAAAY8aMgcmTJ8Pdu3cBEYW8CxYsgJEjR8Lly5fBYrEIebdt2wYDBgyAkydPQkxMjJD37Nmz0L17d9i/fz9ERkYKeX19faFjx46wbds2CAkJEfIGBwdDu3btYM2aNfDu3Tshb0xMDHTu3BkWL14M/v7+Ql5EhAEDBsCsWbPg8ePHQl4AgClTpsD48ePh5s2bws94xYoVMGzYMDh//jzExcUJeb29vaFv375w9OhRiI6OFvJeu3YNunTpAnv27IHw8HAh76tXr6Bdu3awadMmCA4OFvKGhYVB+/btYcWKFfD27Vshr8VigW7dusH8+fPhxYsXQl4AgOHDh8O0adPgwYMHws9pzpw5MGbMGLh27Zrwu7hhwwYYNGgQnD59GmJjY4W8x48fh169esGhQ4eEz9sHDx6Aq6sr7NixQ/i8fffuHbRr1w7WrVsH79+/F/JGRUVBp06dYMmSJfD69WshLyJCnz59YM6cOeDr6yvkBQAYN24cTJo0Ce7cuSP8jBcvXgwjRoyAS5cuCT/jnTt3Qv/+/eHEiRPC5+2FCxegW7du4O3tDREREULe58+fQ4cOHWDLli3w6dMnIW9ISAi0b98eVq9eDUFBQULeuLg46NKlCyxcuBD8/PyEvAAAHh4eMGPGDHj06JGwd9q0aTBu3Di4ceOG8DNetWoVDBkyBM6dOyd83h48eBD69OkDR44cET5vb926BZ07d4bdu3dDWFiYkDcgIADatWsHGzduhI8fPwp5IyIioGPHjrB8+XJ48+aNkNdisUCPHj3A09MTnj9/LuQFABg1ahRMnToV7t27J/ycPD09YdSoUXDlyhXhd3Hz5s0wcOBAOHXqlPB5e+rUKejRowccOHBA+O7z+PFj6NixI2zfvh0+f/4s5P3w4QO0a9cO1q5dK3zeRkdHg6urK3h5ecGrV6+EvIgI7u7uMHv2bPDx8RHyAgBMmjQJJk6cCLdu3RJ+xkuXLoXhw4fDxYsXhd/FPXv2gLu7Oxw7dkz4vL18+TL8+++/sHfvXuG7j5+fH7Rv3x42b94sfN6GhoZC+/btYeXKlRAYGCjkjYuLg65du8KCBQvg5cuXQl4AgCFDhsD06dPh4cOHws9p5syZMHbsWLh+/bqwd926dTB48GA4e/as8Ltob9Zcv369XVhz7ty5kjU59PTpU7uwZmxsbJJlzaFDhyY6a16/ft1urNmhQ4cky5pXr15NdNbs2bMnHDx4MMmwZnR0tN1Yc/z48ZI1ORUSEgLt2rWDVatWJTprDho0yC6suXr1aptZ89ChQwprir6LZljzzZs30L59+0RnTUSEHj16wLx58+DZs2dCXgD7seaWLVvswppPnjyxC2vGxMSAm5ubadZ88uSJkBfAPGsOGzYMLly4kKiseeXKFejatWuSY81///0XFixYYNPdxwxrzpo1yy6sefToUejdu7dNeXbJmonHmtu3b7eZNc+dO6ewpujdxwxrfvr0Cdq1a2dTnt0MawIADBgwAGbOnJmkWHP//v12Yc3Xr19D+/bt7cKa3bt3h/nz59uUZx8+fDhMnToV7t+/n6isuXHjRvDw8Eh01nz48CF06tQpybFm3759bWZNqf9BIaIMgwCAggCAAIB+fn4olTQVHR2NRYoUQQDAjBkzYvPmzXHlypUYGBjI5f/jjz8QADBNmjRYr149XLBgAb548YLL27FjRwQATJEiBf7+++84ffp0fPjwIZd33LhxSP7/V6VKFRw7dixev34dLRaLoXft2rWKt3Tp0jh48GA8e/YsxsbGGnrPnj2reAsXLoy9e/fGw4cPY2RkpKH3+fPnmDJlSgQAzJs3L7q5ueGuXbswNDTU0Pv582fMkSMHAgBmzZoV//nnH9ywYQN++PDB0BsXF4dlypRBAMD06dNj06ZNcenSpRgQEGDoRURs2LAhAgCmSpUKa9eujXPnzsWnT59yeXv37o0AgMmSJcOff/4ZJ0+ejHfv3uV6TrNmzVJ+1xUrVsSRI0fi5cuXMS4uztC7a9cuxfvdd9/hgAED8OTJkxgTE2PovXnzpuJ1cHDA7t274/79+zEiIsLQ++bNG0yXLh0CAObKlQs7dOiA27Ztw5CQEENvZGQkFihQAAEAM2fOjC1atMA1a9ZgUFCQoddisWC1atUQADBt2rTYsGFDXLx4MffZ3KpVKwQATJkyJdaoUQNnzZqFjx8/5vIOHTpUecY//PADTpgwAW/evMn1jJcuXar8rsuVK4dDhw7F8+fPc72Lx44dU7xFixbFvn374tGjRzEqKsrQ+/jxY0yePDkCAObPnx+7dOmCe/bswbCwMEPvx48fMUuWLAgAmD17dmzTpg1u2rQJg4ODDb0xMTFYvHhxBADMkCEDNmvWDFesWIFv37419CIi1qxZEwEAU6dOjXXr1sX58+fj8+fPubydO3dGAMDkyZPjb7/9htOmTcMHDx5wPadJkyYpv+vKlSvjmDFj8Nq1a1zeTZs2Kd5SpUrhoEGD8PTp01zv4sWLFxWvo6Mj9urVCw8ePMh13vr5+WHq1KkRADB37tzYqVMn3LFjB37+/NnQGxoairlz50YAwCxZsuDff/+N69atw/fv3xt64+LisEKFCggAmC5dOmzcuDEuWbIEX79+behFRHR2dlbexZo1a+KcOXPQ19eXy+vu7q68iz/99BNOmjQJ79y5w/WcPD09ld91hQoVcMSIEXjp0iWu83bfvn2Kt0SJEti/f388ceIERkdHG3rv3LmDyZIlQwDAggULYrdu3dDb2xvDw8MNvYGBgZghQwYEAMyZMye2b98et2zZgp8+fTL0RkVFYaFChRAAMFOmTPjXX3/hqlWruO4+FosFf/nlF+XuU79+fVy4cCG+fPnS0IuI2LZtW+Xu88cff+CMGTPw0aNHXN5Ro0Ypv+uqVaviuHHj8MaNG1zPeOXKlYq3TJkyOGTIEDx37hzXeXvy5EnFW6RIEezTpw8eOXKE67z19fWNd/fp3Lkz7t69m+vu8+nTJ8yWLRsCAGbLlg1bt26NGzduxI8fPxp6Y2Nj8fvvv1fOW2dnZ1y+fDn33adu3brKeVunTh309PTEZ8+ecXm7d++unLe//vorTpkyBe/du8f1nKZNm6b8ritVqoSjRo3CK1eucL2L27ZtU7zff/89Dhw4EE+dOsV13l67dk3xFipUCHv06IEHDhzguvu8fv0a06ZNq9x9OnbsiNu3b+c6b8PDwzFfvnzK3adly5a4du1afPfunaHXYrFgpUqVlPO2UaNG6OXlha9evTL0IiL+9ddfynn7559/4uzZs9HHx4fLO2jQIOW8/fHHH3HixIl469Ytrme8aNEi5Xddvnx5HD58OF64cIHrGR86dEjxFi9eHPv164fHjh3jOm8fPHignLf58+fHrl274t69e7nO2/fv32OmTJmUu0/btm1x8+bNXHcfa6zJe/cxw5qdOnWyC2uuW7cuQVnz0KFD3KyZKlWqeKy5c+dOm1lz/fr1icKajRo1UlizVq1aicaas2fPTnKs+fbtW4U1c+bMmais+cMPP8RjzUWLFtnMmjNnzuRmzWHDhsVjzfHjx3/1rPnkyRNMkSIFAgDmy5cvUVmzRIkSdmHNLl26aFjz/v37XM9p8uTJ8Vhz9OjRePXq1S/OmpcuXYrHmj179kwU1gwLC0uSrNm/f3+7sKa3t7eGNY8fP24za+7bt4/r7hMUFGSKNR0dHRXWdHFxSTTWbNeunV1Yc9WqVUmSNbNnzx6PNXnz7GZZs169evFYc968eYnCmtOnT1d+105OTkKsuX37dsVbsmRJu7Mmz93HLGtWrlxZufsQ1vT39zf0IrJZ88mTJ1xeM6y5ePHieKw5bNiwRGNNOs+emKxZtGjRJMea48eP17Amb56dxZpnzpzhOm/PnTtnN9bMmTOnwpqtWrUSYs2yZcsqrNmkSRNcunQp993HDGv26dPHLqy5e/fuJMmaBQsWjMeaq1evThTW/Oeff5R3sXr16jaxJgBgtWrVhFhz2bJlirds2bJCrHn8+HG7sWbWrFk1rMmTZ7fGmm/evDH0IiLWqlUrybHm5s2bFe/333+PHh4e3KwpZV/5+fkpzw4ACmJC1MQlxH/kfz1AFg7+z2j58uX0S6RJBt2+fdvqQXrixAmNlySDhg8fjhcvXrR6IaL/kaODJxkUHBys/CNHR4ECBfDff//VTQbFxMTgd999p/HmyJED27VrZ5gMql27tsbLmwzq2rWrxsubDJoyZYrGy5sM2rJlC/M5kWSQ3oewy5cvM708ySB/f39MkyaNxkuSQYcPH7Z6IQoLC8M8efJovCQZpFd0abFYsGLFihovbzKoefPmGi/5ELZs2TLdZNCAAQM0XlJ0aZQMWrBggcabPHly/OWXXwyTQfv372c+J55k0L1795SEKh08yaCgoCDMmDGjxsuTDIqKisLChQtrvDzJIIvFgr/99pvGS5JBa9as0U0GtW/fXuPlTQaNGTNG4yXJoFmzZukmg1avXs08b0nRpV4y6PTp08xnXK5cOcNk0NOnT5WEKh3FihUzTAaFhIQoCVU6eJJBsbGxWLp0aY2XNxlUv359jZc3GdSzZ0/mecuTDJoxYwbzvCXJIL2iyx07djCfE08y6Pr160xv6dKlcdCgQbrJoICAACWhSkfhwoWxV69eusmgiIgIzJ8/v8abJ08edHV11U0GWSwWrFKlisbLmwxq2bIl87zlSQYNHjyYed7yJIO8vLyY7yJPMujIkSPM50SSQXofwh4+fKgkVOkgyaATJ05YPW8/fPiAmTNn1nhJMsjb29vqeRsTE4PFihXTeMmHsK1bt+refWrUqKHxkqJLo2SQm5sb87xt0KCBYTJowoQJzHeRJxm0YcMG5nPiSQadP3+e6eVJBr18+VJJqNLBkwwKDQ1VEqp08CSD4uLisFy5cszztk2bNoZFl02aNNF4STJo+fLlusmgvn37arwkGeTp6ambDJo7d67GSz6ETZ06VTcZtGfPHuZzqlSpkmEy6Pbt20wvTzIoMDAQ06dPr/HyFB5ERkaig4ODxstTeGCxWPCnn37SeOnCA727T+vWrTVeuvBAr+hyxIgRGi9deKBXdKnHmhMnTvxirOnj42OVNd3d3b8Ya8bGxiY4a2bMmJGLNf/991+N92tnzStXrjC9hDX1ii71WJM0+Fk7b8PDwzFv3rwaL0+DnzXW5G3wM8OaAwcO1HgTgzUPHDjAfE5fmjXfvXuny5p6H8KMWFPvQ5hZ1uzQoYPGSzf42cKapMFPjzXXrFnDPG+/NGs+e/bMFGuSwmU6aNa0dvcxy5oNGjRgnre2smbq1KmxXr16OH/+fF3WnDlzJvO8/f333w0b/PRY06jBzyxrko/JdCQGa1atWpV53n5p1hwyZAjzvCWsqVd0uWTJEua7SFhTr+jSDGs+evTIKmsaNfhZY026we9/jTUnTpzIfBe/NGteuHCB6SWsqZdnN2JNvaLL0NBQzJUrl8ZLWHP37t26rFm+fHmNl7fBzwxr9uvXj3nekga/L8Wae/fuZT6nr5k1o6KidFlTr8HPLGu2adNG4yWsadTgp8eaRg1+K1asYJ63ZliTNPh9SdYkTbJ0JAZr1qlTR+NNDNacOnUq87wlrKlXdLl161bmc6pataphg58Z1nz16pXdWNPJyUnj/dpZc+HChczzlrCmXp7dDGvev39flzX1ii6tsaaDg4Mha0ZHR5tizd9//13jpRv8vhRrjh07lnnefmnWPHPmDPMZ06xp7V20F2vGxcXpsiZvg59U4ksWDsrCQSkTWrp0KRPe1MFKBu3ZswddXFyYwEoHnQwicHLx4kV0cXFhfpBRX4hIMoh04D579gxdXFyUjnlrkS5dOmzSpEm8DtywsDB0cXFhXrDVF6JatWppOnA7duyoTDexFiQZpO7AHTRoEP7666+Gv+uKFStqOnBnzpypdCTqBWva07p167BZs2aGXlYy6PDhw+ji4sJMENLBSgbdunULXVxcmEkJOljJoICAAHRxcVG6dK0FKxlksVjQxcVFmXxhLehkEP0hrHv37sr0Pr2oVq2apgN39OjRzISXOljJoIULFypdUHpRtGhRTQfutm3bsHnz5kxgpSNfvnxKBy65EJ05cwZdXFyYCUI6WMmgR48eoYuLi9LBaS3oDlySDAoODkYXFxdlAp+1sJYMatOmjdJtby2sJYPc3d3x559/Nvxd08kg8i5OmTKF+UFXHSQZRH8IW7FiBTZt2tTQW6hQIezZsyceOHBAOW+9vb3RxcWFCax0sJJBV65cQRcXF2bxHx0kGUR34L58+RJdXFyYiSc6WNOeIiMj0cXFRenEthbWpj25ubkpHb7Wgu7ApZNBQ4cOZQKYOljJoDlz5jALFtVRvHhxTTJow4YN2KxZMyaw0sFKBh07dgxdXFyUyQbWgiSD6A9hd+/eRRcXF2V6hbVgJYMCAwPRxcVFmQhlLUgyaMGCBfGSQS1atFC6P60FSQapO3B79uypdBXqBWva07hx4/DPP/809LKmPS1evBgbN25s6GUlg3bu3InNmzdnAisdrGTQuXPn0MXFRZkkYy1YySAfHx90cXFhfnSjg5UMCgkJQRcXF6Uz0FrQySC66LJdu3bMAgk6rCWDBg4cqEzN0AsnJydNB+60adOYSU11lCxZUtOBu3r1amWqil6wOnAPHDiALi4uzEJcOliTha9fv44uLi7MpAQdrGSQv78/uri4KNMwrQUrGRQTE4MuLi5YqlQpXa+1ZFDXrl2ZBcB0WJssPGLECKVTXy9YySBPT0/mR3t1kGTQ0aNHlfN28+bN2Lx5c+bHUTpIMoguujx58iS6uLgwE4R0sKY9PXjwAF1cXJjNLXSwpj29f/8eXVxclKkI1oLuwKULD1q1asUsDlW/i6zJwn369MEff/zR8HfNmiw8ceJEpTtYL8i0pzNnzijvYkKwJpnqZC1YrHnp0iV0cXFhfpChI0uWLNiqVat4054Ia5KOeWvBYs3w8HB0cXHBkiVL6npTpUrFnPbEy5qsaU+DBw9mFjqpgzXtyV6seeTIEXRxcWF+HKUjoViT3H3evHmDLi4uzEQ/HWnSpPmqWHPMmDFcrMlq8DPDmtu3b7cLaz5+/PibYE36Q1hisSZp8LOFNdWThXlZkzXtSbKm9UgI1qQb/BKLNdVbbBKLNVnTnuzFml5eXlysydpiY4Y1z58/bxfW/Pz5sxBrqhv8RFhT3eBnhjWnT5/OxZqsaU9mWPPgwYN2Yc1Xr17ZzJqxsbHCrEkXXZphzZEjR3KzprrBT4Q11Q1+W7Zs4WZNdYNfQrAmq+CIDhZrfvjwAV1cXJhFvHRYm/bUqlUrZnGo+l1ksWbfvn2ZRYfqSAjWpIsuly1bxsWarC02oqxJN/iZYc3nz59zs6Z6srBZ1uzUqZNdWHPWrFmJyprk7pOYrEnn2UVZU110KcKa6ga/r501WZOFkxJrkruPLaxJF12KsKa6wS+xWFPd4GcLa5K7Dy9rsrbY2Is1o6KiTLGmlH0lCwdl4aCUCbG6ZI2CJIPIyhmRINOeyHhZkSDJILKOUTSqVKmirFUVDZIMMkrAsIIkg4yKFVlBkkE8iRB1kGQQT8JKHaQDl6y5EAmSDOrRo4ewlxRdsrpbeIIUXdriJckgIzhnBUkGGQE2K0gyiKwGEgmSDHJxcRH2kmSQq6ursJckg8jIdtGoVq0ac1IYT5BkkFExKytIB64RuLGCJIN44EsdJBnE84FAHSQZRMauiwRJBrE6Ao2CJIPISiLRqFy5Mg4fPtwmb6lSpdDDw8MQCFhBOnCNEpqsIEWXPIkQdZCiSx6AUgdJBrG6xYyCdODa8m85SQaRNSiiQZJBRolUVpBkkFEDACtIMojVfWkU5EMYT1JSHSQZxJpaYRTkQxhZGS4SpOiS1WXPE1WrVmVOy+AJkgwySnizgiSDjJIorCCThXmKnNRBkkE8CSt1kGQQq1PeKMjdp1u3bsJekgxiTSzmCScnJ5vPW9KBa5QMZQVJBhl9zGUFSQZVr15d2EuSQTzJY3WQycJkrZBIkGQQWY0qEqTwwNbzlhQeGH3UYAVZM2X0kZAVpOjS6EMfK0gHLln7LRIJwZqsKe9GkRCsSa+6EQmzrNmrVy+7sGarVq3swpq1atUyxZoeHh42PSd7s6bRxwVWkDVTPAUw6iCsSdbtiYQZ1iQfwuzBmqTBzwxrGhVIsYJMe/rWWNPWu0/lypVtPm/tzZo8BYfqsDdr9urVS9ibUKxp9BGZFWZYkxRdmmFNng+y6iBbbJIia9qaZ7c3a/IUOamDsGbDhg2FvfZkzV9++cUUa9p690nKrMma2GUU9mZNM3n2YcOGSdbkiKTMmoMGDTIc4MIKM6xJii55Bqmog7AmT2GoOpIya44cOdImr71Z05bvmiTPnhRZ09Y8O2FNo2JWViQEa/I01KgjIViTtf3EKMyy5q+//mqX75r0ZGGedchSX0ZfonAwOUhJSVlV3rx5wdHREbJlyybszZkzJzg6OkKuXLmEvVmzZgVHR0fIly+fsDdjxozg6OgIhQoVEvamSZMGHB0dwdHREZInFzseUqRIoXhTp04t/Gc7ODiAo6MjpE+fXthboEABcHR0hCxZsgh78+TJA4ULF4bs2bMLe3PkyAGOjo6QJ08eYW+WLFnA0dERChQoIOxNnz698rsWVapUqRRvypQphbzJkyeHQoUKgaOjI6RNm1b4zy5YsCA4OjpCxowZhb358uWz+V3MlSsXODo6Qs6cOYW92bJls/ldzJw5MxQuXBgcHByEvWnTplWeU7JkyYS8KVOmtPldTJYsmfKMzbyLmTJlEvaS89aWd5Gct7lz5xb2kvM2f/78wl4z523q1KnB0dERChcuLHzeJk+eXHnGadKkEf6zyTPOkCGDsDd//vzg6OgIWbNmFfbmzp0bHB0dIUeOHMJect7mzZtX2Js5c2abz9t06dLZ5byl30VbzlsHBwcoXLiwTe8iOW9tecYJcd7a8owzZcoEjo6ONp239rz7mHkXyXmbOXNmYW+ePHlMnbeFCxc2dfex5bzNkCGDqfO2cOHCpu8+tpy35H5ry93HXudt9uzZTZ+3tryL9Hlr5u6TKlUqIS993qZLl07IC/B/z9jM3Scpsqa9ztvChQubehftxZpm3sXEPm+TKmuaeReT4t3nW2ZNW+4+SZE1zd59yJmZIkUKIa9Z1iTvYlJkTVvO26TKmsRr693HVtYk76KZ89aWu49kTTElBGva8i4mBGva8i4mxHlrz7vPt8aaBQsWFPamS5dOyQkkJdYk31KSImuaybMnNdZMiPutLayZEO+iZE0+mT1vCxcunCTvPract98ya5o5b21lzcKFC9uNNYlf9DlLfeVKiOrD//UAOXHwf0Lbtm0zrNq2tvbhxIkT2K9fP8NVxay1D7dv30Z3d3fD8fqstQ/+/v7o7u5uuOaLTPqjV15FRESgu7u7Yfdonjx50M3NLd7KK8T/1rEZdayRSX/0emXE/8ZyG3UIk7UPS5cuVcaQI/63BqF9+/a6XtIRM3fu3HhjyPft22c4jYp0xKjXPpw/fx779etn2AVBOmLotQ+PHj1Cd3d3w3HPrLUPQUFB6O7ubjgKuGDBgpq1DxaLBd3d3Q07KEhHzLZt25Qx5IiI48ePN1xXkSlTJmzRokW89cqIiAsWLMAWLVroeum1D/TZuWnTJsMO4RQpUmCNGjVw5syZ8dY+HD58GPv06aPbjU3WPowfPz7e2odr166hu7u7YdcZ6Yih1z48e/YM3d3d0dFgpTTpiKHXPoSEhKC7u7vhlEbSEUOvfUDkG5GfLVs2Ze0DGUOOiDh16lTDaVT02gey8grxvzUIRl0y1tY+7Ny5E7t3767rpdc+0CuvTp06hf369TMc6U3WPly9elXx3r17F93d3Q27fFlrHwICAtDd3d2wk5usV6bXPkRHR6O7u7vhCigyfYFe+4CIOGrUKMPpKGT6Ar32ARFx7ty5htOo6LUPZAw5IuLatWuxY8eOul4yfWHOnDnxxpDv378fe/furbs+ytrah0uXLqG7u7thxz2ZvkCvvHry5Am6u7sbTlVgrX348OEDuru7Y+nSpXW9BQoUwG7dusVbr4yI2L9/f8Nu/Rw5cmD79u1xy5Yt8c7biRMnGq6rYK1XRkRctGgR/v3337peMn1BvfZhy5Ythh3CZPqCeu3DsWPHsG/fvobro6pWrapZ+3Djxg10d3c3nHDCWvvw8uVLdHd3N+wsZK19CAsLQ3d3d8PuUTJ9Yffu3crKK8T/1rEZrQei1z6QlVeIiDNmzDDsEE6fPj06OzvHW3mFiLhy5Ups27atrjdVqlRYp04dnDdvXry1D7t37zbsEKbXK9NrH86ePYv9+vUzXB/l5OSEo0aNirf24cGDB+ju7m64xpZMX6DXPrx9+xbd3d0NO7kdHBw0ax9iY2PR3d0dq1atquul1z6QlVeIiGPHjjWcxMla+4D43wooo8nHZPqCl5eXsvIK8b+Ve0YdwvTaB3q98sGDB7F37966U0/pFYO3bt1SnvGVK1fQ3d3dcJ1J+fLllfXK5Bk/ffoU3d3dDVddkPXKx44dU87b4OBgdHd3N5ycQaYv7N27N97dx8PDw3AyHJm+QK8YREScPHmy4aouesUgWXmFiLhkyRLDaVSpU6fGevXq4YIFC+KtV7aFNclzIqxpNP1CjzVz5syp6yWseebMGQ1rGq35Msua6vXKiHysSVZesVjTaG0eWa+c0KxpNI3qa2FN8i6+e/cu0ViTXnmFaI41Fy5caMiarPXKiOZY88iRI4asCfDf9IWEZM3nz58nSdacNm2aKdY0mkZFsyZ99xFhTfV6ZRHWHD16NJM1jdbYkkl/LNY0WnH6v8Sa69atSzTWpNcrm2FNHx8fLtZkrVc2y5oDBgzgYs127dolKGsuXrzYZtbcunWrXVjz5s2bicaahw8f1rCm0bphwpr0emVEMdak1ysjmmdNo2lUZNLfvHnz4q1XTgjWNJps+6VY02jFaVJmTXq9MqIYa86aNSseax46dAj79OnDxZoTJkz4Kljz06dPdmPNKVOmJBpr0nn27du3G07iTJ48ucKa9HplUdak1yubYc1Xr15xsabj/1+vzGJNo3XDeqxptIr2S7Gm0eTjL8maGTJk0PUnBGvSeXZR1qTXKyP+t4rWaAPL18aamzdv5mLN6tWrJyhrXr9+3S6s+fnzZ1OsOWTIEG7WpNcrI5pjzeXLl3Ozpnq9shnWPH36NBdrkvXKtrAmPekvIVnTaCquNdaUsq/kqmJZOChlUrNmzdIceNYuiWrt2rVL4yWXRHWCTK0bN25ovNYuiWq9efNGA9nkkqguxlArIiKCmfAiCbJLly4pl0S1LBYLc30MqxiDJVbiiaxdVF8S1WKtf8iZMye2b99ec0lUa+nSpRovGQe9evXqeAkytY4eParxWrskqvX48WMNZNOXRDpBptbHjx+Z67rIJZFOkKkVExPDLHQil0Q6QcYSa7w2qxiDJdYl2VoxhlqTJk1iXhJJMQZ9SVRr48aNGi9JkC1fvjzeJVGtixcvMi+JderU0VwS1Xr58qUGssk4aPUlUa3Q0FDmpY++JFp7F+Pi4phFMOSSSCfIWGIV8ZJLIp0gY4m1VoBcEtUJMrXmzZun8VpLkKm1b98+jddaMYZad+7c0XjpYgz6g4RagYGBGsimizHoDxJqRUVFMVdWkLWL9AcJtSwWC/78888aL+uDBEusgiOyekj9QUIt1moA+oMEnSBTa+XKlRov/UGCTpCpdfLkSeZ5W79+fU0xhlq+vr4ayCYfJNSF/2p9+vQJs2XLpvmzWcUYasXGxjKTz6zCf5ZYq0VIMcbhw4cVYGOJlSAkhf/qDxJqTZs2TeMlhf/qDxJqbdu2jXneNm3aFJctWxYvQabW1atXNV5rHyTUev36taaYjf4gQSfI1AoPD2eurHByctIkyNSyWCzMxGTJkiU1hf8ssdZOkFUYdDEGS6wVH3Thv955u2jRIo2XJMjWrFkTL0Gm1sGDB5nnLSn81ztvHzx4oPmgmzJlSqxRowbOmjUrXoJMrXfv3mGmTJk05+0PP/yg+SChVnR0NPNjH1k9RCfIWGJ9sCMfJOgEGUusD+Dkg4Q6QabWuHHjNF5rxRhqrV27VuO1liBT6+zZsxqvtcJ/tZ4/f65pnKIL/+kPEmp9/vyZ2ThFCv/pDxJqxcXFYZkyZTReUvh/5swZ3XeRtVaN9UGCJdbarNy5c6Orq6thgkyPNdXFGGqZYc2bN29qvNaKMdQyw5qRkZF2Y03Wyi0zrEkK/78kax47dkzjpVmTLsZQS4811cUYaumxproYQy091lQXY7BkhjW7dOmi8SYGa27atEnjpVmTLsZQi8WapPDfiDX9/Px0WZMuxlDLiDXpYgy1zLIm68MqqxiDJRZrWivGUMvT01PjTSzWZN19WIX/agUFBdmNNVkFEoQ16WIMllismT9/fvz3339x7969uuftqFGjmOdtu3btNMUYaumxproYQy2zrKkuZrPWZK6WWdZkfXhPDNZkfRzlZc3p06drvNaazNUyw5rXrl1jnre1a9c2zLPrsaa6GEOt8PBwZnGFGdZkNZmzZIY1Wau0E4M1Dx06xDxvWU3marFYkxT+G7Hm+/fvdVmTLsZQKzo6mjnAoVy5cppiDJbMsCZr9a+1Ygy1zLDmunXrNN6kwJqsYjZWk7laZlmTVchCWJMuxmDJDGvOnj1b4zXLmqzCf7XMsObbt2+ZrMlqMlfLLGuymp/MsCYp/DdiTdaaZV7WXLZsGfO8/euvvzSF/2qZYc0nT54w8+xmWJNV+K9WTEwMs9CJVfjPkr1Yc/LkyczzltVkrpYZ1rx06ZLGmxisGRYWZjNrWiwWZsPF999/ryn8Z8kMa7LW9yYGa3p7e2u8SYE1WYWlhDXpwn+pr0uycFAWDkqZUFhYmNKpxluMQUT/A8dbjEGLdOha6w7V04ABAxDAeneonubPn69cElndoXrav3+/cklkdYfq6e7du8o/cDyXRFpBQUFKZzDvJZEoKioKCxcuHO+SSHeH6sliseCvv/4a75JolCCjRSZX8BZj0Bo9erRySSQJMr1LIq3Vq1crl0SeYgxap0+fVi6JrO5QPT19+lRJprK6Q/UUEhKidAazukP1FBsbi6VKlRK6JNKqX7++0CWRFumypS+JegkyWjNmzIh3STQqxqC1Y8cO5ZJIEmR6l0Ra169fj3dJNCrGoBUQEKAkU0kxBu8lMSIiQkmmsrpD9WSxWJQOF2vdoXoiHWPWukP1NHjwYOW8ZXWH6snLywsBrHeH6unw4cPKu8jqDtXTw4cPlQ/JVapUMSzGoPX+/XulM7h06dJKgoznvI2JiVG6RnmLMWiRzk9r3aF6Ip3UvIX/tCZMmIAA1rtD9bR+/XrlvOUp/Kd1/vx55V1kdYfq6cWLF0oylXSH6iXIaIWGhirJVFZ3qJ7i4uKwXLlyCMBfjEGrcePGCMBf+E+rb9++8RJk6u5QPc2ZM0eTIOO9v+/ZsydegkzdHaqn27dvK6DG6g7V09u3b5UpVKzuUD1FRkYqXfqs7lA9WSwWpbuXfJDYvXs393lLptJa6w7V0/DhwxHg/z5IGBX+01q+fLly3rK6Q/V04sQJTYJMr/CfFp1MZXWH6ik4OFjpDGZ1h+opJiZGmc7I6g41Uu3atRHAtu5QMkGPnkSklyCjNWXKFOW85fkgQWvLli3K3admzZqGhf+0Ll++rJy3P/30k2GCjJa/v7/SGVyhQgXDYgxa9mTN5s2ba1iT9+5jhjUXLFiQoKypV4xB6969exrW1CvGoMViTaNiDCKzrEk67XmLMWiZYc0xY8YkOdZ89uyZ3ViTTAsjrGlUjEFLzZpGxRi0yOYEwppGxRi0vgbW5Cn8p2WWNfPnz28X1mzZsqXNrDlkyBDl7tO8eXNcsWJForDmkSNH4rGmUTEGLTOs+eHDB4U16WKMr5013dzc7MKaGzZsSFDW1CvGoPXy5UtTrEm2PfAWYxCZZU0yfS+xWXPu3LkJypq8eXYzrBkYGKhhTd48u1nWJFM0E5s1R4wYoZy3PE3mtFasWKGctzzFGLTMsKaPjw+TNXneRTOsGRsby2RN3rsPizV57z5mWHPq1KnxWNPLyytRWPPKlSvx8uy2siZP4T8tukE2KbHmwIEDNazJe/dhsaZe4T+tAwcO2IU13717F481eQr/iaKjoxXWpAv/E4M1yZTExGbNNWvWJEnWJA2yhDWNCv+JzLImmXbKW/hPi2ZNnsJ/WjNnzlRYk6fJnNbOnTvtxpqkaJlmTZ530Rpr8r6LZGpxQrCmUeE/LTOsuWTJknh5dqPCf6mvR1+icFBsEbyUVBLW5cuXYeDAgdC4cWMoWbKkkPf+/fvQrFkzWLFiBVSsWFFoZ3tgYCCULFkSzp49Cz/++COkSJGC2xsZGQkpU6aEQ4cOwR9//AFp0qTh9iIiBAUFwa5du6BWrVqQIUMGbi8AwMOHD2H9+vVQr149yJ49u5D3ypUrsGTJEmjYsCHky5dPyHvhwgWYOHEiNGrUCIoWLSrkvX79Ovz777/QuHFjKF26tNBzevr0KdSoUQNmzZoFlStXhuTJk3N7g4ODIV++fHDy5En45ZdfIGVK/qM1JiYGoqOjYf/+/VCjRg1ImzYttxcRwd/fH7Zt2wa1a9eGzJkzc3sBAO7cuQOrV6+GBg0aQM6cOYW8ly5dgvnz50PDhg2hYMGCQt6LFy/C8OHDoXHjxlCiRAkh7+3bt6F169bQuHFjKF++vNAzfvXqFVSsWBFGjhwJ1apVE3oXw8LCIGPGjHD06FH47bffIHXq1Nxei8UCwcHBsGfPHqhZsyakT5+e2wsA4OvrC5s2bYK6detC1qxZhbzXrl2DFStWQIMGDSBPnjxC3gsXLsCMGTOgUaNG4OjoKOS9fPkyuLu7K+etyHN69OgRNGrUCBYvXgyVKlUS8r579w6KFi0Kp0+fhp9++knoXYyKigIAgIMHD0L16tWFz9s3b97Ajh07oHbt2pAxY0ZuL8B//8asW7cO6tevL3zeXr58GRYvXgwNGzaE/PnzC3kvXrwI48aNg0aNGkGxYsWEvNevXwc3Nzdo3LgxlClTRug5PX/+HH755ReYPHkyVK1aVei8DQkJgVy5csGJEyfgl19+gVSpUnF74+LiIDw8HPbt2wd//vknpEuXjtsLAPDixQvYsmUL1K1bV/i8vXXrFqxatQoaNGgAuXLlEvJevHgR5s6dC40aNQIHBwdh75AhQ6Bx48bw3XffCXnv3bsHLVq0gDVr1kCFChWEnnFAQACULVsWhgwZAj/88IPQeRsREQFp06aFI0eOwO+//y583n748AF2794NNWvWFL77PHnyBDZu3Ah169aFbNmyCXmvXr0Ky5Ytg4YNG0LevHmFvBcuXIApU6ZA48aNoXDhwsJ/bs+ePaFx48ZQqlQpoef05MkTqFOnDnh6ekKlSpWE3sUPHz6Ag4MDnDp1Cn7++Weh8zY6Ohri4uLgwIEDUL16deG7z+vXr2H79u1Qu3ZtyJQpE7cXAODu3buwdu1aqF+/PuTIkUPIe/nyZVi4cCE0bNgQChQoIOS9ePEijB49Gho1agTFixcX8t66dQs6dOgAjRo1gnLlygk9Yz8/P6hatSqMGzcOqlWrJvSMQ0NDIUuWLHDs2DH47bffhM/bz58/w969e+HPP/8Uvvs8e/YMNm/eDHXr1oUsWbIIeW/cuAErV66EBg0aQO7cuYW8Fy9ehFmzZkGjRo2gUKFCQl57suZ3330HZ86cgZ9++ilRWTMwMBB27twJtWrVEr77fGus+ezZM6hevTrMnDkzUVkzNjY2SbLmxYsXwdPTExo1apSorHnnzh34559/JGty6vr163ZhzStXrkDfvn2hcePG8P333ycqaxYpUsQm1oyOjgYAyZq8sidr5siRA44fPw6//vprorLm8+fP7cKaFy5csJk1L126BIMHD0501nzz5g2UKVMGBg8enKisiYjw/v17m/Ps9mbNRo0aQZEiRYT/XFtZ08fHB2rXrg3z5s1LVNaMiYkxxZqvXr2yC2teunQJFixYAI0aNUpU1rx58ya0b98eGjdunKRYMyQk5JtjzQEDBkCjRo2E8+z2ZM0UKVJI1uSUvVjz06dPkDdvXpvy7GZYEwDg5cuXsHXrVqhTp06SYc1Lly7BsGHDEp01X79+DRUqVIARI0YkKdb08fGBjRs3Qr169RKdNadNmwaNGjUSzrObZc0GDRrAokWLkhRrBgQE2MyaUv97Sob/TdST0lGyZMkKAoAfwH8XYtF/TKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkbJG/vz/d/OWAiP5m/5v8pedSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJJXrJwUEpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkrqG5IsHJSSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKS+oYkCwelpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpL4hycJBqW9GJ0+ehFmzZsGTJ0+Evffu3YMJEybArVu3ABGFvIGBgTB8+HC4cOECxMXFCXkjIyNh6NChcPToUYiOjhbyIiKMGzcO9u7dC+Hh4UJeAIC5c+fCpk2bIDg4WNi7evVqWLFiBbx9+1bYu2/fPpg/fz68ePFC2Hvx4kWYNm0aPHjwQPg5+fr6wpgxY+DatWvC3uDgYBg2bBicOXMGYmNjhbwxMTEwYsQIOHToEERFRQl5EREmT54MO3fuhNDQUCEvAMCiRYtg3bp18P79e2Hv5s2bYenSpfD69Wth75EjR2DOnDng6+sr7L1x4wZMmjQJ7ty5I/ycXr16BSNGjIBLly6BxWIR8oaFhcHQoUPhxIkTEBMTI+S1WCwwevRo8Pb2hoiICCEvAMDMmTNh69atEBISIuxdvnw5rF69GoKCgoS9O3fuhEWLFoGfn5+w98yZMzBz5kx4/PixsPfhw4cwfvx4uHHjhvAzfvfuHQwbNgzOnTsnfN5GRUXBsGHD4MiRIzadt+PHj4fdu3dDWFiYkBcAwNPTEzZu3AgfP34U9q5btw6WL18Ob968Efbu378fPD094fnz58LeK1euwNSpU+H+/fvCz+n58+cwevRouHLlivC7GBISAsOGDYPTp08Ln7dxcXEwYsQIOHDgAERGRgp5AQCmTJkC27dvh8+fPwt7vby8YO3atTadt1u3bgUvLy949eqVsPf48eMwe/Zs8PHxEfbevn0bJk6cCLdv3xZ+xgEBATBixAi4ePGi8DOOiIiAYcOGwfHjx206b8eMGQP79u2z6bydPXs2bNmyBT59+iTsXblyJaxcuRICAwOFvXv27IEFCxbAy5cvhb3nzp2D6dOnw8OHD4Wf0+PHj2Hs2LFw/fp1Ye+HDx9g2LBhcPbsWeHzNjo6GoYPHw6HDx+26e4zceJE2LVrl03n7YIFC2DDhg3w4cMHYe+GDRtg2bJlEBAQIOw9fPgwzJs3D54+fSrsvXbtGkyZMgXu3r0r/Jz8/Pxg5MiRcPnyZeF3MTQ0FIYOHQonT54Ufhfj4uJg5MiRsH//fpvO2+nTp8O2bdtsuvssXboU1qxZA+/evRP27tixAxYvXgz+/v7CXnuz5vnz521izWHDhtnMmmPHjoU9e/YkOmuuWbMmSbOm6LtohjVjY2OTLGsuWbLEJtY8evSozax58+ZNyZoCWrFihc2suWvXLlOsOWPGDHj06JGw116sGR0d/c2x5oEDB5Ikaw4dOhROnTplE2uOHDnSZtacOnXqN8Wad+7csZk137x5o7Cm6LtohjUREcaMGWNznt0Ma65atcourHn+/HmbWfPJkyd2Yc2YmJgEYU1b7j5mWXPp0qWJzprXr1+HyZMnJznWHDVqlF1Yc9myZXZhzVOnTsGsWbNsyrPbkzXNfNdMiqzp7e1tM2teunTJZtZ8+vSpKdYcOnSoTXl2M6wJADB58mTYsWOHZE0OvX79Osmypq13H7OsuXDhQruw5rhx474p1pT6HxQiyjAIACgIAAgA6Ofnh1JJU2FhYZg7d24EACxZsiQOGDAAT548iTExMYbeuLg4rFChAgIAOjg4YPfu3XH//v0YERHB9Wc7OzsjAGCuXLmwQ4cOuG3bNgwJCeHyuru7IwBg5syZsUWLFrhmzRp89+4dl9fT0xMBANOmTYsNGzbExYsXo7+/P5fX29sbAQBTpkyJNWrUwFmzZuGTJ0+4vHfu3MFkyZJhsmTJ8IcffsAJEybgrVu30GKxGHqDgoIwQ4YMCABYrlw5HDZsGF64cAFjY2MNvVFRUVioUCEEACxWrBj269cPjx49itHR0YZei8WCv/zyCwIA5s+fH7t27Yp79uzBsLAwrr9zu3btEAAwe/bs2KZNG9y0aRMGBwdzeUeNGoUAgBkyZMBmzZrhihUr8O3bt1zeVatWIQBg6tSpsW7dujh//nx88eIFl/fkyZMIAJg8eXL87bffcNq0afjgwQOu5+Tr64spU6ZEAMDKlSvjmDFj8Nq1a1zeT58+YbZs2RAAsFSpUjho0CA8c+YM17sYGxuL33//PQIAFi5cGHv16oWHDh3CyMhIrr9zvXr1EAAwT5486Orqijt37sTPnz9zebt3744AgFmzZsVWrVrh+vXr8f3791ze6dOnIwBgunTpsEmTJrhkyRJ8/fo1l3fbtm0IAJgqVSqsWbMmzpkzB319fbm8165dQwDAZMmS4c8//4yTJk3CO3fucD2n169fY9q0aREAsEKFCjhixAi8dOkSxsXFGXrDw8MxX758CABYokQJ7N+/P544cYL7XaxcuTICABYsWBC7deuG3t7e3OftX3/9hQCAOXPmxPbt2+PWrVvx06dPXN5BgwYhAGCmTJnwr7/+wtWrV2NQUBCXd9GiRQgAmCZNGmzQoAEuWrSI+85w6NAhBABMkSIFVq9eHWfOnImPHj3i8j548ACTJ0+OAIDVqlXDcePG4Y0bN7ie8fv37zFTpkwIAFi2bFkcMmQInjt3juu8jY6OxqJFiyIAYNGiRbFPnz545MgRjIqK4vq5//jjDwQAzJcvH3bu3Bl3797Nfd526tQJAQCzZcuGrVu3xo0bN+LHjx+5vOPGjVPOW2dnZ1y+fDm+efOGy7tu3TrlvK1Tpw56enri8+fPubznzp1Tzttff/0Vp06divfv3+d6Ts+fP8dUqVIhAGClSpVw9OjReOXKFa538fPnz5gzZ04EAPz+++/Rw8MDT506xX33KVOmDAIAFipUCHv06IEHDhzgPm8bNWqEAIC5c+fGjh074vbt27nP2z59+ih3n5YtW+LatWu57z6zZ89WzttGjRqhl5cXvnr1isu7e/du5e7z559/4uzZs9HHx4fLe/PmTeW8/fHHH3HixIl4+/Ztrmf89u1bTJcuHQIAli9fHocPH44XL17kesaRkZFYoEABBAAsXrw4uru74/Hjx7nP2x9++AEBAAsUKID//vsv7t27F8PDw7n+zv/88w8CAObIkQPbtWuHmzdv5r77DBs2DAEAM2bMiC4uLrhy5UoMDAzk8i5btkw5b+vXr48LFizAly9fcnmPHTumnLe///47Tp8+HR8+fMjlffLkCaZIkQIBAKtUqYJjx47F69evcz3jjx8/YtasWREAsHTp0jh48GA8e/Ys13kbExODJUqUQADAIkWKYO/evfHw4cPc522tWrUQADBv3rzo5uaGu3btwtDQUC5vly5dlLvPP//8gxs2bMAPHz5weSdPnowAgOnTp8emTZvismXLMCAggMu7adMm5e5Tu3ZtnDt3Lj59+pTLe+nSJeW8/eWXX3Dy5Ml49+5drufk7++PqVOnRgBAJycnHDlyJF6+fJnrXTTDmhaLBStWrGgX1uzfv/9Xw5qPHz/m8t69e1fDmjdv3rSZNc+fP8/Nmo6OjgnCml26dEk01hw9enSCsibv3efUqVN2Y83s2bObZk1HR0fs1asXHjx40GbW3LFjB/fdp0ePHggAmCVLFmzVqhWuW7cuUVhz+/btCcKaP/30U6KxZkRERIKzJu/dp0WLFgnGmqtWreK++yxevDjBWHPGjBmJxpqZM2dGAMAyZcokKmtWr17dLqw5fvx4m1lz/fr1GtZ89uwZl5fFmvfu3eN6Ti9evEgw1hw4cKAQa5YtW9Y0a+bKlStRWXPOnDl2Yc1bt24lKGteuHCBmzULFiyY5Fhz+PDhCms2b97cZtasV68eLliwgDvPfvz48STJmt99952SZyesyfsummHNrl27JhhrLl26lJs1N2/ebJo1SZ7dVtasWLGiMGvmyZMHAQC/++67RGXNZs2aJShr8ubZ58+fr2FN3rvP/v377caaGTNmVFhz6NChNrFm0aJFsW/fvnj06FGuu4/FYsFff/01ybHm6tWr7cKaT58+TVDWPH36NDdrlipVymbWrF+/vpJn79Spk82s+ffffwux5owZM5S7T+PGjW1izZQpUwqz5vXr15Mka1apUiXBWHPLli3crDl48OAEYc369evjwoULufPsUvaVn58fAgCJgpgQNXEJ8R/5Xw+QhYP/M5o5cyb9EmmSQXpwsmPHDo2XJIOMPoSRf+To4E0GBQQEKP/IkSDJoClTpugmgyIiIjB//vyaP9vJyQlHjRqlmwyyWCxYtWpVjbdkyZJcyaCWLVtqvHQySA9OhgwZovHSySA9OPHy8tJ4eZNBR44c0Xh5k0GPHj1SEqok6GSQXtHlhw8flIQqCToZpFd0GRMTg8WKFdP83LzJoBo1ami8xYsXx379+uGxY8d0L0Rubm4aLym6NEoGTZgwQePNnj07tm3b1jAZtGHDBo2XTgbpwcmFCxc0Xt5k0MuXL5WEKgneZFBoaCjmypVL82fzJIPi4uKwXLlyGi9JBp05c0YXQJs0aaLxkmSQUdFl3759NV6SDNq5c6duMmju3LkaL110qXfe7t27V+NNnz49NmnSBJcuXaoLJ7dv39Z4U6VKhbVq1TJMBgUGBmL69Ok17yJPMigyMhIdHBw0fzZPMshiseBPP/2k8fImg9q0aaPx8iaDRowYofHmzJmTKxm0YsUK5nnLkww6ceKExkuSQUYfwnx8fJSEKn3e1qhRA2fOnKmbDAoODlYSqnRUq1YNx48fr5sMio2NVRKqdJQtW5YrGVSnTh2NlzcZ9O+//2q8+fLl40oGTZ06lXne8iSDtmzZovHSySC9D2FXrlzReHmTQa9evcI0adLE89LJIL2iy/DwcMybN6/mz65cuTKOHj0ar169atVrsVjQyclJ4y1VqhR6eHgYJoOaN2+u8To6OmLPnj0Nk0EDBw7UeHmTQQsWLNB4eZNBBw4c0Hh5k0H379/HZMmSad5FnmTQu3fvlIQqfd7yJIOio6OxcOHCmp+bJIP0ii4tFgv+9ttvGi9JBhl9COvQoYPGS5JB+/bt0737jB07VuMlH8KMkkFr1qzReDNlyoQuLi6GyaAzZ85ovLzJoGfPnikJVRIpUqTAP/74w7DwICQkBHPkyKH5s6tWrWpYeBAbG4ulS5fWeHkLDxo0aKDxFilShKvwoFevXhpv3rx5sXPnzoYfwvRY0+hD2M6dO5nnra2sST6EzZs3z5A1ycdk+rz92lnz77//1ngTgzWXLFmi8ZphzbRp0yqsqVd0qceaRg1+Hz9+xCxZsmjO2x9//NGwwU+PNUmDnx5r/vnnnxpvYrDmxIkTNd6kwJrkYzJ93hLW1PsQZsSaeh/C4uLisHz58hqvWdbkafDr16+fxks3+Omdt/PmzdN4E4M179y5wzxvvzRrRkVFfTHWPHHihM2sadTgN3LkSI2XsKZR0aUeaxo1+CU0a9INfkasSZpk6eBlzZIlS2q8icGa3bp103gTgjWNii63bt2q8SYEaxo1+OmxplGD35dgTdLgZ8SaLi4uGm9isObChQs13oRiTb08uxFr6hVdvnv3TmmSpc9bwpp6RZd6rGnU4GexWPD333/XeM2wJim6/JKsuXbtWo03MVjz+fPnX4w1jfLsX4o1jRr8zLDmrFmzNF4zrMnb4Hfjxg2N1yxr/vLLL1ysSZpk6eBlzWrVqmm8icGaQ4cO1XgTgjWNGvyOHj2q8dqTNXmGycTExGDx4sU1Pzc9TEaUNUmDnxFrdu7cWeNNDNbcuHGjxsvLmhcvXmSet4nBmqRJlg6zrEka/PTO26ZNm2q8Xztr7tu3j3neJgZrkiZZ+l1MCNbkLbqUSnzJwkFZOChlQjt37sSePXtqDj/1P5asZNCpU6dwwIABmqIhdbCSQXfu3EEPDw+lC9NasJJBr169Qg8PD2ayng6SDKI/hEVERKCHh4fSTW0tSDJI3YE7evRo5uWLjmzZsjGTQXPnzmV+PKeDJIPUHbhr165VOnythbVpT/v372cWOtFhbdrTxYsXceDAgZpErjpIBy6dDHr8+DF6eHgwP5zRwUoGvXv3Dj08PJRuE2vBSgZZLBb08PBgJoHpsJYMmjRpkjIVwVqQZJD6Q9jixYuxVatWul5ryaAtW7Ywi2DoIMkgdQfu0aNHsX///ppELh0kGaTuwL1x4wZ6eHgwi4boYE17ev78OXp4eCidX9aiRIkSmg7cz58/o4eHhzK11FpYSwYNHz6cmXiiw1oyaObMmcyPOXSQaU/qZNDKlSuVjjNrYS0ZtHv3bmYyhA46GUQXXZ45cwYHDhyoSeSqg5UMunfvHnp4eDBhhg6SDKI7cAMCAtDDw0OZ6mQtWNOeoqOj0cPDg/kBnA5rHbhjx45VunSthbUO3Pnz5ytTFq2FtWTQhg0bmB9l6bCWDDp48CD269dPk8ilw1oy6PLly+jh4aEpGlIHSQbRH8J8fHzQw8ND6Xq3Fqxk0IcPH9DDw0OZomctHBwcsEePHpqiy0GDBinTgqwFSQapiy6nTJnCTC7SYW3a05IlS7B169a6XmvTnrZv365MS7UW1iYLnzhxAgcMGKBJ5NJhLRl069Yt9PDwULowrQVrsrCfnx96eHgoU0asBSsZFBYWhh4eHswPMnTQySD67jNy5EhmQT0d1pJBs2fPVqZ+WQuSDFJ34K5evRo7duyo602dOjXWq1dPM1l43759ytQMvXeR1YF77tw5HDhwoCaRqw5WB+7Dhw/Rw8OD+eGMDnraE3nGb9++RQ8PD+bHUTpYyaDY2Fj08PBQpldYC2vJoAkTJjA/rNJhbbLwwoULmY0xdFhLBm3atEmZqGAt6GQQXXR5+PBhdHd31yRy1e8iSQbRRZdXr15FDw8PTYOKOipWrKjpwH327Bl6eHgo07ytBasDNzg4GD08PJiND3RYmyw8dOhQpWPeWlib9jR9+nRlCo21sDZZePny5di2bVtdb9q0aZnTnsyy5sCBAzWJXHUkBGvSH8IIa7KS9XSYZU3WtCde1mRNe5o3bx4Xa7KmPSUl1iTvYkKwJuvjKB2FChUyzZrqaU9mWNPLy4uLNVkNfmZY89ixY1ysyZr2ZIY1X7x4gR4eHsxCBTpY054SgjXJJHBr8aVYs3379rpePdbs3bu3rpewprrBT4Q11Q1+9+/f52ZN9bSnN2/e2I01x40bZzfWZH2UpSOhWJP+EEZYU100pA4Wa/r6+nKzprrBzyxrDh48mIs1WQ1+Zlhz6dKlkjUZwZosLMqa6qJLEdZUN/iZYc01a9ZwsSZri40Z1jx//rxdWDMwMBA9PDyUCcLWIqFYk777TJgwAevWravrNcOa1iYLi7CmusHvyJEj3KypbvCzF2t++vTJNGuymgnpSOqsSRddirIm3eBnhjVfv37NzZrqBj+zrDlmzBisWbOmrvdLsOa6devQ1dVV1/slWVNdNKSOhGBNOs8uyprqycJJkTW3bt3KxZqsycIJwZqsBhU6vhRrkqml1sIaa44YMYKbNdV5djOsuWrVKm7WVG+xMcOaZ8+exYEDB2oGQamDNUyGlzVZk4UJa7IGXtDxJVhTyr6ShYOycFDKhIwu16wgySAyylckSAcua5qTUZBkEBkDLBIkGcSavGcUdDLI6BKiDjoZZARu6qCTQUYfc1lBkkFGRU6sIMkgVgeCUZBkEFl9KRKkA5esuRAJuuhS1Esng4ySoeqgk0FGSRRWkGQQq1PEKEgyiKzMEwky+puMaxYJkgyaMmWKsJesmWJNgjIKOhlk9IFRHfSaKaPLojroZBBZ7yMSZNoTqzPPKEgyyKjgkBUkGUTWfosESQaxOjeNgiSDli5dKuyl10yxJoToBb1myihpzQqyZoqMuBcJUnTJ6oQ2CpIMGjBggLCXJINY00qNgiSDyEpFkaCTQXqJVFbQySAjOFcHnQz6+eefhX9ukgwySnaxgiSDjBIhrCAduGQNrUiQostp06YJe0kHLlkZLhJ0Msgo4a0OOhlklChTB50MMkposoIkg1hTYIyCJIOMkpKsIMmgMWPGCHtJMoiskxYJ8iHM1vOWJIPIugneoDtwyboJkSDJoMaNGwt7STLIKPHMCjJZmKxFFAmSDCLrn0SCFB7YcvehCw+MCjrUQa+ZMmq4UgdddGn0AYkVZKUxWSkiEmTak2RN47A3aw4dOtQUa7q7uwt7yZopM6zJmgBuFF8Da/7444/Cf3ZSZE3yIcwerEka/MywplEDgDroaU9mWNPoQx8rEoI1ySo2kUgI1mRNnzEKmjWNPj6pwyxrkgY/o0I2VphhTTLtyQxrsibIGEVCsabeR2RWJARrTpkyxRRrsibgGQVZaZwUWZOscROJr4E1jQqHWUFY06iolBX2Yk1SdGmGNcmaYpGgpz0lRdY0aiZmRUKw5qRJk4S9CcGaS5cuNcWaRkVw6jDLmmTak2RN46AnCxsVlqsjIVhz/PjxhoXDrCCsaVTkxArS4GeGNcePHy/sTQjWZE2WNoqv4bumURE/KxKCNVlbE4zCLGv+/fffzKnDRkGzplExqzroycJmWNOoUYMVkjX5Q640/nr0JQoHU4KUlJRV+fn5ga+vL6ROnVrY++bNG/D19YWYmBhh7/v378HX1xeyZs0q7A0JCQFfX18oVqyYsDcyMhJ8fX3Bx8cHLBaLkDc2NhZ8fX3B19cXIiMjhbyICE+fPgUfHx8IDQ0V8gIAvHjxAnx8fCA8PFzY++rVK/Dx8YEsWbIIewMDA8HHxweSJ08u7P348SP4+vpCnjx5hL1hYWHK71pU0dHRijc2NlbIa7FYFG9ERITwn/38+XPw9fWFz58/C3vJu4j/FXMLKSAgAHx8fCBfvnzC3nfv3oGPjw+kT59e2Pvp0yfw8fEBBwcHYW9ERAT4+PjY9HeOiYlRnlN0dLSQFxEVry3v04sXL8DX1xc+ffok7H316hX4+vpCunTphL1v374FX19fiIuLE/Z++PABfH19IXv27MLez58/2/wuRkVFgY+PD/j4+Aj/3HFxccr/P0TPWwCAp0+f2vwuvnz5Enx9fSEqKkrY+/r1a/D19YUcOXIIewMDA23+9zg4OBh8fX0hf/78wl6z5y15xqJ3AXLe2vpv27Nnz8DHxwdCQkKEvX5+fuDj4wMpU4pjArn7FChQQNhL7j6ZM2cW9pK7T+HChYW9ERERyjM2c/ex5bwl72JYWJiQF+D/zltbnjG5+2TKlEnY+/btW/Dx8RH2Afx33vr4+EDOnDmFvaGhoeDr6wtPnz4V9pLz1pa7T1xcnKm7z7Nnz2x+TuTuI/ozA/x39/H19YVcuXIJe4OCgsDX1xfSpk0r7A0ODgYfHx+bzoDw8HDl3LPl7kOesZl30Zbzltxvbbn7+Pv7S9bkVGxsrPJvqugdJCFY09b/f5Dz1pbfNbn7pEiRQthLWDNv3rzC3q+BNe1x97Hl7wtgjjXJu5gxY0Zhr1nWJL/rxGZNM+cteReDg4OFvWZZ0xZmAzDPmj4+PlC8eHFhL82attx9zLAmufskNmuSu4+9WNOWM8DerGnmfuvj42PT3Yect2ZYs2DBgsLehGDNIkWKCHvNsqbZu4+vr6+pPLst77G9WJPcfXLnzi3sNcuatt59aNY0c97acvd5+fKlTXdyAPOs6ePjY4o1bTkDwsPDTeXZ7cWaZvLs9mbNbNmyCXvJeVu0aFFhb2RkpPKcRO9s9j5vbf33mOTZzbCmLf8eJwRr2nLWJwRr+vj4mLr7mMmzJ0uWTNhrT9b09fUFR0dHYW9Sz7Pbwpr+/v42f0M2w5rv378HHx8fU6xZokQJYS9993n27BkULFjQpv9/S32lSojqw//1ADlx8H9CXl5ehqPEAdhrI3bv3o3Ozs6Gq4pz5sypWRtx4cIFdHZ2NlxZQzoY16xZo4wxf/r0KTo7O2OBAgV0vay1EWFhYejs7Gy4CsXa2oh27doZjiC2tjZi4MCBXF2rrLUR06dPx9q1axt6WSsK16xZYzi+GIC9ovDQoUPo7OxsuEKBtaLw5s2b6OzsbDi2PUOGDJq1EQEBAejs7Gy4ApfuqCFjzC0WCzo7OxuuOU6ePDn+/vvvmrURXbt25epoZK2NGDlypOGYaQD22oj58+dzTTojHTX02ogtW7Zg06ZNDbuxc+fOrVkbcfr0aXR2djbs8iXTG+i1EQ8fPkRnZ2fDNRlkUuDSpUuVMeYfP35EZ2dnwwk41lYUtmrVyrDbzdraiD59+nBN7CAdjPTaiEmTJhmukANgr41YtmwZ13lLr40gY8z37t2Lzs7Ohh2grLURly9fRmdnZ8MpNqy1ES9evEBnZ2fDjjV6egO5E0RGRqKzs7NhJ5S1tREdO3bkmubAWhsxePBgw3WOAOy1EbNmzeKavEOmN9BrI9avX49NmzbVXR8F8N/0hi5dusRbG3H06FF0dnY27DpjrY24c+cOOjs7G05pZK2NCAwMRGdnZ8OJDPT0BnplVvPmzQ1XT1lbG9G9e3fDke8A7LURo0eP5prKwlpRuGjRIq5pH/SKQnL32bFjBzZt2lR3fRRA/LUR5O5z9uxZdHZ2xixZsuh6yd2HXhvh4+ODzs7OhmsySAcjvTYiJCQEnZ2dDbvAra2NaN26teGqP2trI/r372+4YgOAvTZiypQpXJMgWGsjVq5cyTVhgLU2Yv/+/ejs7Gy4QoFeUUjuPteuXUNnZ2fMkSOHrpdeG0HuPv7+/ujs7IwODg66XnpSIFmZFRMTg87Ozoarp8jaiBkzZsRbG+Hm5ma47gaAvaJw2LBhXFMCWCsK586da7hGBeD/pjfQayM2bdqETZs2NZx6midPHs3aiBMnTqCzs7PhanjWisL79++js7Mz5smTR9fLWlH4/v17dHZ2xiJFiuh66RWFT58+VZ5TixYtsGzZsrpeaysKe/XqxdVBTiYF0isKx48fz9WZXLJkSRw4cGC8FYUirNm9e3cmaxqtj2Kx5sWLF7lYM1OmTMqKwoRgzfDwcLuyptE6R4CEYc2jR48q72JisuamTZuUu48Ia5LpDeTuk1isyVpRmBRZc+vWrYnGmuvWrVNY89GjR4nGmuoVhWZYs2/fvlysSaY3qFmTZ+IyizWXL1/Odfcxw5o5cuTQsOaVK1fQ2dnZcIoNizVfvnwpzJpkeoNZ1uzUqVOisOaQIUM0rMkzeccMa+bNm1dZUUjuPonBmunTp0/SrHnlyhXlXRwzZkyiseaBAwcShDXPnTv3xVkzbdq0yqRAcvf5/PmzXVmTJ8/OYs2pU6fahTUPHDiQaKy5cuVKhTVfvXqFzs7OhitwWawZGxvLzZpkUmBCsebw4cO5WJO1otAW1iR3H8ma7LAna5JJgTRrLlmyJMmx5rNnz0yzptEmpRQpUiis+fjxY+UZt2/fPtFY8/z588q7OGPGDK48O4s1165dy8WaJM++Z88eDWsaTRJnseatW7fswpqIiM7OzoYTdb821lywYMH/NGuSSYGENYODgxOFNcmkwKTEmgUKFNCw5r59+xKVNcl6ZjOsGRUVJcSaM2bMiMeaUvaVXFUsCwelTGrlypXMQ48kyG7evKn8w6TWiRMnmF5SjEFfEtXy9fVlXgjIOGn6kqhWcHAwswiGdUlUKzY2lnngZ8uWDdu0aRMvQcYSK8nHuiSy1K1bN42XXBLVCTK1WKsjyCVRnSBTa+vWrcznRBdjWPNevXqV6S1VqpQmQabW69evmckQuhiDXBLVCg8PZ17cSIJsx44dyiVRLYvFgpUqVdJ4yThp+pLIEmu1COuSyJKHh4fGS4+TphNkarHGXNOXRDpBptbBgwetXhLVCTK1Hjx4wEw+sxJkar179w4zZcrEvCSqE2RqRUdHMxMadIKMXBLVslgs+Pvvv2u8dDEGuSSy1LFjR+YlkWec9NixY5mXRFKMoXdJXLt2LfM5kdVFdIJMrbNnzzK9ZHUR/UFCrefPnzOTz+SDBF2Modbnz5+ZiUnyQYJOkKkVFxfHhF1Wgoylhg0barysBBlLvXv31nitJcjUYo0ypxNk9+7ds/qcdu3axXxOTk5OOGrUqHgfJNS6ceMG00uKMU6dOmX1vH3z5g3zwzsp/Kc/SKgVERHBTFqR1UX0Bwm1LBYLVqtWTeNlFf6zxBp1Tz5I0AkyloYOHco8b1nFGGqxVruSDxLqBJlaR48eZT4nuhjD2jN+/PgxM/nMKvxX6+PHj8wPQaxiDLViYmKYH3NYhf8ssRILZHUR/UGCpc6dO2u8qVOnVlYX0QkytVirekjh//Tp0+MlyNTauHEj8zlVqVJFkyBT6+LFi0wvK0Gmlp+fHzP5zEqQqRUaGspcnZcnTx5NgkytuLg45kc3VuE/S6w1lnQxxuvXr616WStgrBX+q8VaYUevLqI/SKi1b98+5nNiFf6rdefOHebdh3yQoBNkagUGBjI/vLOKMdSKiopifrAjHyToBJlaFouF+XGUVYzBUtu2bTVeVuE/S6NGjdJ46WIM+oOEWmZY8+TJk0zvl2bNT58+fXWsqS7GYKl79+7M89YMa7KKMdTatm0b8zmZYU1WMYZaPKxp7e4THh7OXJ2XUKxJijFY+uuvv5jnrVnWVBdjqLVo0SLmefs1s+b79++/KGvq3X1YH84SgzVZa7itFf6rtW7dOuZzMsua6mIMtZ4/f85sKDbDmqxiDLXi4uKYRWVfO2uyVoYmBmvevHmT6U0I1qSLMdSKjIw0xZqsYhSzrKkuxmCJtfrXLGuyijHUOnbsGPM5fe2syWqaMMOarCZzllgrDhOCNdXFGGpt2rSJ+Zy+ZtYMCwuzG2uy1ljamzXVxRhqeXt7M5+TGdZkFWOoFRQU9EVYU12MoZbFYmEWhn0NrKmXZ1+1ahXzOSUEa+rl2X19fZl59oRgTbrJXK3Y2FhmES+r8J8lVjGtWdZkFf6rNX36dOZ5m1Csae1dvHbtGtNrb9Y0uvuwiq0TgjXpJnOWWKvWzbImq/BfrUOHDjGfEy9rsu4+icGaRYsW1XgTijX17j6dOnVinrf2ZE114b9a586dY3rNsCaryVytz58/MwuAE4M1pewnWTgoCwelTCgmJkapjCfdoUYJMlqkA5NOkOldEmm5uroql0SeBBmt8ePHKy8+T4KM1vr16xUvT4KM1vnz5xUvTzEGrRcvXij/wPEkyGiFhoYq/8CxukP1FBcXp3SMsbpDjUQ6CejuUL0EGa2+ffvGuyQaJchozZkzR/ldly9f3jBBRmvPnj2KlydBRuvWrVuKlydBRuvt27dKFxNvgowoMjJS6X7gLcYgslgsSqcJnSAj3aFGat26tfIusrpD9TR8+HDl91WlShXDSyKt5cuXK15Wd6iejh8/rnh5EmS0njx5onxIphNk1i6JtIKDg5WOQt4EGVFMTIzSFcibIKNFJsHwJshode3aVXkXeYoxaE2ZMkX5XZMEGd0dqqfNmzcrXlZ3qJ4uX76seAsWLKjpDtWTv7+/0sVEd4daS5DRCgsLU7p7SXeoUYKMyGKxKN2bvAkyWs2aNVOAjacYg9aAAQOU3xdPgozW/PnzFS9PMQat/fv3K16eBBmte/fuKclUnmIMWkFBQUoHNynGoLtD9RQVFaVMveAt/CeyWCzKhBG6GEPvgwSt9u3bK+ctT+E/rTFjxii/a55iDFqrV69WvDyF/7ROnz6teHkK/2k9e/ZMSabyFGPQCgkJUToKeQv/iWJjY5VpULzFGLRIpyxv4T+tnj17KuctqztUTzNmzIiXIBsxYoRugozWjh07FC/5IKGXIKN1/fp1oQQZrYCAACWZylP4TysiIkKZbMJbjEFksViUTmreBBmtli1bahJkvN2hgwcPjpcgGzduXLxJRHry8vKKlyAzKvyndfjwYcXLmkSkp4cPHyrJVJ7Cf1ofPnxQOrhFE2RmWZNMn0hs1pwwYUKSY82XL1/ajTVJt7xZ1uQpxqBlhjXnzp2r/K55ijFomWHN27dv2401yUTbr4E19YoxaI0YMULDmnrFGLRYrKlXjEGLbpAVZU0fHx8ma/LcfcywZmxsrN1Y899//7ULa27ZsiVBWdPb29tm1tQrxqBFN8jyFmMQmWXN5s2b24U1FyxYYDNrHjhwwC6s+e7dO5tZMzo6Oh5r8hRjEFksFmW6mlnW5CnGoGWGNdesWaN4eYoxaCVV1iQNsl8Da+oVY9CaOXNmPNY0KsagRbMmTzEGraTKmmRiaWKz5pAhQxKUNXnz7EeOHLGZNR89eqSwJk8xBq2EZE2ewn9aLNbUK/yn5ebmZhfW3LBhg82seeHCBbuxJplaTBf+28KaPIX/tMi0QrOsyVP4T8sMa+7du9curBkYGJggrEkK/0VYk2yqsYU127RpE481jQr/aalZ06jwn9aKFSsUL0/hP61vkTXJ1NHEZs2pU6cmCGvyFP5LfT2ShYOycFDKhA4fPixUjEHrzp07QsUYtN6+fYutW7c27A5lKSIiAtu1ayeUICOyWCzYo0cPzahuXo0cOVIoQUbL09NTKEFGa8uWLUIJMlpnzpwRSpDR8vHx0Yzq5tXHjx+xdevW3MUYtKKjo7FTp06aUd08slgs6O7uLnRJpDVp0iShBBmtZcuW4aBBg7gTZLT27dsnlCCjdfXqVaEEGS1/f39s3bo1d4KMVmhoKLZp00YoQUYUFxeHXbt2FUqQ0RoyZIhQMQatWbNmaUZ182r9+vU2XxKPHTtm2B1qTffv38f27dtzJ8hoBQUF4T///MOdIKMVGRmJ7du3F0qQEVksFuzVq5fNo7rHjBkjlCCjtXDhQqFiDFrbt28XSpDROn/+vGYtFK+ePXuGbdq0salb6dOnT9imTRtcvnw5d4KMKDY2Fl1dXYWKMWgNGDBAKEFGa8qUKUIJMlorVqwQSpDROnDggFCCjNbNmzeFEmS0Xr9+ja1bt+YuxqAVHh6O7dq1EyrGIIqLi8Nu3boJFf7TGj58OE6cOJE7QUZr7ty5QgkyWhs3bhRKkNE6efKkUIKM1qNHj4QSZLTev3+PrVu35k6Q0YqKisIOHToIJciILBYL9unTR6jwn9b48eOFCv9peXl5CRX+09q9ezf27t2bO0FG69KlS+jm5sZd+E/r5cuX2Lp1a+4EGa3Pnz9jmzZthBJkRLGxsdi5c2ehBBmtQYMGCSXIaE2fPl0oQUZrzZo1QsUYtOzNmrzFGLTMsmb37t2FijFomWHN+fPnJznW9PX1tQtrxsTEJFnWFCnGoGWGNa9du2Y31mzbtm2SZU3eYgxaZllTpBiDlr1YMyoqym6sOXbsWLuw5o4dO5Ika7Zu3VqoGIMoqbLmypUrkxxrBgQE2IU1LRYLduvWTagYg5a9WHPTpk12Yc3Hjx/bhTWjo6OxY8eONrNm3759hQr/aZllTZFiDFpmWPPy5ctCxRi0vkXWnDFjhmRNTtmTNUeNGmUX1ty6davNrHn27Fm7sGZwcDC2bt2au/CflhnWRPxvyqpI4T+tb401X716lSRZc+jQoYZTGK3JLGuKFP7TMsOaDx48ECr8p2VP1uzdu7dcQZxE9SUKB5Phf4VxUjpKlixZQQDwAwDw8/ODggUL2vknkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkvoW5O/vDw4ODuR/OiCiv9n/ZnKz/wEpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKamkI1k4KCUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSX1DUkWDkpJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJfUOShYNSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUt+QZOGg1Dejixcvwq5duyAsLEzY+/DhQ9iwYQN8/PhR2BsYGAjLli2DgIAAYW9kZCQsXLgQnj59KuxFRFiyZAncu3cPEFHYv27dOrh8+TJYLBZh765du+DkyZMQGxsr7D1x4gTs378fIiMjhb3Xr1+Hbdu2QUhIiLD32bNnsGbNGnj37p2wNzg4GLy8vMDf31/YGxMTAwsXLoQnT54IexERli9fDrdu3bLpGW/atAnOnz8PcXFxwt79+/fDsWPHIDo6Wth79uxZ2LNnD4SHhwt77969C5s2bYLg4GBh76tXr2DFihXw9u1bYW9YWBgsXLgQXrx4Iey1WCywePFiePDggU3PafXq1XDt2jWbvDt27IAzZ87Y9C4eOXIEDh06BFFRUcLey5cvw86dOyE0NFTY++TJE1i/fj28f/9e2Pvu3TtYunQpvH79WtgbFRUFCxcuBF9fX2EvOW/v3Llj03PasGEDXLp0yabzdu/evXDixAmIiYkR9p46dQq8vb0hIiJC2Hvz5k3YunWrTeftixcvYPXq1RAUFCTsDQkJgcWLF4Ofn5+wNy4uDhYuXAiPHj0S9gIArFixAm7cuGHTM96yZQucO3fOpvP2wIEDcOTIEZvO2/Pnz8Pu3bttuvvcv38fNm7caNPdJyAgAJYvXw5v3rwR9kZERMCiRYvg+fPnwl6LxQJeXl5w//59m57T2rVr4erVqza9izt37oRTp07ZdN4eO3YMDhw4YNPd5+rVq7B9+3b4/PmzsNfHxwfWrl1r03n74cMH8PLyglevXgl7o6OjYeHCheDj4yPsRURYtmwZ3L5926ZnvHHjRrh48aJN7+K+ffvg+PHjNp23Z86cgX379tl097l9+zZs2bIFPn36JOz18/ODlStXQmBgoLA3NDQUFi1aBC9fvhT2xsXFwaJFi+Dhw4c2PadVq1bB9evXbfJu27YNzp49a9MzPnz4MBw+fNimu48Z1nz06FGSZE0vLy+4e/duorPm7t274eTJkza9i98aa8bGxsKiRYvswpqbN282xZpHjx79plhz0aJFdmHNNWvWJEnW3LFjh11Yc8mSJTaxJrn7SNbkkz1Zc9GiRTaz5qJFi2xmzZUrV9qFNQ8ePGgza164cMFm1nzw4IHNrPnmzRu7sCa5+9iaZ//WWNPX19curEny7PZgzU2bNplizWPHjiU6a965cwc2b94sWZNT9mLNS5cuwa5du2y6+3yLrLl+/XrJmpwKDg6GxYsXJzprAgAsX74cbt68maRY89y5czaz5r1792xmzdevXydJ1ly9erXNdx+zrHnw4EG7sOa6deuSHGsuXbrUZtaU+h8UIsowCAAoCAAIAOjn54dSSVPv37/HTJkyYZo0abB+/fq4YMECfPnyJZc3OjoaixQpgilSpMDff/8dp0+fjg8fPuT+s//44w8EAKxSpQqOHTsWr1+/jhaLhcvbsWNHBAAsXbo0Dh48GM+ePYuxsbFc3nHjxiEAYJEiRbB37954+PBhjIqK4vKuW7cOAQDz5s2Lbm5uuGvXLgwNDeXynj17FgEAs2bNiv/88w9u2LABP3z4wOV9/vw5pkqVCtOnT49NmzbFZcuWYUBAAJf38+fPmCNHDkyVKhXWrl0b586di0+fPuXyxsXFYZkyZTB58uT4yy+/4JQpU/Du3bvcz6lRo0YIAOjk5IQjR47Ey5cvY1xcHJe3d+/eCABYsmRJHDBgAJ48eRJjYmK4vLNnz0YAQAcHB+zevTvu378fIyIiuLy7du1CAMBcuXJhhw4dcNu2bRgSEsLlvXnzJgIAZs6cGVu0aIFr1qzBd+/ecXnfvHmD6dKlw7Rp02LDhg1x8eLF6O/vz+WNjIzEAgUKYMqUKbFGjRo4a9YsfPLkCZfXYrHgDz/8gMmSJcMffvgBJ0yYgDdv3uR+xq1atUIAwHLlyuGwYcPwwoUL3O/isGHDEACwWLFi2K9fPzx69ChGR0dzeZcuXYoAgPnz58cuXbrgnj17MCwsjMt77NgxBADMnj07tmnTBjdt2oTBwcFc3sePH2Py5MkxQ4YM2KxZM1yxYgW+ffuWy/vx40fMkiULpk6dGuvWrYvz58/HFy9ecHljYmKwRIkSmDx5cvztt99w2rRp+ODBA+7nVLNmTQQArFy5Mo4ZMwavXbvG7e3SpQsCAJYqVQoHDRqEZ86c4X4XJ02ahACAjo6O2KtXLzx48CBGRkZyeTdt2oQAgHny5EFXV1fcuXMnfv78mct76dIlBADMkiULtmrVCtetW4fv37/n8vr5+WHq1KkxXbp02KRJE1yyZAm+fv2ayxsWFoa5c+fGVKlSYc2aNXHOnDno6+vL5Y2Li8MKFSpgsmTJ8KeffsJJkybhnTt3uJ+Ts7MzAgBWqFABR4wYgZcuXeI+b93d3REAsESJEti/f388ceIE97vo6emJAIAFCxbEbt26obe3N/d56+3tjQCAOXPmxPbt2+PWrVvx06dPXN47d+5gsmTJMFOmTPjXX3/h6tWrMSgoiMsbFBSEGTJkwDRp0mCDBg1w0aJF3HfZqKgoLFSoEKZIkQKrV6+OM2bMwEePHnF5LRYL/vLLLwgAWK1aNRw3bhzeuHGD+xm3a9cOAQDLlCmDQ4YMwXPnznGft6NGjUIAwKJFi2KfPn3wyJEj3HefVatWIQBgvnz5sHPnzrh7927u8/bkyZMIAJgtWzZs3bo1bty4ET9+/Mjl9fX1xZQpU2KGDBnQ2dkZly9fjm/evOHyfvr0CbNly4apU6fGOnXqoKenJz579ozLGxsbi99//z0mT54cf/31V5w6dSrev3+f+znVq1cPAQArVaqEo0ePxitXrnC/i927d0cAwO+//x49PDzw1KlT3Oft9OnTEQCwUKFC2KNHDzxw4AD3ebtt2zbl7tOxY0fcvn0793l77f+xd9bhVV1LG58kBA8WN9wluJRS3K24Fy1SnGLFCsWhxSG4FynuBHcLToAkJJAQIUoIIX5k7h/tPnftdbaefZJD2v0+zzzfRy8vSc5mL9Zv1syax48Ne59evXrh3r17Je99Pnz4gHnz5sV8+fJhx44dcfPmzRgZGSnJm5qaiq6urpgrVy5s3rw5rlq1CoODgyV59Xo91q5dG62srLBBgwa4aNEifPHiheRn3KNHDwQA9PLywlmzZuG9e/ckP+Np06YhAGDZsmVx0qRJePXqVcnr7caNGxEA0N3dHUeOHImnT5/G1NRUSd4LFy4gAKC9vT3+8MMP+Ndff0ne+/j7+6O1tTUWLFgQu3Xrhjt37sTY2FhJXqWsWbp0aYuw5pAhQxSzZsmSJQ2sKfVdVMKad+7csRhrOjg4KGJNKysrbNiwIS5ZsiTbWHP8+PEIAFi+fPlsZc2TJ0+alTWl7n1iYmLMyppv3ryR5FXKmn379jWw5owZM/Du3bvZwprbtm2zCGsGBQWhjY2NyaxZpEgRFmuGhoZK8iplzZYtW5qNNW/evCn5XVyyZIli1nRycsIhQ4bgsWPHsoU1IyIiDKzZqVOnbGNNvV6PNWrUsAhr/vzzzyaz5vr1641YU+reRwlrvnz5ksWau3btkrz3IVmzXbt26O3tLXnvk5GRgSVKlFDMmnXr1s1W1pw7d64hz56drHnjxg2zsqbUvc/nz5+xWLFiZmHNpUuX4qtXr7KFNUePHm1gzSlTpihmTal7n6NHj+Y41kxLS7MYa/bs2dMsrDlx4kS8cuWK5PV206ZNilmzWLFiOGDAgGxlzUKFCmGePHmwbdu2uGHDBsl5dqWs2bRpU4uw5oIFC0xmzX379rFY8/jx49nCmu/fv2ex5tatW01izZYtW8pmzapVqypmzRo1amQra65evdoirPn8+XOzsaacPHt6ejp6eHiYzJoNGjQwsOaCBQuyjTVnzZplyLNPmDABL1++LHnvw7Cmq6urbNa8evVqjmTN8uXLs1hTTp5dCWuOGDHCLKw5ZswYWaypyrIKDw9Hpn4NADzQHDVx5vhD/u2hFg7+ezR79mzyJZKVDNq+fbuRl0kGiR2EXbt2zcgrNRnE/CNHeplk0KFDhwSTQYmJiVikSBGWV2oySKvVYvny5VleOcmgVq1asbw2NjbYpEkTScmgkSNHGn1eUpNBS5cuNfJKTQYdOnTIyCs1GfTw4UMjr4uLiyEZJAQnERERmCdPHpaXTAYJwUlqaiq6uLiwvFKTQUxClfQyyaC1a9eKJoO6devG8spJBk2ePNno86pZsyb++uuvosmgDRs2GHkrVKggKRl0/vx5I6/UZNCrV6/QysqK5SWTQUJwEh8fjwULFmR5pSaDMjIysGTJkixv3rx5DckgoYMwvV6P3333HcsrJxk0cOBAlpdMBj1//lzwGc+bN8/os5aaDNqzZ4+RV2oy6ObNm0ZeNzc3HDFihGgyKCQkBHPlysXySk0GJSUlYbFixVheMhkkBCdarRYrV65stN5KTQa1b9/eaL2VmgwaM2aM0eclNRm0YsUKI6/UZNCxY8eMvEwy6MKFC4Jw8uTJE871VkoyKCoqCvPmzcvyFilSBPv06YP79u0TXG/T0tLQzc2N5c2fPz927twZt27dKngQptfrsW7duiyvnGRQr169jN5FqcmgX375xejzkpoM2rx5s5FXajLo0qVLRl6pyaDAwEC0trZmeR0cHCQlgxISErBQoUJG662UZJBGo8EyZcoYrbdSk0HNmjUzehebNm2KK1asEE0GDRs2zOgZS00GLVy40Oizrlq1qqRk0P79+428UpNB9+7dM/JKTQaFhYWhra2t0XorJRmUnJyMjo6OLK/UZJBOp8Nq1aqxvHKSQZ07d2Z55SSDJk6caPR51a5dG+fOnYuPHj0S9K5Zs8bIW6lSJZw6dapoMuj06dNGXqnJoBcvXhh5pRYexMbGYv78+VnewoULY+/evUULD9LT09HT05PllVp4oNfr8ZtvvmF5c+XKJbnwoH///kbvotTCAyHWvH//vuB6u2PHDiOvEtZkDsLOnDkjuPcJDg42O2t27949y1mzdevWRuttdrDmsmXLjLyWZk2xosvIyEhe1hQ7CBNiTbGiS71ejzVr1jRab5WwJtPgJ8aaU6ZMMfq8vnbWfP36tUVYMzMzM0tYU0qD36BBg4zW2wYNGuDChQtFWfO3334z+qy9vLwMDX5ZxZq3bt0y8mYXa9rb27O8XwNrihVdjh071ujzYlhT7CBMiDVv3boluN4eP37cyKuENckGPzHWzJcvH8srhzXd3d1Z3uxizd69exu9i9nBmlu2bDHymoM1xRr8hFhTrOiSaZKl19uePXuKNvgpZc3mzZsbvYumsibA3w1+Ulhz0aJFRt6cwJq5c+c2Wm8Z1hQquhRiTbEGP51Oh15eXiyvOVhTSoOfEtZcu3atkZdp8MtK1vTz8zPyZgdrZmRkZBlriuXZhVhTrOhyzpw5Rp9XTmRNpsFPCmsWLVqU5ZXDmhUqVGB5s4s1R40aZfR5mYM1xfLshw8fNvLmRNaU2uDHxZpMg58U1uzevbvRepsdrOnt7W3klcqaPj4+Rt7sYk07OzuW1xysKdbgp9frsXHjxkbrrRLWZBr8TGFN8jIZoWe8d+9eIy/T4JeVrBkaGmoR1lRlWamFg2rhoCoFunnzJufBKhl8yaBnz57hmjVrjA44yeBLBr19+xa9vb2NoJPeEHElg+Li4tDb2xsrVqzI6yWTQeRBWEZGBnp7e2OjRo14vWQyiD4I27Fjh6HTli+YZBBddHn48GH88ccfBb3ly5fn7MC9cOECZ+KJDL5k0L1793D58uWCXr4O3FevXuH69euNoJMMvtuewsPD0dvb2wg66Q0R121PiYmJ6O3tbVTARwZfMkiv16O3t7ehE4Ev+JJBe/fuNdyixxdMMog+CDt58iRnEpgMvmTQtWvXDF26fMEkg+gO3EePHuGqVauMoJMMvg7cN2/e4IYNG4ygkwy+ZFB0dDR6e3tj2bJleb1kBy6ZDEpJSUFvb29s0KABr1fotqctW7Zghw4dBD8vpgOXTgYdPHjQaJNMB18y6Ny5c5wFnmTwJYNu3bpluIGPL5hkEN2B+/z5c1y7dq0RdJJBJoNIOAkJCUFvb290dnbm9TLJILoD9+PHj+jt7Y1VqlTh9fIlgzQaDXp7extu/OEKJhnE1YG7c+dOI2Clgym6pJNBR48e5TwAJ6NcuXKctz1dunTJcEMJX/Algx48eIB//PGHEXSSwZcM8vf3x/Xr1xsdcJJRsGBBzmRQREQEent7Y4kSJXi9fMmgpKQk9Pb2xlq1avF6yWQQXXS5ceNGo+QRHXXr1uUsuty3b59RgpAOvmTQqVOnDB2cfMF3s/D169cNN0LxBd9tT0+ePMHVq1cbQScZfB24wcHBuGHDBiPoJIMvGRQbG4ve3t5GST4y+JJBaWlp6O3tjQ0bNuT1Ct0svG3bNqNkPR18yaBDhw7h0KFDBb1MMog+CPPx8TF0zPMFkwyiiy7v3LnD2TRBBpMMoosu/fz8cN26dUYHnGTw3Sz8/v179Pb2NiqmJYPvtqdPnz6ht7e30aEKGXw3C2u1WvT29jY6OCNDKBm0e/duw80GfMF3s/Dx48cNNyXyBV8y6MqVK5yJfjLIZBC59/H19cUVK1YYHXCSwSSD6KLLgIAA3LBhg9EBJxl8yaAPHz6gt7c3lipVitebO3dubNu2rdHNwsnJyejt7W10iE0GU3jAddvT5s2bsV27doKfF18H7v79+w03yfAFebMw+YzPnDljuJmWL0qWLIljx441KjyQy5rk3odhTfqAkww+1nz37p1i1qxUqRKv19KsydXgd+TIEcPNXXyhhDX5bhbOiaz5+fNn9Pb2NjpUod9Fc7AmfRCWXaxJH4Rdu3aNs4GJDEuyJtfNwpZmTeaWEb6wFGsWL14cx4wZY3Sz8O3btw23IvCFOViTPghjWJM+4CRDKWtyNfgpZc1du3ZlKWvy3Sx86dIlww0lfGEu1iT3Pv7+/rhhwwajA04y+FgzMjJSMWvWrl2b1yvGmm3atBH8vJSwJl+D3+nTp3HChAmCXj7WvHHjxr+eNcmiy/T0dPT29jbcdsgV5mJNuugyq1mTr8Hvv8aaOp1OMWvSTZ90mIM16ZuF5bAmXXT58OFDXLlyZZaxJl+DH8OapUuX5vUqYU2hm4WVsOaBAwcsxppcRbxkmIs1yaJLhjWdnJx4vXysGR8fL5k16QY/hjXpBhX6XeRr8NuxYwd27dpV8PNSwpp8NwtfvHgRZ8yYIejlY8379+8rZs0CBQrwer8G1qSLLr29vY0un6FDKWtyNfhlB2ty3SycE1kzNTVVEWtu3bpVMmvSefaDBw8apjHyhSVZk+tm4RcvXuDatWuNLq0gQylrct0szLBm1apVeb1KWdOUm4VVZb3UwkG1cFCVAnHdqiQU5JgpMfiig+zAZUYbygmmA5cZKSInmGQQc3W6nCCv/hZKwHAFmQwSKsrgCjIZJHaARAeZDBLb8NFBjpkSgy86yGQQM0pWTjBjprhu3RILpgOXq+NLLMhkkFAylCvIq7/pbg+xIJNBYglNOshkkFiyiw4yGbRy5UpZXjIZxHUrgVgwV3+fOXNGtpdMBglBH1eQY6bomwXEguzAFUui0EEmg8QAmw6yA1esqJQOMhnE1bUlFkwyiOsWGLFgkkGXL1+W7SXHTAkVOnIF2YFbr149WV5yzBQzglJqkB24XN3MQkGOmeLqoBQKMhnE1SUrFkwHLjPGQE6QySChRCpXkMkg+mYBsSCTQfQtdmJB3ixM3xoqFuRIY7GiUjrIMVPMuAk5wXTgMiNF5ARTdMl1049YkB24QglvriCTQdWrV5flJZNBnTp1kuUlk0Fihwt0kMkgsYM+OsibhZnxPnKCSQZxdUKLBTNmihmLKCfIDlz6JhexIDtwhQpSuYLswBVLaNJBJoPEkl10kMkgZtSW1CCTQbt375b9WTOFB6dOnZLtJQsPhAo6uIIcMyV0EMwVZAeuWHE4HWTRpdhhLh3kbU9cNxUKBcmazGhDOWEO1rx48aJsrzlY8/jx44JFGVxhDtbcunWrItYUa6ihgyy6NIU1mQY/rlu3xOJrYE2hpDVXmIs1p0+fLstrDtZcsGAB560EYqGENckGPyWsKVQExxXmYk1mDJPU+BpY05S9D8OaXDeriQXJmkKHT1yhlDWZBr/sZE2ywS+nsqbQITJXmIM1Dx06JFggxRUka4oVDtNBFl2KFVbQQbIm103cYpETWZOcYqOENcWKFekwF2syY0alhlLWZIoujxw5Itv7NbCmUEEqVyhhTfJmYUuxJjO6W04wrMl1y6FYkDcLK2FNocs9uEJlTXlec7DmhQsX0MHBQZZXKWsyRZdixYp0kKw5btw4WV6ywU8JazKjZOWEOVjz+vXrsr1KWJOcYqOENQcMGCDLS94sbIlzTVNZk2nwO3v2rGwvyZpCl0ZwBXmzsBLWpG9MFwtzsaZYUSkd5mDNuXPnKjrXNJU11ZHGX4fUwkG1cFCVAsktHGTCy8tLtMueL8qWLSv7MJgJd3d32Yk2Juzt7Y1GTUgNpvNWqDuXL5gkEH39sJRgOm+Fbt4Tirp16wp2IQlFlSpVRDt7+aJkyZL4/fffm+R1dnYWvfWGLxgoMcXLQInQzSR8wRyAyT2UBfh/saXc5DMTNWvWlF1Aw0SFChVkbxiZ8PT0lA1+TDg4OIh2m/IFAyVCHSp8wUCJh4eHbC8DJfQoRynBQInc4gomqlWrJtppxhdlypSRnRBlws3NzeT1tlixYia/iwUKFMBu3brJTiAD/B9K5B4SAPwfSuQWeTNRu3Zt2cXDTFSqVEn2QSETJUqUkH3gz4Szs7PJ7yJTbCm3cBDg7wOwzp07yy4OBfh/EkhuYhLg/0mg+vXrm/Qz16hRA1u0aGGSt1y5cqLdhHzh4eEheiMKXzg4OJi892EOwIRuguILpthSbtIK4P8HYEK3IQhFvXr1BG/7EoqqVavKTlwzUapUKZPXWxcXF5PX26JFiypab7t06SK7WAng/wdg5cqVk+1lDsDq1Klj0vddq1YtbNq0qUneihUrmrz3KV68uNGYUKnh5ORk8rvIFBwI3fLOF8wBmNDNJHzBHIDJTUwC/P8AjB5ZJTVyKmua+i6agzWFbsHkC6WsWadOHZU1JYalWVPo9hmhqFmzpuwCGiaUsqap660S1rSzs1PMmkI3k/CFOVhTbnEFE0pYs3Tp0iavt25ubia/i0WLFjX531SGNemR8lLiv8qapuZ9nJycchxrMsWWQjdB8QXDmkK3zwhF9erVcxxrKsmzm4M1ixcvLtvLsKbcokMmciprKllvlex9lLJm+fLlZXtzKmsqybMrYU2m2FJlTWmRU1mzW7duWKhQIdlepazZuHFjwZv3hKJOnTom730qV66siDWV5NmVsGbfvn1N8lqaNS11rik2jYwvlLKmkr1Pz549BW8d5gtLn2vmNNZ0dXW1WJ69a9euePjwYfUGQgtKLRxUCwdVKdDixYsl/YPBXIO+YcMGwzXou3fvRi8vL8ERCgB/byCYjhzmGvTLly+jl5eXpAQB05HDjJ0ICAhALy8vSYk+piOHuQb9y5cv6OXlJSmBxHQjk9egN27cWFIimOsa9L59+0pKMDIJMvIa9KlTp0pKXDEJMvIa9NWrV0t6xlwjtw4fPoxeXl6C17YDsDtymLET9+7dQy8vL0kHYExHDjN2IiwsDL28vCQlF8jbHzIzM1Gv16OXlxe6urqKej08PIzGTrRt21ZSoQPTkUNegz5s2DBJB+jMJpG8Bn3u3LmSYJm8+YpZe7ds2YJeXl6i3dhcI7fOnTuHXl5ekjas9Hjn58+fo5eXl6QCL6Yj5+7du6jVavHjx4/o5eUlCWi4xjvXr19fUtcq2ZHDXIPerVs3ScBbtGhRQ0cOcw36+PHjJYEU2ZHDXIO+bNkyyettmzZtcN26dYZxo/v27UMvLy/RRA5zIEFeg379+nX08vKSdHMGPXIrKCgIvby8BK98Z6JSpUqsa9DT0tIkr7fMNehkR06zZs0kJYLJ2x+Y9faHH34QvGqeCfL2B2a9/eWXXyTdSkne/sBcg75+/Xr08vISHB8FwD3e+fjx4+jl5SXa5Uve/sBcg+7r6yt5vWVuf2BGbn348EHyess1cqtGjRqSkoRcI7c6duwoqaiea7zzyJEjJSWRuUZuzZ8/X/Caeia4Rm7t2LFD8nrLjNxixk5cuHBB8t6Huf2B2fu8evVK8t6Huf2BGTuRmJiIXl5egmNUmGBufyBHbn377beSEhPM7Q/kyK1evXoJjtlhgmvk1qRJkyQViDIHEuTIrRUrVkje+9Ajtw4ePChp70Pesvzq1SvU6/V4+/Zt9PLyktQ9So93DgkJQS8vLyxWrJiolxm5dePGDdRoNJiZmYleXl6Sbs/x9PQ03P7A7H1atWolab0lb39gRm4NHjxY0t6HvP2BGTsxe/ZsSXsf5kCCHLm1ceNG9PLyEj1Q5hq5dfr0afTy8hItDGEOJMiRW0+ePEEvLy9JSXdy5JZOp8OYmBj08vKS1OnPNd65Tp06ktZbrvHO33//vaS9D3n7AzNya8yYMZL2PlzjnU1hTWYEjBLWvHLliizWJEduKWHN5ORki7Fmv379chxrHjlyJFtZkxm5FR4enm2sydx8xex9lLDmjz/+KJk16ZFbSlhz69atFmHNFy9e5EjW7N69uyzWJEdujR8/XtLeh2vk1vLly7OFNemRW0pYMzg4WDJr0iO3lLJm8+bNs5U1mb3PjBkzso01yZFbSljz4cOHsliTHO/MsKaUvQ8Xa9asWTNbWZPZ+yhhzQULFliENS9evJhtrEmOd/78+XO2sKazs7PReGclrPnzzz9LZk16vLMS1vzrr79yHGtqNBrZrEnm2ZWw5pAhQ2Sx5p49ewx7HzmsSY933rRpU7awJj3eWQlrxsbGKmZNKXsfLtbs0qVLlrMmU/hPjnfOTtYkxzsrYc3AwEDJ6y093lkpazZp0iTHseaaNWsUs6aUvQ/Nmvfv388W1uQa75xdrEmPd1bCmvPmzbMIa54/fz5bWZPJsytlzQYNGshiTXK8c/fu3SXtfbhYc8KECdnCmswtywxr7t+/P9tZU6fTKWLN9PR0k1iTHLWuynJSCwfVwkFVCnXixAnOBc/JyQmHDh3KSpDRevr0KaeXqxiDVnR0NOc/6lwJMlppaWmc/7hyFWPQ0uv1nF0QZILMz8+PtyKcr9qcKcZgNolc4hs7wbVJpMU3jsnd3d1ok0iLb2Sovb29YRQHs0mk9ebNG05QJjeJTIKM1qdPnzg3X8wmkUyQ0dJoNJzJWHIUB5Mg4xJfpy6TIHv69CnvM/7xxx85vXQxBpf4rkEnR3Ewm0RaBw4c4PSSoziYBBmt+/fvc3rJURxMgoxWeHg4Z9KKKcbYvn27IUFGKzk5mTNBaGtra7RJpKXT6Ti7fMlNIpMg4xLfTSO1atViJci4NGnSJN5NIpkg49LatWs5vVzFGLT4xmZxJcho+fn5cR4ScBVj0IqNjeXcYJOjOJgEGa2MjAzOJB85ioNJkNHS6/WcNy2SoziYBBmX+K66Z0ZxMAkyLv3666+cXuZAgkyQ0dq5cyen183NzTCKgwE2WnxjBbgSZLTevn3LCcpcxRi0Pn/+zAlCXIX/tLRaLWeijhzFERAQwOlFRN4uTrrwn0t8Y36YYgzmQIJLy5cv5/SSYx/5robnG9XDdSBB69GjR5xe5kCCTJDR+vDhA2cCmRzFwSTIaKWmpnImj7gSZLT0ej3nDSdcCTIu8XXp0YX/XJo6dSqnlxzFwbfebty4kdPLVfhPy8fHh9NLjuLg2/v4+/tzrrdM4T95IEHr48ePnMlF8kCCj50yMzM5E+42NjaGAwkmQcYlrtEi5CgOJkHGpcGDB3N+XnQxBpf4xjtzJcho/fnnn5xermIMWrdv3+b0chX+0woNDeVMWnEV/tP68uULZxKYHMXBHEjQ0ul0nAlVchQHcyDBJb6OambsI1OMwSW+MT/MgQSTIOPSqlWrOL1cxRi0hFiTLsag9ezZM05vVrNmenp6jmTNmTNncnrNwZpkMQYtvhF2SliTqxiDlhBr0sUYtDQaDefBCFcxBpeUsObw4cM5vVnNmnyj0b5m1kxJSRFkzbVr15rMmmQxBpf4bhpRwpp0MQaX1q1bx+mVwpp8Y7OymjXj4uIsxppct1+YgzXJYgwu8bEmVzEGLb5RlFzFGLSUsiZXgUR2sCbXIaVU1mzbti3nz2wO1mSKMbjEN26UHPtoCmvSxRi0Hj9+zOlVwppcxRi0lLIm1xjL7GBNvhGHWc2aFy5c4PSagzXJYgxaYqxJFmPQyszM5Cw2YFiTLMbgEt8YS7oYg0tDhgzh9H7NrHnnzh1Ob3awJlfxnzlYkyzG4BLfzaVKWZMsxuCSEtY8efIkpzerWTMmJsZirMk1RYWr8J9LfDfa0U3mXBJjTbLwnxbf6F+lrEk3mdMKCgrizbN/zazJdyNmVrPmkiVLOL3mYE2hPPuDBw9411sx1oyIiBBkTbLwn5YU1mQK/2np9XrOyQ1chf9c4mNNuvCfSz///DOn92tmzZcvX1qMNbmKac3BmmThv6qvS2rhoFo4qEqB6H/gmGIMoU0iKfIKda7uUCFNnjyZtUmku0OFtH79es5NIl+CjNS5c+dkbRJJvXr1yvAPHLlJ5EuQkYqLizN0BZKbRKEEGaOMjAxWpyzdHSokvV7PGqNAd4eKaeDAgQYvWYzBt0kkNW/ePINXSjEGqd27dxu8XN2hQrp58yZrk0h3hwrp3bt3hmQqV3eokJKSkgzdm1I3iYy0Wi2r+4rZJAolyEiRo2eYTaJQgowUObKcqztUSH/88YfRJvHIkSO8m0RSx44dY20SxYoxSD158oS1SaS7Q4UUFRVlSKZydYcKKS0tzZBM5eoOFZJer2eNyqC7Q8VEjvkhDySkvIvTp083eKUcSJDavHmzwcscSAglyEhdvHjR4CW7Q/kSZKQCAgIMB8nMgYRQgoxUQkKCoUNXajEGI41Gw+qipLtDxUResU93h4pp6NChBi9Xd6iQFi5cyFpvxQ4kSO3bt8/g5eoOFdLdu3cNXvJAgi9BRiosLMyQTJVyIEEqOTnZkEwlDySEijEY6XQ6VpdcjRo1RIsxSJHX5EspxiA1YcIEg5erO1RIa9asMXi5ukOFdOrUKYOXqztUSC9evDB4ubpDhRQTE2Powia7Q4USZIzS09NZ3dDMgYRQgoyRXq9njQmju0PF1K9fP4OXOZAQSpCRmj17tsErpRiD1Pbt2w1eru5QIV27do213tLdoUIik6lc3aFCSkxMNHTLc3WHCkmr1bJuc6G7Q8VEjrugu0PFNHLkSIOXOZAQSpCRWrp0qcHLHEgIJchIHTp0iLXe9u7dWzBBRsrX11dWgoxURESEodOe6yYiIaWmphpuGCGLMYQOJBgpZU1yfEx2suaGDRvMzpp8xRiklLBmfHy8EWuKFWMwUsqa5Lhic7GmlL2PEtbcs2ePRVgzJCTE7KwpVIzBSKvVsm45U8qaYsUYpJSw5ooVK1h7H6YYIyeyplAxBqO0tDTD7WqmsCY5kpphTaFiDFJKWPOXX34xYk2hYgxSJGtKKcYgdenSJbOxplgxBilzsiZTjJEdrDls2DCzsKaUJnNS+/fvN5k17927Z8SaQsUYpJSyJnOLDMOaYoX/jGjWlFL4T4ocR5tTWPP06dOcrCklz66ENWNjY83KmmLFGIz0ej1rRKoS1pRSjEFKCWvu2LGDtd4yxRhyWVNK4T+p4OBgs7Om1Dy7EtYkx0ozrClUjEFKCWsuW7bMLKwppRiD1MOHD83GmmLFGKSUsiY5Bjc7WXPKlClmZU2hwn9S58+fN5k1X79+bcSaQoX/pJSwZmZmJos1pRT+M6JZU0qTOalBgwblONa8desWJ2vyFf6TUsqaTIOsOVhTrPCfFDniXS5rjh07lsWaYoX/pJSw5vHjx1l7H3OwppS9T1RUlKFo2VysKVT4z0gpa5LjnRnWFCr8J6WENbds2WI21hQr/Ff19UgtHFQLB1Up0Pnz50W7Q/nk5+dn2CRKSZCRiomJwSZNmkjeJJJKS0vD1q1bi3aHckmv12Pv3r1Fu0P5NHHiRFnFGKSWL18u2h3Kp3379ol2h/Lp5s2bshJkpN6+fYuNGzcW7Q7lUmJiIjZr1kzWJpGRRqPBjh07ytokkho8eLCsTSKpGTNmGI2Fkqr169eLdofy6fjx47ISZKQeP34sqTuUS5GRkdi4cWPR7lAupaSkYIsWLUS7Q7mk0+mwW7duot2hfPrpp59Eu0P5tGDBAlmbRFI7duwweZN46dIlWQcSpPz9/bFJkyaSizFIxcXFYZMmTUS7Q7mUkZGBbdu2lVWMwUiv12Pfvn1Fu0P5NHnyZNHuUD6tXLlStDuUT3/99Zdodyif7t69K9odyqeQkBBs3LixaHcol5KSkrB58+ai3aFc0mq12KlTJ1kJMlLDhg0T7Q7l05w5c0S7Q/m0ceNGWYX/pM6cOSPaHcqnZ8+eSbr1lktRUVHYuHFjyQcSpFJTU7FVq1ai3aFc0uv12LNnT1kHEqTGjRsn2h3Kp8WLF8tKkJHas2ePaHcon65evSorQUbqzZs32LhxY8mF/6QSEhKwadOmot2hXMrMzMT27duLdofy6YcffhDtDuXTtGnTRLtD+bRmzRpZBxKkjh49ajSCWKp8fX1lHUiQCgsLw8aNG5vUHfrlyxds3ry5rMJ/RjqdDrt06SJ6ExGfRowYIavwn9S8efNEbyLi07Zt20RvIuKTEtZ8+fKlItZs3LixrGIMRunp6dimTRtFrCmnGIOUUtaUU4xBSglr3rp1K0ezptRiDFJKWHPmzJmKWFNO4T+pEydOKGJNeiyUVCllzZYtW1qENUePHq2YNaUWY5DauXOnyax5+fJloxHEUqWENePj47FJkyasEcRSpZQ1+/Xrl+NY89ChQxZhzdDQUJNZ8/Pnz9isWTNZxRiMlLLmjz/+KKsYg5QS1ty0aZNFWPP58+dmYU25eXZzsabUJnNSSlhzyZIlilhTTuE/qWvXrv1nWdOUvc/06dMVs6bUYgxSSllTTpM5KSWsmZycbDHWHDlyZI5jTR8fH6MRxFKlhDVjY2MVsWbr1q1lFf4zUsqakyZNsghr7t+/P0ezptTCf0ZKWXPIkCGyCv9JKWHNDRs2WIQ1nzx5kuNYU6/XY/fu3RWzJjmCWKoWLlyoiDXlNJmTUsKaAQEB2Lhx4xzNmuoI4pylrCgctMK/C+NUCcjKysoDAMIBAMLDw8HDw8PC35EqU4SIYGVl9Z/yAkCO/L5Vr3QvgPqMc4IXQH1O/3YvgPqM/81eS35t1SvPC6C+i/92L4D6jHOCF0B9Tv92L4D6jP/tXgD1GecEL4D6nP7tXgD1Gf+bvZb82qpXnhdAfRf/7V4A9RnnBC+A+pz+7V4A9Rn/m72W/NqqV54XQH0X/+1eANOfsSrLKiIiAjw9PZlfeiJihNI/M5fSP4BPVlZWhQCgPQDUBYA6AOAOAI4AkA8AEgHgNQCcA4DtiPhRwp/XFgBGAEC9f/6cOADwBYAtiOiTBT+Cqn+ZlCx8/zWvJb+26s0eryW/turNGV9b9WaP15JfW/XmjK+terPHa8mvrXqzx2vJr616c8bXVr3Z47Xk11a92eO15NdWvTnja6ve7PFa8mur3pzxtVVv9ngt+bVVb/Z4Lfm1VW/O+NqqN3u8lvzaqjdnfG3Vmz1eS35t1Zs9XlX/TmVZ4SD8XeB3gOd/cwSAJv/EVCsrqwGIeIHrN1r9/bd2E/xdNEjKHQC6AkBXKyurLQAwCpnSWFWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUoVp7KycBDg7/G+1wDg8T//fxQAWAOABwD0AIBuAOAAAKesrKzqIuILjj9jIfy/aPApACwHgLcAUAYApgFAzX/+9zgAmJ1lP4kqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVL1L5BVVl3SZ2VlZYOIOpHf0wUAjv/zy2OI2J3638sCgD/8XeD4CAAaI2Ia8b/nB4Ab8PcoZC0AVETEt2b7If7/dTzg78JHCA8PBw8PD3N/CVWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpcpIERER4OnpyfzSExEjlP6Z1kr/AD6JFQ3+83tOAEDAP79szPFbJsH/b0UcRxYN/uNPBYBx//wyFwBMNOV7VfXf0IsXL+D58+dgSrHsu3fv4N69e6DTif61NlJcXBxcuXIFMjMzZXvT09PhzJkzkJqaKtuLiHD69Gn4/PmzbC8AwIULFyAmJsYk782bN+H9+/cmeR8+fAj+/v4mPafXr1/D48ePTfKGhYXBrVu3QKvVyvYmJibChQsXICMjQ7ZXo9HAqVOnIDk5WbYXEeHs2bOQkJAg2wsAcPnyZYiKijLJe+fOHXj37p1J3qdPn4Kfn59Jz+nNmzfw4MED0Ov1sr1RUVFw7do10Gg0sr0pKSlw9uxZSEtLE//NlPR6PZw6dQqSkpJkewEAzp8/D3FxcSZ5r127BuHh4SZ5Hzx4AG/evDHJ6+fnB8+ePTPpGYeEhMDdu3dNWm/j4+Ph8uXLJq23GRkZcPr0aUhJSZHtZdbbT58+yfYCAFy8eBGio6NN8t66dQtCQ0NN8j569Ahev35t0nMKCAiAR48emfQuRkREwM2bN01ab5OSksDHxwfS09Nle3U6HZw+fRq+fPki2wsAcO7cOfj48aNJ3itXrkBkZKRJ3rt370JwcLBJ3mfPnsGLFy9MesbBwcFw//59k55xTEwMXL161aT1Ni0tTfF6a+rex8fHB2JjY03yXr9+HcLCwkzy+vr6QmBgoEneV69ewZMnT0x6xu/fv4fbt2+btN4mJCTAxYsXTdr7ZGZmwqlTp0xeb8+cOWPyenvp0iWT9z63b9+GkJAQk7xPnjyBV69emfScAgMD4eHDhya9ix8+fIDr16+btN4mJyfDuXPnTF5vT506ZfJ6e/78eYiPjzfJe/XqVYiIMC1Pcv/+fQgKCjLJ+19kzVOnTkFiYqJsL8B/jzXDw8MtwpparRZOnz6dI1nz7VvTeoKVsGZQUJDKmjJ0/fp1i7Dmy5cvLcKaHz9+hEuXLpm03mZmZv7nWPPx48c5kjXPnz+vsqZEPX/+/D/Fmkrz7JZkzYCAAJOeU05kTY1Go2i9/S+ypq+vb45kTSV7H1NZ89q1ayprSlR6ejqcPn1aZU2J8vf3/0+xJgCorClD0dHROZI1fXx8LMaapubZlbBmaGgo3Llz5z/Fmqr+fcqywkEZYv4m5yX/o5WVlRUAfP/PLwMQ8T6X+Z//zqwAXf7xqVJlpGLFikG9evWgZMmSMGbMGFmFBy4uLtClSxdwdXWFIUOGwNGjRyUng+zt7WHy5Mng6OgIvXv3hj///FNyMihv3rywfft2sLe3h06dOsHmzZslJ4OsrKzg2rVr4ODgAC1atIBVq1bJSgYFBQWBq6srNGjQABYtWiQrGfTlyxcoWbIkVK9eHWbNmiUrGZQvXz6oUqUKlCtXDiZNmiQrGeTk5ARNmjQBDw8PGDlyJJw5c0byhsjFxQUGDBgAzs7O8MMPP8ChQ4ckJ4MKFy4MCxYsAAcHB+jevTvs2rVLcjLI1tYWDh8+DA4ODtCuXTvw9vaWnAyysrICX19fw8/9xx9/yEoGRUZGgpubG9StWxd+++03WckgrVYLZcqUgSpVqsD06dNlJYMKFy4MtWrVgtKlS8O4ceNkJYNcXFygXbt24ObmBsOGDYMTJ05I3hA5OTnB6NGjwcnJCfr27Qv79++XvCEqUKAArFu3DhwcHOD777+Hbdu2SYYTa2tr8PHxAQcHB2jVqhWsXbtWVjLo1atX4OzsDN9++y0sXboUXr58Kfk5JSQkQPHixaFmzZrw66+/yio8sLW1hQoVKkCFChVgypQpspJBDg4O8M0330CJEiVg9OjRspJBLi4u0KNHD3BxcYFBgwbBkSNHJMOJvb09TJ8+HRwdHaFXr16wZ88eycmgPHnywJ49e8DBwQE6dOgAmzZtkpwMsrKygtu3b4OjoyM0a9YMVq5cKSsZ9O7dO3B1dYX69evDwoULZSWD0tLSoFSpUlCtWjWYOXOmrGRQwYIFoWrVqlC2bFmYOHGirGSQk5MTNG/eHDw8PGDEiBGykkHOzs4wZMgQcHJyggEDBsDBgwclJ4MKFSoES5cuBQcHB+jWrRvs2LFDcjLIxsYGjh8/Dg4ODtCmTRtYv369rGTQ48ePwcnJCRo3bgzLly+XlQyKjo4GDw8PqF27NsybN09WMggRoVy5clCpUiWYNm2arGRQ0aJFoU6dOlCqVCkYO3asrGSQi4sLdOrUCVxdXWHo0KFw/PhxyckgR0dHGD9+PDg6OkKfPn1g3759kpNB+fLlg02bNoG9vT107twZtm7dCh8+fJDktba2hsuXL4ODgwO0bNkS1qxZIysZFBAQAC4uLtCwYUNYvHixrGRQUlISlChRAqpXrw6zZ8+WlQzKkycPVKxYEcqXLw8///yzrGSQo6MjNGrUCDw9PWHUqFGykkEuLi7Qp08fcHZ2hoEDB8Lhw4clr7dFixaFX3/9FRwcHKBHjx6we/duycmg3Llzw4EDB8De3h7at28PGzdulJwMsrKygnv37oGjoyM0bdoUVqxYIavwICwsDNzc3KBevXqwYMECePr0qeRnnJmZCaVLl4aqVavCjBkzZCWDChUqBNWrV4cyZcrA+PHjZSWDnJ2doVWrVuDu7g7Dhw+HkydPytr7jBgxAhwdHaFfv35w4MAByXufggULwqpVq8De3h66dOkC27dvl1x4YGNjA2fOnAF7e3to3bo1rFu3TlbhwfPnz8HZ2RkaNWoEy5Ytk1V4EBcXB56enlCrVi2YO3eurMIDa2trKF++PFSsWBGmTp0qq/DAUqzp4OAAU6ZMMex99u7dm22seePGDXB0dITmzZtnK2smJydDyZIlwcvLK8ewJsOY2c2auXLlgsOHD4O9vT20a9cONmzYkCNYU6fTQdmyZaFy5crZyprOzs7Qvn17i7Dm+vXrczRrzpkzR1bhgRLWtLe3h2+++QaKFy8OP/30U7axZrFixWDGjBng4OAAPXv2lMWauXPnhr1791qENUNCQizCmgUKFIBq1aoZWFNOg58lWXP58uXg4OAAXbt2zVbWfPLkCTg5OcF3332XrawJAIpZs2TJktnOmhMmTDCwppw8uxLWtLKyYrHm6tWrcwRr5s2bFypVqmQR1uzbt2+2s6atra0i1rx//76BNf/44w9ZhQdKWFOj0RhY85dffslW1mzTpg24u7vDjz/+mGNY8+zZs+Dg4GBx1pSTZ1fCmvb29lCvXj0oUaIEjBkzRlaRuyVZc+fOnWBvbw8dO3bMVtYMDg62CGvmz5/fZNZk1h2GNeXufZSw5sKFCw2suXPnzmxhTYC/Cy0dHR2hcePG8Pvvv+cI1ixSpIhFWNPR0RHGjBnDYk2peXalrHnhwgUWa8q5TIZkzSVLlmQba+bOnduQZ588eTJcv35d8ruolDV79uyZ41jzzp07LNY0tcFP1b9EiGixAIBK8PeIYQSAh9T/Vvqf/44AsEnkz9lM/N5SWfB9ejB/fnh4OKrKuRozZgwSf1ewQIEC2KVLF9y+fTtGR0cLev/44w+WN3fu3Ni6dWtct24dhoaGCnqPHTvG8lpbW2OjRo1w2bJl+Pr1a9Tr9bzeJ0+esLwAgLVq1cK5c+fio0ePUKfT8XqjoqIwb968LG/FihVx6tSpePPmTdRoNLzetLQ0dHNzY3mLFy+OY8aMQR8fH0xPT+f16vV6rFOnDsvr5OSEQ4YMwWPHjuGXL18EP69evXqxvIULF8bevXvj3r17MT4+XtA7ffp0ljdfvnzYsWNH3Lx5M0ZGRgp6N2/ezPLmypULW7RogatWrcLg4GBB76VLl1heKysrbNCgAS5atAhfvHgh+IwDAgLQ2tqa5ffy8sJZs2bh/fv3BZ9xQkICFipUiOUtW7YsTpo0Ca9evYqZmZm8Xo1Gg2XKlGF53d3dceTIkXjmzBlMTU0V/JmbNWvG8trb2+MPP/yAhw4dws+fPwt6hw4dyvIWLFgQu3fvjrt27cLY2FhB78KFC1nePHnyYLt27dDb2xvDwsIEvfv372d5bWxssEmTJvj7779jQECAoPfu3btG72LdunVx/vz5+OTJE8FnHBYWhra2tixvlSpVcPr06Xj79m3UarW83uTkZHR0dGR5S5UqhePGjcOLFy9iRkYGr1en02G1atVYXhcXFxw2bBieOHECk5OTBX/mTp06sbxFihTBvn374v79+zEhIUHQO2HCBJY3f/78+P333+O2bdswKipK0LtmzRqW19bWFlu1aoVr167FkJAQQe+pU6eM1ttvv/0Wly5diq9evRJ8Ti9evDB6xjVr1sRff/0VfX19Bd/F2NhYzJ8/P8tboUIFnDx5Ml6/fl1wvU1PT0dPT0+W19PTE0ePHo3nzp3DtLQ0Xq9er8dvvvmG5XV0dMRBgwbhkSNHMCkpSfDz6tevH8tbqFAh7NmzJ+7Zs0d0vZ09ezbLmzdvXuzQoQNu2rQJIyIiBL3bt283Wm+bNWuGK1euxKCgIEHvtWvXjNbb+vXr48KFC/H58+eCzzg4OBhtbGxY/mrVquHMmTPx3r17gu9iYmIiFilShOUtU6YMTpw4Ea9cuSK43mq1WixfvjzL6+bmhiNGjMBTp05hSkqK4M/cqlUrlrdYsWI4YMAA/OuvvzAxMVHQO3LkSKP1tlu3brhjxw6MiYkR9C5dutRo79OmTRtcv349vn//XtB76NAho3fxu+++w+XLl6O/v7/gc3r48KHRu1i7dm2cN28ePn78WNAbERGBefLkYXkrVaqE06ZNw1u3bgk+49TUVHRxcWF5S5YsiWPHjsULFy6I7n1q1qzJ8jo7O+PQoUPx+PHjonufbt26Ga23ffr0wX379uHHjx8FvZMnTzba+3Tu3Bm3bNmCHz58EPRu2LDBaL1t2bIlrlmzBt++fSvoPX/+vNG72LBhQ1y8eDH6+fkJPqdXr16hlZUVy1+jRg2cPXs2PnjwQHC9jY+Px4IFC7K85cqVw59//hmvXbsm+C5mZmZiyZIlWV4PDw8cNWoUnj17VnS9/e6771heBwcHHDhwIB4+fFh07zNo0CCW187ODnv06IG7d+/GuLg4Qe+8efOM1tv27dvjxo0bRfl0z549Rnufpk2b4ooVKzAwMFDQe+vWLaN3sV69ejh//nx8+vSp4DMOCQnBXLlysbxVq1bFGTNm4J07dwTfxaSkJCxWrBjLW7p0aRw/fjxeunRJcO+j1WqxcuXKLK+rqyv++OOPePLkSdH1tn379ixv0aJFsV+/fnjgwAH89OmToFcJa65YscJovc3JrHnjxo0sZc26deuyvAxrHj16NEtZ85dffjFab5WwZvPmzbOcNQMDA/9VrCll7zNs2DCjvY9S1tywYUOWsua9e/eM3sU6dergb7/99q9lzc6dOxvtfaSy5sSJE1ne7GLN06dPG623DGu+fPnSJNacM2dOlrJmRkYGJ2v+9NNPWc6a/fv3Z3mzizV37NhhtN6agzWfPXuWpaxZtGhRlpdhzcuXL2cpa7Zu3ZrlLVasGPbv3x8PHjwomzULFCiAXbt2lcSay5YtM9r7fO2sGRkZKciaQu/i18SahQsXxj59+uCff/4pyppTpkwx2vsoYc0WLVrg6tWrs5Q1X79+bcSa1atXV1mTR7/99pvR3icnsmaVKlXwl19+kcSa9vb2LK9U1tTpdBZjzbFjxxqtt9nBmsePHzdab6Wy5tOnT42eMcOaDx8+FGXNfPnysbxyWNPd3Z3lLV68OI4ePRrPnz+fpazZu3dvo71Pr169spw1t2zZYrT3+dpZ89OnT1i4cGGWN7tYs3nz5iyvUtbs1q0b7ty5U5Q1Fy1aZLTeSmXNAwcOGK23jRs3zhbWzJ07N8tbuXJlk1mzZMmSBtYUehd1Oh16eXmxvDmBNdeuXWu092nVqhWuWbMG3717J+hVwpp+fn5Gz1gJa5YvX14Sa6qyrMLDw8nn5oHmqIkzxx8i6wsC5AeAcgDwMwBEEz/QAOr3dSD+t4kif+Yk4ve2N+F78hCJOsyfrxYO5ly9evUKt23bZrR4khsivsKDkJAQPHr0qFEylgwmGXT37l3WP5bR0dF47tw5o38gyeArPPj8+TP6+Phg1apVeb1ubm44fPhwo2SQRqNBHx8fbNmyJa9XKBl05coV/OGHH3i9Qsmgu3fv4tSpU3m9QsmgZ8+eGcEM/Y8lXzIoMDAQ9+7dy+sF4E8GhYWF4alTp4z+gSSDr/AgPj4ez58/b5SMJaNEiRKcyaCUlBT08fExAhIy+JJBer0efXx8jDZBZDDJIK7Cgxs3buDw4cN5vfny5cNOnTpxJoN8fX3x119/5fUKJYP8/PzQ29tb8F385ptvOJNBwcHBeOjQIaNkLBl8yaAPHz7g2bNnjZKxZPAlgz59+oQ+Pj5GyVgy+JJB6enp6OPjg40bN+b1CiWDLl26ZHTASYZQMuj27dtGBXxkCCWDHj9+jEuWLOH1MsmgP/74wygZ5O/vjzt37hR8F/mSQaGhoXj8+HGjZCwZfMmgmJgYPH/+vFEylgy+ZNCXL1/Qx8cHq1evzuvlSwZptVr08fHBNm3a8HqFkkFXr17FwYMH83qFkkH37983SiyQIZQMev78Oa5evZrXK5QMevPmDe7fv98oGUsGX+FBREQEnj592igZS0bFihVxypQpRsmgjx8/oo+Pj1Eylgym8IBOBqWmpqKPjw82aNCA1+vo6IiDBw/mTAb5+Phg165deb1CyaCbN2/iTz/9xOsVSgY9fPjQKJFLhlAy6OXLl0aFCmQIJYPevXuHR44cMUrGksGXDIqKisJz584ZJWPJ4EsGJSYmoo+PD1aqVInXy5cMyszMRB8fH6NiAzKEkkGXL182KqYlQygZdOfOHfz55595vXny5MG2bdtyJoOePn2Ky5cv5/UKJYMCAgJw9+7dvF4A/mTQ+/fv8eTJk0bJWDL4kkFxcXF4/vx5o2QsGWQyiFxvk5OT0cfHB2vVqsXr5UsG6XQ69PHxwQ4dOvB6hZJB169fN0rykcEkg7Zu3WqUDHrw4AHOmjWL10sWHtDJoBcvXuD69esF38WGDRvikiVLjJJBQUFBePDgQaNkLBl8yaDIyEg8c+aMUTKWDL5kUEJCAvr4+BglY8ngKzxIS0tDHx8fbNSoEa9XqPDg4sWL2L17d16vUOHBrVu3jA5VyBAqPHj06JFRIpcMocIDOaxJFx6EhITgsWPHjJKxZChhzdKlS+OECROMCg9U1jQOMdb8888/eb0A5mNN8l2Uw5p00SXDmvXq1eP18jX4yWFNrsKDGzdu4IgRI3i9SliTafDjY82NGzcKvot8rPn27VuLsmaFChV4vVnJmvQBJxlKWZNp8Mtu1mQa/LKbNUuVKmUya7q4uAiyZtu2bXm9XwNr0kWXz58/NyrSJINkTbrBTw5r0oUHDGva2dnxepWyJlfhAcOadKElGUKseeHCBYux5vz583m9Qqz56tWrr5416Ty7HNY8ffo0J2vSxQZkCDX45VTWpAvD6PgaWJN8FxnWrF27Nq9XKWsyefbsZk2mwc+crBkcHIx//fWXIGvWqFEjy1izbNmyvF4+1mT2PkKs6eDgIMiaPXr04PV+Daz55s0blvf169dGDdj0M65fvz4uWLDAZNacMWMGJ2ueP38enZyceL18rJmUlCTKmq6uroKsSTdRkyHGmgMHDuT1mos16Tz7s2fPcOXKlbxec7Hmo0ePOFmzQIECvF6lrMnV4KeENRFREmv27t07S1hz7ty5gu8iH2u+fPnyX8+a5N4nIyMDfXx8sEmTJrxepazJ1+B3+/ZtowI+MoRY88mTJ6Ks2aRJkyxhzRMnThg12JKRlaxZo0YNXm9WsaYqyyrHFg4CwGChlwwAfgcAK8ozivjfe4j8+T2I3zvShO9PcBEgQy0czLmib4AQCzIZRHdBigWZDNq3b58sL5kMun79uiwvmQwKCAiQ5aWTQUIJGDroZBB926BYMMmge/fuYc+ePWV5ycIDoU09V5DJoHXr1snykoUHJ06ckOUlk0EPHjyQ5SWTQaGhobK8dDJIKBnKFWQySKgogyvIZBB926BYkMkg+sYdsWCSQcePHzfqOhcLsvDgwoULsrxkMoir20Mo6C4UIeijg04GCcE5V5CFB/Rtg2JBJoPGjRsny0smg+jbXcWCLDz466+/ZHnJZBBXp6tQkMmgoKAgWV46GeTs7CzrGZPJIKGDCa4gk0F9+/aV5SWTQTNmzJDlJQsPhACbK8hkEN15JRZkMujx48eyvHQySCiRSgeZDHr9+rVgMpQryMIDoUQZVzDJoJs3bwoWh3MFWXgglNDkCjIZJHa4QAeZDLpy5YosL5kMevXqlSwvnQwSSnjTQSeD6BsgxIJMBgkdEnIFmQwSOkDiCjIZtGrVKlleJhl06NAhPHr0qCwvU3iwa9cuzht8hYJMBr19+1aWly488PDwkOUnk0H0DRBiQSaDhJLWXEEmg+bMmSPLSyaDtm7dKstLJoPoWz7Egiw84LpZQCjowgOhgg46mMID5mbhihUryvrazM3CDx8+xHbt2snykoUHQgf2XEGyJn27q1iQrEnfcCYW5mLNwMBAWV5zsebz588FG664QilrMg1+SlhT6DCXK8jCg/8iawoVZXCFuVhTqFGDK5SyJlN4cPHiRVlepaxJFh4oYU36tkGxIAsPlLDm+PHjZXmVsCZZeKCENW/fvi3Ly7Dmxo0b8c2bN7K8NGsKHT5xPWMlrMncLHz37l3BAimuUMKaZOGBEtY8c+aMLK85WVPoEJkOc7Am0+BH3zYoFiRrCh3YcwVZeKCENcUaxukwF2u+fv1alvdrYU36tkGxYFjz6tWrilhTqEmVK5SyJlN4wHWrklCQrPnu3TtZXrrwQAlrCjUAcIW5WFOoUYMrzMGa+/fvx3Pnzsnykqz57NkzWV6GNZmbhZWwplDRMVcoYc0KFSoYWHP06NGyvF8Da964cUOWN2/evIrPNZkGPwcHB8lec7Amc7Ow0MUPXEGy5rRp02R5mZuFlbLmyZMnZXnNxZrv37+X5TUXaz5+/FgRawoVh3MFw5oXLlxQxJpihWx0KGXNzp07m4U1hS6NoMOcrClUkMoV5mDNs2fPCjapcoU5WHP37t2KWFPuuSZ5szBd5K4q+/VvLBx8CgD1eTxTid/XVuTPb0f83skmfH+SXwq1cDDnSm7hIBNFihQRvJ1IKPLnz4/ffvutSV5bW1uTvdbW1iZ/zwB/Q42cf9TJqFChAhYvXtwkr6enJ1apUsUkr4ODg+yCRSbs7OxkJ0SZyJs3r8nPKVeuXNiwYUOTvExC19RnXK1aNVkQRUaZMmUEb58RCjc3N8Eue6EoWrSoYAeTUBQoUMDkzzp37tyK3kVT/24B/J3QFepQEYpKlSoZjYCTGiVKlJCdDGHCyclJ8BYpoShcuLDJa1e+fPlMfsZK30Ul62316tVlJZDJKFeunGxQZsLDw0M2gDFhb28vO5HChJ2dncmfdZ48eUx+F21sbEz+ugB/35App3CQjCpVqgh25wpFqVKlsFy5ciZ5XVxcBDvNhKJo0aIm/xuTP39+kz9rS+59atWqJXgTlFBUrFhRsDtXKDw9PY1G3UgNJycnwZsUhKJQoUImf1558+a12HqrZO/j5eVlNP5WapQtWxZLly5tktfd3d1ovIbUULLeFixY0OQ9iNL1Vsnep06dOoK3vAtF5cqVZRVIkFGyZEnBDmyhcHZ2ln2gy4QlWdPUd9GSrFm+fPkcyZqmftZKWFPJ3sfSrCm3CIYJV1fXHMmaSt5FS7Km0E1QQlGiRAnZRd5M/BdZU8m7WL16dSxSpIhJXiWs6e7ubjHWtNTeJ6eyptBUDaFwcXExee+jlDVzYp49J7Kmo6OjItZUkmfPibk9paypJM9uKmsWK1bM5L2PEtZUkme3NGu6urqa5P0vsqapXqV7nxo1agjeOiwUSljTw8ND9gUOTOTEc82cypqlS5dWxJpK8uwqa0oPpaypnmtKC3Oca+7bt09whLKqrFVOLhwsAgBV/4m6ANAHAI7984MEA0BHDs8c4odtLvLnNyd+72wTvj91VPF/QJMnT5a8aSQrzDMzM3HdunVoZ2cnOCaDCQ8PD0OFeWpqKp46dQrt7OwkJYGYCnPmWt8XL16gnZ2d4OgGJuzs7AwV5nFxcfj582e0s7MTvIacCa5xpSVKlJD0DztXhXmTJk0kJ0Tq1avHukZ90KBBkg+SyG5mrVaLc+fOlfyMyW7mjIwM3LFjh+RnTF+jfvXqVbSzs5PUIVy0aFFDN/OnT5/w7du3aGdnJwlamW5mZoSMXq9HOzs7SZ1yZDczM0KmatWqgiMjmGC6mclxpR06dJB8OwHZzazX63HMmDGSn3HFihVx6tSpePPmTdRoNLh8+XLJz5gZV8pco37o0CHJ7yJ9jbqvr6/kd5HsZo6Pj8fY2FjJ7yLZzcyMkHFxcZH0jMluZmaETP369SU9Y7KbmRkh07t3b8nPmOlmZkbITJs2TfJzoseVbty4UfK7SI8rPXfunOR3kbk19NChQ5iYmIivX7+W/C4WLFiQdY16amqqrPWW6WZmRsiUKVNG8nrLdDMzI2RatGgheb2lr1EfNmyY5HeR6WZmRsgsWLBA8jNmupmZcaV79+6V/C4y3czMCJmbN2/KWm+ZbuaEhAQMCwuT/IyZm1y2bdtmGCFTuHBhSe8i17jS6tWrS15vv/32W0M3s16vx++//17yu0h2M+t0OpwwYYLkZ0x2M2s0Gly1apXkZ+zp6WnoZk5LS8Njx45JfsZMNzMzQubJkyeS11uymzkuLg4/fvwo+V1kupnJETIeHh6S3kW6mxkRsVGjRpLeRXJc6fPnz1Gv12P//v0lP2Oym1mn0+GsWbMkP6cyZcoYupkzMzNxy5Ytktdbsps5JSUFL168KPldpEd2vXnzRtZ6y3Qzx8TEYGZmpqy9D3lzFiJixYoVJT1ja2trQzczM0KmTZs2ktdbsptZr9fjyJEjJb+LlStXNoyQ0Wq1uHjxYsnPmLk19MKFC5ieno4HDhyQ/C46Ozvj0KFD8fjx4/jlyxe8d++erL0P08388eNH/PDhg+RnnC9fPkM3MzNCxsHBQfJ6y3QzMyNkateuLXnvw3QzMyNkunfvLvldZLqZmREyprAmM0JGCWsy4xilsiY5QkYJayYlJWU7azIjZJo2bZrjWHPnzp2yWZMZIWMKazIjZN69e5dtrEmPK1XCmh07dpT8LjLjSh89eoQ6nU4Ra/7+++/ZzppJSUn48OFDi7Km1L0PzZoNGjSQxZrkuFI5rEmPK50+fbpFWPP8+fMms6a/v7/FWLNs2bLZyprMuNLsYk3y1lClrHnr1i3Jz5icUGEO1ixSpIhFWLNLly4ms+bEiRNlsyYzrlQJax4/fjzbWJO5NTQuLg4TEhKyjTWZW0PNwZoDBgyQ/IyrVatmNtbcunVrtrImk2cPCgoymTU1Go1s1iTHlSphzbZt28piTWZChVzWJMeVarVaXLJkSY5jzaioKJNYk9n7KGHNOnXqZBtrkuNKp0yZkm2sSY4rZVhTyrtIs6afn58s1uzRo4fZWLNkyZLZyppMnn3w4MEms+a8efNksyYzrlQJa167di3bWJO5NTQ6OhoRMdtYs1GjRmZjzbFjx1qENQ8fPpytrLl3716Mj4/HuLg4Razp6uoqizWZCRVKWbNPnz4qa/IEzZppaWkmseb79+95a3FUZZ9ybOEg7xcH+AEA9ACgA4DB1P+WbTcOSvg+PZg/Xy0czNniG8dEjzHj0tu3b3kXbb6Z9ow+f/6MRYsW5fRWrVqVc6Y9I61Wy9uRxDfTnlSbNm04veTV8snJyZxevpFbUmbaL1++nNObP39+wyaRSZDROnLkCKfX1tbWaJNI69GjR5xecpPIJMhoffjwgXcjw2wSmQQZrdTUVN6uM3KMmUajMfLq9XreTgY6QcalHj16cHrJq+WTkpI4vXwjt8hijPj4eE4v3wgY8mp5JkFGy8fHh9NLjjFjEmS0/P39OTdf9MhsrmfMFJVwfW16k0grMzMTS5UqxellNolMgoxLTZo04fS6ubkZxpilpqZyegcPHszppYsxuDR//nxOL7NJZBJkXOIbAUMWY/BtEvmuyKavludSaGgo70aXHGPG9Yy/fPnCO/6OvFqea73V6XS8N9GQBxLp6emc33eHDh04vc7Ozjhs2DDDgQSX+MY7MwcSTIKMS3zjRskxZkwxBi2+8XfkyGwmQUaLbzwIcyDBXC3P9Zyio6N54Y+8Wp7rXUxPT+ftOiML//nWW74OP6YY49y5c7zrbZ8+fTi95NXyfOvtzJkzOb1MMQZzIMElvhEw5Mhsvj0q3zgmGxsb1hgzLr1584YzKUGPMeN6xp8+feK9TZMcmc31Lmo0Gt6bFuliDC61aNGC00sX/nOJb7wzXfjPpcWLF3N6yTFmTIKM1sGDB3nXW3KMGZfu37/P+y4yY8yYAwla4eHhvMkBZmQ2U/hPKyUlhfeGE3KMGde7qNPpeG+FIkdm8623Xbp04fQ6OTnh0KFDDYX/XJo0aRKnlyzG4Ftv161bx+nlSpDROnv2LKeXqxiDlp+fH+/ehxxjxvWc4uLieBNm5BgzrvU2IyODt+OeHJnNtffR6/W83evu7u6sAwkuDRgwgNNrb29vGGP2+fNnTi/fyC1yZHZsbCynd9euXZxe5kCCLMagpZQ1+RK5SliTHGPGx5p8N399DayZkJDA6f399985vVnNmnyjKM3BmmQxBi2lrMl3Y1BWsybfyK2sZs0LFy7wrrfmYE2mGIOWFNZkijFoZWZm8t5say7W5Nv7DBkyhNOrlDXJYgwu/fnnn5xeKax5584d3vU2q1mT74YTc7AmU4zBpY4dO3J6v2bW5Bt/x1WMQYuPNekxZlzPKSYmxmKsyXeDjhTW7Nu3L6eXZE2+vY8S1ty2bRvvequUNYXGmAUFBXHm2ZWyJl2MQUspa7Zs2ZLTm9WsuWTJEk5vVrMm3yjKr5k19Xo9761QdDEGl4RYk2wy5xLfeOevmTVfvnxpMdYsUaIEp9ccrMkUY3Dphx9+4PQqYU26GINLQqxJF/7T4hv9S4/M5pJS1uS7TTOrWbNt27acXimsyTfeOatZk2/UOsOazMhsLgmxJl34TyurWJNuMqellDV79uzJ6c1q1ty0aROnNztYky/PLoU1CxUqxPm16SZzWkKsSRf+c6lp06acXrrwn0tKWHPBggW86+3XwJpcz+n9+/dZyppM4T8tnU7He+upUtYkC/9VfV361xUO4t9FeX/98wMlA0BR4r+PIn7YHiJ/Rg/i947Mgu9RLRz8l6hZs2aGl4juDhXT0KFDWZtEujtUSAsXLmRtEunuUCHt27ePc5PIlyAjdffuXdYiT3eHCiksLIz1DxzdHSqk5ORk1j9wzCZRKEHGSKfTsUaaSCnGINWpUyeDV0qCjNSECRNYm0QmQca3SSS1Zs0a1iaR7g4V0qlTp1ibRLo7VEgvXrxgPWOyO5RrA0EqJiaG1UHFbBKFEmSM0tPTWaMypGwSGen1etYVyHR3qJj69etn8BYoUAC7deuGO3bs4N0kkpo9ezZrkyiWICO1fft21rvYuHFjwQQZqWvXrrGeE5MgY7pDhUQnU+nuUCElJiayRhPR3aFC0mg0rLE1TDGG1E1iq1atDF66O1RMI0eONHi5ukOFtHTpUtZ6K3YgQerQoUOsd7Fhw4aCCTJSvr6+rGcsliAjFRERweqwE0uQkUpNTWWNZaS7Q4VEJ1Pp7lAxdevWjbXekt2hYpo8ebLBS3aH8iXISG3YsIEFbHR3qJDOnTvHek50d6iQXr16xUqmMgcSfAkyUvHx8ayORCkJMkYZGRmsMWF0d6iQ9Ho9fvfddwavlMJ/UgMHDmTtfejuUCHNmzePtd6KFWOQ2rNnD2u9pbtDhXTz5k3WM6a7Q4UUEhLCSqbS3aFCSkpKYiVTmQMJoQQZI61WyxohxRxICCXISLVr187glZIgIzVmzBjWetupUyfcvHmzpPV2xYoVrL0PkyDjO5AgdezYMdZ6K1b4T+rJkyesZyxW+E8qKiqKlUylu0OFlJaWhm5ubgYv3R0qJL1ezxq7R3eHiqlXr14GL3kgIWXv88svv7DW23bt2gkmyEht3ryZtd6KFWOQunTpEus51a1bVzBBRiogIICVTBUrxiCVkJDASqbSNxEJSaPRsMaESSnGIKWENYcNG8Zab7OLNffv389ab5WyplAxBimlrOno6Gjwenp6ihZjMFLKmp07d2btfXICa54+fZq13mYXa8bGxpqNNaUUYzDS6/WskUpKWVOsGIOUEtbcsWMH610UK8YgpYQ1g4ODLcKaWq1WEWu2bt3a4GVYU6gYg5QS1ly2bBlrvW3ZsiWuXr3aJNYUK8Yg9fDhQ9YzzimsSY5WZIoxsoM1p0yZwtr7KGVNoWIMUufPn2c9Jzms+fr1ayPWFCrGIKWENTMzM1msKaUYg5FS1hw0aBBr72Mqa0op/CelhDVv3brFesZiTeaklLIm2SCrhDWlFGOQat++vcGrhDWlFGOQUsKax48fZ6232cmaZNGyEtaU0mTOSClr9u7d2+CV0mROSglrbtmyhbXeKmFNsWIMUoGBgVnCmlLy7EpYs3nz5gZvdrLmokWLWOutUtYUKvwnde/ePdYzlsuaZNGyWOE/KaWsSY4Oz07WnDhxImu9NZU1pTSZk1LCmn5+fqxnzLAmX+E/KSWsmZGRYTbWlFL4T6p///4Gr1zWnDNnjsGb01lTyt4nMTGR1SBrDtYUKvwnpYQ1R40aZfBKKfwnpYQ1Dx8+zHoXs4s1VVlW/9bCwX7ED9WP+O8dif8+UeTPmET83vZZ8D2qhYP/Al2/ft1oBLFUvX37FkuVKsUaCyVVnz9/xgoVKrBGEEuVVqvFevXqscZCyVGXLl2wQ4cOrKu6pWrcuHFGI4il6o8//hDtDuXTkSNHRLtD+fTo0SMsU6aMaHcolz58+IClS5eWvEkklZqailWrVpW1SWSk1+uxSZMmsjaJpPr37280gliqfvnlF6OxUFK1adMmoxHEUuXj4yMrQUbK398fS5UqJdodyqWPHz9i2bJlRbtDuZSZmYk1a9YU7Q7lU7t27WRtEkkNHz5ctDuUTwsXLjQaQSxVe/fuNRpBLFW3b982HEhISZCRCg0NxVKlSkkuxiD15csXrFixomh3KJd0Oh1+8803ot2hfOrevbtodyifJk2aJNodyqfVq1eLdofy6cSJE6LdoXx69uwZli5dmjWCWKqio6OxTJkyrLFQUpWeno7VqlVjjSCWKr1ej82aNZOVICM1cOBAQ3eolAQZqTlz5oh2h/Jp69atsgr/SV25ckW0O5RPb968wVKlSol2h3Lp06dPWK5cOVkHEow0Gg3WqVOHNYJYjjp27CjrQILU6NGjjUYQS9XSpUtlJchIHTx4ULQ7lE/379+X1B3KpfDwcCxVqpTkwn9SKSkpWLlyZdHuUC7pdDps1KiRaHcon3r37m00gliqpkyZYjQWSqrWr19vNIJYqs6ePWs0gliq/Pz8sHTp0qLdoVyKi4vDMmXKmNQdmpGRgdWrV5dV+M9Ir9djq1atjEYQS9XQoUNlFf6TmjdvnuhNRHzatWuX0QhiqbIka5YvX15WMQYjrVaL9evXN5k1v//+e6OxUFKllDXpEcRSpYQ1Hz9+bBbWlFL4T8pcrCm1GIOUEtacMWOGItaUU/hP6sKFCzmSNWvVqsUaQSxHSlhzxIgRillTajEGqT///NNk1rxz546sYgxS5mBNOcUYjJSyZo8ePczCmlKKMUgpYc2TJ08ajSCWKiWsGRMTo5g15RRjMNLr9di8eXOTWXPQoEGyijFIKWHNbdu2mYU1pRRjkAoKCjILa0otxmCklDU7depkNIJYqpSw5rJlyxSxJj2CWKoePHiQ41iTKWhVyppSizFITZ06VTFrSi3GIKWENV++fImlSpWSXIxBSilr1qhRwyysKXfvM2zYMLOwppRiDFJKWPPGjRtGI4ilyhznmqayZr169WQV/pPq0qWLyaw5fvx4WU3mpJSw5tGjR83CmlIK/0kpZc0qVaqwRhBLlVLWHDBggKzCf1JKWHPz5s05kjXLlSvHGkEsVUpZs3379opZU2rhP6lFixYpYk05hf+klLDm+/fvLcaaDRs2NAtrqiOIc5ayonDQCv8ujLOYrKysWgHAxX9+ORMRl/zz30sDwNt//vtmRBwl8GdsBoAR//yyNCKGmPl79ACAcACA8PBw8PDwMOcfryqblJKSAgUKFDDJm5qaCvny5QMrKyvZ3rS0NMidOzfY2NjI9mo0GkBEyJ07t2wvIkJaWhrkz59fthdA2edlSW/+/PlNek6pqamQN29esLa2lu1NT0+HXLlyQa5cuWR7tVotaLVayJs3r2wvIkJqamqOfE6WeMZpaWmQJ08ek55xZmYmWFlZga2trWyvXq+HjIwMyJcvn2wvQM59TpZYb9PT08HW1tbk9Vav10OePHlke9V3UZ6UrLcZGRlgY2Nj0nqr0+lAo9GYtN4C5NznZKn11tS9T2ZmJgCASXsfvV4P6enp6t5HopSut0r2PjqdTl1vZXgtsffJyMgAa2trk/Y+Op0OMjMz1b2PROVU1lTfRelSWTPneFXW/Hd7VdbMOV5LsaaSvY/KmvK8OY011Ty7PKmsmXO8Kmv+u72W3PuorCnPm9Py7EpYEyDnPqectt4qZc3/Yp49J663lmJNVZZVREQEeHp6Mr/0RMQIpX/m11A4OBgAdv7zy/GIuO6f/24FABEA4AYAAYhYSeDP8AeAigAQCX9/MGb9odTCQVWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSZQllReGg/PJk86sn8f/7Mf/PP8V/J//5ZUUrK6sGXOZ//nvFf3550txFg6pUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlStW/SVlWOGhlZTXYyspK8I5aKyurSQDQ/p9fhgLAbeq3rAYA7T///zorKyvW/dP//HrdP7/U/vP7ValSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlU8kj+4XrrmAcAKKyuro/B3QeBbAEgGADsAqAYA/QHg239+byYADEdELfkHIOIbKyurPwDgFwCoAwB3rKyslv3zZ5UBgOkAUPOf3/47IgZl4c+jSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapU5Xhl9ajiYgAwHAB2w9/Fg88A4BYAeMP/iwYjAKAjIl7m+TNmAcCOf/7/mgBwEAAe/vN/maLB7QAw28zfu6p/md69ewefPn0yyRsZGQlRUVEmeRMSEiAkJMQkb3p6Orx69QpMmcCNiPD06VPQ6/Umfe3nz5+DVqsV/40cevXqFaSnp5vkffPmDXz58sUk7/v37yE+Pt4kb3R0NEREmDb+PSkpCYKCTKtb1mg08OLFC0XPWKfTmfS1/fz8IDMz0ySvv78/pKammuQNDg6GxMREk7zh4eEQExNjkjc+Ph7ev39vkjclJQX8/f1Nek56vR6ePn1qkhcA4NmzZya/iy9fvoSMjAyTvIGBgZCcnGySNyQkBBISEkzyfvjwweT19tOnT/Du3TuTvBkZGeDn52ex9Vaj0Zjkff36NaSlpZnkDQoKgqSkJJO8YWFhEBcXZ5I3NjYWwsPDTfJ++fIF3rx5Y5JXp9PB8+fPFb2LllpvU1JSTPK+ffvW5L1PREQEREdHm+T9+PEjhIaGmuRNS0uD169fK1pvLbH3efnypUX2PqGhofDx40eTvFFRURAZGWmSNzExEYKDg03yZmZmKt77mPqMX7x4YZH1Njg4GD5//mySNzw8HGJjY03yxsXFQVhYmEne5ORkCAgIMOk56XQ6ePbsmcXWW1P3PgEBASavtyprytN/jTVjYmIswpparVZlTRmKiIiwCGumpqaqrClDlmTNt2/fmuTNzMy0GGtaau+TU1kzMDDQJK/KmvKUE1kTEeHZs2cqa0pUdHS0RVjTHHn2nLbeqqwpT0rWWyV7n/8ia758+fI/x5qm7n3+a6wJADmSNd++ffufY00l663SvU9OY82oqCj48OGDSd6cypqq/n3KysLBFgAwCgD+AoAXABADf48TToa/bww8CgBDAKACIl7i+0MQUY+IwwCgAwCcBIAP8PcNhR/++XV7RPwREdW/1aoElZmZCS4uLtC0aVNYsWKFrGRQvnz5oFKlSlCvXj2YP3++rMSsnZ0dtGjRAqpWrQozZsyAO3fuSN4Q5c2bF8aMGQNlypSB8ePHw6VLlyRviKysrGDt2rXg7u4OP/74I5w8eVIWnJw6dQocHR2hX79+cODAAVlw8vTpU7C3t4cuXbrA9u3bZSWD4uLiwN7eHlq3bg3r1q2TnQzy9PSERo0awbJly2QdhBUsWBBq1qwJtWrVgrlz58KjR48k/2NZsGBB6Nq1K1SsWBGmTp0KN27ckLwhsrW1hZkzZ0LJkiVhzJgxcP78eclwYmVlBTt37gRXV1cYMmQIHD16VFYy6MqVK+Do6Ai9evWCvXv3ykoGvXnzBuzt7aFjx46wefNmWcmglJQUcHJygubNm8OqVatkJYNy584NZcqUgQYNGsCiRYtkwYmdnR00atQIvLy8YNasWXD//n3J72L+/Plh8ODBUK5cOZg0aRJcvXpVcjLI2toali9fDh4eHjBy5Eg4c+aMLDg5fPgwODs7ww8//AB//fWXrGTQ/fv3wcHBAbp37w67du2SlQyKjIwEe3t7aNeuHWzYsEFWMkir1YKrqys0adIEfv/9d1nJoPz580PlypWhTp068Ntvv8GTJ09kPeM2bdpAlSpVYPr06XD79m3JzzhPnjwwadIkKF26NIwbNw4uXrwoGU6srKxg48aN4ObmBsOGDYMTJ07IgpNz586Bk5MT9O3bF/bv3y9rvfXz8wMHBwf4/vvvYdu2bbKSQQkJCeDg4ACtWrWCtWvXyiq6tLa2hhIlSsC3334LS5culZUMKliwINStWxdq1qwJc+bMAV9fX8nrbYECBaBXr15QoUIFmDx5Mly/fl3yu2hjYwPz5s2D4sWLw08//QTnzp2TlQzas2cPuLi4wKBBg+DIkSOykkE3btwABwcH6NmzJ+zZs0dWMujdu3fg4OAAHTp0gE2bNslKBqWlpYGzszM0a9YMVq5cKSsZlDdvXihfvjzUr18fFi5cKCtRYGdnB02aNIFq1arBzJkz4e7du7L2PiNGjICyZcvCxIkT4fLly5L3PtbW1rBy5Urw8PCAESNGwKlTp2Stt8eOHQMnJyfo378/HDx4UFYy6PHjx+Dg4ABdu3aFHTt2yEoGRUVFgYODA7Rp0wbWr18vKxmk1+vB3d0dvvvuO1i+fLmsZFCBAgXAy8sLateuDfPmzYPHjx/LesadOnWCSpUqwbRp0+DWrVuS9z65c+eGadOmQalSpWDs2LFw4cIFWevt1q1bwdXVFYYOHQrHjh2Ttd5evHgRHB0doU+fPvDnn3/K2vv4+/uDvb09dO7cGbZs2SIrGZSUlASOjo7QokULWL16taxkUK5cuaBUqVLQsGFDWLx4saxkUMGCBaFBgwZQvXp1mD17Njx48EDWejtgwAAoX748/Pzzz3Dt2jVZ6+2iRYvA09MTRo0aBWfPnpV1EHbgwAFwdnaGgQMHwuHDh2Xtfe7cuQMODg7Qo0cP2L17t6zCg7CwMLC3t4f27dvDxo0bZRUeWJI1W7ZsCVWqVIFffvklW1lz3bp1FmHNZ8+e5TjWLFCgANSqVcvAmg8fPswW1syVKxfMmjULSpQoAaNHj84xrBkUFGQx1ixbtmy2s2a+fPlgyJAhBta8cuVKjmDNBw8egL29PXTr1g127tyZbayp0+nA1dUVGjdunO2s2a5dO6hcubJs1sydOzf8/PPPXwVryjkIU8Kanz59MrDmmjVrcgRrFixYEPr06QPly5fPdtbcu3evRVgzJCTEZNZMT08HFxcXA2vKafBTyppNmzaFatWqwYwZM7KNNa2srAysOXz48BzDmtHR0RZhzfz580P16tUNrCknz66ENW1tbWH69OlQsmRJGDt2LPj4+Mhab7dt22bY+2QnawYEBIC9vT106tTJIqz5zTff5CjWXLx4sYE1z5w5YxHW3LVrl0VY848//sgxrDlu3DiLsObp06ctwprx8fHg4OBgYE05RZdWVlYG1ly6dGm2sma3bt2gYsWKMGXKlGxjTQCAXbt2gaurKwwePDjHsqacPLtS1vzuu+8MrHnv3j2LsObp06dNYs0BAwZkK2t++PAB7O3toW3btrBhwwZZex8lrJkvXz6oWrVqjmPNTZs2GVjz+PHjJhddqvqXCBHVEAkA8AAABAAMDw9HVTlX/fr1Q+ZZAgCWK1cOf/75Z7x27RpmZmYKemfPns3yenh44KhRo/Ds2bOYmpoq6N2+fTvL6+DggAMHDsTDhw/j58+fBb3Xrl1jee3s7LBHjx64a9cujI2NFfQGBQWhjY2NwZsnTx5s3749bty4UfTvcmJiIhYpUsTgtbGxwaZNm+Iff/yBgYGBgl6NRoPly5dnfd/16tXD+fPn49OnT1Gv1wv6W7VqxfJWqVIFf/nlF7xz5w5qtVpB78iRI1neUqVK4fjx4/HSpUuYkZEh6F26dCnL6+rqij/++COePHkSU1JSBL2HDh1ieYsWLYr9+vXDAwcO4KdPnwS9vr6+LG+BAgWwS5cuuH37doyOjhb0RkREYJ48eQze3LlzY+vWrXHdunUYEhIi6E1NTUUXFxeD19raGhs1aoRLly7FV69eCT4nvV6PNWrUYH3ftWrVwrlz5+LDhw9Rp9MJfu1u3bqxvBUrVsQpU6bgjRs3UKPRCHonT57M8hYvXhxHjx6N58+fx/T0dEHvhg0bWF5HR0ccPHgwHj16FL98+SLoPXfuHMtbqFAh7NWrF+7duxfj4+MFva9evUIrKyuDN1++fNixY0fcvHkzRkZGCnrj4+OxYMGCBm+uXLmwefPmuGrVKgwODhb0ZmRkYMmSJQ1eKysrbNCgAS5atAhfvHgh+oy/++471s/s5eWFs2bNwnv37ok+44EDB7K8ZcuWxUmTJuHVq1dF19t58+axvO7u7jhy5Eg8ffq06Hq7e/dultfe3h5/+OEH/OuvvzAxMVHQe/PmTZa3YMGC2K1bN9y5c6foehsSEoK5cuVirbdt27bFDRs24Pv37wW9SUlJWKxYMdZ627hxY/z9998xICBA0KvVarFy5cqs77tOnTr422+/4ZMnT0TX23bt2rG8lStXxunTp+Pt27dF19sxY8awvCVLlsRx48bhxYsXRd/FFStWsLwuLi44bNgwPH78OCYnJwt6jx07xvIWKVIE+/bti/v378eEhARB75MnT1je/Pnz4/fff49bt27FqKgoQW9UVBTmzZvX4LW1tcVWrVrhmjVr8N27d4LetLQ0dHNzY72LDRs2xCVLluDLly9F38U6deqwvu+aNWvinDlz0NfXV/Rd7NWrF8tbvnx5nDx5Ml6/fl10vf3ll19YXk9PT/zpp5/w3LlzmJaWJujdvHmz0Xo7aNAgPHLkCCYlJQl6L126ZLTe9uzZE/fs2YNxcXGC3oCAALS2tjZ48+bNix06dMBNmzZhRESEoDchIQELFSrEWm+bNWuGK1euxDdv3gh6NRoNlilThvWM69evjwsWLMBnz56JvovNmjVj/czVqlXDGTNm4N27d0XfxWHDhrG8pUuXxgkTJuDly5dF9z4LFy5ked3c3HD48OF46tQp0b3P/v37Wd5ixYph//798eDBg6Lr7d27d432Pl27dsUdO3ZgTEyMoDcsLAxtbW1Ze582bdrg+vXrMTQ0VNCbnJyMjo6OrL3Pd999h8uXL8fXr18LPiedTofVqlVjfd+1a9fGefPm4ePHj0WfcefOnVneSpUq4bRp0/DmzZui7+KECRNY3hIlSuDYsWPRx8dHdL1ds2YNy+vk5IRDhgzBY8eOie59Tp8+zfIWLlwYe/fujX/++Sd+/PhR0PvixQuWN1++fNipUyfcsmULfvjwQdAbGxuL+fPnZ72LLVq0wNWrV+Pbt28Fvenp6ejp6cl6F7/55htcvHgx+vn5ia6333zzDev7rl69Os6ePRsfPHggut5aijV37NjB8jKseejQoSxlzeDgYCPWbNeuHXp7e2NYWJigVwlrarVaI9asW7fuV8+ay5YtM9r7MKwptvdRwpoPHz40Wm8Z1hTb+1iSNWvWrGm09/n111+znDWnTJnC8pKsKbb3UcKa58+fN9r7fO2smZmZycuaz58/z1LWHDRoEMtbtmxZnDhxIl65ciVLWXPPnj1Ge58BAwZIYs1bt26xvCRriu19lLKmvb09a73NLtZs3749y5sTWPP48eMsb5EiRbBPnz64b9++LGfNfPnyGby2trbYsmXLbGHNunXrsr7vGjVqSGbN3r17s7zZxZpbtmwx2vtkB2sGBgZysqaUPLslWbN58+asn7lq1arZwpqLFi1ieV1dXbOFNe/du2e095HDmrlz52btfbKLNb28vFjfd+3atXHu3Ln46NGjLGXNiRMnsrwlSpTAMWPGfNWs6efnx/JmF2tmZGRYjDX79+/P8jKsKSXP/jWxZvfu3bOFNYsWLcra+zRp0iRbWLN169YsrxzWHDVqFMubXax5+PBhlpdhTSl5diWsGRkZycmaa9eu/apZs3v37ixvhQoVsoU1vb29WV6SNcX2PkpY8/Xr1yzWzJs3r4E1xfLs8fHxaGdnx1pvmzdvjitXrsSgoCBBr1LWbNy4Metn9vLywpkzZ2Y5a/72228sr5ubG44YMeKrZs3Q0FCTWVOVZRUeHk4+dw80R02cOf6Qf3uAWjj4r1BMTAyePHmStXiSIZQMSkhIwHv37rEOKcnInz8/du7cGbdu3WoEJ0lJSfjy5UsWOJIhlAxKT0/HwMBAo0NK8h9LvmSQVqvFwMBAo6IQMoSSQUFBQThixAher1AyKDQ0FOfPn8/rFUoGRUZG4s6dO3m9Qsmg2NhYvHjxIq+XSQbt3r3bKBn06dMnfPz4MQscyRBKBiUnJ6O/vz8LHMlgDsJWrFhhlAzKyMjAwMBAbNCgAe/3Xa9ePc5kkF6vx8DAQOzZsyevVygZ9PbtW5w0aRKvVygZFBYWhitXruT1CiWDoqKijA6/6A0RkwyiD8Li4+Px5s2bLHAkg0wG0UWXnz9/xhcvXrAOKckQSgalpqZiQECAETgyIZQM0mg0GBgYiC1atOD9mYWSQW/evDHarJJRsWJFnDp1KmcyKCQkxCg5QIZQMigiIgI3bdrE6xVKBsXExOCZM2d4vULJoISEBHzw4AELHMkQSgZ9+fIFX716hc7OzpxeoWQQs97S4MiEUDJIp9NhYGAgdurUifdnZpJB9+/fN1pvg4ODcfTo0bxeoWTQ+/fvccmSJbxe5iDszJkzRnDy4cMH3Lt3L6+XKbrkSgbFxcXhlStXWOBIhlAyKDExEZ8+fco6pCRDKBmUkpKC/v7+LHAkQygZlJmZiYGBgfjtt9/y/sxCyaDAwEDs06cPr1coGfTu3TucOnUqr1coGRQeHm6UjCWDSQadOHHCKBkUHR1tVGhJhlAy6OPHj3jnzh0WOJLBHIRt27bNKBmUlJSEfn5+rENKMpiiS65kUFpaGgYEBBgdUjJhbW2N3377LWcyiNn70Ik6MoSSQUFBQUYHI2QIJYNCQ0ONDqLJEEoGRUZG4rZt23i9Qsmg2NhYowQQGULJoE+fPuHDhw9Zh5RkCCWDkpOT8fXr1+ju7s7pFUoGMXsfuiCWCSYZtHDhQqNkELP36dq1K+/PLJQMevv2LY4fP57XW6ZMGd5kUFhYGC5fvpzXK5QMioqKwgMHDvB6hZJB8fHxeP36ddYhJRlCyaDPnz/js2fPWIeUZAglg5i9D3lISQZZeODv78+592nSpAnvz8wUHnAVXb558wYHDBjA661cuTJOmzYNb926ZbTehoSEGB1Ek1GyZEkcO3YsXrhwgXPvQxf+kOHs7IxDhw7lLDwwB2uSh5RkCLHmly9fLMKazN6HLgohwxysee3aNaP19v3797hgwQJeL8OaZ8+eNZk1uRr8YmNjjYoNyBBizcTERFHW5GvwU1nTOMRYkz78IkOMNW/duiXKmlwNflJZc926dbysWaFCBU4vw5rLli3LEtYcPHgwrzcrWZNuMiFDjDXPnj3L6zUXa9JFlwxrkoeUZJCsSRddSmVNrgY/Zr2li0LIUMqafA1+Slnzzz//5PV+rawZEBCgiDUbNWrE+zOLsWbfvn15vQxrchVdSmXNixcvcrLm2rVreb1KWFOowS8ns2abNm14f+aczJp8eXYfHx9erzlYk6vBzxysSRfEMsEUXQqxJt2AQEa1atWyjDV///13Xu+/lTXLli3L6ZXCmk2bNuX9mevUqcPb4KeUNWfMmMHrzUrWPHXqFK83q1nTycmJ0yuFNemCWPJdZFiTL88uhTW5ii6Dg4ONGr7IyCrW/PDhA+7atYvXK3SZTFxcnCBrMg1+QqxZoEABTq8QazJ59uxmTUT8V7Jm0aJFsX///pwNfuZgTbIglgyywc8U1mzUqJHJrMlcJpMVrDlnzhxe79fAmvTeJyEhAX19fVkXT5CR1axZq1YtTq9S1mQa/LhYU5VlpRYOqoWDqhSI7lYVCjIZFBAQYNStKhZ169Y1dOAePXpUlpdMBj1+/FiWt1SpUoYO3Li4OFlepgOXSQbxJWC4gk4G8R0EcwWdDKJvRhIKOhkkdEhIB5kMevnypWCBFFeQyaALFy7I8jLJoOvXr2NAQIAsL1l0mZqaKstLJ4P4kqFcQXbgxsfHG92MJBT0bU9CiTI6yA7coKAgo5uRhIJOBu3bt0/W50Umg27fvi3LyySDLl++jBEREbK8ZDIoJSWFF/q4gkkGMR24VatWleylk0FCm0U6cufOjW3btsX169fj+/fvjW5GEgqy6NLf3x9Xr14t6/Mib3sSOrDnCqYD99atW/j8+XNZXjIZ9OnTJ1leMhn05csX3kJHriCTQR8/fjTqVhUKOhlE34wkFEwyiCm6FDokpINOBtG38IpFjRo1DB24V65ckeUtX7684ban4OBgWV6yAzctLY03kcoVdDKILxnKFXQyiL4ZSSjoZJBQoowOOhlEd6uKBZMMevr0Kf7111+yvFWrVjUUXT548ECWl0kGXbp0CaOiomR56ZuFCxcuLNlL3/bEdxDMFfTNwkIHE3TQySC6W1Uo6GTQ+vXrZX1e5M3CQkkUriCTQS9fvpTlLV68OI4ZMwbPnz+PX758keVlkkHMbU8eHh6SvUwyiDkIo29GEgomGcTc9iTUAEAHfduT0CEhHfTNwvQtvGJBJoPoW3jFgrxZODQ0VJaXLjzgK+jgCrLwIDExEStWrCjZW7BgQezevbvhZmGhgwk66MIDU1iTue1JCWsKHdhzBXnbkxLWjI+Pl+U1J2vyHQRzhblY8927d4pYUyhpzRUMa/r6+prEmkyDX2BgoCyvUtYkG/yUsCZ9M5JQmJM16ZuRhMJcrHn37l28c+eOLK85WJM5CFPCmnxFx1xB3/YklzXJBj/6ZiShMCdrCh3YcwXJmvQtvGJhTtbkO3ziCiWsmS9fPuzcubOhwY++GUkolLIm2eCnhDWvXr0qy0veLKyUNfkOkbnCXKwZGxsr2HBFB82a9M1IQkGyZmBgoCLWFGpE5gqlrMk0+EVHR8vyfi2sSd+MJBTmZE2hAimuMAdr3rhxA1+9eiXLS7JmcnKyLK+TkxPrZmElrEnfjCQU9M3CSliTvhlJKL4W1nz//r0sL32zsBLWrFSpkmSvUtYkiy7Hjh0r2auUNcmbhZWwJn0Lr1iYkzUdHBwke83JmvQtvEJBs6ZQQSodDGsyDX5KWFPoEhauMBdrpqWlyfJ+Laz5448/SvbSNwsrYU36Fl6xUMqaTNGlUtbka+ThCvpmYSWs+f3330v2mpM1hS5+4ApzsObNmzcVnWsmJibK8jKsKeVmYVVZL7VwUC0cVKVAcg5zyLCyspJVCMe1+Jvq5evIkRJ8N6NJCXd3d1n/qJNRpEgRLF68uEnevHnzYpUqVUzy2tjY8FbUSwklz1hOAocOU39egL8TWKZ6nZ2dZUEUGXZ2dry3z4hF7ty5Tf57bWVlpeh9UuKtXr26yV45B9h0FC9enLdDRSzs7e1Z42rkRP78+U3+vnPlymXyO6F0vVWyBsgpsqSjXLlyJnvd3NxkJZDJKFy4sCxQJiNPnjwm/8zW1taK3qecuN6WKlVKVuEgGY6OjrzduWJRsGBBk/9+2dramrx2WXLvo2S95euelBKenp68N0GJRbFixXi7c8UiX758spLPZOTKlctiex9LrbdyDkbpcHFxYY2FlxOFChUyed+VJ08ek/c+StdbJd4aNWqY7DX17zTA3wksvlvexcLBwUFWgQQZBQoUMHkNsbW1NfnzsuR6KycRS4fKmvIiJ+59lLCmk5OTItY0da1XWVNeKGVNvpugxEIpa1pqvVWyBihZb5Xsfdzc3HhvwRQLlTXlBd8NdlJCZU158V9jzaJFiypiTVP/btrY2Ch6J1TWlB6FChUyOc+eJ08ek/+NUVlTXjg4OKCrq6tJXiWs+V/c+yjJs7u7u7NGo8qJ/yJrKvm6KmtKD5U15YVS1lSSZ1fy71NOXG+V7H1cXV1x3759oiPcVWWdsqJw0BpUqVJlpIIFC0K3bt1g586dEB0dDX379pXszZ07N7Rt2xbWr18PoaGhMGvWLMlea2traNy4Mfz+++/g7+8Pu3fvlvV916lTB+bNmwePHz8GX19fWd5KlSrBtGnT4NatW/D+/XvIkyePZG+JEiVg7NixcOHCBYiOjgYnJyfJXmdnZxg6dCgcP34c4uLioEqVKpK9hQsXhj59+sC+ffsgNjYWWrduLdmbL18+6Ny5M2zduhUiIyNh+PDhkr22trbQsmVLWLNmDbx9+xaWL18u2WtlZQUNGzaEJUuWgJ+fH5w4cUKyFwCgRo0aMHv2bHjw4AG8efNGlrd8+fIwefJkuHbtGoSHh0PBggUlez08PGDUqFFw9uxZiImJgeLFi0v2Ojg4wMCBA+Hw4cMQFxcHdevWley1s7ODHj16wO7duyE2Nha6du0q2ZsnTx5o3749bNy4EcLDw2Hy5MmSvTY2NtC0aVNYsWIFBAYGwqZNmyR7AQDq1asHCxYsgKdPn8L169dleatWrQozZsyAu3fvwrt378DGxkayt3Tp0jBhwgS4dOkSfPjwAYoVKybZ6+rqCsOHD4eTJ09CXFwclC9fXrK3aNGi0L9/fzhw4ADExcVB48aNJXsLFCgAXbp0ge3bt0NUVBT88MMPkr25c+eG1q1bw7p16yAkJATmzZsn2WttbQ2NGjWCZcuWwevXr+HAgQOSvQAAtWrVgrlz58KjR4/g6dOnsrwVK1aEqVOnws2bN+H9+/eQN29eyd7ixYvDmDFj4Pz58xAdHQ2urq6SvU5OTjBkyBA4duwYxMXFgZeXl2Rv4cKFoXfv3rB3716IjY2Fdu3aSfbmy5cPOnXqBFu2bIHIyEgYPXq0ZG+uXLmgRYsWsGrVKggODoaVK1dK9lpZWcE333wDixYtghcvXsDZs2clewEAvLy8YNasWXD//n0IDg6W5S1btixMmjQJrl69CpGRkVCoUCHJXnd3dxg5ciScOXMGYmNjoWTJkpK99vb28MMPP8ChQ4cgLi4OGjRoINlbsGBB6N69O+zatQtiYmKgZ8+ekr158uSBdu3agbe3N7x//x6mT58u2WtjYwNNmjSB33//HQICAmD79u2SvQAAdevWhfnz58OTJ0/gzp07srxVqlSB6dOnw+3btyEkJARsbW0le0uWLAnjxo2DixcvQlRUFDg4OEj2Ojs7w7Bhw+DEiRMQFxcHlSpVkuwtUqQI9O3bF/bv3w+xsbHQvHlzyd78+fPD999/D9u2bYOoqCgYMmSIZK+trS20atUK1q5dC+/evYNFixZJ9lpbW8O3334LS5cuhVevXsHhw4clewEAatasCb/++iv4+vrCy5cvZXkrVKgAU6ZMgevXr0N4eDjkz59fstfT0xNGjx4N586dg5iYGHB3d5fsdXR0hMGDB8ORI0cgLi4OatasKdlbqFAh6NmzJ+zZswdiYmKgU6dOkr158+aFDh06wKZNmyAiIgImTJgg2ZsrVy5o1qwZrFy5EoKCgmD9+vWSvVZWVlC/fn1YuHAhPH/+HC5duiTZCwBQrVo1mDlzJty7dw/evn0L1tbS0xRlypSBiRMnwpUrVyAyMhKKFCki2evm5gYjRoyAU6dOQWxsLJQpU0ayt1ixYjBgwAA4ePAgxMbGwrfffivZW6BAAejWrRvs2LEDoqKiFLHm7NmzJXutra3hu+++g+XLl4O/vz/s2bNHsheAzZoPHz6U5TUnazo7O0v2fi2sOWLECMlec7Dm4sWLwc/PD06ePCnZC6CMNcuVKwc///wzXLt2DSIiInIka3br1k2y15ysuXnzZsleAPOw5p07d7KVNV1cXODHH3+EkydPQmxsrGzW7Nevn4E1mzZtKtlrTtb87bffJHvNyZrPnj2T5bU0ax49ehTi4uKgevXqkr1KWDNv3rzQsWNH2Lx5M0RERChizVWrVkn2WllZQYMGDQysee7cOcleAGPWtLKykuw1J2uWKlVKspdmzW+++Uayl2TN6OhoRaz5yy+/SPYqZc06derAb7/9Bk+ePIG7d+/K8uZ01oyLi4MWLVpI9tKsOXToUMlec7Hmy5cv4ciRI5K9AGzWfPXqlSxvhQoVYPLkydnOmg4ODjBo0CADa9aqVUuy187OjsWanTt3luw1F2u+efNGEWtevnxZshfg/6x59+5dCA4OzhGsyeTZDx48CHFxcdCoUSPJXqWs2aZNGwNrzpkzR7KXZs29e/dK9gIA1K5d28Cajx49kuUlWTM0NDTbWNPJyQmGDh1qyLNXrVpVspdmzTZt2kj2MqzJ5NlzCmtWr17dwJpBQUGyvF8La9arV0+yl2TNmJgYRaw5ZcoUyV5zsOb8+fPh6dOncOPGDVlemjVz5col2VuqVCkYP358jmLN/Pnzs1hz4MCBkr3mYs1Xr14pYs3nz5/L8jKseePGDQgLC4N+/frJ4hhVOUDmqD78tweoNw7+K/Tlyxe8dOmSYAX8mDFj0MfHB9PT01ne1NRUfPnyJW9HEjMGjet61vT0dAwPD0dHR0dOL3M1/Z9//okfP35keTUaDcbGxvJWjDNj0LZs2YKRkZEsr06nw7i4OOzQoQNv9XyLFi1w9erVGBwcbPR5xcfH897SSI8CoSvKP336JDh2onr16oZRIDqdjuX9/Pmz4IhDchRIZmYmy5ucnIx3797l9bq7u+OoUaMMY9BIpaWlYVBQEG8HqL29PQ4cOBAPHTqEnz9/ZnkzMjIwKiqKtwOUuZp+165dGBsby/JqtVqMi4vDBg0acHrpMWik9Ho9xsXF8V6DTo7cDgwMNHrGHz9+xGnTpvF+XnXr1sX58+fj06dPjZ5xYmKi4NgJZuT2nTt3UKvVsrxJSUl45swZXm+pUqUMo0AyMjJY3pSUFHzy5AnvGBcXFxfDKJDk5GSWNz09HUNDQ3k77slRIAkJCSxvZmYmxsTE8N6ukj9/fsMokKioKJaXeRdbtmzJ6bW1tcXWrVsbRm7TiouL4x25RY5Be/XqldFzSkhIwPnz5/N+1rVq1TKM3OZ6F4XGTjAjt2/cuIEajYbl/fLlC167do3X6+npiaNHj8bz589jWloay5uamoqvX7/mHR3BjNw+evQoJiUlGT3jyMhI3tG/hQoVwl69ehlGgZBi1lu+juq8efMaRoFERESwvMy72KVLF971lhkFEhQUZPSM4+Pjecc7k6NAnj9/zrnerly5kvez9vLyMozcpp9xUlISHjlyhNfLjEG7cuUK53r74MEDtLKy4vTSI7dJpaWl4du3b3lvG2LGoP3111+YmJjI8mZmZmJ0dDTv7Rf0yG1SzHrbqFEjTi8zcpsZBUIrLi6Od+SWjY0NNm7c2DAKhH5OHz9+xJkzZ/J+1uQoEK71VmjsBDMK5NatW0br7ZcvX9DHx4fXW7JkSRw3bhxeuHDBaO+TkpKCL168wFy5cnF66TFopNLT0zEsLIy3475w4cKsMWikmHeR72YEZgwaM3KbFLPetm3blne9bdmyJa5Zswbfvn1r9Izj4+N5xzuTI7dfvnzJud4uXryY97OuUaMGzpkzB319fTnXW6ERh+XLlzeMAqHX2+TkZLx16xav18PDgzUKhFRqaioGBgZivnz5OL0ODg44aNAgwxg0UhkZGfjhwwfem23t7OywZ8+ehpHbXM+YrxOTGQXCjEEjxay3PXr04H0XmzVrZhi5Tevjx484efJk3s+LGYP27NkzzvV27dq1vN6qVavijBkz8O7du5x7n5MnT/J6mZHbly9f5tz7PHr0iPcmGldXVxw+fLhhFAiptLQ0DAkJwUKFCnF6ixYtahgF8unTJ5aX2fvw3X5BjgKJjo5meZn1tmnTprzrLTkKhFZcXBzvyC1mFAgzBo3rXfz11195P+vatWvj3Llz8dGjR5zr7Y4dO3i9lSpVMozc5tr7KGXN3Llzc3rFWDMiIsJirNmxY0dOr7lY88WLF5zv4vLly3k/a4Y179+/bzJrXr16NdtZkxmDlhWsyTduNKtZc/r06byflxhrent783qzkjWfPn0qyprMGDRSUlmTGYNGillv+W6iYViTGYNGSg5rvnv3zug5ZSVrMmPQsoI1r1+/zuvNKtbMyMjAyMhI3pttzcGazBg0UtnBmswYNHOz5tGjR3m9/1bW/O677zi9UlhzwIABvO8iw5r+/v4ms+bjx48519stW7bwesVY88KFC7zeEiVKGMagZQVr2tvbc3qzmjXbtWvHu97mZNbky7PnNNZk3kW+caN58uRhjdwmJYU1mZHbKmuahzX5bjoSYk3mXWzWrBnvetumTRtct24db5598ODBvOutGGvOnTuX97NmRm6bwprMyG0+1rx8+TKv92tmTb4b2rKaNfnGO2c1ax46dIjXS47c5lpv7927x+tlRm4LsWaBAgU4vV8jayL+/S726dOHd739Wlnz7NmzvF6GNS9evGh21nz//j0WLVqU00uP3CYlhTXJkdukmHexVatWnF565Dat+Ph43vHOUlhzwYIFvJ+1GGvu2bOH15uVrOnv75/lrMmXZ+e7tVAKa3bt2pV3vWVGbnOxpirLSh1VrBYOqlIocvEjizG4Nom0aPDz8vLCWbNmcW4Saa1fv17yJpHWuXPnWF43NzccOXIknj592miTSOvly5esRBu5SaQTZLTi4uJYiTZmk8iVIKOVkZGBJUqUMNok8iXISOn1elZRB12MIaaBAweyPi+hYgxaNPgxCbLbt28bbRJp0Ulvphjj4sWLRsBG68aNGyyvs7MzDhs2jHOTSOvdu3esRJvQJpFWUlISq6iD2SRyJchoabVa1pXPYptEWmSijdkk8iXIaI0ePdpok8iXIKP1xx9/sLxCxRi06KS3p6cnb4KM1pMnT1heJkF25MgRo00iraioKNa13kyCbM+ePUabRFppaWmsMQpMMQbXJpGWXq9nFXUwxRgrV67kTJDR6tmzJ2u9rV+/Pu+BBC0a/KpVq4YzZ87kTJDR2rRpE8vLHEhwJchoXbx4keUVSpDRCggIYCXahBJktD5+/MhKtAklyGhpNBpWUYdYMQYtsqiDSZAtX76c80CC1tChQ1mfV+3atXHevHmcBxK0Fi5cyPJWqlQJp02bxpkgo0UnvYUOJGjRB/5OTk44dOhQzgQZrffv37MaCJgDCa4EGa3k5GTWGAWhBBktnU7HGrfDHEisXr2a80CCVqdOnVjvolDhPy36kFGo8J/W6tWrWV6hwn9ap06dYnmZYoyzZ8+K7n2eP3/O8jKF/1wHErRiYmJYRR12dnbYo0cP3L17t1GCjFZ6ejor0cYcSPAlyEjp9XpWAwFzIMGXIKPVr18/1s8slCCjNWvWLJa3atWqvAkyWtu3b2d5hYoxaF29epXlFSr8pxUUFMRKtJGF/2LrbWJiIquoQ6jwn5ZGo2E1EDDFGHwHErTIRJu1tTU2atQIly1bxpkgozVixAjW58UcSHAlyGgtXbqU5a1YsSJvgowWnfQWSpDR8vX1ZXmFEmS0IiIiWIk2oWIMWikpKawGAqHCf1p6vZ41lkSsGIOWpViTbuZhWJOrGIOWEtZ89eoVizWFijFoKWVNsqhDrBiDlCVZc968eSxvdrHmzZs3Wd6cwppkUYdYMQYtn7WHNwABAABJREFUJaxJF7QKFWPQUsKax44dY3mFijFoWZI1yaIOkjXFcqdKWbNXr16s9bZ+/fq8xRi0lLAm3cwjVIxBiy4uzy7WTEhIsBhrkkUdOYU19+/fz/IKFWPQUsKaYWFhRqzJV4xBSylrkg0EYsUYtDp37sx6F7OLNdesWcPyZhdrvnjxguUVajKnZUnWJIs6xIoxaClhzdmzZ7O8QsUYtJSwJt3ILIc1g4ODeVlTbO+jhDW1Wi0na/I1mdNSwpp0QatQkzktS7Hmw4cPWd7sYs3U1FRWUUd2sma3bt1Y661QkzktS7Hm+fPnWV6hwn9aSlgzPj7eiDX5Cv9pKWVNsoFALmvSzZPZxZp0gZVQkzktJawZEhLCyZpchf+0LMma7du3Z72LQoX/tJSw5ooVK1jer4E1xfY+UVFRrAYCocJ/WkpZk2wgEGsyp6WENX/55RfW5yVU+E/LUqwZGBhoMmuqsqzUwkG1cFCVAj19+hTt7OwkbxJJRUdHY9GiRbFt27aSE2SM0tLSsESJEoLdoXzS6/VYv359rFOnjuQEGanevXtj5cqVcdq0aZzdoUKaMWOGrGIMUlu2bBHsDhXS5cuXBbtDhfTmzRu0s7MzdIeKJchIffr0CR0dHWVtEhlpNBqsUKGCYZMoJUFGqnnz5oZNopQEGakff/xRsDtUSIsXL0YPDw/JCTJSBw4cQAcHB8nFGKTu37/PSpCJbRJJhYWFYeHChXm7Q4WUnJyMbm5uhu5QKQkyRjqdDmvUqCHYHSqk77//XtYmkdSkSZMMm0QpCTJSa9euNWwST548KbpJJHXmzBnDJlFKMQYpPz8/tLOzw65du+L27dtFDyRIxcbGYrFixWQVYzDKyMjAUqVKCXaH8kmv1+O3337L6g6V8y4OGDBAsDtUSHPmzJF1IEFq586drO5QsQQZqWvXrrEOJMQSZKTevn2LhQoVknwgQerz58/o7OyMLVq0wFWrVkk6kGDEwP0333wjuRiDVJs2bWQlyEiNGjVKVuE/qeXLlwt2hwrp8OHDsgr/ST169Ajt7Ox4u0OF9OHDByxSpIihO1QsQUYqNTUVPTw8DAcSUhJkjJiDZOZAQkqCjFT37t0NBxJSEmSkpk6dyirGkLPebty4UVaCjJSPj4+sYgxS/v7+aGdnx9sdKqT4+Hi0t7eXVfjPKDMzE8uWLSvYHconvV6PjRs3FuwOFdLgwYMN3aFSEmSk5s+fbziQkJIgI7V3717DgYSUYgxSt2/fxkKFCkkuxiAVGhqKhQoV4u0OFdKXL1/QxcXFpO5Q5iBZTuE/qQ4dOhiKMbhuIhLSuHHjWDcRyXkXV65cKetAgtSJEycMBxJyE2SWYs309HQsUaKErGIMRkpZs0+fPoZijOxkza1bt6qsKeM5tWjRAmvUqCG5GIOUpVjz4MGDFmHN8PDwr4I1pRRjkLIUa65bt05WMQYpc7AmU4yRnaxZunRpQzGGXNZs1KiRRVjz119/NbCmlGIMUkpY8/r16wbWlFKMQcrSrCmn8J+UEtb86aefLMKaR44cMZk1Hz9+zGJNOXsfpazp6emJTZo0kVyMwUgpa/bo0QOrVKkiuRiDlKVY88KFCxZhzY8fP6KDg0O2syYiYpMmTQysKaUYg9SQIUOwQoUKkosxSClhzT///FNW4T8pc7Cm1CZzUpZkzY4dO8oq/CelhDVXrVplYE0pxRiklLDms2fPDKwppfCflCVZs0GDBrIK/0kpYc2ZM2dahDWvXLliMmsGBQUZWFPu3kcpa1asWBEbNmwoufCflBLWHD58uKzCf1KWYs0HDx7IKvwnpYQ1U1JS0N3d3SKs2aVLFwNrSin8J/Xzzz/LKvwnpYQ1z549K6vJnJQS1oyLi8uRrPnDDz8YWFNK4b+qr0dZUThohX8XxqkSkJWVlQcAhAMAhIeHg4eHh4W/I1Wm6MOHD2Bvbw958uSR7Y2Li4N8+fJBwYIFZXs/f/4MOp0OihUrJtubnp4OCQkJ4ObmJtuLiPD+/XsoWbKkbC8AQEhICJQsWdKk+fTv378HT09PsLa2lu0NDw8HFxcXsLW1le2NioqCIkWKQL58+WR7P378CLa2tlCoUCHZ3uTkZEhLSwNHR0fZXo1GA9HR0eDp6Snbi4gQGhoKpUqVku0FAAgNDYUSJUqY9IzDwsLA3d0dbGxsZHsjIyPB0dERcufOLdsbExMDBQsWhAIFCsj2fvr0CQAAihYtKtubmpoKSUlJ4OLiItur1+shPDwcSpQoIdsLoOxdDA0NheLFi5v8Lrq6ukKuXLlkez98+ADFihWDvHnzyvbGxcVB3rx5wc7OTrY3KSkJNBoN2Nvby/ZmZGRAfHw8uLu7y/YqfRcttd5GRESAs7OzSettdHQ0FCpUCPLnzy/bm5CQADY2NlC4cGHZ3uTkZEhNTQUnJyfZXp1OB5GRkVC8eHHZXoC/n1NOXG8dHBxM2vvExsZC/vz5Tdr7JCYmgl6vN2nvk5aWBomJieDq6irbq9frISwszCJ7H0utt1FRUVC0aFGT1tv4+HjInTu3SXufL1++QEZGBjg4OMj2ZmZmQmxsrElMZcm9z/v378HDw8OkdzEiIgKcnJxM3vvY2dmZvN5aW1tDkSJFZHtTU1Phy5cv4OzsLNur0+kgIiLCYnsfJeutm5ubyXuf/xpr5sS9z3+NNbVaLURFReU41lSy3qqsKU85ce+TE1kzMzMT4uLiVNaUKEuxZkpKCqSkpFiMNS2191FZU5osmWdXut4q2fvkNNbUaDQQExOjsqZEqawpTyprSldGRgZ8/PhRZU2Jio6OhsKFC/9nWBPAcnl2lTWlK6eyptL1VmVNVTlFERER5BrsiYgRSv9MtXBQgtTCQVWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSZQllReGg/FJdVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSlWOlVo4qEqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVKlSpUqVKlWqVP2HpBYOqlKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVapUqVKlSpUqVf8hqYWDqv4zio+PB51OZ5L306dPkJmZaZL3y5cvkJqaapI3IyMDPn/+bJIXESEuLs4kLwBAbGysIi8imuSNi4sz2fvx40fQarUmeT9//gwZGRkmeVNSUiA5Odkkr0ajgYSEBJO8iKj4OSnxKnnGer3eJG9CQgJoNBqTvElJSZCWlmaSNy0tDZKSkkzy6vV6iI+PN8kLoPw5mSol76KS9TYxMdHk9TY5Odnk9TYzMxMSExNN8v5X30Ul6216erpJ3tTUVJPXW61WCx8/fjTJC2C5d1HJM46Pjzf5GX/69Mnk9fbLly8mr7fp6ekm7330er1F9z6mSuneR8l6q2Tvk5KSYpJXo9HAp0+fTPLm1PVWybuoZL1NSkoyeb1NS0uDL1++mOTV6XTq3keGlLCmkr2PUtbMie/if401tVqtypoyZCnWTE9PV1lThpTufZSst6bufTIzM/9ze5+cyppK9j4qa0pXTmRNS+fZTZXKmtKVU9dblTXlKSe+izmVNZXk2dVzTelSwppK8+ymsibAf2/vo7Jm9npV1pQmpXsfVf8+qYWDqv4zevfuHbi5ucGQIUPg2LFjsuAkJSUFPD09oXfv3vDnn3/KSgbZ2NhAlSpVoFOnTrBlyxaIjIyU7LW1tYWWLVtCixYtYNWqVRAcHCzZa2VlBaNGjYJvvvkGFi9eDC9evJD1j+WyZcugevXqMGvWLLh//76sDdGhQ4egfPnyMGnSJLh69aqsDdHDhw/Bw8MDRo4cCWfOnJG1IYqKigJXV1f44Ycf4NChQ7KSQRqNBkqVKgXdu3eHXbt2yfrH0tbWFurUqQPt2rUDb29vCAsLk+zNlSsXdOvWDZo0aQJ//PEHBAYGSvZaWVnB1KlToW7dujB//nx48uSJrGe8YcMGqFKlCkyfPh1u374ta0N0/vx5KF26NIwfPx4uXrwoC05ev34Nbm5uMGzYMDhx4oSsDVFiYiK4u7tD3759Yf/+/bI3RBUqVIDvv/8etm3bBlFRUZJ9uXPnhu+++w5atWoFa9euhZCQEMlea2trGDRoEHz77bewdOlSePXqlaznNG/ePKhZsyb8+uuv8PDhQ1nv4p49e6BChQowZcoUuHHjhiwAvXnzJpQoUQJGjx4N586dk5UMCgsLA1dXVxg8eDAcPXpU1nqblpYGxYsXh169esGePXtkwYmNjQ1Uq1YNOnbsCJs2bYKIiAjJXltbW2jXrh00a9YMVq5cCUFBQZK9VlZWMHbsWKhfvz4sXLgQnj9/LusZr1ixAqpVqwYzZ86Ee/fuyXoXjx8/DmXLloWJEyfClStXZMHJ06dPwcPDA0aMGAGnT5+WlQyKjY0FNzc3GDBgAPz111+ykkE6nQ7KlCkD3bp1gx07dkBMTIxkr62tLdSrVw/atm0LGzZsgPfv30v25sqVC3r16gWNGzeG5cuXg7+/v6znNGPGDKhTpw7MmzcPHj9+LMu7ZcsWqFSpEkybNg1u3bol6128dOkSlCpVCsaOHQsXLlyQtd6+efMGXF1dYejQoXD8+HFZyaCkpCRwd3eHPn36wL59+2Qlg6ysrKBixYrQuXNn2Lp1q+z1tnnz5tCyZUtYs2YNvH37VrLX2toafvzxR2jYsCEsWbIEXr58Kes5LVq0CGrUqAFz5syBBw8eyFpv9+/fD+XLl4eff/4Zrl27Jmvvc+/ePfD09IRRo0bB2bNnZe19IiIiwNXVFQYOHAiHDx+WlQzKzMyEEiVKQI8ePWD37t2yErO5cuWCmjVrQvv27WHjxo0QHh4uy9upUydo2rQprFixAt68eSPZa2VlBZMmTYJ69erBggUL4NmzZ7Ke8Zo1a6Bq1aowY8YMuHPnjqz19vTp01CmTBmYMGECXL58WdZ66+fnB+7u7jB8+HA4efKkrL1PQkICuLm5Qf/+/eHAgQOy9j56vR7Kli0LXbp0ge3bt0N0dLRkr62tLTRs2BBat24N69atg9DQUMleGxsbGDBgADRq1AiWLVsGr1+/lvWcZs+eDbVq1YK5c+fCo0ePZL2LO3bsgIoVK8LUqVPh5s2bstbba9euQcmSJWHMmDHg4+Mja++jhDVTU1NNZk1ra2sDa27evFkWa+bOnRtatWplMmv+9NNP0KBBA1i0aFG2subhw4ehXLly2c6a0dHR4ObmZjJrlixZMttZ08bGBrp3725gzYCAAMnPSSlrent7K2bNcePGyWZNf3//HMeatra20LhxY4uw5m+//WYW1rx+/bqs9fbWrVuKWXPQoEFw5MgRWXsfJayZK1cuqF69OnTo0MEk1mzfvr3JrDlu3Lgcx5rPnj3LkaxZv359aNOmDaxfv14Wa9rY2EDv3r1NZs2ZM2dC7dq1s501L1++bBHW/PLli9lY88OHD5K9SljTysoKhg8fDg0bNoTFixeDn59ftrHmgQMHLMKakZGROZI1O3fubBbWfPr0qaxnvHbtWsWsOX78eLh06VK2s2a/fv3+M6w5Z86cHMeaISEhBtaUm2dXyppVq1Y1mTVbt24NzZs3z3bWXL58OXh5eWU7az569MhirGnquWauXLkMrLlhw4ZsY00AgGnTpkHdunXht99+y1bW9PHxMZk1lZxrfv782WTWtLKyshhrDh482MCacvPsDGvOmTMHfH19Zb2Le/fuNZk1b9++DcWLF4effvopW1kzPT0dihcvDj179sx21uzQoYNFWFPVv1CIqIZIAIAHACAAYHh4OKrKuWrfvj0yzzJ37tzYunVrXLduHYaGhop6x4wZY/BaW1tjo0aNcNmyZfj69WvU6/WC3hUrVhi8AIC1atXCuXPn4qNHj0S9x44dY3krVqyIU6dOxZs3b6JGoxH0PnnyhOUtUaIEjhkzBn18fDA9PV3QGxUVhfny5TN4nZyccMiQIXjs2DH88uWLoDctLQ3d3NwM3sKFC2Pv3r3xzz//xI8fPwp69Xo91q1b1+DNly8fdurUCbds2YIfPnwQ9CIi9urVy+DNlSsXtmjRAletWoXBwcGi3l9++cXgtbKywm+++QYXL16ML168EH1OW7ZsYX3WXl5eOGvWLLx//z7qdDpB76VLl1jecuXK4aRJk/Dq1auYmZkp6A0MDERra2uD193dHUeOHIlnzpzB1NRUQW9CQgIWKlTI4LW3t8cffvgBDx06hJ8/fxb0ajQaLFOmjMFbsGBB7N69O+7atQtjY2MFvYiIzZo1M3jz5MmD7dq1Q29vbwwLCxP1Dhs2zOC1sbHBJk2a4B9//IGBgYGi3kWLFrE+67p16+L8+fPx6dOnos94//79LG+VKlXwl19+wdu3b6NWqxX03rt3j+UtVaoUjh8/Hi9evIgZGRmC3rCwMLS1tTV4XVxccNiwYXjixAlMTk4W9CYnJ6Ojo6PBW6RIEezbty/u378fExISBL06nQ6rVatm8ObPnx+///573LZtG0ZFRQl6ERE7d+5s8Nra2mKrVq1w7dq1GBISIuqdOHEia7399ttvcenSpfjq1SvR57RmzRrWZ12zZk389ddf8eHDh6Lv4unTp1neChUq4JQpU/DGjRui6+2LFy9YXk9PTxw9ejSeP38e09LSBL2xsbGYP39+g9fR0REHDx6MR44cwaSkJEFvRkYGenp6GryFChXCnj174p49ezA+Pl7Qq9fr8ZtvvjF48+bNix07dsRNmzZhRESEoBcRsX///qz1tlmzZrhy5UoMCgoS9c6ePZu13tavXx8XLlyIz58/F33GO3bsYH3W1apVw5kzZ+K9e/dEn/G1a9dY3jJlyuDEiRPxypUrouttcHAw2tjYGLxubm44YsQIPH36tOh6m5iYiEWLFjV4ixUrhgMGDMC//voLExMTBb1arRbLly/PWm+7deuGO3fuxJiYGEEvImLr1q1Ze5+2bdvihg0b8P3796LekSNHst7F7777DpcvX47+/v6iz2nZsmWsz7pOnTo4b948fPz4saj38OHDLG+lSpVw2rRpeOvWLdH19uHDhyxvyZIlcezYsXjhwgXRvU9kZCTmyZPH4HV2dsahQ4fi8ePHRdfb1NRUdHFxYa23ffr0wX379omut3q9HmvWrMlabzt37oxbt26VtPfp1q0ba71t2bIlrlmzBt+9eyfqnTJlCutdbNiwIS5ZsgT9/PxEn5O3tzfrs65RowbOmTMHHzx4IPounj9/nuUtX748Tp48Ga9duya63r5+/RqtrKwMXg8PDxw1ahSePXtWdL2Nj4/HggULGrwODg44cOBAPHz4sOjeJzMzE0uWLGnw2tnZYY8ePXD37t0YFxcn6NXr9di4cWPWetu+fXvcuHGjJL4cNGgQa+/TtGlTXLFiBb5580bU+9tvv7E+63r16uGCBQvw2bNnos94z549LG/VqlVxxowZePfuXdF38datWyxv6dKlccKECXj58mXRvU9ISAjmypXL4HV1dcXhw4fjyZMnMSUlRdCblJSE9vb2Bm/RokWxf//+eODAAfz06ZOgV6fTYeXKlQ3eAgUKYJcuXXD79u0YHR0t6EVUxppjx45lrbfZxZrHjx9neZWwZvHixbONNd3d3Q1ec7FmZGSkoBcRsXfv3qy9jxLWbNCgAS5atCjLWfPy5cssb9myZbOFNT99+oSFCxc2eLOTNZs3b27wmos1AwICRL18rPnkyRPRZ3zgwAGWt0qVKjh9+nSTWXPcuHGSWTN37twGb3ayppeXF2vvI4c1v//+e9beJ7tYc+3atazP2hysef36ddH11s/Pj+VVypqDBg3KFtZs2LAha+/ToUOHbGHNOXPmsNbbnMCab9++tRhrVqhQgbXeduvWDXfs2GESa7Zp0wbXr18viTVHjRrFeheVsGbt2rWzhTUfPXrE8uZE1syXL58s1uzevTtrvVXKmosXLzaZNWfPni2JNX18fFjecuXK4c8//5wtrGlnZ2fw5hTWHDx4MGvvk12suXfvXpZXKWuOHz8eL126JLr3CQ0NNStr9uvXL1tYs0OHDqz1NrtYc+XKlazPOrtY8+nTpyyvHNaMjo42O2vu3btX0t6nXr16rPW2Y8eOuHnzZpNYs3nz5pJZc8aMGaz1Niew5ps3byzGmmXLlmXtfZSy5oYNGySx5o8//shab+Ww5uLFi1mfdZ06dfC3337Lcta8f/8+y5udrOnk5MTa++QE1pw0aRJrvTUHa/r6+oq+i2fOnGF5lbLmTz/9hOfOnRPd+6iyrMLDw8ln54HmqIkzxx/ybw9QCwf/FdJqtXjnzh3WAkiGUDJIp9NhSEgIq3iHDKFkkE6nw8+fP7MSqmQIJYP0ej1mZGSwinfIEEoG6fV61Gg02KlTJ06vWDJIo9HghAkTOL1M4QFfMkij0eCqVas4vWLJIK1WiydPnuR9TkKFB1qt1ggqyBBKBul0OoyKimIlVMkQSgbpdDpMSUlhJVTJEEoG6fV6zMzMZBXvkEEmg+iDMOYZ9+vXj9MrVnig0Whw1qxZnF4yGfT27Vsjr1arxW3btnF6xQoPtFqtEVSQIZQM0ul0GBgYyEqokkEmg7jexY8fP7ISqmQIJYP0ej2mp6ezinfIEEoGMc+pVatWnF6xZJBGo8ERI0ZwesWSQRqNBpcsWcLpFUsGabVaPHjwIO9zEkoGabVafPDgAa+XSQbduXOH810MCwtjJVTJYAoPuJJBOp0Ok5KSWAlVMlxdXfHHH3/kTAYx7yKZUCVDqPCAecZdu3bl9IolgzQaDU6ePJl3vRVKBmk0Gly/fj3veiuUDNJqtXj27Fne50Qmg+h3UavVop+fHyuhSoZQMkin02FMTAyreIcMoWSQXq/H1NRUVkKVDKFkEPOcvvvuO06vWDJIo9HgwIEDOb1iySCNRoNz587l9IoVHmi1Wty1axfveiuUDNJqtXjjxg3eZyyUDNLpdBgcHMxKqJIhlAzS6XT46dMnVkKVDKFkELP3IROqZAglg5hn3K5dO06vWDJIo9GwGkXIECs80Gg0+Pvvv/Out02aNMHff/+dMxmk1Wrx6NGjvM9JqPBAq9UaHWCRIZQM0ul0GBkZyUqokiGUDNLpdJicnMxKqJIhlAxi1luyeIcMoWQQ84zJRhEyxJJBGo0Gp0+fzukVSwZpNBrctGkT73orlAzSarV48eJF3ucklAzS6XTo7+/PSqiSUaFCBZw8eTJnMkin02FcXBwroUoGU3jAlQzS6/WYlpbGKt4hQ6jwgHlOZKMIGWKFBxqNBocOHcrpFSs80Gg0uGDBAt71VqjwQKvV4r59+3jXW6HCAzmsyfUuhoaGshKqZJiDNU+dOsW79yETqmRYkjWFCg80Gg2uXr2a911UwppChQdarRafPXvG6/0aWJNr75OZmckq3qHXW1NZkyk84Gvw02g0rEYRer1Vypp8hQdarRavXLnC+5y+ZtYki3fIyGrWJBtF6PXWHKzJ1eCn1Wrxr7/+4n1O9erV423w02q16Ovry+tVypp8hQc6nQ6/fPmSZazJV3jAPGOyUYSMr5k1z507x/uczMGaXA1+DGuSxTtkmIM1jx49ysuaZPEOGVJYk2wUoddbJawpVHig1Wpx9+7dvOttVrLm27dvv1rWFNr7kI0iZJiDNfkKDzQaDf7xxx+8660S1hQqPNBqtfj48WNe79fMmmTxDhlZzZpkowgZ5mLNly9fmsSac+bMsQhr8hUeMKxJFu+QkdWsSTaKkPE1sCZfnv3u3bu8z9gcrHn58mVe1iSLd8hQypr9+/fHgwcP8q635KUEZBQoUAC7du0qyJpkowgZWc2ap06d4n1O5mJNrncxKioKCxQowOm1FGsWLlwY+/Tpw9vgp9FoWI0iZChlzRYtWuDq1at5WXP79u2876IS1qxevboga75588Zk1kxISLAYa5KNImQoYc08efKIsubSpUs5vZZkTeYyGT7WDA8Px7x583J6s5o1a9WqxenNStZUZVmphYNq4aAqBeKDc66gk0H0LQ5CUahQIezVq5chGUTfGCgUdDJIaLNIB50M+vz5s2QvVzKILwHDFXQyqE6dOpK9dDKID865gk4G8cE5V9DJoM2bN0v20skg+sZAoaCTQcHBwZK9NjY22LhxY0MySK/XS/YCGCeD+JKhXFG5cmVWMogPzrmCTgbxwTlX0MmghQsXSvbSySD6xkChoJNB9C0OQsEkg5gO3JiYGMlermQQH/RxBZ0Mqlq1qmQvnQzig3OuoJNBfAfBXEEng+gbA4WCTgYJwTkddDLo5cuXkr10Mig1NVWylysZ5OzsLNlfrVo1VgcuX9ExV9DJIL6DYK5wc3PD4cOHG5JBfHDOFXQyiL7FQSjoZBB9i4NQ0Mmg9+/fS/ZyJYP4EqlcQSeD+JKhXEEng/gOgrmiRIkSOHbsWMNBGB+ccwWdDKJvcRAKOhl06NAhyV76ZmGhIjg66GTQx48fJXvJm4WZZBBfwpsr6GQQ30EwV9DJID445wo6GUTe4iAWdDJow4YNkr1MMojZ+9A3BgoFnQwKCAiQ7GWSQczNwpmZmZK9AMbJIA8PD8leOhnEV3TMFXQyiO8gmCvoZNC8efMke+lkEH1joFDQyaDbt29L9pKFByEhIRgZGSnZy1V4wFfQwRVM4QFz21PFihUleytWrMi6WZjvIJgrihcvbrjtKT09XRZrMjcLm4M16VschMKcrJmUlCTZay7WZBr8+IqOucIcrMk0+ClhTfoWB6EgbxY2hTXJm4Xfvn0r2fs1sSZ5i4NYlCxZ0sCa6enpiliTvjFQKMzBmlu3bsWoqCijWxyEQglrkg1+5mBNvgZXrmBuFjYHa/IdBHOFuVgzLi7O6MZAoaBZ89WrV5K9JGu+efNGMWvyHT5xhRLWpG8W5jsI5oqvhTWvX78u2UuyZmhoqGLW5DtE5gpzsCbT4Md3EMwVNGuSNwaKBd3gp4Q16RsDhUIJazINfgxrJiQkSPZ+TaxJ3hgoFiRrpqamKmJN+sZAoVDKmmSDX2BgoGQvzZoajUayF8B4io0S1uQrOuYKZoqNKazp4uJiYM3k5GSjGwOFwlysGRUVpYg1P3z4INnLsCbZ4KeENStVqiTZay7WTEtLY90YKBZfC2s+f/5cstdcrMk0+Dk4OEj2K2VNssGPvDFQLGjWJG8MFAu6wU8Jawpd7kGHOVkTESV7Ab4e1iRvDBQLhjWZy2SUsCZ9Y6BQKGVN8mbh2NhYyV4u1uS7NIIrmCk25mBN8sZAsVDCmg4ODizWpG8MFApzsCaTZ1fCmmlpabKecf369SXfLKwq66UWDqqFg6oUSM5hDhm5c+eWtWEkw9ra2mQvAPBWiEsJOf+w0lG6dGlZ/6iT4ezsjMWLFzfJW7hwYaxSpYpJ3nz58pn8eeXKlcvk52RlZSWrUJKOGjVqmOyVA6t0FC9eXBZEkeHg4MB7+4xY2NnZ8XaaiUWePHmwdu3aJnltbGwUvYumfl0AZe9iuXLleDtUxMLNzY01MlxOFC1aVNbBOxkFChQw+e917ty5TX6flK63chKxdJi6bgH8DaByEshkODk5yQJlMgoVKmTy9503b16T34mcut5WrFhRVuEgGR4eHrzduWJhb2+P5cqVM8lbsGBBrF69uknePHnymPxZ59T1tmzZsrw3QYmFq6srb3euWBQpUsTkf8/z589v8tpla2ur6F201HrLdzuIlChRogQWK1bMJK+joyOWLl3aJG+hQoVM/rupZL1V8i4qXW9N3esB/N3IwHfLu1i4u7vLKpAgo1ixYrwd2GJRoEABk9dblTXlhcqa8sJSrOnp6amINeUUwZChlDUttfex1LuolDX5boISCyWsmT9/fouxppJ30ZKsWaRIEZO8SllTThMjGTmVNU3dBwCorCknLMmapv6dBlDGmi4uLopY01R+UllTXihlTVPz7DmRNQGUvYtKWLN8+fKKWNPV1dUkr1LWVLL3UcKaSv5dVLK/VbL3KVWqFO+tw2LxX2RNJe9xTmRNe3t7lTVlRE5lTSV5dlP/Xtva2v4nWXPfvn1qAaEFpRYOqoWDqhRIbuEgU+H+4MED3nEAfEF298m5dQeA3d0npxsAgN3dRy0YokFfKyznFgj6Jhk5/8jR1wrLuQUCgD0ulW/0HF+QI2w2btwoy0t2UwuNX+EKV1dXHD58OJ48eRL9/PxkeclxqXK6XQGMb5KRkwSmu/vk3DhI3yTDN3qOL8gRNnzjAPiCHJe6d+9eWV5yhI2cznMAdje1nO4rgP+PsPnzzz8xPj5e1i0QTDc1090nJ7FJj0uVcwsEfZPM+PHjZf3M5K2lfOMA+IK8SUbODa8A7FtL5XSeA7DHpUZFRcnykreWxsTEyLpxkOymfv/+vaxbIJgRNn/88QcGBATIunEQgD0ulW/MOV+QI2z4Rs/xBdndJzR+hSucnZ0NN8n4+/vL8tLdfXIOc+hbS+UkJcgRNu/evZN14yA9LpVvzDlfMONSHz58yDsOgC8qVKiAU6ZMwevXr8vqhARgj0sVGvXJFWR3X2hoqCwv3d0np4iXvklGDqTTt5bKuXGQHpfKN3qOL8gRNuvWrZPlJcelyrnhFeD/I2xOnz6NT58+leVluqkPHjwoq9sV4O+9DzkuVc4tEPRNMnJuHLS2tsbGjRsbbpKRcwsEAPsmGb7Rc3xB3lrKN+acL5ibZC5cuIBXr16V5XVycjLcWvrmzRtZXuYmGWZcqpxbIJgRNlu3bsXIyEhZxSj0uFQ5t0DQI2xGjx4t62cmx6UqYU05t+4AmI81IyIiZHnNyZpykubmYs2nT58qYk2+0XN8Qd4kI5c1yZtkTGFN5iYZS7KmnFsgzMmacm63BzAPa54/f15w1CdXkBMyTGVN5iYZJawp5yCJvklGCWvKud0ewHysKefWHQA2awqN+uQKc7KmnIJ6ckKGqazJ3CQj58ZBgL9Zk7lJxlKsKeeGVwDzsqacGwfNyZpybhykJ2TIud0egH1rqRLWPHjwoCwveZOMEtaUc6skwN97n6+BNeXcOGhO1uQbc84X5IQMU1nz1KlTsm7UBmCzZlxcnCwveWtpdHS0ItaUc+MgfWupEtaUc7s9wNfBmkFBQbK89K2lSlhTTjEKw5rMraVKWFPuuSZ5a6mlWPPBgweyvPb29mZhzdjYWFlFZSRrhoWFKWJNOTcOArBZU87t9gB/syZza6kS1pRzwyuA+Vjz06dPsrz58+f/KlhTzu32AOxbS5Ww5p9//inLay7WfPfunSwvfWupnIbRvHnzGm4tjYiIUMSacm4cNCdryrndHuDrYM3o6GhZXoY1d+7cyTkqXlX2Si0cVAsHVSlQaGioYHKBvtqeVFRUFF66dIm3I4ksxggMDGR5ExIS8N69e+jo6Mj7temr7RmlpKSgr6+vYPEPfbU9I61Wi76+vtimTRteL321PaknT54IJt3pq+1JvXz5EufMmcPrpQ8kSAUHBwtudslNYlRUFMsbHh6OJ06c4PXa2tpi69atDQkyUjExMXjjxg3eDlCuq+0ZJSYm4oMHDwQ7QMliDJ1OZ/CmpaWhr68v1q9fn9fLJMiYq+0Z6fV69PX1FSw4YIoxmKvtST179kzwqnvyavukpCSW19/fH5csWcLrpTeJpN69e4e7d+/m9dKbRFKRkZF4/vx53qQquUkMCgpieePj4/HOnTu8HfdcV9sz+vLlCz548ADLly/P+317eXkZEmTkM87MzERfX1/BYkuyGCMzM5P1fT969Egw6U4WY6SkpLC8fn5+OG3aNF4vfbU9qTdv3ggerJBX29ObxPfv3wsmF3Lnzs262p5UdHQ0Xr16lTeRwzVGjdGnT5/w/v37goV49NX2jFJTU9HX11ewq4i52v7WrVus9Van06Gvry926NCB18scSFy4cAHT09NZP/OTJ08EC7zoEbKkXr9+LThahC7GIBUcHIxbt27l9ZIJsg8fPrC84eHhePr0abSysuL00sUYpGJjY/HmzZu88Mh1tT2jz58/44MHDwQTBPTV9ozS09PR19cXGzZsyOslr7an30VfX1/s2bMnr9fDw4N1tT2p58+fC151zxxIMGN9SAUEBODy5ct5vcyBBFOMQSokJAT37dvH66Wvtif14cMHvHjxIubKlYv3XWQSZG/evGF5P378iHfv3hUsDCEL/8lnnJycjL6+voLd/kwxBjNGjZFGo0FfX19s2bIlr5ceo0bq8ePHgkl3pvCfGaNG6uXLl4KjRZjC/4MHD+KnT59Y3qCgIMGDFfpAglRYWBgePXqU10seSISEhLC8zPjvfPnycXqZAwlyhCyjxMREvH//vmAHaO3atQ3FGFzrrVCjSaVKlQwJMnLvw6y3QkkgsvCfXm+fPXuGP/30E6+XHqNG6vXr14KJPrLwn15v3759izt37uT1kmPUIiMjWd6IiAg8e/Ysb/EyOUYtODiY5Y2Li8Pbt29joUKFOL3kGDVmhCyjpKQkfPDggeDtF8yBxP3791nrbUZGBvr6+goegDEHEswIWVIPHz7EPn368HrJBFlqairL++LFC8FDTjJBRq+3gYGBuHLlSl4vWYwRGxvL8iplzcuXL2Pu3Lk5vVnNmkIJWXOw5sWLF01mTWaELKlXr15JYk2mGIOUVNZkijFIhYeH48mTJ3m9QqwZGxsryppk4b+5WbNBgwa83qxkzXHjxvF6zcWa9N7n3bt3gqPzzMGaTDEGKamsyRRj0Kzp6+sreBNNVrLmgAEDeL1ZyZpCByvmYs3Q0FCWV4w1mcL/33//3TBClhHDmkKFeAxrMiNkGUllTaYYw5ys+fTpU4uw5tu3bwWL+LKSNW/dupXlrMmMkGXEsOa3337L6xVjTaHidoY1mRGypJSy5u+//87rVcKadOE/qZzMmkKNfVnJmjNnzuT1moM1mWIMUmFhYYINupZkTbLwn/Qyex8h1iSLMbj2PkpYU6iZSIg1/f39JbMmnWdXyprnzp2zGGsKFT4rYU2yGIOLNfv27cvrNRdr0nufnMyaQjfbmoM1mRGyjBjWbNu2La9XjDWFCryUsCZd+E9KCmuShf+kpLAmWfhPimFNvoYgIdZk9j7ZzZqIf+99hIrbs5I1hRoYzMGaTOE/qcjISPTx8VHEmkWLFuX00oX/clmTLPznYk2hYsusZE2h5s3/Kmsyhf9crCnUaKKENcnCf3rvo8qyUgsH1cJBVQpFH06Q3aH0JpEWfdOZ0CaRFp1IEdok0rp7967kTSKt9+/fs4od6e5QoStkk5OTjbpzyO5QcgNBS6fTGRU7VqhQwZAgozeJtDp16mS0SeQrxqBF33RGdofSm0RadJEU3R0qJLobku4OFdLz58+NNolMdyidIKMVExPDOoAS2iTSSk9PN+qGZDaJdIKMll6vN4ICsjuUBjZaNKALJcho0d3nQgkyWtu3b2d5hYoxaNHdkHR3qJCCgoJYUEB3hwo9p8TERKMDKLI7VMir0WiMih3J7lChZ4yIRsU3cjaJ9OEE0x3KlSCjRcMb3R0qpL/++ovlZQ4kuBJktHx9fY3WW7I7VEgRERGsJAyZIPPz8xN8TikpKUbFjmR3qNB6q9frjQ6gyO5QGthode3aleUlu0PpBBktOllGdofSBxK06MQ13R0qJPrmHbo7VEivXr1iHUAxBxJcCTJacXFxRgdQ9erV40yQ0crIyDA6gCK7Q8XW20aNGrG8QoX/tAYOHMjyChX+06JvOqO7Q4VEF4gLFf7TunnzptG7SHaHCundu3esAyiyO5ROkNFKSkoyGi9EdocKvYtardao+7xixYq8CTJa7dq1Y3nJ7lCxvQ99OCGUIKNFd58LFf7Tog+RhIoxaD158sRo78NX+E8rKiqKNe6C7g4VesZpaWno5ubG+tpkd6jYeksfQAkdSNCiD4Pd3Nxw5MiRePr0adH1lk6WMQcSXAkyWps3b2Z55XSH0re8ChX+0woICGAdQNGF/0JKSEgwOoDiK/ynpdFojIodmcJ/+kCCS3TxDXkTkdjeRwlr0geF5mBNrmIMWlnBmlzFGLSUsiZ9AEUWY2Qla9Ld518Da4rlqF68eMHy2tjYmIU16WIMWunp6UYHUEpYU6gYgxZ9q3ZOYM1r164ZrbdfO2tqtVpe1qSLMbhEF98wrMlVjEGLvuksu1iTnigiVIxBi2ZNoWIMWhEREawDqJzCmnThsbu7e7aw5oYNG4zWW6WsyVWMQUsJa3LdysJXjEGLizX5Cv9p6fV6o1u1s4s16ZvOcgJrhoSEWIw16WJHJawpVIxBi77p7L/MmmJ59qxiTa5iDFpCrCm296FvOhMqxqDFxZp8xRi06Fte5bBmYGDgf4416UI4c7AmV+E/rf379xutt1JZ8969e0brLV/hP62wsDAWawoV/tNKTk42aqzjazKnpZQ16Vu1hZrMaQmxptjehy6SygmsGRsby8maXIX/tPhYk6vwn5Zerze6VTu7WHP27NlGex+prLljxw6WN7tYMzg4OEtYky78p2Vu1hQq/KfFxZp8hf+0li1bxvIKNZnTUsKaDx8+NNr7SGXNyMhIk1lTlWWlFg6qhYOqFOjt27eYK1cu3u5QIX3+/BmLFi0qK0HGSKvVYoUKFWQVY5Bq06YNayyU2CaR1KhRo4zGQknV8uXLBbtDhXT48GHB7lAhPXr0CK2srHi7Q4X04cMHzJs3L2sslBiwMUpNTUUXFxdZm0RGer0ea9WqxRpBLLZJJNW9e3fWCGKxTSKpqVOnGo2FkqqNGzcaXdUtVT4+PkZXdUt9Tv7+/mhtbc3qDpX6LsbHx6OdnR1vd6iQMjMzsVSpUqxNohiwMdLr9di4cWNZm0RSgwcPFuwOFdL8+fONxkJJ1d69e41GEEvV7du3ZRVjkAoNDUVbW1usXr26pAQZqS9fvqC9vb2sYgxGOp0OK1euLNgdKqQOHToIdocKady4cUZjoaRq5cqVgt2hQjpx4oTRCGKpevr0KVpZWbFGEEt9xtHR0ZgvXz7WWCip6216ejq6u7uzEmRy1tt69erJSpCR6tOnj6xiDFIzZsyQVfhPauvWrbKKMUhdvnz5f+ydVXQVyRaGd5AEd4fg7u4El0ACDIMNGiSDO8MAgwVCcIK7QyC4uyS4a3CHBAvBQzxn34dZ1bfTXae76vQhhwz1r7Uf7sM/QPp2pb6/967SnA7V0sOHDzFx4sRmp0O19OnTJ0ybNm2ca6FY19vo6GgsWLBgnCuIWddbRMT69etzNWPI1bNnT+mDBEtAJpeXlxdX479cvr6+qmuhWHXhwgWuxn+5AgMD0d7ePs50KOu7GBoailmyZNGcDjWn2NhYLFOmjOZ0qJZatGjB9UFCriFDhqiuIGbV/PnzuQIyufbt26e6gpj1OQUEBGCiRImYmzHkCg4OxpQpU3I1/hNFRkZi7ty5LZoONZlMWKNGjTjXQvHsfTp16qR5EpGWxo0bp7oWilWrV6/m+iAhl7+/v+paKNbnZEvWLFq0qE1Ys0+fPjZhzW3btqmuhWKVLVkze/bsXM0YREZZs3Xr1lzNGHLZijUPHz5sE9b88OGDTVgTEbF27dpxroXi2fvYijU3bNiguhaKVdZgTdZmDLmMsmaJEiUsZk0XFxebsKa3t7fqCmJWGWHNGzduSKzJ0owhly1Zs0qVKjZhzdGjR9uENY8fP841ZC4XaVpmbfyXyyhrFipUiKvxXy4jrOnu7s7VjCGXrVjz4sWLNmHN79+/x2FNnpzdKGu2bNkyzhXEPHufoUOHcjVjyGWENckJ86zNGHIZYc33798nSNbs3LkzV+O/XEZYc82aNVxD5nJZgzVZG//lsiVrNmnShKvxXy4jrDljxgyuIXO5jLDm1atX47CmXuO/XHLWZGn8l8soa1aoUIGr8V8uI6w5YsQI1RXErLIlayZOnJi58V8uo6yZP39+riFzuYywZrdu3bga/+WaNGkSV+O/XEZY8+zZszZjzUyZMiU41hw4cKC4gjiBSjQOisZBIQO6d+8e1yZRrhcvXnBtEuV6//491yZRrvDwcK5NolwmkwlPnjzJvElU6uzZs1ybRLkuX77MFZDJdevWLa6ATK5Hjx5xBWRyBQUFcTVjyPX582euTaJcUVFRePr0aeZNolwmkwlPnTrFtUmU6/z581ybRLmuXr3KtUmU686dO1ybRLmePn3KFZDJ9e7dO66ATK7Q0FDVUd2sio2NxZMnTzJvEpU6c+YMV0Am18WLF7k2iXLduHHD4k3i/fv3uT5IyPXy5UuugEyuDx8+cH2QkCsiIoLrg4RcZL219Kjuc+fOcQVkcl25coUrIJMrICBAdzrUnB4/fswVkMn1+vVrrg8Scn358oXrg4Rc0dHRht5FI+vthQsXuAIyua5du8YVkMl19+5di/euz58/52r8lys4OJirGUOusLAw3elQcyLrraV7HyPr7aVLl7gCMrlu3rzJFZDJ9fDhQ66ATK7AwECugEyujx8/6k6HmlNkZKThvY+l6+358+ctXm+vXr1q8Xp7+/Ztrg8Scj158oQrIJPrzZs3XAGZXN++feMKyOSKiYkxtN6ePn2aKyCTy8h6e/36dd2TiMzJlqxp6d5HsCafjLDmq1evbMKa0dHRXB8k5LIlaxrZ+wjW5FNCZU2eZgy5jLImTzOGXJGRkYI1OWRL1uRpxpDLKGvaau9jZL29d+/eL8WaRvc+gjXZZYQ1bZ2zG2FNS3P2X5E1T506ZZP11sjexwhr3r9/P0GyptG9j2BNNiVE1kQ0lrML1mSXUdY0st4K1mSXLVnTSM4uZFv9iMZBO/y3MU5IQ3Z2drkAIBAAIDAwEHLlymXjv5GQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJDQr6CgoCBwdHQk/9MREYOM/jcTGf0PCAkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJJRyJxkEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhoV9IonFQSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISOgXkmgcFPplFB0dbTMvIlrkjYmJAZPJZJEXESEmJsYiL4Btf14J0WvpM46NjYXY2FiLvIiYYH9etvIaeRct9ZpMJvEuxqPXyLtoZL1NqD+vhOY18i4aWW8BEubPKyG+i0b2PmK9jV+vWG//216jex+x3safV7Dmf98rWDNheAVr/ve9Yu/z3/aKvU/C8Yq9z3/fK9bb/7ZXrLcJxyvW2/+2V+TsCccrWPO/702Iex+h/55E46DQLyN/f3+oXLkyTJo0CW7cuMG1CD958gTKlCkDo0aNgrNnz3JtiL59+wbly5eHQYMGwbFjxyAqKorZi4jg5OQE7u7usHv3bvj+/Tuz187ODtq2bQsdO3aETZs2wadPn5i9AABDhw6Fli1bwsqVK+Ht27dcXm9vb2jcuDHMnz8fnj9/zuXdvn071KxZE6ZNmwZ3797lek6XL1+G8uXLw/jx4+HKlStcvyxfv34NpUuXhr/++gtOnTrFtSGKjIyESpUqQb9+/eDQoUMQERHB7LWzs4NGjRpBt27dYMeOHfDt2zcub7du3aBdu3awYcMG+PDhA7MXAGDMmDHg6uoKS5cuhVevXnF5ly1bBvXr1wdvb294/Pgxl/fQoUNQtWpVmDx5Mty6dYvrGd+7dw/Kli0L//zzD1y4cIHrGX/69AnKli0LQ4YMgRMnTnBtiGJjY6FatWrQq1cv2LdvH4SHhzN77ezsoGXLltC5c2fYsmULfPnyhdkLANCvXz/4/fffYc2aNRAcHMzlnTp1Kjg7O8OiRYvg5cuXXF4fHx+oXbs2zJw5E+7fv8/1nM6cOQOVKlWCiRMnwrVr17i8L168gDJlysDff/8NZ86c4Vpvv3//DhUqVICBAwfCkSNHIDIyktmLiFCnTh3o0aMH7Nq1i3u97dChA/zxxx+wceNG7vV2xIgR0KJFC1ixYgW8efOGyzt//nxo2LAhzJs3D549e8bl3bVrF9SoUQOmTp0Kd+7c4XpON27cgHLlysG4cePg8uXLXO/iu3fvoEyZMjB8+HDw9/fnWm+joqKgcuXK0LdvXzhw4AD3etukSRPo2rUrbNu2Db5+/crsBQBwd3eHtm3bwrp16yAkJITL6+HhAc2aNYMlS5ZAUFAQl3flypVQt25dmD17Njx69IjLe+zYMahSpQp4enrCzZs3uZ7xw4cPoUyZMjB69Gg4f/4817v45csXKFeuHAwePBiOHz/OtfcxmUxQq1Yt+PPPP2Hv3r0QFhbG7LWzs4Pff/8dOnXqBJs3b4bPnz8zewEABg0aBK1atYJVq1bBu3fvuLwzZsyAxo0bw4IFC+DFixdc3s2bN4OTkxNMnz4d7t27x/WcLly4ABUqVIAJEybA1atXubxBQUFQunRpGDFiBJw+fZrrXQwPD4eKFStC//794fDhw1zrLQBA/fr1oXv37rBz504IDQ1l9tnZ2UGXLl2gffv24OPjAx8/fuT6c0eNGgXNmzeH5cuXw+vXr7m8ixYtggYNGsDcuXPhyZMnXN79+/dD9erVwcvLCwICArieU0BAAJQrVw7Gjh0LFy9e5FpvQ0JCoEyZMjB06FDw8/Pj2vtER0dDlSpVoHfv3rB//37uvY+Liwt06dIFtm7dyr3e9urVC1q3bg1r166F9+/fc3k9PT2hadOmsHjxYggMDOTyrlu3DurUqQOzZs2Chw8fcnmNsObTp08NsWa5cuVg4MCBcPToUW7WrF27tsWs2aZNG+jQoYNNWLNRo0bxzppXrlxJkKzZuHFj6NatG2zfvj1eWXPs2LGGWLNevXoWsebhw4cNsWaZMmVswprVq1e3CWv279/fYtacMmUKODs7w8KFC7lZc+PGjRaz5tmzZ6FSpUrg4eFhE9YcMGBAvLNmx44dExxr7t69W2LN27dvxxtrBgcHG2bNPn36WMSazs7OhlizTZs28c6aq1atsglrPnr0yCqsyZuzG2FNAIDWrVtDp06dwNfXN15Zc+bMmYZYs1atWhax5sWLF39Z1rRk7zN69GjDrDlnzpx4Zc3bt29D2bJlYcyYMfHKmjExMVC1alWbsGbv3r0THGuePHlSYs3r16/HK2uWL1/eYtZ0cnKCnj17Wvxd01LWHDZsmE1Yc8eOHVZhTd69z5s3b6BMmTIWsWZERITEmgcPHow31gQA6N69O7Rt2xbWr18fr6y5fPlym7Gmke+a5cqVS7CsuXr1aou/a1rCmj4+PuDk5AQzZsyId9YsXbq0TVizbt26VmFN3pxd6D8oRBSlUwCQCwAQADAwMBCFEqZMJhNWq1YNybPMlSsX9u7dG/fv34/h4eG6/g4dOkjeTJkyYZcuXXDr1q345csXXe+YMWMkb+rUqbF169a4du1afP/+va535cqVkjdZsmTYtGlTXLx4MdP/F/38/CRv4sSJsU6dOjhr1ix8+PChrvfx48eYOHFiyV+5cmWcNGkSXr9+HU0mk6b38+fPmC5dOslbsmRJHDVqFJ49exZjYmI0vTExMVi4cGHJmz9/fhw0aBAePXoUIyMjdf/eDRs2lLzZs2fHnj174u7du/H79++63l69ekne9OnTY4cOHXDTpk346dMnXe+0adMkb8qUKbFly5a4cuVKfPv2ra53y5Ytktfe3h4bNWqE8+fPx+fPn+t6L1++LHkTJUqENWvWxGnTpuHdu3d1n1NQUBA6ODhI/vLly+P48ePx8uXLGBsbq+kNCwvDbNmySd6iRYviX3/9hadOncLo6GhNr8lkwrJly0re3LlzY79+/fDgwYMYERGh+29u1aqV5M2SJQt269YNt2/fjt++fdP1Dh8+XPKmTZsW27Vrh+vXr8eQkBBd78KFCyVv8uTJ0dXVFZcuXYqvXr3S9R48eFDyJkmSBOvVq4fe3t74+PFjXe+dO3fQzs4OAQDt7OywatWqOHnyZLx165buMw4JCcFUqVJJf3bp0qXxn3/+wQsXLug+48jISMybN6/kLViwIA4ZMgRPnDiBUVFRml6TyYS1atWSvDlz5sRevXrhvn37MCwsTPff3LVrV8mbMWNG7Ny5M27ZsgU/f/6s650wYYLkTZUqFf7++++4Zs0aDA4O1vWuW7dO8jo4OKCzszMuWrQIX758qes9depUnPW2du3aOGPGDLx//76u99mzZ5gkSRLJX6lSJfTw8MBr167pPuOvX79ixowZJW/x4sXx77//xjNnzjCtt8WLF5e8+fLlwwEDBuCRI0eY1tumTZtK3mzZsmGPHj1w165dGBoaquvt16+f5E2XLh3+8ccfuHHjRvz48aOud9asWZI3RYoU2KJFC1yxYgW+efNG17tjxw7JmzRpUmzYsCHOmzcPnz59quu9du1anPW2Ro0aOHXqVLx9+7buc3rz5g0mT55c8pcrVw7HjRuHly5d0n0Xw8PDMUeOHJK3SJEiOHz4cPT392dabytVqiR5HR0dsU+fPnjgwAGmvU/btm0lb+bMmbFr1664bds2/Pr1q6535MiRkjdNmjTYpk0bXLduHdN6u2zZsjh7n2bNmuGSJUswKChI13v06NE4623dunVx9uzZ+OjRI13vgwcPMFGiRNJ6W6VKFfT09MSbN2/qPuOPHz9imjRppD+7VKlSOHr0aDx37pzuuxgdHY0FChSQvAUKFMDBgwfjsWPHdNdbRMS6detK3hw5cuCff/6Je/bsYdr79OjRQ/JmyJABO3XqhL6+vkzr7eTJk+PsfX777TdctWoVvnv3Tte7cePGOHufJk2a4IIFC/DFixe63vPnz8d5F2vVqoXTp0/He/fu6T6nly9fYtKkSSV/hQoVcMKECXj16lVdb2hoKGbOnFnyFitWDEeMGIGnT5/WfcaxsbFYunRpyZs3b17s378/Hj58mGnv07x5c8mbNWtW7N69O+7cuZNp7zN48OA462379u3Rx8cHP3z4oOudO3dunL1P8+bNcdmyZfj69Wtd7969e+Ostw0aNMA5c+bgkydPdL23bt2SvHZ2dlitWjX08vLCgIAA3ecUHByMKVKkkPxly5bFMWPG4MWLF5n2Po6OjpK3UKFCOHToUPTz82Pa+xhhzY4dO1qdNVn2PqtWrbI6az548EDXa5Q106dPH4c1R44cGS+s2ahRowTHmlu3brUJa7569crqrHny5EmmvU+5cuWsxppubm7xwpqLFi2Ks966uLjEC2vevXvXJqwZFRVliDWdnJxUrLl3794fzpoeHh4q1ly9erVFrNmkSRNcuHAh097n9OnTVmPNihUrxgtrxsbG2ow1+/fvbxPW3Llzp8Wsef36dRVrTpkyJV5YM2fOnHFYc9iwYfHCmu3atUtwrHns2DEqa7Lk7EZY89OnT5g2bVqrseagQYPw2LFjTO9ivXr1rMaaHTt2jBfW3LRpU5y9T+PGjXHBggVMex+jrGlvb29V1mTJ2Y2yZosWLVSsuWPHjh/OmvPmzbMaa9avX5+ZNQMCAqzGmmXKlIk31qxevTqVNVn2PkZYc+zYsVZhTQcHB2zatClzzm6ENZ88eaJizYkTJ8YLaxYpUiQOaw4cODBeWLN3795WZ02WvY8R1rxy5QqVNe/cuZOgWLNv37548OBBpr3P77//bjFr/vXXX3H2Pm3bto0X1jx06JDVWZNl7xMSEoKpU6e2KmseP378h7Omm5ubijU3b978w1lz/fr1VmNNJycnZtYUsq0CAwOlZwcAudAaPXHW+I/81wtE4+B/RocPH5a/RKowaPny5WY3RPfu3ZN+ycmLfAibO3eu2TDow4cPcX7JyeGkevXqmmFQVFQU5suXj/r3Llu2LI4dO1YzDKpduzbVW7hwYd0wqFu3blQvSxg0ceJEqpclDNqwYQPVKw+DzDVdnjlzhuolYZDWh7Dnz5/H+Zgs3xDphUHfvn3DTJkyUZ9xlSpVcNKkSXjjxg3qM46NjcUSJUpQ/96lSpXCUaNGaYZBLi4uVC/5EKYVBg0YMIDqzZ49O7q7u2uGQd7e3lQvSxi0a9cuqpclDLpx4wbVyxIGvXv3Lk6gKocTEgaZ+xAWERERJ1CVFwmDrly5QvWaTCasUqUK1csSBrVv357qzZMnD/br1w8PHTpkNgwaPXo01UuaLrXCoOXLl1O95EPYhg0bzIZBx48fp3pJ06VWGPTo0aM4gC9/F/XCIGWgKn8X9cKg6OhoLFSoEPXvzRIG1a9fn+olYZDWhzB3d3eql4RBWk2XU6ZMoXpJGLRlyxazYZCvry/VS8IgrabLixcvUr0sTZeBgYFxAlVS5EPYzJkzzYZB379/xyxZslD/7EqVKmmGQbGxsVimTBmqt0SJErphUMuWLanefPny6YZBQ4cOpXqzZcsmhUHmPoTNnz+f6pWHQeY+hO3fv9/seqsXBgUEBFD3PiQMmjdvHj579ozqff/+PaZMmZK63tasWROnTp1qNgyKjIzEPHnyUP/e5EOYuTDIZDJhjRo1qF7SdKkVBnXu3JnqZQmDxo0bR/VmzpxZCoPM7X3WrFlD9bKEQf7+/lRvsmTJpDDI3IewJ0+exPmYLF9vSRhkrunyy5cvmCFDBup6qxcGxcTEYNGiRal/bxIGnT9/3ux626RJE6q3YMGCOHjwYM0wqE+fPlQv+RCmFQbNmDGD6iVNl1ph0Pbt26neVKlSYatWrXD16tVm9z5Xr141u97qhUGvX7/GZMmSUddbvTAoLCwMs2fPTv2zSeOBuQ9hJpMJK1SoQPWyNB60bt2a6s2bNy8OGDBA80PYiBEjzK63PXr0wJ07d5pdb5csWUL1yj+EmVtvtVizefPmuHz5crN7n3v37kkfk+UVH6yZP39+6t/7Z2bNSZMmUb2ZMmX6oax59uxZs+utpazJMuBnjjUB/t90qcWaJUuWpHrJgN+PYs2BAwdSvdZiTXMfwnbv3k31/uysmStXLuqfXaFCBRw/frzFrKk34PfHH39QvT+aNVesWEH1srDmiRMnqN74YE35kKx8vbUGa2p9CGvQoAHVa4Q1WQb8zLGmvOnSHGtu3ryZ6k2dOrXugJ8R1gwKCrIJayqHZOXFwpq//fYb1WsN1tRqulywYAHVS1hTq+nSHGuyNF3evn37h7AmGfD7UaxZs2ZNqvdHs+b48eOp3h/NmidPnqR6rcGaWgN+eqyp1XQZExODxYoVo/69S5cujaNHj7aINcmAnxZr9u3bl+r9mVlTPiSrXG+twZrmmi7Dw8N/GGvqDfi1adOG6jXCmvIBvx/BmkeOHDG73v5o1pQPycrfxR/NmnXq1KF6CWv6+fmZXW+7d+9O9RLW1Brw02NNraZLHx8fs+ttmzZtNA+T0WJNvQG/Fy9eJEjWdHV1pXp/NGvOmTPH7HprlDW1Bvxu3rxJ9bKyprxxmRRhTa0BP6OsWbVqVaqX5TAZI6z5zz//UL0/A2uaa7pkYU1zTZcsrGluwC86OjrOkKy8jLIm64CfUPxLNA6KxkEhAxozZozZX47KUoZBy5YtQ0dHR+qCrywSBpEPYQcPHkRHR8c4ExDmShkG3blzBx0dHakbAmUpw6CvX7+io6MjdWOvLNoEbunSpamArixaGNSsWTOzQZu85BO4JAzq06dPnJOVzBUtDJoyZUqcyS2tUoZBGzZsQEdHR2qgoSxlGHTq1Cl0dHSkgrKylGHQ8+fP0dHRMc6kvrkiYRD5EGYymdDR0ZG6mVAWLQyqXr26WSiQFwmD5BO47dq1izOZY65oYdBff/3F9C7SJnDnzZuHjo6OVNhVFpnAJWHQrl270NHRkRogK0sZBl29ehUdHR2pH4KUpQyD3r9/j46OjtQPusqihUFFihSJM+lmrmhhUIMGDeJMrJorWhjUvXt3swGOvGhh0Pjx45nX24oVK8aZwF25ciXzeqsMg44ePcq83ioncB88eICOjo7U8FlZyjAoPDwcHR0dqQ2LyqKFQeXLl49zkoO5ooVBLVu2xKxZs+p6aWHQgAEDzDbDKt9FEgaRD2EzZsxAR0dHatCvLGUYtHnzZnR0dKQGGspShkHnzp1jfheVYVBQUBDzekubwM2TJw/Teks7WbhWrVrM660yDOrQoQPTeksLg0aOHMn8LirDoEWLFjGvt8owaO/evczrrfK0p5s3bzLvfZRh0KdPn5j3PunTp8eOHTvGmcAtUaIE096HFgY5Ozsz7X1oE7h//vkn895HGQZ5enoy733IBC4Jg9auXcu891GGQX5+fsx7H2UY9PjxY+b1VhkGRUVFMa+3tDCocuXKTOstLQz6/fffmdZbWhg0ZMgQ5vW2WrVqcU57mj17NvN6q5zA3bZtG/N6qwyDLl26xLzeKhsP3r59y7z3oTUeFCxYkHnvo2w8qFu3LvPeR9l40LVrV+a9j7LxwBLWJKc9GWHNQ4cOcbGm/LQnwpos76KSNb99+2Yz1nRxcUlwrOnj4xMvrOno6Ih9+/aVmi7jkzWVpz0ZYc327dszs6byZGEjrDl//nybsOa1a9eY9z4/E2s2bNiQab2lnSzMypq0054mTJgQL6ypPFk4obJmhQoV4pU1SdPlwIED44015QN+Rljz/PnzzHsf5cnChDVZ3kUaa+bNm9cmrNmxY0eLWXPUqFE2Yc19+/bFG2vKT3uKT9ZUnixshDV79erFvPdRnixshDXXrVsXL6xJThYmrPnkyRPmvY+SNaOjo7lZU56zG2HN1q1bc7Gm/LQnHtZUnizs7e0dL6ypPFk4obJmvXr14o015QN+Y8eOjTfWlA/4GWHNu3fvcrGm/GRho6xZpkwZm7Bm3759LWbNqVOncrMmydmNsObp06fjjTWVA37xxZrKk4WNsOaIESNswpq7d++OV9YkOXtISAjzu0hjzaJFi3KxpnzAzwhr9ujRI15YU3my8KpVq34Z1mQ5WVjox0s0DorGQSEDkl+LyFO5cuUyO02oV5kyZYpzfRxPpU6d2myXt14lS5YszpW9PEXCIJYNH60qV66MuXPntshbsmRJLFWqlEXe/Pnzm52y16vs2bPHOX6Yp9KnTx/n2gaeSpkypcXPyd7e3mIvCYNYNte0Kl++PBYsWNAib9GiReMc581TuXPnjnMsP09lyZLF7JSaXqVNm9bsSXJ6lTx5coufE2m6ZAE3ZZEwiCU4olXp0qXjXCvEUwULFoxzXQ1P5cyZ0+L1NmPGjBa/i6lSpbL4OTk4OMS5SoCnSBjEsjGnVcWKFc2eSKtXxYsXj3OVCU/ly5fP7KSZXmXLls3s6UR6lS5dOovfxRQpUlj8jEkYxAL2yiJhEEvoRKty5cqZnRbTqyJFimD58uUt8jo6Opo9tU+vMmfObPHeJ02aNDbZ+5AwiCVEURYJg1gDPmWVKlXK7KnDelWgQAGsXLmyRd4cOXLEuVKepzJkyGBo72PpMza696lVqxZTeEyrChUqxLnii6eKFStm9vQZvcqbN2+c6295KmvWrBbvfYyst8mTJ7f49yJpPGD5+KQs0nTJEgDTqkyZMmZPwdSrQoUKYcWKFS3yJlTWNLL3Mcqa5k4J0ivBmuxla9Y0dyqbXhllTUv3PkZY08jeR7AmXyVU1jSS7dWuXZvpgyytBGuyV0JlzbJlyxpiTXOnfelVQmVNS/c+tmZNcydB6ZVgTfZKqKyZJ08em7Cm0ZzdCGvWr1/fEGuyNKLQSrAme1kjZ2dpKqWVEdYsUaKEIda0dO9jlDUtfReNsqalzzghs6YtvmsK1uQrI6xpZO9jlDWNrLdGWNPJyQl9fHx0r50W+nH6EY2DSUBISIiqDBkyQNOmTcHFxQUeP34MZ86cYfamTJkSGjVqBK6urgAA4Ofnx+y1t7eHunXrgqurK+TPnx+OHTvG7E2UKBHUqFEDXF1doW7dunD06FFmLwBAhQoVwNXVFVxdXaFRo0YQGhrK7C1WrJjkHTJkCLx8+ZLZmydPHsm7fPlyCAgIYPZmyZIFXFxcwNXVFU6fPg0XL15k9qZNmxacnZ3BxcUFgoOD4dSpU8ze5MmTQ8OGDcHV1RVSpUoFJ06cYPYmTZoUateuDS4uLlC6dGmu52RnZwfVqlUDFxcXyc+jMmXKSD/rdu3aQUhICLO3UKFCktfDwwMeP37M7M2VK5f0nLZs2QLXr19n9mbMmBGaNWsGrq6ucPPmTTh37hyzN3Xq1NC4cWNwdXWF8PBw8Pf3Z/Y6ODhA/fr1wdXVFbJnzw7Hjx9n9iZOnBhq1aoFrq6uUK1aNe53sXLlyuDq6gouLi5Qs2ZNLm/JkiWln3WvXr3g1atXzN58+fJJz3ju3Llw9+5dZm+2bNmkP/fw4cNw+fJlZm/69OnB2dkZXF1d4cWLF1zrbYoUKaT1NmnSpFzvor29PdSpUwdcXV2hcOHCXM8pUaJEUL16dXB1dYWGDRvCkSNHmL0AAOXLl5eesYuLC3z58oXZW7RoUcn7999/w7Nnz5i9uXPnlrxr1qyBW7duMXuzZMkCzZo1AxcXF7hw4QJcuHCB2ZsmTRpo0qQJuLq6wqdPn+DkyZPM3mTJkkGDBg3A1dUV0qdPz/UuJkmSBJycnMDV1RUqVKjAvd5WqVJFeifKli3L7AUAKF26tOTt1KkTBAcHM3sLFiwoeb28vODhw4fM3pw5c0rv4s6dO+HatWvM3owZM0LTpk3B1dUV7t27B2fPnmX2pkqVCho3bgwuLi4QExPDtfdxcHCAevXqgYuLC+TJk4dr75M4cWJp71OrVi3u9bZixYrSz7pu3bpc3uLFi0veAQMGQGBgILM3b968knfRokVw584dZm/WrFmlZ+zn5weXLl1i9qZLl05ab1+9egWnT59m9qZIkULa+yRPnpx770PW2+LFi3Pvb6tVqwaurq7QuHFjKFeuHLMXAKBcuXLSz6tVq1bw8eNHZm/hwoWl5zRmzBh48uQJs9fR0VH6czdu3Ag3btxg9mbKlEna+1y9ehXOnz/P7E2dOrW03n779o1r75MsWTJp75M1a1buvQ9ZbytVqsT1e9HOzk7a+7i6ukLlypWZvQAApUqVkn63de/eHd6+fcvsLVCggOSdOXMm3L9/n9mbPXt26Rnv378frly5wuxNnz69tN4aYU07OzubsGa9evW49z7WZM0XL14we63Bmi4uLnDmzBmLWfP9+/fcrEn2PqlTp+Zab5MkSQK1a9cGV1dXi1izatWq0jthK9acOHEiPHr0iNmbM2dOyWuENW/dusW197EWa+bIkYN771OrVi1wcXGB6tWrW8SaZO0ywpq9e/e2CWseOXIkQbBm0qRJpfW2SJEiFrNmgwYNuJ+xnDVJLsmqokWLSj5e1nR0dJSe8dq1a7lYM3PmzNK7aCvWzJAhg8WsWb58eUOsybu/tQZruri4wNSpU7lYM0eOHJJ39+7dcPXqVWYvydldXV3h/v37FrNmbGws996nXr164Orqaog1nZycuPc+PwNrLl68GG7fvs3stRZrvn792iLWdHFxgRQpUljEmi4uLlCiRAmLWNPFxQWcnZ25c5+yZctKP2sjrDl27Fgu1syVK5fkNcKa165dswlrZsmSxWLWrFy5skWsSf5/XaVKFWYvQFzW7NGjB7x584bZmz9/fuk5GWHNAwcOJDjWLFCggE1Y08XFBZo0aQLfvn1j9hLWdHFxgaFDh1rEmi4uLrBy5UqLWfPs2bNce5+0adNK76IR1kyTJg333scarOnq6gqlSpVi9gL8HKy5detWi1jTxcUFAgICLP6uGRERYRFruri4QM6cOS1mzRo1anBzSKVKlaSfV61atbi8JUqUkLxGWHPevHk2Y03evY+1WJN3vZV/17SENcnPq3z58mBnZ8flF/rJZY3uw/96gThx8D+hK1eu4Ny5czW7pJVH4xPdv38f16xZozmRpDwanygwMBA3bdqkeayu8mh8ok+fPqGvr69mh7z8GjZyVDMiYlRUFPr6+mpOBtGOxifasWMHtmvXzqyXdg0b0ZEjR3DAgAFmvWRKy8vLSzoan+js2bPo6emp+ZzKlCmDY8aMkY7GJ7p58yYuWbJE06s8Gp/o8ePHuGHDBs0JUOXR+ERv3rxBX19fzQlQ+dH45KhmRMRv376hr6+v5qQu7Wh8RESTyYS+vr7o7OysOTWgPBqfaO/evdi1a1fNqQFyDRs5Gp/oxIkTOGLECM2ftfLKb6KLFy/ijBkzNL3Ka9iI7ty5gytXrtQ87plc+U2Oxid6/vw5bty4UXPiXnkNG9H79+/R19dXcyKJdjQ+ImJ4eDj6+vpqTvjRjsYn2rZtG/72229mvfKj8ckVtEQHDx7E3r17m/XSjsYnOnXqFI4bN07zOSmvYSO6du0azp8/X9OrPBqf6MGDB7hu3TrNY7nJ0fjkym+ioKAg3LRpk+b1HuQatu3bt0tH4yMifv78GX19fTVPRpBf+U2uBUJEjI6ORl9fX80pPdo1bES7du3CDh06mPXSjsYnOnr0KA4ePNisl3Y0PtG5c+fQy8tL8zkpj8YnunXrFi5btkzzOhPl0fhET58+RR8fH83ThuTXsH3//l3yvnv3Dn19fTFv3rxmvbSj8RERQ0ND0dfXV3NqnnYNG9HmzZvRxcXFrJccjb9w4ULpWiCiffv2YY8ePTTfReWV30R+fn44cuRIzeekvIaN6PLly+jt7a3pVV75TXT37l1cvXq15lUXefLkiXM0PtHLly9x06ZNmtf0yI/Gl+99Pnz4gL6+vprT2GnTpqUejR8REYG+vr6a07bJkydXXcNGtH37dmzTpo1ZL+0aNqJDhw5h3759Nd9F5TVsRGfOnEEPDw/N50Su/CbXsBFdv34dFy5cqOmVX8MmfxcfPnyI69ev17weSH4Nm3zv8/r1a/T19dWcAKVdw4aI+OXLF/T19dU8GYF2DRsiYmxsLPr6+mLjxo3Neh0cHFTXsBHt3r0bO3fubNYrv4aNXEFLdPz4cRw2bJjmz1p5DRvRhQsXcNq0aZpe5TVsRAEBAbhixQrNk2jINWzHjh2Ls/d59uwZbty4UfNaEXLlN7mGjSg4OBh9fX0xf/78Zr20a9gQEcPCwtDX11fzBAvald9EW7ZswRYtWpj1yq9hI9cCEe3fvx/d3d3NemnXsBGdPHkSx4wZo/mc5Newyd9Fo6y5du1azWtnrMWa8r0PYU2tU09tzZrya9iIjhw5ggMHDjTrpV35TcTKmvJr2IgSMmtqnVLyI1nTzc3NrNdarEmuYSO6ePEizpw5U9NrhDXz5s0b5xo2IhbWzJo1a5xr2IhCQkLQ19dX8+SvH8marVq1Muv9WVlzwYIFml7Cmv7+/hazJrmGjejVq1e4adMmzZNtlVd+E7GyJrmGjcaaWidJ/Iysef78eZwyZYrmc0rIrOnr6xtn72MN1nR1dTXrlV/DZilryq9hI/L398dRo0ZpPicjrKm8ho0oIbJmZGQk+vr6ap5qKWdN5d7HKGtq3aRkDdaUX/lNdP36dVy0aJGm1xxrPnr0yCas+fXrV/T19dU8FSqhs6YyZ+dhzbNnz8Z5F2/fvs3MmuTKbyJrsKbWSYtGWVN55TeREdY8cOCATVjz6tWrOG/ePE2vtVhTvvchrKl1sq01WFN+5Tfi/1lT6wQuwppLly5Vrbc7d+7E9u3bm/UaZU3lld9ELKypvPKbyBqsqXVNqTnWfPv2bbyxpnLv4+vri02bNjXrlbMmuYKWyFaseenSJSbWlF/5TXTnzh1ctWqVRaz54sUL3LRpk+a1v4I1//+cTp8+zcya5Mpvop+ZNTNlyqS68hvRGGvGxMQwsabyym+hn0PiqmLROChkUEoAI0fment7qwIypZS/LOSbRGVAptSBAwdUi625TaJSt2/fVoVlZJOoDMiUev/+vSosy5EjB/bq1UsVkCkVGRmpCsvMNWMoZTKZVJsJrYBMqS5dusTxypsxlJtEpcaPH6/aJJJmDOUmUam1a9eqnlPFihXRw8NDtUlU6tSpUypv8eLFqZtEpZ4+faoKy+SbRHlAptTXr19VVyGY2yQqFRMTg8WKFaNuEpUBGU3Kj0hkk0hrxlBK2VyhFZAppdycywOy27dvaz6nHTt2qJ4TacZQbhKVunbtmspLAjLlJlGpN2/eqI7mzpUrF/bp00e1SVQqPDxcdRWCfJMoD8iUMplMKnhLnTo1dZNIkzLUlG8S9X4f/v3336p3kXyQePjwoaZ36dKlqmdcpUoVajOGUkeOHFE9p1KlSlGbMZS6f/++Kiwz14yh1IcPH1RhGQnI9uzZo7neRkdHq8IyEpApP0jQpPxoT5oxVq1apQrIlOrevbtqvW3cuDH1g4RSyjCEXM9C+yChlI+Pj+o5VahQASdMmIBXrlzR9J47d07lJR8klAGZUi9evFANAZhrxlAqNDRUdRWCucZ/pWJjY1VXVsibMfTWW+VHJK1mDKUGDRqk2vuYa/xXas6cOap3kTT+Kz9IKLVnzx7VcyKN/8oPEkrdunVL5S1UqBAOHTpU9UFCqXfv3qkaM3LmzIm9e/dWBWRKRUREqMKyjBkzYpcuXXDLli26663yahFzzRg0KT/okg8StGYMpf755x/VeksCMuUHCaVWrlyp+lmba/xXys/PT+UlzRjKDxJKPXr0SBWWkcZ/5QcJpT5//qxqzCCN/7t379bc+0RHR6vCsvTp02OHDh1w06ZNcQIympRXOKRIkUL6IKEMyJTq1auXau/TqFEjnDdvnuqDhFJTp05Vrbc1a9akBmRKbdmyRfWcypcvT23GUOrSpUsqr7nGf6WCgoJUYZm5xn+lvn//rhoCMNf4r5TJZFI1pcob/+UfJGhShpqkGWPp0qW6AZkR1lQ2AFuDNWnNGErduXPH6qxJa8ZQyihrKq+AiS/WnDBhgmq9tTVrKpsxlHr27JlZ1lQ2YyilxZrKZgylYmJiVAOQRlhTq/FfKWVzhWBNbdbMkSNHHK81WFPZjEFT27ZtVetts2bNqM0YSimHaghrzpo164ey5tGjR1XPyVzjv1JGWPPjx48JkjWVzWzWYk1lM4ZSGzduVD0no6xJa8ZQ6uXLl4ZYUzkEEF+s2bx5c9V6Gx+sqRy4sBZr6uXsWqypbMZQKjg42GasqWySMsqa5hr/lVI2OiUE1nz8+PEPYU2WnP1HsCatGUMpLdZUNmMopWw61GrGUIrGmuYa/5W6fPmyyhsfrBkWFqZqzEgIrDl8+HDVehsfrHnw4EHVczLCmuYa/5UKCQmxmDWjoqJsxprKQzqMsKbWkLlS69atUz2nhMCayiEAc43/StFY01zjP03KhsX4Ys1Zs2ap3kVW1ty5c6fqOVmLNbXexTdv3qiGAKzBmsrGf6VMJpPq2mAjrKnV+K8UjTVJ478eay5btkz1szY3ZK6UEdZ88OCBTVhTyLYSjYOicVDIgN6+fYvJkyc3Ox2qpfDwcMyZMydXQEZkMpmwcuXKXAGZXO3ateNqxpCLTI2SgEw5Haql5cuXI4D56VAtHTt2DAHMT4dq6eHDh5goUSLMkiUL0yZRrk+fPmHatGmlTSJLQEYUHR2NBQsW1JwO1VL9+vWlTeKcOXN0N4ly9ezZU9oksgRkcpHTwlibMeTatGkTArA3Y8h14cIFaZNImw7V0suXL9He3l4KyPQ2iXKFhoZilixZzE6Haik2NhbLlCkTZ5OoF5DJ1aJFC83pUC0NGTIkziZRLyCTi0wUlixZkikgk2vfvn0IwB6QyRUQEIAA7M0YcgUHB2PKlCnjBGSs621kZCTmzp07TjMGz3pbvXp1zelQLXXq1ElzOlRLY8eORYD/T4fqBWRyrV69GgHMT4dqyd/fHwH+/0FCLyCT68mTJ5g4cWLpg4ReQCbXly9fMH369FwBGVFMTAwWKVKEKyCTq3HjxnECMr0PEnL17t1bczpUS9OnT5cCMpbGf7m2bduGAOanQ7V05coVBDA/Haql169fY7JkycxOh2qJhKnkgwRLQEZkMpmwfPny0gcJloBMrtatW3M1Y8j1119/IcC/HyRYAjK5Fi9eHCcg02v8l+vQoUNxAjK9xn+57t27h3Z2dsyN/3KFhIRg6tSpzU6HaikqKgrz5cunOR2qpdq1a2tOh2rJzc0tzgcJvYBMrokTJyLAvx8kWAIyudavX68KyFjX2zNnzkgfJFgCMrmeP3+OSZMmNTsdqqVv375hxowZuRr/iWJjY7FEiRIWT4c2a9aMq/FfrgEDBmieRKSl2bNnI8D/TyLSC8jk2rVrV5wPEnoBmVw3btywOCAzwpoRERE2Y8327dsnONY8fvx4gmZN1mYMuYywpru7O1czhlxGWNPX19cwa5JmDB7WDAwMtCpr6jVjEBllzZYtW0qsydKMIZcR1iSnxNuCNe3s7Cxizffv39uMNWvUqCE1YxhlTb1mDLnIiRlGWZOlGUMuo6yZJEkS5mYMuYyyZtGiRa3GmnrNGHL16dPHYtYkt3LEN2tevXpVasYgQ+a8rMnajCFXWFgYZs+e3RBr8jRjyGWENckJRazNGHIZYc3Dhw/bhDU/fPhgNdZkacaQywhrduvWTWJNlmYMuQhrsjZjyLVhwwbDrMnajCGXUdbMlCmTTVjTxcXFKqzJ0owhFzkp1QhrsjZjyGWENd+9e4fJkyfnavwnMsqaVapUsQlrjh492mLWXLFiRRzW5MnZjbAmGZAlrKnX+C+XnDVZG/+JoqOjsVChQoZYk6fxXy4jrElOpo5v1rx48aLVWFOv8V+u79+/W8yapGmZZ8hcLiOsOXToUClnZ2n8l4uwJmvjv1z79+9PkKyZJ08eriFzIqOs2blzZ6uwJkvjv9DPI9E4KBoHhQzo6tWrXJtEuR4+fKg6qptV796949okyhUeHo4bN25kDsjkMplMuGnTJq5Nolw7d+7k2iTKdfjwYa6ATK6zZ89yBWRy3bx5kysgk+v58+dczRhyffr0iasZQ66oqCj08fFh3iTKZTKZcMuWLVybRLn27NnDFZDJdfz4ca6ATK6LFy9yBWRy3b17V3VUN6tevXrFFZDJFRoayjQdSlNsbCxu3LiRqxlDrm3btnEFZHIdOHCAa5Mo16lTpyzeJF67do3rg4Rcjx8/5grI5Hr//j3XBwm5IiIi0MfHhzkgk4ust5Ye1b1r1y6uDxJyHT16lKsZQ65z587pToeaU0BAgO50qDm9fPlSdzrUnL58+cL1QUKu6Oho9PHxYf4godSWLVu4AjK59u3bxxWQyXXixAmugEyuy5cvczVjyHX//n2ugEyuN2/ecDVjyBUWFoabNm1iDsjkIustzwcJuXbs2MHVjCHXoUOHuAIyuU6fPs0VkMl148YNroBMrqdPn3IFZHJ9+PCBqxlDrsjISEPr7ebNmy1mst27d3MFZHIdO3aM64OEXBcuXOAKyOS6c+cO1wcJuYKCglTXQrGKXDvDGpDJFRMTgz4+PswfJJTaunUrV0Am1/79+7ka/+Xy9/dXXQvFKluypqV7H6OsuXHjxl+KNW/dupXgWNPI3udXZM179+7ZhDW/f/9uM9bcvn27IdbkacaQyyhr8jRjyGWUNXmaMeQyuvfx9fVNcKx5/vx5PH/+vEXvoi1Z0+jeJ6Gxpp+fn01Y88GDBwmONY3ufQRrsssIa0ZFReHGjRsNrbdG9j5GWJOnGUMuo6zJ04whV0JlzW3btgnWZFRwcLAh1vTx8RHfNRn1q7EmIuLmzZu5Gv/lshVrXrp0ySas+fr16wTJmka/axphTZ7Gf7kSKmsa3fuIK4gTpn5E46Ad/tsYJ6QhOzu7XAAQCAAQGBgIuXLlsvHfSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISOhXUFBQEDg6OpL/6YiIQUb/m4mM/geEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIQSjkTjoJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJDQLyTROCgkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk9AtJNA4KCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCf1CEo2DQr+MDh8+DO3btwcfHx/4+PEjl/f27dvQvHlzWL58Obx+/ZrLGxwcDC4uLjB37lx48uQJlzciIgJ+++038PLygoCAAEBEZi8igpubG4wdOxYuXrwIJpOJ688eMWIEDB06FPz8/CA6OprLO3v2bOjduzfs378fwsPDuby+vr7QpUsX2Lp1K3z9+pXLe/r0aWjdujWsXbsW3r9/z+V98uQJuLi4wOLFiyEwMJDL+/nzZ3B1dYVZs2bBw4cPubzR0dHQtm1bmDRpEty4cYP7Gffu3RtGjRoFZ8+ehdjYWK4/e/z48TBw4EA4evQoREVFcXmXLFkC7u7usHv3bvj+/TuXd8+ePdChQwfYtGkTfPr0ict79epVaNmyJaxcuRLevn3L5X316hU0a9YM5s+fD8+fP+fyfv/+HVq0aAHTpk2Du3fvcj0nk8kEHTt2hPHjx8OVK1e438UhQ4bAX3/9BadOnYKYmBgu79SpU6Ffv35w6NAhiIiI4PKuW7cOunXrBtu3b4dv375xeY8dOwbt2rWDDRs2wIcPH7i89+7dA1dXV1i6dCm8evWKyxsSEgIuLi7g7e0Njx8/5vJGRkZCq1atYPLkyXDr1i3ud7F79+7wzz//wIULF7if8ahRo2DIkCFw4sQJ7vV23rx50KtXL9i3bx/3ert161bo3LkzbNmyBb58+cLlPX/+PPz++++wZs0aCA4O5vI+f/4cmjVrBgsXLoSXL19yeb9+/QrNmzeHmTNnwv3797meU2xsLLRr1w48PDzg2rVrXF4AgH79+sHff/8NZ86c4V5vJ06cCAMGDIAjR45AZGQkl3f58uXQo0cP2LVrF/d6u3//fvjjjz9g48aN3OvtzZs3oUWLFrBixQp48+YNl/fNmzfQrFkzmDdvHjx79ozLGx4eDi1btoSpU6fC7du3udfbLl26wLhx4+Dy5cvc7+Lw4cNh+PDh4O/vz73ezpgxA/r06QMHDhzgXm99fHyga9eusG3bNu69j5+fH7Rp0wbWrVsHISEhXN6HDx+Ci4sLLFmyBIKCgri8Hz9+BBcXF5g9ezY8evSIyxsVFQWtW7cGT09PuHnzJvd66+7uDqNHj4bz589zv4tjx46FwYMHw7Fjx7j3PgsXLoQ///wT9u7dC2FhYVzenTt3QqdOncDX1xc+f/7M5b106RK0atUKVq1aBe/evePyBgYGQrNmzWDBggXw4sULLm9oaCg0b94cpk+fDvfu3eNeb//44w+YMGECXL16lXu9HThwIIwYMQJOnz7N/S5OnjwZ+vfvD4cPH+Zeb1evXg3du3eHnTt3QmhoKJfXlqzZrFkzmDNnjk1Yc8yYMfHOmt7e3oI1GRUTEyOx5vXr1+OVNSdMmGCINXv27BnvrHnt2jXBmhyaNm0a9OvXDw4ePBivrHn8+HFo27YtrF+/Pt5Zs1mzZhaxZlRUFPz+++8Ws2aPHj0sZs3Ro0fbhDW3bdtmM9Z0cXGxmDVdXV1hxowZFrFm+/btExxrrlixwmLWPHDggMSavHsfI6z59u1biTWfPn3K5TXCmogIXbp0gbFjx8KlS5filTVnzpxpE9b09/e3mDUfPXpkE9aMjo6GNm3aWMyaf/75J4wePRrOnTsX76zp7u4Oe/bsiVfWvHz5Mvz2228JjjU7dOggsSbvu2iENb28vGzCmkeOHIH27dtblLP/iqz5999/24Q1N2/ebDFrnjlzxmLWfPr0qSHWdHFxgZkzZ8KDBw+4vEZYEwCgT58+MHLkyHhnzaVLl1rMmnv37rUJa75+/dpmrNmpUycYP368RTn7kCFDYPjw4XDy5Ml4Z003N7d4Z8379+8neNbkfReF/oNCRFE6BQC5AAABAAMDA1EoYSomJgaLFy+OAICJEiXCWrVq4fTp0/HevXtoMpl0/c7Ozkj+f1ChQgWcMGECXr16lcnbr18/yVusWDEcMWIEnj59GmNiYnS9M2fOlLx58+bF/v374+HDhzEiIkLXu2PHDsmbNWtW7N69O+7cuRO/ffum67127ZrkTZcuHbZv3x59fHzww4cPut43b95gsmTJEAAwRYoU2Lx5c1y+fDm+fv1a1xseHo45cuRAAMCkSZNigwYNcO7cufjkyRNdr8lkwooVKyIAoJ2dHVavXh29vLwwICCA6Tm1bdtW+jeXLVsWx4wZgxcvXsTY2Fhd78iRIyVvoUKFcOjQoejn54dRUVG63qVLl0reXLlyYe/evXH//v0YHh6u6z169KjkzZQpE3bp0gW3bt2KX7580fXev38fEyVKhACAqVOnxtatW+PatWvx/fv3ut6PHz9imjRpEAAwWbJk2LRpU1y8eDHTGhkdHY0FChRAAMDEiRNjnTp1cNasWfjgwQNdLyJi3bp1pX9z5cqVcdKkSXj9+nWmZ9yjRw/JW7JkSRw1ahSePXuW6V309PSUvPnz58dBgwbh0aNHMTIyUte7ceNGyZs9e3bs2bMn7t69G79//67rPXfunORNnz49dujQATdt2oSfPn3S9b58+RKTJk2KAIApU6bEli1b4sqVK/Ht27e63tDQUMyUKRMCANrb22OjRo1w/vz5+Pz5c11vbGwslipVSlpva9asidOmTcO7d+8yPafmzZtL/+by5cvj+PHj8cqVK0zv4qBBgyRv0aJF8a+//sJTp05hdHS0rnfu3LmSN3fu3NivXz88dOgQ03q7Z88eyZslSxbs1q0bbt++nWm9vXXrluRNmzYttmvXDtevX48hISG63uDgYEyRIgUCACZPnhxdXFxw6dKl+OrVK11vREQEOjo6IgBgkiRJsF69eujt7Y2PHz/W9ZpMJqxWrZq03latWhUnT56Mt27dYnrGHTp0kP7NpUuXxn/++QcvXLjA9IzHjBkjeQsWLIhDhgzBEydOMK23K1eulLw5c+bEXr164b59+zAsLEzX6+fnJ3kzZsyInTt3xi1btuDnz591vY8fP8bEiRMjAGCqVKnw999/xzVr1mBwcLCu9/Pnz5guXToEAHRwcEBnZ2dctGgRvnz5UtcbExODhQsXltbb2rVr44wZM/D+/fu6XkTEhg0bSv/mihUrooeHB167do3pGffq1UvyFi9eHP/++288c+YM03o7bdo0yZsvXz4cMGAAHjlyhGm93bJli+TNli0b9ujRA3ft2oWhoaG63suXL8fZ+/zxxx+4ceNG/Pjxo643KCgIHRwcpL1PixYtcMWKFfjmzRtdb1hYGGbLlk3a+zRs2BDnzZuHz5490/WaTCYsW7astN7WqFEDp06dirdv32Z6Tq1atZL+zeXKlcNx48bhpUuXmN7F4cOHS94iRYrgsGHD0N/fn2m9XbhwoeR1dHTEPn364IEDB5j2PgcPHpS8mTNnxq5du+K2bdvw69evut47d+6gnZ0dAgCmSZMG27Rpg+vWrWNab0NCQjBVqlTS3qdZs2a4ZMkSDAoK0vVGRUVh3rx5pfW2bt26OHv2bHz06JGu12QyYa1ataT1tkqVKujp6Yk3b95kesZdu3aVfl6lSpXC0aNH4/nz55nexQkTJkjeAgUK4ODBg/HYsWNM6+26deskb44cOfDPP//EPXv2MO19Tp06JXkzZMiAHTt2RF9fX6b19tmzZ5gkSRJp7/Pbb7/hqlWr8N27d7rer1+/YsaMGaW9T+PGjXHBggX44sULXa9R1mzatKnVWZPlXZw1a1aCZM3kyZNLe5/mzZvjsmXLLGbNOXPmMLNmpUqVrMKaZcqUiTfWXLZsmU1Y88GDB1ZhTQcHB5uy5sSJEy1mzZEjRzKz5uTJk+Ow5sCBA+OFNc+fP28z1sycObPFrFm6dGmrsubly5eZ3sXBgwerWPPkyZMWsWbfvn3x4MGDTOvt3r17rcKaadKkwbZt28YLa0ZGRtqMNTt27GgT1ly1apVVWXPz5s0Ws+bq1auZWTN9+vRxWHPhwoUWsaaTkxMXazZq1CjBsebWrVttwpqvXr2yKmvOnTsXnz59qus1mUxYrlw5q7Hm2LFj44U1Fy1aZBPWvHv37k/Fmg8fPtT1mkwmdHJyUrHmjRs3LGbNc+fOMb2LHh4eVmNNd3d3ZtY8ffr0T8WarHsfW7Fm//79rcKaefLkwf79+zPn7Dt37lSx5o4dO5j2PtevX5e8adOmxfbt2+OGDRvihTVz5swprbf169e3mDWrVavGxZrt2rX7qViTZe9z7Ngxq7Mmy97n06dPmDZtWqux5syZM5lZs169ehazZs+ePSVviRIl4o01N23aZDPWtLe3typrsuTs5ljzzp07TM+pRYsWNmHNefPmWYU1M2fOjG5ubsysKWRbBQYGSs8OAHKhNXrirPEf+a8XiMbB/4x8fX3lL5EqDDp+/LjZDdGFCxeoXvIhbO/evWY3RIGBgdIvOXmxhEGhoaGYJUsWlTdVqlTYqlUrXL16tVk4iY2NxTJlyqi8Dg4O2KRJE1y4cKHmh7CWLVuqvKxh0JAhQ6g/L5YwaP78+VQvSxi0b98+qjdv3rw4YMAAzQ9hAQEBEuDLiyUMev/+PaZMmVLlJWGQj4+P2TAoMjISc+fOrfKSMGj58uVmwyCTyYQ1atRQeVnDoE6dOqm85EPYlClTNMOgcePGUX/WZcuW1Q2DVq9eTfUWLlxYNwzy9/enelnCoCdPnkiALy+WMOjLly9SoCoveRhk7kNYTEwMFi1aVOWVh0Fav18aN26s8pIwaNasWZphUJ8+fajPmCUMmj59OvVnXapUKRw1apRmGLRt2zaqlzRdHjt2zCycXL161ex6qxcGvX79WmpclhdLGBQWFobZs2dXeVnCIJPJhOXLl1d5WcOg1q1bq7zyMEjrQ9iIESOoPy8SBl25csWsd/HixVQvCYO0mi4PHz5M9bKEQffu3aOut+RDmFYY9OHDB0ydOrXKS5outcKgqKgozJcvn8qbPHlydHV11Q2DateuTX0XWcKgbt26Ud9FljBo4sSJ1J81Sxi0YcMGqpclDDpz5gzVS8IgrQ9hz58/lz4my4uEQVu2bDEbBn379k1qXJYXCYO0mi5jY2OxRIkSKi9r06WLi4vKS5ou9cKgAQMGUH9elSpV0g2DvL29qV6WMGjXrl1Ub758+XTDoBs3blC92bJlk8Igc3ufd+/eSYGqvORhkLm9T0REhBSoKtdbEgZp7X2qVKlCXW9ZwqD27dtT19uaNWvi1KlTNcOg0aNHU39e5cuXx3HjxmmGQStWrKB6ixQpgsOHD9cMg44fP071ysMgc3ufR48eSR+T5SUPg8ztfeSBqrxYGg+io6OxUKFC1PWWpfGgfv361PWWNB5oNV26u7tT11vSeKDVdDllyhTqz5o0Hpw/f97sM9ZizcGDB2uy5sWLF6leI6yZIUMG7NSpkyZrfv/+PUGy5tChQ6k/rx/Nmvv376d6rcGaO3futIg1SdOlFmvmyZNH5WUZ8NNiTTLgp8WanTt3pr6LP5o116xZQ/XaijUzZcrExJoZMmSgrrdGWVPvQ1iTJk2o662lrAnw/wE/LdacMWMG1UsG/LRYc/v27VSvEdbMnj27zVnT3Icwk8mEFSpUUHltzZpkwM+cd8mSJVRvsWLFdAf8tFhTb8Dv3r170sdkecUHa+bPn1/lZWXNOnXqUN/FH82akyZNov6sCWtqNV3qsaZW0+XZs2epXiOsKR/ws4Q19Qb8YmNjsWTJkipvfLDmwIEDqT+vH82au3fvpnqtwZpaObsea2o1XUZERGCuXLmo623Lli01my7NsSbrgN8ff/xBXW+NsCYZ8PtRrHnixAmqNz5YkwzJyssIayZLlkxiTa2mywYNGlDXW6OsqTfgp8WaZMDP3DPevHkz1fujWTMoKMgmrCkfklWutyys+dtvv1HXW8KaWk2Xeqyp1XS5YMECqpewptZhMlqsqTfgd/v27QTJmjVr1qSutz+aNcePH0/9WVuDNf38/MyutydPnqR6WVjz6dOnmqyp1XSpx5paA34xMTFYrFgx6nprKWvKB/y0WLNv377Un9fPzJryIVl5WYs1zTVdhoeH/zDWZB3wE4p/icZB0TgoZEDe3t7U0FtZtDBo8+bN6OTkRA0l5CUPg8iHsJMnT6KTkxM1eJKXPAwiE7iPHj1CJycnqTveXJEwSD6BGxoaik5OTtSGNGWVKVNGNYHr6uoqTY5qVaFChVQTuO7u7lJXvlbRJnDHjx9PBXRl0cKgpUuXSieyaBXttKc9e/agk5MT9RezvGhh0OXLl9HJyYkKu8oNkTIMCgoKQicnJ+ovdWWRMIh8CCNTgbQmGGWRMEj+Iaxt27bUTZ+yaBO4gwYNkqZOtYoWBk2bNg2rV6+u66VN4K5btw6dnJyooYS8aBO4R48eRScnJyoIyYsWBt2+fRudnJykyUBzJZ/AJWHQx48f0cnJiRpaKYsWBjVu3BgLFiyo66WFQV27dqWGmsqihUGjRo2STvDUKhIGyT+EzZs3jwp+yiJhkHwCd9u2bejk5EQNJeRFwiD5BO6ZM2fQyclJOqHEXJEwSH7a09OnT9HJyQmzZs2q6aWd9hQREYFOTk5UUFaW/LQn8oxbtmyJRYoU0fWSCVx5GNSnTx/qR3tl0cKgiRMnYtWqVXW9tDBoxYoVWKtWLWooIS9aGLR//350cnKihsDysre3xyZNmsQ57enatWvo5OREbeKVFy0Mevv2LTo5OUknDWlVxYoVVRO4derUoX4IUlbx4sVVJwv/8ccf0nSwVtHCoKFDh1KbUpUlP+2JrLczZ85k2vvQwqCNGzeik5MTNZSQFy0MOnHiBDo5OUkT8+aKdrLw/fv3mfc+JAwiH8K+fPmCTk5O0ukmWkXCIHnTZdOmTanhs7JoYVCPHj2kk1a1inba05gxY7By5cq6XtoE7qJFi5j2PrTTnnbu3IlOTk7S6RXminay8IULF9DJyYnaVKZ8F5Vh0IsXL9DJyUk6+UKrlGFQdHQ0Ojk5SScqaBUtDPr999+pzRXKop0s3L9/f2pwrSxaGOTl5SWdnKNV6dOnx44dO8aZwF29ejXWqlWL+gFcXiQMkk/gHjp0CJ2cnKTTgswV7bSnW7duoZOTEzVclBfttKf379+jk5MTtTlUWfKThcl626BBA2mKW6toJwt36tSJ2jysLFrjwYgRI5j2PrTGA0tYk+x9jLDmqVOnuFhTftoTYU3axxx50Vjz+/fvzKxJO+3JCGv++eefgjUpJWdN0nT56tWrBMmagwcPZmZN5YCfEdZcv369TVjzzp076OTkRG1kkdfPxppubm5MrOno6Ih9+/aN8yFs1KhR0qkqWkVjzfnz5zOzpvK0Jx7WVJ72dPbsWWbWVJ4s/OzZs1+GNcneZ9KkSQmONa9fv87EmrTTnoyyZt26dZlYk3aLjRHWHDZsGPVDobJorDlr1ixu1iQ5uxHW9PPzswlrfv36lYs1lQN+PKypHPDr0aMH096Hxppjx479pVjz5cuX8cqa8qZLI6w5YMAAZtZUnvbEw5rK057WrFnDzJrK056swZosObuSNUNCQixiTfIuGmHNzp07M7Em7RYbXtaUn/Y0Z84cpr0P7RYbXtaUD/gR1mTZ+yhZ8/Hjx8ysqTxZOL5Yk3aysBHWnDBhQoJjzStXrnCxpnzAj5c1lQN+PKypHPAzyposOTuNNadPn24T1jx27Bjz3scarEmaLj99+sTNmvKmSx7WVA74ubm5MeXsNNYcPXo0M2sqB/wEa5ov3ltshH68ROOgaBwUMiD5FU6sRcIg2kQgS1WoUCHOMdE8VaxYMXRzc7PImzdvXvzzzz8t8pIwSO8XFK1IGMQSdimLHP3NAlDKImEQ7WQSvSIfwmgnXrBU2bJl41y5yVOFChXC7t27W+TNlStXnKs5eIqEQXrgRisSBrFszJVFwiCWzbWySBgkvzKcpypXrkydsmepkiVLUieYWCp//vxxjhHnKRIG6UEfrUgYxBJoKouEQSyBlbJIGESblNcrEgbJr47iqfLly1NPkWKpokWLUif0WSp37twWv4tZsmRBNzc3XTinFWm6ZAmelUVOe2IJj5VFmi7lV9iyFgmD5NfV8FTp0qWpp6SyVMGCBeNcH8dTJAzSC1JpRcIgltBaWSQMYgkllUUmcFlAV1kkDJJfZcJTFStWjHMdI08VL148zlU3PJUvXz7q5DdLkTBI72M/rUgYxPJxQVkkDGIJrJRFwiD5NResRcIgS9fbsmXLUk9SYKkiRYpYvN46OjpavL8lYZDehwlakTCI5aO7skgYxPLhXFkkDKKdOqxXJAz6/fffLfp5lSpVyuK9T4ECBSxeb0njgd5HDVqRCVyWD0jKIk2XLB8IlEUmcMkVXzwlWJPPSz6EsXzoU5ZR1qxfv74h1qSdeMFSZcqU+SVZk6UBRlnkmqmExpolSpTALl26WOS1NWuyfMxVlmBNvsqdO7fF6y1hTb0mOFpZgzVZPpwrS7Amn9coa7Zq1Yqp+VdZRlnTyckpwbFm3rx5EyxrsjSGKssarCm/qo+njLBm4cKFDbGmpXsfa7AmS8Ohsn5V1rR070NusTHCmizNM8oSrMlXefLkMbT36datm01Y09XVlalRSVmENWmnYOqVNVizY8eOFnmNsmbv3r0t8tqaNVkGJpRFcnYjrNmmTRuLvEZYM1++fIZZU2+Qh1bWYE2WIURlWYM1XV1dLfp5GWHNIkWKWLzeGmFNMuC3d+9epiuchX6MfkTjYCIQEhKiys7ODqpWrQrOzs5QtGhRbn+ZMmXA2dkZypcvz+0tVKgQODs7Q40aNbi9uXLlgiZNmkDDhg25vRkzZoTGjRuDs7MzJEmShMubOnVqaNCgATg7O0OaNGm4vA4ODlC3bl1wdnaGbNmycXkTJ04MNWrUAGdnZyhQoACXFwCgUqVK0LRpUyhZsiS3t2TJkuDs7AyVK1fm9ubLlw+cnZ2hdu3a3N5s2bJBkyZNwNnZmdubPn16aNSoETg7O0OyZMm4vClSpID69euDs7MzZMiQgctrb28PTk5O4OzsDLly5eLyJkqUCKpVqwbOzs5QqFAhLi8AQPny5cHZ2RnKli3L7S1atCg4OztD9erVub25c+cGZ2dnqF+/Prc3S5Ys0jNOnDgxlzdNmjTQsGFDcHZ2hlSpUnF5kydPDvXq1QNnZ2fIkiULlzdJkiRQs2ZNcHZ2hrx583J57ezsoHLlyuDs7AzFihXj8gIAlC5dGpydnaFChQrc3oIFC4KzszPUrFmT25szZ05wdnaGRo0acXvJetu0aVOwt7fn8qZKlUp6xmnTpuXyOjg4QJ06dcDZ2RmyZ8/O5U2cODFUr14dnJ2doWDBglxeAICKFSuCs7MzlCpVittbvHhxi9fbvHnzgrOzM9StW5fbmzVrVovX23Tp0knrbYoUKbi88vU2Y8aMXN6kSZOCk5MTNG3aFBwdHbm8iRIlMrT3KVeunMXrbeHChS1ebx0dHaFJkybQoEEDbm+mTJkM7X3Iu5g6dWoub7JkyaS9T9asWbm88vU2X758XF47OzuoVKkSODs7W7T3KVWqFDRt2hQqVarE7S1QoAA4OzuDk5MTtzd79uzQpEkTaNKkCbc3Q4YM0jN2cHDg8qZMmVJ6F9OnT8/ltbe3h9q1a4OzszPkzJmTy2utvU+ZMmW4vcWKFQNnZ2eoWrUqtzdPnjxW2fskSsQXU6RNm9bi9Va+98mUKROXl6y3zs7OkCdPHi6vnZ0dVKlSxTBrWrL3Sais2bBhQ2jatKlgTQYR1qxTpw63NyGyZtKkSaX11ghrFi5cmMsLYB3WrFatGrfXCGtmzpxZehfjkzXle5+EyJoVK1bk9hLWrFWrFrc3R44cCY415Xuf+GbNChUqGGbNKlWqcHutxZp2dnZc3p+BNXPnzs3ltRZrlitXjttrhDVz5coFzs7OvwxrJk6cOEGyZv78+S3O2Y2wpnzvY4Q106VLx+X9lVmzXr163N6EyJpJkiSBWrVqJVjWNJKzW8qa5BknTZqUy5tQWZPk7II19WVr1mzatGmCYk1HR0fBmoySs2bx4sW5vADGWbNp06aGWLNx48bcXnnOXqtWLW6OEfrJZY3uw/96gThx8D+hw4cP48iRIzW7pGlHPSMiXrx4ESdNmqQ5kUQ76hnx32sQvLy8NK9BoF1hi4j49u1b9PLy0j1aW3mtECJiREQEenl56U6d0a4VQvz3ui29CdB8+fLhwIED4xz1jPjvlWp60yq0K2wR/73KYMCAAZpe2lHPiP9eVzF27FhNL+2oZ8R/r7+cPHmy5vH68qOenz59KnmfPn2KXl5emlNntGuFEBE/fvyIXl5euscu064VMplM6OXlhbVr19adOlBeK4SIuHDhQt2TFmlHPSMi+vj46E4VkamD7du3S0c9I/57dczw4cM1vfIrbMk1F4j/XkXr4eGheaQ37QpbxH+vG/by8tI83Y121DPiv1dKe3l5aZ6mSTvqGRExNDQUvby8dE84oV0rhIg4Y8YM3Yl72rVCiIjLly/XnQ6kXSuEiLh161bd6S/atUKIiEeOHMHRo0dremnXCiH+ex2bp6en5nUm5FqhhQsXStdcICI+fPgQvby8NI/lTpQokeoKW0TE4OBg9PLy0j1Nk3atUFRUFHp5eemecEK7VggRce7cuboToHny5FFdK4SIuHbtWt3JMfm1QuSaC0TE3bt346BBgzS9adOmVV0rhIh48uRJHD9+vOb1UeR0H/m1QoiIN2/exMmTJ2ser0+7VggR8fnz5+jl5aU5dSa/VogcrY+I+PnzZ/Ty8tK9bot2hS0i4pQpU7Bu3bqaXvkVtvJ3cfHixbrT2PJrhcg1F4iImzZt0p3wo10rhIh48OBBHDFihKaXdq0QIuL58+dx4sSJmtdHkYlL+bVCiIh3795FLy8vzYl7+bVC8r3P69ev0cvLS/cqA+W1QoiIYWFh6OXlpXuaJu0KW8R/r9tq0qSJppdcK3Ts2LE4e5+VK1fqnoxArrCVXyuEiLh9+3bdk7FpV9giIh4/fhz/+ecfTS/tWiHEf68k8fT01JwAlV8rRK65QPz32hkvLy/NK0lo1wohIoaEhKCXl5fuaZq0a4ViYmLQy8tL9woX2rVCiP9eOaF32pD8WiH53mf9+vW6U5y0K2wREffu3YtDhw7V9NKusEX893qgCRMmaJ5EQ7vCFhExICAAJ0+erDlxT7tWCPHfqUUvLy/NE05o1wohIn79+hW9vLx0T9MsU6aM6lohxH+vGtU73Y12rRDiv1f86E1j064VQvz3Gie9k0bk1wrJ9z7WYE2t60zMseaDBw+4WJNcK4T4f9bUO03TKGsqrxVCZGPNvHnzqq4VQvyXNfVOhcqaNavqWiFE27Hm9evX//OsKb9WCPFf1tQ7/cIIa2bKlEl1rRCiMdY8e/YsE2sqrxVCNMaar169silrNmrUSNP7o1izT58+ml7Cmr6+vnH2PkePHtVlzZQpU2KrVq1w1apVFrPmggUL4rDmo0ePmFlTfoUtIuL79++ZWLNChQpmWVPvhJOfkTUHDx6s6bUWa8r3PkZY88WLF8ys6eXlJV1hi/h/1tQ7TdMIaxYqVEh1hS2icdbUO0nvZ2PNe/fuxRtrXr9+3WLWlF9hi8jHmvIrbBH/ZU29E4iNsqbyClvEf1lzzJgxml5zrHn16lWbsOaHDx8sZs3Y2FjDrKl30qI1WFOZs/OwpvwKW0TE06dPM7Om/ApbRNux5rdv35hYk3aFLeK/rKl3ultCZ0353oeXNV+8eCF5jbDmu3fvmFlTeYUtYU29K7h/RtYcOHCgpvdHsqbWybbmWPPZs2dcrCnP2XlZU36FLSLalDX1Too2wpqpU6eWrrC1FmveuXMHvby8NE8S/xGs+f37d27WlL+LM2fOZGZNZc6+fPly3VP4fgbWlO99WFmzcePGFrNmrVq1rMqa0dHRhlhTyLYSVxWLxkEhg/L09FQtePJNojwgU8rHx0flJZtEZUCm1Llz51ResklUBmRKvXjxQtWwSDaJymYMpUJDQzFTpkxxvOYCMqViY2NVmz5zzRg00Y7lJQGZcpOoFK2RhTRjKDeJSs2ZM0flzZUrF/bp00e1SVRqz549Kq+5TaJSt27dYt4kKvXu3TvVRyT5JlFr3YmIiFBdR5s4cWJpk/jw4UOzXpPJpPrYRzaJymYMmmihValSpajNGErRmhzMNWMotXLlSpWXBGR79uyJs0lUys/PT+UlzRjKTaJSjx49Um3syXUDyk2iUp8/f1Z9RDK3SVQqOjpa1Tws3yTKAzKaaE2HZJN45coVTS/tqGqySVQGZEpNnTpV5ZUHZFrr7ZYtW1Rec80YSl26dEnllTdjaK23QUFBqo29uWYMpb5//67a2JOAbM6cOXECMqVMJpPqAwO5bkD5QYIm2nVMZcqUwTFjxqg+SCg1bNgwldfcBwmlFi5cqPLmzJkTe/furQrIlDpw4IDKmzFjRuzSpQtu2bIlzgcJpe7cuaP6iEQ+SCibMZR6//696iOSuWYMpSIjI1WhprnGf6VMJhM1fCbNGPIPEjTRPtiRxn/lBwmlJkyYoPKSxn/lBwml1q5dq/KSxv/du3fHCciUOnXqFHW9JR8k5AGZUs+ePVN9REqRIoX0QUIekCn19etXzJAhQxxv0qRJsVGjRjhv3rw4HySUiomJUV1ZQT5IKJsxaHKmXDtBa8agifYxp2jRotTGf6Vmzpyp8pKA7ODBg5p7nx07dqi85hr/lbp27ZrKS5oxlB8klHrz5o3qekTS+L906dI4AZlS4eHhmCNHDtV6W69ePfT29o4TkCllMplUgZf8g4Q8IKOJdjUa+SChbMZQihb0m2vGUGrp0qUqr7mATKmjR4+qvOYa/5W6f/++6iOSucZ/pT5+/Kj6iCRv/Jd/kFAqOjpadUUQudpuxowZeP/+fc3nRPvwXrFiRdUHCZpoAXLx4sXx77//1g3ItFhT2Yyh1MaNG1VeI6xprhlDqZcvXyZI1qQ1AMcHa86dO1fltQZrKpsxlNJiTWUzhlLBwcFmWVPZjKGUFmvOmjVLlzWVH/uMsqa5xn+laE0OPztrPn782CasGRMT80NYkzRjaHlpH8+LFStGbcZQatq0aSpvfLDm5cuXqevtj2bNsLAw1XW01mJNeTMGTVqsqWzGUIr2YZWwprIZQykjrHnw4EGV1whrmmv8VyokJMRi1oyKirIZa9Ku77UGayqbMZRat26dymsN1lQ2YyilxZrKZgylvn79qmpYlLOmvBlDKXOsSWv8p4nWBGOENc0NmSs1a9YslTchsKayYdEarKlsxlDKZDKpriq1BmvSGv+VMsKay5YtU3njgzUfPHjww1hTL2f/Uawpb8agyQhrTp48WeU1ypq0xn+lzp8/r/IaYU1zQ+ZKhYaGqhoWeVhTeTV0fLEmbWhCzppa76IWayob/5Xau3evymsr1jTX+K9UZGQklTVJ4z8vawLQh8xpoh16Ex+suWrVKpU3IbCmsmFRzpp6Obs51lQ2/tNEazo0wprmGv+VMsKaW7duVXnjgzVfvXplE9YUsq1E46BoHBQyoC9fvmD69OnNTodqKSYmRpqOYW3GkKtx48YIwN6MIRc58cvcdKiWpk+fLm0SadOhWtq2bZu0SaRNh2rpypUrXJtEuV6/fo3JkiUzOx2qJfkvONp0qJZMJpM0qWZuOlRLrVu3RgD2Zgy5/vrrLwRgD8jkWrx4sbRJpE2HaunQoUMIELcZQ2uTKNe9e/fQzs7O7HSolkJCQjB16tRmp0O1FBUVhfny5UMA+nSonsgUE+smUS4y+Uk2iXoBmVwTJ06Ms0nUC8jkWr9+PQKwB2RynTlzJs4mUTkdqqXnz59jkiRJ4jRjsG4Sv337hhkzZjQ7Haql2NhYaTLY3HSolpo1a4YA5qdDtUROoDE3Haql2bNnI4D56VAt7dq1CwHMT4dq6caNG9J66+zsrNuMIdfbt28xefLk0gcJEpCxKCIiAnPmzIkA9OlQLZlMJmlKnwRkyulQLZFpM3PToVoaNWqUFJDRpkO1tHz5cgQwPx2qpePHj0vrLW06VEsPHz7ERIkSmZ0O1dKnT58wbdq0ZqdDtRQdHS2dxFCuXDmmgEwuclpYkSJFmJox5CKnXjg6OjI1Y8jl5eUVJyDTa/yXy9fXN05Aptf4L9eFCxcQwPx0qJYCAwPR3t7e7HSolkJDQzFLlixmp0O1FBsbK53ASaZD9QIyucipxeamQ7U0ZMgQBPj/Bwm9gEyu+fPnI4D56VAt7du3jysgkysgIEDa+7A0Y8j1/v17TJkypdnpUC1FRkZKJ9/QpkO1ZDKZpKlRS6ZDyaS9uZOItDRu3Dhp78PyQUKu1atXSwFZ+/btdQMyufz9/aW9T/PmzXUDMrmePHmCSZIkkT5IzJkzR/ODhFxGWbNo0aI2YU0yhW2ENUkzhlHW1GrGkOvq1asq1tRqxpDLKGuSk2+MsiZLM4ZcRliTnAYV36x5+PBhw6xJmjF4WPPDhw9WZU29Zgy5lKyp14whV7du3WzCmhs2bDDMmqzNGHI9f/4ckyZNytz4L9e3b98wU6ZMNmFNcnKfEdbMkSMH9urVC/fu3cu83np7e1uNNfWaMeQywprv3r2TWFPejMEiOWuyNv4TmUwmrFKlilVZk3XvQ04nsYQ1V6xYYVXW1GrGkIsMyFqDNVmaMYiio6OxUKFChlmTtfFfLiOsOWXKFJuw5sWLFw2zJuuQuVzfv39PkKxJTt9jbcaQi7AmazOGXPv370+QrJknTx6rsibru9i5c2ersaZeM4Zca9assQprsjRjyEVY05JmjC9fvmCGDBm4hsyJjLImOSnVCGuSxn8e1pwxY4bFrLl9+/afgjX1Gv/lkrMma+M/kclkwgoVKiQ41lyyZIlVWZM1Z793756Us1uDNfUa/4mioqKkU/8sYc06depIrMnS+C8XYU3Wxn+5Jk2ahADsjf9yGWHNs2fPJkjWLFmypNVYU6/xXy5y2qkR1mRt/Bf6efQjGgeTgJDQL6KAgADw9vaGpk2bQubMmbm8Dx8+hEGDBoGLiws4OjpyeYODg6Fhw4Ywb948KFy4MJc3IiIC8ubNC9euXYOyZcty3RWPiJAkSRI4e/YsVKlSBRInTsz1Z3/8+BGOHDkCtWvXBnt7ey7v48ePYdeuXdCgQQNImTIllzcgIABWrVoFTZo0gfTp03N5b9++DZ6entCsWTPIli0bl/fZs2fg5uYG27Ztg3z58nF5P3/+DJUrVwYPDw8oVqwY13OKjo6GTJkyweXLl6F8+fKQKFEiZi8iQnR0NJw8eRKqV68OSZLwLelv3ryBAwcOQN26dSFZsmRc3vv378O2bdugYcOGkDp1ai5vQEAALFy4EJydnSFTpkxc3nv37sHff/8NLi4ukDNnTi7vq1evoEWLFrBixQooWLAgl/f79+9QtGhRuHnzJpQqVYrrGZtMJkiRIgWcP38eKleuzPWMAQBCQ0Ph+PHjUKtWLUiaNCmX98WLF7B3716oV68epEiRgst7584d8PHxgcaNG0PatGm5vAEBATBz5kxo2rQpZMmShcv76NEj6Nu3LzRr1gzy5MnD5Q0JCYE6derAzJkzoUiRIlzPKTIyEnLmzAlXr16FcuXKca+3dnZ2cPr0aahWrRr3ehsSEgKHDx+G2rVrg4ODA5f30aNHsHPnTmjQoAGkSpWKyxsQEAArVqyAJk2aQIYMGbi8d+7cgQkTJkCzZs0ge/bsXN4XL15Ax44dYdOmTZA/f34u79evX6FcuXIwZswYKF68ONdzio2NhfTp08PFixehYsWK3O9iREQE+Pn5QY0aNbjfxaCgINi/fz/UrVsXkidPzuW9e/cubN68GRo1agRp0qTh8t66dQvmzZsHTZs25V5v79+/D8OGDQMXFxfIlSsXl/ft27fQtGlTWLx4MRQqVIjLGx4eDgULFoQbN25A6dKluddbBwcHOHfuHFSuXJn7Xfzy5QscO3YMatWqxb33efbsGezevRsaNGjAvd7evn0b1q5dC02aNIF06dJxe6dMmQLNmjWDrFmzcnmfPHkCPXv2BBcXF8ibNy+X9+PHj1C9enXw8vKCokWLcj2nqKgoyJYtG1y5cgXKly/Pvd6aTCY4deoUVKtWjXvvExwcDIcOHYLatWtz730ePnwI27dvh4YNG1q03i5duhSaNGkCGTNm5PLevXsXxowZA82aNYMcOXJweYOCgqB169awdu1aKFCgAJc3NDQUSpYsCbdu3YKSJUtyr7epU6eGCxcuQKVKlbjX27CwMDhx4gTUrFmTe70NDAyEffv2Qb169Sxabzdu3AiNGjWyaO9jhDUHDhxoiDXnzp0LRYoU4fJGRERAnjx5LGbNxIkTw5kzZ6Bq1aq/DGtOmjQpQbFmTExMgmXNrVu3QqNGjbhZ89atWwmONcPCwmzGmt++fbMZa27YsMFi1pw+fTo0a9Ys3lmzdu3aMGPGDG7WjIqKMsSaAJDgWPPWrVs2Yc2XL19Chw4dYOPGjRaxZtmyZeGff/6BEiVKcO990qVLlyBZ09fX1yLWDAgIsJg1Hzx4AEOHDjXEmosWLeLO2Y2wJiKCvb29xTm7EdZ8+vSpTVgzICDAYtZ8+vSpTVgzOjoasmbNCleuXIFy5cpx732MsOa7d+8MsaaRnN0Ia44ePRpcXFx+Gdb8/v17gmTN2bNng7OzM/fexyhrNmjQAObMmSNYk0FGWPPOnTuGWLNr166wdetWi1izUqVKMGHCBO6c3QhrAvy7P/b394caNWrEO2tu2bLFItY0+l1zxIgRFrHm69evoXnz5rB8+fJ4Z83kyZPD+fPnoVKlStzv4rdv3yze+xhlzfXr10Pjxo0t2vtYypqPHz+G3r17g4uLyy/DmkL/PdmR/1MImZednV0uAAgE+HdzyAu0QkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkKWKCgoSD4U4IiIQUb/m3wt4EJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQglaonFQSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISOgXkmgcFBISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhL6hSQaB4WEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEfiGJxkGhX0bHjx+HUaNGwblz5yA2NpbLe/v2bRg0aBAcO3YMoqKiuLzBwcHQu3dv2LNnD3z//p3LGxERAX369IFNmzbBp0+fuLyICMOHD4dVq1bB27dvubwAAJMnT4b58+fD8+fPub1Lly6FadOmwd27dwERubw7d+6E8ePHw5UrV8BkMnF5z549C3/99RecOnUKYmJiuLxPnjyBfv36waFDhyAiIoLL+/nzZ+jVqxfs2LEDvn37xuWNjo6G/v37w4YNG+DDhw9cXkSE0aNHw7Jly+DVq1dcXgCAWbNmgbe3Nzx+/Jjbu3btWvDy8oJbt25xP+ODBw/CP//8AxcuXOB+xteuXYMhQ4bAiRMnIDo6msv76tUr6N27N+zbtw/Cw8O5vN+/f4fevXvDli1b4MuXL1xek8kEgwcPhjVr1kBwcDCXFwDAw8MDFi1aBC9fvuT2LliwAGbOnAkPHjzg9m7ZsgUmTpwI165d437Gfn5+MHLkSDh79iz3envv3j0YOHAgHDlyBCIjI7m8ISEh0KtXL9i1axf3ehsZGQl9+/aFjRs3WrTe/vXXX7BixQp48+YNlxcAYOrUqTBv3jx49uwZt3fFihUwdepUuHPnDvdz2r17N4wbNw4uX77M/S5euHABhg8fDidPnuReb58/fw59+/aFAwcOcK+3X79+hd69e8P27du519vY2FgYMGAArFu3DkJCQri8AABjxoyBJUuWQFBQELfX29sbZs+eDY8ePeL2btiwATw9PeHmzZvcz/jIkSMwevRoOH/+PPe7ePPmTRg8eDAcP36ce+/z5s0b6N27N+zduxfCwsK4vOHh4dCnTx/YvHkzfP78mctrMplg6NChsHr1aovWW09PT1i4cCG8ePGC27t48WKYPn063Lt3j/s5bdu2DSZMmABXr17l9p4+fRpGjBgBp0+f5n4XHz58CP3794fDhw9zr7cfP36EXr16wc6dOyE0NJTLGxUVBf369QMfHx/4+PEjlxcRYeTIkbB8+XKL1tsZM2bA3Llz4cmTJ9ze1atXw5QpU+D27dvcz2n//v0wduxYuHjxIvd6e/nyZRg2bBj4+flx730CAwOhT58+sH//fu69T2hoKPTq1Qu2bt0KX79+5fLGxsbCwIEDYe3atfD+/XsuLwDA+PHjYfHixRAYGMjtnTdvHsyaNQsePnzI7d20aRNMmjQJbty4wf2Mbc2au3fvjnfWHDZsGKxcuTLeWXPZsmUJjjWfPn1qE9aMiYmBAQMGJDjWXLduHUyePFmwJoNsyZoLFy6EmTNnwv3797mfkxHW9Pf3h7///hvOnDmTYFgzKirKZqw5bdo0m7Dmnj17EiRr9urVC7Zt22bR3scIa44dOzbBsebRo0dtwppv3761CWsiIgwdOhRWrVoF79694/IC2I41t2/fbhPWfPTokU1YMzo62iqs+fr1ay4vgHHW9PLygoCAgHhlzStXrsDQoUMTHGsOGjTIJqw5f/58m7KmJTn7r8iaXl5eCY41z507ZxPW/PLlC/Tq1cuinN0IawIAjB49GpYuXZqgWPPQoUM2Yc3Xr19Dnz59bMKaQ4YMMcSaCxcutAlrenh4xDtr3r9/HwYMGJDgWHPEiBEWs6bQf1CIKEqnACAXACAAYGBgIAolTEVERKCjoyMCAGbKlAm7dOmCW7duxS9fvuh6TSYTVq1aFQEAU6dOja1bt8a1a9fi+/fvmf7sDh06IABgsmTJsGnTprh48WLm/y/9888/CACYOHFirFOnDs6aNQsfPnzI5F25ciWS/+9WrlwZJ02ahDdu3ECTyaTr9fPzk7wlS5bEUaNG4blz5zAmJkbX++jRI0ycODECAObPnx8HDRqEx44dw8jISF3v58+fMV26dAgAmD17dnR3d8c9e/bg9+/fdb0xMTFYuHBhBABMnz49duzYETdt2oSfPn3S9SIiNmzYEAEAU6ZMib/99huuXLkS3759y+Tt1asXAgDa29tjo0aNcP78+fj8+XMm79SpUxEAMFGiRFizZk2cNm0a3r17l+k5bdmyRXpO5cuXx/Hjx+OVK1eYvJcvX5a8RYsWxb/++gtPnTqF0dHRut6goCB0cHBAAMA8efJgv3798NChQxgREaHrDQsLw6xZsyIAYJYsWbBbt264Y8cO/Pbtm67XZDJh2bJlEQAwbdq02K5dO9ywYQOGhIToehERW7VqhQCAyZMnR1dXV1y2bBm+evWKyTts2DAEAEySJAnWr18f58yZg48fP2byLly4EAEA7ezssFq1ajh58mS8desW03M6cOCA9JxKly6N//zzD164cAFjY2N1vXfu3EE7OzsEACxUqBAOGTIET5w4gVFRUbrekJAQTJUqFQIA5syZE3v16oX79u3DsLAwXW9kZCTmzZsXAQAzZsyInTt3xi1btjCvt7Vq1UIAwFSpUuHvv/+Oa9asweDgYF0vImKXLl0QANDBwQGdnZ1x0aJF+PLlSybvhAkTpPW2du3aOHPmTHzw4AGTd+3atdJzqlSpEk6cOBGvXbvG9IxPnToleUuUKIEjR47EM2fOMK23z549wyRJkiAAYL58+XDAgAF45MgRpvX269evmCFDBgQAzJYtG/bo0QN37dqFoaGhut6YmBgsXrw4AgCmS5cO//jjD9y4cSN+/PhR14uI6OzsjACAKVKkwBYtWuCKFSvwzZs3TN5+/fohAGDSpEmxYcOGOG/ePHz27BmTd+bMmdJ6W6NGDZw6dSreuXOH6Tnt2LFDek7lypXDcePG4eXLl5nexWvXrkneIkWK4PDhw/HkyZNM6+2bN28wWbJkCACYO3du7Nu3Lx44cADDw8N1veHh4ZgjRw4EAMycOTO6ubnhtm3b8OvXr7pek8mEFStWRADANGnSYJs2bXDdunXM623btm2lvU+zZs1wyZIlGBQUxOQdOXKktN7WrVsXZ8+ejY8ePWLyLl26VFpvq1Spgp6ennjz5k2mZ3z06FHpOZUqVQpHjx6N58+fZ3rGDx48wESJEiEAYIECBXDw4MF4/PhxpvX248ePmCZNGgQAzJEjB/7555+4d+9epvU2OjoaCxQogACAGTJkwE6dOuHmzZvx8+fPul5ExLp160rrbatWrXD16tX47t07Jm+PHj2kvU+TJk1wwYIF+OLFCyavp6entN46OTnh9OnT8d69e0zPaePGjdJzqlixIk6YMAGvXr3K5D1//rzkLVasGI4YMQJPnz7NtN6+fPkSkyZNigCAefPmxf79++Phw4eZ9j6hoaGYOXNmBADMmjUrdu/eHXfu3Mm03sbGxmKpUqWk9bZ9+/bo4+PDvN42b95cWm+bN2+Oy5cvx9evXzN5Bw0aJK23DRo0wLlz5+KTJ0+YvHPnzpXexerVq+OUKVMwICCA6Tnt2bNHek5ly5bFMWPG4MWLF5nexVu3bknewoUL49ChQ9HPz4/pXQwODsYUKVIgAGCuXLmwd+/euH//fqb11ihrVqtWzSasOWbMmJ+GNc+ePcv0Lj5+/FjFmkePHrWYNXfv3h3vrNmyZct4Y81p06YlONZ89eqVxJq5c+fmZs1s2bJZzJrlypWLw5rr16+3mDWXLl3KzJrDhw+Pw5re3t7xwpoHDx60mDXv3r0rsWbBggXjjTWjoqJsxppdu3a1GmvOmDED79+/z+Rdt26dxax5+vTpOKz5999/xxtrZsyY0Sas2bRpU5uw5qxZsyxmzZ07d6pY89KlSxazpr+/PzNrJk+eHAEAHR0dDbFm165duVizUqVKCY41ly1bZnXWZHkXrc2arDm7tVlz1apV8cKakydPlt7FWrVqWcyaFSpUSNCsybL3iY2NxdKlS6tY88OHD7peRGOsOXjwYKuxppeXFzNr7t271yqsWahQoXhjzcjISJuxZseOHa3Kmqw5+6pVq1Ssef369Z+eNdOnTy+xZs+ePblYs0iRIhJrdujQgYs1GzVqlOBYc+vWrVTWZHkXfybW3L59e7yw5u+//y6xpouLi8WsWa9ePS7WXLRokbTeVq1a9ZdlTZa9j8lkQicnJ5uwpoeHh1VYs2LFiujh4cHMmkK2VWBgoPTsACAXWqMnzhr/kf96gWgc/M9o8eLF8pdIFQY9ffrUrPfQoUMqLwmDpkyZgrdv3za7kN67d0/6JScvljAoJCQEU6dOrfIWKVIEhw0bphkGRUVFYb58+VReR0dH7NOnj24YVLt2bZWXNQxyc3NTeVnDoIkTJ6q8rGHQ+vXrVV55GKT1IezMmTMqL2sY9Pz5cwnw5UXCIK2my2/fvkmBqrxIGHTs2DGzG6LY2FgsUaKEyssaBjVr1kzlzZAhA3bs2BF9fX01N0QDBgxQeUnTpV4YNHv2bJXX3t4eGzdujAsWLNCEk127dlHfRZYw6MaNGyovaxj09u1bKVCVlzwMMvcuRkREYM6cOVVeljDIZDJh5cqVVV4SBul9CGvfvr3KyxoGjRo1SuVNnjw5Nm/eHJctW6YZBi1fvpy63pKmS60w6Pjx49R3sVq1arph0MOHD6VAVV5lypTRDYM+ffqEadOmVXlZwqDo6GgsWLCgyisPg7TgpH79+iovaxjk7u6u8srDIC048fLyUnkdHByYwiBfX1+VlzUMunDhAvVdrFy5Mk6cOFEzDAoMDER7e3uVt2TJkjhy5EjNMCg0NBSzZMmi8ubPnx8HDhyoGQbFxsZimTJlVF7WMKhly5YqL2sYNGTIEOp6yxIGzZ8/n7resoRB+/bto663JAzS+hAWEBBA3fuQMEir6fL9+/eYMmVKlZeEQVpNl5GRkZg7d26VlzRdHjx4UHO9rVGjhsqbJUsWdHNz0w2DOnXqpPKmSZMG27ZtqxsGjRs3jrresoRBq1evVnlZwyB/f3/qessSBj158kT6mCwvljDoy5cvUqAqL5YwKCYmBosWLarykjBIr+mycePGKi8Jg/Q+hPXp00flJWHQ6tWrNdfbGTNmUNfbJk2a4MKFCzU/hG3bto263jo5OemGQVevXqWutyxh0OvXr6XGZXkVL15ct/EgLCwMs2fPrvKyNB6YTCYsX768ysvaeNC6dWuVl7XxYMSIESova+OBFmvOnTtXkzUPHz5MXW+NsGbZsmVx7Nixmqz54cOHBMma3bp1o663P5o1N2zYQF1vrcGaWk2XWqypN+D37ds3zJQpk8pboEAB3QE/LdZkGfBzcXFReeODNb29vVXen5013717p8maWh/CzLFmnjx5sH///pofwkwmE1apUkXlNcKa8gE/LdYcPXq0yisf8NNizRUrVlDX2x/NmvIhWXnFB2sWKlRI5bUGa+o1XWqxpt6HsClTpqi8hDX1PoRpsabegN/Fixep76IR1iQDflqs+f37d4tZUz4kK6/4YM2hQ4dS11vCmlp7Hz3W1Gq63L9/P3W9NcqaegN+WqypN+AXGRmJefLkUXnlrGlu72OONcmAnx5rdu7cWeWND9Zcs2aNymst1tTK2fVYU2vA78uXL9KQrLwIa2o1XZpjTdYBvyZNmqi8RlmTZcDPCGtu376dut4mRNbMmzcvDhgwQDdnr1ChgsprDdbUG/DTYs3ly5drrrdLlixReY2wpnzAT481aTm7EdYsXLgwE2vmz59f5WVlzTp16lDXW2uwplbT5aRJk1ReOWtq5exarKk34Hf27FnqM7YVa7IcJhMbG4slS5akrrc/mjUHDhyo8sYHa+7evVvlZWXNmzdvUtdbwppaA35GWTNXrlwqrxHWZB3w++OPP1ReW7Gm/DAZLdY8ceIE9V2MD9YkQ7LysgZrsjZdCsW/ROOgaBwUMqD169dTf9EoixYGHTp0CLt27UrdQMkrX758qjDoypUr6ObmRgVWeWXLlk0KgwicvHjxAt3c3KihhLxIGCT/EBYWFoZubm7UoF+5IWrZsqXqQ1j//v2lUxbNFQmDlBO4EyZMkE5UMFckDFJO4C5atEia1Ncq2mlPW7dupX60VxbttCc/Pz90c3OTJr/MFS0Mun37Nrq5uUmn6JkreRhE4OTdu3fo5uYmTXCaK1oYZDKZ0M3NjRouyitZsmRSGCT/EDZ8+HBp2t5ckTBIOYE7depUaYrbXJkLg1atWiVNB2tV6dKlVac97dmzB7t27UrdQMmrYMGCqgnc8+fPo5ubGzWslxctDHr8+DG6ublRP8jIizaB++XLF3Rzc6MGT/IyFwb16tVLmsQ2V+bCoH/++Qfr1aun6TUXBs2dO1eaHNUqEgbJP4T5+PhIE4laRcIg+QTukSNHsGvXrtLkl7mihUHXr19HNzc3KrDKi4RB8tOegoKC0M3NTZooMle0054iIyPRzc1NOhHKXJmbwB04cCBWr15d0yufwJWHQZ6entQmGOW7SAuDlixZIk2raRUtDNq+fTt27tyZGtbLixYGnTp1Ct3c3KTJL3NFwiD5BO69e/fQzc1Nmu4zV5kyZVKFQSEhIejm5kYFIXmRMEg5gdutWzdqI4u8SBikbLocMWIEtUFC+S7STnuaMWMGtclbWbTTntasWUP9oKss2snC+/fvx65du1LDennRwqBLly6hm5sbFVjlRTtZ+NmzZ+jm5iZNU5sreRhEPoR9+/YN3dzcpBNKzJU8DJI3Xfbp04caaMjLXBg0fvx46kdZeZEwSDmBO3/+fOrHPmVVqFBBddqTr68v096HNoF7/PhxdHNzo4ZH8qKdLHzr1i10c3OTTjYwV7Qw6PXr1+jm5kYNgeVFC4Oio6PRzc2N2sQrL3Nh0NChQ6kf7ORl7mRhLy8v6ocgeZkLg5YvX45t2rTRfU4kDJI3Xe7atQu7dOlCDevlRcIgedPl2bNn0c3NjRrWy4s2gfvw4UN0c3OTTpIxV7TTnj5+/Ihubm7SxLy5Sp06NXUCt2fPntSPOfIyN4E7atQo6kcCeZk7WXj27Nno6uqq+5zIaU/yxgNrsCatUUFeNNa8evUqF2vKP4TFB2uaa7pkYU1zpz15eHgwsSbttCejrEn7aK8sGmv6+/vblDVpwy3y+tlYc9q0aUysSRvwW7VqFbZr1073OdFYc+/evUysSTvtyRqsSfsgI6+fjTXHjBnDxZryD2Fz587FFi1a6D4nGmtu3LiRmTWVpz3xsKZywI+VNWknC9uSNQcNGmQT1ly6dCm1uUJZ1mBNPz+/eGdN5YCfUdbs3r07E2vSBvyMsObMmTOpH96VRWPNtWvX/udZU950GRoaysWaygE/HtZUDviNHz8eGzRooOk1x5oLFixgYk3aycIJkTXfvHljMWvGxMRws6a86XLo0KFYs2ZNTa851pwyZQozayoH/HhYUzngx8OaygE/W7Hmp0+fmFjT3GlPPXv2lG7XMFfmWHP06NHxxprypsv169dLp8xrFe0WG17WlA/4GWHNly9fMrEmbcCPsCatqUxe5lhzwIAB0imL5kqw5r97nzt37nCxpjxn52VN5YCfm5ubdAKfuSKsqRzw+9lZk3aLjRHWvHDhgk1Zs1ixYppec6zZu3dvXdY0d7JwfLGmcsDPCGsePXoUu3btSm2Kl9ePYk3aYK+8aKwZFRVliDWFbCvROCgaB4UMiFw3wVMkDCJXX/IUmcClTcrrFQmDyDXFPEXCIHIsP2+RMEgvgKEVCYP0QmtakTBIL+yiFQmDWBpglEU+hPXs2ZPbS8IgcoUtT5GmS9rUp17Jmy4tecYkDNKDc1qRMEhvU08rEgbpBc+0ImEQywdZZZEwqG/fvtxeEgb9/fff3F4CJ7RTTfRKHgbphWy0IhO4eg2ptCJhkN7HBVqRMIil4VBZJAyinVaqVyQMIlcq8hQJg8j1CTxFwiDaSQosValSJfTw8KCeOKpXpOlSL0ShFTntiVwbw1Ok6ZIllFQWCYP+/PNPbi8Jg8jR+jxFwiByPRhPycMgvSCVViQM0vswQSsSBukFmrQiH8LIldA8RcIglg8EyiIfwvr378/tJU2XtJNO9YpM4NIme/VKHgbpBd60ImEQub6Sp0gYpPdxgVYkDPrtt9+4vSQM6t69O7eX7H1op2DqFQmDxo4dy+0lH8IsXW/JBK5eGEorMoGr9wGJViQM0gueaUXCIJYPssoiYVDv3r25vSQMsmTvQxoPyBUZPCVvPND7qEErcs2UXlMGrUjTpd7HXFqRCVyWj+7KsgZr0ibl9Sohs+bIkSN1Q2taGWXNnj172oQ1W7ZsaYg1x48fz+39GVhTr3mGVuSaKSOsyfJBVllGWdPFxUW6NpOnjLImGfCLb9Ykpz39aqxpyd6HsCbthHiWIqyp9/GJVtZgTb0PfbSyNWv+9ddf3F5rsabeR2RaGWXNYcOG6X7MpRVhTb2P7rQipz0lRNb09PTk9v4MrKnXWEGrhMqajRs3FqzJWLZiTXKLDe3kPb0yyppkwE+wpn4lZNacOHGiTVhz4MCBuk2ltCKsyTJsoayEzJrkimPesjVr6jV404rcYpMQWdPSnJ2wpl4zK62swZp6A+O0Sqis2aRJE0PfNS1lTXGl8c+hH9E4mASEhITMKmnSpODg4ACxsbHc3iRJkoCDgwMkTZqU25s4cWLDXnt7e25vokSJLPYCADg4OICDgwMkSpTIIq+9vb1F3qRJk4K9vT0kTpzYIq+DgwMkScK/HCZJkgTs7e1t9pwcHBy4vXZ2dpLXzs6O22/kGdvb24ODg4Oh5xQTE8PtJc/JkmecOHFiw8/YkueUKFEi6edl5DlZ4iV/rq2esSUi3vheb8m7aKmX/LwskTWecXyvmUaeE/mdasmaafRdNLre2tvbW/weW/p70egztnQfQJ6Tpb9Tbf170RIZ3ftY+pys8YyNPCdL11t7e/t4f4+t9Yzj+3cqWTMjIyO5vUbeRfKztsRLfrfZgkOssW+y1d4nIbKmkd+ptnrGRljT6DM2svdJqKxpiYy+i0YzAUvfRSOsact30RZrpq3XW0tkjdzHCC9a+h4L1mRXQl5vLWVNW+c+UVFR3F4jzykhs6aRPMEIhxj5nWrpmmmrd/FnYE0j76KRZxzfrGnkd6qR321G3mMAYz9rW+99jLCmkf2tkXfR6N7HyO9FW+U+vxprWuK11u9UI6xp5BmbTCZur604xFb7WwBjHGKr9ZY8J0v+zrbsMbDG71RLn7PQTyxrdB/+1wvEiYP/Cfn4+DBN2JCpBflR0UeOHMGePXvqXlVctGhR1VHR165dQ3d3d90TpcjUgvyo6JcvX6K7u7vuNBPtWqKwsDB0d3fXPWKWdi0RIjJ15pu7lsjT01N3+oJMLXh7e8c5Knrp0qW619jKpxbkR/Nv374du3XrpvuMydSC/Gj+kydPoru7u+4UBJlakB/Nf/fuXXR3d9e9ziRHjhzYq1evOEdFv3v3Dt3d3XWvM6EdFW0ymdDd3V13SoZMLSiPih45cqTuJBQ5HUh5LdHMmTN1j9c3dwXu2rVrmSZsaFML+/fvxx49euhOY5MJefnR/BcvXkR3d3fdI73JFbhHjhyRjop+8uQJuru7605yZ82aFXv06BHnaP4vX76gu7u77nUmtKP5Ef+9yk1vKpFMyCuPima5Nlx+NL/8WqIFCxboHq9PJuSV1xL5+vpi165ddZ8x7VqiY8eOYc+ePXWvj6JdgXvjxg10d3fXPVUhV65c2KdPHzxw4IC03r569Qrd3d11rzOhXYEbGRmJ7u7uuhPCqVOnxjZt2uC6deviXEs0bNgw3RPHyIT8kiVL4uxFpkyZojvpnzhxYqxbty7Onj07zrVEy5cv1z1en0zIK68l2rVrF3bv3l33+igyIS+/lujMmTPo7u6ue30U7Vqi+/fvo7u7O2bPnl3TS7uWKCQkBN3d3XWvM0mfPr3qClxExD///FP39D9zV+CyXBtu7gpcb29v3eP1yYT89OnT4xzNv379eqbTHMiEvPxo/kOHDmHPnj11r48iE/Lya4kuX76M7u7umD59ek0v2fvIryV6/vw5uru7615nkiVLFuzevXuca4lCQ0PR3d1d93QU2rVEiP9eG653nYm5a4kmTZqEjRo10vSau5Zo0aJFutPF5q7A3bp1K9NEI7kC9+LFi9J66+fnh+7u7rqnDZEJeT8/P2nvExAQgO7u7pglSxZNb86cObF37964f/9+ae/z5s0bdHd3150ezZgxI3bp0iXOtUTR0dHo7u6ue/IxmZBfu3ZtnGuJRowYgU5OTppeBwcHbNq0qepaounTp+tO+pMJeeW1RKtWrWI6NZl2Be6ePXuwR48euqee0q7APX/+PLq7u2OaNGk0vbQrcB89eoTu7u6YM2dOTS+5lmj37t3S3ufTp0/o7u6uO61PJuTl18Ah/nuVW+XKlTW9KVKkwJYtW+LKlSvjXEs0duxY3WvDkyZNio0aNVJdSzRv3jzdk1XkE/Lya4l4WFN5LRFhTb3TL4ywpqOjo+paIiOsGR4ebjPWnDx5cryxpvxaIiOseerUKS7WlF9LxMOa5FoisvcJDg6OF9akXUtkhDVnzZpliDVZrhayNWvKryWKT9b08fGJs/dhuTbcKGuSK3CfPHkieVlY09wVuLZizZs3b6K7u7vu1ZnWYk2y9zHKmsOHD48X1lRegbtixQrdk6yMsibtClwjrPngwQObsWavXr0SHGtu2LCBizXlV+AaYc0rV67EC2sqr8C1NWvqnahrjjUXL178n2dN+RW4b9++RXd3d92rM2msGRMTw8Sa5q7AjQ/WpF2Ba4Q19+7d+0uwpjxnN8Ka48aN++GsSbsCd+PGjT+cNWlX4BphzcDAQMOsWbp0aU3vf4k1d+zYwcyayitwCWumTJlS0/szsSYioru7O1aoUEHT+6NYU+9UuR/Fmj179rSINS9duoTu7u66p2kaZU1yBS7Z+3z9+hXd3d2xRIkSml4jrElOorUmay5cuNAmrHn8+HHs2bOn7lXFPxNrRkVFcbHm2rVr47CmkG0lrioWjYNCBrVw4ULVgicPyOSbRKUOHDig8pLrCmbPnh1nk6jUnTt3VIGX/LoC+SZRqffv31MDL9KMcf78eWkDoVRkZCR1c06uK5AHZEqZTCbqdQa0TSJNNJghm0RlQKYU7YqPlClTYqtWrXDVqlVxNolKrV27VuU1F5ApderUKZU3UaJE6OTkpArIlHr27Bk18KI1Yyj19etXzJAhg8pLArLTp0+bfcYxMTHUjwR58uTB/v37x9kk0kS7xpI0Y8g3iTTRrv9OmzYttm/fXrVJVGrmzJmam0R5QKbUjh07zG4S58yZE2eTqNS1a9fMbhKVAZlSb968oW76aAGZUuHh4dQj1GkBmVImk4kaIJPrCuTNGDTRgJVcV7B161Zpk0gT7ZpCeTOG1iZx6dKlKi8JyBYvXhwnIFPq6NGjKi9pxpg1a1acgEyp+/fvUwMvcjWePCBT6uPHj9TAi3yQkAdkSkVHR1ObYGgBGU20a4NpARlNPXr0UHnNNWMoRbtuRx6QyT9IKLVx40bqetuoUSOcP39+nIBMqXPnzlHXW9KMcffuXbPP6eXLl9RGftL4f+XKFbPvYmhoKLWxlFxXIP8goVRsbCy1QYLW+E8TLZQgHyTkARlNtOPqzQVkSs2dO5e63rq6uuLSpUs119s9e/aovPKATP5BQqlbt25R11ta479SwcHB1OYKWjOGUhEREdQwhNb4r5TJZKJ+zCHXFcg/SNBEa4on1xVs2bIlTkCmFO1aAfkHCa29z8qVK6nrrbOzsyogU8rPz4+63tICMqUeP35MDbzI1Xha1xV8/vyZGnjRAjKlYmJiqNd1yRv/tdZbWvBEa8agqVevXiqvucZ/pWhXsZBmjBUrVsT5IKHUli1bVF5zjf9KXb58mbrekg8S8oBMqaCgIGpzRbly5VQBmVJhYWHU8Jl8kJAHZEqZTCYsW7asykuuxpMHZDTRAkJa4z9Nw4cPV3nNNWMoZYQ1Dx48SF1vfzRrhoSE/FSsSWvGoIkW5BplTVozhlLr1q1TeY2yJq0ZQymjrEn72BcfrElrOLIGayqbMZSaNWuWymtL1qQ1Yyj15s0banNFfLAm7apSI6xJmjH0WJN2bZa5xn+lli1bpvJagzWVzRhKPXjw4IewprIZQ6mEypq0qwaNsCZpxtBjzfPnz1PXW2uwprwZQ6nQ0FDqxz5W1qQ1SBhhTVozBk2DBw9WeY2wprlmDKX27t2r8v7srBkZGWl11qQNmdNEa1SwBmsqmzGUWrVqFXW9tRVrslyN9/nzZ2pjqbVYU2vvQxsmtDVrKpsxlNq6dSt1vTXKmspmDKVevXplddakNWMoZTKZqM2hPztrLlq0iLreWsqa5obMlbp79+4PY015479SUVFRVNakNf4rZTKZqE28RljTXOO/UrSrtOODNU+fPk19F23Nmnp7nx/FmvLGf5r69++v8hplTVrjv1I7d+6krrcsrHn9+nWVN75Yk9bkbYQ1aUPmNNEOvLA1ayob/5U6duwYdb01wpq0xn+lPn36RB1ijA/WFLKdROOgaBwUMqCIiAjpFxzrJpHIZDJJk0isAZlcZMo2ZcqUTAGZXKNGjZI2iSwBmVzLly+XNoksAZlcx48flxYceTMGi/fhw4fSLziWgEwu+S842nSolqKjo6WJQtp0qJ7IxJi56VAtubu7x9kk6jVjyOXl5YUA/58O1QvI5PL19ZU2iSwBmVwXLlyQnjFLQCZXYGCgNKnGEpDJFRoaKk2NsjZjEMXGxkrTD6wBmVwtW7ZEAPPToVoaMmSItEl0dnbW3STKNX/+fGmTSJsO1dK+ffvibBL1AjK5AgICJLgn06FaAZlcwcHB0qQaazMGUWRkJObOnRsB2AMyIpPJJE0FsgZkcpGJd9ZmDLnGjRsnARtLQCbX6tWrpfWWNh2qJX9/f+kZlytXTjUdqqUnT55IcE+bDtXSly9fpDCVTIfqBWREMTExWLRoUQRgD8jkItPyrAGZXH369EEA9oBMrunTp0vrLUszhlzbtm2T1luWgEyuq1evSs9Y3ozB8oxfv34tNS2TZgz5dKiWwsLCpBMzWBv/iUwmk3TKkLnpUC2RUw1YG//lGjFihLT3YQnI5Fq8eLH0LrI0/st1+PBhroBMrnv37knrLUszhlwfPnzA1KlTcwVkRFFRUZgvX744AZleM4ZctWvXjhOQ6TX+y0Wmoc1Nh2pp4sSJcQIy5XSoljZs2CC9i2Q6VCsgk+vMmTNcAZlcz58/lz4kswRkcn379k1qWmZtxiCKjY2VpntZG//lIidXsDb+yzVgwIA4AdnixYuZedjb2ztOQKY8iUhLu3btkp4TacaQn0SkpRs3bsQJyPQa/+V69+6dFKaSDxKsARmNNXfv3s283pLTpY2wJmszhlyjR4/+qViT5V189OiR9CHZWqzJsveJjo6WTlMwwpqszRhyGWHNKVOmSHsflmYMuYyw5sWLF23Cmt+/f/+pWJN17zN06FAVa2o1Y8hFY02tZgy59u/fbxXWZGnGkOv9+/eGWJOcFhbfrNm5c2ebsOaaNWusyppazRhy0VhTqxlDri9fvkgDsqzNGERGWZOcFBTfrDljxgyLWXP79u1WZ02Wd9FarGlJzk5OGTLKmqQZIz5Yc8mSJdK7yNKMIZdR1iQ5e3yzJjm95mdgTda9z6RJk+Kwpl4zhlxy1mRpxpDr7NmzCZI1ySmarM0YchlhzYEDB1qVNVlz9t27d1uNNfWaMeSSsyZvM0ZERATmypULAeI2/scHa5LTLI2wJmvjv1wrVqywmDVPnDhhM9YkA7JGWJO18V+uBg0aGGZNeeN/fLDm5s2bbcKaQUFBVmFN0vjPypryAVlLWJOcWMra+C+XkjX1Gv/lWrBggbTesjT+yyVnTZbGf7lu376dIFmTnPQe36w5fvx4q7GmXuO/0M+jH9E4mASEhH4RnT17Fnr06AGurq5Qvnx5rnvu79y5A05OTjBjxgyoXr06JEnC/uoEBwdDpkyZ4ODBg1CnTh1IliwZszciIgJCQ0Nh27Zt0KhRI0idOjWzFxHh8ePHsH79enB2doaMGTMyewEALl++DEuWLAEXFxfImTMnl9ff3x9mzpwJrq6uULBgQW7vX3/9Ba6urlCqVCmws7Nj9l66dAnatm0Lrq6uULlyZa5n/OTJEyhVqhSMHj0aatWqBUmTJmX2fv78GRwcHGDv3r1Qr149SJEiBbM3OjoagoODYfPmzdC4cWNImzYtsxcR4c6dO7B69Wpo2rQpZMmShdkLAHDu3DlYsGABuLi4QJ48ebi8/v7+MHnyZHBxcYEiRYpwPafTp09D3759wdXVFcqVK8flvXHjBjRu3BgWLFgA1apVg8SJEzN7X716BY6OjnD48GGoXbs2ODg4MHu/f/8O0dHRsHPnTmjQoAGkSpWK2WsymeDFixfg4+MDTZo0gQwZMjB7AQCuX78Oy5cvh2bNmkH27Nm5vKdPn4Y5c+aAi4sL5M+fn8vr7+8PY8aMAVdXVyhevDjXczp//jx07doVXF1doUKFClzv4oMHD6Bq1arg6ekJNWrU4HoXQ0JCIF26dLB//36oV68e13obGRkJnz9/hq1bt0KjRo0gTZo0zF5EhAcPHsDatWuhadOmkClTJmYvwL9r1+LFi8HFxQVy5crF5T158iRMmzYNXF1doVChQtzeoUOHgqurK5QuXZrrGV+5cgV+++03ab3leRefP38ORYsWheHDh4OTkxPY29sze79+/QqJEyeGPXv2QP369bnW29jYWHjz5g1s2rQJmjRpAunSpWP2AgDcunULVq5cCc2aNYOsWbNyec+cOQPz588HFxcXyJs3L5fXz88PPDw8wNXVFYoWLcr1nM6cOQN//vmntPfh8QYEBED9+vVhzpw5UK1aNa69z9u3byF79uxw6NAhqFOnDtd6Gx4eDuHh4bBjxw5o2LAh93r79OlT2LBhAzg7O3Ovt1evXoVly5ZBs2bNIEeOHFzekydPwuzZs8HV1RUKFCjA5fX394eRI0eCq6srlCxZkus5XbhwATp06ACurq5QqVIlrvX24cOHUL58eRg/fjzUrFmTa739+PEjpEyZEvbt2wf16tWD5MmTM3ujoqLgw4cPsGXLFmjcuDH3envv3j1Ys2YNNG3aFDJnzszsBQC4ePEiLFq0CFxcXMDR0ZHL6+/vD1OmTAFXV1coXLgwl/fUqVMwcOBAcHFxgbJly3I942vXroGrqyssW7YMqlSpwrXeBgYGQv78+eHIkSNQu3ZtrvU2NDQUTCYT7Nq1Cxo0aAApU6Zk9sbGxkJgYCBs3LgRmjRpAunTp2f2AgDcvHkTVqxYAc2aNYNs2bJxec+cOQPz5s0DFxcXyJcvH5fXz88Pxo8fD66urlCsWDGu52SENe/evQu1atWC6dOnW8yaBw4cgLp163Kz5rdv3yxmzUePHsG6devA2dmZe+9jlDVnzJhhE9Zs06ZNgmLNmJgYePfuXYJkTU9PT3B1dY1X1rx586ZNWDMsLAyioqJ+Kdb08/MzxJqdO3cGV1dXqFixYryyZtq0aWH//v1Qt25d7r3Pr8aap06dgiFDhtiENYsUKQLDhg2ziDUTJUoEu3fvhgYNGnCz5uvXr39Z1ixXrhzXuxgQEAD16tUDb29vQ6xZu3Ztrr2PEdZERHjy5InFObsR1jx16hTMmjUr3lnz4sWL8Mcff1jEmo8ePbIJa0ZHR0NISAhs2bIFGjVqxL33Iazp7OzMvfe5cOGCIdb08vKS9j48MsqazZo1gyVLlkDVqlV/Cda8ceNGgmPNc+fOQffu3W3CmhkzZkxwrHnp0iWbsObJkydh+PDhFrHm5cuXJdasVKkS17v49OlTKFmyJIwaNcoi1rS3t7coZzfCmgAAt2/fhlWrVkGzZs3ilTX9/Pxswpo3btyARo0awfz587lZ8/Xr15ArVy6bsObz588tZs1r165ZvPcxypr//PMPuLq6QokSJeKVNStXrgyTJk2Kd9b89OmTTVhT6L8nO/z3RD0hDdnZ2eUCgECAfzfEvEGLkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJAlCgoKkg+rOCJikNH/JnurrJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQUIKXaBwUEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEvqFJBoHhYSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhIR+IYnGQSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISGhX0iicVDol9Hp06dh+fLl8ObNG27v3bt3Ye7cufD06VNub3BwMEyZMgVu374NiMjljYiIAE9PT7h48SKYTCYuLyLC9OnTwd/fH6Kjo7m8AABLliyB/fv3Q3h4OLd306ZNsHXrVvj69Su399ChQ7B27Vp4//49t/fSpUuwePFiCAwM5PY+efIEZs2aBQ8fPuT2fv78GSZPngw3btzgfsbR0dEwefJkOHfuHMTGxnJ5ERG8vb3h2LFjEBUVxeUFAFi5ciXs3r0bvn//zu3dvn07+Pr6wqdPn7i9fn5+sHLlSnj79i239+bNmzB//nx4/vw5t/fVq1cwbdo0uHv3Lvdz+v79O3h6esKVK1e430WTyQRTp06FU6dOQUxMDJcXAGDBggVw6NAhiIiI4PauX78eduzYAd++feP27tu3DzZs2AAfPnzg9p49exaWLVsGr1+/5vbev38f5syZA48fP+b2hoSEgJeXF9y6dYv7GUdGRoKnpydcuHDBovV2xowZcOLECYvW26VLl8K+ffssWm83b94MW7ZsgS9fvnB7jxw5AmvWrIHg4GBu75UrV2DRokXw8uVLbu/z589h5syZcP/+fe7n9PXrV5g8eTJcv36d2xsbGwteXl5w5swZ7vUWAGDOnDlw5MgRiIyM5PauXr0adu3aZdF6u3PnTti4caNF6+3JkydhxYoVFu19bt++DfPmzYNnz55xe9+8eQNTp06FO3fucD+n8PBw8PT0hMuXL1u03k6bNg1Onjxp0Xq7aNEiOHjwoEXrrY+PD2zbts2ivc+BAwdg3bp1EBISwu29cOECLFmyBIKCgri9jx49gtmzZ8OjR4+4vR8/foTJkyfDzZs3uZ9xVFQUTJ48Gc6fP2/R3mfWrFlw/Phxi/Y+K1asgL1790JYWBi3d+vWrbB582aL1tvjx4/D6tWr4d27d9ze69evw8KFC+HFixfc3pcvX8L06dPh3r173M8pNDQUPD094erVqxatt1OmTIHTp09b9C7Onz8fDh8+bNF6u3btWti5cyeEhoZye/fs2QM+Pj7w8eNHbq+tWTMgIMAmrOnn5ydYk0FPnz61CWvGxMSAl5dXgmPNHTt2wKZNmwRrMsiWrLlhwwabsOa5c+dg6dKl8OrVK26vrVgzKirKZqy5bNkywZqM+vr1K3h6esK1a9finTXnzp1rE9bctWtXgmPNt2/f2oQ1ERGmTZsG/v7+gjUZZCvWJDm7paw5e/Zsm7Dmtm3bwNfXFz5//sztNcqaCxYsEKzJqHXr1tmENc+cOQPLly+3KGcXrMknW7Hm5cuXbcKaX758sThnN8KaAADe3t5w9OhRwZoMev36dYJlTUv3PkZZc/369fHOmg8ePABvb+8Ex5ozZ860mDWF/oNCRFE6BQC5AAABAAMDA1EoYerr16+YIUMGBACsWLEiTpgwAa9evYomk0nXGxMTg8WLF0cAwGLFiuGIESPw9OnTGBMTw/RnOzs7IwBg3rx5sX///nj48GGMiIhg8vbr1w8BALNmzYrdu3fHnTt3YmhoKJN35syZCACYLl06bN++Pfr4+ODHjx+ZvDt27EAAwBQpUmDz5s1x+fLl+Pr1aybvtWvXEAAwadKk2KBBA5w7dy4+ffqUyfvmzRtMliwZ2tnZYfXq1XHKlCkYEBDA9JzCw8MxR44cCABYtmxZHDNmDF68eBFjY2N1vSaTCStWrIgAgIULF8Zhw4ahn58fRkdHM/2927ZtiwCAuXLlwt69e+P+/fsxPDycyfv3338jAGCmTJmwS5cuuHXrVvzy5QuTd+nSpQgAmDp1amzdujWuXbsW379/z+Q9evQoAgAmS5YMmzZtiosXL2Ze4+7fv4+JEiXCxIkTY506dXDWrFn48OFDJu/Hjx8xTZo0CABYuXJlnDRpEt64cYPpGUdHR2OBAgUQALBkyZI4atQoPHfuHPO7WLduXQQAzJ8/Pw4aNAiPHj2KkZGRTN7u3bsjAGD27NnR3d0d9+zZg9+/f2fyenp6IgBg+vTpsWPHjrhp0yb89OkTk3fjxo0IAJgyZUps2bIlrly5Et++fcvkPXfuHAIA2tvbY6NGjXD+/Pn4/PlzJu/Lly8xadKkmChRIqxZsyZOmzYN7969y/ScQkNDMVOmTAgAWL58eRw/fjxeuXKFyRsbG4ulSpVCAMCiRYviX3/9hadOnWJ+F11dXREAME+ePNivXz88dOgQ83o7aNAgBADMkiULduvWDXfs2IHfvn1j8s6dOxcBANOmTYvt2rXD9evXY0hICJN3z549CACYPHlydHV1xWXLluGrV6+YvLdu3UIAwCRJkmD9+vXR29sbHz9+zOR99+4dpkiRAu3s7LBatWo4efJkvHXrFtNzioiIQEdHRwQALF26NP7zzz944cIF5vW2WrVqCABYsGBBHDJkCJ44cQKjoqKY/t4dOnRAAMCcOXNir169cN++fRgWFsbkHTNmDAIAZsyYETt37oxbtmxhXm9XrlyJAICpUqXC33//HdesWYPBwcFMXj8/PwQAdHBwQGdnZ1y0aBG+fPmSyfvo0SNMnDgxJk6cGGvXro0zZ87EBw8eMHk/f/6M6dKlQwDASpUq4cSJE/HatWvMe5/ChQsjAGCJEiXw77//xjNnzjCvtw0bNkQAwHz58uGAAQPwyJEjzOttr169EAAwW7Zs2KNHD9y1axfz3mfq1KnS3uePP/7AjRs3Mu99tmzZIu19WrRogStWrMA3b94weS9fviztfRo2bIjz5s3DZ8+eMXmDgoLQwcEBEyVKhDVq1MCpU6finTt3mJ5TWFgYZsuWDQEAy5Urh+PGjcNLly4xv4tly5ZFAMAiRYrg8OHD8eTJk8zrbatWrRAA0NHREfv27YsHDhxg3vsMGzYMAQAzZ86Mbm5uuG3bNvz69SuTd+HChQgAmCZNGmzTpg2uW7eOeb09ePCgtPdp1qwZLlmyBIOCgpi8d+7cQTs7O0ySJAnWrVsXZ8+ejY8ePWLyhoSEYKpUqdDOzg6rVKmCnp6eePPmTaZnHBkZiXnz5kUAwFKlSuHo0aPx/PnzzM+4Vq1aCABYoEABHDx4MB4/fpx5ve3atSsCAObIkQP//PNPrr3PhAkTEAAwQ4YM2KlTJ9y8eTN+/vyZybtu3TppvW3VqhWuWrUK3717x+Q9deqUtPdp0qQJLliwAF+8eMHkffbsGSZJkgQTJUqEtWrVwunTp+O9e/eYnpMtWbNp06Y2Yc1Zs2apWPPDhw9MXmuz5pMnT5i8tmTNSpUqIQBgoUKFcOjQoejn58f8LhphzZEjRyY41nzw4IGKNVn3PtZmzbNnz8YLa/bo0UNizZ49e+Lu3bt/etY8f/68zVgzc+bMKtZkeReNsmbz5s0RADB37tzcrDl48OA4rLl9+/Z4Yc29e/dKrOni4oJLly6NF9YMDg6WWLNq1aoJhjU7duxoE9ZctWqVTVjz8ePHcVhzxowZeP/+fSbv58+fMX369NLex8PDI95Ys1GjRjZhzWnTpiU41nz16pWKNW/fvh0vrFmuXDmJNYcNG4b+/v7xwprDhw+XWLNr165crLlo0SKbsObdu3dtwppRUVFU1mR5F23Jmh4eHhJrduzYEX19feOFNU+fPi3tfRo3bhyvrJkxY0YEAKxQoUKCYc3+/furWJN172OENXfu3CntfZo3b47Lli2LN9ZMnjy5xJpeXl5crJkzZ04EACxTpky8sma7du1swprLli1LcKz56dMnTJs2rcSaEydOxOvXr8cLa9arV09izYEDB8Yba06ePFlizQ4dOnCx5qZNm2zGmvb29jZhzdKlS8dhTZ6c3VasOW/ePGnv07ZtWy7WFLKtAgMDEQBI5UJr9MRZ4z/yXy8QjYP/GXl5eclfIq4wyNfXV+UlYZDeh7ALFy6ovKxhUGBgINrb28fxkjBo4cKFmmFQaGgoZsmSJY6XNQyKjY3FMmXKqP7erGFQixYtVN7ixYszhUFDhgxReVnDoPnz56u8rGHQvn37VF7WMCggIADt7OzieFnDoODgYEyZMmUcrzwM0mq6jIyMxNy5c8fxsoZBJpMJa9Soofo3lytXDseOHasbBnXq1EnlZQ2Dxo0bp/I6Ojpinz59dMOg1atXq7ysYZC/v7/KyxoGPXnyBBMnThzHyxoGffnyRQpUSbGGQTExMVi0aNE4XnkYpPchrHHjxqp/M2sY1KdPH5WXhEHHjh3TBNDp06ervKxh0LZt21Re1jDoypUrKm/KlCnxt99+0w2DXr9+jcmSJYvjZQ2DwsLCMHv27Kp3kSUMMplMWL58edXfmzUMat26tcorD4O03sW//vpL5WUNgxYvXqzysoZBhw8fVnnTpk2L7du3xw0bNmiGQffu3VOtt6xh0IcPHzB16tSq9bZ+/fo4Z84czTAoKioK8+XLp3oXq1WrxhQG1a5dW/VvZg2D3NzcVF7WMGjixIkqL2sYtGHDBpWXNQw6c+aMyisPg7T2Ps+fP8ekSZPG8To4ODCFQd++fZMCVVKsYVBsbCyWKFFC9fdmDYNcXFxU3hIlSuDIkSN1w6ABAwaovKxhkLe3t8rLGgbt2rVL5WUNg27cuEFdb1nCoLdv32Ly5MlV6y1LGBQRESEFqvL1liUMMplMWKVKFdXfm4RBly9f1nwX27dvr/KyhkGjR49WeXPnzo19+/bFgwcPaq63y5cvV3mzZMmCbm5uumHQ8ePHVV7WMIg0LivXW5bGA3mgSipJkiRYr1493caD6OhoLFSokGq9ZW08qF+/vurfzNp44O7urvKyNh5osebevXt/GGtevHhR5SUfwlavXv3DWPP79+9U1nRycvrhrNmyZUuV92dnzf3796u88cGa79+/N8uaegN+Wqw5ZcqUH8qanTt3VnnJgN+PZM01a9aovPHFmkmSJInjtRZrag34GWXNJk2aqP7NpUqVYhrwM8eagwYNwmPHjmm+izNmzFB5c+TIwTTgZ4Q1r169qvJaizW19j5GWbNChQqqv7c1WFOv6XLEiBEqb548ebB///66H8K0WFNvwM8oayZKlCiOVz7g9yNZM3/+/Kp3MT5Ys1u3biovK2tOmjRJ5ZWzptbexwhrnj17VuUlrKmXs2uxpl7T5bdv36QhWVKENfUG/GzJmgMHDlR58+XL98NZc/fu3SqvtVhTa+/z7t07TdbUarqMiIjAXLlyqdbbmjVr6g74GWXNP/74Q+UtWrQo04CfHmtq7X1WrFih8pIBv5+ZNcmQLKn4Ys0GDRqo/s2ENfUG/LRYU6/pcsqUKSrvz86aQUFBVNZs0qQJLly4UDNnN8Ka8iFZecUHaw4dOlTlzZs3r8SaWnufBQsWqLyENfUG/Iyw5u3bt82y5vLly38oa+bJk0f1LpIBP0tYs2zZsj+cNcePH6/yxgdrnjx5krreEtbUarrUY02tnP3Lly/SkKx8vWVlzWLFiqmecZUqVZgG/IywZt++fVVeMuD3I1lz+/btKu/Pzprh4eGarMnadCkU/xKNg6JxUMiADhw4IE2cmStzYdC5c+dw3LhxqmBB+cuSFgbdu3cPPTw8VMGC8pclLQx68+YNenh4qGBGWSQMkn8Ii4iIQA8PD6xcubKml4RByg9h06dPp/5ilhcJg5RNl8uXL6d+WJWXuQncrVu3Un+py8tcGHTs2DEcNWqUptfcBO6VK1dwwoQJmCJFCrNec6c9PXnyBD08PFQfsZVFTnuSh0EfPnxADw8PLFmypKaXFgaZTCb08PCQpvvMlbkwaO7cudIUg7nKli0b9uzZU/UhbO3atdJkoLmSh0FyONmzZ480AWGuSBik/BB26tQpHDt2rCpYkJe5CdyAgAD08PBQBQvKDREtDAoMDEQPDw9V05CyyASuPAwKDQ1FDw8PamOYvMyd9uTl5UX9AC4vc2HQ4sWLqUG/vORhkBxONm3aRA005GUuDDp06BD1I4G8kiVLJoVB8g9hFy5cwPHjx6ODg4NZrzwMkjddPnjwAD08PFTBgrxIGKScwH337h16eHioPpwpixYGRUVFoYeHh3SygbkqWLAgdQJ35syZ0gSnuSJNl8owaOXKldKpCObK3GlP27dvl6Y/zZU8DJLDyYkTJ3D06NGqYEFe5sKg69ev44QJEzBVqlRmvfIwSP4h7NmzZ+jh4SGdQGGuaGHQ58+f0cPDQ5r8MlckDFJO4E6cOJH6QUZe5pou58+fTw2e5GUuDFq/fj31Y468zJ0svG/fPmpoJS9zpz2dOXMGx40bpwoW5GXuZOE7d+6gh4eHKlhQvou0MOjVq1fo4eGBBQsW1Px708KgsLAw9PDwkE4QNlfmThaeOnWqdHqFuTIXBi1dulSa0jVXmTJlwq5du6o+hG3evBl79+6t6TUXBh05ckSa8DVXJAxSNl1eunQJJ0yYoPqoonwXaScLP3r0CD08PFTBgrJopz29f/8ePTw8pKl3c0U7WTgmJgY9PDyoAaG8zIVB3t7e1I9u8jJ3svDq1aup4aK8zIVBu3bton6wk5c8DJI3Xfr7++OYMWNUH7HlRcIgZdPlzZs3ccKECdLpW7QyFwa9ePECPTw8VEGusipUqKA6Wfjr16/o4eFBDevlVaxYMeppT56entLJXebK3MnCCxculE4oMVfmThb28fHBnj17anrJaU/KxgNe1pR/CCOsqfyoIi891iQT0bSSs6b8QxhhTXLij7nSYk3ax1F5GWFNcwN+y5cvp35YlZdR1qQN+BlhzatXr8Yba8r3Ph8/fow31lQ2XcYXayo/hP3srEk7WZiwprJpSFk/ijVpH8DlpcWabdq00fRqseaff/6p6SWsqWy6jC/WVA74EdbMmjWrWa851gwODmZiTdrJwkZZc9asWTZhzR07dvznWVPedGkN1qxTp46m1whrmjtZeP369dLtGubqZ2VN5bCY8l20BmvKmy4Ja5JTncyVNVhTOeBnhDW3bNmiy5rmTnsywpqXL1+2CWuGhIRYzJqxsbE2Y801a9Yws6ay6ZKHNZUDfvHBmrQBP8Ka5LRDc6XFmuRES3Nl7mRhT09P6eQuc6XFmr///rum11qsKd/7xCdrypsujbDm27dvmVlTOeDHw5q0Ab8ZM2bYhDW3bdtmMWseP37cMGsqG/jkZY41nz59Gm+sqWy6jA/WpA34GWVN2iCivMwN+FmDNZXDYvL6kaxJG0KSlznWnDJlCjNrKnN2I6zp6+v7w1mTNuB38eLFH86atJOFjbBmdHQ0E2tacrKw0I+XaBwUjYNCBkSuYeIpcs2U3maAVmQClxzly1MkDCLH4/MUCYN8fHy4vfIwSOtjP63kYRDt9AitkodBeoEm7ZclCYPIkcs8Ra6Z0gtCaEXCIHIlNE+RpkvaVJ9ekQlccs0FT8nDIOXpEXolP/q7evXqXF55GKTXyEYrEgZZ8h6TMIhcmcdTJAwiVwPxFJnAXbt2LbdXfs2UFvTRSj6Bq7dZVJZ8AldvU68seRikF3bRikzg6gUhtCJhEG36Uq/I0d9Llizh9pIwiBy7zlPya6a0Gh1pJZ/A1QM3ZcmvmdIDbGXJJ3D14ItWpOmSXOHEU2QCd/bs2dxeEgaR6594Sh4GaQWptJKfLKzXdKwseRikF6IoS36ysN7HBVqRMEgveKYVuWaKdsqhXpHTnmgTtnpFwqD169dze+UTuFqBN63kYZBeUKYseRikF2gqSx4G6TWV0oqEQXpBCK3IycLkmi6eItdMketIeIpM4NIm5fVK3nRJrhllLXkYpBdaK0s+gfvbb79xeeVhEO1EJr0iYRDt1C29ImGQJXsf0nhAOx1ar+SNB1ohG63k10zpDVwpSz6Bq9esqCx502WHDh24/83ktKeEyJrkelOeMsKa8pOF9RpSlWUN1vTy8jLEmnofgWhFmi5/RdbU+2CvLGuxpl6TE62MsubAgQOlq4F4yihrkgE/I6ypPD1Cr6zFml26dOH+N9uaNcm13zxFWNOS9daWrEkG/BIia9JOVtMra7Gm1kdkWlmDNRcuXIhOTk5cXjlr6g2M04o0XRphTdoph3plDdaknZCoVwmdNWk3H+iVLVmzT58+hlhz8+bN3F7Bmv9j76zDq7qatj9JcA0QPFhwd6dQSJG2uLt7gUJx1+IupUix4O7uCe4ECAnxhECMuCdn3j/67vOsvc+2tfchh5R1X9dc39e3z42c3bMyv9kza+i8HGuuX7+e2suxptiNXUpBDvjpYU2lJjhhmIs1lZr4xcLSrCl2c7BS6GFN8mZhucZysdDLmlzT5a+//krlJVlTqalULLgBv4zImseOHaP26mFNcouNHtZUamQTC+5mYT2sya1npwlzsCa32p0mSNaUG+QRC3OxZuvWram8GZk1x44dm+7vNdlK429HX6NxMBMwMTFJ6uXLl5A3b17IlSsXtff9+/dga2sLDg4O1F5fX19wdnaGpKQkam9wcDA4OztD9uzZqb2RkZHg7OwMtra2kJqaSuWNj4+He/fuga2tLcTGxlJ5U1JS4NGjR2BrawthYWFUXkSEZ8+eafozAwC4urqCra0t2NnZUXs9PDzA2dkZKleuTO0NDAwEZ2dnrjmZSmFhYeDs7Ax58+al9sbExICLiwvY2tpS//eVmJgIDx48AFtbW4iMjKTypqWlwePHj8HW1hbCw8OpvAAAL168AFtbW8iSJQu19927d2Brawv29vbUXm9vb3B2doaYmBhq76dPn8DFxQUyZ85M7Y2IiIC7d+9C3rx5IS0tjcobFxdn/C7Gx8dTeZOTk+Hhw4dga2sLX758ofIaDAZ4+vSppt8XAOD169dga2ur6b9rd3d3sLW1hXLlylF7/f39wdnZGVJSUqi9ISEh4OzsrOlnRFRUlPG8pf29ExIS4P79+2Bra0v932Zqaio8evQI8ubNCyEhIVReRITnz5+Dra0tlY/T27dvwdbWFooUKULt9fT0BGdnZ6hWrRq19+PHj+Ds7AzW1tbU3vDwcONzolVsbKzxvE1MTKTyJiUl6Tpvnzx5Ara2thAREUHlBfg397G1tdWUR7x79w7y5s0LpUuXpvb6+PiAs7MzJCQkUHs/f/4Mzs7OkDVrVmovmfvQnrdk7hMXF0flTUlJMZ63tLmPwWAw5j7JyclUXoD/nbf58uWj9np4eICLiwtUrFiR2hsQEADOzs6a8rXQ0FBwdnaG3LlzU3ujo6ON30XazysxMdF43kZFRVF5U1NTjbmPlvOWy31sbGyovAD/O2+LFStG7fXy8gJnZ2eIjo6m9gYFBYGzs7OmP/OXL1+M30WDwUDl5c7bvHnzUp8hZO5De2aSuY+WXPHVq1dga2urizXLli1L7TUHa+bIkYPaq4c1ExISLMqaWnJyAH2s+eHDB3B2doYqVapQeznW1CJzsSZt7mMu1qR9xgCWZ03a/6YB9LOm1tznW2BNLbliRmXNu3fvQs6cOam9lmRNPbmPpVmzevXq1F5zsSZtbVAva96/fx/y5s1LnfuQrEl7VgP8L/fRkkdYmjWzZctG7f0WWJO2BkuyppZckTtv8+fPT+01B2tqydc41syTJw+111ysScteGZ01adka4NtgTT25jx7W1JIrfm+syeU+efPmtRhrhoaGUnlJ1qT97xIA4M2bN2BrawsFCxak9lqaNbXke3pYU2+d3dLvNUuUKEHt1cuazs7Omv7M3wJrasl9Mipruri4pDtrkrmPnZ0dtG3bFqysrKh/HaZvVOboPvyvB7AbB/8T2rhxo+LaBwD+xCe3ZuPYsWPo6Ogou6oYgD/xya3ZcHZ2RkdHR8XJQrGrpj09PdHR0VH2eloA/lXT79+/R8R/rxF2dHRUvPId4N/bhYQrHbt06aKqq5+b+CSvmh4zZoziqhyAfyeQxo8fz7tqetGiRaqmPgoXLmxy1fSOHTsUr5oH4E98cldNnz9/Hh0dHTFbtmyyXrGrpp89e4aOjo6yV0UD8Cc+uTUbHz9+REdHR8WpRHLik1uzYTAY0NHREcuWLav4dxa7arpfv36qpla5q6Zv375tvGp68uTJius5AP53uxB51fTq1atVTTVzazaOHz9uvGp6//792KpVK8Vp7Ny5c5usdLxx4wY6OjoqTrqIXTX99u1bdHR0lL2aH4A/8cldNf3lyxd0dHRUnISSumr6119/xYoVKyp+XuRV09x3cfjw4aom5cSump47dy42atRI0UuuNeLWbGzZskXVJCV3u9Dhw4eNazZOnjyJjo6OsisUAP6dQOImPrnz9v79++jo6Ih58+aV9ZITn9yaDR8fH3R0dMQiRYoofhebN2+OK1euNK41SkxMREdHR1WT/tzEJ7nWqHv37oprVAD+N/FJrjUaP368qpsgSpUqZbLW6M8//8RmzZopegsVKmRca8St2di1axe2atVKdn0UwP8mPg8cOGBc6Xjp0iV0dHSUXdcH8L+Jzx07dhjXbLx8+RIdHR0Vp0fJ24W4lY6fP39GR0dHxfUL5MSnq6ur8Tm1bt1acaURwP8mPsm1RgMHDsTq1asrermJz1u3bhm/i9OmTcMGDRooermJzwsXLhjXbKxbt05xvTIAf+KTW7Nx+PBhdHR0lF0fBSC+1uj27dvo6OiIuXPnlvWSE59c7uPu7o6Ojo6Kt6OQE5/cmo2oqCh0dHRUXK0K8L/bhV68eGF8xh07dlR1Uys38UmudBw1apTiqhyA/63ZuHbtmjH3mT9/vqqbfLm1RmfOnDGet3///beq85ac+OTO2zNnzqCjo6PixH2OHDmME5/cWqPHjx+jo6Oj7EpGAP7EJ7dmw9/fHx0dHRVXT4mtNUpJSUFHR0fFFRsA/5v4fPr0qfG72Lt3b6xataqiV2yt0cSJExXXYAP873ahy5cvG3OfFStWqLo9lJv4JNds7N27F1u1aqV466nYxOfVq1fR0dFR8UYpbq3Rtm3bjOetq6srOjo6op2dnayXvF2IW2sUGhqKjo6Oiqv+yNuFyLVG7dq1U3WbA3e7ELnWaMiQIYprAgH+d7sQudZo1qxZqm77EFtrZCnWdHFxoWJNcqWjHtaMi4tLF9bkVjqSrDl27NgMy5py6/oAzM+aQUFBqnIfc7Dm3Llz8fHjx2ZhzSlTpqhmzTFjxpiNNQ8cOICOjo7pzprv3r37LliTXOk4d+5cxXVIAOIrHdOLNbt06YK7du0y5j4PHjzQzJq+vr6qWZO7XchcrNmjRw+LsObSpUvTjTX3799vEdZcv369CWva29srfhelWFPNrcnmZs3p06drZs3169erYs0CBQqYlTXv3LmTbqxJrnSMjo5ON9acMWOG2VhzwYIFqlizSJEiOHz4cDxz5owx9zEHa6qps2tlzcyZM5uwZkBAgGbWTE1NpWZNss6uhzUnTZpExZqXLl2iZk2xlY779u376qyZLVs24022XO6jhzXDwsIsyppqNm3pYc1ixYrhqFGj8Ny5c8bzdtOmTenGmrt37zYLa3p5ealmzebNm+OqVas0sSZ3ky3Jml27dk1X1uRyn8WLF2tmzZ07d1qUNZU2ApiDNZctW2ZkTURER0dHVXV2PazJbYwzF2uuWbPGIqx58+bNr86aNjY2Rtb08PBARMSIiAhdrNm+fXsq1rx//36GYU1uY5wYayrV2b8l1kxKStLFmkyWFVtVzBoHmXRKan0vlySSBTKh7t+/L+oVK5AJ5efnJ5qcc9dvkwUyoWJjY0UhSqwZQ6i0tDTRBIoskAUFBUl+Xh06dDDxijVjiEls7QS5VphMEoWSuq6+Vq1aJkmiUGfPnhX1ckkiWSAT6tWrV6Jee3t7kyRRqODgYNHCJJckkgUyoRITE0WLi1ySSBbIhDIYDKLNXWSBTO7cElurRjZjcEmimGbPni36eXEFspcvX0o+43/++UfUyzVjkEmiUDdv3hT1cmuFySRRqA8fPogm52JJolARERGiRSuxJFGolJQU0aKEWJIoJrHrtbkkkSyQiUlszQ+XJJIFMjEtX75c9LMmmzGkvFIrPsQKZEI9fvxY1Es2Y0idt4GBgaIvgrhmjJMnT0qet3FxcaIFDW7VE/lCQiiDwSAKM1wzxvbt240vJMQktlqEWyu8fv16Y4FMTJMnTxY9bxs3boxLly7lFciEklrVw72QIAtkQl28eFHUK1YgE+rt27eiL4LEmjGECg0NFQVlskAmdd4mJSWJFp7IZoyQkBBRr8FgEH35Jdb4Lyaxq+7JZgzuhYSY5s+fL/pZc2uFyRcSQkmtsKtatarJCwmh7t69K+rlXkiQzRhCeXt7i74I4l5IkAUyoaKjo0WLVmIFMqFSU1NFC4RiBTIx/fzzzyZesQKZmH777TfR85Zrxnj79q3kc5JaDyLW+C/UyZMnRb1cM8adO3ckz9vnz5+LernGf/KFhFCfPn0SfREk9kJCqISEBNGXOeQLCbncR+ylCvdCgiyQialnz56i562wGUNM06dPFz1vGzVqZFIgE0pqTSHZjCH1jK9evSrqFWv8F+r9+/eiL4LEGv+F+vLli+hLAnKtMPdCQqiUlBTRhiNu1RP5QkJMYoW6LFmyYLt27XDLli3GApmYhg4dKvpd5F5IcAUyMS1ZskT0s65Xr55igUyONYXNGELpYU1/f3+LsaZYo0J6sObvv/8u+l00B2uSzRhC6WHN169fi3rFmjGEkmNNYTOGUImJiaIvVsWaMYSyJGtKrRv92qx569YtUa85WJNs/BcqMjJSljXJZgyhlFiTbMYQkx7WHDVqlOh5K2zGEJMa1pT6Lkqt0k4P1hR7EaSGNePj40Vf5pCsKbXqSS9rdu3a1cTLsSbZjCEmOdYUNmMItWXLFtHPumbNmibNGEJZijXDwsIUWVMq99HLmmKNP+ZiTa4ZQ0xSq9Y51iSbMYSSWmEnNmQulB7W9PHxEWVNsWYMofSyplgj7rfOmmvWrBH9rC3NmnJ1diXWJJsxhEpISBAd0OdYk2zGEMpgMIg2lIg1Y4hJD2vOmDFD9LwVa8YQSg9rXrt2TdSbEVlTbMhcTHpYc9iwYaLfReGQuZj0sKbU+l6xxn+hLMmaYs1K5mJNudynY8eOouetOViTbPwXasOGDaKftRrWPHfunKhXrPFfKD2sGRISYjHWFGvuMhdrytXZ9bDmrl27RL1iQ+ZC6WFNT09Pi7BmamqqJGsKG//F1KZNG9HzVtj4LyY9rLlixQrRz/prs+aTJ09EvWJD5kKpYU2p3Ecva4oNqIgNmTN9W2KNg6xxkEmHUlNTjd3tapsxSLVt29aYJHLNGHJJIqnRo0cbv7xi06FyWrlyJVWSSOrYsWNUSSKpp0+fGr1i06Fy+vjxo/EHHJkkShXISJE/4MSmQ+VkMBiME0Fi06FK6tatGy9JVGrGIDV16lSjV00zBqm//vrL6BWbDpXT5cuXjV6x6VA5ubm5GYup5HSoVIGMVFhYmHG6l5wOlSuQcUpOTjZOMIhNh8rJYDAYp3rIJFGuQEZq8ODBJkmiXIGM1MKFC02SRLkCGSknJyejV00zBikXFxejV00zBilfX19jMVVsOlROMTExxkl7selQOaWlpRmLqeR0qFyBjNSvv/5qPG/FpkPlNG7cOOPnJTYdKqe1a9cavdwLCbkCGanTp08bveR0qBSwkXrx4gXvvB0wYIBsgYzU58+fjROFapsxOCUkJBinAsWmQ+VkMBiMNxOITYcqqXfv3sa/s9h0qJxmzpxp9IpNh8ppx44dRq/YdKicrl+/bvSqeSFBysPDw1hM5V5IyBXISEVERBinzcgXEnLNGJxSUlKM05vcCwmlAhkpR0dH43dRTTMGqeHDhxs/L7HpUDktXbrU6BWbDpXToUOHeOetUuM/qYcPHxq9YtOhcgoICDA2LYtNh8opNjbWeOsF+UJCDXekpaUZJ97FpkOV1KlTJ+Mz5l5IyBXISE2aNMn4eVWvXl2xGYPUxo0bjV6x6VA5nT9/3qRAJtf4T8rV1ZWX+yg1/pMKCQkx3qagtvGfU1JSknFCV2w6VE4Gg8F4S4jYdKiS+vfvb/y8uOlQucZ/UvPmzTN6uRcScgUyUrt37zZ6uRcScs0YpG7fvi1aIJN6IUHKy8vLWEwVu4lITlFRUcZb3dQ2Y3CyJGuOGTPGIqx5/Phxo7d48eI4evRo2WYMUnpYMygoyPgimWNNuWYMUpZkze7duxv/zmoa/0npYc2tW7dmONYMDw+3CGsiovH2LI41lZoxSOlhzUWLFvFYU6kZg5QlWZN7kZzerMnd6JTerDl+/HgT1pRrxiC1bt06k9wnPVjz5cuXRq+aZgxSelgzMTHRyJpkM8a3zpqzZs0yYU25ZgxSeljzxo0bJqwp14xBytysqdT4zyklJcV4S6LaZgxSelhzxIgRxs9LzZA5KT2sefjwYaNXzZA5KUuxZlxcnAlrKjVjcNLLmp07d+axplIzBik9rLlp0yajV00zBqkLFy5YhDVDQ0MtxprcDWkka8o1Y5CyFGvu2bPH6FXT+E9KL2tydXY1Q+ak9LImd2NpRmLNVatWmbCmXOM/KT2s+ezZMxPWlBsyJ6WXNbkBWbWN/5wMBoPxlme1Q+ak9LDmtGnTLMKaV65cyZCsyd1Ky7GmUuM/KT2sOWTIEOPnpabxn5Qe1ty/f79m1rx3757FWJMbkE1v1mzfvr0Ja8o1/pOyFGueOXOGx5pKjf9M345Y4yBrHGTSocuXLytOh0rJ1dXVZC2UWgUHB2Pnzp1VJ4mkEhISsHv37lQFMk4GgwGHDRumOB0qpRkzZlA1Y5Bat26dyVootTp8+DBVMwapu3fvKk6HSsnT0xO7dOmiOB0qpoiICOzcuTNVksgpOTkZ+/TpQ5UkcjIYDDh27FiqJJHUwoULqQpkpLZt26Y4HSqls2fPUhXISD19+pSqQEYqMDAQO3XqpDgdKqbY2Fjs2rWr4nSomNLS0nDgwIGK06FSmjx5sslaKLVasWIFVZJIat++fZqTxGvXrlG9kCD17t07VdOhYgoNDcVOnTqpLpCRSkxMxB49elA1Y3AyGAw4YsQIzVd1z549W3E6VEqbNm1SnA6V0rFjxxSnQ6V0//59xelQKfn4+GDnzp1VF8hIRUVFYZcuXaheSHBKTU3Ffv36URXISI0bN46qQEZqyZIlVM0YpHbs2EHV+E/qwoULVM0YpF6+fKk4HSqloKAg7NSpk+oXEqTi4+Oxe/fuitOhYkpLS8PBgwdTvZAgNXXqVMXpUCmtWbOGqkBG6sCBA8YCGe15e+vWLZO1UGrl7u6u6iYiMYWHh2Pnzp2pmjE4JSUlYa9evRSnQ8VkMBhw1KhRitOhUpo3b57idKiU/vrrL8XpUCmdOnXKZAWxWj169Ah79eqlukBGyt/fHzt16qRpOjQmJga7du2qeBORmFJTU7F///5UzRikJk6cSNX4T2rp0qWKNxFJaffu3Yo3EUnJkqzZqVMn1c0YpPSy5tChQ6maMUjpYc3169dnONb08vKyCGumpKQYWVNtMwYnS7MmTTMGKT2s+ezZM4uxZrdu3TIca65cuZKq8Z+UHta8fv06VTMGKUuxZlJSEvbs2fO7Ys3jx49nWNYkVxCrlV7WHD9+vEVYc+fOnZpZ8+LFixZhzU+fPmHnzp1VN/6T0sOaBoMBhwwZQtWMQcpSrHnw4EGqZgxSeljTw8PDIqyZnJyMvXv31syao0ePpmr8J6WXNWmaMUjpYc3Hjx9TNWOQsiRrDhgwwCKsuWzZMouw5pUrV6iGzElZkjV79OhhEdacOXOmRVjzyJEjmlnT2dnZIqwZGRmJnTt3xg0bNqQrayL+uxaapvGflKVY89y5cxZhzY8fP2Lnzp0twpqDBg3SxZo0jf+k9LCmk5MTVeM/KT2s6ebmZmRN2tzHkqw5cuRItoI4g+prNA5a4b+NcUwysrKysgeAAACAgIAAsLe3t/CfiImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiel7UGBgIJQoUYL7xxKIGKj317TW+wswMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTFlHLHGQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiam70iscZCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6TsSaxxkYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYvqOxBoHmb4bPXnyBK5fvw7JycnUXg8PDzh79izEx8dTe0NCQuDw4cMQGRlJ7U1MTIS9e/dCcHAwtRcRwcnJCfz8/Ki9AADHjh2Dd+/eASJSey9dugTPnj0Dg8FA7XV2doa7d+9CamoqtffVq1dw+fJlSEpKovb6+vrCyZMnITY2ltobGRkJ+/fvh/DwcGpvSkoK7NmzB4KCgqi9iAgHDhwALy8vai8AwOnTp8HV1VXTM7527Ro8evRI0zN++PAh3Lx5E1JSUqi97969g/Pnz0NCQgK1NygoCI4ePQpRUVHU3ri4ONi7dy+EhoZSew0GA+zduxcCAgKovQAAR44cAXd3d03e8+fPw4sXLzQ949u3b8O9e/cgLS2N2vvs2TO4du2apvPW09MTzpw5A3FxcdTesLAwOHToEERERFB7k5KSYM+ePfD582dqL3fe+vj4UHsBAE6cOAFv377V9JwuX74MT5480fRdvHfvHty5c0fTeevq6gqXLl2CxMREaq+/vz+cOHECYmJiqL3R0dHg5OSk6bxNS0uDPXv2QGBgILUXAODQoUPg6empyXvmzBl49eqVpmd8/fp1ePDggabv4uPHj+HGjRuaztv379/DuXPnNOU+nz9/hiNHjmg6bxMSEmDv3r0QEhJC7TUYDLBv3z7w9/en9gL8m/u8f/9e03O6cOECPHv2TJP37t274OLioum7+OLFC7hy5Yqm3Mfb2xtOnTqlKff58uULHDhwAL58+ULtTU5Ohj179sCnT5+ovYgI+/fvB29vb2ovAMDJkyfhzZs3mp7T1atX4fHjx5rO2wcPHsDt27c1fRffvHkDFy9e1HTeBgYGwrFjxyA6OpraGxsbC/v27dOU++g9bw8fPgweHh6avGfPnoWXL19qesa3bt2C+/fvazpvv0fW3LdvH/j6+lJ7AfSz5tOnTxlrqlBqairs3bs3Q7Lmw4cPvyvW1Hrefq+sefXqVU3fRb2sefDgQU2syeU+jDXVyZKsuW/fPggLC6P2moM1P3z4oMmrhzVv3LihmzW15D4ZkTW53EdPnd1SrOns7PzdsCZXZ7cEa546dSrDsebbt2/hwoULmnIfS7KmntxHD2ueO3fOIqz59OnTDMmaenIfPax5/PjxDMuaWnKfjMiaAAAHDhzQXGfPiKzp5uaWYVlTa53dkqzp4uJiEdY8ffr0d8WaTP9BISILhQAAewBAAMCAgABkypgKCQnBHDlyYJ48ebBHjx64b98+DA0NVeVNTEzEEiVKYLZs2fDXX3/FrVu3qv5vwWAwYOPGjTFTpkzYsmVLXLt2LXp4eKj+c/ft2xetrKywYcOGuHjxYnz58iUaDAZV3jlz5iAAYPXq1XHmzJl4//59TE1NVeXdtWsXAgA6ODjg77//jtevX8ekpCRV3lu3biEAYLFixXDEiBF49uxZjIuLU+X19PREGxsbzJ8/P/br1w8PHz6MkZGRqryRkZFoa2uLOXPmxC5duuCuXbswODhYlTc1NRUrVKiAWbJkwbZt2+LmzZvR19dXlRcRsU2bNmhtbY0//PADrly5Et+9e6f6OY0aNQoBAOvWrYsLFizAZ8+eqfauWLECAQArV66M06ZNw7t372JKSooq79GjRxEAsFSpUvjbb7/h5cuXMTExUZX3yZMnCABYqFAhHDJkCJ48eRJjYmJUeQMDAzFr1qyYN29e7NWrF+7fvx/Dw8NVeePj47FIkSKYPXt27NChA27fvh2DgoJUeQ0GA9auXRszZcqEjo6OuJdGkSEAAQAASURBVH79evTy8lLlRUTs2rUrWllZYePGjXHp0qXo6uqq+jlNmTIFAQBr1qyJc+bMwUePHmFaWpoq75YtWxAAsHz58vjHH3/gzZs3MTk5WZX30qVLCABob2+Po0ePxgsXLmB8fLwq79u3b9HKygrt7Oxw4MCBePToUYyKilLlDQsLw1y5cmHu3Lmxe/fuuGfPHgwJCVHlTU5OxtKlS2PWrFnx559/xr/++gv9/f1VeQ0GA/7www9oY2ODP/74I65evRrd3d1VeRERBw0ahACA9evXx0WLFuGLFy9UP+MFCxYgAGDVqlVxxowZeO/ePdXn7b59+xAAsEyZMjhhwgS8du2a6vPW2dkZAQCLFCmCw4cPxzNnzmBsbKwqr4+PD2bKlAnz5cuHffv2xUOHDmFERIQqb3R0NBYoUABz5syJnTt3xn/++Qc/ffqkypuamopVqlTBLFmyYJs2bXDjxo3o4+OjyouI+Msvv6C1tTU2a9YMly9fjm/fvlX9nH777TcEAKxduzbOmzcPnzx5ovq7uGbNGgQArFSpEk6ZMgXv3Lmj+rw9deoUAgCWLFkSx44di5cuXcKEhARV3ufPnyMAYMGCBXHw4MF44sQJ1eftp0+fMHv27JgnTx7s2bMnOjk5YVhYmCpvQkICFitWDLNly4bt27fHbdu2YWBgoCqvwWDA+vXrY6ZMmbBVq1a4bt069PT0VOVFROzVqxdaWVlho0aN8M8//8RXr16pfsYzZsxAAMAaNWrg7Nmz8cGDB6qf8fbt2xEAsFy5cjhx4kS8ceOG6vP22rVrxtxn5MiReO7cOdXnrbu7O1pbW2P+/Pmxf//+eOTIEdW5z5cvXzBPnjyYK1cu7Nq1K+7evVt17pOSkoJly5bFrFmzYrt27XDLli3o5+enyouI2KpVK7SxscHmzZvjqlWr8P3796q9w4YNQwDAevXq4cKFC/H58+eqn/Gff/6JAIBVqlTB6dOno4uLi+rz9uDBgwgAWLp0aRw/fjxeuXJFde7z4MED43k7bNgwPHXqlOrz1t/fH7NkyYK2trbYu3dvPHDgAH758kWVNzY2FgsWLIg5cuTATp064Y4dO1Sft2lpaVijRg3MnDkz/vTTT7hhwwb09vZW5UVE7NixI1pZWWGTJk1w2bJl+ObNG9XPaeLEiQgAWKtWLZw7dy4+fvxY9Xdxw4YNCABYoUIFnDx5Mt6+fVv1eXvu3DkEACxRogSOGTMGL168qPq8dXV1RQBAOzs7HDRoEB4/fhyjo6NVefWwZlJSkm7W5HKfNWvWULFmv379dLNmtWrVLMKaRYsWTXfWzJcvX4ZjzdGjRxtZc/78+fj06dN0Yc1jx45ZhDU/fvyYIVmzW7duFmHNv/76SzdrFi9eHEeNGoXnz59Xnfu8e/dOF2vmzp0bc+fOjd26dUtX1mzevDna2NhgixYt0pU1Fy5cmOFY09fXl8eaBw8eVJ376GHNtLQ0s7Bm06ZNqVlz3Lhxmllz7dq1CABYsWLFdGXNFy9emLCm2txHL2sWL17cLKy5du1a/PDhgyovoj7WnDlzppE1Z82alW6sef36dYuwZkREBObNmzfDsebw4cN5rElTZydZc9q0aejs7Kz6vD106JBu1ixcuDAOHTo0XVmzUKFCmCNHDuzYsSPu2LFDde6jlzU7depkEdbcuHGj2VjzwoUL6caaOXPmNLLm3r170401mzRpoos1AQAbNGhAzZpz587VzJq7d++2CGt6eXmZsKbaOruQNf/55x/8/PmzKm9qaipWrFjRLKy5YsWKdGPNlStXGuvsU6dOTTfWfPr0aYZkzTp16vBYk6bOroc1p06dymPNhw8famLNSZMmUbHm5cuXdbNmgQIFcMCAAenKmmXKlLEIaw4ePNhsrElTZ2eyrAICApDrXwMAezRHT5w5fpH/erDGwf+Opk2bRn6JqIpBW7du5XlpikFXrlwx8aotBrm5uaGVlRXPq7YYFB4ejrlz5+Z51RaDkpOT0cHBgeelKQa1aNGC56UpBg0ZMoTnpSkGLVq0iOflXoQtWbJEsRi0f/9+k+ekthh07949E2/ZsmVVFYN8fX0xc+bMPK/aYlBMTAza2dnxvGqLQWlpaVi1alWel6YY1L59e56Xphg0fvx4npcsBrm5uck+p3Xr1pl81mqLQWfOnDHxqi0GvXz50sSrthgUHByM2bNn53nVFoMSExOxePHiPK/aYpDBYMCGDRvyvDTFoN69e/O8NMWgWbNmmXwX1RaDdu7cafJZqy0G3bhxw8Srthj04cMHtLGx4XnVFoO4girp5V6EHTt2TBZOUlJSsHz58ibnrdpi0E8//WRy3v7yyy+qikEjRoww+S6qLQYtW7bM5LNWWww6fPiwiVdtMejRo0cmXrXFoICAAMySJQvPq7YYFBcXh4UKFTI5b9UUgwwGA9aqVYvnpSkGde7cmeelKQb98ccfJrmP2mLQpk2bTD7rOnXqqCoGXbhwwcSrthj05s0bk9xHbTEoNDQUc+bMyfOqLQYlJSVhqVKleF61xSCDwYBNmzblecli0MePHyW9iIgDBgwwyX3UFoPmzZtnct42btwY//zzT3z9+rXsc9qzZ4/Jc1JbDLpz546JV20xyMvLCzNlysTzqi0GRUVFYf78+XletcWg1NRUrFSpkknuo7YY1K5dO5PcR20xaOzYsSbnrdpi0KpVq0w+a7XFoBMnTph41RaDnj17ZuItU6YMjh8/Hq9evSp73gYFBWG2bNl4Xq7x4PTp07K5T3x8PBYtWtQk9+nTp49i44HBYMC6deua5D6dOnXCnTt3KjYe9OjRwyT3ad26tarGAz2s+ffff5t81unFmtbW1jyvOVhT6UWYXtb88ccfTXKf9u3b499///1VWXPx4sUm560e1qxevfpXZ00/Pz+LsWa1atVMzlutrJklSxZs164dbt68WZE1J0yYYHLe6mVNNQN+eljz1atXJt7SpUvjuHHjvjpr2tvbm5y36cGaffr0MTlv1bLm7NmzTb6LHGsqvQjTw5o3b9408XKseevWLWrWJAf8lFjT1taW59XDmtyA39dmzZEjR5p8F9ODNY8cOWLiNQdrKjVdBgYG6mLNwoUL87z58uXDfv36KQ746WXNLl26mJy3bdq0wU2bNmlizWbNmqlizc2bN5t81hmBNXPlysXzphdrNmvWjOc1B2uqGfCbP3++yXmrhzW5Ab+vyZre3t4WY83KlSub5D7fOmuuXr3a5LPmWFNpwE8Pa3JDsmToZc1hw4YpsmZCQkKGZM3p06ebnLfpwZpXr1418ephzRIlSuDYsWMVB/zCw8MxT548PK9a1uQal0kvOeD3NVlz6NChJuctd5nM12TNAwcOmDynb501Y2NjLcaaHTp0MMl9tLImOeCnxJrr1683+azVsubZs2dNvNyA39dmzRw5cvC85mJNpdynUaNGJuetOVhTacBPD2v+888/Jp91rVq1VA34ZUTWZLKsWOMgaxxk0qFHjx4ZJzilQqrx4N27d7hz506TJIgMrhh05swZXjHIz88P9+3bhwULFpT0csUgYePBly9f0MnJCatUqSLpJSdwyWJQUlISOjk5mSS6woRIqhh09OhR7Nmzp6RXrhh08eJF461OUiFVDLp7966xw10qpIpBz58/Fy08kVGyZEnRYpCHhwfu2bPHJAkiQ6oYFBQUhE5OTliiRAlJr1QxKDo6Gp2cnLBOnTqSXqlikMFgQCcnJ5PCAhlyxaCTJ0+aFI+ECRE3gSssBl29ehUnT54s+1lLFYPu37+Py5cvl/WWK1dOtBj0+vVr3L59u0kSRIZUMcjHxwf37duH+fLlk/RKFYNCQkLQycnJpOBOhlQxKCEhAZ2cnEwaSsiQKwYdOnTIpGmIDLIYJJzAPXfunEmxXhhSjQe3bt0ySZKFUbVqVdHbnp48eSIKQmRIFYPc3Nxw165dmDVrVkmvVDEoICAA9+3bh0WKFJH0ShWDIiIi0MnJCatXry7plSoGpaSkoJOTE7Zq1UrSK1cMOnbsmEmTJhlyxaBLly6ZAKswpIpBzs7OJkUJYUgVg168eIF//fWXScGdDK4YJGw88PT0xD179pgU3MkoWLCg6ATu58+f0cnJCUuXLi3plSoGxcbGopOTE9avX1/Sy03gihWD9u/fj7/++qukV64YdPr0aZNGBTLkikHXr183aUYRhlQx6OHDh6INR2RIFYPevHmDO3bsMCm4kyFVDPL19cV9+/ZhgQIFJL1SxaCwsDB0cnIyae4igysGCW97SkxMRCcnJ/zhhx8kvXLFoMOHD2O3bt1kv4tSxaDz588bJ22lQupm4du3b5s0/wlDqhj07Nkz48S8VEgVg96/f4+7d+82aTYgQ6oY9PHjR3RycjJpbCdDqvEgMjISnZycTF5wkiFVDEpLS0MnJyds06aNpFeu8eDEiRPGqXep72KTJk1EJ3CvXLmCkyZNkv2sucYDYTHo3r17uHTpUlkvd9uTsBj06tUr/Pvvv00K7mRIFYO8vLxw7969Jo3tZEgVg4KDg9HJycmkuYsMqcaDuLg4dHJyMinykSHXeHDgwAGTQi4Zco0HZ86cMd5oKRVSjQc3btww3iQjFVKNBzSsKWw8ePfuHf7zzz8mzQZkSLGmv7+/KtYUu1mYY03hIBEZUqyZnJzMWFMkLM2awqZLjjWFLzjJyJ49u3HAz9ysOXDgQEmvHGteu3ZNF2tyNyVKhRRrurq6WoQ1Q0ND0cnJCStUqCDp/ZqsKWwaIkMva0rdLMxY0zSUWNPR0VHS+y2wprDp0sXFBZcsWSLr5VhTOOBHw5rCxgNPT0/cu3evSWM7GV+TNRs0aCDpZayZvqwpdrOwOVizefPmkl5ywM/crDlmzBjZz1qKNe/cuaOLNcWGCcmQYk13d/d0Y02yzh4VFaXImtmzZ9fFmlI3C39t1pS6WZiWNcnvoqVZU9jcRYYUa8bHxyuyZtasWWVZs2PHjpJeOdY8e/asatYU1tlpWFN4s/Djx49VsabYzcJqWZO7WViMNYVD1GR876xJfhfTizUvXbokyprCIWoy9LCm1ICfHtZERHRycsKff/5Z0iu3xUYva3I3tkuFFGs+ePCAsaYgONbcsmWLJtaUuln4a7Om1BYbc7CmsLGdjK/JmjVq1JD0SrFmamoqFWvS3CzM9PXFGgdZ4yCTDiklfGIJEVcMEt5ipxRkMWjHjh1UXrIYJDZFIBdkMUhsUkQpyGKQXAFGLMhikFyyKBZcMejs2bOyRRSxIBsPlABbGGQxSKnYJQyy8UBsokcuyGKQ2A0hSsEVg7hrtWmCLAbJFUPFgiwGCW+UVAqyGMSt6FEbZDFIeIudUnDFoO3btxtX/qoNsvHg+PHjVF6yGHT79m3q50ROochBn1iQxSA5OBcLshgkvOVDKchikFJBUxhkMYhbC6I2yMYDbu2d2iCLQefPn6d+Tlwx6OHDh9ReshgkvFlAKchikFyhTCzIYpBcEUUsyGKQEmALgywGid3kIhdkMYhb/aI2yGIQt96HJshikFwhVSy4YtCdO3ewXLlyVF6y8UAO3MSCKwadOHHCZNJVKcjGA6WXC8Igi0Fi08xyQRaDTp8+TeUli0HcOjWaIItBcgVvsSCLQXIvJsSCLAZ16tSJyksWg4Q3+CoFWQxSauIXBlkM4tbeqQ2u8WDVqlV48eJF6ufEFYPEboFRCrLxQDjpqhRkMUh4y4dSkMUguRdIYkEWg4Q3CygFWQxSaioVBlkM4la/qA2y8UBsSlYpyMYDuYYOsahYsaLxZmG5F8FiQa40lmuQEguy8UB4g69SmIs1xW7Okgtzseb9+/epn7E5WPP69etYr149Kq9e1uQaD/SwpthNLnJBNh7oYU2xG0KU4ltgTbmXhGJBsqbcCySxIFlT6eWCMPSyJtd4IHZbj1zoZU2y8UAPawpv+VAKc7Gm8FYlpdDDmmTjAbf2Tm2QrCl2O5pSNGjQABctWmRcX0kTJGvKvXwSC3OxZq9evai83wJrit2KLxfmZE25l8hioZc1uQE/4Y2SSkGyplLzjDDIxgM9rLlt2zYqr7lY08XFhfoZfwusKTeILBYcax45ckQXayo1VghDL2tyjQeXLl2ifk4caz5+/JjaSzYe6GFNueFHsTAXa86YMYPKaw7W3LBhAx49epTKS7Imt0qWJmrXrm28WVgPawpvlFQKc7GmUvOMML4F1uTWOqsNc7zX5Ab8hLfYKYVe1uRuFu7evTuVl2RN4Q2+SsHdLJxRWVNsu4VS6GHNUqVK4bhx4/Dy5cu6WJP2vWbevHmxd+/euH//fl2sya38VRt6WZNbaSx2+69SkKwpd2mEWGRk1tyzZ49iE78wzMGaq1ev1sWaWt5rcjcLC5vcmdJfrHGQNQ4y6RBt4yAXZcqUoW6S4qJIkSLURRgu8uXLJztxIRc5cuSQnVSVi8yZM2ObNm1kp3OlgiuaCVcvqI3atWvLdsXLRaVKlbBx48aavCVKlKBOGLkoWLAgtm3bVpM3T548+Msvv2jychCnxcsVzWghCuB/RTO5m/fkokaNGtSNpVyULVuW+qU9F8WKFaNuvuEif/78mp9xrly5ND9jrjlVbkJFKriimdx0rlzUq1ePuumQiypVqpisrFIbpUuX1nzeFi5cGFu3bq3JmzdvXl3nLS2McME1p9IWkAH+98KwTJkymn7vWrVqYc2aNTV5K1SogE2aNNHktbe3l72ZUS7s7Ow0fxdz586t+czkzlvaxkGA/0EcbXMo94wbNmyIFStW1PTnrlatGnXBiwsHBwfqwjUXRYsW1ZX70BZTuciZM6fmZ8wVzeRugpIKrmgmN50rF3Xr1qUuhnBRuXJl6he6XJQsWVJz7lOoUCHZWxjkQs95mz17dl25j6Ojo8naKTXBFc3kbkOQi5o1a2Lt2rU1ecuXLy872SsXxYsX13zeFihQQPN3UU/uw70wlLvlXSq45lTh2im1Ub9+feoXQVxUrVpV9jZbuShTpozszTVyUaRIEc25T0ZlzaZNm1qENStWrKiLNVu2bKnJ+72yptxtCHJRo0YN2Zv85cKSrGmJ89YcrEnbIMGFXtaUu9FNLjIia+rJfTjWFK6dUhPmYE3aRicu9LKm1vP2e2NNgH9fGDLWVBcZmTXlbjqVi0qVKmVI1tT6c9HSrEnbAMyFHtYsV66cxVjTEnV2xpp0YUnW1PqMuebUjMiaWnOfjMqaWt+l6GXNhg0bZsj3mlpzH72sqSf30cqa1tbWFn2vqZU1S5Uq9V2y5qFDh2RXNzN9XbHGQdY4yKRD8+fPV1X0ElvTsXPnTnRwcFA1ASpc03HlyhV0cHBQ9UNSuKbj3bt36ODgoKozX7imIzo6Gh0cHGSvL+bCzs7OZE1H3bp1ZVdecUFOMHHXxnfq1AmLFSum6BVb0zF+/HhVCbrYmo6VK1fKrlPjQmxNx8GDB9HBwUEVPArXdLi4uKCDg4Ps+gUuyJsZk5KS0NfXFx0cHDBPnjyKXvK2jLi4ODQYDOjg4KDqxg7uZkZyHXbz5s1VFRhz5sxpvC2Duza+b9++ql4UkDczctfGz5gxQ9VUkNiajs2bN6ODg4OqoqpwTcfZs2fRwcFB1WShcE3H8+fP0cHBQdWNDNwEE7emIywsDB0cHFQV7MkJJu7a+GrVqqmCIW6CiVzT0a5dO1VFDXJNB3dt/MiRI1UVJ8mbGbk1HYsWLVJ13oqt6dizZw86ODjIrqzhgryZMS0tDa9fv676vBWu6XB3d0cHBwdVxQVygik+Ph4TEhKozlvhmo4GDRrIrn3ggrwtg7s2vnv37qpASmxNx8SJE1Wdt+RtGe7u7oiIuGbNGnRwcJBdH8WFcE3HsWPHVJ+3wjUdDx48QAcHB1VFd+FKyI8fP6o+b4sUKWK8LYO7Nr5cuXKqzluxNR0tW7ZUdduH2JqOgQMHqj5vudsyuBVls2fPVp37CNd0bNu2TfV5K1zTceHCBdXnLXlbRkpKCr5+/Vp17kOu6UhISMCIiAjV5y15WwaX+9SsWVNV7iO2ErJDhw6qzluuQLZt2zZj7jNmzBgsWbKkoldsJeSyZctUn7fCNR3cGlo1561wTcft27dV5z7CNR1eXl6qz1vhmo7k5GR0cHBQ9VKGvJmRW1HWtGlTVbkPeVsGt6KsV69eqs9bbiUkt6JsypQpqnIf8mZGbk3Hhg0bVJ+3wjUdJ0+eRAcHB9m1RFwIV0I+ffpUde5TunRp420ZiYmJ+PnzZ3RwcFDVGF+4cGGTNR2VKlVSlfuIrelo3bq1qvOWvC2DW1E2dOhQ1bmPcE2HFtZ88+ZNurMmd1uGXtaMiYlJF9bMnTu3CWt27tw5XVmTW1GmhzUPHTpEzZrcOmwtrHn9+nVMSkpCPz+/dGHNfPnyGW/LMAdr9uvXT3Xuw92WYQ7W3LJlS7qzZkpKCr548SJdWLNQoUI4dOhQ3ooyPaz5888/U7Hm9u3beaxJk/usX7/emPssXrw4XVhTuBLyxo0bmlnTw8NDN2uqyX3EWLNhw4bpyprcirJJkyalG2suWrTILKz58OFD1axZpkwZ3kpIjjXV5D5irFm+fPmvzpo5cuQwsia3omzQoEGaWXPOnDnUrMnV2TnWVJP7CFnz4sWL6cKaXO7DsWZkZGS6sKbYSsgOHTqozn2ErDl27FjV5y13MyNXZ1+2bJnq3EfImvv3709X1uTWYXt7e6vOfYSsmZKSQs2aR44cMQtr9u7dm4o1t2zZook1hSshN27cqDr30cOawpWQelgzODjYYqzZpk2bdGNNss6+YMGCdGNN7mZGvazp5uZGdd5yNzOagzXr1aunOvcxB2tydXY9rLlq1Spq1nz58qVu1rx37166sGbRokWNNzNy67DTizW5mxnNwZozZ860CGueO3cuXVnz8uXLZmHN6tWrU7Hm/v37zcKao0aNShfW5G5mzMismZiYSJX7CFmTybJijYOscZBJp6RWo3FJ4t69e41JolBv3rwRLVqJNWMIFRoaKpok29jYYMuWLXHNmjXGJFGopKQkyYSTa8bgkkShDAaD5CQDVyDjkkQxSa354ZoxuCRRTPPnzxf1iiWJQu3du1fUK5YkCiV1fbJYkiiUt7e36A91sSRRqOjoaNEfrlySSDZjCJWamio5dVa3bl1jgUyqc19qoqBy5co4depUvHv3LqakpIh6pa5eJtdkJiYminqlrkHnCmRkkiiU1BXZXDMGmSQK9fz5c1Fv9uzZsUOHDrwkUahPnz6JJl9iSaJQCQkJoskqmSRyBTKhDAaD5DQ2lyRyBTIx9ejRQ9QrbMYQk9SKw+LFi+Po0aONBTIxSa0bJZsxpJJEqevqyQIZ90JCqPfv34tCFNmMwb2QECo8PFwUWLlmjNWrVxtfSAiVkpIieaNU/fr1eS8kxCQ1Ua3m+m6plbLcC4mrV69KnrdLliwR9XIvJMgCmVBSKwm4FxJkgUwoqTWF3AuJnTt3Gl9ICOXn5yda0BBrxhAqNjZWFDrFGv+FSktLk7zdjWvGePLkieR3sUOHDqJervGfeyEhpt9//13UK3whIab169eLegsWLIiDBw/mvZAQSmoVpdgLCaFevXol6uVeSJDNGEIFBweLvnTjXkiQjf9CJSYmihZUuRcSZDOGUAaDQfJmhBo1avAa/8XUt29fUS/Z+C913kqtneCaMc6dOyeZ+/zzzz+iXq7xn3whIZTUWlhuTebu3buNLySE+vDhg2gBmWv837Jli2TuExkZKVo84qZDV61aZSyQCZWSkiJ5oxT3QoIrkIlJahKTeyHBNf6LSWrNj7AZQ0xS653FGv+FklrHJNaMIZTU2iyy8Z97ISFUYGCgaHFRrPFfqLi4ONFiLNeMsWzZMuMLCaEMBoPkbUO1atXivZAQU5cuXUS9FSpUwMmTJxsLZGKaPHmyqNfe3h7HjBljLJCJSWrdKPdCQq5Apoc13759+1VYk2vGkGNNqcL3t8yaCxYsEPV+bda8e/euqNccrEk2YwillzWrVKki+ucmmzFoWZNrxpBjTamtD1+bNU+ePCl53n7LrCn2kjI9WLNnz56iXr2sSTZjiElq3ahY479Q165dE/V+bdb88uXLV2VNrhlDTFK3yXzLrHnw4EFRr1gzhlByrMk1Y0ixpr+/v8VYU+p2NzWs2bFjR1Hv12bNDRs2iHrNwZpkM4ZQr1+/FvXqZU3hkLlQcqwpbPwXymAwSN5ALBwyF5Me1pwzZ46o92uzptRa2G+ZNVNTU2VZk2zGEJMUawqHzMU0atQoUe+3zJpPnjwR9X5t1oyPjxdtwjMXa3LNGGLq2rWrqFcva5LNGGKSY02lZgypNdxk4//XYM2wsDCLsabU7bRqWFNqpaw5WPPMmTOS563UqnWONcnGf6HkWFM4ZC6Uj4/PV2FN4ZC5UGpZU+q7KHVr4ddmzTVr1oh6zcWaUnV2vawp1uApNmQulBJrko3/QhkMBslbT2vWrMlr/BeTHtacMWOGqPdbZk13d/evyppc479QX5M1ycZ/pm9LrHGQNQ4y6ZDBYOBdMyucDlVSr169jF6x6VA5zZw5k5ckCqdD5bR9+3ajV2w6VE7Xr183erm1UHJJIikPDw/jDzix6VA5RURE8Ka+uCRRrkDGKSUlhXc9f6VKlRQLZKTIa/LVFMhIDR8+3OhVUyAjtXTpUqNXTTMGqUOHDhm9YtOhcnr48CEvSRROh8opICDAOBVITodKFchIxcbG8ia3hNOhckpLS+Nd3S6cDlVSp06djN5ixYrhqFGj8Ny5c5JJIqlJkyYZvWoKZKQ2btxokiTKFchInT9/3uglC2TcdKicXF1deUmicDpUTiEhIbxpIuF0qJySkpJ4kznC6VA5GQwG3hX7wulQJfXv39/oFZsOldPcuXONXjUvJEjt3r2bd9526tRJtkBG6vbt27zzVqlARsrLy8tYTOVeSMgVyEhFRUXxJjDVNGNwSk1N5a0m4gpk3HSoksh1BlwzBjcdqqTRo0cbveR0qJpppZUrVxq9YtOhcjp27BjvvBVOh8rp6dOnvO+icDpUTkFBQcYXydwLCbkCGSlhMVU4HSong8HAW9mnpkBGqlu3bkavmmYMUlOnTuXlPkrNGKS2bt1q9KppxiB1+fJl3nmr1PhPys3NzVhMFZsOlVN4eDhvso+bDpVrxuCUnJzMm2bkXkjIFchIkatn1BTISA0ePNjoFZsOldOiRYuMXjXNGKScnJyMXjUFMlIuLi683EepGYOUr6+vsZgqNh0qp5iYGN40tHA6VE5paWm8VRnC6VAlkasjuMZ/uRcSpMaPH2/0ctOhco3/pNauXWuS+8gVyEidPn3a6OVeSMgVyEi9fPlStEAm1YxB6vPnz7xiqprGf06JiYm8mz7UNGNw0suavXv3Njtrqsl9duzYYVbW3Lhxo0VYU6kZg5Ne1iTX0WYU1jx8+HCGY824uDgT1lRqxuCUlpaGNWvWNBtrKjVjkNLDmps2beKdt0rNGKT0siaX+9CyZmhoqMVYk1ytyLGmXDMGKT2sOW/ePBPWlGvGIEWypppmDFLmYk01zRik9LJmpUqVLMKaY8aMMStryjVjkDp+/Lhm1nz27JkJa8o1Y5DSy5rkgKyaZgxOelmze/fuGY41r1y58p9gTaVmDFLk2j29rKnUjEFKD2vu379fM2veu3dPF2tyTcvmYk21dXY9rEmuDFUzZE5KD2uuW7fObKyp1IxBKqOyZsOGDS3CmrNmzTIra8o1/pO6ceOGZtYkm5bVNP6T0sua5BpcNY3/pPSw5ogRIzIcaz569CjDs6aaxn9SnTt31syaf/zxh0VY88KFC5pZk7yMSU3jP6mvwZpyjf+c9LLmgAEDeKyp1PhPSg9r7tmzRzNrkpcx0bImk2XFGgdZ4yCTDl25coUqSST17t07rFu3Lm8tlFqFhoZivXr1eCuI1SopKQmbN2/OWwulVgaDAbt27YqDBw/mXdWtVuPHj6dqxiC1fPlyxelQKR08eFBxOlRK9+7dU5wOlZKPjw/WqVNHdZJIKjo6Ghs2bMhbQaxWqamp+NNPP1EliaT69+9vsoJYraZPn26yFkqtNm3aZLKCWK3OnDlDVSAj9eLFC6xfv77idKiYPn36hHXr1lWcDhVTQkICNmnSRHE6VEwGgwHbt29PlSSSGjlypOJ0qJQWLlxosoJYrXbv3q05Sbx+/brxhYSaAhkpd3d3rFu3rupmDFLh4eFYv359xelQMaWkpOCPP/5I1YxBqmfPnpqv6p44caLidKiUVq9erTgdKqUjR46YrIVSq4cPH5qsIFYrf39/rFu3Lm8tlFrFxsZio0aNeCuI1SotLQ3btm1LVSAjNWjQIMXpUCnNnj1bcTpUSlu3bqVq/Cd14cIFxelQKbm6umK9evUUp0PFFBwcjHXr1qV6IcEpMTERmzVrxltBrFYGgwE7depkfCFBm/uMHTvWZAWxWv35559UBTJS+/btU5wOldKdO3dM1kKplaenJ9apU0d14z+pyMhIrF+/vuJ0qJhSUlKwVatWitOhUurTp4/idKiUpkyZYrIWSq3Wr19vsoJYrU6ePGmyglitnj59alzDp6ZARiowMBDr1q2raTo0Pj4eGzduTNX4z8lgMODPP/9M1YxBatiwYVSN/6TmzZuneBORlHbs2KF4E5GULMWaYWFhWK9ePapmDE7mYE3hWii10sOaK1asMFlBrFaWZM26deuqbvwnpZc1W7duzVtBTCNLsebmzZupmjFI6WHNly9fqrqJSEx6WbNp06YZjjUXLVpkshZKrfSw5o0bN0xWEKuVHtb88uUL1q9fn6oZg5MlWXPSpEkmK4jVSg9rHj16NMOyJk0zBie9rDl48GCqIXNSeljz77//1syaFy9epGr8J6WHNUNCQrBevXq8FcRqpZc1O3fubLKCWK0sxZpOTk5UzRik9LJm3bp10501U1NTdbFm3759TVYQq5Ue1tywYYPJCmK10sua9evXV92MQcqSrPnLL79YhDXnz59vsoJYrfSw5tWrV01WEKuVpVgzOTkZmzdvTtX4zymjsuahQ4eohsxJkayppvGflLlYU23jPydzsCZN4z8pS7Hm2bNnvwnWpPku6mXNDh06UA2Zkxo1apTJCmK10suaNI3/pPSwpoeHx3fHmkyW1ddoHLTCfxvjmGRkZWVlDwABAAABAQFgb29v4T8RkxalpaWBjY1NhvNaW1uDlZUVtRcRwWAwZMi/c0b0an1OBoMBrKys2DPOAF49zxgAwNraWvPvnRE/r4zoZedtxvCy7+J/36vnu4iI7Bmnk1frc2LnbcbxsvP2v+9l38WM4WWs+d/3svP2v+9l523G8LLv4n/fy1gzY3gZa/73vey8/e972XcxY3gtwZrc750RP6+M6GXn7X/fa6nzlsmyCgwMhBIlSnD/WAIRA/X+mqxxUIVY4yATExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExOTJfQ1Gge1tQkzMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTFlSLHGQSYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiam70iscZCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6TsSaxxk+m707t078Pb21uT19fWFN2/eACJSe8PCwuDx48dgMBiovYmJiXD79m1ISUmh9iIi3Lx5ExITE6m9AAB3796F6OhoTd5Hjx5BWFiYJu+rV68gMFDbGnYPDw/w8PDQ5A0MDISXL19qesaRkZFw//59SEtLo/ampKTAzZs3ITk5mdqLiHDr1i2Ij4+n9gIA3Lt3DyIjIzV5nz59CsHBwZq8b968AV9fX01eb29vePfunabnFBwcDE+fPtX0XYyLi4O7d+9CamoqtddgMMCNGzcgKSmJ2gsAcOfOHYiNjdXkffDgAYSHh2vyvnjxAoKCgjR53dzcwMvLS5PX398fXF1dNT3j8PBwePTokaZnnJSUBLdu3dJ83t64cQMSEhKovQAAzs7OEBUVpcn7+PFjCA0N1eR9/fo1BAQEaPJ++PAB3N3dNXmDgoLgxYsXmp5xdHQ03Lt3T9N5m5qaquu7ePv2bYiLi9PkvXfvHkRERGjyPn36FD5//qzJ+/btW/Dx8dHk9fHxgbdv32p6TiEhIfDkyRNN38WEhAS4c+eOrvNWT+4TExOjyfvw4UPNuc+LFy805z7u7u7w4cMHTd6AgAB49eqVpmccEREBDx480PRdTE5Ohps3b+rKb7XmPi4uLprP2ydPnkBISIgmr6urK/j5+Wnyenl5wfv37zU9p0+fPsGzZ880eWNjY8HZ2VnTdzEtLU33eas197l//z58+fJFk/f58+fw6dMnTV49rOnn55chWVNP7qOXNbXmPpZizY8fP1qENVNTUzMkaz558kRz7sNYk04ZkTXfv38Pnp6emrx6WfPhw4eannFycvJ3yZr+/v6avJZkTRcXF03nbVpaGty8eVPzd/HWrVsWYc1nz54x1lQpc9TZLcGaL1++/K5YMyUlBW7duqU59/keWdPNzY2xpkpZijXd3NwyJGtaKvexJGtqrbNbijWjoqIswpoA+nMfPe81GWuqk946+507dzTnPnpZ8+PHj5q8elnz9evXGY41b968qfm8ZfrviTUOMn03ypEjB1SsWBGqVq0KM2bMoCoGFShQAFq0aAEODg4wfvx4uHr1qmo4yZcvHwwZMgSKFy8Ow4cPh9OnT6tOiLJlywYrV66EQoUKQZ8+feDgwYOqi0FWVlZw8uRJKFCgAHTq1Al27txJBSdPnz4FOzs7aN26NWzcuJGqGBQUFASFChWCpk2bwvLly6mKQQaDAUqUKAG1a9eGefPmURWD8uTJAzVr1oSKFSvClClT4Pbt26oTIjs7O/j111+hVKlSMHbsWLh06ZLqhChv3rwwceJEKFKkCAwePBiOHz+uGk4yZ84M27Ztg4IFC0LPnj3ByclJdTHIysoKrl69CgUKFID27dvD33//TVUMevv2LdjZ2UHLli1h7dq1VMWgyMhIKFKkCDRs2BCWLFlCVQzKnDkzlC1bFqpXrw6zZs2iKgbly5cPGjduDOXKlYOJEyfCjRs3VMNJgQIFoHfv3mBvbw8jR46Ec+fOqS4G5cyZExYsWACFCxeG/v37w5EjR1QXg6ytreHQoUNQoEAB6Nq1K+zevZuq6dLFxQUKFCgA7dq1g82bN1MVg3x9faFQoULQvHlzWLVqFVUxKDExEYoXLw716tWDBQsWUBWDcuXKBVWqVIEqVarAtGnTqIpBBQoUAEdHRyhTpgyMGzcOrly5QnXejhgxAooWLQpDhw6FU6dOqS4GZc2aFdavXw8FCxaE3r17w4EDB1QXg6ysrODcuXNQoEAB6NixI+zYsYPqRdiLFy/Azs4OfvrpJ9iwYQNVMSgkJAQKFy4MTZo0gWXLllG9CLOysoJSpUpBrVq1YO7cuVRNl7a2tlCnTh2oUKECTJ48mQpOuJ9LJUqUgNGjR8OFCxdUw0nu3Llh6tSpULhwYRg4cCAcO3ZM9XmbKVMm2LVrFxQsWBC6d+8Oe/fupSoG3bhxAwoUKAC//PILbN26laoY5OHhAQULFoQff/wR1qxZQ1UMio2NhaJFi0KDBg1g8eLFVMWgbNmyQfny5aFatWowc+ZMqmJQ/vz5oVmzZlC2bFn4/fff4dq1a1Tnbf/+/aF48eIwYsQIOHPmjOrcJ3v27LB06VIoVKgQ9OvXDw4dOqQ697G2toZjx46BnZ0ddOnSBf755x+qYtDDhw+hQIEC0KZNG9i0aRNVMSggIAAKFy4MzZo1gxUrVlAVg9LS0qBEiRJQp04dmD9/PlUxKFeuXFC9enWoVKkSTJ06laoYZGdnB+3atYPSpUvDb7/9BpcvX1ad+9ja2sJvv/0GRYsWhSFDhsDJkydVF4OyZMkCW7ZsATs7O+jVqxfs379fdTHIysoKLl26BAUKFIAOHTrA9u3bqYpBr1+/Bjs7O3B0dIR169ZRFYPCw8OhSJEi0LhxY/jzzz+pikGZMmUCBwcHqFGjBsyePZuqGGRrawv169eHChUqwKRJk6iaLu3s7KB79+5gb28Po0aNgvPnz6s+b3PmzAmzZ8+GwoULw4ABA+Do0aOqcx8bGxtwcnICOzs76NatG+zZs4fqRdidO3fAzs4Ofv75Z/jrr7+oGg+8vLygUKFC0KJFC1i9ejVV02V8fDwUK1YM6tevD4sWLYLnz5+r9uphzfz588OPP/6oizWLFSsGw4YNo2bNVatWaWbNU6dOgZ2dXbqz5qdPn6Bw4cIWYc1atWppYs0CBQrwWPPixYvpwpqZMmWC7du3g52dHfTo0QP27duXbqz57t07zawZFRUFRYsW1cSaWbJkyZCsuXDhQiNrHj58WPWLML2see/ePd2s+cMPP8DKlSupWDMpKUkza+bMmROqVq0KlStXTnfWHDVqlCbWzJIliwlr0uQ+58+fNxtr0gz46WFNa2trKF26NNSqVQvmzJmTbqzJ/VzSyprTpk3TxJo2Nja6WPPWrVsWYc2YmBgea9I0XQpZk2bAL3/+/PDDDz/oZs3hw4enG2taWVnBsWPHoECBAtC5c+d0Zc3AwEDNrJmamqqZNXPnzm021qSps+thzcyZM8OWLVugYMGC0KtXL3ByctLEmu3bt4dt27ZRsaarq6tu1mzUqFG6s2bDhg2hfPny6c6ac+bMsQhr3r171yysuWrVqnRlzUqVKkHVqlVh+vTp6caa+fPn18Waq1ev1syap0+f1syaz54947EmTZ1dD2siIpQqVcrImjRNlyRrTp48mWrAjzuztLBmnjx5jKw5aNCgdGNNAIBr164Z38lmVNakrbM3adJEM2v26dPHyJpnz55NN9Y8fPgw2NnZQdeuXWHXrl3UrGlnZwdt27alZk0/Pz9drGlvbw9169ZNd9Zs3bq1RVhzw4YNmlmTfK+5fft2zQN+TP8RISILhQAAewBAAMCAgABkyrgaMWIEcs8SALBAgQI4YMAAPHr0KEZFRcl6ly5dyvPmypULu3Xrhnv27MGQkBBZ7+HDh3nerFmz4s8//4x//fUX+vv7y3ofPnzI89rY2GCLFi1w1apV+P79e1lvQEAAZsmSheevX78+Lly4EJ8/f44Gg0HSGxcXh4UKFeJ5q1atitOnT0cXFxdMTU2V9KalpWHNmjV53jJlyuD48ePx6tWrmJSUJPvn7ty5M89bpEgRHDZsGJ4+fRpjY2NlvZMmTeJ5bW1tsU+fPnjw4EH88uWLrHfTpk08b44cObBTp064c+dO/PTpk6z3woULPG/mzJmxdevWuHHjRvTx8ZH1urq6opWVldFrbW2NTZs2xeXLl+ObN29kn1NoaCjmzJmT93vXrl0b582bh48fP8a0tDRJb1JSEpYsWZLnrVixIk6ePBlv376NKSkpkl6DwYBNmzbleUuUKIFjx47FixcvYkJCguzfuX///jxvwYIFcdCgQXj8+HGMjo6W9c6bN4/nzZMnD/bo0QP37duHYWFhst49e/bwvNmyZcNff/0V//77bwwMDJT13r59m+fNlCkTtmzZEteuXYsfPnyQ9Xp5eWGmTJmMXisrK2zYsCEuWbIEX716JfuMo6KiMF++fLzfu3r16jhr1ix88OCB7HcxNTUVK1WqxPOWLVsWJ06ciDdu3MDk5GTZP3fbtm153mLFiuHIkSPx7NmzGBcXJ+sdM2YMz5s/f37s378/Hj58GCMjI2W9q1atMjlvu3btirt27cLg4GBZ7/Hjx3neLFmyYLt27XDz5s3o5+cn63327BnPa21tjT/88AOuXLkS3dzcZJ9TUFAQZsuWjeevW7cuLliwAJ89eybrjY+Px6JFi/K8lStXxmnTpqGzs7PsMzYYDFi3bl2et3Tp0jhu3Di8cuUKJiYmyv6du3fvzvMWLlwYhw4diqdOncKYmBhZ77Rp00zO2969e+OBAwcwPDxc1rt161aeN3v27NixY0fcvn07BgUFyXqvXLlict7+9NNPuGHDBvTy8pL1urm58c5bKysrbNKkCS5duhRdXV1ln1N4eDjmzp2b93vXqlUL58yZg48ePZI9b5OTk9HBwYHnLV++PP7xxx9469Ytxe9iixYteF57e3scPXo0XrhwQfG8HTJkCM9rZ2eHAwcOxGPHjinmPosWLeJ5c+fOjd27d8e9e/diaGiorHf//v0m5+0vv/yCW7duVcyn7927Z5L7/Pjjj7hmzRp0d3eX9fr6+mLmzJl5/gYNGuDixYvxxYsXss84JiYG7ezseN5q1arhzJkz8d69e4q5T9WqVXleBwcHnDBhAl67dk0x92nfvj3PW7RoURw+fDieOXNG8bwdP348z5svXz7s27cvHjp0CCMiImS969at43lz5syJnTt3xn/++Qc/f/4s6z1z5ozJedumTRvctGkT+vr6ynpfvnxpct42a9YMV6xYge/evZN9TsHBwZg9e3aev06dOjh//nx8+vSp7HcxMTERixcvzvNWqlQJp06dinfu3FHMfRo2bMjzlixZEn/77Te8fPmy4nnbp08fnrdQoUI4ZMgQPHHihOJ5O2vWLJ43b9682KtXL3RyclLMfXbu3Gly3rZv3x63bduGHz9+lPXeuHHDJPdp1aoVrlu3Dj09PWW9Hz58QBsbG95526hRI/zzzz/x9evXss84IiIC8+bNy/u9a9SogbNnz8aHDx/KPuOUlBQsX748z1uuXDmcNGkS3rx5U/G8/emnn3je4sWL46hRo/D8+fMYHx8v65VjTaXcZ9myZSa5j17W3LJliyJrPnr0yOS81cOa9erV08yaVapUUcWaBoMBa9WqxfOmF2v+8ccfJrmPpVnT29tb1vvmzRuLsWapUqV4Xr2sOWbMGFWsOWDAAJ43I7DmnTt3TM7b9GLN/Pnz835vc7Dm9evXFc/bdu3a8bw0rDl27FieN3/+/NivXz9NrJkzZ07s0qWLKtY8ceKESe7Ttm3bDM2aSt9FPazZo0cPnje9WPPvv/82yX30sKajoyOuX79eFWtaW1vzvos0rJknTx7e712zZs10Yc0ff/yR500v1ly8eDHPq4c1s2bNmi6s6efnJ8qaixYt0syaM2bMUMWa1apV43nTizUnTJjA82YE1nz16pXJeWsO1nzy5Ikia9rb2/O8ellz7NixeOnSJU2sOXjwYFWsOXv2bJPcp2fPnl+dNW/evGmS+6QXa9ra2vJ+b0uz5rlz5xRZc+TIkTwvx5pHjhzRzJq7d+9WZM0jR46YnLd6WLN58+aqWDMwMFAXaxYuXJjnTS/W7NKlC8+bXqy5efNmntccrLlhwwbNrLls2TJVrJkrVy7e7127dm2cO3fuV2fNZs2a8bzpxZrz5883OW/VsubevXt5XnOxpoeHh6zX29tbkjVfvnypiTVnzpyJ9+/fV2TNypUr87x6WXPEiBFfnTVXr15tkvuYgzWVcp/nz5+b5D7pwZpMllVAQAD53OzRHD1x5vhF/usBrHHwPyFPT0+TwoIwIZIqBgUGBuKlS5dMigPkD8vGjRuLFoPCwsLwzp07WLBgQcnfW6oYFBsbiy4uLibFATKkikEpKSno4uKCbdq0kfSSxSAhnDx8+NCkAESGXDHo5cuXJi84yeCKQWIvwt6/f2+S6ArhRKoY5OPjY9I0RAZXDFq9erVJMejTp094/fp1zJEjh6RfqhgUERGBzs7OWKJECUlv1apVRYtB8fHx6OLigg0aNJD0lilTRrQYZDAY0MXFxeTlFxlyxaAnT56YJEFkyBWDXF1dccmSJZJeuWLQhw8f8J9//pH0ksUgYdOlv78/njt3jlccECZEzZo1w+XLl+Pbt295zykkJARv375t0oRHhlQxKDo6Gl1cXLBChQqS3kqVKuGUKVNMikFJSUno4uJiUowlQ64YdP/+fezbt6+kt2DBgpLFoOfPn+OUKVMkvXLFoHfv3uGaNWskvXLFIC8vLzx06JCkV64Y9PHjR7xy5QpmzZpV1CtXDAoPD8e7d+9ikSJFJH9vrhj04MED3jOOi4tDFxcXk+IAGVLFoNTUVHRxccFffvlF0itXDHr06BEOHz5c0ss1XYoVg169emXygpMMrulSrBj0/v17kwY+MrJmzYrt2rXDLVu2mLwI8/X1xVOnTvGKA2TIFYM+f/6MN27cMCkOkCFVDIqMjERnZ2csXbq0pFeqGJSYmIguLi7YuHFjSW/p0qWNxSDhd9HFxcWk0ZIMrhh06tQpk2LQ06dPTQruZMgVg968eWNS5CODKwbt2LHDpBj04cMHk8ICGXLFoICAALxw4QKvOCD8LjZp0kS0GBQaGop37tzBAgUKSP7etWrVEi0GxcTEoIuLC1apUkXSW6FCBdFiUHJyMrq4uKCjo6OkV64Y9ODBAxw4cKCkV64Y9OLFC5w+fbqklywGCV+Eubm54YYNGyS9csUgb29vk0IuGXLFoKCgILx27ZrJixHyGTds2BAXL15sUgz68uULOjs7mzThkSFVDOJyH+GLaDIcHBzw999/x+vXr/Nyn7S0NHRxccEOHTpIeuWKQY8fP8ZRo0ZJeuWKQa9fv8aFCxdKeuWKQR4eHrhjxw5Jr1wxyM/PD8+cOcN7EU0GWQwSvggLDg7GW7dumTThkSFVDIqKikJnZ2csW7aspJdrPLh7965o7vPDDz9IekuVKoXjxo0Tbbq8d+8e9urVS9LLNV2ePHnSJPd59uyZySARGVzT5f79+00aD96+fWvSUEJG9uzZsUOHDqKNB0qsmSlTJkXWFL4YIb+LX5M1q1evLumVYk0u9/narCk24Pfy5UuTF5xk6GVNqQG/r82a9evXNztrJiQkoIuLi8mLaDL0sGaRIkWMrCnMfZ48eYK//fabpNdcrCmW++zatUvSa0nW5JoupVizYsWKkl5zsaYw97Eka65du1bSmy1bNiNriuU+6cGawqbL9GBNsQG/jMKawtzH3d3dpIGPjK/Jmjdv3jQZ+CLja7JmkyZNJL2WZE2u6VKMNZcvXy7plWNNT09PRdbkBvzEWPPixYsZijW5Oruw8YcMPaxpZ2cny5ozZsyQ9JqDNcXq7N7e3nj06FFJryVZkxvwk2LNevXqSXqlWJPLfeRYs2jRorKsOXr0aEnvt8qaZ8+e/aqsyQ34ibFmuXLlJL16WVNqwC8jsqaXlxceOHBA9rv4tVjz7t27JgNfZJiDNaXq7MILDciQG/D72qwpNeD3/v173LJli6RXjjV9fX0VWbNFixayrCkc+CLjW2NNxH9zH2GjJRnmYE2xOrurqyv++eefkl5zsKbYZTL+/v54/vz5b5I1K1asKMqaXJ29ZcuWkl5zsaYw93n+/DlOnTpV0mtp1hQb8ONYU9iEx4U5WJMb8BNjzdq1a0t6pViTq7PLsSY34KemyZ0pfcUaB1njIJMOySUSYsEVg5ydnWWTerEgJ3DlXuZKJURcMejBgwdUXrIY5OvrS+XNkSMHduzYEXfs2IFBQUGyBRhhCItBcnAu9sOSLAb17NmT6s9NFoPkXtiLBVcMunXrFv71119UXrIYJJzKUQquGHTs2DF88eIFlZecwA0JCaHyCotBcsVQYZATuB4eHrLJolhwtz29fPkShw4dSuUli0HC26+UgiwG7du3j8pLFoNu3bpF5eWKQYcOHUIPDw8qL1kM+vz5syz0CYMrBnETuHJNx8IQFoM6duxI9ecmi0FyRWux4CZw7969K5vUiwVZDBJO5SgFWQx6/PgxlZcsBgUGBlJ5yWLQx48fTaYg5YIsBnl6eso2wQmDLAa9fv1aFtzEombNmsYJXLkiiliQxSC5gqZYkMWgy5cvU3nJ257evHlD5RUWg6QKqWIhLAbJFUOFISwGtW7dmurPzRWDnj9/bjKRrBRkMUiuWVEsuGLQ1atX8eDBg1RecgLX2dmZyksWg7y8vKi8wglcuYK3MIQ3C8vBuTDI257evn2LXbt2pfpzk8WgyZMnU3nJYtDGjRupvFwx6OLFiyY3QCgFWQwS3rijFFwxaN++ffjp0ycqr7AYJLwBQi6ExSC5FxPC4IpB3G1PgwYNovpzk7c9CSeSlYK8WViuoCkWZDFIeNugUpCNB25ublReYeOBVEOHWAgbD4S3X8kF13jATeDKFcrEgms8ePbsmewwjlhUqVLFeNuTHtaUe5krFuRtT3pY08/Pj8prLtb08vLC+vXrq/aaizUfPXqkizXlBjXEgmPNCxcuaGJNbsBPeLurUuhlTXLATw9rtmrViur3NhdrCm+/UgpzsOaZM2dMbrZXCnOwJjfgp4c15V4EC0N42xMta5I3C//+++9UXnOx5smTJ6m8JGs+efKEykuypuBlgGIIWVPu5ZMwzMGa3IBfv379qP7celmTG/DTw5rC2waVwpysKfUSWSzMxZrv37+XHQAQC5I15YZxxIJjTRcXF12sKfcyVyz0sCY54Oft7U3l/VZYs1u3blR/bnOxpvCmZaUwB2seP35cF2t+/vyZyisc8NPDms2bN1ftFd4snBFZ8/r161RekjXfv39P5TUnawpvv5ILvaxJDvhpea9padYUblFTCnOypvB2V7kwF2u6urrKNqSKBcmacs3hYlGhQgXjgJ8e1rx48SKV11ysGRoaSuX9Vlhz2LBhVF5yi40e1nRycqLy6mFNcsDvw4cPVF4ha8pdGiEM4c3CelizU6dOVH9uc7Gm8KZlpTAHa544cUIXa2p9r6nmZmGmry/WOMgaB5l0iDbBJg9Cudvg5CJTpkyyExdyYWVlRZWoCkNuklkpKlSoQPVDnYzixYubrL9VGwUKFDBZ86c2cuXKhXXq1NHkzZo1q+ZnbGNjo/kZA4DsbTtKQZM8CcPBwYEKosgoUqSI7O0zcpEvXz6sUaOGJm+OHDmomlLJyJw5s+ZnbG1treu7SFPgE0blypUlJ1SUomTJklisWDFN3oIFC1K9eCcjT548mv/O2bJl03XeavVaWVlp/m8LAExWs9NEuXLlqArIZBQrVowKlMnInz8/VWMpGbly5dJ8dmXJkkXzmWltba35GQPoO2+rVatG1ThIRunSpWWnc+WicOHCJmtQ1EbevHk1/7eZPXt2zede5syZLZb76DlvK1WqJHsTlFyUKFFCdjpXLuzs7KiKz2Tkzp3bYrmPpb6Les7bsmXLmqzIUBtFixY1WQGnNvTkPjlz5tT88ylLliy6ch89z1jrf5cA/77kkLrlXSlKlSpF1SBBRqFChWQnsOUib968mtlLz3nLWJMuLMmaWp+TXtbUk9/qYc0yZcroYk2aJhgybG1tMyRr6jlvLcmacjdByQVjTbrQy5rCdYxqI6OypqW+i4w11UdGZU09uY8e1rS3t9fFmnK3K8oFY0260MuaeursWnM2S7Kmnu+iJVmzaNGimrwZlTX15D56nrGe72L58uVlbx2WC0uyptazi7EmXRQuXDhDsqal3qVkVNbUWmfXy5qWOm8tyZoHDhxgq4wtKNY4yBoHmXSIpnFQeNW13LpOYXATp9yaD5pO8Vy5chknToODg6mmNriJU24CKioqSrVXbM0HzS0QwjUfND+ohGs+aG6BEK75oJnMKVy4sHHiNDY2Frdt26baK1wpee3aNdVecuI0KCgIPT09VXvJlZJeXl5oMBhUe8mJU27NB00RuHbt2rw1HzQ3DlasWJG35oNmMke45kNuZZUwhGs+aG7Ayp07N2/NB82NLOTEaUBAAAYHB6v2iq35UHsLBDlxyq35oCnWcxOn3JoPmlsguIlTbs0HzWSOcM2H3AoVYeTLl8+45iMiIgLPnj2r2iu82ZHmhgDhmo/4+HjVXvJmRzc3NzQYDFQ3DnITp9yaD5pbILg1H87OzpiSkkJ146BwpeScOXNUewsVKoRDhw41rvmgmUrOmzcv9u7d27jmg+b2z+zZs2PHjh2Nt23QTKwKb9tARNUvc8TWfNAUJYRrPmhuHBSulKS5BUK4UnLFihWqvQUKFDBOnEZFRVFNJQtXSj59+lS1N2vWrMaJU39/fwwPD1ftFVspSdPE26BBA96aD5rCgnDNB82Ng8I1H3IrAoUhXPMht0JFGOTE6ZcvX/DSpUuqvTly5OCt+aC5ISBz5sy8lZLJycmqveTEKbfmg+YWCG7ilFvzQXPjIDdxyq35oLkFokSJErw1HwsWLFDtFa75oLkBS7jmw8XFRbVXeLPjx48fVXvJlZLcmg+1t0CQaz5ev36NBoOBqhlFuFKS5haIcuXK4aRJk4xrPmhYs1ixYsaVknFxcbpY89SpU6q9wts29LBmdHS0aq+5WZOmGPutsOb27dtVeznWPHDgAIaHh2tiTe62DZqbePWwpthKST2sSXMLhHClpB7WlFtZJQxzsibNjSx6WNPGxsasrEnzwq969eq8lZI0rClcKTlx4kTVXnOy5rlz51R7haz59u1b1V5zsyZNQ705WJNbKUlz46Be1iRXSuphTZobWYQ3O+plTbU3DpqbNWluHBSyptxKVmEUL14cR48ebayz62HNY8eOqfbqZU3yZscvX76o9uplTeFKST2sSXPjoDlZk2azjzlZ093dXbVXyJopKSmqvWIrJfWwJs2Ng5UqVeKtlNTDmnLrkYXxrbBmUFCQaq+5WZOmGUUPa5I3OyYnJ+O4ceNUe/WwJnmzo17WfPXqlWpvlixZeDc76mFNg8FA1VRmDtZ0dnbG1NRUqhsHhaw5c+ZM1V6ONU+dOoUxMTG6WJPm9k+9rEne7IiIqr16WZPcWKeXNYcPH67aa29vbzbWpLlt2Rysyd3sSLOFQIw11Q6McqzJ3eyolzVpbhw0J2vSbPb5VlgzISFBtVe4sY41DFperHGQNQ4y6dT9+/clD7169eoZr/8WO/D8/PwkJ5LIZozU1FQTb2xsrGTCyhXIrly5gomJiSbetLQ0yeYf8vrvmJgY0b9zhw4dRL1cgYxLEsUk1fzDNWNwSaKY1q9fL+oVSxKFkmr+EUsShZKDEvL677S0NBNvcHCw5AQouWoqOTnZxJuYmCg5ASpsxhDKYDBgo0aNRL3k9d9RUVGin5dU84/w+m8xSa2AIZsxpM69f/75R9QrvP5bTDdv3pR8TuT132LP+MOHD5JFVXLVlNh3MTIyUnLiXpgkCpWSkoIVKlQQ9ZLXf8fFxYn+naWaf7gk8dChQxgRESHqlVo3mjNnTmOB7PPnz6Le5cuXi3rJVVM+Pj6iXqlV68Lrv8Wek9zqX/L6b7HvYmBgoGQhh7z+OyUlxcQbFxcn2YhXsmRJ4/XfYuetwWCQnOIUvpAQU5cuXSTPW+7677CwMFGv1AoY4QsJMUk1/3AvJNatW2d8ISGU1EoC4aopsWf89u1btLKyEvWTq6bEnnFoaKgkPHLNGDdv3hQ9b5OSkiQLBMLGf6EMBgM2a9ZM1EuumoqMjBT9vAYOHCjqJRv/Q0JCRL1SzT/CFxJi2rt3r+R5S66aEtPdu3clv4vkqimxZ+zt7Y2ZMmUS9VatWpXXjCFUdHS05MQ9WSATO29TU1Mlb0YQNmOI6eeffxb1Chv/xSTV/CNcNSWm1atXi3rJVVPe3t6iXqlBE+GqKbHn9Pz5c8lnTK6aEvsufvr0SXIClFs1xRXIhEpISJC82ZZ7IcEVyISSGzQhV01FR0eLfl5SzT/kqimp3Edq3ahw1ZSYpAZNyMZ/7oWEUFLNP8JVU2LP+P3795LNy+SqKbFn/OXLF8yTJ4+oV/hCQqiUlBTJ2y/IVVNSuY/UoInwhYSYpNaN5syZE7t27Yq7du3C4OBgUa/UoAn3QoIrkIlJqvnH2tqat2pK7DnpYU1/f3+LsaZUQfZbYE2p3Eeq+cdcrMk1Ywj1+vVryWeshzWFzRhC6WVNqeafr82aUs0/5mJNrhlDKLlBE3OwJteMIZQa1uSaMYRKTU21GGtKDZroZU2yGUNMUoMmalhTbh3T12TN+Ph4yUY8kjWlch8l1uSaMcQkNWhiDtaUWzWlhzWlmn/EmjGEkmNNrhlDijXDwsIsxppSgyZqWFOq+Uc4ZC4mNazp5+cn6pVq/jEHa5LNGEL5+PhkSNaUav752qwp1fxjLtaUqrNnVNaUav4RNmOISYo1hc0YYpIaNPmWWdPd3V0Va4p9F9WyplSd/WuyJteMISapQRO9rEk2Y4hJjjWFjf9CyV1qQK41/hqsWbBgQVGvHtbkhszlWFNq0EQNa0o1/3xt1pRq/uFYk2z8F0qONYWN/0KFhIRkSNaUGjT52qwpNWhiLtbkGv+F8vT01MWa+fLlE/UKG/+FkmNNYeO/mKQGTcjGf1rWJBv/pVhTatDkW2bNjx8/flXW5Br/hZIbNNHDmsLGf6ZvS6xxkDUOMulU27ZteUmiUjMGKXKSUmw6VE4rV67kJYnC6VA5CScpuSRRqkBGSjhJqZQkkgoKCuLBvXA6VE7CH3DcdOjRo0clk0ROBoOBd+W8mmYMUuQkpZpmDFJTp07lJYlcgUwqSSS1detW3mctnA6V0+XLl3le4XSonNzc3HjFVKUkkVRYWBjv6nYuSZQrkHFKTk7GMmXKiCaJUgUyTgaDgTdJySWJcgUyUoMHDzZ6uenQjRs3SiaJpBYtWsRLEpWaMUg5OTmZJIlyBTJSwklKrkDGTYfKydfXl1dMFU6HyikmJoZ3o4twOlROaWlpvGIqbZL466+/Gr3C6VAljR8/nnfeCqdD5bR27Vreecu9kJAqkJE6ffo07znVqFFDthmD1IsXL3hepWYMUp8/f8bs2bMbvWoKZJwSExN5V7eracbgZDAYeNegC6dDldS7d28esJHToUoiJym5ZoxVq1ZJFshI7dixg/dZC6dD5SScpBROh8rJw8ODV0zlXkhIFchIRURE8G4YUNOMwSklJYV3i4RwOlRJjo6OvNxHqfGfFDlJqaZARmrp0qW876JS4z+pw4cP856TcDpUTsJJSuF0qJwCAgIwS5YsRq9wOlROsbGxvDVh3AsJuQIZp7S0NN5qAO6FhFyBjBQ5SammQEZq0qRJvNynZcuWso3/pDZt2sT7rJWaMUidP3+e51Vq/Cfl6urKy32UGv9JhYSE8G5XEk6HyikpKYm3tkY4HSong8GATZs2NXqF06FK6t+/P++8VXohQWrevHm88/aHH36QLZCR2r17t0nuwxXIlLzCW3sqV64sWyAj5eXlxSumKjX+k4qKiuIVU9U0/nNKTU3l3VhINmOoOW/1sOaYMWN4uY85WFOqGYPU8ePHec9JD2sqNWOQ0sua5Jowshnja7Nm9+7deedtRmDNK1eu8LzpxZrh4eFmY001zRikWrRoYfTqZU2lZgxSelhz//79vOek1IxBSi9rki+S05M1yXVutKzZvn17o5djTblmDFJ6WHPdunW887ZRo0ayzRikhKyp1PhPSnhDbEZhTXKtWnqy5qxZs3jfRb2sKdeMQerGjRs8Lw1rCpuWlZoxSOllTXJdsZpmDFJ6WHPEiBG88zYjsOajR494XqUhc1J6WDMuLs6srKnUjEGqc+fOvNxHD2sqDZmT0sOaFy5c4HnTizVDQ0PNzppyzRic9LLmgAEDeOet0pA5KT2suWfPHt5z0sOaSs0YpLy8vHh19ozCmu3ateOdt+nFmqtWreKdt3pZU67xn9SzZ894Xr2sKdf4T0ova5Irh9OTNadNm8Y7b83Bmmrq7HpZk6yzc6wp1fhPSi9rOjg4GL16WVOp8Z/UkCFDeLkPDWsuXryYd96mF2veu3eP5zUHa6rJfWJiYngDsuZgTbnGf1J6WHPChAm881ap8Z+UHtY8c+YM7zmlF2syWVascZA1DjLp0P3796mSRFJ+fn5YtGhR3lootYqNjUUHBwfF6VAxpaWlYb169XhroWjUpUsXbNGiBW8tlFpNnDiRqhmD1Pr16xWnQ6V09uxZk6u61erVq1dYtGhRxelQMQUHB2Px4sWpkkROiYmJWKlSJd4KYrXimuhokkRSAwYMUJwOldLs2bNN1kKp1T///GOyglitbt68abIWSq0+fPiARYsWVZwOFVNkZCSWKlVKcTpUTCkpKVizZk3F6VAp/fLLLyZXdavV6NGjTdZCqdXy5ctNVhCr1ZEjR0xWEKvV48ePjS8k1BTISAUGBmKxYsVUN2OQiouLw3LlyhmnQ9UUyDhxN3/SNGOQ6t69u+J0qJSmTJmiOB0qpS1btpisIFarixcvUr2QIPX27VssWrQobwWxWoWGhqK9vT1vLZRaJSUlYZUqVXgriNXKYDBgy5YtqQpkpAYPHqw4HSqlBQsWKE6HSmnv3r1Ujf+k7t69qzgdKiVvb28sWrSo4nSomKKjo7F06dLGFxJqCmScUlNTsU6dOrwVxDTq0KGD4nSolMaNG2eyglitVq9eTVUgI3Xy5EmqZgxSz58/x6JFiypOh4rp06dPWKxYMcXpUDElJCRghQoVeGuh1Ip7saE0HSqlPn36mKwgVqsZM2aYrIVSq23btpmsIFara9euUTVjkHr//j0WLVpUcTpUTF++fMGSJUtqmg5NSUnBatWqUTX+k2rTpg1VMwap4cOHK95EJKUlS5Yo3kQkpYMHD5qsIFYrPazp7++PxYoV08WaNM0YnNLS0rB+/fq6WFO4glit9LDmhg0bTFYQq5Ue1nz9+rVZWFNtMwYnvazZokUL3gpiGulhzTlz5uhiTZrGf1K3bt3KcKyZmpqKtWrV4q0gppEe1hwzZoxu1lTbjEHq6NGjmlnzyZMnWKxYMdXNGKT0sGZ8fDyWK1eOqhmDk17W7NGjh1lYU00zBik9rHnp0iWTFcRqpYc1w8LCsESJErpYk6YZg5PBYMBWrVppZs0hQ4ZQDZmT0sOa+/bt08WaNI3/pHx8fMzCmmqbMTjpZc2OHTuarCBWKz2suWbNmgzPmjR1dr2s2axZM92sqbYZg9TMmTN1s6baZgxSeljT3d0dixYtqroZg5Re1qxevbpFWHPEiBFmYU01zRik9LDmgwcPjKyppvGflKVZk6bxn1TXrl01s+akSZMswprnzp0zC2uqafwnFRISgvb29rpZU23jPydzsCZN4z8pPay5a9cuXaxJ0/hPytPT87tlTbWN/6RWrFihizVpGv9J6WHNjx8/Wow1GzdubBbWZCuIM5a+RuOgFf7bGMckIysrK3sACAAACAgIAHt7ewv/iZi0KCIiAmxtbcHKyoraGxUVBbly5QIbGxtqb1xcHGTKlAmyZs1K7U1OTobk5GTIlSsXtRcRITIyEvLly0ftBQD48uUL5M+f3yLefPnyaXpOkZGRkCdPHrC2tqb2RkdHQ/bs2SFz5szU3vj4eLCysoLs2bNTe1NTUyE+Ph7y5MlD7UVEiIiIsNhz0uq11HcxNjYWsmTJAlmyZKH2JiYmgsFggBw5clB7DQYDREdHg62tLbUXIGN+F/U84+joaMiRIwdkypSJ2qv3vE1KSoLcuXNTe7/H76Ke8zYmJgayZcum6bxNSEgAANB83sbFxUHevHmpvQCW/S5+T+dtUlISpKamQs6cOam9BoMBoqKiMlzuo+c5RUREQN68eTXnPlrP2/j4eLC2toZs2bJRe1NSUiAxMZGdtyql97zNmjVruuc+aWlpEBsbmyHPW0vkPow109fLWFOdvsfzlrFm+nkt9XNRL2va2Nhoyn30smZGPG+/N9bMyLnP93Te6mHNjPpdtGTuw1gzfbx6z9vcuXNr+i5akjVjYmIyXO7DWFO9Mup5+73lPnpYE4DlPjRirEnvzWi5T0ZlTSbLKjAwEEqUKMH9YwlEDNT7a7LGQRVijYNMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMltDXaBykb5llYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmLKsGKNg0xMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExM35FY4yATExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMT03ck1jjI9N0oICAA4uPjNXmDg4MhKipKkzcyMhJCQkI0eRMTE8HPz0+TFxHhw4cPgIia/Hq8Xl5ekJqaqsnr6+sLSUlJmrwfP36E2NhYTd7Q0FD48uWLJm9MTAx8+vRJkzclJQW8vb01eRERPDw8dD1jg8Ggyevt7Q0pKSmavP7+/pCQkKDJ++nTJ4iOjtbk/fLlC4SGhmryxsfHQ2BgoCavwWAAT09PTV4Afd9FT09PSEtL0+T19fWF5ORkTd7AwEDN521ISAhERkZq8kZFRUFwcLAmb1JSEvj6+mryWvK7qOe89fPz03zeBgUFaT5vw8LCIDw8XJM3NjYWgoKCNHlTU1PBy8tLkxcAdD1jT09Pi5y3AQEBms/bz58/a859IiIiNJ+3CQkJ4O/vr8lrMBjgw4cPmrwAlj1v9eQ+cXFxmryhoaEQERGhyRsdHQ2fP3/W5E1OTgYfHx9NXkvnPlrPW39/f0hMTNTk/fTpE8TExGjyhoeHQ1hYmCZvXFyc5twnLS1NV+6j97zV+l308fHRnPt8j6yp97vIWFOd9LBmamoqY00KWZI1AwICNHm/V9bUmvvoZU2tuc/3yppacx9LsubHjx81edPS0jIka/r4+GRI1tSa++hhTa7OrlV6cx/GmuqUkpJiMdbUW/dhrKlO3yNr6qmzM9akk6Xq7HpYMywsLMOxJoC+72JGZM3Pnz9/d6yp5xnryX30nrd6WFNr7qOHNZOTky3Gmkz/PbHGQabvRpGRkVCwYEHo0KEDbN++naoYZGVlBaVKlQJHR0dYt24d1Q/L7NmzQ4MGDaBx48awdOlSeP36tepDOGvWrNC7d2+oWbMmzJ49Gx4+fKg6IbKysoIFCxZAhQoVYNKkSXDz5k2qhGjfvn1gb28Po0aNgvPnz1MlRHfu3IHChQvDgAED4OjRo1Rw4uvrC3Z2dtCtWzfYs2cPFZwkJCRAkSJF4Oeff4a//vqLqhiUJUsWqFixIrRo0QJWr14N7u7uqr05cuSAVq1aQf369WHRokXw/Plz1c84c+bMMHr0aKhatSrMmDEDXFxcVCdEVlZWsHbtWnBwcIAJEybA1atXqeDk5MmTUKxYMRg2bBicPn2aKiF69uwZFCpUCPr06QMHDx6kSoiCg4PBzs4OOnXqBDt37qSCE4PBAPb29tC6dWvYuHEjVTEoe/bsUKtWLWjatCksX74c3r59q/o5Zc+eHTp27Ai1a9eGefPmwZMnT1R/F62trWH69OlQsWJFmDJlCty5c4cKQLdt2walSpWCsWPHwsWLF6mKQVevXoUiRYrA4MGD4cSJE1TFIDc3NyhYsCD07NkT9u3bR1UMio6OhoIFC0L79u3h77//pioG2djYgIODA7Rs2RLWrl1LVZjNnj07NGnSBBo2bAhLliyBV69eqX7GWbJkgYEDB0L16tVh1qxZ8ODBA6rv4p9//gnlypWDiRMnwo0bN6jg5ODBg2Bvbw8jR46Ec+fOURWD7t+/D4ULF4b+/fvDkSNHqF6E+fv7Q4ECBaBr166we/duqqbL5ORkKFq0KLRr1w62bNlCVQzKmjUrVKlSBZo3bw4rV64ENzc3qu9imzZtoF69erBgwQJ49uyZam+mTJlg/PjxULlyZZg2bRo4OztTfRc3btwIZcqUgXHjxsGVK1eoztuzZ89C0aJFYejQoXDq1CmqYtCrV6+gYMGC0Lt3bzhw4ABVMSgsLAzs7OygY8eOsGPHDupiUMmSJeGnn36CDRs2UL0Iy549O9StWxeaNGkCy5YtA1dXV9XPKVu2bNCjRw+oVasWzJ07Fx49ekR13s6ZMwcqVKgAkydPhlu3blHlPrt27YISJUrA6NGj4cKFC1S5z82bN6Fw4cIwcOBAOHbsGFUxyNPTEwoWLAjdu3eHvXv3UhWDYmNjoVChQvDLL7/A1q1bqYpBmTJlgvLly8OPP/4Ia9asAQ8PD9XeHDlyQPPmzaFBgwawePFiePnyJdV5O2zYMKhWrRrMnDkT7t+/T3Xerly5EsqWLQu///47XL9+neq8PXr0KBQvXhxGjBgBZ86cocp9Hj16BIUKFYJ+/frBoUOHqHKfoKAgsLOzg86dO8M///xDVQxKTU2FYsWKQZs2bWDTpk1UxaBs2bJB9erVoVmzZrBixQp49+4d1Xn766+/Qp06dWD+/Pnw9OlT1d9FGxsbmDx5MlSqVAmmTp0Kd+/epTpv//rrLyhdujT89ttvcPnyZarc5+LFi1C0aFEYMmQInDx5kir3efv2LRQsWBB69eoF+/fvp2o80MOa1tbWULp0aV2s2ahRI/jzzz+pWbNPnz6aWXPhwoVQvnz5dGfNu3fvWoQ1ExMTzcaa79+/V/2c9LBmpkyZYMyYMVC1alWYPn26ZtYcP348NWueOnXKIqwZEhKSIVmzc+fOZmHN27dvU52327dv182agwYNguPHj1PlPu/fvwc7Ozvo0aMHNWvGxMRAoUKF4Ndff01X1syRIwc0bdrUIqy5dOlSi7Pm4cOHqVgzICAA7OzsoGvXrrBr1y7NrLl582Zq1qxatapm1mzbti3UrVuXmjVtbGxgwoQJmllz06ZNGZ41aQf8SpUqpZk169WrB02aNIGlS5dqZs05c+ZQsaaVlRXMnTsXKlSoAH/88UeGYk07OztNrBkXFweFCxfWzJrlypUzC2u+ePGCqs4+fPhwI2veu3dPE2tOmDABrl27lq6sWbBgQejbt2+6s2bx4sUtwprt27e3CGtu3brVLKxJW2cnWdPJyUkza27bti3dWDNHjhzQsGFDXaxZo0YNTay5aNEizazp5ORkEdb08fExC2tu2bKFijUzZ84MlSpV0s2aCxcuTDfWBABYt26dRVjz+fPnGZI1a9eubWTNN2/eaGbNx48fU7HmjBkzNLPmjh07oGTJkjBmzJh0ZU13d3eLsWbZsmXTnTUzZ84MgwYNMgtr0tbZmf6DQkQWCgEA9gCAAIABAQHIlHHVvXt35J4lAGCdOnVw/vz5+PTpUzQYDLLeqVOn8ryVKlXCqVOn4t27dzElJUXWu3XrVp63VKlS+Ntvv+Hly5cxMTFR1nv58mWet1ChQjhkyBA8ceIExsTEyHrd3NzQysrK6M2bNy/26tULnZycMCwsTNYbHh6OuXPnNnqzZ8+OHTp0wG3btuHHjx9lvcnJyVimTBmjN1OmTOjo6Ijr1q1DT09PWS8iYosWLYxeKysrbNy4Mf7555/4+vVrxec0ePBg3udVo0YNnD17Nj58+BDT0tJkvYsWLeJ5y5cvj5MmTcKbN29icnKyrHf//v08b/HixXHUqFF4/vx5jI+Pl/W6uLjwvAUKFMABAwbg0aNHMSoqStbr6+uLmTNnNnpz5cqF3bp1wz179mBISIisNyYmBgsUKGD0Zs2aFX/++Wf866+/0N/fX9ablpaGVatWNXptbGywRYsWuHr1anz//r2sFxHx119/5f2d69evjwsXLsTnz58rPuPx48fzvFWrVsXp06eji4sLpqamynrXrVvH85YpUwbHjx+PV69exaSkJFnv6dOned4iRYrgsGHD8PTp0xgbGyvrffnyJc9ra2uLffr0wYMHD+KXL19kvZ8/f8bs2bMbvTly5MBOnTrhzp078dOnT7LexMRELF68uNGbOXNmbN26NW7cuBF9fHxkvQaDARs0aGD0WltbY9OmTXH58uX45s0bxefUu3dv3t+5du3aOG/ePHz8+LHid3HWrFk8b8WKFXHKlCl4+/ZtxfN2x44dPG+JEiVw7NixePHiRUxISJD13rhxg+ctWLAgDh48GI8fP47R0dGyXg8PD7S2tjZ68+TJgz169MB9+/YpnrcRERGYN29eozdbtmz466+/4t9//42BgYGy3pSUFCxfvjzvvG3ZsiWuXbsWP3z4IOtFRHR0dOSdtw0bNsQlS5bgq1evFJ/xiBEjeJ9X9erVcdasWfjgwQPF7+LSpUt53rJly+LEiRPx+vXriuft4cOHed5ixYrhyJEj8dy5cxgXFyfrffjwIc+bP39+7N+/Px4+fBgjIyNlvQEBAZglSxbeedu1a1fctWsXBgcHy3rj4uKwUKFCRm+WLFmwXbt2uHnzZvTz85P1pqWlYc2aNXnfxR9++AFXrlyJbm5uis+pc+fOvL9z3bp1ccGCBfjs2TNF76RJk3jeypUr47Rp09DZ2VnxGW/atInnLV26NI4bNw6vXLmimPtcuHCB5y1cuDAOHToUT506pZj7uLq68nIfW1tb7N27Nx44cADDw8NlvaGhoZgzZ07eeduxY0fcsWMHBgUFyXqTkpKwZMmSvPP2p59+wvXr16OXl5es12AwYNOmTXnfxSZNmuCyZcvQ1dVV8Tn179+f93nVqlUL58yZg48ePVI8b+fNm2eS+/zxxx9469Ytxe/inj17eF57e3scPXo0XrhwQfG8vX37Ns9rZ2eHAwcOxGPHjinmPl5eXpgpUyajN3fu3Ni9e3fcu3cvhoaGynqjoqIwX758vPP2l19+wa1btypyXmpqKlaqVImX+/z444+4Zs0a9PDwkPUiIrZr1473d27QoAEuXrwYX7x4ofiMx4wZw/NWq1YNZ86ciffu3VP8Lq5atYrndXBwwN9//x2vXbummPscP36c5y1atCgOHz4cz5w5o3jePnv2jOfNly8f9u3bFw8dOoQRERGy3qCgIMyWLZvRmzNnTuzcuTP+888/+PnzZ1lvfHw8Fi1alHfetmnTBjdt2oS+vr6yXoPBgHXr1uWdt82aNcMVK1bgu3fvFJ+THGsqfRenTZvG8+phzZIlS+Jvv/2Gly5dUjxvr1y5wvNakjXbt2+vmjUdHBx4uU+rVq00s2ajRo1Us+aQIUN4n5ce1ixXrly6sOa9e/d4XpI1lXIfvaxpZ2dn9JqDNVetWqWKNdu3b8/7O+thzSpVqqQLa545c4bnTS/WDA4O/iqs6e3tLes1GAzYsGFD3nlLw5p9+vTh/Z31subkyZNVsebOnTt53hIlSuCYMWM0s+agQYNUseaHDx/QxsbG6M0orPnTTz/xztv0Ys1ly5bxvOZgzbNnzyrmPo8ePeJ5aVgzMDCQx5o5c+bELl26aGbNtm3bqmJNg8GAtWrV4n0X04s1//jjD543I7DmmzdvzMaa2bNnx44dO+L27dtVsWapUqV4560e1mzcuDEuXbpUFWsOGDCA93llBNa8c+cOz2su1lTKfaKiojB//vy889YcrOnu7i7rRRRnzUWLFqlizbFjx/K81apVwxkzZmhmzQkTJqhizRMnTvC8jDXln1OPHj14f2eONZ88eaKZNe/cuaOY+/z99988r17WHDx4sGrWFNbZe/bsqZo18+TJwztv04s1f/zxR955m16suXjxYp7XHKx57tw5zax55MgRxdzHz89PlDV3796tmTW3bNmiijWrVavGO2/1sGa9evVUs+aECRN4XhrWXL9+Pc+bXqz56tUrnjc9WdPe3p6X++hlzWXLlmlmzblz56pizdmzZ/O86cWaN2/e5HnTizWZLKuAgADyudujOXrizPGL/NcDWOPgf0KRkZEmySoZxYoVwxEjRogWg2JiYvDly5e8RIaM/PnzY79+/USLQQkJCejj44MFCxYU9coVg5KTk/Hjx49YvXp1US9ZDBLCSVpaGgYFBZk0aJE/LOWKQZ8+fTIBRzLkikGhoaG4fPlySS9XDBJ7Efblyxc8ePCgpLdUqVI4btw40abLqKgovHv3rqSXexF28uRJEziJi4tDNzc3zJEjh6g3b9682Lt3b9y/f79JMSgxMREDAgKwRIkSol6u6VKsGJSSkoJBQUHYqFEjUW/mzJnR0dFRtBhkMBgwKCgIe/XqJepVKgYFBwebNMSSUbNmTcliUFhYmEmhjgy5YlBERIRJskoGWQwSwkl0dDQ+efKEl8iQwRWDxJou4+Pj0cvLi9cwQAZXDBJ7EZaUlIQfP37EChUqiHqzZs2Kv/zyi+iLsNTUVAwKCuIVzcngikGrV68WLQZ9+vQJhw4dKvl51a9fX7IYFBISggsWLJD0Vq1aVbIYFB4ejrt27ZL0lilTRrIYFBkZidevX5f0yhWDYmNj0dXVFbNmzSrqlSsGJSQkoJ+fHxYpUkTyvOWKQUI44c7b2rVrS563XDFI2HTJfRc7deoked42a9YMly9fjm/fvjV5Tp8/fzZ5SUlGnTp1cN68eaLFoNDQUFy9erWkt1KlSjhlyhTRYtCXL1/w6NGjkt6SJUvi2LFj8dKlSyZwEh0djffv3+cVzcngmi7FikFxcXHo7u6OuXLlEvXKFYO487Z06dKS561UMYj7LjZr1kzUq1QMCgoKwn79+kmet1wxSOxFWHBwMM6cOVPys+aKQQ8ePBA9b4VNIWRwxaAbN26YnLeRkZF48eJFSa9cMSgmJgafP3/OK5qTwb0IEysGxcfHo7e3N685nQyu6XL37t2SuU+VKlUkz9t27drhli1bTF6EcbmPsGhOnrfNmzeXLAZ9+vQJR44cKfl5yRWDQkJCcMmSJZJeuWLQly9f0MnJSdJbunRpYzFILPe5deuWpJcrBp06dcqkGBQbG4tv377lFXHI4IpBBw4cMCkGJSQkoL+/P69hgAyuGLRjxw6T85bLferXry/q5YpBGzZsMCkGcedtt27dJL+LXNOlWDHo8+fPJg2xZNSqVUuyGBQWFmZSqCOjQoUKksWgiIgIPHnypKRXrhgUHR2Njx494hXNheetVDEoLi4OP3z4wGsYEJ63XDFI2HSZlJSEgYGBWLZsWVEv13gg9iKMO2/JornwvOUaD8SaLoOCgnDgwIGSz7hhw4a4ePFifPnypeh3ce7cuZKfdfXq1XHmzJl4//590dxHWKgjg2u6vH79umjuo4c1X716xWsYEJ63X5M1a9SoIeo1F2uKvQhTy5piA36hoaG4YsUKSe/XZE1nZ2dJr17W7NWr11djzcaNG0t+F78mawpfUpJhDtYUexEWERGBZ8+elfTKsWZMTIxFWbNixYqiXrmmSzWsyQ34SbHmsGHDJD+vr8mau3fvlvTKsWZUVJRJEx4ZRYoUMbKmWO6jljXFcp+vzZpiA37cd1HYoEWet3pYk2u61MKa3ICfFGseO3ZM0msu1hTLfdzd3XnN6WToYc1s2bIZWVPYdMl9F3/44QfJ8/ZbZU1hUwgZ5cqVw4kTJ2piTXLAj7Gmftb8888/Jb3mYE2xpsuoqCiTgS/heauHNbmmSy2sKTXgx+U+5CA0GVzT5ddiTWFDLBkZkTXt7Oy+KmuWK1dO8rzVyppKA35BQUE4aNAgyWeshzW5Ab+vwZpXr16V9BYtWvSrsaavry+vOZ2Mr82awgYtLpRY8/Pnz/jbb79Jfl5169aVvExGDWtKDfh9+fIFDx06JOmVu0xGL2u+f/+e15xOxrfImoj/fheFF0+Q30VzsKZY02VYWBhu3rxZ0quHNeUG/GJiYvDp06dfjTWlBvzMwZqtW7eWPG+/JmsuXLhQ0mtp1hRruoyNjcU3b97wmtPJ4FhTrOlSLWuKNV1y522dOnUkz1s9rMkN+ImxJpNlxRoHWeMgkw7JJYvCEBaD1qxZo9rLFYO4CVw5cBNLiMhi0IsXL1R7Af4tBnETuBEREVRebgKXKwZJFWDEQlgMqlevnmqvsBjUs2dP1V5hMWjGjBmqvcJi0LZt21R7hcWga9euUX3WXDHo2bNn+OHDBypvlSpVjBO4KSkpVF5hMUiqGCoW5ARubGwstmzZUrVXWAySSxaFISwGyTVlCENYDJJ7SSgMYTHo/v37VJ81WQz69OkTlVdYDJKCPrHgikHcBC45PaUUwmJQx44dVXu5YhB329Pvv/+u2iucwN2wYYNqr7AYJAduYsHd9vTy5Ut0dXWl8pLFoJiYGCqvsBhUuHBh1V5hMUgKzsWCLAZFRERg3759VXu5YhA3gTtnzhzVXmExSK4hVRhcMYibwBVOTykFWQzy9fWl8gpve5IqpIqFsBgkVQwVC2ExSArOxUJYDBo1apRqr7AYJFcoEwZZDPL09JRtSBWG8GbhJ0+eUD0nshgUGhpK5RXeLCxV8BYLYTFI6kWwWAhvFu7atatqr7AYNGXKFNVeYTFoy5Ytqr3CYtClS5eoPmuyGOTm5kbl5YpBLi4umJCQQOUVFoPIaVWlEBaDpF4Ei4WwGCT1YkIshBO4ck0ZwhDeLLxv3z7VXmExSK5oLRZk44GgcKEYwsYDqYYOsRA2HpA3dSiF8GbhX375RbVX2HighTW52570sOapU6dUe4W3PelhzcjISCqvOVlTqulYLL4V1ty+fbtqL8mabm5usi8JxaJevXrGAT9PT08qr17WJG970sOarVq1Uu01J2vKNWUIw1ys6erqig8ePKD6rM3Bmrdu3dLNmlIDrmIhvO2JhjWFNwtPnDhRtdecrHnu3Dmqz5pkzTdv3lB5zcmaUi+fxEIPa+bLlw/79etnHPCTaoITC72sSd72pIc15YZxxIK8WVgva0q9RBYLc7JmmzZtVHuFrDl69GjVXpI1P378qIs15RpShaGXNcnbnsLCwqi83wprSjXBiYXwZmE9rPnXX3+p9pqLNZ8/f47v37+n8pKsmZiYSOUV3vakhzWbN2+u2iu87UkPa8o1ZQjjW2HNwMBAKq85WbNy5cqqvXpZk7ztady4caq9elmTvFlYD2sKb8RWCvJmYb2sSd5EpxTmZE2pgSuxELKm3ACAMIRbbPSwppb3mlpZU3izMI33W2HN4cOHq/aakzXlGlKFYQ7W5Ab8Pn/+TOUVsqbUpRFiIbxZWA9rSl3uIRbmZM2NGzeq9n4rrBkbG0vlpdliw/T1xRoHWeMgkw7RvMwRBk0jnDCkurzVBM0PR2GQ60Roo1ixYlQ/1MmwtbXlreqjiaxZs/JWEtGEtbW1rs9azzOmKeAIQ+vfFwB466Bpo1ChQlQQRUauXLkkb59RisyZM0tOmimFlZUV70p/2tDz34fWPzMASE7zqIkSJUpITqgoRf78+bFYsWKavNmzZ6d68U6GjY2Nru+Epc5bmiZLYdAU6oVRtGhRqgIyGXny5KECZTKyZs2q+e+s97uo5xmTa5RoQ+pWATVRpkwZqsZBMuzs7CSnc5UiZ86cmn+eZ8qUibfiOD2fU0Y8b+3t7SVvglKKfPnySU7nKkW2bNk0/7dpY2Pz3eU+WvMPgH+LheTqKJrInTs3b10NTWTJksViuY8er57zQ2sOAfDvy3CpW96VokCBAlQNEmTkyJFD8xmSKVMmXT+fGGuqj7x58zLWpAi9uY9Wr17W1Jpb62VNS30X9Zy3lmRNqZuglCKjsqae39eSrGlra6vJq4c1s2TJ8t2xJk0ziTAYa9KFpVhTagOJmsiIrGltbZ0hz9uMyppaf+8sWbJozukZa9JFgQIFeGuKaYKxJl3oZU2pW4eVgrEmXehhTa31NYCMyZoA+s5MS523GZU1tebljDXpokiRInjgwAF2C6EF9TUaB62BiYnJRJkzZ4bWrVvDxo0bwdvbG/r06aPaa21tDU2bNoVly5bBmzdvYPbs2VS/d+3atWHu3Lnw+PFj2Lt3L5W3QoUKMHnyZLh9+zY8fPiQyluiRAkYM2YMXLx4Eby8vCBr1qyqvXZ2djBo0CA4fvw4+Pv7Q6FChVR7c+fODT169IB9+/ZBYGAgVK1aVbU3W7Zs8Ouvv8Lff/8N/v7+0KZNG9VeGxsbaNmyJaxduxY8PDxgxIgRqr1WVlbQsGFDWLJkCbx69QpWrFih2gsAUL16dZg1axbcv38fTp48SeUtW7YsTJw4Ea5fvw5ubm5U3qJFi8KIESPg7Nmz4OPjA7ly5VLtzZcvH/Tr1w8OHz4MAQEBULJkSdXenDlzQpcuXWDXrl0QEBAA9evXV+3NkiULtG3bFjZv3gw+Pj7QpUsX1V5ra2v44YcfYOXKleDm5gaTJ09W7QUAqFu3LixYsACePXsGf//9N5W3cuXKMG3aNHB2doabN29SeUuVKgXjxo2DK1euwIcPH8DGxka1t1ChQjB06FA4efIk+Pn5Qf78+VV78+bNC71794b9+/dDYGAgVKhQQbU3e/bs0KFDB9i+fTv4+/tD8+bNVXszZcoEjo6OsH79evD09IQBAwao9lpZWUHjxo1h6dKl4OrqCvPnz1ftBQCoWbMmzJkzBx49egQHDx6k8pYvXx7++OMPuHXrFjx79ozKW7x4cRg9ejRcuHABvLy8IFu2bKq9BQoUgIEDB8KxY8cgICAAihYtqtqbO3du6N69O+zduxcCAgKgRo0aqr1Zs2aFX375BbZu3Qp+fn7w888/q/ba2NjAjz/+CKtXrwZ3d3cYO3asai8AQP369WHRokXw4sULWLt2LZW3WrVqMGPGDLh37x6cP3+eylumTBmYMGECXLt2Dd6/f0/lLVKkCAwfPhzOnDkDvr6+kCdPHtXefPnyQd++feHQoUMQGBgIpUuXVu3NkSMHdO7cGf755x8ICAiARo0aqfZmzpwZ2rRpA5s2bQIfHx/o0aOHaq+1tTU0a9YMVqxYAW/fvoXp06er9gIA1KlTB+bPnw9PnjyBnTt3UnkrVaoEU6ZMgTt37sDdu3epvCVKlICxY8fCpUuX4MOHD5A5c2bV3oIFC8LgwYPhxIkT4OfnB3Z2dqq9efLkgZ49e4KTkxMEBgZCpUqVVHuzZcsG7du3h23btoGfnx+0atVKtTdTpkzQqlUrWLduHXz48AGGDBmi2mtlZQWNGjWCP//8E16/fg1//vmnai8AQI0aNWD27Nnw8OFDOHbsGJW3XLlyMGnSJLhx4wa8fv2aylusWDEYNWoUnDt3Dnx8fCBHjhyqvfnz54f+/fvDkSNHICAgAIoXL67amytXLujWrRvs3r0bAgICoHbt2qq9WbJkgXbt2sGWLVvA19cXOnTooNprY2MDzZs3h1WrVsH79+/h999/V+0FAKhXrx4sXLgQnj9/Dps3b6byVqlSBaZPnw4uLi5w9epVKm/p0qVh/PjxcPXqVXB3dwdra/VlisKFC8OwYcPg9OnT4OfnB7a2tqq9tra20KdPHzhw4AAEBARA2bJlVXtz5MgBnTp1gh07doC/vz80bdpUtZdjzQ0bNoCXl5cu1pwzZ45qLwBArVq1zMKajx49ovLa29ubhTUDAgKgcOHCqr3mYk0/Pz9drDly5EjVXo41Fy9eDC9fvtTEmjNnzoT79+/D6dOnqbwODg7w+++/M9ZUIXOx5tOnTzWz5t27dzWz5uXLl9OdNXv16mUW1mzRooVqrzlZc+HChaq9AHzWPHToEJXX0qx59OhRzay5Z88eCAwMhJo1a6r2cqz5119/WZQ1161bR+WtWrWqkTUvXLhA5RWyppWVlWqvuVgzICAAypQpo9orZM3GjRur9nKsuXHjRt2sOWPGDNVegH9Zc968ebpZ08XFhcr7rbBm5cqVVXtJ1vT39wdHR0fVXiFrDh06VLWXZM1Xr15pZs0HDx7A8ePHqbwka7q6ulJ5ixUrBiNHjoRz586Bt7d3urJm165djaxZp04d1V4ha3bs2FG191thzWvXrlF5Oda8cuVKhmXNZs2aqfZmzpwZfvrpJ02saWVlBU2aNDELa+7bt4/K+y2wpr+/vy7WrFatmmqvkDXbtm2r2sux5po1a3Sz5sqVK1V7Af6ts3/PrNmgQQPVXpI1fX19oWvXrqq93wpr3rp1i8pbsmRJ+O2334ysmSlTJtXeQoUKwZAhQzI0aw4cOFC191thzefPn1N5OdY8f/48eHt7Q9++fak4hikDyBzdh//1AHbj4H9CYWFheOHCBcnuaOF1tqQiIyPxyZMnkhNJwutsScXGxqK7uzsWLFhQ1Js1a1bedbakkpKS0NvbW3JCh7zO1t3dnedNS0tDHx8f/PXXXyX/zuR1tsKucD8/P9m1E+R1tqmpqTzvx48fZa9eFq5OIRUcHIxOTk6SXm51ypkzZzAuLo7n/fLli+waS+HqFFLR0dH4+vVryQlQ4eoUUvHx8ejp6Sk5AUquTvHx8eF5k5OT0cfHBxs1aiTqtba2xmbNmhlXp5DPyWAwoI+Pj+zKLXJ1SlpaGu/3DggIwMmTJ0t6hatTSH369El2zU/JkiV5q1NIhYaGyq7wJlenREdH87wRERH44MEDyTUu5OqUsLAwnjcmJgbd3NwwX758ol7h6hRSiYmJ6O3tLTlhzK1OWbduHXp6evK8qamp6OPjgz/99JOoV7g6Rfhd9PX1xSFDhkh+XuTqFOEzDgwMxHnz5kl6y5Urx1udQurz58+4Y8cOSa9wdQqp8PBwvHz5sqSXXJ0SGRnJ80ZFReHz588lV0cIV6eQiouLww8fPkjeNiRcnUIqKSkJfXx8JKd7yNUp79+/53m581Zu5Ra5OkX4jP39/WXXTlStWhWnT5+OLi4uJudtUFAQrly5UtLLrSjnVqeQCgkJkb3qvnDhwjhs2DDj6hRSX758wbt376KVlZWoV7g6hVR0dDS+efNG8rYh4eoUUgkJCejl5SV5+wW5OsXb25vnTUlJQR8fH2zWrJnkeUuuThE+Jx8fH9n1zuTqFLHzdvr06ZJebnUKt6Kc1KdPn3Dz5s2S3hIlSuDYsWPx4sWLmJCQwPOGhYXJrvAWrk4hFRkZiY8ePcJMmTKJesnVKWK5z/v37yVXUWbLlg1//fVX4+oUUtx5KzW5KlydQoo7b9u2bSt53pKrU8RynxEjRkh+XuTqFOEz/vjxIy5atEjSS65OEct99uzZI+klV6cIc5/w8HDZ1SLc6hRuRTmpqKgofPnyJWbPnl3UmzNnTuzatSvu2rULg4ODeV4u95GaACVXp/j6+vK8XO4jtQLG2toamzdvjitXrkQ3NzfR3Edu5Ra5OkXsvP39998lvcLVKaSCgoJk1/yUKlWKtzqFVGhoqOxaNXJ1SkxMDM8bERGBLi4ukjfR5M2b17g6JTw8nOeNiYnBd+/eSd5smz17duPqFGHuk5CQgN7e3pK3X5CrU7y8vHhe7rz98ccfJb+L5OoUsdxnwIABkp8XuTpFLPeZPXu2pLd8+fL4xx9/4K1bt0Rzn23btkl6ydUpwtxHL2s+ffoUs2TJIuqVY824uDjdrCk1NW8u1nzx4oVm1rx3754oay5dulTSK7c6RS9ryq2x1MuanTt3/mqsKbVu9GuzptyKQ3OwJrc2jlR6sCa3opyUWtbctm2bJGtK3eiglzUbNWr0TbLmzp07Jb1KrHnlyhVJr7lYU5j70LCmn58fz6uWNVetWiXJmnIrtxhr/k8ca0rdNvS1WfOHH36QPG/NwZqPHz82O2tu2bJF0quHNe3s7HDQoEGSrPn48eMMyZrt2rWTPG/NxZpiuc/ixYslveZgTW5FOanw8HC8fv26pNdcrCmV+8ixZtu2bWVZs0GDBpLfxR9++EEza9atW1eWNeVWHFqKNQsVKiTLmvfu3bMYa0rddGQO1ly6dKkkaw4cOFDy8/pWWfPixYuy5+3XYk0PDw/Jm22/Nmu2b99e8u+sxJpjxoyR9OphzTJlyuCECRNEWTMkJAT3798v6eVWlJ85c0Y091Fizb59+8qyZs6cOSXP22+NNRH/zX3k1jt/TdaUWylrDtY8ceKEWVkzNjZWljW5FeXbtm2TzH3kWLNVq1ayrNm6dWvJ8/Zrsub8+fMlvXKsGRwcbDHWfPHiheRNi+ZgzS1btkiyptTNpXKsyeU+cqxZr149XLhwoShrMllWbFUxaxxk0qnevXvzDryqVavijBkzRJNEoWbOnKk6SRRK2HwjlyQKJQR0MkkUFsiE8vDw4IFfjhw5jEmisEAmVEREBA/8MmfOjG3atMGNGzeaJIlCpaSk8MCPSxKlCmRCOTo6miSJUs0YQg0fPpzn5Qpkd+7cMUkShRJCAVcgE0sShTp8+DDPyzVjiCWJQj18+JDnzZMnD/bs2VM0SRQqICCAB35ySaJQsbGxPPAjk0RhgUyotLQ03jXXZJIoViATSpiI1KhRQ7IZQ6hJkybxvGSBTJgkCrVp0yaeV64ZQ6jz58/zvFyB7MiRIyZJolCurq68oneuXLmwa9euuHv3bpMkUaiQkBAe+HHNGGJJolBJSUm8K/ZtbGywefPmokmiUAaDAZs0aaI5Sezfvz/PW6VKFZw+fbpogUwo4Qso7oWEWIFMqN27d/O83AsJsQKZULdv3+Z5uRcSYgUyoby8vHjgRxbIgoKCZL1RUVE88JMrkAmVmprKW9NBNmO8efNG8TkJG6xq1aqFc+fOFX0hIZSwCFOhQgWcPHmy6AsJoYQvoOzt7XHMmDGiLySEOn78OM9LvpAQFsiEevr0Kc+bO3du7NGjh2iBTKigoCAe+HEvJMQKZELFx8fzVprY2Nhgy5Ytcc2aNejh4SHrNRgMPPDjXkhINf4L1b17d97fWa7xX6ipU6fyvHKN/0Jt3bqV5+WaMcReSAglBHSuGUPshYRQbm5uvPOWa/wXeyEhVHh4OO8lo9wLCaGSk5N5ax25FxJSBTKhWrRowfs7cy8knj59qugdPHgwz1u5cmXJAplQwmZHucZ/oYQFUbIZQ+m8dXFx4XnJxn+l89bX15c3zCPX+C9UTEwM7yUj14yxfv16kwKZUGlpabzVM1zjv9QLCaGERe+aNWvinDlzRAtkQo0fP57n5V5IiBXIhFq3bh3PW7x4cRw9erRogUyo06dP87xkgUzpvH358iXPK9f4L9Tnz595LxnlGv+FSkxM5L1kJBv/hS8khDIYDNiwYUPen5trxhB7ISGUHtacNWsWz2sO1hRrxhDqxo0bJuetXtYUa8YQSo41hc0YQqWkpPDWVyk1YwglZE25xn+hhC/8MwJrPnr0iOdNL9aMi4szO2tKNWMI1blzZ97fOSOwprDxOL1YMzQ01GysyTX+r1q1yqQZQyiDwYBNmzbl/Z051hRrxhBK2FyeXqwpbL6Ra/wXSsiacs0YQnl5efEarDIKawobrMzFmkrfxVWrVvG85mBNsWYMoZ49e8bz6mFNuWYMocRYk2vGUMOawvV3ckPmQulhzWnTpvG8GYU1ydzHXKypVGdPTk7mrXXUy5pkM4aSV/jCPyOw5r1790zO2/RiTXJ9prlYU6wZQyg9rDlhwgSeV64ZQygx1pRqxhDqzJkzPG96sWZwcHCGZM0+ffrwvOZgTbHGf6GEzTd6WFOu8V+oDx8+8Orsco3/QkVERKCtrS0v95Fq/BdKL2sKh3nSizWXLVvG834LrKmU+wQGBoqypljjv1BSrCnW+C+UwWDgrf/Wy5pyQ+ZC/fHHHzwvDWsKLxVIL9Z88+bNV2FNpTp7UlISlipVivdd1MuaUo3/QomxplTjv1DCZke5xn+h9LDmnTt3THKf9GBNJsuKNQ6yxkEmHXr79i1mzZpVdZJIKjQ0FPPmzYtNmzZVXSDjlJSUhKVLl8batWurLpBxMhgM2KxZM6pmDFIDBw7EEiVKqC6QkVqwYIHsdKic9u7dayyQiU2Hyunu3buy06Fy8vb2xuzZsxunQ5UKZKSio6PRzs5OdjpUSqmpqVilShVjkqimQEbq559/NiaJagpkpH777TeqAhmp1atXUxXISJ08eZKqQEaKm/BX24xB6tOnT5grVy7J6VA5JSQkYPHixWWnQ6VkMBiwXr16stOhcurZsydVkkhq+vTpxulQNQUyUtu2bTMmiWoKZKSuXr1KVSAj9f79e8yWLRv+9NNPuH79esUXEqS+fPmC+fLlo2rG4JSSkoJly5Y1FsjEpkPl1LJlS9npUDkNHTrU2IwhNh0qpyVLlmCBAgUkp0PldPDgQd50qFKBjNT9+/d5LySUCmSk/P39MUeOHPjjjz+qKpCR4pqWaQpknNLS0rB69epYrVo11QUyUh06dKBqxiD1+++/UzX+k9qwYYPsdKiczp49y2v8pzlvX79+jVmzZpWcDpVTcHAw5s6d2zgdqqZAxikxMRFLlixpfCGhpkDGyWAwYOPGjbFSpUqqC2Sk+vbtKzsdKqc5c+ZQFchI/fPPP1TNGKRu3bpF1YxB6sOHD5gtWzbVzRikIiMjMX/+/LLToVJKTU3FihUryk6Hyql169ZULyRIjRo1CosVK4ajRo3Cc+fOUZ23y5cvpyqQkTp69KjxhYSaAhmpJ0+eYNasWVU3Y5AKDAzEnDlzqm78J8W9SNYyHWowGLB27drGZgyxm4jk1LVrV95NRDS5z+TJk2VvIpLTli1bqF5IkLp06ZLxhQRtgUwPa4aFhelmTZpmDE4GgwF/+OEHXaxJ04xBSg9r7tu3zyKs6ePjYxbWVNuMwUkva/7yyy9UzRik9LDmmjVrGGtSnLf169c3sqaaZgxSelhzxowZullTbTMGqWvXrmlmTXd3d8yWLZvqZgxSelmzXLlyFmHNYcOGmYU11TRjkNLDmg8ePDCypppmDFJ6WbNw4cK6WJOmGYNUx44dNbPmxIkTLcKa586doxoyJ0Wyppohc1IhISGYJ08e3aypthmDk17W7NevH1UzBik9rLlr1y6LsKanp6fZWJO2zq6HNdu0aWNkTTXNGKQ41lTbjEFqxYoVullTbTMGKT2s+fHjxwzPmrS5z5QpU8zCmmqaMUjpYc13795h1qxZVTf+k9LDmtyArCVYc9CgQZpZc+HChVRD5qT0sKazszOPNWl6CUjWVNP4Tyo6OhoLFiyoizVpGv9J6WHNcePGWYQ1T506lSFZ097enmrInJNe1uzVqxdV4z8pjjXVNv6T2r59e4ZjzYiICIuxZqtWrczCmmoa/5m+HbHGQdY4yKRDPj4+VEkiqaCgIKokkdSXL180/3eTkJBAVSAjZTAYqH4wCfXmzRuqJJGUm5sbVZJIytPTkypJJOXv70+VJJIKDg6mShJJRUVFURXISCUnJ6uaDhWTwWDAN2/eUCUQpN6+fUuVJJJyd3enAjZS3t7eVAUyUoGBgVQFMlJhYWFUSSKpuLg4qiSRVFpaGhWUC6XnGbu5uVEliaQ+fPigOUn09fWlKpCR+vTpE1WBjFRERATVCwlSiYmJVAUyUnrP27dv32o+b9+/f6/5vPXy8qIqkJEKCAigasYgFRISQvVCglR0dDRVMwaplJQUqhcSQrm6umr+Lr57984i562Pj4/m8/bjx4+ac5/w8HCqFxKk4uPjqV5IkDLHeWuJ3OfDhw+acx8/Pz/Nuc/nz581n7eRkZFUBTJSSUlJVAUyUpY8b93d3akKZKS8vLyoCmSkAgICqApkpEJDQzXnPrGxsVQvJEilpqbq+i7qPW+15j4eHh6acx9LsqbW3IexJp0yImumpKQw1qQQY0066TlvMypr0jRjkEpKSmKsSaGMyJqpqakZkjU9PDwYa6oU93Mxo+U+lmRNrbmPHtZMTk7OkKz5/v17xpoqpZc1LZX76GFNX19fxpoUsiRras19vjfWRNSX+3yPrKk197Eka1qqtsdYU730nrdMltXXaBy0wn8b476KrKys6gBAOwD4AQCqAUAhAEgBgCAAuA8A/yCiM8Wv1w4ARgJAAwAoCAChAPAYALYj4mXz/ul5v689AAQAAAQEBIC9vf3X+q2YmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIwKDAyEEiVKcP9YAhED9f6amfT+AlKysrK6AwDNRf5VFgAo//8xyMrKygkAhiNissyvZQUAf8O/TYOkigNAFwDoYmVltR0ARuPX7IRkYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYsrgsv6Kv3bx//9/gwBgAwB0h39vCmwMAH8AwMf///cDAGCPwq+1BP7XNPgCAPr8/6/V5///Gf7/3y82w5+biYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiek/q6+2qtjKyuo8AOwDgBOImCby7+0A4B4AVPj//1NzsbXFVlZW5QDADf69HfHp///vEoh/nwMA7gBAPQBIBYBKiOhl5r8LW1XMxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTElO76GquKv9qNg4jYHhGPijUN/v+/DwOAycT/qbvELzUJ/rdSeTzZNPj/v048AIz//3/MBAATNf+hmf7Tio6OBq2NsrGxsWAwGDR54+PjISUlRZM3OTkZEhMTNXkREWJiYjR5Af79vDKaNyYmRtczTksTPa4UlZCQAMnJktvWZZWamgrx8fGavIiYIZ+Tnu9iTEyM5u9iXFwcpKamavImJSVBUlKSJq/BYIDY2FhNXoCM+V201HmbkJCg+bxNSUmBhIQE5f+hiDLyd1Gr9Jy3cXFxms/bxMREzedtWloaxMXFafICZMznZKnzNj4+XvN5qyf3MRgM313uo/e81ZP76DlvWe6jXnrPW63fxcTERM25T1paGst9KMRYM2N4GWvSKSN+FxlrZhwvY031yoheS7KmntyHsaZ6ZUTW/B5zH8aadMqIz4mxZsbxZkTW1JP7fG/nraVYU0+dXQ9rAmTM58RYk07f2zP+HlmT6b+nr7mqWI1uE///ssJ/aWVlZQUAnf7/H98j4kOxX+T//+/u//+Pnf/fx8TE06tXr8DBwQEmTJgA165do/phGRYWBqVLl4bhw4fD6dOnqYpBaWlpUKVKFejbty8cOnQIIiIiVHttbGygefPm0LlzZ9i5cyd8/vxZtdfKygoGDBgAbdq0gY0bN4KPj49qLwDAnDlzoGnTprB8+XJ4+/Yt1Q/LHTt2QJ06dWDevHnw5MkTqh+WN27cgIoVK8KUKVPgzp07VAmRp6cnlC5dGsaOHQuXLl2iKgbFxsaCg4MDDB48GE6cOEEFJ1ZWVlCrVi3o2bMnODk5QVhYmGqvjY0NtGvXDtq3bw/btm2Djx8/KpuI33fs2LHQqlUrWLduHXz48EG1FwBgxYoV0KhRI1iyZAm8evWK6hkfPnwYatSoAbNmzYIHDx5Qwcnjx4+hXLlyMHHiRLhx4wYVnAQFBUHp0qVh5MiRcO7cOSo4SU5OhgoVKkD//v3hyJEjEBUVpdprY2MDDRs2hK5du8Lu3bshJCREtdfa2hp69OgB7dq1gy1btoCfn59qLwDA1KlToXnz5rBq1Spwc3Ojek6bN2+GevXqwcKFC+H58+dU3gsXLkCVKlVg+vTp4OzsTPVdfPv2LTg4OMD48ePhypUrVOdtREQElC5dGoYOHQqnTp2ighODwQBVq1aFPn36wIEDB+DLly+qvTY2NtCqVSvo2LEj7NixAz59+qTaa2VlBUOHDoWffvoJNmzYAN7e3qq9AAALFiyAJk2awLJly+DNmzdUz2nPnj1Qq1YtmDt3Ljx+/JjqvL1z5w5UqFABJk+eDLdv36aCE19fXyhdujSMGTMGLl68SAUn8fHxULZsWRg0aBAcO3aMCk6srKygTp060KNHD9i7dy+Ehoaq9lpbW0OHDh3gl19+ga1bt0JAQIBqLwDA+PHjoWXLlrBmzRrw8PCg8q5evRoaNGgAixcvhpcvX1I94+PHj0O1atVg5syZcP/+farz9vnz51C2bFn4/fff4fr161TnbUhICJQuXRpGjBgBZ8+epcp9UlJSoGLFitCvXz84fPgwREZGqvba2NhA06ZNoUuXLrBr1y6q3Mfa2hr69u0Lbdu2hc2bN4Ovr69qLwDAzJkz4YcffoAVK1bAu3fvqJ7Ttm3boE6dOjB//nx4+vQp1XfxypUrULlyZZg6dSrcvXuX6rz18PCA0qVLw2+//QaXL1+myn2ioqLAwcEBhgwZAidPnqQuBlWvXh169eoF+/fvh/DwcNW+TJkyQevWraFDhw6wfft2CAoKUu21srKCkSNHgqOjI6xfvx68vOgumv/zzz+hcePGsHTpUnj9+jXVM96/fz/UrFkT5syZAw8fPqR6xvfv34cKFSrApEmT4ObNm1TnbUBAAJQqVQpGjx4N58+fpzpvExMToXz58jBgwAA4evQode7ToEED6NatG+zZs4c69+natSv8/PPP8Ndff4G/v79qLwDAH3/8AS1atIDVq1eDu7u7soHQ+vXroX79+rBo0SJ48eIF1TM+c+YMVK1aFWbMmAH37t2jOm8tzZp9+vSBgwcPpitrDhw4EFq3bp3urLlz506oXbt2hmPNsmXLWoQ1f/75Z2jfvj38/fffEBiofvjYkqx55MgRqF69erqz5qdPnyzGmo0aNcpwrLllyxaoV68eLFiwAJ49e5ZurPnu3TsoU6YMjBs3Lt1Zs1q1atC7d+8MxZoLFy60CGvevXvXyJq3bt3KEKxpbW0NdevWhe7du6c7a06YMAF+/PHHdGfNEydOZEjWrFSpEvTr109TnV0ra1pZWUG/fv2gbdu2sGnTpgzDmlevXoVKlSqlO2tGR0fzWJO2CUgPa7Zp08bImrR19lGjRoGjoyOsW7cOPD09qf7MeljzwIEDULNmTZg9e3a6smZgYCCUKlUKRo0alaFYs1u3bhZhzQ0bNhhZk7bOroc1X79+bWTNq1evZgjWzJQpE/z444/QqVMn2LlzJ3Xuo4c1586daxHWvHnzpmbW9PLyMrLmxYsX0401AQBq164NPXv2hH379qUbawIAjB07Flq2bAlr167NMKz55MkTi7AmV2fnWJO2zq6HNXv27KmZNadNmwbNmzeHlStXpitrXrx4ESpXrgzTpk1jrKkgKysrGDZsmJE1aevsTP9BIaLFAgDyAwD+f5wV+fcOxL//W+HX2kb8b8uY+c9pz/3aAQEByJRx5ejoyP03grlz58Zu3brhnj17MCQkRNE7fPhwozdr1qz4888/419//YX+/v6K3qVLlxq9NjY22KJFC1y9ejW6u7sreg8dOoTEf9tYv359XLRoET5//hwNBoOs9+HDhzxv1apVccaMGXjv3j1MTU2V9QYEBGCWLFmM3jJlyuCECRPw6tWrmJSUJOuNjY3FQoUKGb1FihTB4cOH4+nTpzE2NlbWm5aWhjVr1jR68+XLh3379sWDBw/ily9fZL2IiJ06dTJ6c+TIgZ06dcKdO3fip0+fFL2TJk0yejNnzoytW7fGjRs3oo+Pj6J306ZNRq+1tTU2bdoUly9fjm/fvlV8TufPn+c9p9q1a+O8efPwyZMnmJaWJut1dXVFKysro7dixYo4ZcoUvHPnDqakpMh6Q0NDMWfOnEZvyZIlcezYsXjx4kVMSEiQ9SYlJWHJkiWN3oIFC+LgwYPxxIkTGB0dLes1GAzYpEkTozdPnjzYs2dP3LdvH4aFhcl6ERH79+9v9GbLlg3bt2+P27Ztw8DAQEXvvHnzjN5MmTJhq1atcO3atfjhwwdF7+7du41eKysrbNSoES5ZsgRfvXql+Ixv377Ne8bVq1fHWbNm4YMHDxSfsZeXF9rY2Bi9ZcuWxYkTJ+KNGzcwOTlZ1hsVFYX58uUzeosVK4YjR47Ec+fOYXx8vKw3NTUVK1WqZPTmz58f+/fvj0eOHMHIyEhZLyJi27Ztjd5cuXJh165dcffu3RgcHKzoHTNmDO+8bdeuHW7ZsgX9/PwUvStXruSdt82bN8dVq1ahm5ub4nM6fvw47znVq1cPFy5ciM+ePVP0Pn36lOetUqUKTps2DZ2dnRXP26CgIMyWLZvRW7p0aRw3bhxeuXIFExMTZb3x8fFYtGhRo7dw4cI4dOhQPHXqlOJ5azAYsE6dOkavra0t9u7dGw8cOKDqvO3evTvvvO3YsSPu2LEDg4KCFL1Tp07lnbc//fQTbtiwAb28vBS9W7du5X0XmzRpgsuWLcM3b94oPqfLly/znlOtWrVw7ty5+OjRI8XvopubG++8rVChAk6ePBlv3bqleN6Gh4dj7ty5jd4SJUrgmDFj8MKFC4rnbXJyMpYpU8botbOzw0GDBuGxY8cwKipK1ouI2KLF/7F31tFRZNsa38GDu7sHS9DB3ZMwDMNAcB8sWBoN7u6e4O6ugeBOsOAS3CHBEuK93x9zT73TVafkdHXSZKa+tfZ6973HNwOpW4fz27WllsXdp2XLlrh27Vr89OmTqrdz584W523Tpk1x6dKlmu7DEyZMsHgXa9eujbNnz8ZHjx6pejds2GDxnCpVqoQTJ07Emzdvqj7jc+fOWXhLlSqFI0aMwAsXLqi+i8+fP8ekSZMK3oIFC+KAAQPw+PHjqnefHz9+YObMmQVvjhw5sEePHrh3714MCwtT9MbGxmLJkiUtztt27drh5s2b8cuXL4peRERXV1fBmypVKvzjjz9w5cqV+P79e1Vvv379BG+yZMmwUaNGuHDhQnz+/Lmqd+7cuRZ3n+rVq+P06dPx3r17qs9pz549Fs+pfPnyOHbsWAwICFD13rx508JbvHhxHDJkCJ45c0b1XXz//j06OjoK3nz58mHfvn3xyJEjqudtREQE5sqVS/BmzZoVu3Tpgrt27cIfP34oes1mM/7222+CN126dNi6dWvcsGGDpruPh4eH4HV0dER3d3f08fHBN2/eqHq9vb0t7j716tXDefPm4ZMnT1S9vr6+FudtlSpVcPLkyRgYGKj6nPz9/S2ek7OzM44cORIvXbqket4+evQIEyVKJHiLFCmCgwYNwhMnTqjefb58+YLp0qUTvLly5cKePXvigQMHVO8+0dHRWKRIEcGbKVMm7NChA27btk3TeauHNXv06GFx97EFaz548EDVu2XLFovnxMOaly9ftvAS1jx37lycsmZYWJiENbt16xYvrNm8eXOLu09CYM2DBw9aPKeEzJo7duzQxJrVqlUTvHpZ09XVFZctWxbnrLlmzRqL8/a3336LN9ZMkiSJ4LUVa6rdffSyZuPGjQVvfLLmzJkzLc7bmjVr4owZM6xizfLly+O4ceM0sea1a9csvAmFNcuXLy9445M1hw4danHe2oI1b9++rfqcjh49avGceFmTvvsULVoUvby88OTJk6rvol7WLFiwoODNnDkzduzYMV5Ys0uXLhbnbUJgzfPnz1t4CWtqybPbkzVLlSoluftoZU03NzfBq5c1GzZsGC+suXfvXovnVK5cOc2seevWLQsvD2t++PBBF2vmzp1b8BLW3LlzZ5yzZps2bQQvYc3ly5fHOWuuWLHC4rzVw5plypTRzJqPHz+2yLMnFNasX7++xd0nvlhz6tSpFuetXtYcP358nLPm69evJazZr1+/OGdNs9mMLi4uFnefNm3axAtrenl5Wdx9bMGaWvLseljzzp07TNY8depUnLNmvnz5BK9e1vzrr780s2aHDh0s7j48rDl27FiL87ZOnTrxwpqnT5+2eMY0a6q9i0+fPmWy5vHjxzWxZsaMGQWvLVhzy5Ytcc6affr0sbj7NG7cGBctWhTnrLlz506L56SHNZ2cnDSzpiH76tWrV/Szy422qImzxT/E6n85wB/UH2gG4//vSv3/B6r8swZRv7apjX+fRuHgv0RnzpyxOADpvyyrVq2KU6ZMkU0Gif+So8PZ2RlHjRolmwz6/v27xV9ydBQpUkQxGRQTE4NOTk5Mb+7cubFXr16KyaAmTZowvVqSQX379mV6tSSDZs2axfRqSQbt2rWL6aWTQXJFl9evX2d6Af5JBk2YMAFv3LjBfMbv3r2zSKjSoZYMCg8Px5w5czK9BQsWxP79++OxY8eYcGI2m7FChQpMb44cObB79+6KyaBWrVoxvVqSQcOGDWN6U6VKhc2bN1dMBi1fvpzp1ZIM8vPzY3q1JIMePHhgkVClgySD5OAkJCQE06ZNy/SSZJDch7Do6GgsVKgQ05s3b17s27cvHj58WDYZVKdOHaZXSzKoa9euTC/5ELZ+/XpZOJk0aRLT6+joKBRdyiWDNm7cyPSSD2Fz586VTQZduHBB9rytXLmyYjLo5cuXFglVOtSSQaGhoRYJVToKFy6smAyKjY3F0qVLM71akkHu7u5ML0kGKX0IGzBgANNLkkGrV6+WTQbNnz+f6SXJoMWLF8smg/bt2yd73taqVQtnzpwpmwwKDAyUPW9J0aVcMujDhw+YMmVKprdEiRI4bNgw2WRQREQE5smTh+lVSwaZzWasXLky06slGdS2bVumV0syaNSoUUyvlmTQypUrmV46GfT06VOm9+TJk7LnrVoySJxQpaNs2bI4evRovHLlCvNd/Pr1K6ZPn57pLVasGJpMJtlkUExMDBYtWpTpJR/ClJJBDRo0YHqzZMmCnTp1UkwG9ezZU/a8VUsGTZs2jenVkgzatm2b7Hmrlgy6cuWK7HlLkkFyH8Jev36NyZMnZ/pJMkiu6PLnz5+YPXt2plctGSROqNJBkkH79u2Tvfu0aNGC6SVFl0rJIJPJxPSSD2GrVq2STQYtXryY6SVFl0rJoMOHD8u+izVq1FBMBt29e9cioUqHWjLo8+fPmDp1aqaXTgax3sXIyEjMnz8/05svXz709PSU/RBmNpuxRo0aTC9deCB39+nYsSPTmy5dOvTw8MANGzZgcHAw0ztu3Dim19HREZs1a4Y+Pj6yhQfr1q2TPW/JhzC5wgMl1qxSpYoiaz579sxurFmiRAmm91dgTbm7z+zZs5ne5MmTJ0jWVGvw08uaFStWZHrjmjWHDx8ue97agjXlPoQdO3ZM9rxNqKzZp08fq1mTNPjJnbfdunVjeuOaNTdt2sT0amHNixcvyp63cc2aWbJkYXptwZpKDX7NmjVjevWyJvkQZg1rqhVd7t+/X/a8JQ1+ccGaHz9+jBPWzJ8/v8CacnefKlWqML1aWLNdu3ZMb1yz5qpVq5hewprz58/nZk0tDX5PnjyJE9YkDX5xxZoNGzZkeuOaNadPn8702oo15Your169KvuM9bKmUoOfGmsqFV2azWYsW7Ys05szZ07s0aNHnLHm4MGDmV5bsaZcnl0Pa967dy9OWVOu6DIqKipOWFNLg1+nTp2YXr2sSRr84oI1z549K/suxjVrZsqUiem1FWvK3X2aNm3K9BLWVCq69PT0ZHoJayoVXaqxplLR5e7du5lewppKw2SUWJM0+CmxJl24TIce1iQNfnHFmq1bt2Z6bcWacncfHx8f2fNWL2sqNfg9fPjQatYUFy7TUbx4ccUGP62sKXf3qVu3LtNLD5OJC9acPHmy7Hlrb9aUK7p8+fKlReEyHYQ15Rr8tLCmXINfbGwslilThunVw5q8DX6G4lf/qsJB+GdN8mXqD1SB8Wt6Uf//lir/vJbUr+3J+XvJrRIVyD/bKBxMuBo4cKBsol4c4mTQ/PnzNXtJMoh04O7ZswdTpEghC2B0iJNBt27dwhQpUsheJuggySBfX1989+4dfvv2DVOkSCGbhKGD7sAlyaBcuXLJJlPFf1mKk0HVqlWT/ctRHKQDlySD2rVrJ5tUEIc4GTRq1CjNz0mcDFqxYoVmrzgZ5O/vr/k50cmgT58+YVBQkObnRJJB5EOY2WzGFClSyIIfHaxkULFixTQ/499++82iA7dRo0aan7E4GdSrVy/Nz1jcgTtt2jTNz4l04JJk0NatWzW/i+Jk0KVLlzQ/Y3Ey6MOHD5qfMSsZlClTJk3PmE4GkQ9h5cuX1/ycxMmgli1ban5O4mTQ4MGDNT8ncQfuokWLNHvFyaADBw5ofsZ0B25wcDDevXtX8zMWJ4N+/vzJ9S6Kk0H58uXT/C6Kk0G1atXS/IzFyaBOnTppfsYkGUQ+hI0bN07zcxIng9auXavZK04GnT59WvNzEieDXr58qfldZHXgpkyZUtMzZk0WLlmypKZnDCBNBrm6ump+xuJkkKenp+aftTgZNHv2bK67D0kGhYaG4o4dOzS/i+JpT9euXeM6b+lkUHBwMNd527BhQ4sO3GzZsmk+b8XJoMqVK2t+TuIOXA8PD83vojgZNHz4cM3PSZwMWrZsGdfdh54sfPToUc3PWJwMevjwIdfdh54sHBUVxXXeipNBhQoV0nzeipNB9erV0/yMxcmg7t27a37GhQsXtpj2NGnSJM3PSTxZeOPGjVx3HzoZdOHCBc3vorgD982bN1znrbjwIF26dJrPW3HhgbOzs+bzVjxZuHnz5pqfk7jwwBrWJNOe9LDm3r17uViTnvakhzW/f/9uN9asXr16gmPNlStXct199LImafB7+vRpvLAma9qTHtZs3Lix5mcsniyshzWnT58e76z55csXvHz5coJkzQoVKnCxJj3tiYc1xdOehgwZYhfWPHjwoNWsee/ePbuxZv78+eOVNUnRZefOneOFNcUNfoQ1tTwnMWueOXOGizXpaU96WTNVqlR2YU03NzerWbNfv352Yc2dO3fGC2uKiy5DQkLijTXFk4X1sGabNm00v4viycJ6WHP58uV2Yc1Hjx5ZzZrR0dHcrEk3+Olhzfr163OxJj1ZmIc1xZOFJ0+enOBYk0zStQdruri4xBtr0tOeBg0aFC+sKZ4srIc1AwMDuc5berKwXtbMnTu3XVizffv2VrPm6NGjuVmTNPjpYc0TJ07EG2uKG/zigzUBpJOF9bBm79697cKa27Zti1fWJA1+Hz9+1MWamTNn5mJNusFPD2v+9ddfdmHNxYsXJzjWDA8Pt4o1tUwWNhT3+rcVDpqoP8wumV8zhPo1jVX+eU2oX2vi/L1oepEBjMLBhCy5iQZqkSZNGqxUqZJV3uTJk8tONlKLxIkTW+0FANkJdlqiZMmSst1ialGgQAGLtUI8kT17dotVfTyRIUMGizUoPJEyZUqLkf48kTRpUqufU6JEiaz+7xYAWKwY5Y1ixYrJTmVTi7x588p2qKhFlixZLNaD8UTatGllO5jUIkWKFFY/pyRJkljtdXBw0PUulilTRvNlUxyFChWS7RZTi5w5c1qM8+aJjBkzynb2qkXq1Kmtfhf1nrfW/nsB9J23JUqUkO0WU4v8+fPLdueqRbZs2SzW1fBE+vTprf4zp0yZ0urnpOe8dXBw0HXeli1bVhN8saJo0aIWay54Infu3BarTHgic+bMVp+3eu4+es5be959SpcuLTuZRC0KFiwoO5lELXLkyCHbga0WGTNmtPrukypVKqvPvWTJkum6++g5b/XcfYoXLy47lU0t8uXLZ7HGjSeyZs0q2/WpFunSpbP6v9eOjo52u/tYe18DAK6PMeIoUqSI7GQStciVKxcWK1bMKm+mTJlkJ2iqRerUqRMka+p5xgmRNdOnT6+LNe1x90nIrFm4cGGrvFmyZLH6vDVYky8KFSqEuXLlssqbEFlTz91HL2tae/YA/MOaclPZ1CKhsqae3J7ctEC10Hv3Saisae3dRy9rWvuc7Hn3SYismSFDBqvvAgmVNfWct/ZkTblptmqRLl06q/97bU/W1HO/5WkyE0eRIkUwR44cVnkN1uQLvd8106RJY5XXYE3tkVBZM0+ePLpY87/2XVPP3ceerCm3wVEt9LDmf/Hu4+TkhBs3blRdhWwo7vSvKRwEgFoAEP2/P8gHAMgm8+tGU3/guir/zLrUrx3F+fvR/CIYhYMJV7yFg3QH1owZM7j/ciIdWJs3b+b+y4l0YMmNIJcLugPryZMn3H850R1YciPI5f5yojuweC/39JoRuVVIckFP+xg6dCiXl4y9P3r0KC5atIjLS3dgya1fkQsy9n7jxo0YEBDA5SUr1nx9ffHNmzdcXroDKygoiCsJLO7AkluFJBd0B5bc2l25oDuwJkyYwOXNnTu3MO1jzZo1XF66A+v48eNc3jRp0ggdWPfu3ePyilespUqVSrNX3IHFm6ynO7DkxlPLBd2B1b9/fy4v3YEltw5ALugOrO3bt3N5M2TIIHRgya1Wlgt62sezZ8+4vKQDi6zzzpYtm2avuAOLN2lOxt4HBATIrt2VCycnJ6EDy9vbm8tL1nkfOXJEdvWcXNAdWIcOHeLy0h1Yt27d4vLSHVhv3rzh+pgj7sDiSUqIp33Ird2VC3rax99//83lpad9TJkyhctLT/vYsGEDl5esWNu2bRueOnWKy0vWea9ZswYfPnzI5RVP++Ap4hVP++BNLNDTPuRWIckFPe3Dy8uLy0tP+5BbPScXZNrHnj17ZNevyAU9Vfvy5ctc3pQpU2Lz5s1xxYoV+PLlSy4vvc772bNnmDt3bs1e8bQPuVVIckFP+5BbuysX9LSPMWPGcHnz5MkjTPuQW3MuF/S0Dz8/Py4vmfaxbt06vH37NpdXPO1Da2cwgHSdN08xCpn2MWnSJLx165bsKiS5IOu8L168iH369OHy2oo1t2zZwuW1FWsGBQVxeW3Fmvfv3+dOXtPTPqxlzbNnz+piTbnVc3JBs+a+ffu4vDRrXrt2jcv7q7Cm3CokubAVa06cOJHLS1jz4MGDVrPm9u3b0d/fn8tLr/O2J2vyFiokdNbcsWMHl5dmTbl1V3JBT9XWy5o8BfXidd56WFNu7a5c0NM+7MWacqs+5cKWrKllkgsJW7FmYGCg7NpduXB2dhbWecut3ZULep23HtbcuHEjl9dWrPno0SMu76/Cmn/++SeXl7DmuXPndLHmggULuLzZsmUT1nnrYc0rV65weenJkqKPr6pBs+bTp091sWbNmjW5/t22Ys2xY8dyeX8F1rxz5w6XV7zOWw9r8hSj0Ou89bKmvb5r6mHNc+fOcXlTpUplE9Z8/vw5V1EZYU2yztsa1iQbnOTW7soF2eB09uxZHDZsGJfXVqyp57umHtZ8+/Ytl/dXYU25tbtyQa/ztva75sGDB3Ht2rVcXjJVWy9r3r9/n8srZk2ehlFbsubvv//O5bUVa86ZM4fLawvW3Lx5sy7WfP78OZdXyzpvQ/Gnf0XhIACUBICQ//0hIgCglsKvja+Jg8aq4v+AHjx4oJjMpVev3L9/36JK+sWLF7hv3z7FjiSy5pOMwyX6+PEjHjt2THY3PYB0zScRWU2kVPxDJ8giIiIEb3R0NPr7+ysWHGTNmhW7du0qjMOldebMGezUqZOsVzwOl9aVK1cUL7viBBmt27dv47x582S9SuNwnzx5olioyVq9QvT69Ws8dOiQYgeoeM0nUXBwMB4/flyxA5S+JEZFRQnesLAw9Pf3V+zQyZUrl8WaTyKz2Yz+/v6KF6FMmTJZrF6hdf78eezVq5esl06Qffz40cJ7/fp1HD9+vKyXXBLp1StE9+7dU0zmslavED179gx37dqlmFQVr14hev/+Pfr5+WGGDBlkveLVK0Rfv35Ff39/LFq0qKxXvHqFKDIyEv39/bFWrVqyXvHqFVqnTp1CDw8PWS9ZvbJ582YMCQmx8F66dAkHDRok6yXFGGTNJ61bt24pJheSJk0qWb1C9PDhQ1y3bp2sl/4gQVavEL18+RIPHDigmMgpV66cxeoVok+fPuHx48cVP46I13wS/fjxA/39/RW7OOkEWXh4uOCNiYlBf39/bNy4saxXvHqF1tmzZxU/copXr9C6evUqjhw5UtYrLsagdefOHVy4cKGsl17zSVavEAUFBeG2bdtkx6ezVq8QvXnzBg8fPqwIj+LVK0QhISF4/PhxxQQB+SBBVq8QhYeHo7+/v+IHMDpBFhYWZvFn9vf3VyzwEq9eoXXhwgXFRJ949QqtGzdu4KRJk2S94mIMWvfv31dM5rJWrxA9f/4c9+zZoziqni78p5/xhw8f0M/PT7EwRLzmk+jbt2/o7++vOBlBvHqFKCoqCv39/RWTQPQHCfF5e/r0aWzfvr2sl3yQ2Lhxo+Tuc/nyZRw8eLCsV5wgoxUYGKj4IVucIKP1+PFjxY9nrNUrRK9evcKDBw+io6OjrF+8eoXo8+fPePz4ccUOUPHqFaLQ0FD09/dX7GqkC//p8zY2Nhb9/f3Rzc1N1ksX/ovvPufOncMePXrIeunC/0+fPll4AwICFIv46A8SYma8e/cuLl26VPFdrFOnjsXqFaKnT5/ijh07ZIuXWWs+id69e4dHjx5V/FApXr1C9OXLF/T391ecMi1evUIUERGB/v7+WL16dVmvePUKrZMnT+Jff/0l66WLMb58+WLhvXjxomKijy78f//+vYX35s2bOHXqVFkva/UKkS1YU2kNi17WpFevEBHWVErI6mVNevUKLb2sOXz4cFlvXLKm0sczW7EmWfNJpIc1f/78if7+/ood6IQ1yZpPol+dNcVrPonu3buHPj4+st5fmTWVJtHEJWu2adNG1msL1iRrPmnpYc1Hjx7h+vXrZb2sNZ9Ecc2a4jWfROTuo4c1mzRpIuv9VVlTqUE3LlnzyJEjitOG9LCmeM0nEWHNqlWrynqVWPPEiROKBV6/Ims+ePBAkTXFhf/0c4ov1iRrPolswZr16tWT9dLFGOK7j17WHDJkiKzXYM3/P29Jnl1pqIEtWHP79u02Zc1r164psqa4GIOWXtbcuXOnYqOseM0nkS1YU6nwOS5ZU6mZ6FdkzYcPH2piTXrNJ5EtWFNpsq0ca5I8ux7WVCpu/1VZU6lB11asGRgYKGHNw4cPKzYE6WFNuvDfVqyJ+E+evXnz5rJeuvD/V2HN+/fv/ydZs3bt2rJeusmclzXpwn8Wayo1MOhlTbrwn5YtWFNp0iJd+G9r1lRqNIkr1jRkXyX4wkEAKAAAb/73B4gBgD9Ufn0v6g/cUuXXtqR+bU8b/75zk3+2UTiYsNW7d2+LA08pQSaW+C8apQSZWOJqcTpBprYLXjyRjk6QiS+JYr19+1byl1SZMmWE7lD6Lyaxfv78KRm/LndJFMtsNkvGTefMmVPoDhVfEsVq2bKl7CVRnCATS5xIIZdEVoJMLDFkk0siK0Em1tGjRyWXRLliDLHu378vSYjKJcjECg4OliRE5YoxxIqKisICBQpYeEmCzM/PzwLYWBJ/nFAqxhCrc+fOmi+JYom7c+juUPElUSzxFCylS6JY4k45cklkJcjEev78uaTwuGzZsswEmVg/fvyQJETlEmRixcbGSsbk58mTh5kgY8nV1dXCSxdjqF0S+/XrZ+ElCbJ169ZJEmRizZ07V3Le0t2hStqzZ4/kXaS7Q5V08+ZNyXlLd4cqPeP3799LEqKkO1ScIBMrIiJCkhCVS5CJZTabJYCulCATS1yUqpQgE0s8CUIpQSaWr6+vhVcpQSaWuFNOqRhDrEePHkkSoiRBdu3aNUXvly9fJAlRujtU6RlHR0dL1kDR3aFq56344wQp/Gd9kBBLnLgm3aGsBJlY4kkQSgkyscQJLzpBJv4gIZZ4Ip1SMYZYr169kiRE5Qr/xQoLC5MkROWKMcSKjY2VrKyQK/xnSZwsI8UYrA8SYok/2tPdoeIEmVji4mGlwn+xDh48KDlva9euzUyQiXX79m3J3UcuQSbWp0+fJAnRUqVKMRNkYkVGRkpWz8glyMQym81YrVo1C69SMYZYHTp0kJy3pBhD7bwVf0SiC//VzlvxBwZSjKGlO1Q8lUWp8F+soKAgycdgMolInCAT69u3b5KEqFzhv1gxMTGSqYNyCTKWxE0APAkyPaw5c+ZMyd3HFqypdvcRTwlIKKwpLjwmrLl//35u1lQqxhBLPHVQD2sqFWOIpZc1xXef+GJN8dq9+GLNLl26WHhtwZqsYgyxWKxJijHUWPP8+fOS81YPa8oVY4j148cPyVQWPawpV4zBkrgwg4c1xR/t44s19+7dK3kXCWuKizHEkmNNVjGGWB8+fEiQrCn+UBhfrLlixQrJeRsfrPn48WPJx2Ae1hSvlZZrMhdLiTXFxRgs1a9f38Kr1GQuFos15YoxxBIX0NiKNdXy7HpY8/Xr13ZhTbPZLCk8tgVrsooxxBJ/tLcna8oVY4h1584dm7KmXDGGWJGRkZgvXz4Lb0JgTfHUQaUmc7H0sObp06cl561e1mQVY4j17ds3yVrphMCa4gn38cWaO3fulJy3tmBNtTy7EmuKC//FCg8Pl2VNceG/WHKsSQr/1c5bcQOkXtaUK/wXa9myZZK7T0JgzbRp01p444s1xYVwtmBNVuG/WOIJ9zysKS7kVyr8F0vMmkqF/2K9ePHCbqwpHqhkK9ZUu/voYU1xo6pSk7lYcqzJKvwXSzz9XC9ryhX+G/q1lKALBwEgJwAE/e83bwaAjho8btQfeKDKrx1E/dqmNv69G4WD/wK9fPkSkyZNKtsdqqTQ0FDMnDkzV4KMKDY2FkuXLs11SaTl7u5ukSBTuyTSGjBgAFeCjNb8+fO5EmS0yDolrQkyWoGBgQigvRiD1ocPHzBlypRcxRhEERERmCdPHq5iDCKz2YxVqlSxGNWtdkmk1bZtW8laKK0aNWqUcEnUUoxBa+XKlVwJMlonT55EAO0JMlokmao1QUbr69evmD59esydO7fmBBlRTEwMFi1alKsYg1aDBg0sEmRql0RaPXv2VOwOVdK0adMsRnWrJchobdu2DQHku0OVRNZ7aC3GoEVWP2hNkNH6+fMnZs+e3SJBpvW8JclUngQZrRYtWnAVY9AymUxcCTJaixcvlqyF0vqcyDolei2U1nfx7t276ODgYLEWSgnYaH3+/BlTp05t0R2qBmxEkZGRmD9/fqu6lcxmM9aoUYMrQUarY8eOFgkynvN23LhxXIX/tNatW8dVjEHrzJkzFgkytWIMWs+ePcMkSZJoLsag9f37d8yYMSNX4T9RTEwMlihRgqvwn1bTpk25ijFo9e3bl6vwn9bs2bO5EmS0du3axZUgo3X9+nWuBBmtd+/eYYoUKSwSZFrP2/DwcMyZMydXgozIbDZjxYoVuYoxaLVq1Yqr8J/W8OHDuQr/aS1fvpyrGIPWsWPHEOD/u0PVEmS0Hj58iIkSJdKcIKMVEhKCadOm5Sr8J4qOjsZChQpxFWPQqlOnDleCjFa3bt24ijFoTZo0iavwn9amTZu4Cv9pkfUe9Foore+imDXVijFohYaGYpYsWXSxJk8xBq1mzZolONYk65TimzU/fvz4S7CmlmIMWu3ateMqxqClhzVXrVplF9Z88uSJbtbkKcYg0suaDRs2tBlrqhVj0Jo+fbpu1tRajEHr6tWrVrPmmzdvbMqaPHefsmXL2oU1Bw8e/EuwploxBq179+5ZsKZaMQYtMWtqKcYgioqKshtrdurUyWrWHD9+vF1Y8+zZs3ZjzUyZMuliTWvz7HpY09PTk6sYg5Ye1iSre+3Bmo6OjgmONVu3bq2bNbUW/tPy8fHRzZpaizFo6WFN0iDLU4xBpJc169ataxfWnDx5ss1YkyfPLmZNnmKMly9fYrJkyTQX/tPSy5plypSxGWvy3H0GDhxoNWsuWLDALqx5+/Ztm7GmlsJ/osjISJuwptbCf1p6WHP06NFcTea0EiprZsiQwWrWLFasmM1YU63wn1avXr24Cv9pEdbUWvhPa/v27bpZU2vhP62Eypp//vmnXVjTkH2VYAsHASAzANylfvN9NfoKUp5lKr92OfVrC9j4928UDv4LdPv2ba4EGa2nT59yFWPQ+vjxI1cxBq3w8HCuYgxaZrMZDx8+rPmSKNbx48e5EmS0zp49y3VJpBUQEMCVIKN1//59rgQZrZcvX3IlyGh9+fKFK0FGKyoqCg8fPqz5kkjLbDbj0aNHuRJktE6cOMGVIKN18eJFrksirZs3b3IlyGg9fvyYK0FG6927d1wJMlqhoaFcCTJasbGxeOjQIc2XRLH8/Py4EmS0zpw5w5Ugo3XlyhWuBBmtO3fuqHaHyun58+dcHyRoff78meuDBK2IiAiuDxK0yHlr7ahuf39/rgQZrfPnz3MlyGhdv36dK0FG68GDB1zFGLRev37NVYxBi6wWsua8jYmJwUOHDmlOkIml57w9deqU1eftpUuXuBJktAIDA7kSZLSePHnClSCj9eHDB64EGa2fP39yFWPQio2N1XX3OXbsGFeCjNaZM2esvvtcvXqVK0FG6+7du1wJMlovXrzgSpDRCgkJ4UqQ0YqMjNR19zly5AhXgozWiRMnrD5vL1y4YDUL3rhxgytBRuvRo0dcHyRovX37litBRuvHjx9cCTJatjhveRJktE6fPs2VIKN1+fJlqxNk/0XWPHTokNV3Hz2see7cOYM1NSo6OtpurHny5EldrMlTjEErIbJmWFiY3Vjz2LFjCZI1eYoxaOllTZ5iDFrk7mOwpjbZkzV5ijFoxcTE4OHDh+1y90mIrBkUFJTgWJPcfezBmnry7HpY8969ewmONfXm2e3Jmtbm2fWyJk8xBi17s6aePLvBmtr06dMngzU5dO3aNbuw5qtXr6xmza9fv9qFNRERjxw5YrCmRr1//95urHn48OH/3HdNPazJU/hPSy9r6q0jMVYQJ0zFReGgA/5TGBdncnBwSAcAJwCg3P/+T8MRcbpGrwMAvIZ/phU+QEQnhV97HwCKwz+rkPOgDf9gDg4OuQHgFQDAq1evIHfu3Lb6RxsyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOyev36NeTJk4f8r3kQ8bXef2Yivf8AJTk4OKQEgIPw/0WDk7UWDQIA/K/4b+///tfiDg4OlWX+PZXhn6JBAIC9tiwaNGTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhv5NirPCQQcHh2QAsBsAqv3v/zQfEUdZ8Y+aBwAx//vPCx0cHBxF/x5HAFj4v/815n+/3pAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTLEUJI4/GdvBoCG//vPJwBgpYODQymFXx+FiI/E/0dEfOTg4DALAIYDQAUAOO/g4DAdAIIAoBAADAOAsv/75TMR8bGt/gCGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMjQv01xuaq4BfWf6wJAIADcVgg/hX/WSABY9b//XBYAtgDA1f/9T1I0uBIArJloaOg/IrPZnCC91m7eRkSrveTfbXjjx6vnGSfUP/N/yWu8iwnHa7yL/36v8S7+u73GeZtwvMZ5++/2Gu9iwvEarPnv9xrn7b/ba7yLCcdrvIv/fq/xLv67vcZ5m3C8xnn77/Ya72LC8Rqs+e/3Gs/p3+013sWE47XX3cfQv09xWThoMyGiGRG7AYArAOwFgLcAEPW//7kXAJoiYndENP7bbUhWfn5+UK9ePZg3bx4EBQVxee/fvw/VqlWDKVOmQGBgINchHBwcDFWrVoVRo0bBpUuXuA7h6OhoqF+/PgwaNAhOnDgB0dHRXL/vVq1aQa9eveDAgQMQHh7O5R04cCB06NABtm3bBt++fePyzpw5E/78809Ys2YNfPr0icu7ZcsWaNKkCSxZsgRevnzJ5b1w4QLUqlULZs2aBQ8fPuTyPn/+HKpUqQITJkyAGzducD3jHz9+QI0aNWD48OFw/vx5iI2N1ew1m83QpEkT6N+/Pxw7dgwiIyM1ex0cHKBLly7QvXt32LNnD4SFhWn2AgCMHDkS2rRpA5s2bYIvX75weZcsWQLNmzeHFStWwPv377m8+/fvhwYNGsCCBQvg2bNnXN6bN29C9erVYdq0aXD37l2u5/T+/XuoUqUKjBkzBq5evcr1LkZERECtWrVg8ODBcPr0aYiJieH6ff/xxx/Qp08fOHz4MERERHB5+/TpA507d4adO3fCjx8/uLyTJ0+GVq1awfr16+Hz589c3rVr14KbmxssW7YMXr9+zeU9ceIE1K1bF+bOnQuPH/MNAn706BFUrVoVJk2aBLdu3eJ6xl++fIFq1aqBt7c3XLx4ketdjImJgYYNG8LAgQPB398foqKiuH7fbdu2hb///hv2798PP3/+5PIOHjwY2rdvD1u3buU+b+fOnQstWrSA1atXw8ePH7m827dvh8aNG8PixYvhxYsXXN7Lly9DzZo1YebMmXD//n2u5/Tq1SuoUqUKjBs3Dq5du8blDQsLg5o1a8KwYcPg7NmzXO8iIoKbmxt4enrC0aNHuc5bAIBu3bpB165dYffu3RAaGsrlHTNmDHh4eMDGjRshJCSEy7t8+XJo1qwZ+Pr6wrt377i8hw4dgvr168P8+fPh6dOnXN47d+5AtWrVYOrUqXDnzh2u5/Tx40eoWrUqjB49Gq5cucJ13kZFRUHdunXBZDLByZMnue8+f/75J/Tu3RsOHTrEfffp378/dOrUCbZv3w7fv3/n8k6fPh1atmwJa9eu5b77bNiwAZo2bQpLly6FV69ecXnPnDkDtWvXhtmzZ8OjR5Lh7YoKCgqCKlWqwMSJE+HmzZtcz/jbt29QvXp1GDFiBFy4cIH77tOoUSMYMGAAHD9+nOu8dXBwgA4dOkCPHj1g37593Hef4cOHQ7t27WDz5s3cd5+FCxfCH3/8AatWreK+++zZswcaNWoECxcuhOfPn3N5r127BjVq1IDp06fDvXv3uJ7T27dvoUqVKjB27FgICAjgehfDw8OhVq1aMGTIEDhz5gz3edusWTPo27cvHDlyhPvu07NnT+jSpQvs2rWL++4zfvx4aN26NWzYsAGCg4O5vCtXrgR3d3fw8fGBN2/ecHntzZojR460C2v27Nkz3llz1qxZAmvy3n3syZpVq1aFCRMmwPXr1+ONNRERmjZtCv379wc/P78Ew5pLly6F33//HVasWMF999HDmrdu3bILa0ZGRkLt2rUTHGtOmTIFWrVqBevWrYt31qxTpw7MmTMnwbBmbGys3VhzyJAhAmt+/fqVy6uHNXfs2JEgWbNGjRowdOjQeGfN7t2724U1fXx8rGbNw4cPC6zJe/fRw5qfPn0SWPPy5cvxypotW7aEXr16wcGDBxMMa27cuNEurPn06VOoWrWqXVizcePGVrNmx44doUePHrB37954Z83mzZvDypUr4501q1evnuBY8/fff7cLa06YMMEurHns2DGoV68ezJ07F548ecLltRdrxsTE2I01Bw0aZBfW3Lp1q9WsefHiRYE1Hzx4wPWc9LBmaGgo1KhRA4YNGwbnzp2LN9YEAOjSpQt069YtQbHmgQMH7MKaHz58gKpVq9qVNQ8dOsR93vbt2xc6deoEO3bs4L776GHNdevWgaura7yz5uPHjxMka7Zr185q1jT0LxSpGDZCPgAgNwAgAOCrV6/QUMKU2WzGcuXKIXmWxYsXxyFDhuCZM2cwOjpa1d+yZUvBmy9fPuzbty8eOXIEIyIiVL1DhgwRvFmzZsUuXbrgrl278MePH6repUuXCt506dJh69atccOGDRgcHKzqPXLkiOB1dHREd3d39PHxwTdv3qh679+/jw4ODggAmCRJEqxXrx7OmzcPnzx5our9/PkzpkmTBgEAHRwcsEqVKjhlyhQMDAxEs9ms6I2KisICBQoIv29nZ2ccNWoUXrp0CWNjY1X/3bVq1RK8RYoUwUGDBuGJEycwKipK1du5c2fBmytXLuzZsyceOHAAf/78qeqdMGGC4M2UKRN26NABt23bht++fVP1rl+/XvCmSZMG//zzT1yzZg1+/PhR1Xvu3DnBmzx5cmzSpAkuWbIEX758qep9/vw5Jk2aFAEAEydOjLVq1cJZs2bhw4cPVb0/fvzATJkyCf/uihUr4oQJE/DGjRuqzzg2NhZLliwpeEuWLInDhw/Hc+fOYUxMjOq/29XVVfAWKFAA+/fvj35+fhgZGanq7devn+DNnj07du/eHffs2YOhoaGq3jlz5gjeDBkyYNu2bXHTpk0YEhKi6t2zZ4/gTZkyJf7++++4YsUKfPfunar35s2bgjdp0qTYoEEDXLBgAT579kzV+/79e3R0dEQAwESJEmG1atVw2rRpePfuXdXnFBERgbly5RL+3WXLlsUxY8bg1atXVd9Fs9mMlSpVErzFihXDwYMH4+nTpzWdtx4eHoI3b9682KdPHzx8+DCGh4erekeMGCF4s2TJgp07d8adO3fi9+/fVb2+vr6CN23atNiqVStcv349fv78WdXr7+8veFOkSIFubm64bNkyfP36tar30aNHmChRIuG8rVu3Ls6ZMwcfP36s6v3y5QumS5dOOG9/++03nDRpEt66dUv1GUdHR2PhwoWF33fp0qXR29sbL168qOm8rVevnuAtVKgQDhw4EP39/TWdtz169BC8OXPmxL///hv379+v6bydMmWK4M2YMSO2b98et27dil+/flX1btmyRfCmTp0aW7RogatXr8YPHz6oei9dumRx3jZu3BgXL16ML168UPW+evUKkyVLJpy3NWvWxJkzZ+L9+/dVn1NoaChmzZpV+HdXqFABx48fj9euXdN03jo7OwveEiVK4NChQ/Hs2bOaztvmzZsL3vz586OnpycePXpU091n0KBBgjdbtmzYtWtX3L17t6bzduHChYI3ffr06OHhgRs3btR03h44cMDivG3WrBn6+vri27dvVb23b98W7j5JkybF+vXr4/z58/Hp06eq3k+fPmGqVKmEd7Fq1ao4depUvH37tupzioyMxLx58wq/bxcXFxw9ejReuXJF03lbrVo1wVu0aFE0mUx48uRJTedt+/btBW+ePHmwd+/eePDgQU3n7ZgxYwRv5syZsWPHjrh9+3ZNd5/Vq1db3H1atmyJa9euxU+fPql6T506ZXHeNm3aFJcuXaqJ04KCgjBJkiTCu1i7dm2cPXs2Pnr0SNX77ds3zJAhg/DvrlSpEk6cOBFv3ryp+oxjYmKwePHigrdUqVI4YsQIvHDhgqZ3sVGjRoK3YMGCOGDAADx+/Limu0/v3r0Fb44cObBHjx64b98+DAsLU/XOnDnT4u7Trl073Lx5M3758kXVu2PHDsGbKlUq/OOPP3DlypX4/v17Ve+1a9cEb7JkybBhw4a4cOFCfP78uar37du3mCJFCuHuU716dZw+fTreu3dP9Tn9/PkTc+TIIfy7y5Urh2PHjsWAgABVrz1Zc+jQoXZhzaNHj9qFNYODgyWsOXnyZKtZc+TIkfHCml26dLELa27YsMHi7pNQWDNz5swS1rx+/Xqcs6abm5sFa/br189q1uzWrZtm1pw7d67F3adNmza/PGt++PDBbqz522+/2ZQ1Dx06pOnu4+3tLWHNHTt2aGLNFStWWLDmX3/9hevWrYtz1nz8+DEmTpxYOG/r1KkTb6xZpEiRBMeaU6dOtQtrXr582eLu07hxY1y0aJHVrDljxgxNrBkWFiZhzXHjxmliTbPZjC4uLoLXyckp3ljTy8vLLqx58OBBm7NmUFCQqlcva+bLl8+CNUeNGoWXL1+Oc9bs0KGD4M2dOzf26tUrXlhzzZo1VrPm6dOn7caaGTNmtClrnj9/XtO72LhxYwlrHjt2zGrW3Lt3b5yz5s6dOy1Ys3nz5v961ixfvnyCY81ly5ZJWFNrnp3FmsuXL9fMmnSevV69ejh37tx4Yc2CBQsKv+8yZcpwsWbt2rUFb+HCheONNSdOnGgX1jx//rzNWfPBgweqXr2sWapUKQvWHDZsWLywZv/+/e3Cmnv37rWaNW/dumU31sydO7eENbXm2VmseerUKU3nbZs2bQRvnjx5EgRrnjhxwuLu4+rqqpk1DdlXr169Ep4dAORGW9TE2eIf8m8PMAoH/zXat28f/RJJkkFbtmyRTQYFBgYyveRD2KpVq2STQR8+fMCUKVNKvFqSQREREZgnTx6JN1GiRFijRg3FZJDZbMbKlSszf9/ly5dXTQa1bduW6dWSDBo5ciTTqyUZtHLlSqaXTgbJwcnJkyeZXjoZJPchjE6o0qElGfT161dMnz69xEuSQfPmzZNNBkVHR2PRokUlXpIMmjJlimIyqEGDBsw/s5ZkUM+ePZneIkWKoJeXF548eVIWTqZNm8b0akkGbdu2jenVkgy6cuUK06slGfT69WtMnjy5xKslGRQWFobZsmWTeOlkkNyHMHFClQ6SDFIqumzRogXTW6pUKRw+fLhiMshkMjG9WpJBixcvZnpz5MiB3bt3V0wGHTp0iOklRZdKyaC7d+8KCVXxeauWDPr06ROmTp2aed6qJYMiIyMxf/78zPNWLRlkNpuxRo0azD8zSQYpfQjr2LEj00uSQUofwsaNG8f05s2bF/v27YuHDx+WPW/Xrl3L9JJk0M6dO2XP2zNnzjC9WpJBz549ExKqdDg6OqKbm5tiMuj79+8WCVUSpOhSKRkUExODJUqUYJ63lStXVk0GNWnShPln1pIM6tu3L9OrJRk0a9YspldLMmjXrl1ML50Mkrv7XL9+neklyaDVq1fLJoPevXsnJFTpIMmgxYsXyyaDwsPDMWfOnMzztlatWjhz5kzZZJDZbMYKFSowf9+k6FIpGdSqVSumt0SJEqrJoOHDhzO9WpJBy5cvZ3q1JIOOHTvG9GpJBj148EBIqNKhJRkUEhKCadOmlXjpZJBc0WV0dDQWKlSIed6SZNCdO3dkn1OdOnWYf2YtyaBu3boxvcWKFUOTyaSYDJo0aRLTS4oulZJBmzZtYnqzZMmCnTp1UkwGXbhwgenVkgx6+fKlkFClQ0syKDQ0FLNkycI8b0nhgdyHsNjYWCxdujTzvNVSeNCsWTPmn5kUHigVXQ4YMIDpJYUHx48flz1v58+fz/SSwgOloksl1mzXrl2csebHjx9lWbNRo0a4aNEi2buPXtasUqUK8/dtK9aUexdHjRrF9P7KrPnkyRMmazo6OmKzZs3Qx8fHKtYkRZdyrBkTEyPLmqTBzxrWJA1+ccWa06dPZ3pp1pS7++hhzatXrzK9NGvK3X3kWDN58uSqrPnz50/Mnj27xGsL1lRr8NPDmoMHD2Z6CxYsiP37948z1jx8+DDTG9es+fnzZ6tZMyoqSpU15T6E6WXNTp06Mb16WZM0+Mmdt+vWrWN6s2bNKjT48bKmlgY/vaxJN8mSiA/WbNq0KfPPHNesOXv2bKaXsKZS0eXu3buZXsKaSkWXelmTfEwWn7dqDX5KrEka/JRYs2LFiszf96/Mmj4+PkxvXLPmw4cP44w1lRr81Fhz6tSpiqxZt25d5p9ZS4OfHtacPHky0xvXrHnx4kXZ8/ZXZs0yZcowz1vCmkpFl3pYc+DAgUxvoUKFVBv8lFhTrcFv//79TO+vzJqRkZF2Y8127doxvYQ1lYou5VgzX7586OnpqVh0uWrVKqaXsKZS0aUca2pp8NPLmnSTLH3exjVrNmzYkPln/pVZc/v27UwvYU2loks9rPnmzRtF1lQqulRjTaUGP7PZjGXLlmX+vrWw5p9//sn0kga/uGLNJUuWML1xzZr37t1TZU25u48W1pQrutTLmjVr1mT+mcuVK6e5wc9Q/MsoHDQKBw3p0MSJEy26r+SClQxavXo1Ojk5MRNP4gsRSQaRD2HHjh1DJycnZkJDHCQZRDpw79+/j05OTkKHr1IULlzYogP3x48f6OTkZNE9IResDtwqVaowEyniYHXg/vXXXxbdjHLB6sAdNGiQRVeyXLCSQXPmzEEnJydVLysZtHXrVnRychK6dJVCnAy6cOECOjk5Cd2fSiFOBr148QKdnJyYl3Nx5M+fH/v16yd8CDObzejk5GTRHSwXJBlEd+DWr1/fovNCLlgduJ07d7aY1iEXJBnk6+srXIhGjRqFxYoVU/Wypj0tW7YMnZycmIkn8btIOnBJMujAgQPo5OTELGQRhzgZdPPmTXRychI6zpSCdOCSZNDnz5/RycmJmXwWBysZVL58eebFXhyZM2eWJIOaNWtmMcVKLuhkECm67Nu3LzPRJg6SDKI/hE2ZMkXzeVunTh2LDtz169drPm9/++03iw7cEydOoJOTEzOhIY7SpUtbTHt6/Pix5vNWPO0pPDwcnZycmAkvcbCmPdWoUUPzeStOBrVp04YJBeJgJYOGDBmi6bxlJYPmz5+PTk5OTBCig04GkaLLnTt3aj5vy5cvb9GBe/nyZXRycmJClDjEyaA3b95oPm9ZHbglS5ZkFg+Lg9WB26hRI2ayTBysZFC3bt0sOlblgp72RJJBY8eO1XTe0tOeSDJoxYoV6OTkxEw8id9FcTLo8OHDmu8+4snCd+7cQScnJ+ZHAnGQZBD5EPblyxfNdx+SDKKLLitVqmTRAS4XrGRQixYtNN19WJOF+/fvbzH9Uy5YHbgzZszQdN6ypj1t2rQJnZycmIl+cYgnC585c0bz3UecDHr69Ck6OTkxi2DEQSYLk2RQVFQU192HJIPI3adOnToWE47kgjVZuH379pruPqxk0IgRI5jJVHGQZBDdgbto0SJNdx+SDKI7cPfu3YtOTk7M5KI4xNOerl27pvnuI5729OHDB3RycmIWeYuDNVnY2dlZ092HNVnY1dVV03nLKjzo2bOn5rsPKTwgH8KsYU0y7UkPax4/fpyLNelpT3pYMzQ01G6s2apVqwTHmtu2beNmTfIhzBrWJA1+L1++TJCs2aVLF82sKW7w08Oay5cvtwtr3rp1K0Gy5u+//87FmnSDnx7WnDp1qua7j3jak1bWBJBOezp58qRm1hRPFk5orEk+hFnDmqTocsiQIZrvPnHBmlruPmLWvHLlimbWFE97Iqyp5e7DYs1SpUrZhTW7d+9uNWuOGzdO891HPFlYD2seOXLELqz59etXzXcfVoOfVtZkTXvSw5oDBgywC2tu3rzZLqz57Nkzq1kzOjqamzXpoks9rNmhQweuPDtddKmVNVnTnhYvXqyZNcXTnuzFmh8/frQba7q5udmFNSdNmsTFmvRkYV7WpBv89LDmgwcPNN99xJOF9bJm1apV7cKaXl5e8cqapOgyPlmTHibDy5riBj+t5y1rsrC9WHP06NF2Yc2DBw/GK2uSycLBwcHcrEkPkylfvjxXnp1u8Isv1hQ3+NmCNbXcfeKCNbXcfcSsGRERoYs1DdlXRuGgUThoSIfkui/Vonjx4rJTTdQiX758stOJ1CJr1qz4+++/W+VNly6dbNe4WpBkkJaLhDhIMkjL5VocJBlEr1TkCWdnZ4v1CTxRpEgRrF+/vlXeXLlyWazO5YlMmTJZrObgCQIn1nhJMkjLZUAcJBmkJSHBiooVK8pOglKLkiVLWqwH44kCBQpYrPnjiezZs6O7u7tV3vTp0+Mff/xhlZckg7QAgThIMkhLwkocJBlEj13nibJly8pOOlWLYsWKyXb2qkXevHllO/TVIkuWLFaft2nTprX6XSQfwrQkUcRBii61JPnFQYou5SaTqEXp0qWxevXqVnkLFSok202oFjlz5rQY6c8TGTNmtPpdJOetGtizgkwW1vIRSBwkGaQFVllRvnx52WkIalGiRAmLFRk8kT9/fotVNzyRLVs22c5vtdB73jZr1kwTnIuDJIO0JDPEQZJBrKlsWsLFxQWrVq1qlbdo0aIWK+B4Infu3Faft5kzZ7b6vE2TJo2u87Zp06aaPi6IgySDtHxwY0WlSpUs1grxRKlSpWQnDKlFwYIFrT5vc+TIYfXdJ0OGDFbfb0nhgZYkmzhI0aWWpKQ4SNEla0qQlihXrpzFKhOeMFhTe5APYVqKWMShlzXLlCljsKbGMFiTLxIya2r5WCeOhMqaefLksfq8zZIli9Xvoi1YU8sHJHHYgjXlJpOohV7WlJuSqhb/NdYkRZd6WLNSpUpWeZ2cnBIka1r7LtqbNVlT2bSEi4uL7LQvtbAna1p73tqbNbUUG7GiUqVKWK5cOau89mRNa8/bDBkyWH3ekgY/PayppRhNHAmVNfPmzZsgWdPNzc0urFm5cmWr8+x6WLNw4cIJkjXlptCpRUJlzRIlShisqTEM1uQLe3/X3Lp1q+rqaENxp7goHEwEhgwZYiplypTw+++/g8lkgpo1a3J5kyZNCvXr1wcvLy9wd3fn8iZKlAiqVasGgwYNgg4dOnB5AQBcXFygf//+4Onpye0tWrQo9OnTB0wmEyRLlozLmzt3bujRoweYTCbIlCkTlzdz5szQsWNHMJlMULBgQS5vmjRp4K+//gKTyQTly5fn8qZIkQJcXV3BZDJB/fr1ubyJEyeGOnXqgMlkgpYtW3J5HRwc4LfffoOBAwdCt27duLwAAKVKlYJ+/fqByWTi9hYsWBB69eoFJpMJUqZMyeXNkSMHdO3aFUwmE2TPnp3LmyFDBmjXrh2YTCZwcnLi8qZKlQr++OMPMJlMUKVKFS5vsmTJoFGjRmAymaBp06Zc3kSJEkGNGjXAy8sL2rZty+UFAChfvjwMHDgQevfuze11cnICT09PMJlMkDhxYi5v3rx54e+//waTyQTp06fn8mbNmhU6d+4MJpMJ8ubNy+VNly4dtG7dGkwmEzg7O3N5HR0dwd3dHUwmE9SuXZvLmyRJEqhXrx54eXnB77//zuV1cHCAKlWqwKBBg6Bz585cXgAAZ2dn6N+/PwwYMIDbW6RIEejTpw8MHjwYUqRIweXNlSsXdO/eHUwmE2TJkoXLmylTJujQoQOYTCYoUqQIlzd16tTw559/gslkgkqVKnF5kydPDk2bNgWTyQQNGzbk8iZOnBhq1aoFXl5e0KpVKy4vAEDFihVh4MCB0KNHD25vyZIlhXeRVwUKFBDO29SpU3N5s2fPDl26dAGTyQQ5c+bk8mbIkAHatm0LgwcPhpIlS3J5U6ZMCc2bNweTyQTVq1fn8iZNmhQaNmwIXl5e4ObmxuWl7z7t27fn8gIAlCtXDvr37w99+/bl9hYrVky4+yRNmpTLmydPHuHukzFjRi5vlixZoFOnTmAymaBAgQJc3rRp00KrVq3AZDJB2bJlubwpUqQANzc3MJlMULduXS5vkiRJoG7dumAymeDPP//k8jo4OEDlypVh0KBB0LVrVy4vAECZMmWgX79+MGjQIG5v4cKFoXfv3lbdfXLmzAndunUDk8kE2bJl4/JmzJgR2rdvDyaTCYoWLcrlTZ06NbRo0QJMJhNUrlyZy5ssWTJo3LgxmEwmaNKkCZc3ceLEULNmTfDy8oI2bdpweQEAKlSoYPXdp0SJEsJ5mygRX5oif/780LNnTzCZTJA2bVoub7Zs2YS7T+7cubm86dOnhzZt2oDJZIJSpUpxeR0dHaFZs2a6WbNZs2ZcXgcHB6hatapu1uzXrx+31xasOXjw4ATJmg0aNODyEtb08vLiZk0AgEqVKsHAgQOhe/fu3N5fgTVz5MjB5bUVa1atWpXLawvWHDRokF1Ys2/fvnZhTXL30cOaLi4uXF5bsKbJZII//viDy2sr1uzfvz+3156sSe4+8c2aTZo0AZPJBI0aNeLy0qzZunVrLi+A7VjTwcGBy6uXNcl5mytXLi7vr8CaevLs1rBm2bJl/7OsWa5cOS4vzZr16tXj8tqCNQcOHAhdunTh8gLoY81ChQpZffexFWsWK1aMy0uzpjV5dmtZM1GiRDZhzV69enF7EyJrpkuXDjw8PMBkMkHp0qW5vLZgTZPJpIs1O3bsyOUFsB1rJk+enMv7K7BmhQoVuLx0nl0Pa/71119cXoD/NmuWKFGCy0tYc/DgwbpY09XVlcurlzXLlSsHAwYMgD59+nB7adZMkiQJl9dWrJkvXz4ur61Ys06dOlzeX4E1rfmuSefZ//jjD26OMfSLyxbVh//2AGPi4L9C58+fx6lTpypWSZO1dQcPHhRGWyMiBgYG4uLFixU7kjJlyiQZp4uI+OzZM/Tx8VHsgkiTJg22bNnSYpwu4j877X19fRXHVCdPnlwYp0tWCSAiRkZGoq+vr+xuegDLcbpklQDRunXrVKvNyThdskqAaPfu3fj3338resk4XbJKgOj48eM4cuRIRa94lQDRlStXcM6cOYpe1to6RMT79+/jsmXLFDtAySqBzZs3C6tbEBFfv36Nvr6+iqPqU6ZMKaytI6tbEBG/ffuGvr6+it3YpKtt4cKFwioBRESz2Yy+vr6KHdWkq2369OnC6haizZs3Y9u2bRV/XuXKlcOxY8cKqwSIDhw4gP3791f0ile3EJ05cwYnTpyo6M2bNy/27dvXYpUAIuL169dx4cKFiutMyOoWepUAIuKTJ0/Qx8dHseOetUoAEfHDhw/o6+urOG2ItUoAEfHnz5/o6+ur2KnLWpFOtHr1asXOIHptXWBgoMUz3rFjB3bt2lXxZ01WpJPVLURHjx7FoUOHKnoLFy6MgwYNEla3EF24cAFnzJih6GWtbkFEvHPnDi5dulRx1QW9uoWsEkBEfP78Ofr6+ip23JOutjVr1girBBARQ0JC0NfXV7EjiXS10asEEBGjo6PR19dXsWuetbaOaMOGDfjXX38p/rzEK9KJ9u7di71791b0ilekE504cQLHjBmj6CVr6/z8/IRVAoiIV69exXnz5imuj8qWLRt269bNYnULIuLDhw9x+fLliiug0qdPj23atLFY3YKI+PbtW/T19VWcbMta3YKI+OPHD/T19VXsDqRXt5BVAkQrVqxQnG5Ar24hqwSItm7dih06dFD8WZctW9ZilQDRoUOHcNCgQYreYsWKWaytIzp79ixOnjxZ0ctaW4eIePPmTVy0aJHiOhPW2jpExKCgIPTx8VHsuE+TJo1kRToi4qdPn9DX11dx9QPpalu2bJnFeRseHo6+vr6KnbpkgsqcOXOEVQJEa9euVeyYJRNU6NUtRLt27cLu3bsr/qxLly6N3t7ewioBomPHjuGIESMUvWR1C1klQHTp0iWcNWuWoldulcDdu3dx6dKlih2gGTJkkKytQ0R8+fIl+vr6Knbcs9bWISJ++fIFfX19FadfsNbWISLGxsair6+v4gQLem0dWd1CtGnTJmzdurXiz6t8+fI4btw4YXUL0f79+9HT01PRS1akk9UtRKdOncLx48crevPlyydZ3YKIeO3aNZw/f77iJJqsWbNi165dLdbWISI+evQIfXx8FNexpUuXDj08PCzW1iEivnv3Dn19fRWnDdFr6968eSN4Q0ND0dfXV3ESDZmgQq9IJ1q1apVi5ztrbR3R9u3bsVOnToo/a7K27vLlyxbn7ZEjR3Dw4MGKXrK27uTJkxZ3H1uwptJqIVuxJllbhxh/rEmvrSPSypr02jqiPXv2YM+ePRW9pUqVslhbR/RfYE367qOFNZMmTWoT1iRr64j0sObBgwdxwIABit7ixYtbrK0j0sOaN27cUGVN1to6RNuwptK0IVuxJllbR5QQWJOsrSO6ePGiKmvmzJkTe/bsabG2DpGPNem1dYiIL168QF9fX8X1hoQ16bV1iNpYk0yPk2NNpYlBBmvGP2vSa+sQbcOaSpNGCGvSa+uI4po1xSvSic6dO4dTpkxR9ObOndvmrPn06VP08fFRXJtnK9akvwNFRESgr6+v4kTMxIkT24Q1ydo6ol27dmGPHj0Uf9Z6WFO8to5IL2suW7ZMccVpXLDm169f0dfXV3HKdFyypoeHh+LPyxasKc6z87AmvSId8R/WXLBgQYJizbCwMPT19VWcwsdakU6UUFlz2rRpit5cuXL9UqwZHByMvr6+ipMWCWvSK9IR9bPm+vXrVSfaiVekE2lhTfGKdCJ/f38cNWqUojcuWVNp3fCvxpqIiL6+voqTSxMqa+bJk0eyIh3RNqyptBb6V2TNNWvWKE57pllTnGfXw5p+fn44bNgwRa+tWJO++2hhTdaKdETtrClekY74/6yptNEorljTkH1lrCo2CgcN6RQLlOUuiWL5+vpKvOSSKE6QiXX8+HGJl1wS/fz8LC6JYj169EgCb+SSKE6QifXlyxfJCky5BJlY0dHRkiIpuWIMlsRjeZUSZGKJP7zTxRjiS6JYrKRV2bJlccyYMZJLolibN2+WeIsVK8a8JIp16dIlzZdEsV6+fCmBN7lLolihoaGYNWtW2UsinSATKzY2VpJIIZdEcTEGS+IRyOSSOGfOHMklUSxxYlKpGEOsBQsWSH7WJEF28eJFxWd84MABiZcUY4gviWLdvn2beUn8+++/JZdEsT5+/CiBN7lLoliRkZGStSRyl0SxzGazZI0lfUmkE2QstW/fXvIukkuiOEEm1ujRoyU/rwoVKjATZGKtXr1a4i1RogSzGEOskydPSrxyxRhiBQUFSeAtW7Zs2LVrV9y9e7dFgkysb9++SeCNJMg2btxokSATKyYmRpK4dnR0xGbNmkk+SLAkHldPijHmz58vKcYQq1evXpJ3sWrVqswPEmKxIMrFxQVHjx4tSZCJtWPHDomXfJAQJ8jECggIkHjJBwlxgkyst2/fSoqkMmfOzEyQifXz508JvMkV/otlNpsl62PoYgy1+6U44UUX/os/SIg1ZMgQyc+LFP6LP0iItXTpUomXFP6LP0iIdeTIEYlX7oOEWPfv35d8KCQfJPbu3at43n7+/FmyloR8kBAnyMSKiorCAgUKWHjJBwlx4T9L4rUTcoX/LHXu3Fly3taoUYNZ+C/WhAkTJD9rkiALCAhQfBfXr18v8coV/ot17tw5iZcUY4g/SIj1/PlzyYdCUvgv/iAh1o8fPyQfCtOlS4etW7fGDRs2WCTIxIqNjcWSJUtKzlvWBwmWxB8YlD5IiNWvXz/JeVulShVmMYZYrASys7MzM0Em1p49eyReucJ/sW7evCnxyhX+i/X+/XvJh0K5wn+xIiIiMFeuXBZeuvCf/iAhltlslhQsksJ/8QcJlsQf+8g6m1mzZqkmyJRYU1yMIZYe1vT395d46WKMfyNrij/oJgTW3LJli8RLWFNcjCGWEmuKizHEevXqlSxriosxxFJiTXExhlh6WVNcXEEX/sclay5cuFDys44v1hTffRICa4qbNQhriosxWJJjTVYxhlisgjQ9rClX+C/WqVOnJF4e1hTffeKLNcXraGnWVLv76GFNcdEhzZriYgyx7MWa165dk3jlCv/F0suaOXLksPDGF2u2bNlScveRazIXi1UALNdkLpYe1jx69KjES1hTXIwhlh7WDA4OtjlrsprMWdLDml26dJGct3JN5mLpYc0NGzZIvLZiTaW7z/PnzyXDH2jWVLr7/PjxAzNnziw5b1u3bi0pxhBLL2uK1/cS1mQ1mYvFYk25wn+x5s6dK/lZyxVjiGUv1vzw4YPdWFNcsEizJl2MwZIe1vT29pb8vPSyJqvwXyw9rPn48WNmnp1V+C+WXtYUF0nFF2uKi7x5WJPViEhYU1z4L5Ye1rx8+bLEq4c15Qr/xQoLC2OyJqvwXyw51mQ1mbOkhzW9vLwk5218sObBgwclXpo1ld5FPaz56dMnWdYUF/6LFRkZKWnISZUqFbZo0UJS+C+WXtYUN9UoFf6LxWJNucJ/sdasWSPxJgTWFA9/0Mqahuwro3DQKBw0pEOfPn3C1KlTy3aHKikyMhLz58/PlSAjMpvNWL16dcXuUCV17NgRAf4/QaZ2SaQ1duxYBJDvDlXS2rVrEUC+O1RJp0+f5rok0nr69CkmSZJEtjtUSd+/f8eMGTPKdocqKSYmBp2cnBS7Q5XUpEkT4ZKopRiDVp8+fYRLopYEGS3S+am1GIPWrl27EEC+O1RJ169fRwD57lAlvXv3DlOkSCHbHaqk8PBwzJEjh2x3qJLMZjNWqFCB65JIi3Tpk0tiQECAZi/pcJHrDlXS8uXLEUB7MQYtPz8/BJDvDlXSgwcPMFGiRBbFGFovicHBwZg2bVquBBlRdHQ0FipUiKsYg1bt2rUVu0OVRLqY5LpDlTRp0iQEkO8OVdLGjRuFBFmvXr1UE2S0Lly4ICTIOnbsiNu2bVP8IEHrxYsXmDRpUuGDhFqCjFZoaChmzpxZtjtUSbGxsVi6dGmLBJnaBwlaZCqK1sJ/WqSjUK47VEnz5s1DAPnuUCXt27cPAeS7Q5V069Yt4bwl3aFKCTJaHz58wJQpU8p2hyopIiIC8+TJI3SHLliwQPWDBJHZbMbKlSsLHyS0JMhoka7RcuXKaSrGoEUmScl1hypp5cqVFgkytcJ/WqRoWWvhPy2STJXrDlXS169fMX369LLdoUqKjo7GokWLKnaHKqlBgwaK3aFKIpOpyQcJtQQZLdJpL9cdqqRt27ZxJchoXblyxSJBplaMQev169eYPHlyzcUYtMLCwjBbtmyy3aFKMpvN6OLiYnV3KJkIJzeJSEkmkwkB5CcRKWnx4sUWHyTUEmS0Dh06ZPFBQi1BRuvu3bvo4OAgfJDgSZDZkzVr1KjBVfhPSw9rjhs3zi6seebMGQlrar372JM1S5QoIbCmlsJ/WnpYs2/fvgigvRiD1n+RNXPmzGkz1lQrxqDVqlWrBMeax44dE1hTS+E/LT2sGRISYjfWrFOnjtWs2a1bNwvWVCvGoKWHNTdt2mQX1nz58iUmTZpUczEGLZo1tRb+E+llTTIVJb5Zc/78+XZhzcDAQKtZ8+PHjxasqaUYg0gva1apUoWrGIMWYU2thf+0yCQprU3mtOzFmk+ePLELa8bExNiNNcm0sDJlymgqxqA1ffp0STFGfLDm1atX7cKapEHWlqyp9TnpYU0yuY+wploxBi09rHn48GGuYgxahDWtKcb4/Pkzpk6dmqvJnMierEmmM9qKNbW+i+vWrbMZa6oV/tN69uyZBWuqFf7T+v79O2bKlImr8J9IL2s2bdoUAbQ3mdPSw5qzZ89OkKzp6OhoF9asWLEiV5M5LZo1SeG/Vu/w4cMF1tRS+E/Lx8fHLqz58OHDfwVrqhX+09LDmmRbldbCf0O/jozCQaNw0JAOXb58WbU7VE4PHjzguiTS+vDhA9clkVZ4eDj6+PhoTpDRMpvNuHLlSq4EGa1NmzZxJcho7du3jytBRuvUqVNcCTJa169f50qQ0Xr69Klqd6icvnz5oqk7lKWoqCj08fHRnCCjZTabcc2aNVyXRFrbt2/nSpDROnz4MNclkdb58+e5EmS07ty5w5Ugo/XmzRuuBBktsnJP6yWRFll1wXNJpLVhwwauSyKt3bt3c10Safn7+1t9Sbxy5QrXBwlajx49Uu0OldOnT58kK4i1KiIiAn18fDQnyGiZzWZctWqV1aO6t2zZwpUgo3XgwAGuYgxap0+fVu0OldPNmzdVu0Pl9OLFC9XuUDl9+/aNq/iNVkxMDPr6+qp2h8pp7dq1XAkyWjt27OBKkNE6evQoVzEGrYsXL3IlyGjdu3ePq/Cf1rt377iKMWiRNQhaP0jQio2NxRUrVnB9kKC1ceNGrg8StPbu3cuVIKN14sQJrgQZrWvXrnElyGg9efKEK0FGKzg4mCtBRisyMhJ9fHw0J8homc1mXL16NVfhP61t27apdofK6dChQ1wfJGidO3eO64MErcDAQK4PErRevnzJlSCjRVbuWXP3Ieet1g8SYq1fv56rGIPWrl27uAr/aR07doyrGIOWvVlTazEGrYTKmvv3709wrPns2TO7sCZZO5PQWPPIkSNcxRi0EjJrWnv3sRdr7tmzxy6sefXqVckKYq3Sy5o8xRi0yN3nv8SaZ86ckawg1ip7suaKFSs0F2PQMliTTwmRNc1mM65YsYKrGIPWf401g4KC7MKaJM+eEFnT2jy7XtbkKcagZW/WtPbuY7CmdiVU1ty8eXOCY80bN27YhTW/fv1qdZ5dD2si/jOZjafwn5a9WPPChQv/OdbUk2ffsGGD1XcfvazJU/hPSw9rPn78mKvwn1ZCZU1D9lVcFA464D+FcYYU5ODgkBsAXgEAvHr1CnLnzm3n35EhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGfov6PXr15AnTx7yv+ZBxNd6/5mJ9P4DDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUMJR0bhoCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMvQfklE4aMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDP2HZBQOGjJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ/8hGYWDhv4z8vPzg+7du8PevXshLCyMy3vnzh1o27YtbN68Gb58+cLl/fjxI7Rq1QpWrlwJ79+/5/JGRERA27ZtYeHChfDs2TMuLyJCz549Yfr06XDv3j1ARC7/qFGjYMyYMXD16lUwm81c3gULFsCQIUPg9OnTEBMTw+Xdtm0b9OnTBw4fPgwRERFc3rNnz0Lnzp1h586d8OPHDy5vUFAQtG7dGtavXw/BwcFc3q9fv0KrVq1g+fLl8ObNGy5vdHQ0dOzYEebOnQtPnjzh8iIi9O/fHyZPngyBgYHcz3jSpEkwcuRIuHjxIsTGxnJ5fX19YdCgQXDixAmIjo7m8u7fvx/+/vtv2L9/P/z8+ZPLe+3aNWjfvj1s3boVvn37xuV98+YNtGrVClavXg0fP37k8oaFhYGHhwcsXrwYXr58yeU1m83QrVs3mDlzJjx48ID7OQ0dOhTGjx8P169f5/bOnj0bhg0bBufOneN+xhs2bIB+/fqBn58fREZGcnn9/f2hW7dusGfPHu7z9v79+9CmTRvYuHEjhISEcHk/f/4MrVq1ghUrVsC7d++4vJGRkdCuXTuYP38+PH36lMuLiNC7d2+YOnUq3Llzh/s5jRkzBkaPHg1XrlzhPm+XLFkCJpMJTp06xf0u7ty5E3r37g2HDh3iPm8vXrwInTp1gh07dsD379+5vM+fP4fWrVvDunXr4PPnz1ze79+/Q+vWrWHZsmXw+vVrLm9sbCx06tQJZs+eDY8ePeLyAgAMGjQIJk2aBDdv3uR+xlOnToURI0bAhQsXuN/FVatWwYABA+D48eMQFRXF5T18+DD06NED9u3bx33e3rp1C9q1awdbtmyBr1+/cnnfvXsHrVq1glWrVsGHDx+4vOHh4dCmTRtYtGgRvHjxgstrNpuhR48eMGPGDLh//z73cxoxYgSMGzcOrl27xv0uzp07F4YMGQJnzpzhvvts3rwZ+vbtC0eOHOE+b0+dOgVdunSBXbt2QWhoKJf30aNH4OHhARs2bOC++4SEhECrVq3Ax8cH3r59y+WNioqC9u3bw7x58yAoKIjLi4jg6ekJU6ZMgdu3b3M/4/Hjx8OoUaPg8uXL3M942bJl4OXlBSdPnuQ+b/fu3Qu9evWCgwcPQnh4OJf3ypUr0LFjR9i+fTv3efvq1Sto1aoVrFmzBj59+sTlDQ0NhdatW8OSJUvg1atXXN7Y2Fjo0qULzJo1Cx4+fMjlBQAYPHgwTJgwAW7cuMH9jGfMmAHDhw+H8+fPc5+369atg/79+8OxY8e4z1t7suZff/0FK1asiHfW/Pvvv2HatGlw9+7deGXNhQsXwuDBg+OdNc+dO5fgWDMmJsZurDl58mRdrDlw4EDw9/fnPm8PHDhgNWtev379P8eaw4YNswlr8r6LGzdutJo1T5w4AV27doXdu3dz3330suZff/0Fvr6+3KwZFRVlN9YcO3asXVhz165dCZI1W7VqBUuXLrULa06cODHeWXP16tUJjjXfv39vF9Ykd58ZM2ZYlWfXw5rz5s2zmjW3bNliNWuePn3aatZ8/PixXVgzOjoaOnToYBfWnDBhgi7WtDbProc1r169Ch06dIBt27Zx330M1ow/1jx27FiCZc0FCxZY/V0zobHm9u3b7cKaT58+tQlr8t599LAmAMCAAQNg0qRJcOvWrXhlzRUrViQ41nz79q3dWLN79+66WfPatWvxzpqenp5w9OjReGXNBw8egIeHR4JjzT59+ljNmob+hUJEI1QCAHIDAAIAvnr1Cg0lTEVHR2ORIkUQADB58uTYtGlTXLp0qeZnWq9ePQQATJw4MdauXRtnzZqFDx8+1OTt0aMHkv8OVapUCSdMmIA3btxAs9ms6p0yZYrgLVmyJA4fPhzPnz+PMTExqt4tW7YI3oIFC2L//v3x2LFjGBkZqeq9fPmy4M2RIwd2794d9+7di2FhYareV69eYbJkyRAAMEOGDNi2bVvcvHkzfvnyRdUbFhaGWbNmRQDAVKlSYfPmzXHlypX4/v17VW9sbCw6OzsjAGCyZMmwYcOGuHDhQnz27JmqFxGxefPmCACYKFEirF69Ok6fPh3v3bun6Tl5eXkJP69y5crh2LFj8erVqxgbG6vqXbhwoeAtXrw4DhkyBE+fPo3R0dGq3oMHDwrevHnzYp8+ffDw4cMYERGh6r19+zY6ODggAGCWLFmwc+fOuHPnTvzx44eq99OnT5gqVSoEAEybNi22atUK169fj58/f1b1RkZGYt68eREA0NHREd3c3HD58uX45s0bVa/ZbMZq1aohAGCSJEmwbt26OHfuXHzy5ImqFxGxQ4cOCADo4OCAlStXxsmTJ2NgYKCmZzxmzBjhZ12mTBkcOXIkXrp0SdMzXrNmjeAtXLgwDho0CE+cOIFRUVGq3lOnTgneXLlyYc+ePXH//v348+dPVW9QUBAmSZIEAQAzZcqEHTp0wK1bt+LXr19Vvd++fcMMGTIgAGDq1KmxRYsWuHr1avz48aOqNyYmBosXLy6ct02aNMHFixfjy5cvVb2IiI0bNxbO25o1a+LMmTPxwYMHmry9e/cWfl4VKlTA8ePH4/Xr1zU945kzZwreEiVK4LBhw/DcuXOaztsdO3YI3vz582O/fv3Qz89P07t47do1wZs9e3bs1q0b7tmzB0NDQ1W9b9++xRQpUiAAYPr06bFNmza4adMmDAkJUfX+/PkTc+TIgQCAKVOmxN9//x1XrFiB7969U/WazWYsX748AgAmTZoUGzRogPPnz8enT5+qehERW7ZsKbyLVatWxalTp+KdO3c0PaehQ4cKP6+yZcvi6NGj8cqVK5rexaVLlwreokWLoslkwlOnTmk6b48ePSp48+TJg71798ZDhw5heHi4qvf+/fuYKFEi4bzt1KkT7tixA79//67qDQ4OxjRp0gjn7V9//YXr1q3TdN5GRUVhwYIFEQAwRYoU6OrqisuWLcPXr1+rehERa9WqJZy3derUwTlz5uCjR480ebt06SI8499++w0nTZqEN2/e1PSMJ06cKPysS5cujSNGjMALFy5oehc3bNggeAsVKoQDBw7E48ePazpvz58/L3hz5syJPXr0wH379mm6+zx//hyTJk2KAIAZM2bEdu3a4ZYtWzSdtz9+/MDMmTMLd58//vgDV61ahR8+fFD1xsbGYsmSJYW7T6NGjXDRokX4/PlzVS8iopubm3D3qVGjBs6YMQPv37+v6Tn1799f+HmVL18ex40bh9euXdPknTt3ruB1cnLCoUOH4tmzZzW9i3v37hW8+fLlQ09PTzxy5Iim8/bmzZuCN2vWrNilSxfctWuXprvPhw8f0NHREQEA06VLhx4eHrhhwwYMDg5W9UZERGDu3LmFu4+7uzv6+Pjg27dvVb1msxl/++034bytV68ezps3D4OCglS9iIht2rQR3sUqVarglClT8Pbt25qek7e3t/DzcnZ2xlGjRuHly5c1nbcrVqwQvEWKFEEvLy88efKkpnfR399f8ObOnRt79eqFBw8e1HT3efz4MSZOnBgBADNnzowdO3bE7du347dv31S9X758wfTp0yMAYJo0abBly5a4Zs0aTXcfvaxZv359m7BmxYoVuVhz6tSpNmHNAgUKxBtrvn792i6saTab0cXFxWasOW3aNLx7926cs+aiRYssWHPw4MHxwpp37tyxG2vmy5cvwbHm2LFjJax58eLFOGfN06dP24Q1M2bMiO3bt+dizYwZM1rNmk5OTsJ527hxY1y8eDG+ePFC1YuojzX79OljF9bcuXOnTVlz9+7dcc6a4eHhEtb09fWNF9b866+/bMKaLi4uXKy5bNkyq1nTz8/PbqyZNm1aCWt++vRJ1ctiTZ67T+3atW3GmhMnTowX1ty4caPgLViwIA4YMACPHz+u6e6jhzVfvHhhN9YsVaqUTVlTa55dD2vOmzdPwppnzpyxijX79u2rmTVv3bplM9Zs3bp1vLFm5cqVhXcxPllz5MiRNmVNrXefEydO2JQ1t23bFi+sWbRoUeHu06RJE1yyZInmPLse1vz777/twppbt261mjWvXLlicfchrKnl7qOXNbNlyyZhTa13HzFrLliwQDNr/vHHHzZhzbJly+KYMWPihTUPHTrEZE0tdx+9rJk6dWrdrJkiRQqBNbXk2c1mM1avXt1q1uzYsaOENW/duhXnrLl27VoL1hw4cCD6+/tzs2bOnDnx77//1syaT58+tTlrarn76GXNJk2a2IU1Z82aZVPWPHr0qKa7jyH76tWrV8KzA4DcaIuaOFv8Q/7tAUbh4L9G69ato18irmTQmTNnmF4tyaBnz54Jf8nRoSUZ9P37d+EvOToyZ86smgyKiYnBEiVKSLxak0FNmzaVeLUmg/r27Svxak0GzZ49W+LVmgzatWsX8zmVKlVKNRl0/fp1pldLMujdu3cC4NORI0cO1WRQeHg45syZU+LVkgwym81YsWJFiVdrMqhVq1YSr9Zk0PDhwyVercmg5cuXM3/W5cuXx7Fjx2JAQICs99ixY0yvlmTQw4cPhYQqHVqSQSEhIUJClQ4tyaDo6GgsVKiQxKs1GVSnTh2JV2syqFu3bsx3UUsyaNKkScx3UUsyaNOmTcznpCUZdPHiRaZXSzLo5cuXQkKVDi3JoNDQUMySJQvzvFVLBsXGxmLp0qUl3jRp0uCff/6pmgxq1qyZxKs1GTRw4ECJN3HixFirVi3VZND8+fOZP2styaD9+/czvVqSQYGBgUyvlmTQx48fMWXKlBKvlmRQREQE5smTR+IlySClD2FmsxmrVKnCPG+1JIPatWvHPG+1JINGjRrFPG+1JINWrVrF/FlrSQadPHmS6S1WrJhqMujJkydCQpUOLcmgr1+/CoXLdNDJIKW7D0mo0qE1GdSwYUOJV2syqGfPnszztm7dujhnzhx8/PixrHf69OnM81ZLMmjbtm3M51SmTBn09vZWTAZdvXqV6dWSDHrz5g0mT55c4tWSDPr58ydmz55d4tWSDDKbzVi2bFmJV2syqEWLFszzVksyaPDgwczzVksyaMmSJcyfNUkGKX0IO3z4MNOrJRl07949IaFKh5Zk0OfPn4WEKh3ZsmXDrl27KhYeREVFYf78+SXe9OnTo4eHB27cuFHxvK1Ro4bEmzJlSmzWrBn6+voq3n06deok8SZNmhTr16+vWngwfvx45ruopfBAD2uePXuW6bUFax48eFCRNTNlyiTx2oI1165dG2es6enpyXwXa9eujbNnz44z1ty9ezfzOf3qrJkrVy7meUtYU+5DmF7WbN26tcRrC9ZUa/Dz8fFh/qz1sCZp8Isr1vzy5QumS5dO4o0P1qxbt67EayvWVPoQNnnyZOa7qIU1N2/ezHxOhDWVGvz0sib5mEwHKbo8cOAAN2uSBj811ixTpozE+6uz5oIFC5g/67hmzdu3bzO9tmBNpQa/yMhIXaxZtWpViVdrg58e1hw9ejTzvK1WrZrBmiLFxMRgsWLFJN74YM1evXoxz1s9rEka/JRYc/v27cznpIc1SYPfv5E1//zzT+Z5awvWVGrw08OaR44cYXpLlCghNPjFFWuSJlk64oM1a9asyTxvf2XWXL9+PfM5xTVrPn/+PE5YU63BLzY2Vhdrurq6Ms9bLQ1+eliO/OPTAAEAAElEQVRzzpw5zJ91pUqV4pQ1b9y4wfT+6qxZqVIliZewplqDnx7WHDFihMSrlzVJg58Sax4/fpzp1cKajx49shtrFi5cWOK1FWsqNfh1795d4rUFa6o1+OlhzUuXLjG9RYoUUW3w08uapEmWDj2smTp1ak2sach+MgoHjcJBQzq0ZMkSbNSoEfPQpoNVeLBr1y50dXVlFqPQwerAvXDhArq6ujL/YqaDlQwKCgpCV1dXoUtXLkgHLp0MCgsLQ1dXV2YCWXwhYiWD2rRpwyyCEQcrGTRw4EBhMopSsJJB06ZNYxZJiYOVDFqzZo1Q0a8UrGTQ4cOH0dXVlXlJpoOVDLpx4wa6uroyQYgOkgyipz29ffsWXV1dmclF8YVInAwym83o6urKTFqJL0SsZFDXrl2ZyRBxlC5dWpIMGjFihDCNQSlYyaD58+djgwYNVL2sZNCWLVuwadOmzAQhHaxk0KlTp9DV1ZWZlKCDlQy6f/8+urq6Cl1jcsFKBn358gVdXV2xQIECil65woM///xTmCalFBUqVJB04Pbp04f5sU8cpPCATgZNmDBBmDamFPnz50dPT0+LZNDy5cuFSQ5KwUoG7d27F11dXZkJQjpYyaBLly6hq6srMwlMBysZ9Pz5c3R1dWXCLh2sZFBERAS6uroKk4aU3kVWMqhdu3bCtFSlYCWDTCYTs5hNHKxk0IwZM5jwJg5WMmjdunXYtGlTZoKQDjoZRM5bPz8/dHV1ZX6QoYN04NLJoMDAQHR1dRU65uWClQz68OEDurq6ChNPld5FVjLI3d1dmKSpFKxkUI8ePbBcuXKqXlYyaNSoUUJHolKwkkGLFi1ifpwQBysZtGPHDnR1dWUmCOnIkCGDJBl09uxZdHV1ZRZb08FKBj1+/BhdXV2ZiX466GlPJBn0/ft3dHV1FSZfyIVcMqhVq1bCRAWlYCWD+vfvz0x4iYOVDJo8ebIwcUMpWMmglStXarr7sJJBBw4cQFdXV2GSjFywkkEBAQHo6urKbG6hg1V48OrVK3R1dRWmIsgFKxkUHR2Nrq6uzOJQOujCAzoZ1KlTJ6GLWylYk4WHDh3K/KArDlYyaM6cOUKXv1KwkkEbN27Epk2bMhOEdLCSQf7+/ujq6sos/qODlQy6e/cuurq6MhNPdLAKDz5//oyurq7Mjzl0yBUeNG/enPmRQByswoOePXtihQoVVL2k8IAuuhw7dizzI5I4SOGBn5+fcN7ysiZdeEBYk5UgpCOuWJPVwETHr8iaZDKKUsQFa7KKHcWhlzXFk4X1sOa7d+80syZp8PsVWNPb29surLl161a7sOaDBw80sWayZMlswpp04YEe1uzbt68m1qQnC9uCNX18fOzCmpcvX7aaNV+8eGE31mzfvj0Xa9INfrysefLkSeG8nTlzprC5RSnoBj89rEnuPoQ1ydRSuYgr1iRTaJTeRTnWJNNNlCIuWJPVrCEOW7AmPVk4vlhTPFlYD2v++PFDM2uyttjYizWnTJmiiTXz5s1rU9Y8ePBgvLImKTx4/fo1F2vS055iYmI0syZrsrAe1hw2bJgm1mRNFtbDmps2bUpwrBkcHMzNmnSeXQ9r9urVSzNrihv8eFiTTBYm5+3SpUs1s6Z4i40tWJNMSpQLFms+ffpUN2uyipXoUGJNVhGMOOKCNbXm2fWwprjBL75YU7zFRg9rImKCZM0FCxbYhTVPnz7NxZp0gx8vay5atEhgza9fv2piTbktNi1bttTEmqzJwnpYc+LEiXZhzX379iU41oyMjORiTZ7JwobiXkbhoFE4aEiHWBPw1IIkg1jdYmpBkkGdO3fm9gL8kwyiR9PyRKlSpSxGTPMESQapJWBYQZJBapd6VpAOXC0Xc3GQwgMtl2txkGSQh4cHt5ckg1idD1qiXLly2K9fP6u8ZPS3NV5SeKB2WWQFSQZpSXaJgySDtFzaxEGSQb///ju3lxRdktVRPEEKD1hTpLREmTJlmB36WoIUHqhBHytIMkgtac0KkgzSkggRB0kGaQEocZBkEFkrxBMkGUTW1fBGxYoVrfo7AuCfZJDJZLLKS5JBakDACpIMUgNsVpBkkJakpDhIMoisnOEJkgxq27Ytt5ckg+h1jDxRtmxZHDBggFVekgxSS6SyghRdqiXKWEEKD7Qku8RBkkFaiiPEQZJBZM0FT5BkEFmfwBMkGUSvG+eJ0qVL46BBg6zykmSQ2gdGVpBkkNoHJFaQZJCWj0DiIMkgLckMcZBkEGvqsFqQZBBrwpCWKF++PLN7W0s4OTlZfd6SZBBr0o9akGSQlo8L4iDJIC0fZMVBkkHu7u7cXpIMYk2fUQuSDLL27uPi4mL1eVu0aFH08vJS/ajBClJ4oJa0ZgUpPNCSeBYHKTzQUhwhDoM1+bxkpbFaQpMVelmzefPmCZI16TV/PKGHNUnhgR7W1FJUKo6EypqVK1dmTpHSEnpYkxQe6GFNtQ/2rLAFa2opVBJHQmXNEiVKWH3eEtZUK7xhhS1YU8sHWXHYmzXpdYw8YQvWVPuIzAq9rNmpUydNRaXiIKyppThCHLZgTda0L7UwWJPPS/LseliTNQlKLezNmtbefQhrqhUds8JerOno6IjNmjVjTqRVC72sqSfProc1yWThhMiaWgpDxWFv1rT27lOqVCmrz9uCBQti//79VZvqWGEL1tTSbCEOe7OmtXl2vaw5ZMgQq7x6WbNz5866WFNLIb44HB0d0c3NzWBNjZFQWbNx48Z2Yc0KFSroYk293zWPHz9uFBHaUXFROJgIDBkyJKsiRYqAs7Mz5MyZk9ubL18+cHZ2hvz583N7c+TIAc7OzlCsWDFub4YMGcDZ2RlKlSrF7U2VKhU4OzuDs7MzJEmShMubLFkyKFOmDDg7O0PKlCm5vIkSJYJSpUqBi4sLpE+fnssLAFC8eHFwdnaGrFmzcnsLFSoELi4ukDt3bm5vnjx5wMXFBQoWLMjtzZo1Kzg7O4OTkxO3N126dMJz4pWjo6PwnJIlS8blTZIkCZQuXRqcnZ0hderUXF4HBwcoUaIEODs7Q6ZMmbi8AABFixYFZ2dnyJEjB7e3QIEC4OLiAnnz5uX25syZE5ydnaFIkSLc3kyZMoGLiwuULFmS25smTRrhGTs4OHB5kydPLjzjFClScHkTJ04sPOO0adNyeQEAnJycwNnZGbJkycLtLVy4MDg7O0OuXLm4vXnz5gVnZ2coUKAAtzd79uzg7OwMxYsX5/aS87ZMmTLc3pQpU4KzszO4uLhwn7dJkyYVnnGqVKm4vOS8dXZ2hgwZMnB5AQCKFSum67x1dnaGPHnycHtz5coFzs7OULhwYW5vlixZrD5v06ZNa/V5myJFCuEZ6zlv06RJw+Ul562Li4vV562Li4vd7j5Fixbl9mbMmNHqu0/q1KmFZ5w4cWIuL333cXR05PImTpxYeBfTpUvH5QX4/7uPnvPWmrtP3rx5wcXFxarzNlu2bODi4mLVeUvuPnrOW2vut0mTJhXeRd7zlr77ZMyYkcsL8P93n+zZs3N7CxQoAM7OzpAvXz5ur57zNnPmzODs7AwlSpTg9pK7j4uLC/fdh5y3zs7OkDx5ci4v/S7y3n3oZ5w5c2YuL8D/v4t6zltr3kVbsGbp0qW5vbZgTRcXF+7z9ldgTWvuPrlz5wZnZ2ddrKnnvLWWNYnXXqyp57y15l1MiKxJ333imzWtPW8B/pus6eLikuBYs2TJknZhzYIFC+pmzUKFCnF7Ddbkk57zltx9rLnf/pdZ05q7j5OTE7i4uNjlvNXDmnrvPtact3SePWnSpFxemjXj++5Dztts2bJxe/WypouLiy7WtDbP7uLiYtXdh2ZNe919EiJrWnPe6smz06xp7XmrhzWtPW8Ja1rzLuq5+/xXWdPFxcUurOni4qLru6Y1561e1rTF3SdRIr4SJFuxpjV5dr2s6eLiYhfWtDbPTljTmtxeypQphedUsmRJ7r9XDf3iskX14b89wJg4+K/Qvn37VDuS6FUEZDQ24j9rEIYPH664qlhuFcGdO3fQ29tbteuMXkVAxia/ffsWvb29VSf4sVYRhIeHo7e3t2p1PenSoEdjIyJOmjRJdWoYmQhAr2FCRFy8eLFqdT1r5S8i4ubNm1U7XchEgOXLlwurCBARjxw5olohT7o06FUEiIhXrlzBESNGKK7OlFtF8PjxY/T29lbt8mWtIvj8+TN6e3urdhayVhGYzWZNo7VZqwgQ/1kdo9bNRK8iIKOxERFXrFih2llIryIgo7EREXfu3KnaBUEmAtBrmBART548iUOHDlXsxpZb+Xvz5k309vZWHa9fsWJFHD9+PF6/fl14xi9evEBvb2/VThey8pdeRfDjxw/09vZWXVeRP39+ySoCRMRx48apdjNly5ZNsooA8Z9VXWqd3KxVBIiI69evV+10Ya0iQPxn/aVaRxK9ioCMxkZEPH/+PI4YMUJxpDe9ioBew3Tv3j309vZWXXVRtmxZycrf9+/fo7e3t+pKEjIRgF75GxUVhd7e3qqd3GQiwKFDhyzO2ylTpqiunMicObNkFQEi4rJly1Q7udOkSSOsIiBrmBD/GZGv1uXLWkWA+M8KqMGDByuuj5JbRRAQEIAjRoxQXGcit4ogKCgIvb29VdfO0KsIyLv45csX9Pb2Vp2YSiYC0GuYEBFHjhypujKYtfIXEXH27NmqU8PIRAB6DRMi4qpVq1Q7C8lEgFWrVglrmBAR9+zZozrZNlmyZNioUSNctGiRsIYJ8Z81CMOGDVNcHyW3iiAwMBC9vb1VJ5ywVhG8fv0avb29VddfslYRhIWFobe3t+qqrnz58klWESD+szZPbWpY1qxZhVUEZA0TIuLChQtVO7nTpUuHHh4eFmuYEP9ZRas2VYFMBPD19bW4+xw6dEh1Eg2ZCDBv3jwMCgoSvBcvXsQRI0YodoDSK3/pVQQPHz5Eb29v1TVfzs7OOGrUKIu1dx8/fkRvb2/V1d9kIsDJkyeFu09MTAx6e3urdnLTa+/ou8/06dNVJ2dkypRJsvYO8Z91FW3atFH0stbeISJu375ddcJJ8uTJhbV3ZA0T4j8roIYOHao49ZRMBBCv/L1+/Tp6e3urTncja+/oNUzPnz9Hb29v1fXupUqVwuHDh+P58+eFd/Hbt2/o7e2NzipTbMjK32PHjlmct2PGjFFd40RW/u7du9fi7jN37lzVTm4yEWDz5s0W5+2aNWtUp9ikTJlSsvYOURtrJk2aVJE1laZfyLHm3bt3uViTXsOkhzUjIiLinDVZK38R/1kLHZesSVb+Ll++3OLukxBZMzg4GL29vVXXA+lhzZw5c2LPnj0t1jAh/sOarq6uil5bsCa98hfx12fNChUqSFjz5cuX6O3trboCylasSd99xo0bpzqh2t6sSa9hQvyHNdUm0diCNcUrf+/fv4/e3t6qE05YrPnhwwdNrElW/rJY87ffflP0/tdYM3HixAJr0it/9bDm06dPuViTXvlLWFNtio0ca2pZGayHNVkrfxETJmvevn073liTvvv8/PkTvb29sXz58opeW7AmvfIXMX5YU7zyF1Efa166dMkurPnp0yf09vZWXf2thzVz5coly5pqq51txZpk5S8iH2vSK38R44c1WSt/CWuqbcphseb37991s6bahOpfgTXpPHt8sia98pewptrmBhZrvnv3TjNrilf+EtZUW1PKWvmLmDBZ8+jRo1ysSefZCWsqTbaVY80nT57EG2vSK38Rta0M1sOarJW/iPpYc9euXaqsSSbvslhz2LBhVrHmrVu30NvbW3Vrla1ZMzQ0FL29vVUnpv4XWZOs/KXvPhcuXIhz1nRxcZFlTbVp8XpYM3fu3EzWNGRfGauKjcJBQzo1Y8YMyYEnd0kUa/v27RIvuSSKE2RiBQQESLzkkihOkIn15s0byV80csUYYv38+VMC2XIJMrHMZjPzwztdjEH+YmKJldAgCTLxJVEs1qhqsp5h//79FgkysZYsWSLxyl0SxTpy5IjES1YBii+JYt2/f1+S1KQviXSCTKzPnz9jmjRpJBcIckmkE2RiRUVFMS99FSpUkCTIxDKbzcyPsqxiDJZY4+rlEmRijR8/nnlJZBVjiLV+/XqJlyTINm7caJEgE+vcuXMSL12MQV8SxXr+/LkkqSl3SRTrx48fmClTJsm7WLVqVcklUazY2FhmYSm5JNIJMpZYEEUuiXSCjCXWig+5Ygyx5syZI/GS9QziBJlYe/bskXjlijHEunHjhsRLF2Mo/T3+/v17SVKTJMhmz55t8UFCrPDwcMyVK5fk302KMW7evKn4LrKKDkuVKoUjRoyw+CDBEmslAVkFKP4gIdaIESMkXvJBYu/evYrnra+vr8RLPkiIE2RiHT9+XOIl6xnExRhiPXr0SJLUJB8kxAkysb58+SJZWSFXjCFWdHQ0M+HFKvxnifWRgFWMwRJrTSEpxjhy5IjieTtlyhSJlxT+iz9IiLV582bmedu6dWvcsGGDRYJMrEuXLjHPW9YHCbFevXolSWomSZIE69WrJynGECs0NFRSPEw+SIgTZGLFxsYyk8/Ozs6SBBlLrAQyqxiDJVZSQq7wX6wFCxZIvHLFGGIdOHBA4qUL/+kPEmLdvn1bcvchxRjiDxJiffz4UZLUJOsZZs2aZZEgEysyMpJZzEY+SNAJMrHMZjNzTXvJkiUlCTKW2rdvL/GSDxLiwn+xxowZI/HKJcjEWr16tcQrlyAT69SpUxKvXOG/WEFBQZKkplwxhljfvn2TJDXpwn/6g4RYMTExzIRX2bJlccyYMRYfJFhiFUiwCv9ZYn10Ix8k1BJkSqwpLsYQa8eOHRKvXtZkFWOI9fbtW0yRIoXkvP3VWbNly5YSb3yw5tKlSyVePayZKlUqbNGiBa5atcpq1hQXY4gVHBwsy5riYgyx9LAmIjI/ysYHa06YMIF53tqbNZXuPs+fP5c0qtqKNeliDLFiY2OZH/v0sCarGIMlVsGRVtacO3euxBsfrHnz5k2J11asSRdjiBURERFnrEkXY7CkxJriYgyxvL29Jd74YE1/f3/meauHNVnFGGLpZU3WesT4YE1WkQPNmkp3HyXWVMuzb9myhXne6mVNcZO5WHpYMywsjMmarGIMseRYk1WMwVLz5s0l3vhgzYULF0q8tmJNpbuPGmvSxRhiffr0KU5YU1yMIZbZbGYWwehhTbkmc7H0sOaaNWsk3vhiTVae3RasqZRnj4mJYTYx/uqsOXPmTIlXrvBfLDnWZBX+i3Xt2jWJN75YM0eOHJLzVitrsoq8WU3mLKmxptK7OHToUInXFqwpLvwX6+jRoxKvXtZkFf6LJcearMJ/saKiorBgwYKS3zer8J8lPazJKirTw5pyTeZibdiwQeLVyprnz5+XeOOLNcWNqoQ1xYX/YsmxJqvwnyU3NzeJ91dnzb1790q88cGaHz58iDPWpAv/Df1aMgoHjcJBQzoUGhoq/AVXunRpTcUYRLGxscKEIq3FGLRI56dcd6iS+vfvjwDy3aFKmjdvnnBJZHWHKmnfvn1cl0Rat27d4rok0vrw4YMwiYFcEgMCAjR5IyIihM5gVneoksxmM1auXNnikqhWjEGrbdu2wiVRSzEGrZEjR1pcEsXdoUpauXKlcEnUUoxB68SJEwKw1atXD+fNm6eYIKP1+PFjTJw4sWx3qJK+fv0qTGLQekkkio6OFrr0tV4SaZFuM9IdqpYgo/X3338jgHx3qJKmTZtmcUlUK8agtXXrVuGSqKUYg9aVK1csLoni7lAlvX79WkimsrpDlRQWFiZ0x5QsWVLSHaoks9ksTMyQ6w5VEulEkusOVRLp7KO7Q5USZLQWLVqEAPLdoUo6dOiQAGxaPkjQunv3Ljo4OAgfJNSKMWh9+vRJmMTA6g5VUmRkpDCBk9UdqiSz2SxM7pPrDlVSx44dEUB74T+tsWPHIoB8d6iS1q5diwDy3aFKOnPmjHDesrpDlfT06VNMkiSJ5g8StL5//y5MYiAfJNSKMYhiYmKELn2txRi0SKc93R2q9e5Duje1FmPQmjVrFgJoL/yntWvXLuHuw+oOVdL169eF85buDtXynN69eyckU1ndoUoKDw8XOoNJd6hagozIbDYL08LkukOV1KpVKwT4/w8SagkyWsOGDUOA//8goZYgo7V8+XLhvGV1hyrJz8+PK0FG68GDB5goUSLNhf+0QkJChEkMrO5QJUVHRwtTUVjdoWoi3b3WdId27dpVSJB16tSJ6+4zadIk4e6j5YMErY0bNwrnraurq2qCjNaFCxeEd5E1iUhJL1++xKRJkwofJNSKMWjpZU0yoSi+WZNMrkhIrBkYGChhTaViDFp6WTNPnjy6WVNr4T8tPaw5atQogTVJMUZ8sObJkyetZs0nT55IWFPr3UcPa8bExEhYU60Yg5Ye1iST2Qhrbtu2LV5Yc9u2bTZhTVKMwcOapEGWlzXpouX4Zs0WLVrYjDXVijFoLV682GasqVaMQUsPa37+/FlgTa3FGER6WZNM7otv1hw3bpzVrLlu3Tq7sOazZ88krKlUjEFLzJpaCv+JYmJihAZZvayppRiDlh7WnD179r+CNdWKMYhszZpqxRi09LDm8OHDLfLs1rCm1iZzWseOHbOaNR8+fPhLsabWd1EPa5JJmLZgTbViDFqbNm2ymjUvXrwoKcaIL9YkU/+0NpkT6WXNZs2a2YU158+fbzVr7t+/X8KaWvPseljz48ePFqxJCv95WVNr4T+R2WwWJqUmJNZctWrVv4I11Qr/ifSyZsOGDQXW1FL4T0sPa06fPl24+2hpMqelhzWvXr1qNWvSw5jimzXJdEatTea09LDm4MGDbcKaWgr/Df06iovCwSRgyNB/RNeuXYOxY8eCm5sb5M+fn8v74MED6NChA7i7u0Px4sW5drZ//PgRypcvD2PHjoWyZctCokSJNHsjIiIgffr0cPr0aahatSokSaL9lUVECAsLgyNHjkCtWrUgRYoUmr0AAC9evICdO3dCgwYNIE2aNFzewMBAWL9+PTRp0gQyZcrE5Q0ICIC5c+eCm5sb5MyZk8t78+ZNMJlM4O7uDoUKFeLyPn36FNzd3cHHxwdKlSrF9Yy/fv0KhQsXhkuXLkHFihW5nnF0dDQkSZIETpw4AdWrV4ekSZNq9iIiBAcHw4EDB6Bu3brg6Oio2QsA8PjxY9i6dSs0atQI0qVLx+W9ceMGrFy5Epo0aQJZs2bl8gYEBMDkyZPBzc0N8ubNy+W9c+cO9OjRA9zd3aFYsWJc3jdv3kD16tVh+vTp4OLiwvWMw8LCIFu2bHDu3DmoXLkyJE6cWLPXbDZDVFQU+Pn5Qa1atSBZsmRcv++3b9/Cnj17oH79+pAqVSou7927d2HTpk3QuHFjyJAhA5f32rVrsGTJEnB1dYXs2bNzea9fvw4jR44ENzc3KFCgAJf34cOH4OHhARs2bIASJUpwPafPnz9DmTJlwNvbG8qVK8f1LkZGRkKqVKng1KlTUK1aNe7z9vv373Do0CGoU6cO93n77Nkz2LFjBzRs2JD7vL158yasXbsWmjRpApkzZ+byBgQEwKxZs8DNzQ1y5crF5b116xb0798f3N3doXDhwlzeFy9eQOPGjWHx4sVQunRprmf8/ft3yJ8/P1y8eBEqVqzI9S7GxsaCg4MDHD9+HGrUqMH9Ln78+BH27dsH9erVg5QpU3J5Hz58CFu2bIFGjRpB+vTpubzXr18HHx8fcHV1teq8nTBhAri5uUG+fPm4vPfu3YMuXboI5y3Pc3r37h389ttvMGnSJChbtiyXNzw8HDJlygRnz56FKlWqcJ+34eHhcPToUahVqxYkT55csxcA4NWrV7B7926oX78+pE6dmst7+/Zt2LBhAzRp0gQyZszI5b169SosWLAAXF1due8+N27cgKFDh4K7uzsULFiQy/v48WNo0aIFrF69GkqWLMn1nEJCQqB48eJw+fJlqFChAtd5GxUVBcmTJ4eTJ09CtWrVuO8+X758gYMHD0KdOnW47z5BQUGwfft2aNiwIaRNm5bLe/PmTVi9ejU0bdrUqvN2+vTp4OrqCnny5OHyBgYGQp8+fcDNzQ2KFi3K5X316hXUqVMH5syZA87OzlzPODQ0FHLlygXnz5+H3377jfu8jY2NhWPHjkHNmjW5z9v379/D3r17oV69etx3n/v378PmzZuhcePG3OdtQEAALFu2DFxdXSFbtmxcXr2s2b59e6tZs1y5cjBmzBjuu09ERASkS5fOatYMDQ2Fw4cPQ+3ateOVNW/dumU31vTy8rKKNZ89e2YX1oyJibEbaz569Mhq1rx+/TqsWLECmjZt+p9hzaxZs9qFNd+8eWM1a967d08Xay5evNgq1rx27RqMGDEC3N3d4501S5UqBcOHD4fy5ctz3330sOa3b98M1tSoFy9eQKNGjWDRokVWsWa+fPngwoULUKlSJe67DwBYzZofPnywC2teu3YNfHx8oGnTplbdffSwZufOna1izffv39uFNRERfv78CUeOHIHatWsnGNYMCAiwC2s+efLELqwZHR1tN9Z88uSJ1ax548YNWLVqFTRt2hSyZMnC5dXLmr179wZ3d/d4Z82cOXPahTXfvXtnNWveu3fPbqw5ZswYu7Bm2bJlYfTo0VaxZtq0aa1mzR8/fljNms+fP7cLa169ehXmzp0Lrq6uVt19vLy8wM3Njfvu8+zZM3Bzc4Ply5dzs+a3b9/swpoAAJ8+fYL9+/dDvXr1EgxrXrt2zS6s+fbtW6hWrRpMmzYt3lkzMjIS/Pz8oGbNmtx3nzdv3sDu3buhQYMG8fpdMyAgABYtWgSurq6QI0cOLq8e1nz06BG0atUK1q9fH++smTJlSrt81zT075MD/jNRz5CCHBwccgPAK4B/LsS5c+e28+/IkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgz9F/T69Wu6aSQPIr7W+8/UXrJqyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGUrwMgoHDRkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQIUOGDBkyZMiQof+QjMJBQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJkyJAhQ4YMGTJk6D8ko3DQkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZMmTIkCFDhgwZ+g/JKBw09J/RyZMnYcqUKXD79m1ARC7vnTt3YNSoUXD58mUwm81c3o8fP8LgwYPh5MmTEB0dzeWNiIgAk8kEBw4cgPDwcC4vIsKoUaNg+/bt8O3bNy4vAMCsWbNgzZo18OnTJ27vqlWrYMmSJfDq1Stu7759+2DWrFnw8OFDbu/FixdhwoQJcOPGDe5nHBQUBMOHD4fz589DbGwsl/fr169gMpng2LFjEBUVxeWNjo6GoUOHwt69eyEsLIzLi4gwYcIE2Lx5M3z58oXLCwCwcOFCWLFiBbx//57bu2nTJli4cCE8e/aM23v06FGYNm0a3L17l/s53bhxA8aMGQNXr17lfhffvHkDQ4YMgdOnT0NMTAyXNywsDLy8vODw4cMQERHB5TWbzTBixAjYuXMn/Pjxg8sLADBt2jRYv349BAcHc3t9fHxg+fLl8ObNG27vzp07Ye7cufD48WNu7+nTp2Hy5MkQGBjI/YwfPHgAI0eOhIsXL3K/i58/fwaTyQT+/v7c521kZCQMHjwY9u/fDz9//uTyIiKMHj0atm7datV5O3fuXFi9ejV8/PiR27t27VpYvHgxvHjxgtt74MABmDlzJjx48ID7OV25cgXGjx8P169f5/Y+f/4chg0bBmfPnuV+F79//w4mkwn8/PwgMjKSyxsbGwtDhw6F3bt3Q2hoKJcXAGDSpEmwceNGCAkJ4fYuXrwYfH194d27d9zeLVu2wPz58+Hp06fc3uPHj8PUqVPhzp073M8pMDAQRo8eDVeuXOE+b9+9eweDBw+GU6dOcb+L4eHhYDKZ4NChQ9x3H7PZDCNHjoQdO3bA9+/fubwAADNnzoR169ZZdfdZsWIFLF261Kq7z549e2D27Nnw6NEjbu+5c+dg4sSJcPPmTe5n/OjRIxgxYgRcuHCB+7wNCQkBk8kEx48f5777REVFwZAhQ2Dfvn1Wnbfjxo2DLVu2wNevX7m8AADz58+HVatWWXX32bBhAyxatMiq8/bIkSMwY8YMuHfvHvdzCggIgHHjxkFAQAD3u/jq1SsYMmQInDlzhvu8DQ0NBS8vLzhy5Aj33Sc2NhaGDx8Ou3btsuq8nTJlCmzYsMGqu8+yZcvAx8cH3r59y+3dvn07zJs3D4KCgri9eljz7t27uljTZDLBiRMn7MKa27Zti3fWXL16NSxZsgRevnzJ7f2vsWZMTEyCZc0FCxZYxZp+fn4JkjVNJlOCZc3Xr19ze/Ww5pkzZ2DSpElw69Ytu7GmNXcfPaw5ZsyYBMeaBw8eTJCs6eXlBUePHrWKNYcNG5bgWHPr1q1Ws6a/v79dWPP9+/d2YU1EhJEjR8L27dvjnTVXrlxpF9Y8f/58gmPN6Ohom7CmNXcfPay5fv16WLhwITx//pzbq4c1r127BmPHjk2wrGnN3SchsuapU6dgypQpVuXZ/4usOXv2bFizZo1Vdx89rLl//367sObTp091saaXl5dVeXY9rAkAMGHCBNi0adN/hjVv3rxpNWu+ffvWbqzp7e2tizXXrVsHnz9/5vb6+vrqYs05c+bYhTW9vb3/U6xp6F8oRDRCJQAgNwAgAOCrV6/QUMLUz58/MUeOHAgAmC9fPuzbty8eOXIEIyIiVL1msxnLlSuHAIBZs2bFLl264K5du/DHjx+a/t0tW7ZEAMB06dJh69atccOGDRgcHKzJO2TIEAQAdHR0RHd3d/Tx8cG3b99q8i5duhQBAJMkSYL16tXDefPmYVBQkCbv0aNHEQDQwcEBq1SpglOmTMHbt2+j2WxW9d6/fx8dHBwQANDZ2RlHjRqFly9fxtjYWFVvcHAwpkmTBgEAixQpgl5eXnjixAmMiopS9UZFRWGBAgUQADBXrlzYs2dPPHDgAP78+VPTn7lWrVoIAJg5c2bs2LEjbtu2Db99+6bJ26VLFwQATJMmDf7555+4Zs0a/PjxoybvhAkTEAAwefLk2KRJE1yyZAm+fPlSk3fDhg0IAJg4cWKsVasWzpo1Cx8+fKjJe+7cOSRnW8WKFXHChAl448YNTc/4+fPnmDRpUgQALFmyJA4fPhzPnz+PMTExqt4fP35gpkyZEACwQIEC2L9/fzx27BhGRkaqemNjY7FkyZIIAJg9e3bs3r077t27F0NDQzX9md3c3BAAMEOGDNi2bVvctGkThoSEaPL269cPAQBTpUqFzZs3x5UrV+K7d+80eefOnYsAgMmSJcOGDRviggUL8NmzZ5q8e/bsQQDARIkSYbVq1XDatGl49+5dTc/p5s2bwjMuW7YsjhkzBq9evarpXXz//j06OjoiAGCxYsVw8ODBePr0aYyOjlb1RkREYK5cuRAAMG/evNinTx88fPgwhoeHq3rNZjP+9ttvCACYJUsW7Ny5M+7cuRO/f/+u6kVE9PDwQADAtGnTYqtWrXD9+vX4+fNnTV5vb28EAEyRIgW6ubnh8uXL8fXr15q8vr6+wnlbt25dnDNnDj5+/FiT19/fXzhvK1eujJMnT8Zbt25pesaPHz/GxIkTIwBgmTJl0NvbGy9evKjpGX/58gXTpUuHAICFCxfGgQMHor+/v6bzNjo6GosUKYIAgDlz5sS///4b9+/fr/m8rVevHgIAZsyYEdu3b49bt27Fr1+/avL26NEDAQBTp06NLVq0wNWrV+OHDx80eadMmSKct40bN8bFixfjixcvNHm3bNkinLc1a9bEmTNn4oMHDzR5L1++LLyLFSpUwPHjx+O1a9c0PeNXr15hsmTJEACwRIkSOGzYMDx37pym8zYsLAyzZs2KAID58+fHfv364dGjRzXdfWJjY9HZ2RkBALNly4Zdu3bF3bt3az5vmzdvjgCA6dOnRw8PD9y4caPm89bLywsBAFOmTInNmjVDX19fzXefhQsXIgBg0qRJsX79+jh//nx8+vSpJu/BgweFd7Fq1ao4depUvHPnjqbndPv2beHu4+LigqNHj8YrV65oehc/ffqEqVKlQgDAokWLoslkwlOnTmk6byMjIzFv3rwIAJgnTx7s3bs3Hjx4UPN5W61aNeHu06lTJ9yxY4fm87ZDhw7CefvXX3/h2rVr8dOnT5q8Y8aMEc5bV1dXXLp0qWbOWrNmjfAu1q5dG2fPno2PHj3S5D116pTwLlaqVAknTpyIN2/e1PSMg4KCMEmSJAgAWKpUKRwxYgReuHBB07v47ds3zJgxIwIAFixYEAcMGIDHjx/XdPeJiYnB4sWLIwBgjhw5sEePHrhv3z4MCwvT9Gdu3LixcN62a9cOt2zZgl++fNHk7d27t3D3+eOPP3DlypX4/v17Td6ZM2cKd59GjRrhokWL8Pnz55q8O3bsEO4+NWrUwOnTp+O9e/c0Padr164Jz7h8+fI4duxYDAgI0OR9+/YtpkiRAgEAixcvjkOGDMEzZ85oehf1smb58uXtwppDhw61KWs+efJEk1cvayZKlMiCNS9duhQvrFmwYEHdrJkpUybs0KFDvLHmxIkT7cKa58+ftylrar37/PjxAzNnzmwz1tyzZ0+8sGb//v2Fu8/vv/+OK1asiBfW3Lt3r11Y88OHD7pYM3fu3HZhzTZt2tiMNZctW6aZNVesWGET1vztt99w0qRJ8caa6dOnRwDAQoUKxStr1q9f3y6sOXXqVKtZc+vWrRLWvH//vqbnpIc1X79+bcGaQ4cOxbNnz1rFmp6enppZ02w2o4uLS4JjzUWLFtmFNe/cuWNT1jx58qRm1syXL59NWLNjx464fft2zXcfPaw5duxY4bxt2rRpvLHm6dOnEyRrOjk52YU1+/TpYxPWbNiwIS5cuFAza+7cudMmrFmuXLl4Y83w8HC7seZff/1lU9Z88+aNJu+yZcusZk0/Pz8L1pw8eTIGBgbGC2umTZtWYM1BgwbFG2vWrl1bN2umTp06Xllz48aNdmHNFy9e2Iw1+/Xrh35+fppZs1SpUlazpru7u3D3adOmTbyx5rx584S7T4MGDeKNNW/dupUgWbNy5coWrMmTZ9fDmiNHjrQJa9apU4eLNQ3ZV69evRLeEwDIjbaoibPFP+TfHmAUDv5rNH/+fPol4koG7du3T+JNliwZNm7cGBctWqSYDAoMDJR4tSaDPnz4gClTppT4K1SogOPGjVNMBkVERGCePHkkXi3JILPZjFWqVJF4tSaD2rZtK/FqTQaNGjVK4tWaDFq5cqXEqzUZdPLkSYlXazLoyZMnQkKVBJ0MUvoQ9vXrVyGhSgdJBikVXcbExGDRokUlXq3JoAYNGki8uXPnxl69eqkmg3r27Cnxak0GTZs2TeJNkyYNtmzZUjUZtG3bNolXazLo6tWrzHdRSzLo9evXmDx5colfSzLo58+fmD17dolXSzKITqjSQZJBah/CWrRoIfFqTQaZTCaJN0OGDNiuXTvcvHmzYjJo8eLFEq/WZNDhw4eZ562WZNDdu3eFhCqJRIkSYfXq1VWTQZ8/f8bUqVNL/t1akkGRkZGYP39+iVdLMshsNmONGjUkXq3JoE6dOkm8WpNB48aNk3jpZJASnKxbt07i1ZoMOnPmjMRLkkFz585VTAY9e/ZMSKjS562WZND379+FhCodZcqUwZEjRyomg2JiYrBEiRISr9ZkUNOmTSVercmgvn37Srxak0GzZ8+WeLUmg3bt2iXxak0GXb9+nXnekmSQUtHlu3fvBMCngySDrl+/LvuMw8PDMWfOnBKvlmSQ2WzGihUrSrxak0GtWrWSeLNnz47dunVTTQYNHz5c4tWaDFq+fLnEqzUZdOzYMYlXazLo4cOHQkKVPm+1JINCQkKEhCodWpJB0dHRWKhQIYlXazKoTp06Em+ePHmwT58+eOjQIcW7T7du3SRercmgyZMnS7zkQ9i6desUz9tNmzZJvKToUi0ZdPHiReZ5qyUZ9PLlSyGhSp+3WgoPQkNDMUuWLJJ/d+nSpVULD2JjY7F06dISr9bCg2bNmkm8dOGB0t1n4MCBEq/WwgM9rLl//36JVw9rkg9hM2bMUGTNjx8/2pw1nZyc4pw127VrJ/HGB2uuWrWKed7agjWVGvz0smaGDBkk/24XFxfVBj8l1vTy8sKTJ08qvosNGzaUeOODNadPny7x/uqs+ebNmzhjTaUGP7PZjGXLlpV49bImafBTOm8HDx4s8ZKiSzXWXLJkicRLN/jFFWveu3cvTllT7l2MioqyOWvmzZtXN2vu3LlTkTXHjx8v8RLWVPsQpsSay5cvV2TNs2fPSrx6WZM0+KmxJmmSpUMLa8bGxjJZs3DhwnHOmp6enhJvfLDm7t27JV5bsKZag58Sa44fP16VNUmTLB0lS5ZUbfDTy5qtW7eWeOODNX18fCTeX4E1lYou6SZZOghrKhVdKrGmlga/unXrSrx6WVNLg58e1ty8ebPEG1+sSQqX6fPWVqwp9y7GxsZimTJlJF5bsKZanl2JNbds2aLImgsWLGCety1atMBVq1bFGWvevn1b4tXLmuXLl1dlzcjISF2sWbVqVYnXVqypdPcZPXo087wlrKlUdMliTUdHR2zWrJlqg19csaZag59e1ixWrJjESxr84pI1e/XqJfHGB2tu376ded5qYc2AgACJl2ZNpaJLNdZUKrqMK9bU0uD3559/Sry/OmseOXKEed7GB2uSJlk6bMGaWosuDcW/jMJBo3DQkA5t27aNCWDiCxErGeTv7499+/aVfDgTBysZdPPmTfT09GQmj+hgJYNev36Nnp6ewhQ9uSDJILoD9+fPn+jp6cksOKKDJIPEH8KGDRuGNWvWVPSSZNDq1astkkEzZswQuu3lQq4Dd+XKlczLufhCxEoG7d27l/mBQRykA5dOBp07dw49PT2ZMEMHa9rT/fv30dPTU+j8kgtWMujjx4/o6enJvCTTwUoGmc1m9PT0ZCae6JBLBo0ZM0aY+iUXcsmg+fPnMz8S0EEng+iiy40bN2Lnzp0VvSQZJO7APXLkCPbp00cCM+JgdeBevXoVPT09mUWadLCSQU+fPkVPT09hqpNckA5cOhn0/ft39PT0FDqK5EIuGeTl5cWEXTrkkkGTJ0/GJk2aKHrlkkHLly9nJibpoJNB9IewHTt2CJ36ckEng+gPYSdPnsS+ffsyYYYOkgyiiy4DAwPR09OTmTyio1ChQpIO3Ldv36KnpyczQUgHKxkUGRmJnp6eTBCig+7Apc/bESNGCJ2BckGKLsXJoNmzZzOTVnTITXtas2YNtm/fXvVdZCWD9u/fj7169ZLAjDhYyaCLFy+ip6cn88MZHSQZRH8Ie/ToEXp6ejILw+hgJYOCg4PR09NTmNwlFyQZJC667NevnzChRC7kOnDHjx/PLNSmQy4ZtGjRIiYo05E0aVLmZOHNmzdj165dVd9F1rSnY8eOYZ8+fSQfzsTBmix8/fp19PT0ZCaP6GAlg168eIGenp5MYKWDTgaRu09oaCh6enoyk8B0yE0WHjJkCFavXl3RSyeD6LvPtGnT0NXVVdGbPHlybNq0qeRDmK+vr9BVKBdyyaDdu3fj33//regF+CcZJO7APXPmDPbt25f54YwO1mThu3fvoqenJ2bLlk3Ry0oGvX//Hj09PYVJMnLBSgbFxMSgp6cnVqhQQdErlwwaNWoU82MOHXKThefOnStMN5ELuWTQ+vXrmR/e6aCTQXTR5aFDh7B3796SD2fiKFeunKTo8vLly+jp6cks0qSDlQwKCgpCT09PodNWLlgduF+/fkVPT09hcpdcZM2aVZj2RJ+3AwcOZBaV0SHXgTtx4kRs1KiRotfR0VGYLEwXHixdupRZAEwHmfYkLjzgZU36QxhhTfGHM3GwWPPWrVtcrEl/CCOsSSYbyAWLNcPDw+OFNVlFlzNnzhS67eVCL2uyJgvrYc3z58/HOWuyJgt/+vQp3lhTXHQ5ZswYYeqXXMix5oIFCzSzprjB71dnTdZk4WfPntmVNclEKLmQY80pU6ZwsSadT+VhTXHRZXyxprjB7/bt2/HCmuIGP8KaZAuKXMixpre3t91Yk0wMU3oXbcGadINffLBmvnz50NPT06LokrAmmdwlF3Ks2b9//zhnTdZk4UWLFgmTi+VCjjW3bNmiizX79u37y7MmXXQZFhYWb6wpLrrUw5orVqzQxJqsaU+/OmuyJgt/+PAhXlmTvvvoYc158+ZxsSZddMnDmuIGv/hgTVaDH2FNVmEYHXpYU26ysB7WnDRpUryxJl10uW3bNuzevbui11asSTf4EdYkE9bkQg9rsiYLa2VNuQa/4cOHC9Pe5SIuWHPVqlVWs+a+fft0syaZLisXLNZ88OBBvLGmuMHP09MTK1WqpOjVy5qsBr+4Zk25ycJ6WDMgIMCurMlq7KVDjjVNJhMXa9JFl78yawKwG/xOnTqFffv2FabLyoUe1mRNFiasWbhwYUUvizWjoqJ0saYh+8ooHDQKBw3pEGtaj1qQaU9a/qIQB+nAJSO5eYIkg1jdYmpBkkGsiRdqQY/+VkvAiINOBqmBGytIMkitkI0VJBmklghhBfkQxuqwVQuSDGJNrVALsmZqxowZ3F7Sgcua6KYWdDKI1SWrFmTak9oHJFaQZJBaUSkrSDJI7WLOCjL6m6wj4QmSDGJ1yqsF+RA2Z84cbi+9ZkrtA6M46A5ctUQZK0gHrtrHXFaQZJBa4pkVJBnE6vhSC5IMYnVRqwVJBpG1QjxBRn+T1ag8Qa+ZUkvAiIP+EEZWyfIEWTPF6sxTC9KBq1ZwyAqSDBowYAC3lySDyHpTniDJoFmzZnF76WSQWiJVHHQySA3OWUGSQWofkFhBJgv//vvv3F6SDFIrgGEF+RDG6upTC9KBO2nSJG4vSQaR9Qk8QXfgsjrzlIJOBql9JGQFSQaxJuCpBUkGqSVCWEGSQWQNLU+Quw9Zt8cTJBnEmjqsFqQDl6wH4wm66JLVJasWJBmklkRhBenAZU2BUQuSDOrYsSO3l0wWHjRoELeXJIOsufuQwgNrzlu68EDto4Y46DVTah8mWEE6cNUSmqwgRZd//PEHt9cWrDls2DBury1YkzXxQi1swZqTJ09WLZBihV7WHDRoULyzJim6tIY1SYNfQmVNtQ9IrLAFa5I1XTyhhzXJh7AJEyZwe/WwJt3gp4c1WdMo1cIWrElW5vGEvVnT2ruPm5ub1ectYU21j0/i0MuapMFPrbCCFfZmTbLelCdsxZpqH5HFYQvWHDdunLBOjSf0sqanp6cu1hwyZAi397/MmmqFbKywBWuSNbQ8oYc1SdElaxKUWvwKrElWyfJEQmRNssWGtf1ELQhrsiadqgVddJkQWVOtyIkV9mbNKVOmcHttwZpz586Nd9YkRZdqhWysIKzJ2t6mFrZgTdaERLWwBWuyJrqpxa/wXVOtqJQVZJiMHtZkbQVTC1uw5ty5c7m9NGuqFbOKw1asqVY4zAo9rEkmC9uDNf/66y+7fNc0Vhr/GoqLwsEkYMiQIVl9/foVgoODIXHixNzeHz9+QHBwMKRIkYLb+/PnTwgODoZv375xeyMiIiA4OBhCQkK4vTExMRAcHAzBwcFgNpu5vIgoeGNiYrj/3cQbFRXF7f3y5QsEBwdDeHg4t/f79+8QEhICqVKl4vaGhoZCcHAwpE+fnttLnvGXL1+4vZGRkcLPi1exsbFWP2OA/39O0dHR3N6QkBAIDg6GyMhIbi95F6357xZ5FxMlSsTtDQsL0/UuhoSEWPWMo6KihJ81/lPArllmszlBvovfvn2D4OBgSJYsGbeXvIvWvMfkXfz69Su3l7yL9jxvrXkXiVfPu/jz509u7/fv360+M8m7mDlzZm5veHj4f/K8DQkJgYiICG4veRd5zx6A/z9vrXmPyTO25l3Uc/eJjo62+rxNqHcf8oytuaOGhoZCSEgIpEuXjttri/PW2neR3EHsdfex5l0k5601XvIuWiPyd6o1dx895y199+EVffeJjY3l9ut5xuRd1POM9bCmo6Mjtzchs2ZISEiCOm8Ja6ZOnZrbS97FDBkycHvJu2iP89berKnnXYxv1tT7LlrLmnruPgZr8um/yJq2yPsYrKkuveft58+fdbOmnmdsjQzW5JOevI8tzltr7qh6WDOhvov2vvtY898PPaxJ3sWsWbNye/WyJvl58cpgTT7pufvYijWtPW+tZU3y3y17sGZwcDCkSZOG20vutxkzZuT2GqzJp69fv1r93y17sqY97j4JlTXJu2gP1gwJCYn3d5E+b4ODg6FQoULg4ODA/c8x9IvKFtWH//YAY+Lgv0KrVq3S1J3DWmVw4MABbN26teqq4ly5cknW5l25cgU9PDxUO10yZcqEHTt2xO3btwurDJ4/f44eHh6qY9tZa/PCwsLQw8NDdSWj3CqDHj16qI7mJ1114lUGWlahAPx/lwe9ymDevHmapgSUKlVKsspg06ZNmjoCWKsMjh8/jh4eHqod96TLY+/evcJo7cDAQPTw8MCsWbMqellr896/f48eHh6q66hTpkwpWWVgNpvRw8NDdVR00qRJmasM+vXrp9pdLLc2b+LEiZq6qEhXHb3KYPny5arrFwD+6aoTrzLYtWsXtm7dWrUbm3R50KsMzp07hx4eHqorFFirDB49eoQeHh6qK2tYqwy+fv2KHh4eql0ypMtj+fLlFiuDO3XqpLoCV26VwZAhQ7BGjRqKXrkV7TNnzsTGjRurPifW2ry1a9dqmjrIWmVw+PBh9PDwUF0flTNnTsnavICAAPTw8MCMGTMqelmrDF6+fIkeHh6q3fr0inayyiAyMhI9PDywRIkSit5kyZIxVxn07NlTdbKK3CoDrdPKWKsMFi5cqKlTjrXKYOvWrdiqVSvV9VFkep2fn5+wyuDkyZPo4eGh2nWWLVs2ydq8u3fvooeHh+rKGtaK9k+fPqGHh4dqhzDpqhOvMmjTpo3qWiJ6ogC9xmngwIGqK8fl1uZNnjxZ03RI1ioDX19fTVOwWKsM9u3bh61bt1ZdH5U7d27JKoOLFy+ih4eH6gqFzJkzC6sMyN0nKCgIPTw8VNejpkmTRrLK4MePH+jh4aG6JkNulUHXrl1VO/0TJ07MXNE+fPhw1ek5ZIKLeJXBnDlzNE0JYK1o37Bhg6bzlrXK4OjRo+jh4aG6QoFMFKBXGdy8eRM9PDxUJ6aSiQJbtmwR7j5v3rxBDw8P1RVh9Nq89+/fIyJidHQ0enh4qHaBy63N69Onj+oUT7m1eePGjdM0rYy1on3JkiWaprKw1ubt2LEDW7durTr1NG/evNi3b1+LtXlnzpxBDw8P1QknWbNmlazNe/DgAXp4eKhOzmCtzQsJCUEPDw/VNRn02jx6jVOHDh1U1xLR0+volcFeXl6qa+Dk1uZNmzZN04Qk1to8W7Cm2vQLW7AmvTZPD2v+/PkzXliTtTZv5MiRcc6arLV5eljT398/XlmT3H3ikzUXLFggYU21NXC2YE3x2jw9rLl79267sObjx48TJGsOHTqUizXptXkzZ85UXT0F8P+T0um1efHFmmRtHrn7XLt2DT08PFRXw7NY89WrV5pZU7w2Ty9r9urVyy6suWjRonhjTXptHmFNtVXFtmDNjRs3Cncfwppq66jlWLNt27aqEx71sKbc2rwpU6ZYzZorVqywC2teunQp3lhz7dq1dmFN8do8LWs39bImmV4nZk0tdx8Wa/r5+dmFNd++fWs1a8bExNiNNcePH8/FmvSKdh7WHDJkiF1Ys0uXLkzWVFuP+quxpslkijfWpPPsq1evxj///FPVawvWpFe0xwdrkjw7vaKdsKbatFV6ep2YNdWmysUFa86fP99q1ty8ebNdWPP27dvxxporVqywWNEeH6xJpteJWbNBgwaqP2s9rMla0a6HNc+fP48eHh6YLl06Ra+tWfPbt2+6WLNz5852Yc1Zs2bFOWuSSem/Emvmy5dP0RsXrGnIvjJWFRuFg4Z0ytfXV3Lg0ZdEOkEm1vHjx5kHZsWKFSUJMrEePXrEBLCSJUtKEmRiffnyhXkhoIsxyCVRrOjoaCZEsRJkLLGAlVWMwVL37t0lXpIgE18SxWKNMqdHHD99+lTWu3nzZomXviTSCTKxLl26xHzGZMQxfUkU69WrV0wAI5dEOkEmVmhoKPNyTi6JdIJMrNjYWGZykU6QkUsiS6zEAqsYgyXWSgI6QUZfEsVijZzXOuL4wIEDzEsiWadDXxLFun37NjP5TIoxLl68KPsufvz4kVnoRF8S5d7FyMhI5kcC1iVRLLPZzEwCk0sinSBjibXmJ1WqVNiiRQtctWqVcElkiTWuXi5BJtbq1auZ7yIrQSbWqVOnmO8iqxhDrKCgICaAkWKMs2fPyj7jb9++MZMh+fLlQ09PT4sPEmLFxMQwE8ikGGP37t1CgowlVvIoXbp06OHhYfFBgiXWulFHR0ds1qwZ+vr6WiTIxGKtFZD7ICHWjh07mO9i1apVJQkysQICApjPmFWMIdbbt2+ZyWdWgkysnz9/MotgcufOLSnGEMtsNjNXlZJ1OnThP0ss6KSLMZTOW9Y6JlKMsXTpUsX76dKlSyVeep0OnSAT68iRI8znRNbp0Akyse7fv888b8kHCTpBJlZwcDAz+cxKkIkVFRXFTFqxEmQssT7IsAr/WercubPESxdjkA8SLLFWR9DrdOgEmVjr169nnrekGOPevXuyz+ncuXPMZ0wK/wMCAmTfxefPnzObasg6HfqDhFg/fvxgJkPIBwk6QSZWbGwslixZknnedunSxSJBxpKrq6vEy0qQsdSvXz/meevu7o7Lly9XPG9ZKz7oBBn9QUKsPXv2MM9bVuG/WDdv3mQ+Y1bhv1jv379HR0dHiZcUY5w4cUL2vI2IiGCujyHrdOgPEmKZzWZmkQNZp7Nt2zYhQcaSh4eHxEt/kFC6+7BWo9GrW5USZEqsKS7GEMvf35/5nPSwJqsYQ6yEypqslVvxwZpbtmxhnrd6WVNcjCGWEmuKizHECgsLk2VNcTGGWHpZk/VRJT5Yk7Vu51dgTboYQ6xPnz4psiZdjCGWGmvSxRhimc1m5uo8vawpLsZgacyYMRKvVtZcs2YN812MD9ZkFTrFB2uyCrVtwZp0MQZLSqwpLsYQa+bMmczztn79+jhv3rw4Y81r164xn3F8sCarCEYra7KKylhN5iypsSYpxmBp6NChEi/NmnQxhlhKrCkuxhDr6NGjzOeklzXFxRhi6WVNViNifLAma8WhHtaUazIXa8OGDczz1hasqZRnV2NNuhhDrB8/fjCLDvWwJqsYgyVW0ZAe1pQrxhBLjTWV7j579+5lnrdxzZofPnywOWuymszFMpvNzAJPW7AmXYzBkh7WXLFiBfO8ZRX+iyXHmqzCf7EeP37MzLPbijXl7j7R0dFYpEgRiVcra7KakGzFmnThv1islaG2YE1x4b9Yly9fZj5jPazJKvwXSw9rms1mZhFvfLCml5cX87y1ljXlmszFOnjwIPO81cKad+7csRtrsgrSWIX/YsmxJqvwn6UOHTpIvL86a54+fZr5LtqKNeXexW/fvjGHqdiCNenCf0O/lozCQaNw0JAORUZGCt1mWosxiMxms9BNRBdjKF0SaXXs2FG4JGopxqA1duxY4QLB6g5V0tq1a4VDg9UdqqQzZ84wL4lywEbr6dOnwl9wrO5QJX3//l34C45cEtUSZEQxMTFCJxKrO1RNpAuBXBLVijFo9e3bV7gkkmIMpUsirVmzZllcEsXdoUratWuX8JxY3aFKun79uuBldYcq6d27d0IyVcslkVZ4eLiQTNV6SSQym83CdBKtl0RarVq1klwSlRJktIYNGya5JColyGgtX77c4pJIijG0eP38/ASvlmIMWg8ePBA+JLO6Q5UUHBwsTMxgdYcqKTo6Wui0Z3WHqolMNZDrDlVS165dEUC+O1RJkyZNEt5F0h2qlCCjtXHjRuE5sbpDlXThwgXBSz5IKCXIaL18+VJIpmopxqAVGhoqJFNZ3aFKio2NFboCWd2haiLTJ+S6Q5U0YMAA4bxldYcqad68ecLPmtUdqqR9+/YJXlZ3qJICAwMFL/kgoVSMQevDhw9C16jWDxJEERERQncv+SChliAjMpvNwlRarcUYtNq2bSvcfUh3qFKCjNaoUaOE85bVHaqklStXCj9rLYX/tE6ePCl4Wd2hSqKTqazuUCV9/fpVmJih9YMEUXR0tND5SX+Q0Hr3IV22Wj9I0OrZs6dw3tatW1e1GIPWtGnThPOW1R2qpG3btgnPidUdqqQrV65IEmR0d6iSXr9+LXSNain8p0UXLbO6Q5VEJ1NZ3aFqIlPw6O5QpQQZLZPJJLyL5IOEUoKM1uLFi4WfNfkgoZQgo3Xo0CHBW6JECdViDFp3794VkqmsSURK+vz5szChKFu2bJqKMYj0sibppI5v1hw3bpxNWVOpGIOWHtZ89uyZhDWVijFo6WVN0oWthzW1Fv7T0sOas2fPFn7WpBgjIbLm3r17NbMmmaZgC9ZUK8agpYc1hw8fbsGaasUYtPSw5rFjx+zCmiEhITZnTaViDFp6WLNbt242Y021YgxamzZtsglrainGoKWXNbNkySKwppZiDCK9rNmsWTObsqZSMQat+fPnW82a+/fvl7CmUjEGLT2s+fHjRwlrqhVjENGsqbUYg8hsNguTgvSyppZiDFp6WHPVqlV2Yc0nT57YlDXVijGIYmJibMqaasUYtPSw5vTp0y3y7GrFGLRo1qSbzLU846tXryZI1iTToOKbNQcPHmwz1lQrxqB1+PBhm7CmlmIMWnpYMyoqym6s2alTJ5uyplLhP61169ZZzZpnz56VsKZS4T8tvaxJGmS1NpkTiVlTS5M5LTJZ1lasqTXProc1d+/ebTfWJEXLtmBNtcJ/IrPZLEzCtIY1W7duLZy3Wgr/aelhTR8fH+FnraXJnJYe1nz48KHNWVNrnl0Pa9atW9curDl58mSbsKaWwn9Dv47ionAwCRgy9B/RmTNnoEWLFuDu7g7VqlWDpEmTavbevXsXSpUqBSNGjIA6deqAo6OjZu/Hjx8hSZIksH37dmjYsCGkTZtWszciIgLevHkDa9asgaZNm0KWLFk0exERbty4AUuXLgVXV1fIkyePZi8AwKlTp2DWrFng7u4ORYsW5fIeOXIExowZA+7u7uDs7My1397Pzw/+/vtvcHd3h99++w0SJ06s2Xvp0iVo0KABLFiwAGrWrAnJkiXT7A0KCoJcuXLB3r17oV69epAqVSrN3q9fv0J4eDhs3rwZGjduDOnTp9fsjY6OhsePH8PKlSvB1dUVsmXLptmLiHDp0iVYuHAhuLm5Qf78+TV7AQCOHTsG06ZNA3d3d3BycuJ6TkeOHIFhw4aBm5sblCtXDhIlSqTZe+LECWjXrh24u7tD1apVIUkS7X8V3bhxAypVqgQTJ06E2rVrQ4oUKTR737x5A6lTp4adO3dCgwYNIE2aNJq9YWFh8OnTJ1i/fj00adIEMmXKpNlrNpvh9u3bsHz5cnB1dYVcuXJp9gIAnD17FubOnQtubm5QuHBhLu/Ro0dh4sSJ4O7uDqVKleJ+F/v16wfu7u5QsWJFrmd89uxZaNasGbi7u0P16tW5ztsHDx5A0aJFwcvLC+rVq8d13n7+/BkQEbZu3QqNGjWCdOnSafZGRkbCixcvYPXq1dC0aVPImjWrZi8iQkBAACxevBjc3Nwgb968mr0A/7wTM2fOBHd3dyhWrBiX9/DhwzBq1Chwd3cHFxcXrmd87Ngx6NatG7i7u0PlypW5ztsrV65A7dq1Yfbs2VCzZk1Injy5Zu/z588ha9assHv3bmjQoAHXefv9+3f48eMHbNq0CRo3bgwZMmTQ7I2NjYUHDx6Ar68vuLq6Qo4cOTR7AQAuXLgA8+fPB3d3dyhQoACX18/PD6ZOnQru7u5QokQJ7vPWZDKBu7s7lC9fnutdPHXqFLRq1Uq4+/Cct4GBgVC2bFkYM2YM1KlTh+u8ff/+PaRIkQJ27NgBDRs25Dpvw8PD4f3797Bu3Tpo0qQJZM6cWbPXbDbDrVu3YNmyZeDm5sZ93p4+fRrmzJkDbm5uUKRIES7v0aNHYdy4ceDu7g5lypThPm979+4N7u7uUKlSJa538cKFC9CkSRNYsmQJ1KhRg+vu8+jRI8ifPz/s27cP6tWrBylTptTsDQkJgaioKNiyZQs0atSI6+4TFRUFT58+hVWrVkHTpk257z5XrlyBRYsWgZubG+TLl0+zFwDA398fZsyYIZy3vO/iiBEjwN3dHcqWLcvl9ff3h44dO4KbmxtUqVKF610MCAiA6tWrw/Tp06FWrVpc5+2rV68gffr0sGvXLmjQoAGkTp1aszc0NBS+fPkCGzZsgCZNmkDGjBk1e2NjY+Hu3bvg4+MDrq6ukDNnTs1eAIBz587BvHnzwM3NDQoVKsTl9fPzg8mTJ4O7uzuULFmS6zkdPXoUBg4cCO7u7lChQgWu81YPa967dw9KliwJw4cPt4o1EydODNu2bYNGjRpxs+br16+tZs3r16/DkiVLwM3N7T/Dmv/H3lmGV3F1bXjFcY0gCe7uQYoXdwoUKVCsQJFCi3txDe5OkeLB3S14ggULAeLuJ37W9+O95nx75szM2TOT5JCyn+taP94fTwOZd2/2vfZae/3444+wdu3abMOaaWlpBtbs2LEjFClShNqrlTWvXr2qiTWnTJkCXbp0UcWa/fv3z1asqdPpzMaat2/fVs2aly9fhgULFkDnzp2hevXqivdbLazZpUsX6NKlCzRt2jRLWVOv16tizZSUFE2s+fjxY9WseePGDbOw5tWrV2Ho0KFmYU0HBwfVrBkbGwsHDhyA9u3bKz77aGHNe/fuwdq1a6Fz585QpkwZRV5zseatW7dUs+bLly+hVq1aMHv2bE2s2aZNG0VnHy2siYjg6ekJmzdvhs6dO4OzszO1F0Aba168eNEsrHnv3j3VrPnhwwezsGZqair4+PiYhTWvXr2qiTWnTZtmOPtkFWs+ffoUGjduDEuWLIEWLVpkKWtGRkYy1qTU98iaT58+Vc2aN27cMAtrXrlyBUaMGKGKNR8+fKiaNT99+gTFihVTzZo6nU5Vnl0LawIAPHjwANatWwddunTJctacPHmyKta8ceOGatb09PSE+vXrw/z58xWzZmBgIOTOndssrPnixQtNrOnm5gZdunRRfa+pljXHjh1rOPtkJWuWK1cOJk6cCK1atVJ09tHKmp8/fzbLvSbTf08W+L8X9ZhkZGFh4QwAfgD/OxArBUMmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJjXy9/cni+tdENFf63+TvsyWiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYkp24sVDjIxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExfUdihYNMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTN+RWOEgExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE9N3JFY4yPTd6P79+3Do0CGIiopS7PX29oadO3dCcHCwYm9oaCisX78ePn/+rNiblJQEq1evhjdv3gAiKvIiIqxfvx6ePHkCer1e8c/evXs33Lp1C9LS0hR7jx07BhcvXoSkpCTF3qtXr8Lx48chLi5OsffJkyfwzz//QEREhGLvp0+fYOvWrRAQEKDYGx0dDWvWrIGPHz8q9qampsLq1avhxYsXqr7x5s2bwcPDQ9U33r9/P1y/fh1SU1MVe0+fPg1nz56FxMRExd7bt2/D4cOHISYmRrH3xYsXsHv3bggNDVXsDQgIgI0bN8LXr18VexMSEsDNzQ3evn2r+Dvp9XpYu3YtPHv2TLEXAGDHjh1w9+5dSE9PV+w9fPgwXL58GZKTkxV7L168CO7u7pCQkKDY6+HhAQcPHlS1375//x527NgBQUFBir3h4eGwbt068PX1VexNTk4GNzc3ePXqlaq1uGHDBnj06JGqtbhnzx64efOmqv32xIkTcP78eVX77bVr1+DYsWMQGxur2Pvs2TPYt28fhIeHK/Z++fIFtmzZAv7+/oq9sbGxsGbNGvjw4YNib3p6OqxevRo8PT1VrcUtW7bAgwcPVK3FAwcOwNWrVyElJUWx9+zZs3D69GnQ6XSKvXfv3oV///0XoqOjFXtfv34Nu3btgpCQEMXeoKAg2LBhA3z58kWxNzExEVavXg3e3t6q9tt169bB06dPVX3jnTt3wp07d1StxaNHj8LFixdV7beXL1+GEydOQHx8vGLvo0ePYP/+/arOPh8/foRt27ZBYGCgYm9kZCSsXbsWfHx8FHtTUlLAzc0NXr58qWq/3bhxIzx8+FDVfrtv3z64ceOGqrOPu7s7nDt3TtXZ5+bNm3D06FFV+62npyfs3bsXwsLCFHv9/Pxg06ZN4Ofnp9gbHx8Pq1evhnfv3in2pqenw5o1a+D58+eq1uK2bdvg3r17qvbbQ4cOwZUrV1Ttt+fPn4dTp06pOvuYmzXVnH20sua6devg8ePHWc6ax48fhwsXLjDWpFBaWlq2Zc0zZ86oOvtoYc2XL1+ajTVXr17NWJNSHh4ecODAAYiMjFTs1cqaa9euhU+fPin2cmcfc7Dm3r174ebNm6rWohbWvH79erZkzdWrV8P79+8VezOCNe/fv89Yk0LBwcFmYU3u7PP06VNVa5GxJr20sCaXZ1fLmps2bTILa546dcosrOnl5QV79uxhrEmpf//9l7EmpZKSksDNzQ1ev37NWJNCT58+NQtrxsTEmIU1AQA2b96sOs/+vbFmYGBgtmZNNWtRK2uePHlS1dlHK2tu3779u2JNpv+gEJGFiQAAZwBAAEA/Pz9kyp6KiorC/Pnzo5WVFbZo0QJXrVqF7969o/KmpqZiuXLlEACwQYMGOH/+fHz+/Dnq9Xoqf+vWrREAsFq1ajh9+nS8d+8epqWlUXmHDx+OAIBlypTB8ePH45UrVzA5OZnKu3jxYgQALFq0KA4fPhxPnTqFCQkJVN5///0XAQALFiyI/fv3x0OHDmFUVBSV18PDAwEAc+fOjd27d8edO3dicHAwldfPzw9tbW3R1tYW27Zti+vXr8fPnz9TeRMSEtDR0REtLS3xhx9+wGXLluGbN2+ovlN6ejrWrFkTAQDr1KmDc+fOxSdPnmB6ejrVz+7evTsCAFaqVAknT56Mt27dwtTUVCrvxIkTEQCwRIkSOGbMGLx48SImJSVRedevX48AgI6OjjhkyBA8fvw4xsXFUXnPnj2LAID58uXDPn364D///IPh4eFU3pcvX6KFhQXmzJkTO3fujFu3bsWAgAAqb1hYGObOnRutra2xVatWuHr1avz48SOVNzk5GUuUKIEWFhbYsGFDXLRoEb548YLqG+v1emzSpAkCANaoUQNnzpyJHh4e1N/4l19+QQDAcuXK4cSJE/H69euYkpJC5Z0zZw4CABYvXhxHjhyJZ8+eRZ1OR+XdvXs3AgAWLlwYBw4ciIcPH8bo6Ggq782bNxEAME+ePPjTTz/hnj17MDQ0lMrr4+ODVlZWaGdnhx06dMCNGzfi169fqbwxMTFYsGBBtLKywubNm+OKFSvw7du3VN60tDSsVKkSAgDWq1cP//77b3z27Bn1ftuuXTsEAKxatSpOnToV7969S73fjh49GgEAS5cujePGjcPLly9T77fLly9HAMAiRYrgsGHD0N3dHePj46m8x44dQwDAAgUKYL9+/fDgwYMYGRlJ5X369CkCAObKlQu7deuGO3bswKCgICpvYGAg5siRA21sbLBNmza4bt069PX1pfLqdDosWrQoWlpaYpMmTXDp0qX46tUr6rVYt25dBACsXbs2zp49Gx89ekS9Fnv16oUAgBUrVsS//voLb968Sb3fTp48GQEAXVxccPTo0Xj+/HlMTEyk8m7evBkBAB0cHHDw4MF47NgxjI2NpfJeunTJsN/27t0b9+3bR73fent7o4WFBebIkQM7deqEW7ZsQX9/fypvREQE5s2bF62trbFly5bo5uaGHz58oPKmpKRg6dKl0cLCAl1dXXHhwoXo6elJvRabN2+OAIDVq1fHGTNm4IMHD6jX4pAhQxAAsGzZsjhhwgS8evUq9X47f/58BAAsVqwY/vbbb3j69Gnqs8/+/fsRALBQoUI4YMAA/Pfff6n323v37hnOPj169MBdu3ZhSEgIlffz589oY2ODtra22K5dO9ywYQN++fKFyhsXF4f29vZoaWmJTZs2xeXLl6O3tzf12adq1aoIAFi3bl2cN28ePn36lPobd+7cGQEAK1eujFOmTME7d+5Qr8Vx48YhAGCpUqVw7NixeOnSJeqzz+rVqxEA0MnJCYcOHYonT56kPvu4u7sjAGD+/Pmxb9++uH//foyIiKDyenp6IgBgzpw5sWvXrrht2zYMDAyk8oaEhGDOnDnRxsYGW7dujWvWrEEfHx8qb1JSEhYvXhwtLCywcePGuHjxYnz58iX1fuvq6ooAgDVr1sRZs2bhw4cPqffbvn37IgBg+fLl8c8//8QbN25Qr8UZM2YgAKCzszOOGjUKz507R73fbt++HQEA7e3tcdCgQXj06FGMiYmh8l67dg0BAPPmzYu9evXCvXv3YlhYGJX3w4cPhrNPx44dcfPmzdT8r5U1y5cvr5k1q1atitOmTVPEmiNGjMh2rPnw4cNsx5p6vd6INR8/fpwlrPnnn38aWPP333/HCxcuZAlrnjt3TjVrvnr16rtjzYEDB5qFNffs2aOaNW/dumVgzZ49e+Lu3bsVsaa1tbVq1ixUqBBaWVlhs2bNspQ127dvjwCAVapUUc2apUqVMrAm7VpcsWJFtmfNtWvX4qdPn6i83wJrVqhQQTFrTpkyRTVrbtmyxWysaWlpmWGs+f79eypvSkoKlilTJkNYc/r06Xj//v0sYc0FCxYYWHPEiBHZgjW/fPlixJq0Zx+trFmtWjWzsOb48eMRALBkyZI4duxYRXl2jjW5s8+JEyeozz6nTp1SzZpeXl4G1uzSpUuWsqazszNaWFhgo0aNspQ1+/Xrl6GsSXv22bFjR4axppI8u1bWLFCggIE1V65cmWWs+eOPP2pmzdKlSytmzSVLlqhmzcOHD5uFNf39/Y1YkzbPnpCQgE5OTgbWXLp0Kb5+/Zp6LdaqVStDWHPSpElZxpobNmwwnH1+/fXX74I1S5YsqZo1f/jhBx5rPnjwIEtYc+7cuTzWPHPmjGLWLFSoEP7yyy9ZxpqfPn0ysGb79u1x48aN1Hl2raxZuXJls7Dm77//nmGsefLkSWrWZDKv/Pz8kKtfAwBnzIiauIz4j/zXgxUO/nc0b948chEpSgbt3bvXyEubDLp9+7aRlzYZxP0jR3rJZJDcRVhsbCwWKlSI56VNBqWlpWGVKlV4XiXJoA4dOvC8SpJBY8aMMfp90SaDVq5caeQtU6YM/vHHH3j16lVZODlx4oSRlzYZ9OzZMyMvbTIoKCgIc+TIwfPSJoMSExOxWLFiPC9tMkiv12O9evV4XjIZZOoirE+fPkZ/Z9pk0NSpU428XDLo9u3bsmtx69atRl7aZNCVK1eMvLTJoLdv36KlpSXPS5sMioyMxHz58vG8tMmg1NRULFu2rNFapE0GtWzZ0mgt0iaDhg4davT7ok0GLVy40MhLmww6ePCgkZc2GXT//n0jL20y6OvXr2hjY8Pz0iaD4uPj0d7enuflLsI2bdokexGWnp6O1atX53mVJIO6du1q9HeuX78+VTLojz/+MPLSJoPWrl1r5KVNBp0+fdrIW6RIEUMySA5OXrx4YeSlTQaFhIRgrly5jPZbLhkkdxGWlJSELi4uRvstTTJIr9djo0aNjPZb2mRQ//79jf7OtMmgWbNmGXlpk0E7d+408pLJILmzz40bN4y8tMmgjx8/opWVFc9LmwyKjo7GAgUKGO23NMmgtLQ0rFChgtF+S5sMatOmjdF+yyWDvLy8ZL/xyJEjjX5ftMmgpUuXGnnLlSuHEyZMwGvXrsnut0eOHDHy0iaDHj9+bOSlTQb5+/ujnZ0dz0ubDNLpdFikSBGj/ZYmGUQmVMn9ljYZ1LNnT6O/M20yaNKkSUZe2mTQxo0bjby0yaALFy6I7rc0yaDXr1+jhYUFz1ugQAHs27cvHjhwQLbwIDw8HPPkycPzcoUH27dvl91vk5OTsVSpUjyvjY0N/vjjjyYLD/R6PTZt2tRoLTZu3BiXLFlisvBg8ODBRr+vWrVqURUeaGHNffv2GXm1sKa9vT0Va/r6+mYKa5q6CNPKmh07djT6xq6urrhgwYJMZc1Vq1YZebWwZtGiRbOENXPmzMnzZhVr1q9fn+fNCNbkGvzkvNOmTTPyamVNmgY/Laz57t07Udb8+eef/7OsOWzYMKPfFy1rLlq0yMjLsaapizAtrPngwQPR/XbQoEF45MgRVaxJ0+AXHx+PDg4OPK9W1mzevHmms+aECROMvFnBmmfOnDHyZgRrmiq6DA0NVc2aycnJkqxpqsFPK2sOGDDA6O9cu3ZtnDNnjirWrFixIhVr7tq1y8ibUawpd/bRypoFCxbkeXPkyGFgTVN5di2s2bZtW6P9Vitrcg1+ct942bJlRl4trMk1+GUmawYEBMiyptzZRytr1q5d22i/zQjWNJVn18KamzZtMvJyrGmqwU8La7558ybDWbNr1664fft22bNPSkpKtmTNv//+28ibFax5584dI29GsKapBr/Y2FgsXLiw0X5Lw5rp6elGrEk2+GUma44dO9bo98U9JpOZrHny5Ekjb0axplyeXStrFi9enOfNKtb8+eefjf7OWliTa/AzxZrbtm0z8tKy5tWrV428WcGaXJMs6c0o1jR19mnVqpXRWswI1jTV4KeFNQ8dOmTkpW3w08qatra2PG9WsCaTecUKB1nhIJMGXbt2zdCJLRVShQdPnjzB5cuXGyX5yJDqwP3w4QO6ubkZbbzCA5FYMig0NBTd3NywYsWKkl6yA5dMBiUlJaGbmxs2btxY9u8slQzatGkTdunSRdYrlQw6cOAA/vrrr7JeqWTQ2bNn8a+//pL1ShUe3Llzx9D9KRVSySAvLy9cuXKlUZKPDDIZRBYefP78Gd3c3NDZ2VnSSyaDyNeeoqKi0M3NzfAChVhIJYP0ej26ubkZHaCEIZUM2rFjh6GbWiq4DlxhMujo0aOiiScypJJBly9fxunTp8t6pZJBHh4euHTpUqMkHxlSySBvb29ctWqVUZJPeCASSwYFBgaim5ub0UGXDKlkUEJCArq5uWGDBg1k/85ShQfr1683dJtIBZcMunPnDg9A9+7dK5oEJkOq8MDd3d3QpSsV5GtPZDLoxo0bopfnZEglg549e4YrVqwwSvKRQSaDyP3Wx8cH3dzc0MnJSdIrlQwKDw9HNzc3o8SCcC2KJYNSU1PRzc3NKHkkDKlk0JYtW7Bbt26yXqlk0KFDh0QLPMmQSgadP3/e8AKfVEglg+7du4eLFi0ySvKRIZUMevXqFa5atcooyUdGjhw5RDtwv379im5ubliiRAnZtSiWDIqJiUE3NzejRK4wGjRoIJoMWr16taHTViqkkkG7du0STUqQIZUMOnbsmOGFEqmQSgZduXJF9DKHDKnCg0ePHuGyZcuMknxkSCWD3r17h25ubkZJPjKkkkHBwcHo5uZmdKlCBpcMEr72lJiYiG5ubtiwYUPZv7NUMmjjxo3YqVMnWa9UMmj//v2GDk6pkEoGnT59WvRilQypZNCtW7cMryxKhVQyyNPTE1euXGmU5CNDKhnk6+uLbm5uRgUlZEgVHkRERKCbm5vhBQqxkEoGpaWloZubm+GVEamQKjzYtm2b6IUMGeXLlxftwD18+LChY14quMIDYTLo4sWLoslFMrjXnoTJoPv37+OSJUuMknxkSCWDXr9+jatWrTJK8pEhlQzy9/dHNzc3LF26tKRXqvAgLi4O3dzcjBpUhCFVeLB27Vqjy1FhSBUe7Nmzx/B6hVRIFR6cPHlSNNFPhlThgRLWFBYecKwpTPKRoYU1pV4W5liTe31LLKRYMzk5+btgTfLsc+fOHdHGGDKkWPPFixfUrCls8FPCmsKXhWlZk2vwy2jW7N27t6w3s1iTe4VGKqRY8+HDh/951hQWHqxfv96o6VMYUqy5b98+KtYUe1k4u7AmefbhWFNYUELGt8iaW7duzRLWFL4sTMuaXINfRrNm3rx5Jb1SrOnn5/fdsebx48cNL5RIhRRrXr161SRrFixYULTwICtYU+xl4YxgTWGRpjDIKTYZyZqDBg2S9Uqx5pkzZ/7zrEkWHkRGRqKbm5tRwTQZJGuSrz2lp6dTsabUy8KZzZpShQdaWPPBgwcmWVNqik12Zk1uWo1UZARrCqfYKGFN4cvC169fN7z6JRVSLwtnZ9bkXvOWCinW3Lx5s2jjAxnZlTXFXhZ+8eIFrlq1CnPnzi3plWLNL1++ULGm2BQbLayJiFSsSU6xyUjWHDVqlKz3W2PNt2/fmmRNW1vbDGFN8mVhJawp9pgMDWuSLwsLWZObACcVUqx56tQps7Km8JEgMjKTNbmpQlJrMSNYU8nLwkyZL1Y4yAoHmTRI7GUBuSCTQabgSyy4ZJCbm5tiL5cMEnvl0FRwySDueXwlQSaD5BIwYkEWHphKlAmDSwbt3LnT5KFeGGThganCCmGQySBThwGx4AoPxF6BMRVcMkisA8FUcMkgsa4+U0Emg0qWLKnISyaDuKexaYNMBpkCbGGQySDu+XPa4JJBixYtEn2RyVRwhQfcGAMlwSWDjh8/rthLJoPkoE8syGSQ3MWEWJCFB6aKFYVBJoNMXS4Ig0wGzZw5U/Hvi0sGrVmzRrGXSwaJdV+aCi4ZxI39VhJkMsjR0VGRl0wGCbvrTAWZDOrRo4ciL5kMMpXsEgaZDDKVCBELLhnEjXBSElwySKzb3VSQySC5RKpYcMmgY8eOYZkyZRR5ycKDFi1aKPKSySBTgC0MsvDA1EWfMMhkEPfEvZLgkkHceHYlwSWDxDpsTQWZDJJLeIsFmQyqUaOGIi+ZDDJ1gSQMsvDgt99+U+Qlk0GzZ89W/PvikkHc+EolUaVKFZwyZQoeOHBAsZdLBnHjSJQEmQwSdjObCjIZZOqSUBhkMkjs5Sy5IJNBYi/DygWZDOJGySoJLhnEjQtWElzhwdGjRxV7ycIDuYIOsSALD+QugsWCHGls6sJeGGThgdjrEXKR3VlT7OVgU6GFNbnCg0OHDmGdOnUUebWyJld4oIU1xV4IMRVc4YEW1uRGQiuJb4E1TSWthZFdWZMrPMiurCl3MSEWZOGBFtYUez1CLr4F1vznn38Ue0uXLo3jxo0TfT3PVJCsKddUJxYZxZqmimeE8b2zptwlslhoZU2u8ED4aqipIFnTVNOUMMjCAy2sKTZpxlRkBGu6u7sr9n4LrMmN/KUNrvBgw4YNmljTVEONWGhhTa7wQAtrnj9/XrE3o1jTVDOOMDKKNU0VlQojI1hz1qxZoq9umQqONY8dO6bYS74srIU15R73EIuMYk1ThWzC+BZYU02eXeu9JtfgJ5wIZCq0sib3srCpRg1hkKxpqohfGNzLwlpZU+zFUVOhhTVLlChhKHJX6s0I1vznn380sabYRCC54Fhz9erVmlhT7PVfU6GFNbmRxmJTE0wFyZpyj0aIRXZmzRUrVpiFNadOnaqJNdXeaw4bNsyoyJ0p65UZhYPWwMTEJKr09HS4efMm6HQ6KFSokGL/o0ePQKfTQYUKFRR7X716BTqdDho2bKjY++nTJzhy5AhER0cr9gYFBcGxY8dAp9NBSkqKIm9kZCS4u7uDTqdT/LMTEhLg3LlzkJCQAOHh4Yq8KSkpcOXKFdDpdGBlZaXIq9fr4c6dO5CQkADFihVT5AUAePr0KSQkJED16tUVe9++fQs6nQ6CgoIUe798+QJHjx6FhIQExd7Q0FA4ceIE6HQ6SExMVOSNiYmB06dPg06nU/ydEhMT4cKFC6DT6RT/udPS0uD69eug0+kgd+7ciryICA8ePICEhAQoU6aMIi8AgJeXFyQkJEC9evUUez98+ABHjhyBiIgIxd6AgADDWkxPT1fkjYiIgJMnT4JOp4O4uDhF3ri4ODh79qyq/28mJyfD5cuXQafTgV6vV+RNT0+HW7dugU6nAwcHB0VeAIDHjx+DTqeDSpUqKfa+fv0aEhISoHHjxoq9vr6+cOTIEYiNjVXsDQ4OhmPHjkFCQoLi/TY6OhpOnToFOp0OoqKiFHl1Oh2cP39elTc1NRWuXbsGOp0O7OzsFHn1ej3cu3cPdDoduLi4KPICADx//hx0Oh3UrFlTsffdu3eg0+kgJCREsffr169w9OhR0Ol0ir1hYWFw4sQJSEhIUOyPjY017LehoaGKvElJSXDx4kVISEiApKQkRd60tDS4ceMGJCQkQIECBRR5EREePnwIOp0OypUrp8gLAPDy5UvQ6XTQoEEDxV4fHx84cuQIREZGKvYGBgYa9tu0tDRFXvLsExMTo8gbHx9v2G+Dg4MVecn91sLCQpE3PT0dbt++DTqdDhwdHRV5AQCePHkCCQkJULVqVcXeN2/eQEJCAgQEBCj2fv78GY4ePQrx8fGKvSEhIXD8+HHQ6XSK1wS53yr991yn0xnOPkr/nSD325w5cyryIiLcv38fdDodlChRQpEXAMDT0xN0Oh3UqVNHsff9+/dw+PBhxfsWAICfn5/hfKv0HBEeHm44+yj9/0hcXBycOXNG1VpMSkqCS5cugU6ng9TUVEXejGLNihUrKvZmR9aMiooCd3d3SEhIyHLWvHr1Kuh0OrC2VpY+08qaz549A51Ol21ZU+nZh2TNsLAwRd6MYs08efIo8mplzRcvXoBOp8u2rKn03zby7BMYGKjIm91Zs0mTJoq92Z01le7V3wJr1qpVS7E3o1gT//dwAbW0siZ39tHCmsnJyYq8aWlphrNPdmRNpesBQDtrcvutFtZU+v/NlJQUuHz5MiQkJIClpaUiL8maTk5OirwA2ljT29sbdDodY00KmZs1ExISspw1/f39DWuRsaZpmZM1Dx8+rGq/DQoKMqzFrGZN7uyjdB2TrGljY6PIq9fr4e7du6DT6TSxZo0aNRR7tbCmljy7VtY8deoUJCQkmIU1ExISIG/evIq85mTNjx8/ZmvWNMe9ZkJCgtlY09/fX7FXK2ty+y0iQrdu3RTfTzB9w8qI6sP/egB7cfA/oRUrVlB1y+bKlcvQJcI9zX3gwAF0dXWVHVUM8L+OLa5LhHua+8aNG+jq6mqyup7sEuGe5n7//j26urpSvcjAdYlwT3PHx8ejq6srVbdbpUqVjJ7mbtu2LVXXqouLi9HT3L/++itWrlzZpFfsae4ZM2ZQvVgoNgZq48aNJp9NBuCPHOae5j558iS6urqa7DoTGzn88OFDdHV1Ndk9So4c5kYh+Pn5oaurK9WLY1yXCPc0t16vR1dXV9kxKlxwXSLk09zdu3fH8uXLm/QWK1YMR44ciWfOnDGMJfn9999lRwxywXWJkE9zL1q0COvWrWvSK/Y0965du9DV1dVkN7bY09yXLl1CV1dX2RFhAOJjoF6+fImurq5YqFAhk39u4cjhiIgIdHV1xaJFi5r0cmOg7t69a3iau0WLFliqVCmTXrGRw/3795cdCcCFk5OTUZfIpEmTZJ+a54J7keDAgQOGsSQ0T5gD/P+LBOTT3IcPH0ZXV1fZEQoA//8iwdq1aw0jMG/fvo2urq6yY4m4tSh8mtvHxwddXV2puhJr167NGwOVmJiIrq6uss/6cyE2BqpDhw6yz8Vz4ezsbDRyePjw4VQvS4qNHJ4zZw5VJ2XevHkNLxJwY6C2bNmCDRo0kB0fBfC//bZTp064ZcsWwxnqzJkz6OrqKvtsO7cWuRcJuDFQT58+RVdXVyxQoIDJb8y9SMCNgQoKCkJXV1eqVzeqV69uNAaqUaNGVPut2Bion376ieoVLLExUOPGjZMds8OF2BiopUuXmhzfAsAfAxUcHIyI/xsJ4OrqKjs+CkB85PDVq1fR1dXV5Cs23GtMy5cvN4yB8vb2pj771K1bF+fNm2cYAxUdHY2urq6yI4244F4kIMdAtW7dWnZUDhclS5bEsWPH8sZADRo0iOrsIzYGaurUqVirVi2T3vz582Pfvn15Y6DWrVtHtd+SHbIBAQGI+L8x2LRnH+EYqPv376Orqyvmy5fP5FoUjhz+/Pkzurq6yo674UI4cjg1NRVdXV3RxcXFpLd8+fL4559/4o0bNwxnny5dumC5cuVMeosXL240cnjkyJFUHa+FCxc2vEjAjYGaP38+1dmHe5GAHAO1fft2dHV1NfnqqdgYqPPnz6Orq6vsiDCA/3+RgBwD5enpia6urrKjULgQjoEKDQ1FV1dX2REbXIiNgWratClVB7nYyOGff/6Z6iUIsZHDEydOpHrRhRs5fOjQIcNYEnOx5s2bNxWxJjkGimNNmrPPt8SaQ4YMoTr7fEus6e7unqWsyY2B8vf3zxLWFBsDpYU1x4wZQ8WaYmOgFi1aRHX2EWPN3bt3Zzlr6vV6fPXqVZayJjkGKitZ8+TJk4azDy1rcmcfkjVXr16dJazJvcbEseadO3dUs+anT5+o91vhyGGtrNmxY8csY03y7JOVrEmOHOZYk+bso5U1yZHDWlmzcePGVGefjGbN8ePHq2bNZcuWmYU1r127lmWsSY4cjomJyRLWJF9jygjWnDZtGjVrCkcOZyfW5PLsX758yVLWJEcOa2HNUaNGKWJNcuQwLWuKjRzesWNHlrCmcOSwFtYMCwvTzJo0Zx9zsyY5cnjlypVZxprr1q0zjMDUwpofPnxQlGcnRw4rYU2xkcPt2rUzC2vOnDlTNWtu2rRJM2uayrOLseajR4+yjDWFI4ezijW5l3+zM2tevnyZ6uyTUazJjRyOjIzUxJotW7ZUxJrkyGEtrDl58uRMZ82cOXMajRw2N2vSnH2ErJmUlKSKNcnx30zmExtVzAoHmTRK6ilz7pBIJsiEevLkiahXrBhDqMDAQNGDG3dIJBNkQul0OlEQIosxuEOiUHq9XjRRR46H4A6JYurVq5foP0xcMQZ3SBST1NgJbjwEeUgUavPmzaJesUOiUFLPXIsdEoXy9vYWTUyKHRKFioiIEP1HPXfu3NizZ0/ctWuX4ZAoVEpKimjyiBwPwSXIxNS8eXMjr6WlJTZr1gyXL1+O3t7ekt9J6ql7rhiDOySKaf78+aJeLkFGHhKFkno+mSvGIA+JQt29e1fUS46H4A6JQn3+/FkUlMUOiULFxcWJJhfJQyKXIBMqPT1dNAEkdkgUk9gYS+6QSBZjiGncuHGyh0QuQSYmqZEEYsUYQkmNcSHHQ3AJMqE8PT0l91thMYZQwcHBokkrcjyE1H6blJQkmpSws7MzjIeQOgfo9XpRqCDHQ3AJMjH17dtX9O/MjYfgEmRimjFjhqiXGw9BJsiEkhpFyV1IkAkyoa5duybq5S4kTp06Jbnfvn//XjQxSRZjcBcSQkVFRYkmNMjxENyFhFCpqamiiVxyPARXjCGm1q1bi+63XOE/dyEhphEjRoj+vrhijCdPnkiuRakRMNx4CPJCQiip0RHkhYTU2cfDw0PUy11IkAkyofz8/ERBmRwPwSXIhEpISBBNPHEXElu3bpXdb8WSA+R4CO5CQkzdu3cX3W+Fhf9imjhxoujviyvG8PDwkPzGUuOYuMJ/8kJCKKmxAuR4CKn99uXLl6JnH3I8hNTZJywsTDRpRV5ISJ19kpOTRROE5IUElyATSq/XY5MmTUT3W+5Cgiv8F5PUCO/69evzijHEJDVyixsPQRb+C7Vnzx5RL1mMIbXf3rx5U9QrVvgvlI+Pj+ilLDmKkLuQEComJkb0MoccRchdSAiVlpYmmuQjRxFyFxJiateuneh+y40i5BJkYpIaKctdSHAJMjFJjVrnLiTIYgyhtLDm06dPRb1aWFOsGEMonU4nmgT+1llzypQpor8vkjWl1iINa0qtxUuXLol6M4I1yWIMoWhYU+rsk5KSInpxJlaMISYp1uSKMeRYc8iQIaK/r8xmzf3794t6tbCmo6NjprOm2MVqVrCm2BhLrawpLMYQ0+rVq0W9NKwpNcIus1kzJCQkU1mTK8YQiivkFXq/ddaUGo0mVowhlBRrihVjCPXhwwfRS1ktrEkWY8ixptglNi1rio2xzArWXLJkiag3I1iTLMYQ6uHDh5L7rVrWFCvGEEqKNcWKMYTS6/WiRXhkMUZmsabUiMPMZs1z586Jer911hQrxOVYkyzGEEqONYVN5mKSGuGthTXFmsyFomFNqbPPrVu3RL1ZwZpihSxZwZpiYywzgjXJYgwxybGmsPBfqOPHj4t6XVxcjAr/hcqurClWEEuyJlf4L6bevXuL7rcZwZpk4b9QW7ZsEfVyrEkW/gslxZpihf9CeXt7i+bZtbKmsPBfKK2s2aJFC9G1mNmsuWDBAlFvZrPmvXv3RL00rPnlyxdZ1iQL/4UyxZpk4b9Q6enpooWWHGuuWbNGFWsKm8zFNH78eNHf17fMml5eXqJesSZzoWhYkyv8FyopKUm0+C8jWJMs/Gf6tsQKB1nhIJMGpaen87oouQQZ1x1qSl26dDF4uQSZ3CGR1B9//GHwinWHyomcbU9zSCR1+vRpg1esO1ROL168UHRIJBUSEmLotKc9JHJKSkoydPZxh0RTCTJOer0eGzZsaPhzkwkymm/cv39/3iHRVIKM1KxZswxese5QOe3cuZN3SBR2h8rpxo0bvEOisDtUTmQyVaw7VE7R0dGGLmyx7lA5paamGrqhxbpDTalNmzZGh0S5BBmpkSNHGrw0CTJSS5cuNXjFukPldOTIEd4hkUuQSR0SST169MjgFesOlZO/v7+hu1esO1ROCQkJhm55se5QOQmTqcLuUFPq2bOnwSvWHSqnv/76y+CluZAgtXHjRoOXu5CQS5CROn/+vMFLkyAj9fr1a0MylbuQkEuQkQoPDzd0ftImyDglJycbur7IBBnXHSonvV6PTZs2Nfydhd2hpjRo0CCDV6w7VE7z5s0zeMW6Q+W0d+9eg1esO1ROt2/fNnhpLiRI+fr6GpKp3IWEXIKMVGxsrCGZKtYdKqe0tDRDpyx3IWEqQUaqQ4cOhr8zTeE/qTFjxhi8NIX/pFatWmXw0hRjkDpx4oTBS1P4T+rZs2e8/VbYHSqnoKAgQzKV7A6lOfskJiYaXq7gCv9XrFghmyDjpNfred2u9erVM5kgI9WnTx+DV6w7VE7Tpk0zeGkSZKS2bt1q8NIU/pO6cuUK7+xjqhiD1Nu3bw3JVLHuUDlFRkYaXr2gLcbglJqaanjtR6w71JRatmxp+DsLu0NNadiwYQYv1x0qlyAjtXDhQkUJMlIHDx40eMVeIpLT/fv3RRNkUhcSpL5+/WpIptIU/pOKj483dOiSxRhyFxKctLJm165dzcKaa9euzVDWlCvGIKWFNUNDQ41Y01QxBietrNmoUaMMYU2aYgxSWlhz165dZmHNjx8/ZihrmirG4JSWlpahrGmqGIOUFtZctmwZjzVNFWOQ0sKajx8/Ngtrkg2yaliTfM2FY025YgxSWlhz0qRJRqwpV/hPimRNmmIMUhcuXMgw1jRVjEFKC2umpKSYjTUHDx6coawpV4xBat++fapZ886dO0asKVeMQUora3INsrSF/5yErElTjEGqY8eO2Y41T548aTbW5C6SM4I1TRVjcNLr9bxXzrSwJk0xBiktrLlt2zazsOa7d++yJWu2atXKiDXlijFIaWHNRYsWZRhrmirGIPXgwYNsyZrka4VZyZoTJkzIUNaUazIndebMGdWs+fLlSx5rmir8J6WFNZOTk3msSVP4z0mONWnW4oABAzKcNWnOPpnBmjR5dq2syTXIamVNmsJ/Um3btlXNmqNGjTILax49elSUNWnOPlKsSXP2CQgIyHDWlCv856SVNX/66Scea5oq/CelhTU3bdpkFtZkMq9Y4SArHGTSoAsXLhg91U2rly9fKjokkgoJCcE2bdrwRhDTKjExETt37swbC0UrvV6Pv/zyC06ePJk6QUbqzz//VFSMQWrlypUmu0OldPDgQUXFGKRu3bplsjtUSh8/fsQ2bdpQF2OQioqKwnbt2ik6JHJKSUnBHj16KDokkho+fLjRCGJazZw502gsFK02bdpkNIKYVu7u7ooSZKSePn1qsjtUSv7+/vjjjz+a7A4VU3x8PHbo0MFkd6iY0tPT8eeff1Z0SCQ1duxYk92hUlq0aJGiQyKp3bt3G40gptWVK1cMFxI0CTJS3t7e2LZtW+oEGamwsDBs27atye5QMSUlJWGXLl0UFWNw0uv1OHDgQJPdoVKaMmWKye5QKa1evdpkd6iUDh8+bLI7VEr37983GkFMK19fX2zTpo3J7lAxxcTEYPv27XkjiGmVmpqKPXv2VJQgIzVy5EiT3aFSmjt3rqJiDFJbtmxRVPhP6uzZs4qKMUh5enoqKvwnFRQUhG3atKG+kCCl0+mwU6dOvBHEtEpPT8d+/foZLiSUrsUJEyYYjSCm1dKlSxUlyEj9888/JrtDpXT9+nVFCTJS7969wzZt2lAX/pOKiIjAtm3bmuwOFVNKSgp269bNZHeomPR6PQ4ZMsRkd6iUpk2bpqjwn9S6desUXUiQOnHihNEIYlo9fPjQZHeolL5+/Ypt2rRR1R0aFxeH7du3V1T4zyktLQ179eqlqBiD1OjRoxUV/pOaP3++yZeIpLRz506jEcS00sKar1690syatMUYpLSy5oABAxQVY5DSyppKijFIaWHN27dvZzvWTE1NNbAmbTEGKS2sOWvWLNWsuXHjRkXFGKROnTqlmjWfPHliNBaKVlpYMyEhwWysOW7cOM2sSVuMQWrPnj2qWfPq1atGI4hppZU127Rpo6gYg5NW1hw0aJBq1pw8ebJZWPPIkSPZkjXbtWunqBiDU1paGv7000+aWFNJMQYpLay5devWbM2aNMUYpLSwpl6vx/79+xuNIKaVFtZctmyZJtZUUvhP6saNG98ta9IWY5CaPn26ZtakLfwnpYU1Hz16pKgYg1R2Zc3ff/8927HmxYsXsyVrdurUSVHhPyfuXlMta/71119mYc1Dhw6ZhTV9fHwyhDVpC/85ZQRrKin8J6WFNTdt2mQW1nz69Klq1gwICMA2bdrwRhDTSitr9u3bV1GTOSmONWkL/0ktXrxYNWvu3r1bUeE/qezImsnJydi1a9cMYU02gjh7KTMKBy3wf4VxTDKysLBwBgA/AAA/Pz9wdnY285+ISY0QESwsLJj3G//ZzKvMCwDZ8s/NvN/+z2berPGa82czb/b42cybNV5z/mzmzRqvOX8282aPn828WeM1589mXmVeAMaa/2WvOX8282aN15w/m3mzx89m3qzxmvNnM2/WeM35s5k3e/xs5s0arzl/NvNmj5/NvFnjNefPZt6s8TKZX/7+/uDi4sL9TxdE9Nf637TW+h9gYsou0rL5fW9ec/5s5s0arzl/NvNmj5/NvFnjNefPZt7s8bOZN2u85vzZzJs1XnP+bObNHj+bebPGa86fzbxZ4zXnz2be7PGzmTdrvOb82cybPX4282aN15w/m3mzxmvOn8282eNnM2/WeM35s5k3e/xs5s0arzl/NvNmjZfpvylLc/8BmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYsk6scJCJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJ6TsSKxxkYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYvqOxAoHmb4bPX/+HB4+fAh6vV6x9+PHj3Djxg1ITU1V7A0NDYVz585BYmKiYm9SUhIcP34cYmNjFXsREY4dOwZhYWGKvQAAZ8+eBT8/P1Xea9euwbt371R5PTw84Pnz54CIir2vXr2Ce/fuQXp6umLvly9f4MqVK5CSkqLYGx0dDadOnYKEhATF3tTUVDh69ChERUUp9iIinDx5EoKDgxV7AQAuXLgAvr6+qry3bt2CN2/eqPpOT548gcePH6tai+/evYNbt25BWlqaYm9QUBBcuHABkpKSFHsTEhLgxIkTEBcXp9ir1+vh6NGjEBERodgLAHD69GkICAhQ5b1y5Qp8/PhRlffevXvw4sULVd/Yy8sLPDw8VH3jT58+wfXr11Xtt+Hh4XD27FlV+21ycjIcPXoUYmJiFHsREY4fPw6hoaGKvQAA586dg69fv6ry3rhxA96+favqOz18+BCePXumyvvmzRu4e/euqv3Wz88PLl++DMnJyYq9sbGx4O7urmq/TU9Ph6NHj0JkZKRiLwCAu7s7BAUFqfJevHgRPn36pMp7+/ZtePXqlarv9OzZM3j06JGqtfjhwwe4efOmqrUYHBwM58+fV7XfJiYmqj776PV6OHbsGISHhyv2AgCcOXMG/P39VXmvXr0K79+/V+W9f/8+eHp6qvrGL168gPv376tai76+vnD16lVVZ5/IyEg4ffo06HQ6xd6UlBQ4evQoREdHK/YiIpw4cQJCQkIUewEAzp8/D1++fFHlvXnzJnh7e6v6To8fP4anT5+qWove3t5w584dVWefgIAAuHjxoqr9Nj4+Hk6cOAHx8fGKvdx+q/bsc+rUKQgMDFTlvXz5Mvj4+Kjy3r17F16+fKnqG5uLNcPCwhhrKpC5WPPr169mYc20tDQ4duxYtmTN169fM9ak0PfKmg8ePFC1FrWy5pkzZ1SffY4dO/ZdseajR4+yJWuePHlS09knu7HmnTt3sh1rhoSEmIU1ubNPdmPNBw8emIU1P3/+bBbWTE1NhWPHjmVL1lSbZ9fKmrdv32asSSlzsaanp2e2ZE0tZx/GmvTSwpoxMTFmYU0AyJas+fTp0++ONY8dO5YtWdPLy8ssrHnt2rXvijWZ/oNCRBYmAgCcAQABAP38/JApeyowMBBz5MiBTk5OOHToUDxx4gTGxcVReXU6HRYtWhTz58+PP//8M+7fvx8jIiKovHq9HuvUqYM5c+bErl274rZt2zAwMJD6z92rVy+0sbHB1q1b45o1a9DHx4faO3nyZLSwsMBGjRrh4sWL8eXLl6jX66m8mzdvRgDAmjVr4qxZs/Dhw4eYnp5O5b148SICAJYvXx7//PNPvHHjBqakpFB5vb290cLCAp2dnXHUqFF47tw51Ol0VN6IiAjMmzcv2tvb46BBg/DIkSMYExND5U1JScHSpUtj3rx5sVevXrh3714MDQ2l8iIiNm/eHO3s7LBjx464adMm/Pr1K7X3119/RSsrK2zRogWuWrUK3717R+2dP38+AgA2aNAA58+fj8+fP6f+xvv370cAwKpVq+K0adPw3r17mJaWRuW9e/cuAgCWKVMGx48fj1euXMHk5GQq7+fPn9HGxgaLFi2Kw4cPx1OnTmFCQgKVNy4uDgsXLowFCxbE/v3746FDhzAqKorKm56ejlWrVsXcuXNj9+7dcefOnRgUFETlRUTs1KkT2traYtu2bXH9+vX4+fNnau+4cePQ0tISf/jhB1y2bBm+fv2a+jutXr0aAQDr1KmDc+bMwcePH1OvRXd3dwQArFSpEk6ePBlv3bqFqampVF5PT08EACxRogT+/vvveOHCBUxMTKTyBgcHY86cOdHR0RF//fVXPH78OPV+m5SUhMWLF8d8+fJhnz598J9//sHw8HAqr16vxwYNGmDOnDmxc+fOuHXrVgwICKDyIiL27dsXra2tsVWrVrh69Wr8+PEjtXfGjBloYWGBDRs2xEWLFqGXlxf1N96+fTsCANaoUQNnzpyJHh4e1N/42rVrCABYrlw5nDhxIl67do16v33//j1aWlpi8eLFceTIkXjmzBnq/TYqKgrz58+PhQsXxoEDB+Lhw4cxOjqaypuamorly5fHPHnyYM+ePXH37t0YEhJC5UVEbN26NdrZ2WH79u1x48aN+OXLF2rviBEj0MrKCps1a4YrVqzAt2/fUnsXL16MAID16tXDv//+G589e0b9jf/9918EAKxSpQpOnToV7969S73fenh4IABg6dKlcdy4cXj58mXq/dbPzw9tbW2xSJEiOGzYMHR3d8f4+Hgqb0JCAjo6OmKBAgWwX79+eODAAYyMjKTypqenY82aNTFXrlzYrVs33LFjh6L9tnv37mhjY4Nt2rTBtWvX4qdPn6i9EydOREtLS2zSpAkuWbIEX716Rf2d1q9fjwCAtWrVwtmzZ+OjR4+o1+K5c+cQALBChQr4119/4c2bN6n325cvX6KFhQW6uLjg6NGj8fz589T7bVhYGObOnRsdHBxw8ODBeOzYMYyNjaXyJicnY4kSJTBfvnzYu3dv3Ldvn6L9tkmTJpgjRw7s1KkTbtmyRREn/fLLL2htbY0tW7ZENzc3fP/+PbV3zpw5aGFhga6urrhw4UL09PSk/sZ79uxBAMDq1avj9OnT8f79+9Rr8ebNmwgAWLZsWfzjjz/w6tWr1GvRx8cHra2tsVixYjhixAg8ffo09dknJiYGCxYsiIUKFcIBAwbgv//+S73fpqWlYaVKlTB37tzYo0cP3LVrl6L9tn379mhra4vt2rXDDRs2KDr7jB49Gi0tLbFp06a4fPly9Pb2pv5OK1asQADAunXr4rx58/DJkyfU3mPHjiEAYOXKlXHKlCl4+/Zt6rX49OlTBAAsWbIkjh07Fi9evIhJSUlUXnOyZt26dTFnzpzYpUuXLGXNKVOmmIU1L126lC1Zs0yZMgbW3LNnT5ax5pAhQ9DKygqbN2+OK1euzBasee/ePcPZJ6tZ097enseaSs4+Wlizc+fOPNb09fWl9pqLNU+dOoUAgBUrVsRJkyZlGWuGhIRgzpw50cHBwcCatGcfrazp6uqqmjX79evHY80PHz5Qe7Ww5o4dO3is+eDBgyxhzQ8fPqCVlRUWK1YMf/vtt2zDmj/++KNZWHPJkiVmYc2HDx8iAGCpUqVw3LhxeOnSJeqzj7+/P481T548mSWsqdfrsVatWpgrVy7s2rUrbt++XdHZRwtr/vnnn2hhYYGNGzfONqz56tUrs7FmyZIleawZFhZG5dXKmgMHDjSw5qpVqxSx5ty5cw1nnwULFmQZa966dcuQZ89q1ixUqFC2Y83ff/+dx5pv3rzJEtY8fvy4gTUnT56c5azp6OiIQ4YMyTas2bt3b7S2ts5y1tyyZQuPNZXk2bWypqWlpYE1z549q4g18+XLZzj7ZCVrtmjRAu3s7LBDhw5ZypoLFixAAMD69etnG9b88uUL2tjYYJEiRXD48OGK8uxaWbNatWoG1lSaZ9fCmuPHjzew5tKlSxWx5po1axAAsHbt2lnKml5eXmZjTWdn52zHmjNnzjSw5sKFCxWxJpN55efnh1z9GgA4Y0bUxGXEf+S/Hqxw8L+jP/74g1xEipJB3D9yXJDJIFMXYadPn+Z5yWTQ06dPZb0vXrww8lapUgWnTJmCd+7ckT0QhYSEYK5cuXjeUqVK4dixY00mg5KSktDFxYXn5S7CTCWD9Ho9NmzYkOctUKAA9u3blyoZ1L9/f55XSTJo5syZPK+NjQ3++OOPVMmgnTt38rxKkkE3btww+k60ySAuoUp6uWTQjRs3ZA9E0dHRWKBAAZ6XSwadO3dO9kCUlpaGFSpU4Hm5i7CjR4+ahJM2bdrwvFwyaO/evSaTQb/99hvPmyNHDuzYsSNu3rzZ5D67dOlSo7XIFV2aSgYdOXLE6DvRJoMePXpk5K1WrRpVMsjf3x/t7Ox4XtpkkE6nQycnJ563aNGiVMkgLqFKeslkkKmiyx49evC8XDJo586dGBwcLOv966+/eF4uGURTdLlx40ael0sGLVu2zGQy6Pz580bfqW7dujh37lyTyaDXr1+jhYUFz8sVXZpKBoWHh2OePHl43pIlS+KYMWNMJoOSk5OxVKlSPC9tMkiv12PTpk15XiXJoEGDBvG8ZDLIFJzMmzeP5yWTQaaKLvfu3Wu03zZq1AgXLVqEL168kP1Ot2/fNvrGtMkgX19ftLa25nnLly+PEydOxOvXr8smg2JjY7FQoUI8L1d0aSoZlJaWhlWqVOF5lSSDOnTowPPmzZsXf/rpJ6pk0JgxY4zOPrTJoJUrVxrtt7TJoBMnThh9Jy4ZZOoi7NmzZ0ZeLhlk6iIsKCgIc+TIwfNyySBTRZeJiYlYrFgxnpc2GaTX67FevXpGZ59+/frhwYMHTZ59+vTpY3T2oS26nDp1qtHZp02bNrhu3TqTyaCtW7ca7bdNmjShSgZduXLF6DvRJoPevn2LlpaWPC9tMigyMhLz5cvH89Img1JTU7Fs2bI8L5cMorkIa9mypdHZhzYZNGzYMKOzT+fOnXHLli3o7+8v6124cKHRftuqVSt0c3MzmQw6ePCg0X7LFV2aSgY9ePDA6BtXr14dZ8yYYbLw4OvXr2hjY8Pzli1bFidMmGCy8CA+Ph4dHBx4XtrCg/T0dKxevbrR2eeXX36hKjzo2rUrz6uk8EALa65du9Zov9XKmvPmzctU1gwNDTUbazZq1Mhov80K1pw1a5bRfpsRrGnqIkyONU0VXX78+PE/wZpkg58p1hw5cqTRfvuts+bjx4+NvFnFmkWKFOF5lbBm7dq1ed6CBQvigAEDqBr8evbsyfMqYc1JkybxvEoa/MRYkyu6NMWaFy5cMPpOderUoWLNN2/emIU1U1JSMo01TZ19Bg8ezPNmFWvu27fPaL+lZc07d+4YfWPaBj+trFm4cGGeN6tYs2PHjkZnn6xgzVWrVhntt9mBNXPmzMnz0jb4SbEmTYOfXq/H+vXrG519soI1p02bZnT2+dZZ8927dxnKmi4uLvj777+bLLrMDNakbfATY02u6NIUay5atMhov+Ua/Bhr8mVO1pwwYYLR2ad9+/a4YcMG1axJ0+B35swZo++khTW5Br/MZM3k5GSzseaAAQOM9tuMYE1TRZe7du0yWotaWZOmwU+KNWmKLqOjo7FgwYI8L9ngl5ms2bZtW543q1hz2bJlRmuRljWPHj1q9J0ygjVNFV0GBARIsqapoksp1qRp8MsM1uQa/DKTNTdt2mR09smOrFmiRAkq1mQyr1jhICscZNIgLy8vw8sGUiGVDPrw4QMeOnTICEjI4DpwhcmgwMBAPHnypBGQkCGVDIqOjkZ3d3esWrWqpFcqGZSSkoLu7u7YunVrSa9cMuj8+fNGlypkyCWDbt68iRMnTpT0cskgsQ7cR48eGSXrhSGVDHr9+rXRIVkYVatWFe3A9fX1xaNHjxoBCRlSyaDQ0FB0d3c3AhIypJJB8fHx6O7ublRsQIZUMkiv16O7uzt27txZ0iuXDLp8+TIOHTpU0iuXDLp79y7OmDFD0iuXDHr27JkRsAqDSwYJiy7fvXuH+/fvNwISMipWrCjagevn54cnTpwwAhIypJJBERER6O7ubgQkZEh14CYlJaG7u7tRwp0MuWTQmTNnsFevXpJeuWTQtWvXjBK5ZMglgzw8PAyvjIiFXDLoxYsXRglCYZDJIHIt+vj44OHDh42AhAypZFBQUBCePHnSCEjI4JJBwouwmJgYdHd3x5o1a0p6pZJBaWlp6O7ubnTBSQaXDBLrwL1w4QIOHDhQ0kt24AqTQbdu3TKCGeFalHrt6cmTJ4ZOW6ngOnCFyaA3b97gnj17jICEDKlk0JcvX/DYsWNGQEKGVDIoLCwM3d3djS6/yJBKBiUkJKC7uzu6urpKeslkkLDo0t3d3SjJR4bcy8JXrlwxKpgmQy4ZdO/ePZw9e7bsWmzcuLFoB66npydu2LBB9htLJYPev3+PBw4cMLr8IkOqA9ff3x9PnDhhdPlFhlQyKCoqCt3d3bFy5cqSXqlkUHJyMrq7u2OLFi0kvXLJoLNnz+LPP/8s6ZVLBt24cQPHjx8v6ZV7Wfjhw4eGFy2lQioZ9OrVK8OrpVIhlQz69OkTHjlyxOjyiwypl4WDg4Px5MmTWLx4cUmvVDIoNjYW3d3djRJAZEi9LJyeno7u7u5GxbRkyCWDLl68iL/++qukVy4ZdOfOHaMiTTLkkkFPnz41vOokFWQyiFyL3t7euG/fPqPLLzKkXhb++vUrHj9+HPPnzy/plUoGhYeHo7u7u9HlFxlc4YHwZWGdTofu7u7YuHFjSS9XeCBWdHn69Gmj5gUy5Dpwr169iqNHj5b0yr0s/ODBA6NCBTLI156EhQcZwZq2traS3sxkzWrVqkl6zc2aGzduFGXNP//8U9KrlTWlXnvKzqwpLDYgIzNZU3iJTUZGsaawwe9bZ02x154iIyPNypq9e/eW9Mqx5vXr1zWxJvfKiFjIvSz84sUL3LZtm+w3zgjWvHr1aoaxJnf2McWaYq89cawpvOAk41tlTWETkjAyijXJtcixZt68eSW9GcWa5NmHY01hEzUZcqx56tQp7Natm6RXK2tKvfaU2awp9bLw+/fv8eDBg6pYMyAgwKysKSzuIkMLa3IvC0uxprBBhYyMYE2x155evXpleLVUKr411oyLi0N3d3esU6eOpPd7Zk1h0eXbt28znTW5Br+MYs3ExESTrCnX4Hf69GmjghIyGGsas6ajo6OkNyNYU5hnp2VNruhSjDWFBXxkaGVNqZeFHz9+bFQYJgwtrCn1sjDHmrlz55b0fmusiYhZwppiDX537941enyGDDnWfP78ORVrij0mk51Zs1mzZpJeOdY8e/asJtYcO3aspNfcrCnW4MexpvBBAzK0sqZYg19ms6bal4WZMl+scJAVDjJpkFxCUyzIMVOmAFsYZAeu8FUlU0Emg8S66+SCTAZxo19oQ/j0t1wCRizIZJBcEZxYkMkguQIpsSCTQXIJTbEgx0wJX5Q0FWQySKzbQy7IMVNiL2fJBdmB+/btW0VeAH4ySC4ZKhbk099yRRliQSaDhgwZoshLJoO4kRG0QSaDTBVWCINMBp09e1aRl0wGiXX0yIVwzJQc9IkFOWZKDs7FgkwGdenSRZGXTAYp3W/Jp79NAbYwyGQQ90w9bZDJoOvXryvyksmgV69eKfIKx0wJX5Q0FeSYKWEXpKkgx0z17dtXkZfswJVLaIoFmQwydbkgDDIZJPaygFyQrz3dv39fkVeYDJJLpIoFmQwqV66cIi+ZDPrxxx8VeckxU8OHD1fkJZNBcoAtFuSYKVPJLmGQHbgXL15U5CWTQWKvR8iF8GVhuYS3WJAvC8sVwYkFOWZKrkBKLMhkkLDr3FSQySDhKx+mgkwGcSPRaINMBnEjf2mDHDP1+vVrxd+YTAY5Ozsr8pPJoB9++EGRlxxpLHdhLxZkMkguoSkWZDKIG9FDG2QySOxlAbkgCw+4sXe0ISw8kCvoEAtyzFSlSpUUeckxU3KXhGJBjpkaNWqUIi/52pMW1hS+qmQqyNeetLAmN/qFNjKKNT08PGQvJsQiI1jz7NmzmljT1OWCMMgxU2pYk2vwE3s5Sy60siY5ZkoLa8oVZYgFOWZKC2vKXeaKRUaw5o4dOwwjKGkjI1iTa/DTwprCF3dMBfnakxbWlLtAEouMYs0DBw4o8pKsKfaSi1yQrPny5UtFXiFryl0+iYVW1uQa/Pr166fIq4U1yQY/Lax58uRJRd6MZE25S2SxyAjWvHPnjmzzo1iQrDlixAhFXnKksRbW3L17tyKvVtbkGvyeP3+uyPutsKZcgZRYZBRrurm5KfJmBGtu3rzZMPKXNkjWfPPmjSIvAL/BTwtryjUAiAX5srBS1iRfFha+cGYqMoo1xV5MlwuSNcUmAsmFcKSxFtaUKzoWC62syTX4yRUrisW3wJpXr15V5CVfFtbCmi9evEB7e3tF/oxgzevXr8sWSImFFtYkG/y0sOaxY8cUeTOKNd+9e6fIC/BtsKbcIyxiQU6xMce9phrWJBv8njx5osgrZE25RyPEgnxZWAtryj38IBYZxZrLly9X5NXCmtwUG3Pda7KRxt+GWOEgKxxk0iClhSxcODk5yXYwyUX+/Pllq/HlImfOnIqLs7iwsbFR7eUSG0r/UeeiVq1aWKJECVXe8uXLKy504sLZ2RkbNGigymtvb6/4MpiLvHnzYvPmzVV57ezsVH8n7qCtxgvwv8SGUojiolq1aooTk1yUKVPGaHQubRQpUkS2e1suChYsqDgJw0Xu3LlVfydbW1vV34k7aMt1qMhFnTp1jMag0EalSpUUJ0O4KFGihOLiYS4cHR2xSZMmqrxa9tscOXKo/sbW1taa9tuGDRsqTiBzUaNGDSxdurQqb7ly5RQDGBfFixeXfbVPLgoXLqx6LebJk0f179rOzk5xYoALbr9VWjjIRb169WS7c+WiatWqsh2BclGqVCnFFwxcaDn7FChQQPVazJUrl1nOPlw3qdxLUHJRu3Zt2e5cuahYsaLsy9Jy4eLiojipyYW9vb3q/VbL2Ufrfqv253IFhMJx47RRvXp12dcQ5KJs2bKyXZ9yUaxYMdX7bXY9+zRt2lT2lXe5qFu3ruICCS4qV66suOiQi5IlS8q+aiIXjo6OmlhT7e86u7JmzZo1sWTJkqq83yNraj37qPECaGfN8uXLq/KWLl0627GmlrOPuVlT7iUoudDCmi4uLli3bl1VXi2smS9fvmx59mnYsKHRuHHa0MqaNWrUUOXVyppq91utrKk1t2cO1qxSpYom1lR79mGsqSyyK2ua4+zDWFNZFC1a1Gx5drW/a1tbW01rUStrFi1aVJU3u7KmOe41ta7FRo0ayb46LBfZkTW1nH3y5s1rtjy72p8LoI01q1atqvpes3Tp0qrz7FpZMzuefczJmlWqVFHl1cKaDg4O3yVrHjhwgBUPmlGscJAVDjJp0NSpU6kPFMJRCps2bUIHBweqRA7ZZZKSkoJnz55FBwcHKigpXry4octEp9Phq1ev0MHBgaoTqnDhwoYXDWJiYjA2NhYdHByoEhNiY6QqVqxIdcgWG1ncpk0bquSksMsEEXH48OHUL1CQXSZ6vR4XLFggO6aLDLLLJC0tDffu3YsODg5UXb5kl0lycjLevHkTHRwcZJ9854LrMjl16hTGx8ejr68vOjg4UB2iuC4T7mlvvV6PDg4OVK8E5MqVy/B6Hve0d926dTFfvnwmvTY2Nti2bVtct26d4WnvHj16yD6NzYWwy0Sv1+OECROo1yLZZZKeno5ubm7o4OAgO7KGC7LLJDU1FY8fP44ODg6yo1C44EYWX7hwARMTE/Hx48fUa5HsMomNjcXQ0FDqtSg2SqFkyZJUl6tklwn3tHezZs2oitLILhPuae+BAwdSJb2ELxro9XqcOXMm9VqsUaOGYYxUeno6btu2jXq/FY4svnjxIvV+S75okJCQgN7e3tRrUTiyWKfTUa9F8kUD7mnvKlWqUK1FW1tbw4sG3FiTjh07Uu+35IsGer0eR40aRb3fci8acGOklixZQv2NyRcN0tLS8ODBg9T7LfmiQVJSEt69e5d6v3VycjK8aBAXF4d+fn7o4OAgOyqHi/z58xuNkXJycqJai9zLwdu3bzeMkWrQoAHVWhQbWdyrVy+q/Vb4ooFer8dJkyZR77fkiwbp6em4fv166v2WfNEgJSUFT506Rb3fOjs74+jRo/HcuXOo0+nQ09OTer+1t7fHwYMHG8ZIRUZGUu+3efPmxd69e/PGSJUtW5bq7EO+aMCxQatWrajXIjdG6v3794iI+Ouvv1KtRe5CghxZPHfuXOq1yI2R4kYp7Nq1i3q/JV80SE5OxmvXrlHvt+SLBgkJCfjhwwdFZx/uRYOoqChMSUmh3m/JFw24MVI1a9ak3m+5Fw24EZpdunShPvuQLxro9XocO3Ys9VqsW7euYWSxXq/H5cuXU69F7uXg27dvY2pqKh4+fJh6vxWOLH748CH1fku+aBAXF4dBQUGK9lvuRQNuv3V2dqbeb7kXDbgxUo0bN6Y++3AvGnBjpPr160d99iFfNNDr9apYkxsjpYU1z507p4g1yTFSWlgzLi7ObKzZtm3bbMea+/btU8ya3BgpNazJjZHiWJNmLWplTeEYKS2s2bNnT+r9lhsjlRGsuXr1arOw5pMnT7KcNbmzT8mSJanPPkLWbN68uSLWJMdIKWFN7uVgjjVnzZplFta8dOmSatZ8+/at2VizatWqmc6alpaWBtbkRhaPHj06y1iTG1mslTXv3buniDXJkcVaWbNIkSJmYc3evXtTr8WMYE0uz66FNU+fPp1lrEmOLI6KisoS1hQbWayFNYcMGUK9FsnX87Sy5u7du7OUNbmRxR8/flTNmqmpqYpZkxxZrIU1u3btqog1yZHFSliTG1n85MkTTE9PxxUrVmQ71gwODlbFmlyeXQtrNmnSJMtYkxxZPG3atCxhTeHI4qxkTe71vOjoaM2sWalSpSxlTW5k8YgRI1Sz5sKFCxWzJjeyWAtr3rp1K0tYU2xkcVaxJvd6Xkaw5sSJE83CmidOnMhS1uRGFoeFhWlizVKlSiliTXJksRbWHDRoUJawZvXq1XmsuX379mzHmomJiZpYk8m8YoWDrHCQSaOknsjmDokbN27EL1++iHrfv38vuuELizHEFBUVJfmPXP369Q3jJcQqs1NTUyW7IMhRhmlpaaI/u1WrVqJeLkF2+fJlTEpKEvVKjTjkijG4Q6KYFi1aJOoVOyQKdejQIVGv2CFRKA8PD1Gv2CFRqK9fv4oekslDIpcgEyo+Pl6yy7d27dq8Ygyh0tPTJbuxK1asaEiQpaamiv65u3XrJuolx0skJiaKeidOnCjq5YoxuEOimNatWyfq5RJk+/btMxwShZIa/UuOMuQOiUJJjerhxku4ubkZEmRChYaGih6CxA6JQiUnJ0t2+XKHRC5BJpRer5fs8OMOiVyCTEy//PKLqFdYjCGm2bNnyx4SuQSZmKRGwIgVYwglNY6JTJBxFxJC+fj4iMKucJSh2HeKjo6WhD9uvAR3ISFUWloaVqxYUdRbuXJl3oWEmNq1ayfq5UYZchcSYpIacejo6IhDhw41JMjEJPUMOnchQRZjCCU1/o67kCATZEJJPVfPXUisWbPGcCEhVGBgoCjMCEcZin0nnU4n+aKUsPBfKL1eL9mpS44yTElJEf1z//TTT6JebrwEdyEhpsmTJ4t6uWIM7kJCTJs2bZLcb3v16oV79+41JMiEkhrHRF5IcAkyoby9vUUTGtyFBFmMIVR4eLhkcqBBgwa8BJlQKSkpki+cVKtWjVeMIZRer5fsxBQW/ovp119/FfUKC//FNH/+fFEvOV5Car/9559/RL1k4b/Ufnv37l3JtciNMuQuJIT6/PmzaOKJK/xftmyZIUEmVFxcnGRSlLuQ4BJkQqWnp0t2gHIXElyCTEydOnUS9XIXElyCTEzjxo0T9QqLMcQkNXJLrPBfKHd3d1GvWDGGUFKj0cQK/4UKDg4WTeSShf/chYRQSUlJkl2+3ChD7kJCKL1eL9k1L7yQEFPfvn1FvcWKFcORI0fimTNnJPfb6dOnS+63AwcONCTIxCQ1Aoa7kJBLkH2LrEmOMswM1mzdurWoN7NZU2rkVkaxJleMIZQW1vTz85NlTbIYQyitrCn1Eg1ZjPGtseb69etFvVnBmlJnn4xgTa4YQ6jk5GTJyQ3fMmvOmTNH1CssxhCTFta8efOmqDezWTMmJkYTa0q9NsSxJleMISYtrCk14jCzWVNq/J1YMYZQUqwpVowhlFbWlHpRKrNZs1evXqJersk8s1hz8+bNkvutKda8dOmSqJdjTbIYQygtrBkRESHJmsJiDKHkWFNY+C8mqZdZvmXW3L9/v6hXrMlcKK2sKXYBnhWsKfXSYqVKlXjFGGLq3LmzqFdYjCEmLay5evVqUW9ms6anp6fkfvsts6bU67Qca3LFGGLSwpozZswQ9QqLMcQkx5qmijGuXbsm6iUL/79F1pR6STyzWXPEiBGi3oxgTbLwXyipUesca5KF/0I9fPhQcr8VFv4LpYU1ExISJFlT2GQulFbW7N69u6iXK/z/FllTavQvyZpSdSRaWDMsLEyWNcnCf6FMsSZZ+C+UXq+XfElPWPgvpoEDB4p6M5s19+zZI+rNCtaUyrNnBGtyTeZCaWXN9u3bi3qFhf9M35ZY4SArHGTSIL1ez3u2WdgdakqDBg0yeMW6Q+U0d+5cg1esO1ROe/fuVXRIJHXr1i3eAULYHSqnT58+8f6BE3aHyikmJoZX0c8dEuUSZJzS0tJ4Y2toijFIdejQgXdINJUgI/X777/zDolcgkzqkEhq5cqVBq9Yd6icjh8/zjskCrtD5fTs2TPeP+TC7lA5BQUF8ZKpXHeoXIKMU2JiIi+ZSnNI5KTX63mjbIXdoabUu3dvo0OiXIKM1NSpU3mHRFPFGKS2bNlidEiUS5CRunz5Mu+QyCXIuO5QOb19+5YH98LuUDlFRETwuq+E3aFySk1N5Y3KIA+JUsBGinwiW9gdakpDhw7l7bfC7lA5LViwgLffmrqQIHXgwAGDl7uQWL16teSFBKn79+/z9ltTCTJSX7584SVTa9asKZsgIxUfH8/rdKMpxuCUnp7OG6Mg7A41pS5duhi8wu5QU/rjjz8MXrI7lKZbac2aNbz9VtgdKqfTp0/z9lthd6icvLy8ePstdyEhlSAjFRISwuvOq1q1qskEGaekpCR0dnY2eIXdoXLS6/W8UQg0CTJS/fv3N3hpijFIzZw50+ClKfwntXPnTt7Zx1QxBqnr16/z9lthd6icPnz4wLtIFnaHyik6OprXlcx1h8olyDilpqbyxoRxFxJyCTJSbdq04Z19TCXISP32228GL3chIZcgI7V06VKDl6YYg9Thw4d5+y2XIJO6kCD16NEj3n5rqvCflL+/P6/LluwONbUWExIS0MnJyeAVdofKSa/X88ZnCrtDTalHjx4GL82FBKm//vqLd/bp2bMn7tq1i2q/3bhxo9HZRy5BRur8+fO8tdisWTPZBBmp169f85KppooxSIWFhfFekKAp/OeUnJyMpUqVMnhpijE4mZM1582bJ8qaNGcfLax5+/ZtI9aUK8YgpYU1Y2NjeaxJU4zByZysOWbMGLOw5okTJ0RZU6oYg5Q5WbNYsWJGZx+5YgxOWlmzT58+PNY0VYxBSgtrbt26lbffmirGIGUu1oyMjDQba5Kj0TjWlCvGIKWFNRcuXGjEmlu3bqXabw8ePMg7+3DFGJnNml+/fuWxpqliDFJaWbN69erZjjXXrl1rxJpyxRiktLDmixcvjFhTrhiDlFbWJBtkyWIMmv22UaNGZmHNWbNmmYU1yQZZmiZzUuZizbS0NCPWNFWMQUoLa44cOZJ39jFVjEFKC2seOXJENWs+fvzYLKwpbJClKfznpJU1e/bsacSacsUYpMzFmhcuXOCtRVPFGKS0sGZ4eLjZWJMcDc0V/n/rrLlv3z4j1pRrMielhTV9fX15rGmq8J+UVtYkG2SVsmbHjh15Z5+sYs1Vq1aJsiZNnj0zWFOq8J+UOVmzfv36Bi9N4T8pLaw5bdo03tknq1jzypUrqlnz3bt3oqxJc/bJDNaUK/wnpYU1hw0bZvDSFP6TMhdrPnjwQDVrMplXrHCQFQ4yadDVq1cVHRJJvX//HitVqsQbC0WrqKgorFq1Km8EMa1SU1OxUaNGvLFQStS9e3fs1asX76luWo0dO1ZRMQapZcuWmewOldK///5rsjtUSh4eHlTdoWL6+vUrVqpUifqQSCo+Ph5r1qyp6JDIKT09HVu0aGE4JNIkyEj179/fZHeolKZOnWo0FopWGzduNBpBTKuzZ88qSpCRevnyJVauXNlkd6iYQkNDsUqVKia7Q8WUnJyM9erVM9kdKia9Xo8dOnRQdEgkNWLECJPdoVKaP3++ye5QKe3du9doBDGtbt68abiQ4J7qppWPjw9WqlSJuhiDVHR0NFavXt3QHUqTIOOUlpaGTZo0UVSMQapXr16qn+r+448/THaHSsnNzc1oBDGtjh07ZrI7VEpPnjwxXEjQJMhIBQYGYuXKlXljoWil0+mwdu3avBHEtNLr9di6dWtFCTJSgwYNMtkdKqWZM2cqKsYgtWXLFkWF/6QuXrxosjtUSt7e3li5cmXeWChahYeHY5UqVRRdSHBKSUlBV1dX3ghiWun1euzcubOiCwlSo0ePNhpBTKvFixcrKvwndeDAAZPdoVK6d++e0VgoWn3+/BkrVapEXfhPKi4uDmvUqGGyO1RM6enp2LRpU5PdoVL6+eefTXaHSmnSpElGY6FotXbtWqMRxLQ6deqU0QhiWj1//twwho8mQUYqODgYK1eurKo7NCkpCevWrauo8J+TXq/Htm3bGo0gptXQoUMVFf6TmjNnjsmXiKS0c+dOoxHEtDI3ayopxuCUEawpHAtFKy2suXz5cqMRxLQyF2v6+fkZWJOmGIOUVtZs2bIlbwSxEpmLNTdt2qSo8J9UdmXN+vXrZzvWXLBggdFYKFppYc1bt24ZjSCmlRbWjImJwerVqysqxuBkTtacMGGC0QhiWmlhzePHjxuNIKaVuVlTSTEGp4xgTSVN5qS0sObWrVtVs+alS5cUFf6T0sKaERERWLVqVd4IYlppYU3E/xW0CkcQ08qcrKmk8J9UdmXNZs2aqWbNvn37Go0gppUW1ly3bp3RCGJaaWFNT09PrFy5MnUxBilzsma7du0UFf6T0sKac+fONQtrXrt2zWgEMa3MzZpKCv9JaWHNcePGmYU1Dx8+rJo1Hz58aDSCmFZaWDMhIQFr1arFG0FMK62sOWDAAEWF/6TMxZrnzp0zC2uGhYWZjTU7duxoNIKYVr/99pvRCGJaaWHNffv2KSr8J/U9smbv3r3ZCOJsqswoHLTA/xXGMcnIwsLCGQD8AAD8/PzA2dnZzH8iJjVKTk4GOzu7LPempKSAjY0NWFhYKPampaWBhYUFWFlZKfYiIqSmpoKtra1iL4D5fl/m9Nra2qr6TikpKWBtbQ2WlpaKvenp6YCIYG1trdiLiJCSkpItf9fZ7RunpqaCpaWlqrWo1+shLS2NrUUFXi1rUct+CwBsLWaR11z7rV6vBxsbG8VegOz7u85u35jtt1nrNcdaZPtt1nq1rEUrKytV31iv10N6ejrbb7PAa07WZGtRmZex5n/fy84+2cPLWPO/7zXH2YexZtZ6zbHfsjy7ci9jzf++l7Hmf9vLWDP7eLMbawJk3991dvvGjDWz1vu9sSaTeeXv7w8uLi7c/3RBRH+t/01WOEghVjjIxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTEZA5lRuGg8jJyJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiambCtWOMjExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE9B2JFQ4yMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMX1HYoWDTN+NPnz4ACEhIaq8fn5+8OXLF1XeiIgI8Pb2BkRU7E1KSoKnT5+CXq9X7EVE8PDwgLS0NMVeAIDHjx9DcnKyKq+npyfEx8er8r558wYiIiJUeT99+gSBgYGqvEFBQeDj46PKGxMTAy9fvlT1jVNTU+HRo0eqv/HDhw8hNTVVsRcA4OnTp5CYmKjK++LFC4iNjVXlfffuHYSFhanyfvnyBfz8/FR5Q0ND4d27d6q8CQkJ8Pz5c1XfWK/Xg4eHB6Snp6v62Y8ePYKUlBRV3ufPn0NCQoIq7+vXryEqKkqV9+PHjxAcHKzKGxAQAJ8/f1bljYyMhDdv3qj6TsnJyfD48WOz7LdPnjyBpKQkVV4vLy+Ii4tT5fX29la93/r6+kJAQIAqb3BwMHz8+FGVNzY2Fl68eKHqG6enp8PDhw9Vr0Wt+61Op1PlffnyJcTExKjyvn//HkJDQ1V5v379Cl+/flXlDQ8Ph7dv36r6TomJifDs2TOz7Ldazj7Pnz9XffZ5/fo1REZGqvL6+PhAUFCQKm9gYCB8+vRJlTc6OhpevXql6julpKRo3m+1rEW1+62Ws8/bt28hPDxclffz58/g7++vyhsSEgLv379X5Y2PjwdPT0/V+625zj7Pnj1Tvd++evUKoqOjVXkZayoTY016aWHNtLS0bMuaas8+jDWVibEmvSIjI+H169dmO/sw1qSTFtaMi4sDLy8vxpqU+t5Y05xnHy2s+ebNm++KNVNTUzXtt1rXImNNOmllTS37LWNNemllzSdPnnxXrKnl7PO9sSaA9rPP98SaYWFhZmNNrfutlrNPdmRNX19fVd7syppM/z2xwkGm70rOzs7QsGFDWLRokaJkUN68eaFmzZpQo0YNmDFjBjx48ID6H8v8+fND165doXz58jBx4kS4du0a9YEoR44cMHXqVHBxcYHffvsNzpw5Qw0nFhYWsHPnTnBycoJffvkFDh8+rOhAdPXqVShcuDD07NkTdu/erSgZ9PbtWyhcuDC0b98eNm7cqAhO4uLiwMnJCZo1awYrVqxQlAyytbWFMmXKQL169eDvv/9WlAzKly8fNG7cGKpUqQJTp06Fu3fvUv9jmTdvXhg4cCCULl0axo0bB5cuXaI+ENnY2MDixYuhWLFiMGzYMDh58iQ1nFhYWMDhw4fBwcEB+vXrBwcOHFCUDHrw4AEULlwYunbtCtu3b1eUDPLz8wN7e3v48ccfYe3atYqSQampqVC0aFFo3LgxLFmyRFEyKFeuXFC5cmWoVasWzJ49WxGcFChQANq2bQsVKlSAv/76C27evEm9FnPlygVjx46FEiVKwOjRo+H8+fPUcGJpaQkbN26EIkWKwODBg+HYsWOKkkHnzp0De3t76N27N+zdu1cRnHh5eUHhwoWhU6dOsGXLFkXJoPDwcHBwcICWLVvCqlWrFCWDLC0toUSJEuDq6goLFixQlAzKmzcv1KlTB6pVqwbTp0+H+/fvK9pve/bsCeXKlYM//vgDrl69Sp0MsrOzg9mzZ4OzszOMGDECTp8+rWi/3bdvHzg6OsKAAQPg33//VZQMunHjBtjb20OPHj1g165diuDk48ePYG9vD+3atYMNGzYougjT6XTg5OQETZs2heXLlysqusyRIweUL18e6tatC/PmzVOUDMqfPz80a9YMKleuDJMnT4bbt28r2m+HDBkCpUqVgjFjxsDFixep91srKytYuXIlFC1aFIYMGQInTpxQlAw6fvw42Nvbw88//wz79+9XlAx6/Pgx2NvbQ5cuXWDbtm2KkkGBgYFgb28PrVu3hjVr1ihKBun1eihevDg0atQIFi9erCgZlCdPHqhevTrUrFkTZs2aBR4eHoq+cceOHaFChQrw559/wvXr16n325w5c8Kff/4JLi4uMGrUKDh79qyi/Xbr1q3g5OQEgwYNgiNHjig6+1y8eBHs7e3hp59+gj179ijab9+8eQP29vbQoUMH2LRpk6KLsOjoaHB0dITmzZvDypUrFSWDrK2toVSpUlC/fn2YP3++omRQvnz5wNXVFapWrQrTpk2De/fuUe+3+fLlg759+0KZMmVg/PjxcOXKFeq1aGtrC3///TcUL14chg8fDqdOnaJOBllYWMDBgwfB0dER+vfvD4cOHVKUDLpz5w4ULlwYunfvDjt27FC03/r6+oK9vT20bdsW1q1bpygZlJycDEWKFIEmTZrA0qVLFSWDcubMCRUrVoTatWvDnDlzFCWDChQoAK1atYKKFSvCpEmT4NatW9T7be7cuWHUqFFQsmRJ+P333+HChQvUF2FWVlawdu1aKFq0KPz6669w/PhxRYUHp06dAgcHB+jTpw/8888/ii7Cnj17BoULF4bOnTvD1q1bFZ19QkNDwcHBAVq1agWrV6+GDx8+UHsBzMea3bp1g3LlysGECRPg2rVr1Gcfray5a9cus7Dmu3fvsh1r5s+fn8ead+7cyRLWtLa2hiVLlkDRokVh6NChqlmzb9++Wcqa/v7+ZmHN3LlzQ5UqVczCmuPGjcsQ1jx69GiWseaLFy+gcOHC0LFjR9i8ebOiizCONVu0aKGaNRs0aJDlrNmrVy8oW7asYta0tbWFOXPmQPHixQ2sqeTso4U1b968aRbWTExMNLDmsmXLVLPm3Llzs4w18+TJA8OGDeOxppKzjxbWPHHihFlYMygoKMNYU0mDn1bW7NSpE1SoUAEmTpyoijWdnZ1h5MiRiljTwsICtm3bBk5OTjBw4EDNrKnk7PO9s+bly5cV5dnnz59vYE13d3dVrNmvXz84ePBglrHm58+fwd7eHtq0aZOlrJkrV65sy5pFihTJctZ8/vy5gTWV5tlJ1nRzc1PEmhYWFuDi4gINGzaEhQsXZhvWnD59Ojg7O2c5a167du2bYE0lRZd2dnZQtmxZqFevHsybNw+ePn2aJayZL18+GDRoEJQuXRrGjh2bZawJAHDkyJFsx5ppaWlmYc38+fNDu3btDKx548YN1ax57ty5LGPN8+fPg4ODA/Tq1StLWTMiIsJsrFmvXr1sx5r//POPgTWV5tmZ/oNCRBYmAgCcAQABAP38/JAp+2rQoEHIfUsAwBIlSuDvv/+OFy5cwMTERFnvvHnzeF4HBwf89ddf8fjx4xgbGyvr3bt3L8+bL18+7NOnD/7zzz8YHh4u6719+zbPmyNHDuzcuTNu3boV/f39Zb2fPn1Ca2trg9fa2hpbtWqFbm5u+OHDB1lvbGwsFipUyOC1sLDAhg0b4sKFC9HLywv1er2kNy0tDStXrsz7c9eoUQNnzJiBDx48wPT0dNmf3aFDB563XLlyOGHCBLx27RqmpKTIeseMGcPzFitWDH/77Tc8c+YM6nQ6We/KlSt53kKFCuEvv/yChw8fxujoaFnviRMneN48efJgz549cffu3RgSEiLrffbsGc9rZ2eH7du3x40bN+KXL19kvUFBQZgjRw6D18rKCps1a4YrVqxAb29v2e+UmJiIxYoV4/3sevXq4d9//41Pnz6V9er1eqxXrx7PW6VKFZw6dSreuXMH09LSZP/cffr04XlLlSqFY8eOxUuXLmFSUpKsd+rUqTyvk5MTDh06FE+ePInx8fGy3q1bt/K8BQoUwL59++KBAwcwMjJS1nv58mWeN1euXNi1a1fcvn07BgYGynrfvn2LlpaWBq+NjQ3++OOPuHbtWvz06ZOsNzIyEvPly8dbi40bN8YlS5bgq1evZL9Tamoqli1blvfnrlWrFs6ePRsfPXpkci22bNmS561QoQL+9ddfeOPGDUxNTZX1Dh06lOd1cXHB0aNH47lz50zutwsXLuR57e3tcfDgwXj06FGMiYmR9R44cMBov+3duzfu3bsXw8LCZL3379832m87deqEmzdvNvnv/9evX9HGxoa3Flu0aIGrVq3C9+/fy3rj4+PR3t6e97MbNGiACxYsQE9PT9lvnJ6ejtWrV+d5q1WrhtOnT8f79++bXItdunThecuUKYN//PEHXr16FZOTk2W9f/zxB89btGhRHDFiBJ4+fRoTEhJkvWvXrjXabwcMGICHDh3CqKgoWe/p06d53ty5c2OPHj1w165dGBwcLOt98eIFz2tra4vt2rXD9evX4+fPn2W9ISEhmCtXLoPX0tISmzZtisuWLcM3b97IfqekpCR0cXHh/ey6devi3Llz8cmTJyb324YNG/K8lSpVwsmTJ+Pt27dNrsX+/fvzvCVLlsQxY8bgxYsXTe63s2bN4nkdHR1xyJAheOLECYyLi5P17ty5k+fNnz8//vzzz7h//36MiIiQ9d64cYPnzZkzJ3bp0gW3bduGAQEBst4PHz6glZUV7+zTunVrXLNmDX78+FHWGx0djQUKFODtt40aNcLFixfjixcvTJ59KlSowPtz16xZE2fOnIkeHh4m99s2bdrwvOXLl8c///wTr1+/bvLsM3LkSJ63ePHiOHLkSDx79qzJs8/SpUt53sKFC+PAgQPxyJEjJvfbI0eO8Lx58+bFn376Cffs2YOhoaGy3kePHhmdfTp06ICbNm3Cr1+/ynr9/f3Rzs6Ot982b94cV65cie/evZP16nQ6LFKkCO9n169fH+fPn4/Pnj0zuRZr1arF81atWhWnTZuG9+7dM7nf9uzZk+ctXbo0jh8/Hi9fvmxyv/3rr7943iJFiuDw4cPR3d3d5Nln48aNPG/BggWxf//+ePDgQZNnnwsXLhidfbp164Y7duzAoKAgWe/r16/RwsKCd/Zp06YNrlu3Dn19fWW94eHhmCdPHt5+26RJE1y6dCm+fv1a9jslJydjqVKleH/u2rVr45w5c/Dx48eya1Gv12PTpk153ooVK+KkSZPw1q1bJvdbc7Hmvn37jM4+ffr0wX379mUqa/r6+mYoa7q6ulKzZpUqVXh/7urVq6tmzbJly2YJa65atcro7MNYU1x6vR7r16/P81apUgWnTJmS6aw5bdo0njerWPPKlStG+212Zs2HDx9mKmsOGzaM59XKmoMGDaJizYMHDxqdfXr16kXFmg8ePDDabzt27JglrOng4MD72VnFml27duV5swNrnjlzhuflWHPnzp2ZypqhoaFGrPnDDz+oZs06depQs2ajRo14XiWsOWDAAJ43q1hz165dPC/JmqbOPlpY8+PHjxnOmosWLcp01mzbti3PW758eZw4cWKms+ayZct4Xi2smSdPHmrWfPz4sdHZh5Y1AwICJFnz7du3sl6trFm7dm2el2PNu3fvqmLNcePGUbHmpEmTeN4iRYrgsGHDVLFmgQIFsF+/fpnOmm/evDELa6akpJiNNQcPHszzcqx5/vx51ax57NixTGXNO3fuGJ19OnXqhFu2bFHFmi1btqRmzcKFC/P226xizY4dO/K8Slhz7NixPC/JmqbOPlpY8+TJk0b7rVrWtLW1xfbt2+OGDRuoWDNnzpy8/bZZs2a4fPly1aw5b968TGfNn3/+mefNKtbctm2b0X6bFaz57t07Sdb08fGR9UZFRWH+/Pl5a5FjzZcvX2Yqa7Zq1YrnrVChAv75559448YNk2tRyJrOzs44atQoKtZctGgRz5tdWNPW1pa3FmlZk8m88vPzI7+7M2ZETVxG/Ef+6wGscPA/IX9/fzx27Bhv8yQjd+7c2L17d9FkUGhoKN66dYuXqBMeiNq2bSuaDIqOjsanT58aJepIOJFKBul0OvTy8jJK1JFBJoPIfyzT0tLQy8sL27dvL+mVSwa9evUKhw8fLuktUaKEZDLo/fv3OHfuXEkvlww6fvy4UTLo8+fPuH37dkkvlwwSK7oMDAzEc+fOSXpz5sxpuAgTJoPCw8Px/v37vEQdGVwyaPXq1UbJoNjYWHz+/LlRoo48EDVs2FA0GZSUlIReXl7o6uoq+eeuUaOGaDJIr9ejl5cX/vTTT5LecuXKSSaD3rx5g+PHj5f0yiWDPn78iMuXL5f0yiWDvn79alTcRYZcMig4OBivXbvGS9SRIZcMioqKwsePH/MSdWRwyaAVK1YYJYPi4+PR09PTKFFHRv369fHvv/82Sgalpqail5eX0WGVjKpVq+LUqVNFk0EvX77EgQMHSnrlkkHv3r3D6dOnS3rlkkG+vr64YcMGSa9cMiggIMAIOsmQSwaFhYXhnTt3eIk6MuSSQTExMfjs2TN0cnIS9ZLJIOFFWGJiInp5eRkl6sjgkkHCosv09HT08vLCzp07S3orVqyIf/31F968edNov339+jWOGjVK0stdhIklgz58+IALFiyQ9Do4OODgwYNFk0FfvnwxSriTwRVdiiWDgoKC8OLFi7xEHRlyyaCIiAj08PDgJerIkEsGxcXFoaenp1Gijgu5ZFBycjJ6eXlhkyZNJP/OZDJIuBa9vLyMLqLJ4JJBV69eNdpvvb298c8//5T0cskgsYswHx8fowQQGVwy6N9//zVKBvn5+eHhw4clvVwyaNeuXUbJoJCQELxx4wYvUUcGdxEmlgyKiorCJ0+e8BJ1wrXYtGlT0WRQQkICenl5GSXqyKhbt65oMojbb4VFeGRUrlxZMhn08uVLHDJkiKRXLhn07t07o8svMshkkPDs4+vri1u2bJH0kskgYdFlYGCgUTEtGTlz5sSuXbvitm3bjJJBYWFheO/ePV6ijgwuGbRmzRqjZBB39ilevLjkWmzcuDEuXrzYKBnE7bfCBgQyatWqhbNmzTJKBnFnn+7du0t6uaJLsWTQmzdvjAp/yJBLBn38+BGXLFki6ZVLBn39+hX/+ecfSa9cMig4OBgvX77MS9SRIZcMioyMxEePHvGKQsggk0HCokvu7CNM1JHRoEEDnD9/Pj5//pz3jVNSUtDLywubNWsm6eUKD8SKLl+8eGFU9ExGmTJlcPz48XjlyhWjs8/bt29x8uTJkt6iRYvi8OHD8dSpU0b77adPn4yKDcjgii7FCg8ygjXJRB0Z3zJrCovwyOBYU+wijJY1L1y4IMqawssvMr5V1nzw4IEsa7Zq1SrTWFPYgEBGZrKmsPCHDDnW9PHxoWJNsYuwr1+/GiXcyZBjzZCQECrW3LhxY4ayZkJCAnp6emLFihUl/9xc0aUa1uQa/KRYU1j0TEZmsqaw2IAMU6zp7u4u6c0o1hQWXXKsKSwK4SIjWFOswS87s+bu3bslvdmdNYVFlxnBmsKLaDIykzXd3NwkvVzRpRrWJBv8/kusKSzCI4NkTeFa1Mqas2fPlvTKsebnz59lWTN//vzYt29f0Qa/wMBAo2JaMuRYMzw83CRrckWXaliTa/ATsiZ39hEWhZBRs2bNTGNNYeEPGd8Ca4rl2a9cuSLJmnZ2dpnKmuXKlZP8c5tizebNm0t65Rr8tLLmlClTJL2ZyZrHjx+X9GY2azo6Oop6aVizRo0akn9ujjWFRZcZwZojRoyQ9JINfmpYk2vwE9tvd+zYIemVe0wmMDAQz58/L+mlYc3cuXOLek2xpqenZ5azJuL/zj69evWS9GYEa4o1+Pn4+OCKFSskvXKs6efnZ5I1uaLLzGDNggULinrJBr/MYM3WrVtLerWwZqlSpQysKXb2mTFjhqT3W2XNu3fv8povyeBYU6zBj5Y1xRr8MoI1hY+LkME1+ImxJpN5xQoHWeEgkwbJXRKKHYjIZJDwJTpTUb16dUMHrtwFkliQySBhh5ypKFasmKEDNygoSJFXmAySSsCIhTAZJHcRLAwyGfT582fZogyxfyzJZJDwJTpTQSaD5JIoYkEmgy5evKjIW7JkSRw7dixevHgRX79+rchLduDGxsYq8gqTQVLJULEgO3ADAwONXgeQC2EySNixIRfCZJBc0losyGTQ/v37FXnJZJCwQ85UkMmgz58/K/IKk0FS0CcWXDKIuwirVq0atVeYDBK+DiAXXDKIe+1JDtzEguvAff78Oa5Zs0aRl0wGyRUrigX32tOVK1fw+fPnirxkMig8PFyRV5gMkip0FAsyGRQUFGT0OoBckMkgX19f2USZMLhkENeBO3PmTEV/ZzIZJJdEEYtKlSoZOnCvXr2qyEsmg96/f6/IS772FBcXJ5lIFQthMkguGSoMYTJIrghOGMJkkPB1ALkQJoOEL9GZCi4Z9ODBA/z3338VecmXhT08PBR5yWSQv7+/Iq+wA5fsgjQVwmSQHJwLQ/jak/B1ALkQJoOErwOYCjIZJFccLhZkMujs2bOKvGQySPgai6ngkkEnT57EqKgoRV5hMsjZ2ZnayyWDtm/fjkFBQUavA8iFMBkkfB1ALoSvPck144gF+bLwnj17FHnJZNDNmzcVecnCAx8fH0VeYeGBVEGHWJCFB2FhYVipUiVqr/BlYeHrAHJBFh68f/9eFWtyrz1pYU25CySxIF970sKawcHBirwZyZpyF8HCyCjWfPPmjSbWFL5EZyo41rx9+7Yq1uQa/N68eaPIq5U1yZeFtbCmXBGcMMjXnrSypvAlOlOREax5/fp1vHv3riJvRrAm1+CnhTXlio6FIWzwU8qa5MvCEyZMUPR3zijWlLtAEguSNT09PRV5uZeFT506hWFhYYq8QtaUunwSi4xgTa7BT/gSnVxoZU3ytSctrHnt2jVFXpI13717p8grZE2pS2Sx0MKawpeF5YrghCFkTbmCVGGQrOnl5aWJNeWKFcVCC2uSrz0FBAQo8mYUa4aEhGhiTbkGAGFkJGvKXdiLRUaw5qVLl/Dly5eKvCRrRkdHK/IKX3vSwppyDVfCEL4srIU15QqkxOJbYM1Pnz4p8nJTbDKCNYUTtuRCC2sKX3uSK0gV+8ZaWJN8WVgLaz558kSRl3xZWAtrRkVFGU31kYuMZE25BgBhCFlT+BKdqSCn2GhhzUuXLinyZhRrxsXFKfJ+K6wp1/wojIxkTblHWMRCC2uSDX5fvnxR5BWyplQjj1gIp9hoYc1u3bpRezOSNeWKw8XiW2BNtfeaNC8LM2W+WOEgKxxk0iAllznCfziUFMIJQ4tXOA5NSSgBGWGUKFFC0T/qZNjb22OJEiVUeXPnzo1Vq1ZV5bW1tcU6deqo8lpaWmr6TnXr1lXtVXIAEkb58uVVe4sVK6YIosgoUKCA7OszcpEzZ07ZTjO5sLa2Vv27trCw0PSNlSTphCHXyWwqSpcuLdmhYiocHR2Nnmynjbx58yq6eCfDzs5O9e9L636rZS3WrFlTtVeuY8tUODs7K0ogk1GoUCFFoExGrly5FBWWkmFjY6P6d21paakoCSMMtfs8gPb9VknhIBlFihSR7M41Ffnz51e91+fIkUP1/6+tra1Vr0Wt+625zj6lSpWSfAnKVDg4OEh255qKPHnyqP53IruefdSeAwC07bfFixfnjUZVEgULFsQyZcqo8ubKlUv131nLfmvOs4/af18A/tdEJfXKu6lwcnJSVCBBRr58+VT//8vOzk713sVYU1kULlw4W7KmlrPP98iaSopgyNDKmuY6+2RX1pR6CcpUMNZUFlpZU+oVTFORXVkzu+b2GGvShYWFhaZ/U7WcfbTst1pY097e3mysqXa/NefZJ7uyppY8u9r9J7vm2bWwZpkyZTSxZtGiRVV5GWsqC7XnRID/FZnmzZtXlZexprLIjqyZP39+s7Gmlv1WyzfWst+q/f80gHlZU22+irGmsnB2dsYDBw7IjpxmylxlRuGgJTAxMRmpYMGC0L9/fzh06BCEhYVBv379qL25cuWC7t27w44dOyAoKAhmzJhB7bWxsYG2bdvCunXrwNfXF/bs2UPttbS0hCZNmsDSpUvh9evX8ODBA2ovAEDt2rVhzpw58PjxY/D19QU7Oztqb8WKFWHSpElw69YtCAoKAkdHR2qvi4sL/P7773DhwgUIDw+HqlWrUnsdHBzg119/hePHj0N4eDi0bduW2psvXz7o06cP/PPPPxAaGgojRoyg9ubIkQM6d+4MW7duBX9/f1i6dCm119raGlq1agWrV6+GDx8+wMmTJ6m9FhYW0LBhQ1i0aBF4eXnB27dvqb0AADVq1IAZM2bAgwcPwM/PD/LkyUPtLVu2LEyYMAGuXbsGoaGhUKJECWpvsWLF4LfffoMzZ85AeHg41K9fn9pbqFAh+OWXX+Dw4cMQHh4OPXr0oPbmyZMHevbsCbt374bg4GD4888/qb22trbQvn172LhxI3z58gU2bdpE7bWysoJmzZrBihUr4O3bt3D9+nVqLwBAvXr14O+//4Znz56Bj48PWFlZUXurVKkCU6dOhTt37kBgYCAUKlSI2luqVCkYN24cXLp0CcLCwqBChQrUXicnJxg6dCicPHkSwsPDoVmzZtTe/PnzQ9++feHAgQMQGhoKAwcOpPbmzJkTunbtCtu3b4fAwECYO3cutdfGxgZ+/PFHWLt2Lfj4+MCBAweovRYWFtC4cWNYsmQJvHr1Cp49e0btBQCoVasWzJ49Gx49egRfvnyBHDlyUHsrVKgAf/31F9y8eROCg4OhaNGi1F5nZ2cYPXo0nD9/HiIiIqBGjRrUXnt7exg8eDAcPXoUwsPDoUOHDtTevHnzQu/evWHv3r0QEhICo0ePpvba2dlBx44dYfPmzeDn5werVq2i9lpZWUHLli1h1apV8P79ezh79iy1FwCgQYMGsGDBAvD09IR3794p8larVg2mT58O9+/fB39/f8iXLx+1t0yZMvDHH3/A1atXITQ0FEqVKkXtLVq0KIwYMQJOnz4NERER0LBhQ2pvwYIFYcCAAfDvv/9CWFgY9O7dm9qbO3du6NGjB+zatQuCgoJgypQp1F5bW1to164dbNiwAXx9fWHHjh3UXktLS2jatCksW7YM3rx5A3fu3KH2AgDUrVsX5s6dC0+ePIFPnz6BjY0Ntbdy5cowefJkuH37NgQGBoK9vT21t0SJEjBmzBi4ePEihIeHQ6VKlai9jo6OMGTIEDhx4gRERERAq1atqL358+eHn3/+Gfbv3w9hYWEwZMgQam/OnDmhS5cusG3bNggICICFCxdSe62traF169awZs0a+PjxIxw5coTaa2FhAY0aNYLFixfDixcv4MWLF9ReAICaNWvCrFmzwMPDA75+/Qq5cuWi9pYrVw4mTpwI169fh5CQEChevDi1t3jx4jBq1Cg4e/YshIeHQ+3atam9hQsXhoEDB8KRI0cgPDwcunTpQu3NkycP/PTTT7Bnzx4ICQmB8ePHU3vt7OygQ4cOsGnTJvj69SusX7+e2mtlZQXNmzeHlStXwrt37+DSpUvUXgCA+vXrw/z58+H58+fw4cMHsLSkT1NUrVoVpk2bBvfu3YOAgAAoUKAAtbd06dIwfvx4uHz5MoSFhUHZsmWpvUWKFIHhw4eDu7s7REREQJMmTai9HGsePHhQM2vOnDmT2mtjYwNt2rSBdevWwadPnzSxpoeHB7UXIONYMzg4GJycnKi92Zk1t2zZopo13dzc4MOHD+Du7k7t5Vhz4cKFjDUplFGs+fnzZ9i8eTO119LS0sCa3t7eqlnz6dOnWcqaJUuWhLFjx2YIazZv3pzam5GsOW/ePGqvkDUPHjxI7f0WWPPGjRuqWfPcuXMQHh4ONWvWpPZmJGv+/vvv1F6trNmiRYsMY00LCwtqb0ayZunSpam9QtZs1KgRtZdjTS7PntWsuX79+ixnzTp16qhmzUqVKhlYMygoSBNrVq5cmdorZM3WrVtTe78V1jx69Ci1V8iaL1++pPYC/I81Z86caRbWHDlyJJw9exYiIiKgTp061F4ha3bt2pXa+62w5uXLl6m9AP/Pms+ePYOPHz9mS9b84YcfqL0FChSAfv36qWbNbt26ZQhr7t27l9orZM2HDx9SewH4rPn582ezsWa1atWovULWbNeuHbWXY819+/ZBSEiIJtZctmwZtdfa2hpatmypmjVdXV0NrKk0z169evUMYc2wsDBNrNmgQQNqr5A1e/bsSe3Nzqw5b948A2taW1tTeytXrgxTpkzJ1qw5aNAgau+3wprPnz+n9gL8P2s+fPgQvnz5Av3791fEMUzZQBlRffhfD2AvDv4nlJSUJPsMesWKFSXntCcnJ+P79+8lO5LI59ITExN53tTUVAwNDUUHBwdRr/C5dFJpaWkYGxsr2b2RN29e3nPppPR6PcbFxWHnzp1Fvdxz6Vu2bEF/f3+j31dcXByOGzdO1CsczSVUQkKC5DPo5BhoLy8vo2r0xMRE2fHO1atXxxkzZuD9+/cxLS3N6BvLjdwix0AnJyfzvCkpKfjlyxfJDlBuPMXp06cxISHB6BtHRkZKdoAWLFiQ91w6qfT0dIyNjcWGDRuKesnn0oODg0W/cb9+/US9wufShYqPj8fp06eLeoVjoIXfSafTyY53JkdziX1juZFb5BhosbX46tUryTEu3BjoS5cuYVJSktE3DgoKkuy4d3R0xKFDhxqeSyeVlpaGMTExWKFCBVGvcAy08BvHxcVJjhvNmTMndu3aFbdt24YBAQFG3ykuLk7yGXTyufSPHz8aeRMSEiSfQefGU3DPpYt9Y7mRW+Rz6enp6TxvUlKS7Hhncgx0SkqK0Tf++PGj5OgIcjSXTqfjeVNTUzEsLExy9G/hwoV5Y6CF3zg2Nlayq4gbzbV3714MDQ3lebm12L17d1EvOQb669evRt8pPj5e8hl04RhosW8s9wx6gwYNDM+li61FuWfQq1WrZnguXWy/ffbsGVpYWIh6yefSxfZbPz8/ydeGyOfS4+Pjjb5TVFSU5OsXwtFcpLi1+MMPP4h6c+XKxRvNJVRcXBz+8ssvol4bGxveGGixbzx79mzJ/faHH37AZcuW4evXr0XXotzILXIMtHAtJiYmyo53rlSpEk6ePBlv3bolut96e3ujtbW1qNfFxcUwmkvs7BMcHCzZcU+O5hI7+8TExEi+jCAczUWKW4vt27cX9QpHc4l949GjR0vut9xorg8fPhh5ExIScNmyZZL7LTkGWuwby43c4kZzeXh4iO63Dx48kPSWK1cOJ06ciNeuXTPab1NSUvDTp0+YM2dOUW+xYsUMY6DF9tuIiAjJl20LFy6MAwcONIzmIsWdfaQ6MfPkyYM//fSTYTSX2Dfu3bu35H7boUMHw2guoeLj43Hy5MmS+y05mkvsG8uN3CJHc4ntt+fOnZP0kqO5hPttcnIyenl5Sb5EQ46BFjv7BAQEYL58+US9Tk5OOGzYMHR3dxfdb6OjoyVfv+DGQB84cEDy7NOyZUvJ/bZbt264Y8cODAwMNPpdx8XF4ZAhQyT3W24MtI+Pj+g3/vvvvyX32yZNmhhGc4mtxb1790p+p9q1axtGc4mtRTnWJEdzSbGmra2t5H77rbJmly5dJPdbjjXFcihyrGllZWWSNVetWiW533Ks6enpmW1YkxzNldGsGRcXJzlu9FtmTbmRWxxrPnnyRPQby43cygjWvHjxYqawplS3v1bW5EZzSbHmiBEjRL00rLlo0SLJtUiO5hL7xnIjt0yxptzILS2sWbx4cVnWDA8Pl3zZVo41ubOPKdbkRnOR4tZijx49RL00rDlx4kTJ/VYLa5KjucTW4qlTpyS95Giu7MiawtFc3Fps2rSpqJeGNQcOHCjqzWzW3Llzp+R3MsWacuOdyTHQGc2aISEhWLhwYVFvZrNmhw4dRL3ZnTUfPHggut/KjXc2xZq+vr5UrCl29pFjTeEYaFLcfiv1OpNwDLTYN5ZiTVtbW94YaKGyK2u+ePHCbKwp9fJXRrDm9u3bs5Q1hWOglbImOQZabC3eunVL0quFNZ2dnTOVNaVeaMts1hw/frzkWtTKmtwYaLG1KDfeuXr16oYx0EpZkxwDLcWauXPnFvV+i6zJfaf+/ftL7rfZmTVv376dKaxZsGBBUa9wDDQpGtYkx0CT4tZi27ZtRb2MNY1Z08fHxyRrnj17VjVrcmOgSXFnH6mXS7WyJjkGmunbEhtVzAoHmTSKPGxyCbJVq1aJHhKF+uOPP3gbZoMGDSQPiUKtWbOG561WrZrkIVGo06dPUx8ShfLy8hI9JJ46dcrokChUSEgI72KDOySKFWMIlZSUhM7OzkaHxJ07d4oeEknp9XpeER13SJRKkAlFHjbJBNmbN29MfqeZM2fyfl9cgkzskCiUMNHGFWOIHRKFun79Os9bokQJHDNmjOghUagPHz7wDptyh0ShoqOjeRcb5CFRmCATKjU1lVdEZ+qQKBR5scEdElevXi16SBTqt99+MzokSiXIhFq6dKnRIVGqGEMoYaKNS5Bdv37d6JAo1KNHj4wOiSNHjhQ9JArl7+/PO2xyxRhHjhwxSpAJlZCQwCui44oxxA6JQun1et5YAaWHRPKwaWVlhc2bN8eVK1eKJsiE+uuvv3i/L+5CQixBJtSGDRt4Xu5CQixBJtT58+d5Xu5C4vLlyyb329evX/MuNuQSZEKFhYXxLja4BNnBgweNLiSESk5O5l1skMUYYhcSpPR6Pa+IjkuQrVu3Dj99+iTrRUQcNGgQb79t0qQJLl26VPRCQqh58+bxfte1a9fGOXPmiF5ICCVMtFWsWFHyQkKo27dv87zchYRYgkyoT58+8S42uAsJsQSZULGxsbwiOu5CQixBJlRaWhrviX3uQkKq8F8o8mKDLPwXu5AQasyYMbz9Vq7wXyhhAwFXjCF2ISHUiRMneF6uGEPsQkKoZ8+e8bxc4b/YhYRQQUFBvDEKchcSQiUmJvIuNnLnzo09e/bEXbt2GV1ICKXX63lFdOSFhFiCTKg+ffrw1mKzZs0kE2RCTZ06lff7qlevnmThv1DCRBtZjGFqv718+TLPK1f4L9Tbt295FxtOTk44dOhQPHnypMmzT2RkJO9igyvGELuQECo1NZVXRMcV/ktdSAhFXmzY2Njgjz/+KHkhIdTQoUN5a5G7kBBLkAklbCDgLiTEEmRCHTx4kOeVS5AJdf/+fZ5XrvBfqK9fv/Iatuzt7SWLMYSKj4/nja0hC/9N7bfp6em8IjqyGIMmDyDFmmLFGEJpYU1hUQfHmmLFGEJpYc0XL17wvFnJmuTFRu7cuQ3FGGpYU64YQygtrDlr1ize74tkTVNrUQtr3rhxg+clWdPU2UeONU2dfbSwZlpamihrbt26NdNZc+TIkbz9Vq4YQygha8oV/gt15MgRnjc7sKZOp+NdbJCsSXP2kWJNsWIMoXr27Mnbb7OKNYVFHVWrVpUsxhDqwoULPC9ZjJGZrBkeHm421iSL6LILa+7bt4/n5VhTrBhDKC2s6evry2NNuWIMocRYU6oYQ6i0tDReEZ2pJnOhOnbsyNtvs4o1hUUdJGuaWotyrGlqLWYGa4oVYwillTXJIjpTxRhCaWHNadOm8X5fck3mQmlhzStXrvC8Sljz3bt3PNbkCv/NyZo0Zx8trDls2DDeWpRrMhdKjDWlijGE0sKawubJrGRNsoguK1mza9euvLNPRrCmWOG/UFpY88yZMzyvXOG/UELWlCv8Fyo0NNSINaWazIXSyppkEZ1S1hwwYABvv80q1ty1axfPmxGsKVb4L9THjx9FWVOs8F8oKdYUK/wXSitrkkV0ZOF/ZrOmsIEgq1hTWNCqhDUDAgLMxppkw5apJnOhxFhTqvBfqEmTJvF+X/Xr15cs/BfKXKz55s0b1azJZF6xwkFWOMikQU+ePJHtDpVTYGAgFi5cGLt3706VICOl0+mwZMmS2LZtW1y3bh3VIZETB/dKEmSkevXqhXXq1KFOkJGaPHmyomIMUps2bZLtDpXTxYsXZbtD5eTt7Y0FCxaU7A6VU3h4ODo6Osp2h0opJSUFK1SoINsdKiW9Xo8tWrQwHBJpEmSkfv31V6xRowZ1MQap+fPnKyrGIPXPP/8oSpCRunv3rqJiDFKfP3/GQoUKSXaHyikuLg6LFy8u2x0qpfT0dKxRo4Zsd6icOnfuLNsdKqdx48YZukNpEmSk3NzcDIdEmgQZKXd3d0XFGKSeP3+OBQsWlOwOlVNwcDDa29srKsbglJiYiKVLl1aUIOPEwb1cd6ic+vbtK9sdKqfp06fLdofKafv27bLdoXK6evUq70LCVIKM1Pv377FgwYLYu3dvqgQZqaioKCxSpIiiBBmn1NRUrFy5MrZs2ZK68J/Ujz/+qKgYg9Tw4cMVFf6TWrx4saJiDFKHDh2S7Q6Vk4eHBxYqVEiyO1ROfn5+WKhQIdnuUCnFx8eji4uLogsJTunp6VinTh1s2rQpdYKMVPfu3WW7Q+U0ceJErFy5MnWCjNT69esVFf6TOnv2rKLCf1IvX77EggULSnaHyonrHFdS+M8pOTkZy5UrJ9sdKiWuaFmuO1ROv/zyi6E7lCZBRmrOnDmKEmSkdu/eLdsdKqebN2/yEmRK9lsfHx8sWLAgdeE/qZiYGCxatKiq7tC0tDSsVq2aoRiD5kKCVPv27WVfIpLT6NGjZV8iktPy5csVXUiQOnbsmOFCQmmCzNysqaQYg1NGsKaSYgxSWlhz8+bN2Y41IyIi0MnJSVHhPyctrIn4v4vkhg0bUhdjkDIXa+7fv/+7Y82aNWsaWJOmGIOUuVhz9erViooxSGlhTU9PTyxYsCB1MQYpLayZlJSEZcqUUc2ajRs3Ngtrzpgxw8CaNMUYpLSw5rVr1wysSVOMQcrcrKmkyZyUFtYcMWKEWVjz33//Vc2aDx8+NLAmTTEGKS2smZCQgCVKlFDUZM5JK2v26NFDUZM5KXOx5rlz58zCmmFhYWZjzaZNmxpYk6YYg9TAgQMVNZmT0sKae/bsUVSMQep7ZM0OHTooKvwnpYU1V6xYoajJnJQW1nz69Kkhz05T+E/KnKzZoEEDs7DmlClTzMKaly5dyhDWpCn8J6WVNStWrKio8J+UFtYcMmSIoiZzUuZizXv37pmNNZ2dnRU1mXPSyppdunRR1GROavz48YoK/0lpYc1Tp06ZhTVDQkKyJWv269dPUZM507ejzCgctMD/FcYxycjCwsIZAPwAAPz8/MDZ2dnMfyImNQoJCYHChQuDtbW1Ym9ERATkzp0bcuTIodgbGxsLFhYWkDdvXsXe5ORkiIuLA3t7e8VeRISgoCAoVqyYYi8AQEBAABQvXlyVNzAwEIoWLapqtn1QUBA4OjqClZWVYm9YWBjkz58fbG1tFXujoqLAzs4OcuXKpdibkJAAqampUKBAAcXe1NRUiIyMBCcnJ8VeRITAwEDV3ykgIACKFSum6jtp+cbBwcFgb2+vai2Gh4dD3rx5wc7OTrE3JiYGrKysIE+ePIq9iYmJkJiYCIUKFVLs1ev1EBISAkWLFlXsBTDvWnRycgJLS0vF3tDQUChYsCDY2Ngo9kZGRkLOnDkhZ86cir1xcXGAiJAvXz7F3pSUFIiJiQEHBwfF3oxYi+b4xsHBweDg4JDl+210dDTY2NhA7ty5FXu17LdpaWkQHh4ORYoUUewF0PadtO63RYoUUbUWzXX2iYmJAUtLS1Vnn6SkJEhISIDChQsr9ur1eggODs6WZ5/stt/Gx8dDeno65M+fX7E3JSUFoqOjwdHRUbH3e9xvtZx9tOy3Op0OkpKSVJ190tPTITQ01CxnHy37rZa1aE7WBABVZx/GmsqUHVkzLS0NIiIiGGtSirGmcq859lvGmsqUHc8+5mTNlJQUKFiwoGIvY01lMleeXQtrZuezj7n22xw5cqg6+2hhzdTUVIiKimKsSamwsDDIly8fY01KmWstMtZUpuy6Fr8n1gQw79lH7TfWshYZayr3Mtakk1bW1LLfMplX/v7+4OLiwv1PF0T01/rfZIWDFGKFg0xMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTEzmUGYUDiovt2ViYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYsq2YoWDTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTEzfkVjhIBMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExPTdyRWOMj03SgkJARSU1NVeSMiIiAxMVGVNzY2FmJjY1V5k5OTISwsTJUXESEgIECVF+B/s9HVKiAgABBRlTcoKAjS09NVeUNDQyElJUWVNzIyEhISElR54+PjISoqSpU3NTUVgoODVXkRUdN38vf3V/2dAgICQK/Xq/IGBwdDWlqaKm9YWBgkJSWp8kZHR0NcXJwqb2JiIkRERKjy6vV6CAwMVOUFMN9aDAwMVP2NzbXfxsXFQUxMjCpvSkoKhIaGqvKaey2aa79NTk5W5Y2KilK93yYkJKjeb9PS0iAoKEiVF0DbWsyO+214eLjq/TYmJkb12ScpKQnCw8NVefV6vdnOPlq+cWBgoOq1GBISounso9PpVHnj4+MhOjpalTclJQVCQkJUebPrfqv17KN2v42Ojob4+HhVXp1Op/rsk56ebrazj9a1mN3OPow1lel7Y820tDTGmgrEWFOZGGvSi7GmMpmTNSMjI1V509PTsyVralmLwcHBqtdidmTN7Hr2+d5YMzU1NduyprnOPow1lXm/p7MPY01lMhdrajn7mIs1AVieXYliYmIYayqQ1rOPlv1W7dknu7Im039PrHCQ6btRQEAAODo6Qr9+/eDgwYOKkkEpKSng7OwM3bp1g+3btytKBtnY2ECNGjWgTZs2sG7dOvj06RO119bWFjp16gRNmjSBJUuWwKtXr6j/sbSwsIAJEyZA7dq1Yfbs2fDo0SNFB6L169dDhQoV4K+//oKbN28q+sfyzJkzUKJECRg9ejScP39e0YHo5cuXUKRIERg8eDAcO3ZMEZxERkaCk5MT9O7dG/bt26c4GVSmTBno1KkTbNmyRdE/lnZ2dtCoUSNo2bIluLm5wfv376m9NjY20K9fP3B1dYWFCxeCp6enom88Z84cqF69OsyYMQPu37+v6EC0e/duKFeuHPzxxx9w9epVRXBy8+ZNcHZ2hhEjRsDp06cVHYh8fHzA0dERBgwYAP/++6+iZJBOp4NixYpBjx49YNeuXYqSQdbW1lC5cmVo164dbNiwAb58+ULttbOzg9atW0PTpk1h+fLl4O3tTf2dLC0tYdSoUVC3bl2YN28ePH36VNFaXL58OVSuXBmmTJkCt2/fVgQnR48ehVKlSsHYsWPh0qVLipJBjx8/hqJFi8LQoUPhxIkTipJBwcHB4OjoCH379oX9+/crgpP09HQoUaIEdOnSBbZt26YITmxtbaF27drQunVrWLNmDfj4+FB7bWxsoHv37tCoUSNYvHgxvHz5UtFanDx5MtSsWRNmzZoFDx8+VPSNN2/eDBUqVIA///wTbty4oWi/vXjxIri4uMCoUaPg3LlzipJB3t7e4OTkBIMGDYKjR48qgpPY2FgoUqQI9OrVC/bu3asoGWRhYQFly5aFjh07wqZNm8DPz4/aa2dnB02aNIEWLVrAypUr4d27d9Rea2trGDRoENSvXx/mz58Pz58/VwSg8+fPh6pVq8K0adPg3r17ivbb/fv3Q9myZWH8+PFw5coVRfvt3bt3oXjx4jB8+HA4deqUomTQ169fwdHREfr37w+HDh1SlAxKSkqC4sWLQ/fu3WHnzp2KkkE2NjZQrVo1aNu2Laxfvx58fX2pvXZ2dtC+fXv44YcfYNmyZfD69WtF++3YsWOhTp06MHfuXHj8+LGitbh69WqoVKkSTJo0CW7duqVov3V3d4eSJUvC77//DhcuXFB09vH09ISiRYvCr7/+CsePH1eUDAoLCwMnJyfo06cP/PPPP4r2W71eD6VKlYLOnTvD1q1bFSVmbW1toX79+tCqVStYvXo1fPz4kdprY2MDvXv3hoYNG8KiRYvgxYsXivbbGTNmQI0aNWDmzJng4eGhaC1u374dypcvDxMnToRr164p2m+vXr0Kzs7OMHLkSDhz5oyis8/79+/ByckJfvnlFzh8+LCi/TYuLg6KFCkCPXv2hN27dytKBllaWkKFChWgffv2sHHjRvj69Su1187ODlq0aAHNmjWDFStWwNu3b6m/k5WVFQwfPhzq1asHf//9Nzx79kzRfrt48WKoUqUKTJ06Fe7evatoLf77779QpkwZGDduHFy+fFnR2cfDwwOKFSsGw4YNA3d3d0VnH62s6eLiook1f/zxR1i7dq1i1uzcubMm1qxVq1aWs+bZs2cZa1LK2toa+vfvD66urrBgwQLVrDl9+nTFrLlnzx6zsOanT5+yJWv++OOPGcKaT548UbQWV6xYoZk1x4wZAxcvXlS03z558gSKFi0KQ4YMUcyaISEh4OjoCD///HOWs2adOnXMwppTpkwxO2uePXtWEWu+ffvWwJpHjhxRzZp79uxRzJrlypVTzZo//PADNG/eXDFrWllZweDBg1Wz5oIFC7Ilazo5OalizeTk5AxhzXXr1qlmzaVLlypiTQsLCxg3bhzUqVMH5syZ812wZnh4+DfBmh8+fKD2WltbQ58+fQys6eXlpYo1Z8yYAQ8ePFC0Fnfs2KGJNV1cXOC3337LUtaMj4+HokWLZghrKj37tGzZ0iysuWTJEk2sWbp0aRg3bpziPDvJmidPnlR09gkMDDSw5oEDB7KMNW1tbTWzZuPGjVWx5sSJE1Wz5oYNGzKMNZWcfV69epUhrKk0z46IGcKaq1atyjLWBACYO3cuVKtWLctZ89atW9mSNatUqWJgzc+fP1N7haz55s0bRaw5evRozaw5efJkxax57NixbMmaJUuWNAtr9ujRI0NY08PDQ3VhLdN/RIjIwkQAgDMAIACgn58fMmVfde3aFblvaWVlhc2aNcMVK1bg27dvTXr/+OMPgxcAsF69evj333/js2fPUK/Xy3rXrl3L81apUgWnTp2Kd+/exbS0NFnv6dOned5SpUrhuHHj8NKlS5iUlCTrffHiBc9bpEgRHDZsGJ48eRLj4+NlvaGhoZgrVy6Dt0CBAtivXz88cOAARkZGynqTkpLQxcXF4M2VKxd269YNt2/fjkFBQbJevV6PjRo1MnhtbGywTZs2uHbtWvz06ZOsFxGxf//+Bq+FhQU2btwYlyxZgq9evTL5nWbNmsX7fdWqVQtnz56Njx49wvT0dFnvrl27eN4KFSrgX3/9hTdv3sTU1FRZ740bN3heFxcXHD16NJ4/fx4TExNlvR8/fkQrKyuD18HBAQcPHozHjh3D2NhYWW90dDQWKFDA4M2XLx/27t0b9+3bh2FhYbLetLQ0rFChgsGbI0cO7NSpE27ZsoVqn2zTpo3Ba21tjS1btsRVq1bh+/fvTXpHjhzJ+8aurq64YMEC9PT0NPmNly1bxvtdV69eHadPn4737983uRaPHDnC85YpUwb/+OMPvHr1KiYnJ8t6Hz9+zPMWK1YMR4wYgadPn8aEhARZr7+/P9rZ2Rm8hQoVwgEDBuC///6L0dHRsl6dTodFihQxeHPnzo09evTAXbt2YUhIiKxXr9djrVq1DF5bW1ts164dbtiwAT9//izrRUTs2bOnwWtpaYlNmzbF5cuX45s3b0x+p0mTJvF+X3Xr1sV58+bhkydPTHo3btzI81auXBmnTJmCt2/fNrkWL1y4wPOWLFkSx44dixcvXjS5375+/RotLCwMXkdHRxwyZAieOHEC4+LiZL3h4eGYJ08egzd//vz4888/4/79+zEiIkLWm5KSgqVKlTJ4c+bMiV26dMFt27ZhYGCgrFev12PTpk15a7F169a4Zs0a9PHxkfUiIg4ePJi3Fhs1aoSLFy/Gly9fmvxO8+bN4/2ua9asibNmzUIPDw+T++2+fft43vLly+Off/6JN27cwJSUFFnv7du3eV5nZ2ccNWoUnj17FnU6nazX19cXra2tDV57e3scNGgQHjlyBGNiYmS9sbGxWLhwYYM3b9682KtXL9yzZw+GhobKetPS0rBKlSoGr52dHXbo0AE3bdqEX79+lfUiInbs2JF39mnevDmuXLkS3717Z9I7ZswY3u+rfv36OH/+fHz+/LnJb7xq1Sqet2rVqjht2jS8d++eyf325MmTPG/p0qVx/PjxeOXKFZP77bNnz4zOPsOHD8dTp06ZPPsEBQVhzpw5Dd6CBQti//798dChQybPPomJiVisWDHeftu9e3fcsWMH1dmnfv36vP22bdu2uH79evT19ZX1IiL26dOHt9/+8MMPuHTpUnz9+rXJ7zRt2jTe76t27do4Z84cfPz4scm1uG3bNp63YsWKOGnSJLx165bJ/fbKlSs8b4kSJfD333/HCxcumDz7vHv3Di0tLXlnn19//RWPHz9u8uwTGRmJ+fLl4519+vTpg//88w+Gh4fLelNTU7Fs2bK8/bZz5864detWDAgIkPUiIrZq1Yq337Zq1QpXr16NHz58MOkdNmwYb79t2LAhLlq0CL28vEx+40WLFvF+1zVq1MCZM2figwcPTH7jgwcP8rzlypXDCRMm4LVr10zutw8ePDA6+/z222945swZk/vt169f0cbGhnf2+eWXX/Dw4cMmzz7x8fHo4OBg8ObJkwd79uyJu3fvNnn2SU9Pxxo1avD22/bt2+PGjRvxy5cvsl5Ebaw5YcIE3u8rI1jzzp07JvfbM2fO8LzmZM2+fftSsWZycrIRa3bt2hW3b99OdfYRsuaPP/5IzZoDBgzgrcXvjTXt7e0VsWbBggV5+61W1ty8eTMVa7Zt25a336plTQDABg0aqGbNatWqUbPm0aNHeV4trFm0aFFq1gwICMgU1gwODpb16vV6rF27Nu/so4Q1f/rpJ97ZRytrzp07l4o1N23axPNWrlwZJ0+erJo1x4wZQ8Wab968yZas2axZM95azCrW/Pvvv3m/64xgzevXr5s8+9y5c4fnVcKanz9/5rFm4cKFceDAgapZ86effqJizfT0dLOx5tixY3m/r+zAms+fPzc6+wwfPhzd3d1Vs+bBgwepWLN48eK8/VYta3J59nXr1lGx5s8//8zbb7MDa169epXnzSrWjIqKwvz58/POPmpZM0eOHAbW9Pf3l/UiirOmm5sbFWsOHz6ct982bNgQFy5cqJo1Z8yYQcWahw4d4nmzkjVtbW15Z5/swJrdunXj7bcca3p7e5v8TlKs+fTpU5PedevW8bxaWXPs2LFUrPny5Uue18nJCYcOHUrNmrlz5zZ4s5I1GzduzNtvs4o1Z8+ezft9ZQRr3rhxQzVrnjt3zuR+6+PjI8qaR48eNXn2kWLNvXv3UrFmxYoVefutWta0srLCFi1aULPmqFGjeL8vJay5fPlynjerWPPJkyc8b0aw5qFDhzAqKkrWmxmsuX79etWsuWzZMirWnDx5Mu/3pYU1K1WqRM2aFy9e5HmzijWZzCs/Pz/yuztjRtTEZcR/5L8ewAoH/xNKSkrCW7du8TZPMsqXL48TJ04UTQYlJyfj+/fveRdYZBQvXhxHjhwpmgxKTU3F0NBQHlSQIZcMSktLw9jYWKxevbqoN0+ePJLJIL1ej3FxcdilSxdRr6lkUFxcHI4bN07UayoZlJCQYJTEIYNLBoldhCUmJuLx48clvVwySKzoMikpyShpTkbp0qVx3LhxePnyZaMDUUpKCn758oV3gUWGXDIoNTUVIyMjeVBBBld0KZYMSk9Px7i4ON4FFhlc0aVYMoj7xv369RP1mkoGxcfH4/Tp00W9lpaW2KRJE8lkkE6nw61bt0r+ruWSQYmJiUYHGTLkkkHJycn46tUrHlSQwSWDxC7CUlJSMCgoiAcVZHDJILGLsLS0NIyJieFdYJHBJYP27dtnlAzivjFZLEkGlwzasmWLaDIoLi6Ol8Qhg7sIk0oGJSQkGCVxuOCKLqWSQTqdDvfv3y/5napXry6ZDEpKSsK7d+9KesuWLSuZDEpOTkYfHx8eVJAhlwxKTU3F8PBwHlSQIZcM4vZbEiqE+61UMohbi927dxf12traYvv27XHDhg2iyaD4+HicOHGi5H7brFkzXL58uWgyKCEhwahggIx69erhvHnzRJNBiYmJeOrUKUlvlSpVcMqUKaLJoKSkJHz+/DkPKsiQSwalpKSgn58f7wKLDLlkUFpaGkZFRfEusIT7rVQyiFuLP/zwg+R+K5cMiouLw4EDB0rut1wySOwiLD4+3iiJQ65FLhkkdhGm0+lw586dkt+JSwY9fPhQdL+9du2apFcuGZScnIze3t68CywyuIswsWRQamoqhoSE8C6wyOCKLsWSQdxaJC+wyOCKLsWSQdxa7NChg+R+27FjR8lkUFxcHI4ePVpyLcolgxISEowKBsiQSwbpdDo8fPiwpFcuGZSUlGSUNCeDSwaJXYSlpKSgr68v7wKLDC4ZdOrUKaNkUGpqKkZERPAusMgoWLCgZDIoPT0dY2NjeRdYZHDJoJ07dxolg7hv3Lt3b8n9liu6FEsGxcfHGyVxuOAuwqSSQQkJCUbF6WTUqVNHMhmUmJiI58+fl/TKJYOSk5PRy8uLd4FFhlwyKCUlBQMCAngXWGTIJYPS0tIwOjqad4FFBld4IHYRxu23LVu2FPWShQdiRZdxcXE4ZMgQUS9XeLB69Wr8+PGj6DcWFgyQ+22jRo1w0aJF+OLFC9G1uHfvXsnvxBVdihUeZARrkhdYZGQ2a5IXWGR8C6wpVnT5X2XNYcOGZRprkhdYZGR31hS7CEtMTMRLly5JerWwpouLS6ayJnmBRQZZdKmGNbkGPynWHDFihOR+m5mseeDAAcnvRLKm2Fq8d++epDejWFPs7KOWNbmzjynWFGvw49Zijx49RL1aWJMsulTDmlyDnxRrChuhyeAa/DKLNfPmzSvqzSjWFBZdcmuRbMwT7remWHPQoEGS+21msqawYICMWrVq4axZs1SxplyDX3JyMr59+zZbsiZZLCncbzOTNYUFA2RkBGuKFV0mJSWhh4eHpFcra3INfmpYk2vwk2LNBg0aiHq5osvMYs0pU6ZI7rcZxZpia1ELa7548UKSNUuUKKGZNY8fPy7JmuXKlRP1amVNuQa/uLg4HDp0qKhXK2tyDX6ZwZrCRmgyypUrl2msGRYWho6OjqLezGZNsjGPDBrWHD9+vOR+27x5c8kGPxrWlGrwS0xMxBMnTkh6q1atKvmYTEawJlksSca3yJrcdyIfgSEjo1hTrOhSp9MZFaeToZU1pRr8kpOT8fXr16pZMzg4WJY1pRr8tLAmtxbJYkkyMps1Fy9eLLnfmps1r169KsmaOXLkEPVyrClWdEnLmmINftzZp06dOpL7rRbW5Br8aIrcmbJWrHCQFQ4yaZDw1Ry5ECaD5A6LwsiZMyd27drV0IErd1gUOxCRySBPT09qL5cM4jpwo6Ojqb0A/9+ByyWDpBIwYiFMBtWrV4/aK0wGka/mmAphMkjYySgXwmSQ3MWEMITJIOGrOXJBJoPevXuHHz9+VPSdGjRoYOjATU9PV+QVJoOkkqFiUaZMGV4HrhSci4UwGUS+mmMqhMmghQsXUnuFySDhqzlyIUwGyRVlCEOYDAoODlb0nYTJICnoEwsuGcRdhFWrVo3aK0wGScG5WAiTQcIXWuVC2IErdzEhDGEySO5iQhjka08fP37EV69eUXuFyaCEhARF31iYDHJycqL2CpNBUkXHYiFMBknBuVhwySDuIkz4ao5cCJNBchcTwuCSQRs3bsSvX78adTLKhTAZ9OXLF0XfSfjak1QiVSyELwtLJUPFQpgMkroIFgthMkj4ao5cCJNBckVwwhAmg4QvtMqF8GVhYSejXAiTQeHh4Yq+ce3atXkduFIJb7EQJoOkLoLFQvjaE/lCq6kQJoOEr+bIhTAZJHcxIQxhMkj4ao5cCJNBb9++pfaSySBPT09MTk5W9I2FySBnZ2dqrzAZJHURLBbCZBD5ao6pEL72JHyhVS6ELwsLX82RC2EySK4BQBjCwgN/f39F30lYeCBV0CEWZOFBamoqVqpUidorfFlY6iJYLMjCg7i4OEWsmT9/fuzbt6/htSctrCl8NUcubGxseK89aWHNmJgYRd84I1lTquhYLL4V1pS7mBCGnZ2dZtbkGvx8fHwUfSctrCl87UkLa5Kv5piKjGRNqSI4scgo1vT19ZUtyhBGRrEm1+CnhTWlGlzFgnztSSlrkq89xcXFGb2aIxcZyZrCV3PkQsiar1+/pvZmNGtKXT6JRUawJtfgR76aYyq0sibX4KeVNW/evEntFb4srJU1pS6RxUILa3IvC1++fBmTkpIkL4LFQsiawldz5CIjWVP4ao5caGFN4WtPERERir6xFtYUviyshTXJV3NMRUaypvDVHLnIKNZ8//49vnv3TtE3JlkzJSVF0TcWTrHRwprkC62mQjjFRgtrShXBiUVGsebnz581sWZAQICi75SRrFm5cmVqrxbWFDb4CV9olQutrEm+LKyFNb28vKi9wpeFtbKmvb09tTejWFOn0/FeaDUVQtaUKoITC+EUGy2sKXyhVS60sqbwZWElXi2sKXxZWAtrSj3uIRYZyZrCF1rlIiNYk2vwCwkJUfSdhKwp9WiEWFSqVInX4KeFNckXWk1FRrKm8IVWufhWWFOn0yn6xkqm2DBlvljhICscZNIgJZc5ZFhZWSkqhBNG3bp1VXvJMaFKQ8mlmTBcXFwU/aNORuHChbFEiRKqvLly5cKqVauq8trY2EhW1JsKCwsLTd9Y7c8FAEWFXcIoX768am/RokUVQRQZ+fPnl3x9xlTkyJFDstPMVFhbW2taT1q+sZIknTCkOplponTp0pIdKqbCwcGBNzZTSeTJk0f1HmJra6v692VpaanpG2vxqv3/JQBIdmzRhLOzs6IEMhkFCxZUBMpk5MqVS/X+Y21tnS33WyXAKYxy5copKhwkw8nJSbI711Tky5dP9V5vZ2eHNWvWVOXVevbR4tVy9lGSxBVGyZIlJV+CMhX29vaS3bmmInfu3Kr/nbC1tVW9JiwtLbPlWpR6+ZcmihUrhoUKFVLlLVCgAJYpU0aVN2fOnJrOPubab7WcfdSe5wH+V0Ak9cq7qXB0dFRUIEFG3rx5Vf97bmdnp3rvyq77rblYs1ChQmZjTbVrIruefczJmkqKYMjIrqypZS1qYc1SpUppYk2pl6BMBWNNZaGVNQsUKKDKy1hTWWjJ7X2PrPm97bdaWLNw4cJmYU0tZx9LS0tFxTfC+B5ZU22ePWfOnKr/zlrOPt8raxYtWlSVN7uyprnuNbWcfVxcXCRfHTYV5mTN7Hj2YaxJH9/j2cecrKn2fkAra5prvzUnax44cMDkCGamzFNmFA5aAhMTk5EsLCygYcOGsGjRInj+/Dn07dtXkb9GjRowc+ZM8PDwgOnTpyvylitXDiZOnAjXr1+H7du3K/IWL14cRo4cCWfPnoWbN28q8hYuXBgGDhwIR44cgZcvX4KdnR21N0+ePPDTTz/Bnj17wNvbGxwdHam9dnZ20KFDB9i0aRO8ffsWqlatSu21srKC5s2bw8qVK+HVq1fQtm1bai8AQP369eHvv/+Gp0+fwvDhwxV5q1atCtOmTYO7d+/C4sWLFXlLlSoF48aNg8uXL8ORI0cUeZ2cnGDYsGHg7u4Oz549U+QtUKAA9OvXDw4ePAivX7+GPHnyUHtz5coF3bp1gx07dsDbt2+hRIkS1F4bGxto06YNrFu3Dt68eQP169en9lpaWkKTJk1g6dKl4OXlBd27d6f2AgDUrl0b5syZA48fP4YJEyYo8lasWBEmTZoEt27dgnXr1inyuri4wO+//w7nz5+HCxcuKPLa29vD4MGD4dixY+Dl5QVWVlbU3rx580Lv3r1h37598ObNGyhUqBC1N0eOHNCpZ9OyBAABAABJREFUUyfYsmULvH37FipUqEDttba2hpYtW4Kbmxu8fv0amjVrRu21sLAAV1dXWLhwITx//hwGDhxI7QUAqF69OsyYMQMePHgAs2fPVuQtW7YsTJgwAa5duwZ79+5V5C1WrBj89ttvcObMGbh3754ib6FCheCXX36Bw4cPw6tXryBHjhzU3ty5c0PPnj1h165d8PbtWyhatCi119bWFtq1awcbNmyAN2/eQI0aNai9lpaW0KxZM1i+fDm8fPkS/o+9sw6ratva+KDsFgE7jt2J3a1gHRWwjt1Yxzr2sRvs7m7sbrEwEFSwAyxsBSX3uH+cM9ede+1Vc68tW47z9zzz+a7f5XUj667JeMccY47GjRtr1gIAlCtXDiZMmADXrl2DPn36MGmLFCkCw4cPh/Pnz8PMmTOZtLlz54b+/fvD0aNHYdeuXUxaJycn6Nq1K+zZswdu3rzJpE2fPj14enrCpk2b4O7du5AuXTrN2pQpU0KzZs1gxYoVEBoaCnny5NGsdXBwgHr16sG8efPg7t27UKlSJc1aGxsbqFKlCkybNg0CAwOhdevWmrUAAKVKlYIxY8bAlStXYOjQoUzaAgUKwJAhQ+D06dOwdOlSJm2OHDmgd+/ecPDgQTh+/DiT1tHRETp16gQ7duyAoKAgcHBw0KxNmzYttG7dGtatWwchISHg6OioWZs8eXJo0qQJLFmyBEJDQ6Fw4cKatXZ2dlCrVi2YM2cO3L59G+rUqaNZCwDg6uoKkyZNghs3bkDnzp2ZtMWLF4e//voL/P39YeLEiUzafPnywcCBA+H48eOwadMmJm3WrFmhR48esHfvXrh69SqTNmPGjNCuXTvYsmUL3LlzB1KlSqVZmypVKmjRogWsWrUKQkNDIXv27Jq1yZIlgwYNGsCCBQvg7t27UKZMGc1aW1tbqFatGsyYMQOCgoLA3d1dsxYAoGzZsjB+/HgICAiA/v37M2kLFy4Mw4YNg3PnzoGPjw+TNleuXNCvXz84cuQI7Nu3j0nr5OQEXbp0gd27d8OtW7fA1lZ7miJdunTQtm1b2LBhA9y9excyZMigWZsyZUpwd3eHZcuWQWhoKPz222+atfb29lCnTh3w8fGBO3fuQNWqVTVr/wte8+zZs0xaS3pNZ2dnzVraa4aEhJjtNYODg6Fhw4aatQDGXrNHjx5M2qJFi8KIESO419SAJb1my5YtNWsB/u81r169arbXPHPmDCxcuJBJmzNnTujTp49urxkUFJQkvWbNmjU1a38Wr7l+/XomLYl99u3bl+hes2XLlhbxmqVKldKstbW1herVq1vda86aNYtJS3vN3bt3M2nFXtPGxkaz1lJeMyQkBPLmzatZS7ymr68v3L17FypXrqxZa2NjA5UrV4apU6dCYGAgtGnTRrMWwNhrDhs2jElrLa+ZOXNmi3jN0NBQXV6zSJEimrVir1m3bl3NWgD9XnPkyJFmec28efPCgAED4Pjx47B582YmrYuLC3Tv3h327t0LAQEBTFpreU0HBwcjr1m2bFnN2v+C19y/fz+TNkuWLNC5c2fYtWsXBAYGJprXTJEiBbi5uVnEa1arVk2z1pJec9SoUUxa2muuXLmSSZstWzbBa547d45JawmvuWbNGrO95qJFiyAkJASKFy+uWWtnZwc1atSAWbNmmeU1y5cvbxGvOW3aNCatpbwma579Z/Garq6umrXEa06bNk231xw8eDCTtmDBgvDnn3/q9ppHjhxh0oq9pr29vWattbymnZ1dkvaaJ06c0OU1L168yKTNmDEjtG/fHrZu3QrBwcHQrl07Jh/DSQJYovrwv76A3zj4nyA8PBx37dqlWIlOxluI57xHRETguXPnZDuSkiVLho0aNcJFixbh06dPjbSfPn3CGzduYJYsWWQr0cl4i5CQEKPq7G/fvmFQUJBi90b58uWNrlsnxMfHY1BQEDZu3FhWS1+3Hh8fb/R937lzB3v06CGrJdetHz16FKOjo420Dx48UByrJh7tRfPs2TNcuXKlrJZct07GSNO8evUKDx48KKslo71WrFiBL1++NNK+f/8eL126JNsBKh4jTfP161cMDAyU7QAVj7egn1N0dDQGBQVhxYoVZb/v0qVLG423IBgMBgwKClIcO0HGW5Dr1mlCQkIUR8qKr1unefToEc6aNUtW6+joiH/88Ydw3TpNWFiY4ign8Wgvmjdv3uDJkydlx7iIr1un+fjxI167dk22454eI33//n0jbVRUFN66dUux+9TV1RUnTZqEgYGBRs84Li4Og4KCFK9BJ2OkyXgLmtu3b2PHjh1ltfny5cOBAwfiiRMnMCYmxkh77949xavus2bNajTegubJkyeKYywzZsyI7du3F65bp3nx4gX6+fnJasXXrdO8ffsWL1y4IDs6goy3INet03z+/Blv3rwpO/pXPNqLfk7fv3/HoKAgxa4ieow0rU1ISMCgoCB0c3OT1ZLRXufOncO4uDij7/vu3buKY37EY6RpHj58qDjCWzzegubZs2e4Zs0aWW369OnRw8NDGG9B8+rVKzx69Cja2NhIaunxFi9evDDSvn//Hq9cuSJ725C9vT3WrVtXuG6d5uvXr3jr1i3Z2y/o8RZBQUFGzykmJgaDgoKwatWqsv/mUqVKGY32ogkKClIcOyEe7UUTGhqKf/75p6xWPEaa5vHjxzh37lxZLRnttX37dpP9Njw8XHFssHiMNE1ERASePn0a7e3tJbVktNfixYvx+fPnRtpPnz7h9evXZUdRkjHSZLwFDYl9lLoayXgLMtqLQPZbpfHOZLwFGe1Fc/v2bezSpYusloy3IGOkae7fv49jx46V1To7OxuN9qJ5+vQpLlu2TFYrHu1F8/LlS8VxBuLRXjTv3r3DixcvYsqUKSW1ZLTX/Pnz8fHjx0baL1++YGBgoGwHKD1G+s6dO5Kxj1InZpkyZXDcuHHCeAsCiX1atGghqy1UqJDReAuakJAQxVvIc+bMiX379hVGe9E8fPgQp02bJqulx1t8+fLFSPv8+XPcsGGDrJaMt1i/fr1J7PP69Ws8fvy47E004tFeNB8+fMCAgABMly6dpFY8RpomMjISb926JXv7BT3a69atW0bPODY2FoOCgrBmzZqy/2Z6jLR4vw0ODsZ27drJaslor5MnT5rst/fu3cPhw4fLaskY6f3790vGPkqjRTJlyoQdOnQQRinSqHnN1KlTq3rNZMmSSWot4TXJaK//itdUGqv2I73moUOHZLU/g9cMDg6WjH0qVaok+30Tr0lGexG0eE3xaC+aH+016dFeNEnZayp1+/9Ir9mpUydZrZLXvH//viavSUZ70WjxmvRoL5of7TXp0V40xGvK3WxrSa9Jv4vEa7q7u8tqLeU1pWIfc73m8+fPce3atbJa2mu+e/fOSKvVa5LRXjQ/2mvSo70s7TU9PT1ltT/Sa/r4+Mhqaa8pFfto9ZpSsc+ZM2d+uNcMDQ010mr1mvQYaQKJfZTGOxcrVsxojDSNmtekx0hzr6nfayrdeGgJr0nGSNOEhIQojpRV8pqPHj1S9Jokz07GSNOoec20adMKY6SlvOaJEyes5jXlbv6ypNcUv4vBwcHYvn17We3P6DVfvHiBu3fvltUSr0nGSNNo8Zr0GGka4jXlbrbV6zXFY6QJZL9VGu+s5jV79uwpq9XjNZ2cnBS95qpVq2S1lvKaUrHP5cuXMXXq1JJaS3hNMkaa1WuKx0jTBAUFYevWrWW1/0WveerUKV1eM2PGjJJa2muK8+yW8Jp169aV1RKvScZI06h5TfEYaZr79+/jqFGjZLVKXvPp06c/zGumSpXqp/WaSjeI/iivybEufFQxLxzk6ET8S0qpGEPM+PHjjbRKCTIx69atM9IqFWOIOXfunEmQKFeMIebx48dGSRiSIPP19TVJkIn58uWL0RX7dDGGOEgUEx8fb3IdMAkSpRJkYsQHUEpBopi+ffsaabNnz469e/eWTJCJmT17tpE2c+bM2KlTJ8liDDFi86ZUjCHmxo0bJkGiXIJMzKtXr4yufFYqxhDz/ft3k1G2pBjj5s2bis/YYDCYHPiTYgypIFFMmzZtNAeJYkaMGGGkdXFxwe7du0smyMSIk2V0kChOkIk5duyYZJAolSATExoaapSEcXBwwAYNGuD8+fNNgkQxHz58MErCKCXIxMTFxZkc+JctW1YyQSZFrVq1jLRKxRhiunbtaqQlCbLDhw+bJMjEiA8nlIoxxGzatMlIS4oxNmzYYHIgIebixYtG2hQpUqCbmxsuW7bMJEEm5tmzZ0bF5fb29linTh308fExSZCJiYyMNLpinxxISCXIxCQkJJgkYUqWLClbjCFGbAqUEmRixAZdKUEmxtfX10irlCATs2/fPpP9Vq4YQ8ytW7dMDBspxnj27Jmi9s2bN0YH/kqF/2Kio6NNkjDly5eXPJAQYzAYTJIwRYsWxREjRkgmyMSIi2/IgYRUgkzM6NGjjbRKxRhixMkypQSZmNOnT5vEPnLFGGIePHhglIRRSpCJ+fTpk9GBv1Lhv5j4+HiT4nK5wn8pxMWOpPBf6kBCjDghmiNHDuzTp4/kgYSY6dOnG2mVCv/FiA8KyYGEVIJMzNWrV01iH7kEmZjw8HCjJIydnR3Wrl1bshhDTFRUlElxuVyCTIzBYDAZ8aFUjCGmVatWRlqlYgwx4sNgpcJ/MeJkGSn837p1q0mCTIw4cZ06dWps2bIlrl692iRBJubOnTtGB/5KBxJi3r17Z3Tgb2tri9WrV5dMkImJiYkxOfCXK/wXYzAYsHr16kbaIkWKaE6Q6fGa4qarpOA1nzx58kO8prgYQ0x8fLzJgb8er6lUjCFGXHis12vKFf6L4V6TzWu2bdvWSGstr6lUjCHm+PHjRlq9XlOuGEOMpb2mXDGGFLVr1zbSsnjNbt26GWkTy2uKDwpZvOalS5eMtMRrShVjiHn+/Lkur0kXl+v1mkqF/2KaNWtmpE0srzlv3jwjbWJ5zaCgICMti9eMiIiwuNeUKsYQYzAYsHLlykZaPV5TqRhDzJgxY4y0ScFrPnz48D/lNbXk2Xv16mWktabXlCvGEBMQEGAS+2j1mi9evDDxmnKF/2K+fftmcuDP4jXFxeWJ5TWHDh1qpLWE15QqxhBz+PBhI60lvKZUMYYYPV4zNjbWol6TpRjjjz/+MNImltdcv369yX6r1WueP3/eZL/V6zWlCv/FfPnyxai43BJeU67wX4y42FGv15Qr/BczZ84cI21S8Zp0cbmlvKaWPLu4uNwSXlOq8F/MyJEjjbQsXnP58uVGWr1eU67wX8y9e/e411Qo/BczZcoUI60lvKZU4b8YS3tNucJ/zs8FLxzkhYMcHdy/fx8dHBxku0OV+PjxI6ZPnx5LliyJo0eP1pQgI8TFxWH+/PmZgkSaunXrGiXI1IJEmu7duzMlyGimTp3KlCCj2bJlC1OCjOby5ctoZ2cnJMjE3aFKhIWFYfLkyTUXY9BERkaik5OTkCCT6g6VIyEhAUuVKmXUHapm2GiaN2+u2B2qxODBg4UgcdOmTapBIs2CBQuYEmQ0Bw4cMEqQqQWJNMHBwWhnZ6c5QUYTERGBadKkYUqQEWJiYjBXrlxMxRgEg8GAVapUYUqQ0XTo0EGxO1SJcePGKXaHKrFmzRrF7lAlzpw5w1SMQfPo0SN0cHDAihUrakqQ0Xz+/BkzZszIlCAjxMfHY6FChZgSZDQNGzZkSpDR9OnTh6kYg2bmzJlMCTKanTt3MhVj0Fy7dg3t7OywevXqkt2hSrx8+RJTpkwp2x2qxLdv3zBr1qxMxRgEg8GAZcuWFQ4ktCTIaFq3bs2UIKMZNmwYU4KMZsmSJUwJMpojR44wFWPQhISEoL29vebCf5r3799junTpFLtD5YiNjcW8efMyFf7T1KxZUyjGkOoOVaJz585Mhf80EydOZEqQ0WzcuJEpQUZz4cIFpgQZzdOnTzFZsmSaizFovn79io6OjkwJMkJCQgIWK1aMqRiDpmnTpkKCbO/evUyxj7e3t2J3qBI+Pj5MxRg0fn5+QuG/lgMJmsDAQLSzs9OcIKN5/fo1pkqViqnwnxAdHY3Zs2dnSpARDAYDVqxYkakYg8bT05MpQUYzatQopmIMmhUrVjAV/tOcPHmSqRiDRuw11YoxaPR6zQIFCjAVY9Do8Zo9evSwitfcunVrkvOaUVFRFvOaWooxaFq0aGFUjKHHa7LEPnq85sGDB5mKMWj0eM23b99azWtWrVrVYl6TJfbR4zXXrl3LVIxBYwmvqbUYg0av1yxcuLDZXrNRo0ZW8ZqzZs2yite8fv26kddUK8agEXtNtWIMGr1es1y5ckzFGDR6vObw4cOt4jWPHj2aJL1mvnz5BK/JmmenvaaWYgyaLl26MBVj0FjLa/r7+/9yXtPNzc1srzlgwACmYgwaPV5z7969RsUYieU1SYMsSzEGwZpe08vLyypec+XKlVbxmg8ePBC8ppbCfxraa2ot/Cfo9Zr16tVjKvyn0eM1p02bZhWveeXKFbO9Znh4OKZIkULwmix5dj1ekzTIshT+04i9JkvsM2TIEKbCfxprec3bt2+jvb29Vbxm7ty5reI1O3bsaLbXHD9+PFPhP40er3n27Fmmwn8avV4zU6ZMSc5r9u3b12yvybEuvHCQFw5ydHD//n2mBBlNWFgYU4KM5t27d0zFGDTfv39nChJpDAYDXr58WfMvJjEBAQFMQSLNzZs3mYJEmrt37zIFiTSPHj1iSpDRvHz5kilIpPn06RNTgowmNjaWKUikMRgMeOXKFSbDRnPt2jWmBBlNUFAQU5BIExoaypQgo3n69ClTgowmIiKCKUFGExkZyZQgo0lISND1Ll69epUpSKS5ceMGU4KM5vbt22YHiQ8ePDB7vw0PD2dKkNG8f/+e6UCCJjo6milBRkP2W3Ov6g4ICGAybDSBgYFMCTKau3fvMiXIaB4/fsyUIKN59eqV2d1KX758YSr8p4mPj2c6kBCjZ7+9fv26rv2WJUFGc+/ePaYEGc3z58+ZEmQ0b9++ZUqQ0Xz79o2pGIPGEvutntjH3P32zp07TAcSNA8fPmRKkNG8ePGCqfCf5uPHj0wJMpqYmBir7bfXrl0ze7+9deuW2fttaGgoU4KM5smTJ2bvt69fv2ZKkNGQkTXm7rd63sUrV67oin1YEmQ0wcHBZsc+v6rX1BP7mLvfBgYGJkmvyVKMQaPHa8bFxXGvyQD3mmzoiX30ek2WYgwaPV7zw4cPTMUYNNaMfazlNUNCQpKk12QpxqBJql4zODjYbK95//79X8pr6s2zW9Nrmhv76PWa5ubZ9XjN2NhYXfvtlStXrOY19cQ+erymueed1vSaV65c+aW8pp48uzW9JkvhP82v6DUfP35sFa/5+fNnq3hNxH+a+pKa17x3794v5zX17LfW9Jrm5tm51+QkJX5E4aAN/lMYx1HAxsYmBwCEAQCEhYVBjhw5rPwdcTgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA7nVyA8PBxy5sxJ/pgTEcP1/p22ev8CDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOEkHXjjI4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBzOLwQvHORwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDucXghcOcn4ZoqOjdWkR0SxtTEyM2dq4uDiIj483S4uIEBMTY5YWQP/PKylqzX1OsbGxYDAYzNImJCRAXFycWVpETLI/a2to9b6LCQkJZmkNBgPExsaapQVImj9ra+635r6L8fHxuvbbpPqztoZWz7torf0WIGn+rJNq7KNnv+WxD5vWGu8i328TT6t3vzX3XUxISOCxD6OWe83/vjapxT58v2WDe82ko+Ve87+ttWbsw70mmzapeU0e+7BrreU1eeyTOFpr7bc89mHXcq/539cmNa8JkHR/1tbQcq+ZdLS/mtfk/PfghYOcX4aLFy9CyZIlYfTo0XD58mWmX5ZhYWFQpEgRGDx4MJw8eZIpIPr+/TuUKFECevXqBfv374dv375p1trY2EC1atWgQ4cOsG3bNvj8+TOT1tPTE37//XdYs2YNREREaNYCAAwbNgwaNWoEixYtgufPnzNp58+fDzVq1IBZs2ZBaGgo0y/Lffv2Qfny5eHvv/+GGzduMGlv3boFRYsWhREjRsCFCxeYflm+e/cOihQpAt7e3nDs2DEmcxIfHw9ly5aFbt26gZ+fH0RGRmrW2tjYQIMGDcDLyws2b94MHz58YNJ269YNmjdvDitWrIBXr15p1gIATJgwAerVqwfz5s2Dx48fM2lXr14NVatWhWnTpsHt27eZntPJkyehdOnSMHbsWLh69SpTQPTw4UMoXLgw/Pnnn3DmzBmmd/Hr169QrFgx6NOnDxw6dIgpIEJEqFSpEvzxxx+wc+dO+PLli2atjY0NtGjRAtq0aQPr16+Hd+/eadYCAHh7e0PTpk1h6dKlEB4ezqSdNWsW1K5dG+bOnQv3799n0m7btg0qVqwIkyZNgsDAQKZnfPXqVShRogSMGjUKLl68yLTfvnz5EooUKQIDBw6EEydOMJmTmJgYKFmyJPTo0QP27dvHvN/WrFkT2rdvD1u3boVPnz4xaTt06AAtW7aE1atXw5s3bzRrAQD++usvaNiwISxcuBCePXvGpF2yZAlUr14dZs6cCSEhIUzP6dChQ1CuXDmYMGECXL9+neldvHv3LhQtWhSGDx8O586dY9pvP3z4AEWKFIF+/frBkSNHmPbbhIQEKFeuHHTt2hV2797NtN/a2tpCo0aNwMPDAzZu3Ajv37/XrAUA6NWrF7i7u8Py5cvh5cuXTNrJkydD3bp1wdfXFx49esSkXb9+PVSuXBmmTp0KwcHBTM/43LlzUKpUKRgzZgxcuXKF6Rk/ffoUihQpAkOGDIHTp08z7bdRUVFQvHhx6N27Nxw8eBC+f/+uWQsAUKVKFejUqRNs376dKfaxtbWF1q1bQ+vWrWHdunXw9u1bps8dMmQINGnSBBYvXgxhYWFMWh8fH6hZsybMnj0b7t27x6TdvXs3VKhQASZOnAg3b95kesY3btyAYsWKwciRI8Hf359pv33z5g0UKVIEBgwYAMePH2fab2NjY6F06dLQvXt32Lt3L0RFRWnW2traQp06daBdu3awZcsW+Pjxo2atjY0NdO7cGVq0aAGrVq2C169fa9YCAIwZMwYaNGgA8+fPhydPnjBpV6xYAdWqVYMZM2bAnTt3mJ7TsWPHoGzZsjBu3DgICAhgehfv3bsHRYoUgaFDh8LZs2eZ9tvPnz9D0aJFoW/fvnD48GHm2KdChQrQuXNn2LVrF3z9+lWz1tbWFtzd3aFt27awYcMG5v22b9++4ObmBsuWLYMXL14waadPnw516tQBHx8fePjwIZN2y5YtUKlSJZgyZQrcunWL6Rnr8Zrh4eG6vGbx4sWhZ8+eZnnN6tWrm+01PTw8oFWrVonuNRcsWGAVrxkUFGQRr3n06NFE85q2traC19y0aVOies2///5bl9esUqWKWV7z1KlT3GsyMGDAAN1ec86cOcxec/v27WZ7zYCAAChevDj89ddfie41S5UqZRWv2bFjR4t4zadPnzJp9XjNw4cPC17z2rVrScZrli9fHrp06WKW12zcuLHZXrN3795W8ZobNmywiNe8fPlyonrNYsWKQe/eveHAgQOJ5jVtbGygTZs28Pvvv8PatWsT1Wv6+vomea/J8i7q9Zr16tXT7TVXrlzJ7DXHjh1rttdcvnw5VK1aFaZPn56oXvP+/ftW85qurq5meU0bGxsjr8ka+/Tr188iXvPBgwdMWj1e89KlS1CyZEkYNWoUXLp0KVG9ZokSJaziNT09Pc32msOHDxe8JmueXY/X3L9/v0W85vnz55nexffv3+vymmXKlIGuXbvCnj17Es1rAgB0794dmjVrluhec82aNVbxmo8ePbKY12SJffR6zZYtW0KbNm3MyrMPGDAAmjRpAkuWLGGOfWbPnq3La7q6uia613z16pXVvGatWrUs4jVZYx/OfxBE5EtlAUAOAEAAwLCwMOQkTQwGA1avXh3Js8ySJQt27twZd+3ahV+/flXVd+rUSdCmS5cO27Ztixs2bMB3796paidMmCBoU6ZMiW5ubrhs2TJ88eKFqnbdunWC1t7eHuvUqYM+Pj748OFDVe25c+cErY2NDVaqVAmnTJmCt27dQoPBoKh98uQJ2tvbC/qSJUvi6NGj8dKlS5iQkKCo/fLlC2bKlEnQ5s+fHwcPHownT57E2NhYRW18fDwWLVpU0GbPnh179eqF+/fvx2/fvqn+mxs3bixoM2XKhB06dMBt27bhp0+fVLX9+vUTtGnSpMFWrVrhmjVrMCIiQlU7Z84cQZs8eXJs1KgRLlq0CJ89e6aq3b17t6C1s7PDGjVq4KxZszA0NFRVe+PGDUELAFi+fHn8+++/8caNG6rP+NWrV5giRQpBW7RoURwxYgReuHAB4+PjFbXfv3/HbNmyCdo8efKgt7c3Hjt2DKOjoxW1BoMBy5cvL2hdXFywW7duuGfPHoyMjFT9N7dt21bQZsiQAb28vHDTpk344cMHVe3IkSMFbapUqbB58+a4YsUKfPXqlap22bJlgtbBwQHr16+P8+bNw8ePH6tqjx8/bvQuVqlSBadNm4a3b99WfU6hoaFoa2sr6EuXLo1jx47Fq1evqr6LHz58wHTp0gnaggUL4p9//olnzpzBuLg4RW1cXBz+9ttvgjZnzpzYp08fPHToEH7//l3131y7dm2j/faPP/7AnTt34pcvX1S13bp1M9pv27Rpg+vXr8e3b9+qaidPnixoU6RIgU2bNsWlS5dq+v29efNmo/22du3aOHfuXLx//76q9uLFi0bPuGLFijhp0iQMDAxUfcbPnz9HBwcHQV+iRAn866+/8OLFi6rvYmRkJGbJkkXQ5suXDwcOHIgnTpzAmJgYRW1CQgKWKFFC0GbLlg179OiB+/btw6ioKNV/c7NmzYz22/bt2+PWrVs17bcDBw4UtKlTp8aWLVvi6tWr8c2bN6raefPmCdpkyZJhw4YNceHChfj06VNV7b59+wStra0tVq9eHWfOnIl3795VfU5BQUFG+225cuVwwoQJeO3aNVVtREQEpkqVStAWKVIEhw8fjufOnVN9F6OjozFnzpyCNnfu3Ni/f388cuSIpv22cuXKgtbJyQm7dOmCu3fv1hT7tGvXTtCmT58ePTw8cOPGjfj+/XtV7ZgxY4xiH3d3d1y+fDm+fPlSVbt69Wqjd7Fu3bro6+uLjx49UtWePn3a6F2sXLkyTp06FYODg1Wf08OHD9HOzk7QlypVCseMGYNXrlxR3W8/ffqEGTJkELQFChTAIUOG4KlTpzTFPgULFhS0OXLkwN69e+PBgwc1xT7169cXtI6OjtipUyfcvn07fv78WVXbq1cvQZs2bVps3bo1rl27VlPsM2PGDKPYp3Hjxrh48WJ8/vy5qnb79u1GsU/NmjVx9uzZeO/ePVVtQECA0btYoUIFnDhxIt68eVP1GYeHh2Py5MkFbbFixXDkyJHo7++vut9++/YNXVxcBG3evHlxwIABePz4cdX91mAwYJkyZYxin+7du+PevXs1xT6tWrUStBkzZsR27drhli1bNMU+Q4cONdpvW7RogatWrdIU+yxatMhov23QoAHOnz8fnzx5oqo9fPiw0X5brVo1nD59Ot65c0f1Od25cwdtbGwEfZkyZXDcuHEYEBCg+i6+e/cO06RJI2gLFSqEQ4cOxbNnz6rut7GxsZgnTx5BmytXLuzbty8ePnxYNfZR8ppaYp8//vjDIl4zRYoUgtcMDw9X1a5fvz5Jes3MmTMbec1BgwaZ5TWzZcuGPXv21Ow1mzRpYnGvqSX20eM19+zZYzWvmTJlSot6zaNHj2qKfSpUqGAxr+np6Wm212zWrBmuWLFCU+yzfPlyI69Zr169RPGa9+7dS5Jes06dOkaxT2J5zSlTpph4zSVLljB7TTs7O6xVqxbOmTNHk9e8dOmSxbxm8eLFE81rlixZUtBmzZo10bzmoEGDrOI19+/fb7bXDA4ONvGa48ePN9trDhs2TJPXjImJMfGa/fr1SxSv2b59e+41x4zBy5cva/KaGTNmtIjXJHn2AwcOaIp9GjRoYDGv+fvvvyeK19yxY4dVvOaLFy9+Kq/p5+enKfb5/fffTbzm5s2bzfaaK1eu1OQ1Fy9ebDGvWbVqVc1e8+7du0nSa9aoUcMqXvPvv/+2qNecO3cuPnjwQFV7/vx5E685efJkTV7z6dOnJl5z1KhRP9xrJiQkWM1r9u/f/6fymiEhIarP6ebNm5Je8/r162Z7zfPnz2vymtmzZ7eI13R2dsauXbtq9poeHh5me82//vrLKl7zxIkTVvGaHz9+xPTp01vUax48eNBsr7ljxw5NsU/37t1NvOa6det+uNfcsmWLRbwmAKCrq6tmr8mxLmFhYfSzy4GWqImzxF/yX1/ACwf/M5w8edJoAxQngxYsWCCbDLp//77RLznanFSrVg1nzJghmwwS/5Kjl1oyKC4uDvPnzy+pLVy4sGoyqG7dupJaLcmgHj16SGq1JIOmTp0qqdWSDNq6dauklk4GyRVdXr58WVJLJ4PkDsLCwsIwWbJkJlo6GRQUFCT5nKKiotDJyUnys0uVKoWjR4+WTQYlJCRgqVKlJLUFChTAwYMHKyaDWrRoIanVkgwaPHiwpDZz5szYsWNHxWTQggULJLVakkEHDhyQ1GpJBgUHBxsZfDogUksGvX37FlOnTi352SQZJHcQFhMTg7ly5ZLUkmSQ3EGYwWDAqlWrSmpJMujYsWOyyaAOHTpIaslBmFIyaNy4cZJaLcmgNWvWSGpJ0aVSMujMmTOSWlJ0qZQMevTokZHBp/dbtWTQ58+fjRKq9FJLBsXHx2PhwoUltVqSQQ0bNpTUkmSQ0kFYnz59JLUkGaR0EDZr1ixJLUkGrV+/XjYZtHPnTkktSQYtXbpUNhl0/fp12f1WLRn08uVLo8Jler+tWLGiYjLo27dvmDVrVsnPLlGihGIyyGAwYNmyZSW1v/32m2oyqHXr1pJaLcmg4cOHS2q1JIOWLFkiqdWSDDp69KjsfquWDAoJCZHdb2vUqIEzZ86UTQa9f/8e06ZNK/nZ5cuXxwkTJsgmg2JjYzFfvnyS2qJFi+Lw4cMVk0E1a9aU1ObJkwf79++vmAzq0qWLpFZLMmjixImSWi3JoI0bN8rut2rJoAsXLsjutyQZJHcQ9vTpU6PDZPpdJMkguYOwr1+/oqOjo+Rnk2SQXNFlQkICFitWTFJLkkGnT5+W3W/d3NwktVqSQd7e3pJachCmlAzy8fGR1JKiS6Vk0N69e2X32yZNmigmgwIDAyW1WpJBb968MUqo0kstGRQdHW2UUKUXKTyQOwgzGAxYsWJFSa2WwgNPT09JLSk82Lt3r2zhwahRoyS1GTNmxPbt2+OWLVvw48ePktqVK1dKaknhwapVq/D169eSWiWv2aBBA0Wv+eDBA6PDZLL0es2yZcuqes0CBQpIan9mrzlt2jRJLe015WIfPV7zypUrklpLeM0pU6aY5TVJ0aWc1zQYDFi6dGlJ7Y/2mkOGDJHU6vGaadKkUfWaBw8elNRaymvKFV3q9Zq5c+eW1Or1mqTBT26/7dixo6RWj9ckDX5KXnPt2rWSWi1e8+zZs5LaxPCadJMsvSzhNZUOwho1aiSptabXJEWXcvvtrl27JLV0g585XpM0+FnTa8q9i+XKlZPUavGabdq0kdTSXlMu9tHjNZcuXSq735rrNZMlS4aNGjXChQsXKnpNqTy7Xq9JGvzM8ZqkwU/Ja9aqVUtS+6O95qRJk2T32x/pNf39/WX3W2t6TaUGv4SEBCxevLiktmDBgjhkyBA8ffq07Lso5zXpBj+5/XbAgAGS2p/Za966dUtSmxheM0eOHJJaS3hNpaJLLy8vSa1er0ka/MzxmqTBT85rnjp1Sna//dFek26SpdeP9pr16tWT1ObKlUvVa/bs2VNSS7ym0mUyal5Tqehy27ZtklriNZUuk1HymmoNfuHh4T+d1ySXySh5zZYtW0pqf7TXXLhwoaT2R3vN27dv6/KadOEyvSpUqKDY4KfmNZUa/AwGA1arVk1S+6O95vjx4yW1P7PXfPz4sarXlCu61OI15You4+PjsUiRIpJaPV6TtcGPk7jwwkFeOMjRwYgRI4y6RZSWOBm0ePFidHR0lPylLl4kGXTixAmMjY3FAwcOoKOjo+QvC/EiySDSgRscHIyOjo5G3WpyS9yB++XLF3R0dDTqOpVbUh24BQsWlE3C0IvuwCXJoHr16skeXol/WZIOXJIM6tatm+wvR/ESJ4MmTZokm1QQLzoZFBcXh+vWrUNHR0dJEyVe4mTQmTNn0NHRUTIZIl50Mujr16/4+PFjdHR0lExqihedDHr//j0aDAZ0dHSUPZygV8qUKbFZs2ZGHbhly5Y1uiFAbjk4OJh04LZo0ULWNNKLJIPoDtyBAwdqfhfFtz3NnTtX87tIOnBJMmjXrl2a30VxMiggIAAdHR0lDZh4iZNBERER6OjoKJtIoZdUMih37tyypoBeyZMnN0kGVa9eXdO7SCeDSNFlhw4dZAvwxMvV1dWoA3fUqFGa38XixYsbdeAuX74cHR0dJRPI4pUvXz6jDtwjR45ofhezZs0q3PYUFRWFISEhmvdbcTLo27dvTPutOBlUtGhRzfutOBnUuHFjTe+iVDKoV69emvdbkgwiB2FTp07V/IxJMogUXW7atEnzfkt34EZHR+OFCxc0v4viZFBYWJjm/VaqA9fJyUnzfiu+WbhChQqa9lupZFDr1q01vYv0bU8kGfTnn39q3m/FyaD58+dr3m/FySA/Pz/N+634ZuHAwEDN7yJJBpGDsA8fPmjeb0kyiL5ZOF++fJr328aNG+OiRYuEZFDt2rU177fi2546d+6s+V0U3/Y0fvx4ze+i+LanVatWad5vxcmgEydOaN5vxcmgBw8eMMU+dDIoNjZWc+wjlQwqWbKkpv1W6mZhNzc3zfutOBnUv39/ze9imTJljDpwZ86cqfldLFSokFEH7rZt2zTvt+Jk0OXLlzXvt+KbhV+9eqX5XZQqPMiePbumd1Gq8KBy5cqa91vxzcKenp6a91tSeEAOwszxmuS2J+I1tbyLYq958OBBJq9J3/akx2uSw9zE9Jok9qlfv36S85rr16/X/C6KbxY2x2uSossnT55o3m/Tp0+Pnp6eQoOfNb1my5YtNXtN8W1Perymj49PonvNb9++4bVr1xLda5LYR4/XrFGjBpPXpBv89HjN0aNHa34Xxbc96fGaR48eNdtrhoaGJimvSQ7CzPGapOiyd+/eSc5r+vv7M8U+9BQbvV7T2dnZKl6zTZs2ZnvNoUOHMntN0uCnx2vu3bvXKl7z48ePmt9FqSk2LF5T3OCnx2t26dLFKl5z9erVmvdb8RQbPV7z4cOHZnvNuLg4Zq9JT7HR4zXd3d2Z8uz0bU8sXlN829OsWbM0v4vi256s5TVfv35tltckeXY9XrNKlSpW8ZojR45k8pr0zcKsXpNu8NPjNW/fvm01r1moUCGreM3u3bsnqtckRZd6vObZs2c177fiBj9Wrym+TIbFa4pvFraW1xw0aJBVvObu3bsT1WuSosu3b98ye0266JLFa4qLLvV4zY4dO2r2muKbhRPLa4pvFraW1/z+/btZXlPLzcKcHw8vHOSFgxwd0KOBWFaWLFmwSpUqZmnTpUtndI04y0qZMqXsjTlqy97e3uzPJckgLb/QpVbJkiVlb2VTW/nz55ftCFRb2bJlM7ommmVlypRJtkNfbaVJk8bsn3Xy5MnN1trZ2RmNQ2Nd5cuX1xwAiVfRokVlb8FUW3ny5JHtQlJbLi4uWKlSJbO0GTJkkO2MUVupUqUy+zk5ODiY/R6TZJAW8yW1SpcubTTii2UVLFhQtkNFbeXMmVO2y15tOTo6WmW/TZEihVX2W4B/DsK0mCCpVbx4caMxFywrX758RmOKWVbWrFnR1dXVLG2mTJnMfhdTp05t9s86WbJkZj9jkgzSYvqkVrly5WQ7N9VWkSJFZLtz1Vbu3LmNxtWwLCcnJ6OxUywrffr0Zv9+smbsU7lyZU0mWWqVKlXKaMQXyypQoIDRKBOWlSNHDixfvrxZ2syZM5sd+6RNmzZJxj4VKlTQnMQVr2LFisneTKK28ubNK3uztNpycXGRvUlBbWXMmFHXfmvuu+jg4GD2MyaFB1oSZVKrTJkyRiO+WFahQoVkb4JSW7ly5ZK9zVZtWctrpkiRwmytNb1miRIlZDvl1dav6DXNfY+512Rbv6rXlLuRVm0lRa+ZNm1as98JPV5T77vo6uqq6WBUav2KXtPc55QsWTJdsY+1vGbhwoWNRtiyLO41tS9re025W97VVvbs2X85r6knt6fXa9IjFVlWUvSaqVKl0uU19eT2qlatqstryt1Iq7aSqte0Ruyjd7+tWLGipqJBqaXHa/7222+6vKae2Ccpek09+21S9JrOzs5J0mvqeRe519S+9HpNa+XZXV1dcePGjXycsRX5EYWD9sDhcCRxcXEBNzc3cHNzg5CQELh48aJmbYYMGaBx48bg7u4O8fHxcO7cOc3aVKlSQYMGDcDNzQ3y5MkDZ8+e1ax1cHCAWrVqgbu7O9SsWRNKlSqlWWtrawuVK1cGd3d3cHd3hxo1akBkZKRmfZkyZQRtnz594Pnz55q1hQoVErQLFy6E27dva9bmzJlT0J48eRICAgI0a7NkyQJNmzYFd3d3CA8PB39/f83adOnSQaNGjcDd3R1SpUrF9IxTpEgB9erVAzc3NyhevDhUq1ZNs9be3h6qV68O7u7u4ObmBgULFtSstbGxgYoVK4Kbmxu4u7tD8+bN4d27d5r1JUqUEH7Wo0aNgocPH2rW/vbbb4J248aNEBgYqFmbLVs24Xu+du0aXL58WbM2U6ZM0KRJE3B3d4evX7/ChQsXNGvTpEkDDRo0AHd3d3BycmJ6xsmSJYM6deqAu7s7VKxYEcqXL69Za2trC9WqVROeMYsWAKB8+fLCz+uPP/6Aly9fatYWLVpU+NyZM2dCSEiIZm3u3LmFZ7x//364fv26Zq2zs7PwLj548IBpv02fPr2w3wIA03NKmTIl1K9fH9zd3SF//vxQu3ZtzVoHBweoWbMmuLu7Q7169aBYsWKatTY2Nkb7bd26deHz58+a9aVLlxae06BBg+Dp06eatQULFhS0y5Ytg+DgYM3aHDlyCP/bOnfuHFy9elWz1tHREZo2bQpubm4QERHB9C6mTZsWGjZsCO7u7pA+fXqmZ5w8eXKoW7cuuLu7Q5kyZaBSpUqatXZ2dsJ+6+7uDoULF9asBQBwdXUVtK1bt4aIiAjN2uLFiwvacePGwYMHDzRr8+XLJ2i3bt0KN2/e1KzNmjWr8Ixv3boFly5d0qzNmDEjNGnSBNzc3CA6OhrOnz+vWZs6dWrhXcyRIwdT7JMsWTKoXbs2uLm5QbVq1aBMmTKatba2tlClShXh51W5cmXNWgCAsmXLCtoePXpAWFiYZm3hwoUFrY+PD9y9e1ezNleuXIL26NGjcO3aNc1aJycnYb99+vQpU+yTPn16IfZxcHBg3m/r1asH7u7uUKhQIahZs6Zmrb29PdSsWRPc3NygUaNGUKRIEc1aGxsbqFSpkrDvNWnSBD58+KBZX6pUKeGdGDZsGDx+/FizNn/+/MJzWrNmDdy6dUuzNnv27MLnXrp0Ca5cuaJZmzlzZiH2+fDhA3PsQ/bbzJkzM72LyZMnF2Kf8uXLg6urq2atnZ2dEPu4u7tDyZIlNWsBACpUqCA843bt2sHr1681a4sVKyb8rKdMmQKhoaGatXnz5hU+d/fu3XDjxg3NWmdnZ+Fz9XjNhIQEZq9J9ts8efJAvXr1NGtpr1mrVi2m52RJr9m3b1949uyZZq0lvKabmxucOnXKbK/54sULs7ymm5ubWV6TxD4lSpSAqlWratbq9Zp07KPHa44ePdoqXvP69euJ5jVTp04NDRs2BDc3N3BxcUl0r0n+zXq8ZufOneHFixeatUWKFBGekx6veeDAAat4TRsbG6b4lvaaBQoUgFq1amnWWtJrsuzzAPq8ZoECBYTPXb58eaJ6TfIu6vWarLGPpbwmS3wLYBmv6ebmBhMmTID79+9r1tJec9u2bWZ5TTc3NwgKCjLba8bExCSq1ySxT/Xq1aF06dKatT+L1/T19YU7d+5o1tJe88iRI2Z7zWfPniW613Rzc4MiRYpAjRo1NGtpr9m4cWOmvA/Js5Oflx6vOXz4cHj06JFmraW85uXLl5Oc16xQoQJUqFBBs5b2mm5ubkznZQDGXrN9+/bw6tUrzVo9XjNPnjzCM96zZ4/VvCbLfkt7zbx580LdunU1ay3lNd3c3KBWrVrw9etXzXpLeE03NzdYvHix2V7z9OnTZuXZ3d3d4eXLl2Z7zdSpU1vFa5L4WCuW9Jp6zjU3bdpkFa8ZGRmZqF6zdu3aQuxSrlw5zVqx12TZqwEAypUrJ/ys9XjNWbNmJZrXdHJyEv69Dx8+tIrX1HOuWb9+fShatKhmLfGa5N9crFgxsLGx0aznJAEsUX34X1/Abxz8T3Dr1i1csmSJaiU7fV074cGDB7hlyxbFjiTxde2Ely9f4p49ezBLliyy2hw5ckjOif/06RP6+fkpdgc6OjoK17V//vxZ0JJRgXXr1lWsZBdf1044dOgQtmvXTrGSnVzXLn4vzpw5g4MHD1asZBdf1064evUqTp8+XVZLOocmTZokXNdOuHPnDq5atUrxGRcvXtzounbCkydPcMeOHYodoPny5TO6rp0QERGBfn5+ih2gWbNmNbqunRAZGYl+fn6KXZwZM2YUrmv/+PGjoDUYDOjn54dubm6yWvq6djKqhnDs2DHs2rWrrFbqunbChQsXcNSoUbJaqevaCTdu3MB58+YpPidyXfu1a9eMtPfu3cONGzcqXr0uvq6dEBYWhrt371bsuM+VKxf269dPuK6d8P79e/Tz81PsxhZf106Ijo5GPz8/xe4NqevaCfv378fWrVvLaunr2smoGsLJkycVb1u1t7cXrmsno2oIly9fxokTJyq+i+Lr2glBQUG4bNkyxWcsvq6d8OjRI9y2bZvi1dri69oJr169wj179qCzs7OsNnv27Ni7d288cOAAfvv2TdB+/vwZ/fz8FDt1M2fObHRdOyE+Ph79/Pywfv36sloyFpW+rp1w+PBh7Nixo6xW6rp2wtmzZ3Ho0KGyWjs7O6xZs6bRde2Ea9eu4axZsxSfk/i6dsLdu3dx7dq1itfri69rJzx79gx37typeNuQ+Lp2wtu3b9HPz0/x9gsXFxfhuvbIyEhBGxUVhX5+food1fR17R8+fDD6efn5+WGzZs1ktalSpZK9rv348ePYs2dPWa2DgwM2aNAA58+fL4wGI/j7++PYsWNlteSGrunTpwujwQiBgYG4cOFCxWdctmxZHDdunDAajHD//n3ctGmT4hiEQoUK4dChQ4XRYITw8HDcvXu34viGnDlzCqPB6Njn48eP6Ofnp9gdSI8G+/Lli6CNiYlBPz8/rFWrlqxWajQY4cCBA+jh4SGrTZEihTAajIyqIZw+fRoHDBggq6VHgz148MBIe+XKFZw6daqslh4NduvWLaNnfPv2bVyxYoXiMy5ZsiSOGjVKGA1GePz4MW7fvl1x5AQZi3ry5Emj/fb169e4Z88exQ7QbNmyYc+ePXH//v1Gsc+XL1/Qz89P8ZaSTJkyYYcOHYTRYISEhAT08/PDxo0by2rp0WBkVA3hyJEj2LlzZ1ltsmTJTEaDEc6fP48jRoyQ1UqNBiNcv34dfXx8FJ+TeDQYISQkBNevX694Ew0ZDXb+/Hmj/fb58+e4a9cuxREuZDTY0aNHjWKfd+/eoZ+fn+LtF2Qs6p49e4xin2/fvqGfn59ity0ZDbZp0yaT2Gffvn3YsmVLWS0Zi7pixQphVA3hxIkT2KdPH1mtg4MD1qtXD+fNmyeMqiFcunQJJ0yYoPguikeDESzhNZVGx/xIr6l0M4IlvOa6devM9pr0WFTCmTNncMiQIYrvYu3atXHOnDkW95qrV69WfMY/q9dUui3xR3rNbt26yWot4TVnzJiBd+/eTXSvOWzYMIt6zQ8fPljVa7Zp00ZWq+Q1T506pctrTpo0SfFdJF6TjEUlBAUF4fLlyxWfMfGaly9fNttrkrGoBOI1lW62lfOaJPZR85odO3aU9ZoNGjSQ1f6sXnP27NmKzykpe00yFpVAvKbSbTJKXnPv3r3YvHlzWS3xmitXrtTlNclYVIIWr1m1alWzvWaZMmVkvebmzZvN8povXrywqtesXbu2rPZHes2BAwfKai3hNSdPnizpNVeuXKn4jH82r/n161f08/NTvKEtKXpNW1tbwWuK8+wsXpOMRSWEhoYmOa/5/ft3Va+ZPn169PT0lPWarVq1ktX+6l6TfheJ11S62dYSXnPHjh0W95rt27eX1SZPnhybNGlittesVauWpNcMCAjAGTNmKD4nV1fXH+Y1lcb+/mxeExETzWuK8+wXLlzA0aNHy2qVvObNmzdVvWbZsmVx/PjxP8RrKo3f/ZFeU+lGOyWveeDAAV1es3///rLapOo18+fPj4MHDzbba/bq1eun8poc68JHFfPCQY5OxCZbKUgU4+vra6Slg0RxgkzMvn37TDZbEiSKE2Ribt26ZaIlQaI4QSbmzZs3JocTcgkyMdHR0SYBo1wxhhiDwWCSLKMTZOIgUYz4ECl16tRCMYY4SBQjDvqSJUuGDRo0wAULFpgEiWLERYekGEMqSBRz+vRpxSCRDiDEPHjwwCRgLFy4sGSQKObTp08mhxMkSBQnyMTExcWZBIwkSBQnyKQQF0mRIFEqQSZGnNRUSpCJER/20QkycZAoZvv27SZBIinGEAeJYq5evWryjEuWLImjR482CRLFhIeHmwSMckGimKioKJNCOLkgUYzBYDC5Qp0OEukEmRTiQ3s6SBQnyMT8+eefJvtt48aNJRNkYhYtWmSy39asWVOyGEPMoUOHTJ5ThQoVJIsxxNy5c8fkcKJYsWI4YsQIvHDhguJ++/btW5PDCZIgO3bsmJFhExMTE2NyOOHs7IzdunUzOZAQYzAYTA4KSTHG5s2bTQ4kxHTq1MlImypVKmzevLnkgYQYccLLwcEB69evL3kgIWbdunUm+y05kBAnyMScO3fO5BmTAwlxgkzM48ePTQ4nChUqJFmMIebLly8mo2dy5swpmSATEx8fbzKOli7GUNtvxYlrpcJ/MeIDXbrwX22/FR/22dvbyxb+i9m9e7fJfluxYkXJAwkxN27cMHnGJUqUwFGjRpkkyMS8evXKZBQCOZAQJ8jEfP/+3WTEOzmQECfIxBgMBpMmAKUEmZi2bduaxD6tWrWSTJCJER8wKBVjiBEXeSsV/os5fvy4yXMixRjiAwkxoaGhJocTpPBffCAh5sOHDyaHE7lz58b+/fubHEiIiYuLMzmccHJywq5du5okyKQQHxQqHUiIESc1yYGEVIJMzOTJk03223r16qGvr6/JgYSYzZs3m7yLVapUkSz8F3Px4kWTZyxX+C/m+fPnJk1XcoX/YiIjI01Gz+TIkQN79+6NBw8eVIx9EhISTMYjksJ/8YGEFOIC8bRp02Lr1q1x3bp1qgkyJa8pLsYQI04+W8JrShVjiAkKCjLRJgWvKR5xqMdr0oX/avvtmDFjTPZbS3hNcTGGGCWvKS7GEPPw4UNZrykuxhCjx2vGx8db1GsqFWOI6dWrl0nsYwmvKS7GEKPHawYEBJg848Twmt++fTM5nLCE1xQXY0ghPrQnXlOqGEOMuJhNr9eUK/wXc/jwYZPnJFf4L0bKa5JiDDWv+e7duyTpNf/44w+T/ZZ4TXExhhg9XnP9+vUm+61erylVjCHmyZMnurymuBAusbxmkyZNTGIfS3hNtTz7nDlzTPZbS3hNcTGGGL1eU1wIp8dryhVjiDEYDCaFGXq9plwxhpiRI0eaxD4/u9e8d++eotdUeheVvKa4GEPMj/KaUsUYYqS8plwxhpgpU6aYvItyxRhipLymXJO5mEuXLpk848TymuKmq6TgNQcNGmQS++j1mlKF/2L2799v8pz0eE25wn8xERERZnvNmJgYq3lNccGiUpO5GLHXJIX/WrymuOjQ2l5TqvBfzKdPn0wK4eQK/8VIeU25wn8pxEVSieU1xYWlLF5zx44dJvttYnjNFy9eyHpNceG/GCmvmS1bNuzVq5dJ4b8Yg8Fg0nCu12vKFf6LEXtNpcJ/MYsXLzbZbxPDa969e9cqXpNjXXjhIC8c5Ojg5cuXmCJFCtnuUCXILziWBBnBYDBg2bJlFbtDlfj999+ZEmQ0w4YNU+wOVYJ0Mcl1hypx5MgRBJDvDlUiJCQEbWxsNAeJNO/evcO0adMyBYmE2NhYzJs3L1OQSFOzZk0hSNRSjEHTuXNnIUicO3euapBIM3HiRMXuUCU2bNiAAP9PkIm7Q5W4cOECAsh3hyrx9OlTtLe3l+0OVeLr16+YOXNm2e5QJRISErBYsWJMQSJN06ZNjYJEtQQZjbe3t2J3qBJz584VgkQtCTIaPz8/oyBRrRiD5ubNmwigvRiD5vXr15gyZUrZ7lAloqOjMXv27EzFGASDwYCurq6K3aFKeHp6KnaHKvHXX38pdocqQW4LI92hagkympMnTyLA/7tD1RJkNPfv30dbW1uhO1QtQUbz8eNHTJ8+vWx3qBJxcXGYP39+owSZ2oEETd26dZkK/2m6d++u2B2qBOnSl+sOVWLr1q0IIN8dqsTly5cRQL47VImwsDBMliyZ5gMJmsjISHRychIOJLQkyAgJCQlYqlQp4UBCSzEGTYsWLYQDCS0JMprBgwcrdocqsWDBAqMEmbg7VIkDBw4ICTIthf80wcHBaGNjI9sdqkRERASmTp1atjtUiZiYGMyVK5dRd6jW2MdgMGDVqlWZDiRoOnTowHQgQTNu3DjF7lAl1qxZIxxIaEmQ0Zw5c8YoQaZWjEHz6NEjtLe311yMQfP582fMmDEjU+E/IT4+HgsXLmx2d2jDhg0VbyJSok+fPoo3ESkxc+ZMBPj/TURqCTKanTt3Gh1IqCXIaK5fv250IHHs2DHN+61er5k1a1bdXlNr4T9N69atk5zXPHr0qFW85vv37y3mNbUUY9Do8ZpdunQxKsYwx2tqLfyn2bhxo9W8poODQ5Lzmm5ublbxmuSGIj1eU2vhP01gYKDZXvPNmzdW85oVK1a0itccNWpUkvOapEFWazEGDe01tRZjEOLi4rBAgQJW8Zo9evQw22tOmzbNKl7zypUrFvOae/fu1bzfRkVFWcRrai38pyFeU2sxBs2QIUOYmsxppLym1nfx4MGDFvWaWmOft2/fJkmv2bFjR8FramkypyFeU2sxBs3atWuTpNfMlCmTVbxmo0aNLOY11YoxaMjkFb1eU0sxBg3xmnQxBqvX1Fr4T6PXa5YrV84qXnP48OFme82lS5dazGuqFf7ThISEoK2treA11Qr/aYjXZCn8J8TGxmK+fPl0e02tTeY0erzmpEmTrOI1/f39reY1HR0dzfaaxYsXN2oyN9drain8pxkwYIDgNbUU/tMQr6m18J9m7969SdJr5siRw2JekyX28fLysojX1FL4z/l54IWDvHCQo4ObN2+qdofK8fDhQ6YgkebNmzdMQSLN9+/fcdeuXZoTZDQGgwF37drFFCTSHDhwwOz/vZ88eZIpQUZz+fJlpgQZTXBwMFOCjObZs2dMCTKajx8/MhVj0MTGxuLOnTs1J8hoyPgolgQZzeHDh5mCRJqzZ88yBYk0165dYyrGoAkNDWVKkNG8fPmSqRiDJjIykilIpElISMCdO3dqDhLF7Nu3jylIpDl+/DhTgozG39/f7CAxMDCQ6UCC5tGjR0wHEjRv375lOpCgiY6ONhnDpxWy35p7VffBgweZEmQ0p0+fZirGoLly5Ypqd6gcd+7cUe0OleP58+eq3aFyfP78WbU7VI74+HjcuXOn5gSZGD8/P6YEGc2RI0eYDiRozp07x5Qgo7l+/TpTgozm/v37TMUYNK9fv2YqxqD59u0b7t69W3OCjCYhIQF37drFVPhPs3//fqYEGc2JEyeYEmQ0Fy9eZEqQ0QQFBTElyGiePHnClCCjef/+PVOCjCYmJgZ37typOUFGYzAYcM+ePUwJMppDhw6pdofKcebMGaYDCZqAgACmAwmakJAQpgMJmvDwcKYEGc3Xr1/Njn3Ifmtu7LN3716mYgyaY8eOMSXIaC5cuMBUjEFjLa8ZERFhNa+5c+fOX8pr3r59O8l5zbi4ONy1a1eS9JosxRg0SdFrRkVFca/JwK1bt5iKMWj0eM13794xFWPQkNjH3P129+7d3GtqJCwsTJfXZCnGoEmqXvP8+fNme80bN278Ul6T5H2419SGtbxmbGws7tq1yype8/Dhw7q8prl5dr1ek6UYg4Z7TTa419TOr3iu+at5TUTEPXv2/FJe8969e0nSa+7atStJek2Wwn8aPV7z8ePHTIX/NHq9pp79Vo/X5FiXH1E4aIP/FMZxFLCxsckBAGEAAGFhYZAjRw4rf0ccDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw/kVCA8Ph5w5c5I/5kTEcL1/p63ev4DD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBxO0oEXDnI4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh/MLwQsHORwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD+YXghYOcXwZE5Nok8Nlcy6ZNqt831/78n821iaO15mdzbdL4bK5NHK01P5tr2bRJ9fvm2p//s7k2cbTW/GyuZdMm1e+ba3/+z+baxNFa87O5Nml8Ntcmjtaan821bNqk+n1z7c//2VybOFprfjbXJo3P5trE0Vrzs7mWTav3OXP+W/DCQc4vw9GjR6F58+awcuVKePXqFZP2zp070KBBA5g/fz48efKESRsREQH16tWD6dOnw507d5g24ZiYGGjatCmMGzcOAgICwGAwMH12+/btYejQoXD27FmIj49n0g4dOhT69u0Lhw4dgujoaCbt7NmzoXPnzrBr1y74+vUrk3br1q3Qtm1bWL9+Pbx7945Je+HCBWjatCksXboUwsPDmbSPHz+GevXqwdy5c+HBgwdM2s+fP0ODBg1g8uTJcOvWLaZnHB8fDy1atIBRo0bBpUuXICEhQbPWxsYGunfvDoMGDYKTJ09CbGws0/c9duxY6NmzJ+zfvx++ffvGpF2yZAl06NABtm3bBp8+fWLS7tu3D1q1agWrV6+GN2/eMGlv3LgBjRo1gkWLFsGzZ8+YtC9fvoR69erBzJkzISQkhOk5ffv2DRo1agQTJkyA69evM2kREdq2bQvDhw+H8+fPM7+LAwYMgP79+8PRo0chJiaGSTt16lTo2rUr7NmzByIjI5m069atA09PT9i0aRN8+PCBSXvixAlo1qwZrFixgnm/DQ0Nhfr168O8efPg0aNHTNr3799D/fr1Ydq0aXD79m2m5xQbGwvu7u4wduxYuHLlCvN+26lTJxgyZAicPn0a4uLimLTDhw+H3r17w8GDB+H79+9MWl9fX+jUqRPs2LEDvnz5wqTdsWMHtG7dGtatWwdv375l0l66dAmaNGkCS5YsgbCwMCbts2fPoF69ejBnzhy4f/8+k/br16/QsGFDmDRpEgQGBjI944SEBGjVqhX89ddf4O/vz7TfAgD06tULBg4cCCdOnGDebydMmAA9evSAvXv3QlRUFJN2+fLl0L59e9iyZQt8/PiRSXvw4EFo0aIFrFq1Cl6/fs2kDQoKggYNGsCCBQvg6dOnTNrXr19DvXr1YMaMGXD37l2m5xQdHQ1NmjSB8ePHw7Vr15jeRUQET09PGDZsGJw7d455vx08eDD069cPjhw5whz7zJw5E7p06WJW7LNx40bw8PCAjRs3wvv375m0Z86cAXd3d1i2bBm8ePGCSfvgwQOoX78++Pj4wMOHD5m0Hz9+hPr168OUKVMgKCiI6RnHxcVBs2bNYPTo0XD58mXm/bZLly4wePBgOHXqFPN+O2rUKOjVqxccOHCAeb9dsGABdOzYEbZv3w6fP39m0u7Zswd+//13WLt2LURERDBpAwICoHHjxrB48WJ4/vw5kzY8PBzq1asHs2fPhtDQUKbnFBUVBY0aNYK///4bbty4waQ1GAzQunVrGDFiBFy4cIF5v+3Xrx94e3vDsWPHmGOfSZMmQbdu3cDPz495v129ejV4eXnB5s2bmfdba3nNt2/fCl6TNfbR6zU7dOgAQ4cOhTNnziSq15wzZw788ccfsHPnTubY51fzmgkJCUnaa27dujVRvebNmzehYcOGsHDhQu41NTBt2jSreM2TJ08KXvPly5dMWr1es169ejB16lQIDg5mjn3c3d1hzJgxie41R4wYwb2mRmivefPmzUT1mr1794YBAwbA8ePHE91rtmvXziyveejQIat4zTdv3ljFawIAeHl5JTmvuWnTJmjbti1s2LAhUb3mw4cPoV69eonuNePj43V5za5du1rFay5cuNCqXnPRokXca2pg8uTJVvGax44dS7Jec+zYsXD16tVE95p9+vSxitds06aNWV7T39//l/KaAAA9evSAQYMGmZVnt5bX3L9/P7Rs2fKX8poeHh5JzmuuX78ePD09zcqz6/Ga9+7dg/r164Ovr2+S8pqdO3c222ty/oOQalK+5BcA5AAABAAMCwtDTtIkISEBS5QogeRZVqhQASdOnIg3btxAg8Ggqnd3dxe0xYoVwxEjRuCFCxcwPj5eVTtw4EBBmzdvXvT29sZjx45hTEyMqtbX11fQuri4YLdu3dDPzw8jIyNVtfv27RO0GTJkQC8vL9y8eTN++PBBVRsUFCRoU6VKhc2bN8eVK1fiq1evVLVv3rzBVKlSIQCgg4MD1q9fH+fPn49PnjxR1UZHR2POnDkRANDW1harVq2K06dPxzt37qg+J4PBgJUqVRK+7zJlyuC4cePw6tWrmJCQoPrZ7dq1E7SFChXCoUOH4tmzZzEuLk5VO2bMGEGbM2dO7Nu3Lx46dAi/f/+uql21apWgzZIlC3bu3Bl37tyJX758UdWePn1a0KZLlw7btGmD69evx3fv3qlqHz58iHZ2dggAmCJFCmzatCkuXboUw8PDVbWfPn3CDBkyIACgvb091q5dG+fOnYsPHjxQ1cbHx2PBggURANDGxgYrVqyIkydPxlu3bml6F+vXry/8m0uUKIGjRo3CS5cuaXrGvXr1ErS//fYbDho0CE+ePImxsbGq2unTpwvabNmyYc+ePXH//v347ds3Ve327dsFbaZMmbBDhw64bds2/PTpk6o2ICBA0KZJkwZbtWqFq1evxjdv3qhqw8PDMXny5AgAmCxZMmzUqBEuXLgQnz17pqr99u0bOjs7C+9i9erVcebMmRgSEqLpXSxdurTwfZcvXx4nTJiA169f1/SMW7VqJWiLFCmCw4cPx/Pnz2vab//8809BmydPHuzfvz8ePXoUo6OjVbWLFi0StM7Ozti1a1fcs2ePpv320KFDRvutp6cnbtq0Cd+/f6+qvXPnDtrY2Aj7bbNmzXDFihX48uVLVe27d+8wTZo0wn5br149nDdvHj569EhVGxMTg3ny5BHexSpVquC0adMwODhY0zOuXr268G8uXbo0jhkzBq9cuaLpXezUqZOgLVCgAA4ZMgRPnz6t6V2cMGGCoM2RIwf27t0bDx48qGm/XbdunaB1dHTETp064Y4dO/Dz58+q2nPnzgnatGnTYuvWrXHdunX49u1bVe2TJ0/Q3t5e2G+bNGmCS5Ys0RRXfvnyBTNlyoQAgHZ2dlirVi2cM2cO3r9/X1UbHx+PRYsWFb5vV1dXnDRpEgYGBmp6Fxs3bixoixcvjn/99Rf6+/trehf79esnaPPly4cDBw7E48ePa4p95syZI2izZs2K3bt3x71792JUVJSqdvfu3YI2Y8aM2L59e9yyZQt+/PhRVXvjxg1Bmzp1amzRogWuWrUKX79+rap99eoVpkiRQthvGzRogAsWLMCnT5+qar9//47ZsmUT9ttq1arhjBkz8O7du5rexfLlywvfd9myZXH8+PF47do1Te9i27ZtBW3hwoVx2LBheO7cOU2xz8iRIwVtrly5sF+/fnjkyBFN++2yZcsErZOTE3bp0gV3796NX79+VdUeP35c0KZPnx49PDxww4YNmmKfe/fuoa2tLQIApkyZEt3c3HDZsmX44sULVe2HDx8wXbp0QuxTt25d9PHxwYcPH6pq4+Li8LfffhP220qVKuGUKVMwKChI07tYu3Zt4d9csmRJHD16NF6+fFnTM+7WrZugzZ8/Pw4ePBhPnTqlab+dPHmyoM2ePTv26tULDxw4oCn22bx5s6DNnDkzduzYEbdv365pv7106ZJR7PP777/j2rVrMSIiQlX7/PlzdHBwQADA5MmTY+PGjXHx4sX4/PlzVW1kZCRmyZJF2G9r1qyJs2bNwtDQUFWtXq/ZrFkzq3jNefPmJTmvGRERYTWvWblyZYt5zT///BPPnDnzw73m6tWrjbzmH3/8wb2mAnJeU8u7qMdrzpgxw8Rr7tu3T1PsYy2v+eLFCyOv2bBhQyav6eLiYrbXLFOmjPB9lytXLtG85tChQy3uNbXEPocPHzbba969e1fwmilTpsRmzZrh8uXLf7jXjI2NNfGaU6dOTRSv+ccff1jFa65fv95sr3n+/Hmrec3MmTObeM179+6pahMSEky85sSJE/HmzZua3sUmTZpYzGsOGDAgUbzmnj17jLxmu3btEs1rpkyZ0ipes0KFChb1mlrz7Hq85vLly0285q5du5i9Zrp06bBt27ZW8Zp16tRJNK9Zp04dq3jNKVOmWNRrao19LO01Fy1alChes2TJksL3Xb58efz7778TxWsOGjTIKl5z//79ZnvN4OBgq3jNmJgYSa95+/Zts7zm2LFjNXvN9u3bW8xr9unT5z/vNTNmzGi21yxUqJCJ19SaZ2/QoIHZXrN3794mXvPEiRM/3Gvu2LHDyGu2b98et27dqmm/vXbtmlHs07Jly/+81/z9998lvaaWd1GP11y8eLFFvGb69OnR09MTN27cqMlrcqxLWFiY8OwAIAdaoibOEn/Jf30BLxz8z7Bz5076JWJKBtG/5OilJRn08uVL4TCZXlqSQfQvOXolT55cNRlkMBiwbNmyJlqtyaDWrVtL/pu1JIOGDRsmqdWSDFqyZImkVksy6MiRI5JaLcmgkJAQIaFKLy3JoPfv32PatGlNtFqSQbGxsZg3b14TrdZkUM2aNU20WpNBnTt3lvx5kWRQQECArDmZOHGipFZLMmjDhg2S2ly5cmHfvn3x8OHDsgHRhQsXJLVakkFPnz4VDD69tCSDvn79KiRU6aUlGZSQkIDFihUz0WpNBjVt2tREqzUZ5O3tLfnz0pIMmjt3rqRWSzLIz89PUqslGRQYGCip1ZIMev36tZBQpZeWZFB0dDRmz55dcr9VSwYZDAZ0dXWV3G9r1Kihmgzy9PSU/DdrSQaNGjVKUlu0aFHVZNCKFSsktVqSQSdPnpTUakkG3b9/X0io0ktLMujjx4+YPn16E62WZFBcXBzmz5/fREuSQfPmzcPHjx9LahER69atK7nfakkG9ejRQ/LnpSUZNHXqVEmtlmTQ1q1bJbVakkGXL1+W1GpJBoWFhWGyZMkk91u1ZFBUVBQ6OTmZaLUkgxISErBUqVKS+62WZFCLFi0k91styaDBgwdL/rxKlCiBf/31F168eFH2XVywYIGkVksy6MCBA5LabNmyYY8ePRSTQcHBwZKxj5Zk0Nu3bzF16tQmWi3JoJiYGMyVK5eJVksyyGAwYNWqVSXfRS3JoA4dOkj+vLQkg8aNGyep1ZIMWrt2raQ2d+7c2L9/f8WDsDNnzkhqtSSDHj16JBwm00tLMujz589CQpVeKVOmRHd3d8XCg/j4eCxcuLDkflu3bl309fVVLDxo2LCh5LtYuXJl1cKDPn36SP68SpUqpVp4MGvWLEmtlsIDPV7z+vXrklpLeE2l2Ofbt2+YNWtWE60lvObs2bN/mNccPny4pLZYsWI4cuTIH+Y1jx49Kqn92b1mvnz5JPdb4jWVDsL0eM0uXbpI/rz0ek21Br+NGzdKavV4TdLg9yO9pqOjo+R++6O9ppubm+R+awmvqdTg5+PjI6nV4jX37t0rqSVeU6nBT4/XfPPmjazXbNWqFa5Zs8Ysr9moUSNctGiRYuxTsWJFyf32Z/aaK1eulNTmyZNH8Jpy76Ier/ngwQPhMJlelvCaK1asUPSaBQoUMNFq9Zr16tWTfBdJg9+P8prTpk2T1BYsWPCHes0rV67I7reW8JpyeXY9XlPcJEvvt8RrKjX46fGaQ4YMkfx56fGapMHvxIkTsrHPwYMHJbU/u9fMnTu3iZb2mnJ5di1eUyn26dixo+TPyxJeU6nBT4/XPHv2rKRWS4OfXq9JmmTppcdrkgY/Na/ZqFEjyXfxZ/aau3btktTSXlMu9vkZvaZag5/BYMBy5cqZaLV6zTZt2kj+m0mD34/ymkuXLpXU5s2b12yv6eLiInhNudgnJCREMs9uKa8pF/vo9Zq1atWS3G+rVaum2uCnx2tOmjRJUmsprykX+/j7+0tqtXjNZ8+eWc1rFi9eXHK/tYTXVGrwGzBggOTPS6/XVGvw0+M1b926JanV0uCn12vmyJFDcr/90V6TYz144SAvHOToYObMmUY3ssgtqWTQpk2b0NXVVfIXM73oDlySDDp9+jS6uroKXbpySyoZdP/+fXR1dZUsVhKv0qVLGyWDIiMj0dXVVegqVFpSyaD69etLBn3iJZUM+uOPP7BIkSKqWqlk0KhRoySTMFIBkbjwYNGiRUadkHJLKhm0e/dudHV1FboY5JZU4cGVK1fQ1dVVMrkofsYVK1Y0uu0pLCwMXV1dJZNW4iVOBpFCJdLJpLToZBAJiJo3by5ZQCNeWbNmNUkG9enTR/JwQrykkkGTJ0+WPGQUL6lk0OrVq9HV1VUyCUwvqWTQ0aNH0dXVVegak1tShQfBwcHo6uoqeXguXuJk0Pv379HV1VWyAFi8pAoPatasKXTqK63cuXObdOB6eXkJXVBKSyoZNHToUKNuRrlFbnuik0Fz5szR9C5KJYO2bt2Krq6ukklg8bsoTgadO3cOXV1dJc2u+F0UJ4MePXqErq6ukiZKvMTJoO/fv6Orq6vkQZB4SSWDGjVqpGm/lUoGdevWzajLX25JJYPGjh1r1EElt6SSQUuXLsUKFSpIJoHpRSeDSAy1b98+dHV1lUw80Yt04NLJoGvXrmnabwFMk0GvXr1CV1dX4SZNpSWVDKpUqZJkoZN4SSWDfv/9d8lDJPGik0Fkv+3fv7+kQRcvqWTQtGnTJBNt4iVVeLB+/Xp0dXWVTALTiySD6A7cEydOoKurq2Sin15SyaC7d++iq6urZAJZvMhtTyQZ9OnTJ3R1dZVMTIqXVDKoTp06koX84iVVeNCxY0fJxLV4SSWDRowYIVnsKF5SyaB58+Zpjn3EyaAdO3Zo3m/FyaCLFy+iq6urcCuC3JIqPHj69Cm6uroK3fZKS5wMiouLQ1dXV8lkiHiRwgM6GeTm5ibcxqC0pG4W7tmzp+bYR5wM+vvvvzXFPlLJoBUrVqCrq6tkEpheUsmggwcPoqurq2TiiV5SyaDAwEB0dXUVbv1SWuLCg4iICM2xj1ThQbVq1SQP+8RLqvCgbdu2wm1jSosUHtA3Cw8aNMjo1kC5Rd/2RAoPrOU1z5w588t5zc6dO2vymo6OjhbxmqTwQI/X3LNnjyavKXWzsB6vGR4ertlrkgY/vV6TxD56vGbfvn11eU2tsY/Ya65ZsyZRvSYpPDDHa167ds1sr0kXHujxmu3atbOK15w7d65VvOb58+fN9pqPHz+2mtds3Lgxk9ekG/xYvSZ9s/C4ceM0e01xg585XpMUHujxmtevX7ea16xcuXKiek0S+3h7e5vtNadPn65pv5Vq8NPjNU+ePKnZa4pvFtbjNT9//qw59pGaYmOO1ySxT1L0mjt37mT2miTPbo7XJIUHz549Y/Ka9BQbFq8pdbOwHq/Zq1evRPWaJPZZuXKlVb2mlthH7DXfvn3L7DXpm4UTw2tKTbHR4zVnzZql2WuSKTa/stds0KCBVbzm6NGjmbwmfZkMi9cUN/gRr6kl9hF7zatXr2qOfcRTbPR4TUS0qtfUEvtIec0pU6YkCa9JN/ixek1ys7DBYMAPHz4w5dnFU2xq1ar1S3nNbdu2JTmvGR0dzeQ1WW4W5vx4eOEgLxzk6IAeY8CyKlSoIHnjhZZVrFgxbNmypVnavHnzopeXl1laFxcXozGQLIskg9R+QUktUnigJREiXqQDV4vRFS9SeCDVoaJllSlTRvJGNy2rUKFCsh1MaitXrlxG14izLFJ0aY6WJIO0JFHEiySDtCSsxIskg+hx0loXSQZJdWBrWSVKlMDmzZubpc2fPz96eHiYpc2WLZtst6naIskgNdMntUgySIv5Ei+SDNISXIsXSQbRY4VYVvny5Y1Go7KsokWLGl0FzrLy5Mmja781910kySAtRRniRZJBWkyyeJFkkJakk3iRZBA9NpNllS5dGt3d3c3SFixY0GjUDcvKmTOn7C1jaoskg9QSqVKLFF1qSWiKFyk80HJYJ14kGUSPuWBZrq6uRuMTWFbx4sUlb1LQsvLlyyd7I4raypo1q679tn379qqHT1KLJIO0JJ7FiySDtCQWxYskg2rUqGHWv7lcuXJG48FYVuHChWVvClNbuXPnNhrXybKcnJzM3m9JMkhL0lq8SDJIywGBeJFkkNSNtGqLJIOkbjrVskqVKmU0kohlFShQwOzYJ3v27Gbvt+S2J7VDDalFCg+0HC6IFyk80JI8Fi9SeCB1M4mWpddr0iM3WVZS9Jqk8MAaXrNq1aq6vKZUl72Wxb2m9kW8plSnvNqyptf87bffuNfUuKztNc3db/PkyWN27OPs7Gz2fsu9Jtv6Fb1mkyZNdHnNKlWqmPVv1us1zc2z6/Wa5r6L1vaaWgp4xYvk2ZOi1zQ39rG219RSHCFeSdlrmrvfWttraimsEK9f1WuaG/u4uLiYHd+Sm4XVio6lFveabEuv15Sbgqa29HrNpk2bWuVcs2LFir+k11QrLJdalvCaWhomxEuv1yxXrtwv6TV3796taYQz58fwIwoHbYHD4Uhib28PderUAS8vLyhbtiyT1sbGBipWrAheXl5QvXp15s8uWbIkeHl5QePGjZm1v/32G3h6ekLr1q2ZtdmyZYM2bdqAl5cXJEuWjEmbKVMmaNmyJXh5eUGGDBmYtGnSpAF3d3do164d5MiRg0mbLFkyaNCgAXh5eUGRIkWYtLa2tlCjRg1o164duLq6MmkBAMqXLw/t2rWD2rVrM2uLFi0Knp6e4O7uzqzNnTs3eHh4gJeXF7PW2dkZWrduDV5eXpAqVSombfr06aFFixbg5eUFjo6OTNqUKVNCkyZNwMvLC/LmzcukdXBwgLp164KXlxeULFmSSWtjYwNVqlSBdu3aQZUqVZi0AAClS5cGLy8vqF+/PrO2YMGC4OXlBS1btmTW5siRQ3jGdnZ2TFpHR0do1aoVeHl5Qdq0aZm0adOmhWbNmoGXlxdky5aNSZs8eXJo2LAheHl5QcGCBZm0dnZ2UKtWLbP2WwAAV1dX8PLygho1ajBrixcvDl5eXtC0aVNmbb58+cDDwwPatm3LrM2aNavZ+23GjBmF/TZjxoxM2tSpU4Obmxt4eXlBrly5mLTJkiWD+vXrg5eXFxQrVoxJa2trC9WrVwcvLy+oWLEikxYAoGzZsuDl5QV16tRh1hYuXBg8PT2hefPmzNpcuXKZvd86OTlB69atoV27dmbtt82bNwcvLy9wcnJi0pL9tl27dvDbb78xae3t7aFu3brQrl07KF26NJPWxsYGKleuDF5eXlCtWjUmLcD/Y59GjRoxa/Pnzw+enp7w+++/M2uzZ88uvIv29vZM2syZMwv7bfr06Zm0JPbx8vKC7NmzM2np/ZY19rGzs4OaNWuCl5cXlC9fnkkLAFChQgVo164d1KxZk1lbrFgx8PLyAjc3N2Ztnjx5wMPDAzw8PJi1Li4uwjNOkSIFkzZDhgxC7JM5c2YmbapUqaBp06bg5eUFefLkYdI6ODhAvXr1wMvLC4oXL86ktbW1hapVq4KXlxdUrlyZSQsAUKZMGbNjn0KFCoGXlxe0aNGCWZszZ07w8PCAdu3aga0tW5oiS5Ys8Pvvv4OXlxekSZOGSZsuXToh9nFxcWHSpkiRAho3bgxeXl6QP39+Jq29vT3Url3bKl6zRIkSur1mmzZtmLV6vSbZb1ljn5/Ba1aoUIFJC/CP1/Ty8jLLaxYpUgQ8PT2hWbNmzNqfwWtmyZKFSUt7zXz58jFpaa9ZqlQpJq2lvGaDBg2YtXq9Ztu2bXV7zXTp0jFp06ZNK8Q+SdFrmhP76PWanp6eur1m8uTJmbR6vSaJfXLnzs2k1es1q1Wrpttr1q1bl1lrKa9pY2PDpLWU13R2dmbSWsJrenl56fKaVatWZdICcK/JAtlv27VrB4ULF2bS0l7TnNhHr9f09PQ0a78lXtPT05NZS8c+SdFrlihRgkn7M3hNc2If4jW9vLySlNds1KgReHl5QYECBZi0Sd1rmhP7ZMuWTYhvE9Nrpk6dWthvc+bMyaSlvWbRokWZtHSeXY/XNCfPnpS9Zrt27aziNdu1a6fLa5oT++jxmgUKFABPT09o1aoVs/ZX9Zrt2rWDcuXKMWkBLOM1mzRpwqwlXtPcPDt5Fxs0aMDsYzg/OZaoPvyvL+A3Dv4nOHXqFI4fP16xSjpjxozC9cNk9ALiP+MqZs2apdiRRF8/TMb8ISI+ePAAfXx8FLsgpK4fRkSMiIhAHx8fxS4IqbGqiP/MtPfx8VHtSBKPuiEsWbJEtXNMatQNIuLmzZtVu0Zy5cplcv0w4j/X3A8dOlRR6+TkhF27djW6fhjxn+t8J0+erKiVun4YETEoKAjnzJmjeN0zff0wGb2AiPjs2TP08fFRHGVAXz9MxvwhIn78+BF9fHwUuyCkrh9GRDQYDOjj44N16tRR/DeLrx8mrFq1SrWrSGrUDeI/4w179+6tqM2ePbvJWFVExGPHjuGoUaMUtZkzZzYZdYP4z6iuGTNmKF7pnSZNGpNRN4iIoaGhOHfuXMVruZMnT45NmjQxGnWDiPjy5Uv08fFRHDkhNeoGETEqKgp9fHxUO0DFo24ICxcuVO1WkRp1g/jP+Be1TkypUTeIiHv37sUBAwYoaqVG3SD+M8rg77//VtTSo27I6AVExBs3buDs2bMVR7mlSpVKGKtKRi8gIj569Ah9fHwUxwM5ODiYjLpBRHz37h36+PgodtyTrusZM2YIo24QEePi4tDHx0e1I6ls2bJGo24Iy5YtU72hTWrUDeI/47a6deumqM2ZM6fJqBtExEOHDuHw4cMVtfSoGzJ6ARHR398fp06dqjg+SmrUDSLi7du3ce7cuYqjLuhRN2TMH+I/XTQ+Pj6KHfdSo24QET9//ow+Pj6KHfdSo24Ivr6+qt2B4lE3hDVr1qh2+EmNVUVE3LVrF/bt21dRS4+6IaMXEP8ZGTx27FhFrdSoG0TEgIAAnDlzpuL4KKlRN4iI9+7dQx8fH8WO+2TJkpmMukFEfP36Nfr4+Cje7iY16gYR8fv37+jj46PaASoedUNYvHixaqeu1FhVRMSNGzeqdumRUTdHjx41in3279+PgwcPVtQ6Oztjt27d0M/Pz2i/PXfuHE6aNElRS7quN23aZBT7BAYG4pw5cxQ7QFOmTCmMuiGjFxARnzx5gj4+Poq3u9GjbsjoBUTE9+/fo4+Pj+KYHqlRN4iI8fHx6OPjo9qNLR51Q1ixYoVqF6fUqBtExO3bt2OPHj0UtTly5DAZdYP4z1iRv/76S1FLj7qhY59Lly7h9OnTFW+iSZs2rcmoG0TEu3fv4ty5cxXHztBjVWmv++LFC/Tx8VHsuLezs8PatWsbjbpBRPz69Sv6+Pgo3jYkNVaVMH/+fNWbEaRG3SAirl27VrXbVmrUDeI/I368vb0VtVKjbhAt4zWVxpnIec2HDx9axWvGxMQkitcUj7pB/MdrdunSRVGr12uKR90g/uM1p0yZoqj92bzmp0+fEs1rXr582WJec+fOnZq9Jj1WFfEfrzl69GhFrTW9pnisKuL/vabS7W4/o9fcsGGDLq85cOBARS3xmuLYJ7G8Jj1WFfH/XlPpdje9XlM8VhXx/15T7eavn81rHj582KpeU+lm2x/pNZVuG1LzmvXr11f8eenxmlJjVRERd+/erTqh52fzmvfv3/+hXtPW1lbwmnTsQ7ym2q3+lvCa9FhVxH+8ptpteHq9JhmrSsc+erzmrVu3rOI1P3z4YLbXTEhI0O011SahWNtr7tixI1G9Jsmz02NVEfV5zcjISFWvCWA6VpWgx2uuW7ful/SaSqNoLeE16bGqiNq9ZtmyZY3GqhKWLl2a5LzmhQsXdHnNuXPnKt5s+zN4zaCgIKPn5OPjo3rrqR6vSfLs4rGqerzm8ePHNXnNjh07/qe8ptqt/j+b19y3b98P9Zok9tm8ebOR17x58ybOnj1b8VZ/vV6zfv36OH/+fGGkPOL/vWaxYsVktXq9ZpkyZSS9Jse68FHFvHCQo5MJEyaYbHiFCxeWDBLFrFu3zkRLgkRxgkzMuXPnTLQkSBQnyMQ8fvzYJJEilyAT8+XLF8yUKZORVi5BJiY+Pt4kqUknyOggUQpxQEAnyMRBohippFXJkiVx9OjRJkGimNmzZ5to5YJEMbt375YMEnv16mUSJIq5ceOGYpBIJ8jEvHr1yiSYoINEOkEm5vv37yaJFBIkihNkYgwGg4nJlivGkEJqrECFChUkE2RiRowYYaKVK8YQs2zZMhMtSZAdO3bMyLCJOX78uIlWrhhDTGhoqEkiRS5IFPPhwweTa/LJFfjiIFFMXFycScGiXJAohXjMDx0k0gkyKbp27SoZJEolyMRIFfEWKlRIMkEmZvPmzSbanDlzSibIxFy8eNFESxdjKO23z58/NykQJwmy9evXGyXIxERGRqKjo6PJfkuKMZT224SEBJOkpr29PdauXRvnzp1rlCCTQpwMIcUYkydPNjmQECNlokqUKIGjRo0ySZCJmTdvnomWHEiIE2Ri9u3bZ6KVS5CJCQoKMtGSAwlxgkzMmzdvTA7t5RJkYqKjo02uyZdLkIkxGAwmBwxyxRhSSCUmSTHG9evXFbVjxowx0ZLCf/GBhJhVq1aZaHPnzo39+/c3OZAQc/r0aROtXOG/mIcPH5okUtKnT4+enp4mCTIxnz59MhnJRg4kxAkyMfHx8SaHSORAwtfX1+hAQgrxYZ9cMYYUvXr1Mvl5yRX+i5k+fbqJVq4YQ8z27dtNtDly5JAs/BcTEBBgoiXFGOIDCTHh4eEmh/Zk3Nq6deuMEmRivn37ZpJIoQ8k6ASZGIPBYDIamoxbEyfIpJAqOiQHEuIEmRipBHLx4sUlE2RiFi1aZKKVS5CJOXz4sIlWrvBfzJ07d0wO7eliDKX99t27dyYF4nThv9J+GxMTg3ny5DF5Fxs0aIALFiwwKsYQYzAYTAr55Qr/pZA6lCUHEmoJMiWvKS7GELN+/XoTrR6vKVeMIebJkyc/pdekizGkEI+/SyyvOWfOHBOtHq+ZLVs27NWrF+7fv99srykuxhDz6tUrk0N74jXFxRhi9HrNChUqmOy3erymXDGGmJEjR5pof3avee/evR/mNeliDDE/ymuKizGkkCpI0+o1pQ5W5YoxxOjxmpcuXTLRJpbXFBeI6/GapBhDr9cUF2OIGTRokMnPKzG85v79+020erymXDGGmIiICLO9ZkxMjNW8ptSoQUt4TbU8++rVq020ScFrig/t5YoxxEh5TbliDCnE450Ty2vOmDHDRKvHa8o1mYvR4zVfvHjxQ7ymuBhDjMFgMGlU1es15YoxxEh5TbliDDGLFy820SaG17x79+4P85pKefbY2Ngk6TWlClkKFy4sWfgvRspryhX+izl//ryJNrG8prhAXKvXTEhIsJrX7N+/v8nPyxJeU1z4L2bPnj0mWj1eU67wX4yc15Qq/Bfz/ft3k/HfcoX/YvR6TamGi8TwmsuXLzfRavWaJ06cMNFawmuKC//FfPz40aRAnHhNceG/GDmvKVX4L4W4iVGv15Qr/Bejx2tu2bLFRCtX+C9Gr9cUF4hbymvyuqifF144yAsHOTogv+BIkDh37lzVIJEQFxeH+fPnZyrGoCGdE3LdoUp0794dAeS7Q5WYOnWqECRKdYcqsXXrVqYgkeby5ctMQSJNWFgYJkuWzChIVEqQ0URGRqKTk5Nsd6gSCQkJQncMCRLVEmQ0pIO7aNGimooxaEjnp1x3qBILFiwQgkSp7lAlDhw4gAD/T5CpBYk0wcHBaGNjI9sdqkRERASmTp2aKUgkxMTEYK5cuWS7Q5UwGAxCpxoJEtUSZDSkw4UOErW+i+PGjTMKEtUSZDRr1qwRgkQtCTKaM2fOGAWJ4u5QJR49eoR2dnay3aFKfP78GTNmzCgkyMTdoUrEx8cL3Yhy3aFKkK5Rue5QJfr06YMA8t2hSsycORMB/n8gsXfvXs377c6dOxFA+4EEzfXr1xHg/wcSasUYNC9fvsQUKVIYHUgoJchovn37hlmzZpXtDlXCYDAINzHQ3aFa38XWrVsLCTIthf80w4YNQwD57lAllixZggDy3aFKHD16VNhvSXeoUoKMJiQkRNhvtRxI0Lx//x7Tpk3LdCBBiI2Nxbx58woHEloSZDQ1a9ZEAPnuUCVId6/WYgyaiRMnIoD2wn+ajRs3IoD2wn+aCxcuCLGPVHeoEk+fPkUHBwfZ7lAlvn79ipkzZzbqDlVLkBESEhKEbkStBxI05MYMciChliCjIZ325EDi2LFjmvdbHx8fBJDvDlXCz8/PKEGmVoxBExgYaJQgUyv8p3nz5g2mTJmSqRiDEB0djdmzZ5ftDlXCYDAIncHmdId6enoiwP9vIlJLkNGQ26W1HkjQrFixAgH+fyChliCjOXnyJAIYH0hojX0ePHiAdnZ2woGEWjEGjV6vWaBAAd1ekxRjsHhNcrNJUvKaV65csYrXjIqKspjX1FKMQaPHaw4ZMgQBtBdj0OjxmgcPHrSo19Qa+7x9+9aiXlOtGIOg12t27NjRyGuqFWPQ6PGaa9eutYjXJMUYLF7T3t7ebK+ZKVMmI6+pVoxB0Os1GzVqZDGvqVaMQTNr1iyLeU21YgwaS3lNLcUYNHq9Zrly5aziNckNi+Z4zaVLl5p4Ta2xj16vaWtraxGvqaXJnBAbG4v58uXT7TW1FmPQ6PGa5Pa9xPaa/v7+FvWaSsUYNF+/fkVHR0eLeU21YgwaPV6TTE+hizFYvabWYgyavXv3JkmvmSNHDqt4TS8vL4t5TbViDJqVK1daxGtqKcag0es1M2TIYNRknlhek0xesZTX1PouTps2zWyvuW3bNiOvyZJn1+M1w8PDjbymWuE/De01tRb+E+gGWT1eU2uTOY0er7lw4UKreM3bt29bzWvmzp3bbK9ZrVo1wWtqKfyn0eM1yW2nWpvMafR4zbNnzyZJr1mkSBEjr8mSZ9fjNcm0Kj1eU2vhP+fngRcO8sJBjg78/f2ZgkSau3fvqnaHyvHmzRumIJGGjEHQGiTSGAwGXLhwIVOQSLNmzRqmBBnNzp07mRJkNMePH2cqxqC5du2aaneoHI8ePWJKkNF8/PgR582bpzlBRhMbG4u+vr6ag0Qag8GAS5cuZQoSaTZs2MCUIKPZt28fU5BIc/bsWZOrurUSFBTElCCjCQ8PZyrGoCFjELQGiTQJCQk4f/58piCRZuXKlardoXJs27aNKUikOXLkiNlB4qVLl5gOJGju3bun2h0qx9u3b5kOJGjIeHetCTIast+ae1X32rVrVbtD5di9ezdTMQbNyZMnVbtD5bhx44Zqd6gcT58+Ve0OlePz5884b948zQkymvj4ePT19WVKkNEsXbqUKUFGs3nzZqZiDJoDBw6odofKcf78eaZiDJrbt28zJchoXr16pdodKse3b9/Q19dX84EETUJCAi5YsIDpQIJm9erVTAcSNDt27GBKkNEcPXoU9+zZY9Z+e+XKFaYEGc2DBw+YCv9p3r9/j/Pnz9ecIKMhY2e0Fv7TGAwGXLx4sWp3qBzr169nOpCg8fPzYzqQoDlz5ozJCGKtBAYGMh1I0Dx//pwpQUZDxg1rLfyniY+Px3nz5jEVY9AsX76cKUFGs2XLFqbCf5pDhw6p3kQkhx6vGRISYjWv6evra7bXXLBggclYKK3o8Zq7du3iXlMjcXFxVvOaGzdu1OU1WYoxaJKi14yKikJfX1/uNTVy+fJlpmIMGr1eUzyCWCsk9jHXay5atMhsr7lu3TqreM1Tp04lSa/p6+trFa+5bNkyq3pNc2KfCxcumO0179y5k+S8Jol9zM2zW8trHjt2jKkYg+bq1atJzmuSPLs1vOaGDRt0ec2DBw9axWuyFGPQ6PWavr6+3Gtq5OLFi0nSa/r4+Ggu/KdJql7zxIkTVvGajx8/TnJeE/GfBn2Wwn8aa3nNc+fOme01g4ODzfaaL168SLJe09zYZ/v27bq8JkvhP41er8lS+E+TVL0mx7r8iMJBG/ynMO6HYGNj4wQArv+uCv+uzP/+1+sQsTPj39cIAHr++/dlAYC3AHAVAJYj4hELfdtSn5sDAMIAAMLCwiBHjhw/6qM4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8MRCA8Ph5w5c5I/5kTEcL1/p73ev0CFN5b4S2xsbGwAYCn8UzRIkx0AWgJASxsbm+UA0Bt/ZCUkh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4SRzbRPysMAA4ZqZ2Mvy/aPAmAHjBP7cOev37Z/j3v5+k5xvkcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA7nv86PvnFwIgAEAEAAIr6xsbHJAwBPWP4CGxub/AAw/N8/XgOAGoj4/d8/B9jY2OwDgLMAUB4ARtjY2KxBxEcW+e45HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8P5j/FDbxxExPGIeAAR9YwsHgz/L3D0pooGyWd8AwDvf/9oDwCDdHwWh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4/2kSc1QxMzY2NjYA0PzfP4Yi4mWpr/v3/3/v3z+2+FfH4Rhx/PhxGDx4MJw6dQri4uKYtLdv34ZevXrBgQMH4Nu3b0zaiIgI6NKlC2zfvh0+f/7MpI2OjoZu3brBmjVrICIigkmLiDBw4EBYvHgxPH/+nEkLADBx4kSYNWsWhIaGAiIyaRcvXgx///033Lhxg1m7a9cuGDFiBFy4cAESEhKYtP7+/uDt7Q3Hjh2DmJgYJu2jR4+gW7du4OfnB1FRUUzaT58+QZcuXWDz5s3w8eNHJm1cXBz07NkTVq5cCa9evWLSIiIMGzYM5s+fD48fP2bSAgDMmDEDpk2bBrdv32Z+TmvWrIFx48bB1atXwWAwMGkPHToEf/75J5w5c4b5Xbx+/Tr06dMHDh06BNHR0UzaFy9eQJcuXWDnzp3w5csXJm1UVBR06dIF1q9fD+/evWPSGgwG6NevHyxduhTCw8OZtAAAY8eOhblz58KDBw+YtfPmzYPJkyfDrVu3mJ/xli1bYNSoUXDx4kXmd/HUqVMwaNAgOHnyJMTGxjJpQ0JCoGfPnrBv3z7m/fbdu3fQuXNn2Lp1K3z69IlJGxMTA927d4fVq1fDmzds/Q6ICIMHD4aFCxfCs2fPmLQAAJMnT4aZM2dCSEgI83Navnw5TJgwAa5fv86s3bNnDwwfPhzOnz8P8fHxTNrLly9D//794ejRo8z77dOnT6Fr166we/duiIyMZNJ++fIFunTpAps2bYL3798zaRMSEqB3796wfPlyePnyJZMWAGDEiBHg6+sLjx6xX2w9e/ZsmDp1KgQHBzM/p3Xr1sGYMWPgypUrzPvtkSNHYMiQIXD69Gnm/fbWrVvQu3dvOHjwIHz//l1dQPHq1Svo0qUL7Nixg3m//f79O3Tr1g3WrVsHb9++ZdIaDAbw9vaGJUuWQFhYGJMWAGDChAkwZ84cuHfvnvoXi1i4cCFMnDgRbt68yfyMt2/fDiNHjgR/f3/m/fbcuXMwYMAAOH78OPN+e//+fejevTvs3buXOfb58OEDdO7cGbZs2cIc+8TGxkKPHj1g1apV8Pr1ayYtIsKff/4JCxYsgKdPnzJpAQCmTZsGM2bMgDt37jA/p5UrV8L48ePh2rVrzO/i/v37YdiwYXD27Fnm/TYgIAD69esHhw8fZo59wsLCoEuXLrBr1y74+vUrkzYyMhK6dOkCGzZsMGu/7dOnDyxbtgxevHjBpAUAGD16NPj4+MDDhw+ZtT4+PjBlyhQICgpifsabNm2C0aNHw+XLl5nfRWt7zW3btiW61xwwYAAsWrQo0b3mkiVLkpzXfPz4seA1WWMfPV4zPj4eevXqlSS95tixYxPda964ccNqXrNr165JzmvOnz8fJk+eDIGBgYnqNU+fPg0DBw6EEydOJBmvGRsbazWvOWXKFKt4TT8/vyTpNTt37gwbN25MdK85cuRIq3jN9evXm+01jx49ahWv+fr1a8FrssY+erwmIoK3tzcsXrw4SXnNHTt2WMVrPnjwwCpek+TZzfWaQ4cOhQULFsCTJ0xD0wBAn9dctWoVjBs3DgICAhLda/bt2zfJec2+ffv+Ul7zxIkTMHjwYDh58iT3mhrgXlM7nz9/hs6dO8OmTZvgw4cPTFo9XhMAYPjw4TBv3jzuNTXw8uVLq3nN/v376/Kac+bMgfv37zNr9XjNrVu3wl9//ZXoXjM0NBR69OjxS3lNzn8QREy0BQB5AAD/XWs1fH0+6uuXqnztMupr81r4+85B/u6wsDDkJE1iYmIwT548CACYLl06bNu2LW7YsAHfvXunqjUYDFi9enUEAEyZMiW6ubnhsmXL8MWLF5o+u1OnTggAaG9vj3Xq1EEfHx98+PChJu2ECRMQANDGxgYrVaqEU6ZMwaCgIDQYDKradevWkXcCS5YsiaNHj8bLly9jQkKCqvbcuXOCNn/+/Dh48GA8deoUxsbGqmofP36M9vb2CACYPXt27NWrFx44cAC/ffumqv3y5QtmypQJAQAzZ86MHTt2xG3btuGnT59UtfHx8Vi0aFEEAEyTJg22atUK16xZgxEREapaRMTGjRsjAGDy5MmxcePGuGjRInz+/Lkmbb9+/RAA0M7ODmvUqIGzZs3C0NBQTdrZs2cLP+vy5cvj33//jTdu3ND0jHfv3i1oixYtiiNGjMALFy5gfHy8qvbGjRuCNk+ePOjt7Y3Hjh3D6OhoVe2rV68wRYoUCADo4uKC3bp1Qz8/P4yMjFTVfv/+HbNly4YAgBkyZEAvLy/cvHkzfvjwQVVrMBiwfPnyCACYKlUqbN68Oa5cuRJfvXqlqkVEbNu2LQIAOjg4YP369XHevHn4+PFjTdoRI0YgAKCtrS1WrVoVp0+fjrdv39b0nJYtWyb8rMuUKYNjx47Fq1evanoXjx8/LmgLFiyIf/75J545cwbj4uJUtaGhoWhra4sAgDlz5sQ+ffrgoUOH8Pv376raDx8+YLp06RAAMEuWLPjHH3/gzp078cuXL6rauLg4/O2334T9tk2bNrh+/XpN+y0iYu3atREAMEWKFNi0aVNcunQphoeHa9J27dpV2G9r166Nc+fOxQcPHmjSTp48WdhvK1asiJMnT8bAwEBNz3jz5s3CcypRogT+9ddfePHiRU3v4sWLFwXtb7/9hoMGDcITJ05o2m+fP3+ODg4OCACYLVs27NGjB+7btw+joqJUtZGRkejo6IgAgJkyZcL27dvj1q1bNe23CQkJWKJECQQATJ06NbZs2RJXr16Nb968UdUiIjZr1gwBAJMlS4YNGzbEhQsX4tOnTzVpBw4cKLyL1atXx5kzZ2JISIim5zRv3jzhZ12uXDmcMGECXr9+XZN23759grZIkSI4fPhwPH/+vKZ3MSgoSNDmzp0b+/fvj0eOHNG037558wZTpUqFAIDOzs7YtWtX3LNnD379+lVVGx0djTlz5kQAwPTp06Onpydu3LgR379/r6o1GAxYuXJlIfZxd3fH5cuX48uXL1W1iIjt2rUT9tu6deuir68vPnr0SJN2zJgxwrtYuXJlnDp1KgYHB2t6TqtWrRJ+1qVKlcIxY8bglStXNO23p0+fFrQFChTAIUOG4OnTpzW9iw8fPkQ7OzsEAMyRIwf27t0bDx48qCn2+fTpE2bIkAEBAB0dHbFTp064Y8cO/Pz5s6o2Pj4eCxYsiACAadOmxdatW+PatWs1xz7169cXYp8mTZrgkiVLNPudXr16CbFPrVq1cPbs2Xjv3j1N2unTpws/a1dXV5w4cSLevHlT0zPevn27oC1WrBiOHDkS/f39Ne23AQEBgjZv3rw4YMAAPH78OMbExKhqw8PDMXny5AgAmDVrVuzevTvu3btX03777ds3dHFxQQDAjBkzYrt27XDLli348eNHVa3BYMDSpUsL+22LFi1w1apV+Pr1a1UtImKrVq2E/bZBgwa4YMECfPLkiSbt0KFDhf22WrVqOH36dLxz546m57Ro0SLhZ122bFkcP348BgQEaHoXDx8+LGgLFy6MQ4cOxbNnz2rab+/cuYM2NjYIAJgrVy7s27cvHj58WNN+++7dO0yTJo0Q+3Tu3Bl37dqlab+1ptf8448/rOI1169fb+I1L1269MO95pMnT0y85v79+396r9mkSRNhv23UqBEuWrQInz17pkmrx2vOmTMnSXrNlClTGnnNPXv2JIrXrFChgpHXXLFiRaJ4zZEjRwrvYpUqVXDatGk/vde8d+/eT+U13759q6pF1Oc1u3XrZuI179+/r0k7ZcoUI685adKkRPGaly5dErT58uXDgQMH4okTJzTFPnq9ZpYsWZKc1xw0aJCJ17x79+4P95r79+838Zrnzp374V4zIiJC8JpOTk7YpUsX3L17t+bYh/aaHh4eieY127dvL7yLiek1V69enSS9ZsaMGY285vbt2xPFazZo0ECIfRo3boyLFy/WnGfX4zVnzJgh/KwrVKjA5DV37NhhFa/54sULwWu6uLgIXlNL7KPXa5YpU8bEa2qNfazlNRcvXmwU+4wbNy5RvObdu3clvaaW2EeP14yNjU2SXvPvv/828Zq3bt364V7z/PnzRl5z0KBBePLkyUTxmpkzZxZinw4dOmj2mgkJCZJeU2vso8dr9u/f3ypec8+ePUnSa2bPnl3wmp6enrhp06ZE8ZoeHh6C16xXr16iec3ly5cLP+vSpUszec0TJ05YxWt+/PgR06dPL8Q+iek169SpY+Q1WfLs1vKaW7ZsEZ5T8eLFmbwmx7qEhYUJzw4AcqAlauIs8Zdo/jD2wsGm1NcPUvnawdTXNrHw980LB/8jrFixgn6JmJJBJ0+eNNGSZND48ePx2rVrstr79+8Lv+TopSUZRP+So1fu3LmxX79+ismguLg4zJ8/v4lWazKobt26JlqtyaDu3bubaLUmg6ZOnWqi1ZoM2rp1q4lWazLo8uXLks9YSzIoLCwMkyVLZqIlySClg7DIyEh0cnIy0ZJkkFLRZUJCApYqVcpEqzUZ1KJFCxNt2rRp8ffff1dNBg0ePNhEqzUZtGDBAhOtnZ0d1qxZUzUZdODAAcnnpCUZFBwcLBh8emlJBkVERGDq1KlNtFqSQTExMZgrVy4TrZZkkMFgwKpVq5poSTJI7SCsQ4cOJlqtyaBx48aZaEkyaP78+YrJoDVr1kjut1qSQWfOnJF8xlqSQY8ePRISqvQqVKiQajLo8+fPQkKVXlqSQfHx8Vi4cGETLZ0MUjInDRs2NNFqTQb16dPHRJsiRQohGaR0EDZz5kzJ/ZYkg5SKLnfu3Cm532pJBl2/fl3yGZcsWRJHjRqlmAx6+fKlULhMLy3JoG/fvmHWrFlNtNmyZcOePXsqJoMMBgOWLVvWRKs1GdS6dWsTrdZk0LBhwyT3Wy3JoCVLlkjut1qSQUePHpV8TiQZpHQQFhISIrnfkmTQ+fPnZffb9+/fY9q0aU20JBl09OhR2dgnNjYW8+bNK7nfakkG1axZ00SrNRnUpUsXE22qVKmwWbNmuGLFCsXYZ+LEiSZarcmgjRs3Sr6LWpJBFy5ckHzGWpJBT58+FQ6T6aUlGfT161choUovLcmghIQELFasmIlWazLIzc1Ncr9t06YNrlu3TjEZ5O3tLbnfakkG+fj4SL6LtWrVwjlz5igmg/z8/CSfk6urq2oyKDAwUFKrJRn05s0bIaFKLy2FB9HR0UJClV5Zs2ZVLTwwGAxYsWJFyf2WFB4oHYR5enqaaOnCA6Wiy1GjRplotRYeWMtrPnjwQDL2KVy4MA4bNuyHes0CBQqYaBPDa/bo0cNE+7N7zStXrkg+Y+I1lRr89HjNqKgoSa+ppcFPzmuSossf6TWHDBliok0Mr3nw4EHJ5/Sjvebbt29/mNdUavDT6zU7duxootXa4CflNUnRpZrXXLt2reR+Sxr8fqTXJIfJ9NLqNUnhMr0Sw2s2atTIRJsYXnPWrFmS+22dOnVUG/yUvObkyZMT3WuSBr8f6TXLlStnok0Mrzl8+HDJ/VaL11y6dKnkfku8plKDn16vKZVnL1q0qNDgZ47X7N+/v6rXzJcvn4mWbvD7Gb3mpEmTJPfbH+01/f39JZ+xJbzm6dOnFb0maZKlF/GaBw8eVPSaxYsXN9FqbfDT4zUHDBggud9qafDT4zX37t0r+Zx+dq+ZI0cOE21ieE0vLy8TLfGaag1+Sl5zwYIFil5z5cqVJlriNWfMmPHTek3SJEuvxPCa9erVM9FaymsqFV1OmzbNREt7TaWiy23btknut5UrV1Zt8NPjNcPDw2W9plqDnx6vSTfJ0utn95oLFy6U3G9/tNe8ffu2otdUKrpU85rHjh1T9Jq5c+c20Wr1mtWqVTPRam3w0+M1x48fb6JNDK959uxZyWf8s3vNIkWKmGiJ19RadMlJfH7FwsHe1Ne3Vvna1tTX9mL8vnKorPLk7+aFg0mXVatWCV1QSksqGXTgwAFs27atpGGlF50MIubkypUr6OHhIVmMQi+pZNDTp0/Rw8ND0gjRSyoZFBUVhR4eHpLJRXolS5YMGzVqhAsXLjRKBnXv3l242U1ukWSQ+Lanv/76SzIZIl5SHbi+vr7YtGlTVa1UMmjz5s2SyTLxkkoGnThxAj08PIROW7kllQwKCgpCDw8PoZtabkklg16/fo0eHh6SRQ70kkoGGQwG9PDwkExo0ItOBtEHYf3798dKlSopaulkEH0QNnHiRMnDPvEiySC66HLp0qXYvHlzVW3BggVNOnB3796Nbdu2lTSs9KI7cElAdOHCBfTw8BBuNpBbUsmg+/fvo4eHh2QSmF6kA5dOBn369Ak9PDwkzS695JJBnTp1Ero/ld5FqWTQ0KFDJYNz8ZJKBs2cOVPygEG8SDKIPghbu3Yt/v7776pakgyiD8IOHTqEHh4eQqet3CLJIPq2p2vXrqGHh4dkkEwvqQ7c58+fo4eHh+ShG72kkkExMTHo4eEhGWDTi+7ApZNBPXv2FDrO5BYpuhQng8aOHSvcmqG0yG1PdDJo/vz5kklN8ZJKBm3btg3btGkjaVjpJZUMOn36NHp4eEgaVnqRZBDdgXvnzh308PBAZ2dnRS2dDCIHYW/fvkUPDw/JRD+9SDJI3IHr6emJJUuWVNTKdeAOHDhQuFFBbsklgyZPnizcCqe0pG4WXrFihWQiRbykkkF79+7Ftm3bShpWekklgy5duoQeHh6SCUJ60ckgEvs8evQIPTw8JAuO6JUmTRqTZNDXr1/Rw8MDCxUqpKiVSwZ16dJFsjiUXnQyiC66HDFiBNaoUUP1Z12hQgWTDtw5c+YItx4rLalk0IYNGzTFPnnz5hU6cMl+e/ToUfTw8JA8HKWX1M3CN2/eRA8PD8kDGXpJJYNevHiBHh4ekoknekklg+Li4tDDw0OycJBecsmgvn37Sh4S0EvuZuHx48cLnaNKSyoZtHjxYuH2G6VFkkF00eWOHTuwbdu2koej9JIqujx79ix6eHhIHo7SSyoZFBoaih4eHsLtFXJL6mbh9+/fo4eHh2QDE73kbnvq0KGDZLESveRuFh48eLBkEQy96JuF6cKD6dOnSxbyi1eJEiWEwgPyLrJ6TfpmYeI1pZL19JLymlevXmXymvRtT8RrktuC5JaU1/z27dsP95pyNwuPGjXqh3tN+mZh2mu2adNGVWspr0liH3O8JjkIS0yvKS661Os1pQ77xKt06dImDX5J2WuSmxLl1s/mNYcNG8bkNemDMBavKS66XLduXaJ4TfHNwtevX0cPDw/Jxgd6SXnNsLAwzV5TfLMw8ZrkFhq5Jec1e/XqlWhek459FixY8MO9Zq5cubBfv35GNwsnptekiy71ek0vL68f7jWlbhaeMmWKLq/ZsmVLVa3UzcJJxWvSNwsnptcUN/jp8Zpz587V5DWlbnvS4zWPHTtmFa/58uVL9PDwEG5nk1tSXjM+Pp7Za9JFl3q85oQJE5i8Jl10yeI1xQ1+O3fuTBSvKW7w0+M1P3z4YDWvOWTIkETzmnTR5erVqxPNa9JFl4nhNaVuFmbxmlINfknRa27ZssUqXjM4OBg9PDwki//opcdrpkyZEps1a2bS4Ofh4SHcMC239HpNqQY/PV5z2bJlmrym1M3Cerymv79/onpNEvt8/vwZPTw8hNuH5Zac1/zjjz+YvCZddDls2DDhtlSlJeU1Z82alSheU9zgd/jw4V/Oa3Ksy69YODiM+vpGKl/bmPraPxm/L9VNgCxeOJh0IeN9WBbpwCXj9lgWufq7d+/ezFqSDCJXtrMskgwaO3Yssxbg/8kgqZsn1BZJBqklUaQWMSdaEs/iRZJBWoI28SIHYeTadZZFOnClbp9RW6Tokoy/ZV3ly5cXRouxLpIMUiuCk1rktic1gy21SDJIS2AuXiQZpMVAiRc5CJO6BVNtkWSQ1O2KaoschI0ePdqs50SKLqW6L9UW6cBVM25SiySD1MyX1CLJIC0mWbxIMkjqhkS1RZJBffv2ZdaSZJDUjW5annHFihUlO5i0LDJmSq3QUWqRgzC1oF5qkTFTWhIh4kU6cLUcEIgXSQZJdcqrLZIMkurAVlskGfTXX3+Z9ZxIMkgtkSq1ihQpgsOGDVM9mJBaZMyU2uGC1CIHYWQ0EMsiB2FSN3apLXIQ1rNnT2Yt6cD9888/mbUkGUTGTrEu0oFLxsawLJIMUjuwl1okGVSlShVmLUkGubu7M2tJMkiqc1NtkYMwc+JqchAmdauJllWhQgWz91tSdKmWDJVapANXLaEptUgySMshkHiRZJCWhJV4kWQQGXPBskgyyJzYhxQeSN2koGWVLVsWx40bp3qoIbVI0aVaokxqkQ5ctcIKqUWKLrUkJcXLEl5T6iYotWUJryl1U5iWpddrDho0KNG9JjkI0+M1O3fuzKy1hNckI4lYl7W9ptTNE2rLEl6TjBpmWXq9Zr169ZKs11QrkJJaerwmuVn4V/GaAP8chJm73xKvqXb4JLX0eE3S4JcUvebAgQOZtZbymmqHyFJLr9fs16+fLq+ppQBGvCzhNckIW5ZlCa9pbp7dEl5TrUBKaunxmiTPrsdrdurUiVlrCa9pbp49KXpNctuTHq+ppTBUvPR4TZJnJ2PhWZZer0mKLvV4TbXmR6llCa+ppfhXvPR4TXKzsB6vaW6eXc+5Jim6VCssl1qW8JpaipzEi3hNLU3f4pWUvSYZY8269HrN/v37W8Vrenp66vKaUrdgqq2fwWuqFbNKraToNUnsk9hekxRdWsNr0jcLaxmHzPkx/IjCQVv4uUlB/edYla+Nof5zyh/wvXB+QTJlygTOzs6QJk0aZm26dOnA2dkZMmTIwKxNkyYNODs7Q+bMmZm1KVOmBGdnZ3BycmLWOjg4gLOzMzg7O4OtLdv2YGtrK2jt7e2ZP9vZ2RlcXFwgRYoU6l8swtHREZydnSF16tTM2owZM4KLiwukS5eOWZsuXTpwcXGBjBkzMmtTp04Nzs7O4OjoyKxNkSKF8LNmxd7eXtDa2dkxaW1sbARtsmTJmD87S5Ys4OzsDClTsm/RmTNnBmdnZ0ibNi2zNkOGDODi4gLp06dn1qZNmxacnZ0hU6ZMzNpUqVKBi4sLZMmShVmbLFkycHFxAWdnZ7CxsWHSWuJddHZ2huTJkzNrybuYKlUqZm3GjBnNfsbp06c3e7+1xLuoZ791cXFh3m9tbGyE/304ODgwf7aTkxM4Ozubtd+Sd9Gc34vkGZvzLpLfqea8i+QZm/MuJk+e3Oz91s7OTnjGet5Fc/ZbJycncHFxMXu/dXFxMesZ63kX9e635j7jZMmSCT/rxN5vybuoZ781N/ZxdnY2K/ZJnz692bFPmjRpwMXFxSqxD9kzzdlvyeeas9+S2Cex99sMGTKYvd+Sd9GcZ6znXST7rYuLC/O7aGdnJzzjxH4Xidac2McSXtOcZ5yUvaaLi4tZ76Ier0ne48T2mpZ4F7nX1Ibe/dZcr0neRWt4zaQY+5BnnNheU09uT4/XTJkyJbi4uCRZr5nY76IlvKae3F5S9Zrmxj7mek09sQ/xmomd2yOxjzX328TO+2TJkgVcXFx0eU1zc3t68+zmxLeWin30eE1z8z56vaY5z1iP19RzlkLiW3N+LyZPntzsPLs1vaae2Mda+60lvKY576KDg4PZeR9LeE09+601cnu/qtd0cXGxitc0N89uTa9p7dgnqe23Li4uie419eTZidfU+y46OTkxP2fOT44lqg+1Lvh5bxzko4p/AbZv367aBU6PyqGviz958iT2799fdVQxqaSnr4sPDAxEb29v1S5fUklPXxcfHh6O3t7eqtX1OXLkMLku/vv375q69UklPX19MSLiyJEjVTuE06ZNi23atDEalYP4z1XAal2JyZMnl7y+ePXq1di+fXvVSvratWubjMrZt2+fphsepcayXrhwAfv376/aBUFX0pPri0NDQ9Hb21u104V0bZ84cUK4vvjt27fo7e2t2s1Eurbp6+INBgN6e3ujq6urojZjxozYvn173Lp1q3B9MeI/I/fUumTo6+LJ9cWI/4w4VbsiX+66+M2bN6t2gZOubfGonCNHjmC/fv1Uu7GlxrJeu3YNvb29VbvOSNc2PSrnyZMn6O3trXqLDRmVQ49l/fLlC3p7e6uO+SJd27t37xaui0dE/PPPP1XHINBjWcl18YiIU6dOVe1KJF3by5cvNxqVs3z5ctUucNK17evrazQqZ+fOnaqdUPR18fSonDNnzmD//v1Vr/QmXdv0qJzg4GD09vZWHeUmNSrn5cuX6O3tjb/99puiNnv27Ni7d2+jUTkxMTHo7e2t2q1Pj8qh99tRo0ZhrVq1FLVSY1kR/xk7o3YDjtyonLVr16reOEaPZaWviz9w4AD26dNHdXxUhQoVcOLEiUbXxV+6dAm9vb1VO+5J1zZ9Xfz9+/fR29tb9Xp90rVNXxf//v179Pb2Vh0pTbq26VE5iIgDBgxQHTsjNSoH8Z8xCGq3/6VKlQpbtGhhNCoHEXHhwoWqXeByo3K2bt2KXbt2VdTSo3Lu3LkjPKfjx49jv379VMdHSY1lvXHjBnp7e6uOMyFd22fPnhX222fPnqG3t7fqaKGcOXNi37598fDhw0LsExkZid7e3qpjvkjX9q5du4RROYiIw4cPV+0QJl3b9GgyRMQZM2aodiWSrm3xqJyVK1eqdoHTo8noUTl79uxRvXWDdG2LR+WcO3cO+/fvrzo+ih7LSp7xnTt30NvbW3WUGxmVc/LkSWG/ff36NXp7e6ve0ig1ljU+Ph69vb1Vx86Qru1t27YJo3IQ/xm5p3Yjg9RYVsR/xs6o3YBDxrIuWrTIaCzrhg0bVG+3trW1xRo1auCsWbOMRuUcOnQI+/btq3rrKbkhjB6Vc+XKFfT29lYdZ0K6tulROY8ePUJvb2/MkSOHopbcjkqPyvn06RN6e3urjvlylhiVg/jPuGG1kXvp06c3GZWD+M94d7Xb/8ioHHosKyLikiVLVLvASdf2vHnzjEblWMJrqt1+IeU1b926xeQ16VE5ScFriseyIiaO15Qay6rHa/r7+6O3t/d/2mvSo3IQ9XnNBQsWqN62SrzmggULjEbS6/GaR48e/eFeU2osa1L1mtOmTUsUrykey7pr1y7V260t4TXFY1n1eM1Xr16ht7e36q1hUmNZ9XrN0aNHW8Vrrlu3LtG8Jj2WVY/XfPDgAXp7e6ve4Ee8Jj2WVa/XHDhwoOrtKHq9pngsKyLiokWLdHlNtRvHfoTXvHnzJnp7e6tObrCE16Rjn6ioKE0TWCzhNdevX28U+ySG15Qay6rHa54/fx779++verOtpb3mmzdv0NvbW3WsYlL3mnSencVriseyHj58+Id7TamxrMRrqo2x5V7zH3bs2JFoXpMey0q8ptrYcL1ek4xlJbEPi9cUj2VFtJ7XXLNmjeqNYz/Sa6ZOnVpRa22vSY9lRcRE8ZrisayIieM1q1WrlqS9Jol9vn79it7e3qq34sp5zaFDhzJ5TTrPPm3aNGzSpImi1ppes1KlSjhlypQk7zVjY2OZvSYd+3Csy684qrg39fWtVb62NfW1vSz8fecgfzcvHEza+Pr6mmx4dJBIJ8jE7Nu3z0RLgkRxgkzMrVu3TLQkSBQnyMS8efNG8oBBqhhDTHR0tORhn1SCTIzBYJBMWkkVY0jh5eVloiUJsr179xolyMRIXYFMrtAXB4liVq1aZaIlxRirVq0ySpCJOXXqlInWwcEBGzRoYBIkinnw4IFJ0EcHiXSCTMzHjx8lgz4SJNIJMjFxcXGSyZDChQubJMikqF+/volWqhhDCqkASi5BJmb69OkmWrliDDHbtm0z0ZIE2bJly4wSZGKuXr0qGSRKFWOICQ8PNzHZckGimKioKMmEFxnXRgeJYgwGg6RRJkEinSCTQirxlC1bNuzVqxfu379fCBKlkBrjIpcgE7Nw4UITrVyCTMyhQ4dMtHLFGGJu375tcsBArtCfNWsWhoaGymrfvn0recBArtCnDyTExMTESCafSTHGhQsXFPdbqdF5ZFzbsWPHhASZFFIjYJydnbFbt24mBxJipEaxkAMJcYJMzLp16yT32+bNm5skyMScO3dOcr+VSpCJefz4sckBAzmQECfIxHz58kXygEGqGENMfHy85EGQVOG/FFIHq1LFGFJIXVdPijF27typuN/Onj3bREsK/8UHEmJ2794tud82bdoUly5dqhgX37hxw0RLCv/nzp1rlCAT8+rVK5NiNjIaXJwgE/P9+3fJhBcZ10YnyMQYDAbJQwKpBJkUUklgqWIMKaRGKskV/otZtmyZiVauGEPMsWPHJPdbqcJ/MaGhoSYHDKQYQ3wgIeb9+/eSBwxkXBudIBMTFxcnWeRNDiToBJkUtWvXNtFKFWNIIVWI6+TkhF27djVJkImZPHmyiVauGEPMpk2bTLRyCTIxFy9eNNHKFf6Lef78uUnjFF2MERwcLPucIiMjJQ8YSOE/fSAhJiEhQTIxSca10QcSUkgl+qUK/6WQGlOYOXNm7NSpk0kxhhglrykuxhCjx2sGBQVJ7rdSxRhi9HpNqcO+xPCaUgfglvKadDGGGD1e8/Tp0yZa4jXnz59vttcUF2OI+fTpk6zXFBdjiLGm15QqVEgMr7l9+3YTbWJ5TfEBA+016WIMMWpeky7GEKPXa0o1E0oVY0ihx2suWrTIRJsYXvPOnTtme813795ZzWtKFSsRr0kXY0ih5DXFxRhipEae/+xe88mTJyZeU64YQ4xeryk1GjoxvKbUWFjaayrFPnPmzDHRyjWZi/lRXlNcjCFGr9eUamKUKsYQY02vKTVOMjG85vHjxyX3W0t4TboYQ8yHDx9+iNcUF2NIocdrShXiyhVjiNHjNTdv3myiTQpeU6q4QqrJXIxer9msWTMTbWJ4zXnz5plo5Qr/xch5TanCfzF6vGZERITVvKZUcWhieM0xY8ZI7rdavObq1atNtHJN5mL0eM2HDx9Kek2pwn8xcl5TqvBfTHx8vKTXlCr8l8JaXnPGjBkm2sTwmgEBAZL77Y/2mt++fUMXFxeTzy5ZsqRJ4b8Yg8GAZcqUMdFKFf5LocdrDh061ESbGF7z8OHDJlpLek2556THa8bGxip6Tbrwn/Nz8SsWDrpRXz9I5WsHU1/bxMLfNy8c/A9A/4KjizGUgkSCwWAQKq61FmPQkA4Gue5QJch8ernuUCUWL14sBIlS3aFKHDlyhClIpLl7967wC05LkEjz7t07TJs2rVGQqJYgI8TGxmLevHmNgkS1BBnBYDBgjRo1jIJEtWIMms6dOwtBopZiDJq///7bKEgUd4cqsWHDBiFIlOoOVeLChQtCkFixYkWT7lAlnj59KiRTpbpDlfj69atwKwodJGp5FxMSEoRkqtYgkYZ06JIgUS1BRtO/f3+mIJFm7ty5RkGiWoKMxs/PT3gXtRRj0Ny8edMoSBR3hyrx+vVroTNYqjtUie/fvwtd+lLdoUoYDAah20yuO1QJDw8PBJDvDlXir7/+QgDj7lClBBnNihUrhP1Wy4EEzYkTJ4R3kRxIKCXIaO7fvy8kU0uXLq1ajEHz8eNHTJ8+PQJId4cqERcXJ3QxSXWHqlG3bl0EkO8OVYJ02cp1hyoxdepUBJDvDlViy5YtgmEj3aFKCTKay5cvC+8i6Q5VSpDRPH/+XCha1nIgQRMZGYlOTk4I8P8DCbUEGSEhIUG4TUFrgoyG3E4i1x2qxODBgxFAvjtUifnz5wv7rZbCf5oDBw4I+61Ud6gSwcHBQuxDd4dqeRcjIiKEzmCp7lAlYmJihK5RciChliAjGAwGrFKlCgIYH0hojX1IJzU5kFBLkNGMHTtW2G+1HEjQrFmzRoh9pLpDlThz5oxJgkyp8J/m0aNHQjJVS+E/zefPn4UbOKW6Q5WIj48XOrilukPVaNiwIQKY1x3ap08fIfYhBxJaY5+ZM2cK+y05kFBKkNHs3LlT2G9r1qypWoxBc+3aNWG/lbqJSImXL18KB8nFihVTLcagsabXJDcFJbbXXLJkiVW8ZkhIiInXVCrGoLGW10RE4dYLrYX/NHq85sSJEwWvSYoxkoLXJAfJxGtqjX30ek1yew3xmmrFGDR6vKa3t7cQ+7Rq1Uq1GIPGWl4zMDBQ2G9JMUZieM3o6GireU1yc4U5XnPUqFFGXpMl9tHjNU+ePGnkNdWKMWgs5TW1FmMQrOk1yeQErU3mNHq85tatW63iNcPCwky8plIxBk1UVJTgNbUWYxD0es0WLVoIXlNLkzmNHq+5YMGCJOc13759a+I11YoxCHq9JrlliHhNtWIMGj1ec9y4cUZ5drViDJq1a9cKsY+WYgwavV6T5NkT22sWLlw4yXnNWbNmGXlNtWIMGj1e8/r160Z5drViDBq9XpM0yGptMidY02sOHz7cxGsqFf7T6PGaR48eNfGaSoX/NHq85vv37428ppbCf0JsbKxwO2POnDk1Ff7T6PGa5AY9rU3mNHq85saNG028plLhP401vSZpkCVeU63wn6DXa7q5uRnl2RPLa/r4+Aixj5bCf5q9e/daxWu+efNG0mtqeRf1ek0yrUprkzmNtbzmypUrjfLsaoX/nJ+HH1E4yD4kPHG5S/3nwipfS//3IT/ge+EkcS5fvgwDBw4Ed3d3KFq0KNPc9bt370LTpk1h6dKlUK5cObC1tdWsjYiIgHz58sGZM2egatWqYG+v/bWLjo4GRISDBw9CnTp1IEWKFJq1iAivXr2CnTt3Qv369SFdunSatQAAt2/fhnXr1kGTJk3A0dGRSXv58mVYvHgxuLm5QY4cOZi0/v7+MGHCBHB3d4cCBQowaa9duwZdu3YFd3d3KFmyJNMzfvz4MVStWhWmT58Orq6uYGdnp1n76dMnyJw5M5w4cQKqV68OyZIl06yNi4uDqKgo2LdvH9StWxdSpUqlWYuI8OTJE9i6dSs0bNgQMmTIoFkLAHDz5k1YtWoVNG3aFJydnZm0/v7+4OvrC25ubpA7d24m7cWLF2H48OHg7u4OhQsXZnpOt27dgjZt2oC7uzuULVuWSfvixQsoVqwYjBgxAipXrsz0LkZFRUHy5MnhyJEjUKtWLUiePLlmrcFggLdv38Lu3buhfv36kCZNGs1aAIDQ0FDYuHEjNG7cGDJlysSkDQgIgOXLl0PTpk0hW7ZsTFp/f3+YNm0auLm5wW+//cakvXr1KvTr1w/c3d2hWLFiTM/p3r170KBBA5g/fz5UqFCBab999+4d5MyZE06dOgXVqlUDBwcHzdqYmBiIi4uDAwcOQJ06dSBlypSatYgIYWFhsH37dmjYsCHzfhsUFARr166FJk2aQJYsWZi0ly5dgoULF4KbmxvkzJmTSevv7w9jx44Fd3d3KFiwIJP2xo0b0KlTJ3B3d4dSpUoxPeOnT59ChQoVYOLEiVCxYkWm/fbLly+QPn16OH78ONSoUYNpv01ISIDPnz+Dn58f1KtXD1KnTq1ZCwDw8OFD2Lx5MzRq1AgyZszIpL1+/TqsXLkSmjZtCi4uLkxaf39/mD17Nri7u0OePHmYtJcvX4YhQ4aAu7s7FClShOk53b59G5o3bw4rV66EsmXLMr2Lr169goIFC8LZs2ehSpUqTPvt9+/fwc7ODg4fPgy1atViin0MBgO8efMGdu3aBfXr14e0adNq1gL8E+9t2LABGjduDJkzZ2bSXrlyBZYsWQJubm6QPXt2Jq2/vz9MmjQJ3N3dIX/+/EzagIAA6NmzJ7i7u0OJEiWYnvGDBw+gVq1aMGfOHHB1dWV6xh8+fABnZ2c4efIkVK9enWm/jY2NhejoaNi/fz/UqVOHOfZ59uwZbNu2DRo2bAjp06fXrAX4J45Ys2YNNGnSBJycnJi0Fy9ehPnz54ObmxvkypWLWTtq1Chwc3ODQoUKMT2nwMBAaNeuHbi7u0Pp0qWZtGFhYVCqVCkYM2YMVK5cmWm/jYyMhFSpUsHRo0ehZs2aTLFPQkICfPjwAfbs2QP16tVjjn3u378PmzZtgkaNGpkV+6xYsQKaNm0KWbNmZdJeuHABZsyYAW5ubpAvXz4mrTW9Zp48eeD06dNQtWpVpndRr9d88eIF7NixAxo0aJCoXvPSpUtJ0mtWqVIFpk2blqheMz4+Pkl6zYsXL8LcuXPBzc2NOfbR4zWDgoKgdevWsG7dukT3msmSJUtyXvPq1atW8ZpXrlyBvn37gru7OxQvXjxRvWb27NnN8pqxsbG/nNe8ePFikvSa6dKlg2PHjkHNmjV/Ka/p5uYGefPmZdJeunTJKl7z9evXUKBAgUT3mogIr1+/hp07d0KDBg2411Th4cOHULNmTZg9e3aies24uLgk6zX15Nn1eE1PT09wd3eHMmXKcK+pgrW85pUrV2DAgAFJzmsaDAY4ePAg1K5dmzn2+dW85vXr16FLly6J7jU/f/4MmTJlMivPrsdrku97y5Yt0KhRoyTjNS9dugTDhg1LdK/58uVLKFq0KAwfPjzJeU1zYx89XvPChQswdepUcHd3T3SvWa9ePZg3b16S9JoNGjRgjn04/z1s8J8b9RLnw2xs8gDAk3//uA4RO6t8vQ0AhANANgAIRcQiCl8bAv8UD74AgJxowX+YjY1NDgAIA/gnIGYNGDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6HwzGH8PBwusEvJyKG6/07tZe7WoF/i//2/vvHwjY2NpWkvu7f/z+5cXCvJYsGORwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD+S/xUxcO/osvAMT/+58X2NjYGN2x+e+fF/z7x/h/v57D4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOByOBNoHoZuBjY1NNQDIT/2/HKn/nN/GxqYz/fWIuFb8dyDifRsbm9kAMBIAygOAv42NzQwAeAQAvwHACAAo8++Xz0LEBxb7B3A4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+FwOBwOh/Mf44cWDgJAdwD4Q+a/q/rvolkr87WjAcAJALrCP0WCWyW+ZhUAjGH/FjkcDofD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw/l1SAqjigERDYjYDQCaAsBeAHgJALH//t+9ANAEEbsjosGK3ybnJ+fs2bOwYMECePr0KbP2zp07MGPGDLh79y4gIpM2IiICJkyYANeuXQODge1/otHR0TBu3Dg4e/YsxMfHqwsoEBGmTJkCR44cgejoaCYtAMCCBQtg165d8PXrV2bthg0bYMOGDfD+/Xtm7cGDB2HZsmXw4sULZu2VK1fAx8cHHj58yKx99OgRTJkyBYKCgpif8adPn2DcuHFw+fJl5mccFxcH48ePh1OnTkFcXByTFhFh5syZcODAAfj+/TuTFgBg2bJlsG3bNvj8+TOzdvv27bB27VqIiIhg1p48eRIWLVoEz58/Z9YGBgbCrFmzIDQ0lPk5vXjxAv7++2+4ceMGszYqKgrGjh0LFy5cgISEBCatwWCAiRMnwrFjxyAmJoZJCwDg6+sLfn5+EBUVxaxds2YNbN68GT5+/Mis3bt3L6xcuRJevXrFrL1w4QLMnz8fnjx5wqwNDQ2F6dOnw+3bt5mf07t372D8+PEQEBDA/C7GxMTAuHHj4MyZM2btt1OnToVDhw6Ztd8uWrQIdu7cCV++fGHWbt68GdavXw/v3r1j1h45cgSWLl0K4eHhzNqAgACYO3cuPHjAftHz06dPYfLkyXDr1i3mZ/zlyxcYN24cXLp0ifldTEhIgAkTJsCJEycgNjaWSQsAMGvWLNi3bx98+/aNWbtixQrYunUrfPr0iVm7c+dOWL16Nbx584ZZe/r0aVi4cCE8e/aMWRscHAwzZ86EkJAQ5uf06tUrmDBhAly/fp1Z+/37dxg3bhycP3+e+V00GAwwadIkOHr0qFn77fz582HPnj0QGRnJrF2/fj1s3LjRrNhn//79sHz5cnj58iWz9uLFi+Dr6wuPHj1i1t6/fx+mTp0KwcHBzM/pw4cPMG7cOLhy5QrzfhsbGwvjxo2D06dPmxX7TJ8+HQ4ePGhW7LN06VLYsWOHWfvt1q1bYd26dfD27Vtm7fHjx2HJkiUQFhbGrL1x4wbMmTMH7t+/z6wNCwuDiRMnws2bN5mfcWRkJIwdOxb8/f3N2m///vtvOH78uFn77dy5c2Hv3r1mxT6rVq2CLVu2mBX77NmzB1atWgWvX79m1lrTa5ob++j1mpMnT4bDhw8nutfcuHFjkvOajx8/torXjI+PhwkTJiQ5r7ljxw5Ys2YN95oasKbXXLt2LWzevBk+fPjArNXrNefNmwePHz9m1ur1muPGjYOrV6+aHfucOXPGrHdRj9dcvHgx95oa+fLlC4wdOxYuXryY6F5z9uzZVvGau3btMttrnjlzxipe8/Xr14LXZH0X9XhNRIRJkybBkSNHkpTXPHDggFW85oMHD6ziNUme3VyvOWPGDKt5zbVr11rFa86ePRvu3bvHrP0Vvebq1aut4jXPnTuXJL3m2LFjreI1Fy5caBWveejQoSTnNT9//ix4TdZ3UY/XBACYOXMm7N+/36zY51fzmi9fvrSa15w0aZIur2lu7KPHa+7btw9WrFhhFa85bdq0JOc1p02bZrbX5PwHQUS+VBYA5AAABAAMCwtDTtIkMjISHR0dEQCwePHiOHLkSPT398f4+HhVbUJCApYoUQIBAPPly4cDBgzA48ePY0xMjKbPdnd3RwDArFmzYvfu3XHv3r0YFRWlSTtw4EAEAMyYMSO2a9cOt2zZgh8/ftSk9fX1RQDA1KlTY4sWLXDVqlX4+vVrTdp9+/YhAGCyZMmwQYMGuGDBAnz69Kkm7a1btxAA0NbWFqtVq4YzZszAu3fvosFgUNW+efMGU6VKhQCAZcuWxfHjx2NAQAAmJCSoaqOjozFnzpwIAFi4cGEcNmwYnj17FuPi4lS1BoMBK1WqhACAuXLlwn79+uHhw4cxOjpa07+5Xbt2CADo5OSEnTt3xl27duHXr181aUePHo0AgOnTp0cPDw/csGEDvnv3TpN21apVCACYMmVKdHNzw2XLluGLFy80aU+fPo0AgPb29linTh308fHBhw8fatI+ePAA7ezs0MbGBitVqoRTpkzBoKAgTc/406dPmCFDBgQALFmyJP6PvbMMyyrr3vgCDOwAsQVbsUcdx+4aGXXsbsd2bMWxu7uxu7sFu1swUVBCGgWl41n/D/9rP+8+vc9zHnlk5tzXtT68H+5X4czZ7t991tr7n3/+wfv37zM94+TkZCxTpgwCAJYqVQrHjh2LV69exaSkJKa/d/PmzREAsHDhwjhkyBA8c+YMxsXFMXn/+usvBAC0s7PD3r174+HDhzEqKorJu2jRIgQAzJ49O3bs2BF37NiBYWFhTN7Dhw8jAGDmzJmxVatWuH79evTz82PyPnz4EAEAbWxssGHDhrh06VJ8+/YtkzcwMBAzZ86MAIA1atTA2bNn49OnT5mecWxsLObPnx8BAJ2dnXHy5Ml4+/ZtpvXWYDBg1apVEQCwePHiOGrUKLx8+TLzevvnn38iAGCBAgVw4MCBePLkSYyJiWHyjh8/HgEAc+fOjd27d8f9+/fjly9fmLzr169HAMCsWbNiu3btcOvWrRgcHMzkPX/+PAIAZsyYEZs3b45r1qxBX19fJu+rV6/QysoKra2tsW7durhw4UJ8+fIl03MKDw/H7NmzIwBgtWrVcMaMGfjw4UOmdzExMRGdnJwQALBs2bI4fvx4vH79OvN6W79+fQQALFq0KA4bNgzPnz+P8fHxTD9znz59EAAwX7582LdvXzx69Ch++/aNyTtr1iwEAMyZMyd27twZd+/ezbze7tq1CwEAbW1tsU2bNrhp0yYMDAxk8t68edO43jZu3BhXrFiB3t7eTF5fX1/MkCEDWllZYa1atXDevHn44sULpmf87ds3zJs3LwIAVqpUCadOnYp3795lehdTUlLQ2dkZAQBLliyJf//9N7q7uzO/i61bt0YAwEKFCuFff/2Fp0+fZt77jBgxAgEA8+bNiz179sSDBw8yr7fLli0z7n3+/PNP3L59O4aGhjJ5jx8/btz7tGzZEtetW8e893n69Klx71O/fn1csmQJvnnzhuk5BQcHo62tLQIAVq9eHWfNmoVPnjxh8sbHx2OhQoUQALB8+fI4adIkvHnzJvO7WKNGDQQAdHJywpEjR+KlS5eY9z5dunRBAMD8+fPjgAED8Pjx48x7n8mTJxvX227duuG+ffswMjKSybt582bj3qdt27a4ZcsWDAoKYvJeuXLFuN42bdoUV61ahT4+Pkzet2/forW1NVpZWWHt2rVxwYIF6OXlxfScvnz5gjlz5kQAwCpVquC0adPwwYMHzHufkiVLIgBg6dKlcdy4cXjt2jXmvU/jxo0RALBIkSI4dOhQPHfuHPPeZ+DAgQgAaG9vj3369MHDhw9jdHQ0k3fevHkIAJgjRw7s1KkT7tq1i3nvs3//fuPe5/fff8cNGzagv78/k/fu3bvGvU+jRo1w+fLl+O7dOyavv78/ZsyYEQEAf/31V5wzZw4+e/aM6RlbkjXbtm1rEdZcvXq1gDVZ9z5aWNPT01PAmq9evfrpWbN27dpG1hw+fDheuHCBee+jhTWnTZtm3Pt06dIlXbDmhw8fBKzJuvfRwpopKSkC1vTw8EgT1hwyZAiHNQ8dOvTTs+ajR4+M622DBg3SjDXj4uKwQIECFmHNDh06mMyaEyZM4LDmvn370oQ1L1y4wGHN1atXpwlrRkREGFmzatWqOH369HTBmn379rUIa+7evVvAmqzfILSw5sePHwWs+fz5c2bWtLOzM7Kmq6trmrHm77//bmTNwYMHpxlrLl++PF2yZpYsWTis+fjx4zRhzZo1ayIAoKOjI44cORIvXryYJqw5ZcoUTs6+d+9eZtbcsmWLce/zxx9/pBlrvnv3TmdNFaw5f/58Dmvu3LkzTVjz3r17nJx92bJlacaa+fLlQwDAChUqpBvWHDNmjIA1Wfc+WljzzJkzAtb8+PEjk1cLa4aFhXFYc8aMGcysmZiYaGTNsmXL4oQJE9KMNXv27Gnc+xDWZN37aGHN7du3p0vWzJMnD4c17927lyas2aJFC07OnlasuXjxYiNrdujQAXfs2MG89zly5IhFWPPz588WY81q1aoZc/ZRo0apytktxZobNmwwsmbbtm3Rzc2Nee+jy7IKCAhAACBVBM3RE2eO/5N/e4HeOPiv0ZIlS+iXyAgnLGHQ0aNHBV4SBu3atQvDw8MlvY8fPxZ4SRi0ceNG2f+ugoKCjB+TSdEfwuTCIPofObp+/fVXnDt3rmwYZDAY8JdffhF4K1asyBQGdezYUeAtUaIEUxg0ceJEgbdgwYJMYdDGjRsFXjoMkvsQdvHiRYGXNQx68+YNWllZcbysYVBERATmyJGD46XDILmmy6SkJCxevLjg7129enWcOXOmYhjUsGFDgZd8CFMKg/r16yfwOjo64ogRIxTDoDlz5gi8Dg4O2L9/f8UwaM+ePQIvaxh0+/ZtgZc1DPr06RNmyJCB482QIQNTGPT9+3djoEqKNQxKTU3FChUqCP7eJAxS+hDWpk0bgZeEQUpNl6NGjRJ4yYews2fPysLJihUrBF666VIuDDp58qTAmyNHDuzYsaNiGPTs2TOBN3PmzNi6dWvFMCgkJMQYqNLrLUsYlJCQgIULFxb82TVr1lQMgwwGA/76668CL2sY1K1bN4G3ePHiTGGQq6urwFugQAEcNGiQIpy4ubkJvCQMUmq69PDwEHhZP4R5e3ujtbW1YL1t0aIFrlmzRjYM+vr1K+bKlUuw3tatWxcXLVokGwYlJydjqVKlBH9v0nSpFAY1bdpU4GUNgwYNGiTwsoZBCxYsEHhZw6CDBw8KvKxh0P379wVeW1tbYxgk13QZEBCAmTJlEqy3TZo0wRUrVuD79+8lvTExMejg4CBYb3/77TfFpsvU1FSsUqWK4O9duXJlnDp1qmIY1L59e4G3ZMmSOGbMGMUwaOzYsQIvaxi0du1agTdv3rzYq1cvxTDo7NmzAi9rGOTl5SXY+7CGQWFhYZgtWzbBekvCILkPYYmJiVisWDHB35uEQXJNlwaDAevWrSvwOjs746RJk/DWrVuy622vXr0EXtYwaMaMGQIv+RB24sQJ2fV2x44dAi/ddCm33l6/fl10vWUJg3x8fAR7n4wZM2KzZs0UGw+io6ONgSr9LtapU0ex8SAlJQXLlSsn+HuzNh60bNlS4C1TpgyOHz8er127JrveDhs2TOAljQfnzp2TXW/lWPPIkSOyex8trPnkyRPR9fb333//4axZsGBBwZ+dFqzZqVMngfdnZ81Lly4JvIQ1lQb85FhTqekyMjJSkjWVBvwsyZr9+/cXeNOCNffu3Svwmos15T6Effr0yfgxmRTNmnIfwpRYU27ATytruri4CLylS5dmGvDTwporV64UeNOCNZ8/fy7wsrJmaGioxVizVq1aAi9hTaUPYXKsqdR0OXXqVIH3Z2dNMiRLe+kBvx/JmqVLlxb8vdOCNQcPHizwsrLmwoULBV7Cmko5uxbWfPDggcBLWFNpwE8La8bGxoqyJsuAnxRrkgG/H8ma48aNE3jTgjXPnTsn8KYFa4aHh2tiTUdHR8Hfu0aNGooDflpZs3fv3gIv64CfFtbcuXOnwJseWJMMydLvImFNuZxdK2u2atVK4E0L1ly6dKnAS5ouTWFNesDv38ia1atXF3jTgjUnTZok8LKy5qZNmwTePHnyYM+ePRUH/LSyplTObiprshwmk5SUhCVKlBD8vcmA38/KmnPnzhV404I179y5I/CmFWuSIVl6va1du7biYTKpqalYsWJFwd+bdcBPC2uOHj1a4E0L1jx16pTASwb8fmbWLFKkiODPJqzJ2nSpK+2lNw7qjYO6NOjUqVOi/1jQJRUG3bp1CydPniz4x5W/IRILg16+fImurq6Cf1z5JRYGBQUFoaurq2ijAl1iYVB8fDy6uroaT5KRqqJFi+Lw4cMFE7hz587FZs2ayXqlwqB169aJbrDpkprA3b9/v2iDBF1SYdDFixdFwxD+hohM4NJh0IMHD3DKlCnGqSCxkgqD3r9/j66ursYpTKkSC4MiIiLQ1dXVOGkrVWJhkMFgQFdXV6xTp46sVyoMWrJkiXFKV6qkwiA3NzfjyRdSJRUGHTt2DIcPHy7rzZQpE7Zq1QrXrVvHCYOuXr2KEydOFAS5/HdRbAL3+fPn6OrqajyBQqrEwiA/Pz90dXU1Tr1LFZnApcOg79+/o6urq/FkA6mSCoNmzpyJjRo1kvVKhUGrVq0SDRfpkgqDdu/eLdocSpdUGHTmzBnjCTZSRYdBdNPlnTt3cMqUKcapIKl3USwMev36Nbq6ugqCXH5VrVpVMIEbEhKCrq6uxskvqRILg5KSktDV1VW0+Y8uegKXXm/nz59vnBqTKqkwaOPGjcZJbKmSCoMOHjxoPElTqqTCoMuXL+OECRMEQS5dUmHQ48ePccqUKcYTKKRKLAzy8fFBV1dXUZihSywM+vr1K7q6uooCK10kDOI3XU6dOhXr1asn65WawF22bJko7NIlFQZt27ZNtFmJLqmThU+cOIEjR46U9UqFQTdu3MBJkyYJgly6pMIgT09PdHV1FQS5/KLDIPIuBgYGoqurq2h4RJdYGBQbG4uurq6izSh0kZOF+WHQ7NmzsUmTJrJeqTBo7dq1xslAqZI6WXjv3r04YMAAWa9UGHT+/HnRpkO6SBjEn8C9d+8eTpkyRRAs0CV1svC7d+/Q1dVVdECFLrEwKCwsDF1dXUXDerrEThZOSUlBV1dX4ynRUiUVBi1atEg06KdLKgzavHmz6MdzuqTCoCNHjuDQoUNlvVJhkLu7O06cOFEQ5NIldbLw06dP0dXV1XgChVSJhUGfPn1CV1dX0SZNuipUqCCYwI2OjkZXV1esXLmyrFfqtKfp06djgwYNZL1SE7grVqwwnoogVVInC+/cudN4qq1USTUemIM1+R+x6ZJizVevXqliTfpDmBbWTEhISBPWFBvwW79+/Q9nTbGThbWw5sOHD9OUNcm7GBkZmWasyf8QpoU1t27dysya/AE/Lax57do1nDRp0g9lTbGThf39/dMla65evVoVa9IfwlhYU+pk4bNnzxpPsJEqc7Amf8DvzZs3JrNmaGgoE2uKnfaklTUXLFhgEdY8dOhQmrEm/SFMC2v6+vqqYk16wE8ra/7zzz8/nDXFThbevn17umNNLy+vNGNNeu8TFxeXZqzJP1k4LVhT7LQnLax5//59i7BmeHi4zpoiRVhz/fr1HNb08PD44awpdtqTzpriJcWap0+fTjPWpAf80oo1+ScLq2FNsZOF586dazwJXKp+BGseOHBAE2uSm5CkSok1+Q3TdP0MrOnu7s5p9HJ1dRVttqZLK2uKnSycFqxJDpMxN2vyh3P5ZS7WJO9iTEwMurq6Gk/Rkyo51iQn00oVzZr03udnZ02xw2TSgjXFThYmrFm2bFlZ749gTV2Wld44qDcO6tIgchWBmiLXTIlNQisVOfp75syZqr0kDCJXDaspEgaRa4XUFB0GKW1C+EWHQUrgxi86DFICbLEiYRC5UkRNkTBIaWMuViQMEjvNSanINVPkyhk1RSZwyVUmaooOg8jx56xFH/2tFKLwiw6DyFWyaoqEQeRYbTVFwiByJbSaImGQ2FSfUpEwiFxzoaboa6bkPjCKFT2Bq7RZ5BcdBikFmmJFwqDu3bur9pKjv5UaDsWKhEGzZ89W7SVh0Jo1a1R7SRgkNp2rVHQYRK6bYC36miml0Jpf9DVTYqdRKhWZwFUKnsWKhEHkilI1RcIgchWbmiJhkNgpQUpFh0FyQapY0WGQEpzziw6DlEIUftFhkFLYJVYkDFIKQsSKXDM1ffp01V5yzZTYaaVKRcKgrVu3qvbSJwsrBd78osMgsdN65IoOg5QCTbEiYZDYqQRKRcIgpY9AYkWumSLX0KopEgaJnVqhVORDmCnrLR0GiU2syxUdBpGrtliLPu1J6eOCWJEwSOwUGKUiYZDYqbJKRcIgU/Y+pPFAbFJeqejGA7mQTazoa6aUPkzwi57AFZtYVypyzVTXrl1Ve8lpT1pYk1yLqKbMwZrkWiE1lZ5Zc8aMGZpYk1wbo6bIaU+msCYZ8EuvrEmu2mItc7Gm0kd3sdLCmuRD2LJly1R7tbImGfDTwppKTRn8ok970sKaSh/6xEoLa5KThbWwpil7H8KaYqcOKxXNmkofn/ilhTXpAb+0Zk0y4KeFNclVbGrKXKwp9xFZrMzBmsuXL1dsVhR7xoQ1O3furPpnJlcaa2FNsZPVlOq/zJpKjcNiZQ7WVBq2ECstrEmaLtetW6faS1hz165dqr30gJ8W1lT6YM+v9M6aYie1KxVhzc2bN6v20lcapyfWJAN+ac2a5GRhLaxJrhpWU+Zgza1btyo2lvPLHKy5aNEibN26teq/N2FNpSYnsSIDfumRNcVuFFOqn4E1lZr4xcpS3zW1sCYZ8BM7AVypaNaUa2YVK3OxpthJ3EqVnllTy3dNU1lTv9L459CPaBzMALp06ZLUhw8fwMvLC7JkyaLa6+/vD15eXuDo6KjaGxISAl5eXpA5c2bV3q9fv4KXlxcULFhQtTc2Nha8vLzAyckJUlNTVXmTkpLg5cuX4OTkBHFxcaq8BoMBXr16BY6OjhAVFaXKCwDw7t07cHJygoSEBNVeX19f8PT0hDx58qj2BgYGgqenJyQlJan2hoWFgZeXF+TMmVO199u3byb/txUfH298xmr/3ikpKcZnHBMTo8qLiPDmzRtwcnKCr1+/qvICALx//x68vLzAyspKtffTp0/g6ekJhQoVUu0NCgoy+c+NjIwET09PsLe3V+2NiYkBT09PcHR0JA3szEpMTDQ+J7XvRGpqqvFd/PbtmyovwP/eRVO8Pj4+4OXlBdmyZVPtJettiRIlVHvJemvKOh8VFQVeXl5QuHBh1d64uDjjM05JSVHlTU5ONq4BsbGxqrwGgwFev35t8nrr7e0NXl5eqv/OAAAfP34ELy8vyJcvn2rv58+fwcvLS/W/TQAA4eHh4OXlZdI6T9ZbJycn1d6EhATjMzZlvX316pWm9dbR0RG+fPmiygvw/+utp6cnZMqUSbXXz88PvLy8oGjRoqq9wcHB4OXlBRkzZlTt/fLlC3h5eUH+/PlVe82191G73pJ30cnJCaKjo1V5Af633qpdAwD+f+9j6h6E7H3i4+NVe0NDQ8HT09OkdT46Otrk/7bi4+M1rbfkGav9XdN7H1PWW7L3UbsPAPj/vY+p7wTZ+5iiiIgI8PLygrx586r2fv/+3fhvmyl7H+JNTExU5SV7HycnJ/j+/bsqLwAY11tT9rdk76OFNU359ym9siZ5xmrXH3Owpin/bQH8jzVNeScCAwPBy8sLkpOTVXvJ3ue/yJqm7n28vLzA2tpatVcLa5K9j42NjWqvVtYkz8kSrGkqL1qKNQMCAizGmqb+t2Up1tS697E0axoMBtXe9MqaL1++BEdHR9V7H5o1IyMjVXkB/rfe6qypLLL3cXJyMmnvo5U1HR0dVef7AJZjTZKzZ8+eXbWXsGaxYsVUe+m9j86ayvr8+TN4enqa9OdqZU0tObulWPPt27cmf0uxNGva2tqq9hLWLFCggGpvbGys8RmnR9Y05fsi2fukR9Y05b8tc7Cmo6OjRVjT09PTJOYjrGnKtyctrEn2Pqbsq2nWVLu3JuttemRNT09Pk/YgWlnT09NTE2ua+l2TPKcSJUpAgQIFTPp+rusnlTm6D//tBfqJg/8Kbdy4kemEgYIFC+LgwYM5xx+fOHECXVxcZK8qBvjfNYMHDx40Xv1w9+5ddHFxwVy5csl66SlEcvWDr68vuri4KE6s0VOI5Cjy2NhYdHFxUZyEIlOI/KsfunfvzjRhU716dePVD8Q7duxYphPpxK4ZXLRoEdP0udjVDzt37lQ8ohpA/JrBCxcuoIuLi+wVCgD/m0Lcu3ev8fjjZ8+eoYuLC9rZ2cl6xa4ZDAoKQhcXF8UpGXL1w6pVq4xXPxgMBnRxcVGcvqCnEOmrHwYOHKh4zDTA/6YQ6asfWK7sBPjfFCJ99cPq1auZJl7Frn44ePAgtmnTRnEam776gRxFfv36dXRxccEcOXLIesWufnjz5g26uLhg/vz5Zb1i1wx+/foVXVxcsHjx4rJeegqRvmqnU6dOTNPFZArx2bNnxmc8YsQIphOSyBQifdXO3LlzmaYhyRQiffXDli1bmKbsChQogIMGDeJc/XD69Gl0cXFRnAAlU4j01Q8PHjxAFxcXxVNsxK5++PTpE7q4uGDhwoVlvRkzZsQWLVrgmjVr0NfXFxH//woFFxcXLF26tKxX6prBXr16YZUqVRR/X2JX2k+YMIFpUk7smkHWCSxyzeCFCxeMR5Hv2bMH27RpI3t9FMD/phCPHTtmvPrhypUr6OLionjCCT2FSK698vT0RBcXF8VTGsmV9ps3bzZe/RAWFoYuLi7o6Ogo6yVTiPyrH9q2bYvly5eX9Upd/TB48GCsXr264u+6cuXKgivtp02bhvXr11f0il0zuG7dOmzZsqWil77Snux9jh49im3atJG9PgpA/JrBW7duoYuLi+KpCmJX2r9//55570OmEMm1V9++fUMXFxfFq6esra2NU4j01Q9du3bFSpUqKf6+yBQiffXD6NGjsVatWopeZ2dnwTWDCxYsULy6AeB/U4j01Q/btm1j2vuIXf1w9uxZdHFxQVtbW1lvrly5BFc/PH78GF1cXBQnuclpf/QUYkBAALq4uCheAyd2zWBycjK6uLgoXvVHn3hDX7XTr18/xescAf534g199cPkyZOZTgAlJ95cv37d+C6uXLmS6WTJIkWK4LBhw/DcuXPGvc/+/fuxTZs2iqeeil0z6OHhgS4uLorX9eXIkQM7d+7MuWbw1atX6OLionhSETmBgb5mMCIiAl1cXBRPwJG60v7PP/9UvO4GQPyawaFDhypeaQQgfqX9rFmzFK+tAvjfNYPu7u7GvY9a1qSvGSSsKXd9FIA4a967d08Va9LXDBLWVLqWyJKsKXbNYHpkzYsXL6pmTXLtlRbWDA4ORhcXF8Vr4MzBmvxrBgcOHMh0WpkW1hS7ZlALax46dMgirPn27ds0ZU36mkEtrDly5EhVrElfMzh37lzFK5IB/rf3oVnTzc3th7Om2DWDWljTz8+PmTXJNYPmYs3evXunGWvS1wwuW7ZM8Up6APOwJn3NIGFNpRNOzMGa9DWD6YE16WsGyTOePn26yay5fv16Tazp4uJiEmvevn07zVhz3bp1Rtb8/v07uri4YMmSJRXfRa2syb9mMC1Yk5z2Zy7WPHfuXJqyJtn7BAYGmsyaKSkpqlmTvmawX79+TDm7GGtOmTJFFWvS1wyqYU1yzWBasyb/SnstrBkZGamaNemcXQtrDhs2LM1Yk77SftOmTWnGmvSV9oQ1c+fOLevVyprktD9TWFPsSvsePXpYhDUXL15sMmvu2rVLNWuSvY8W1nz+/HmasSb/Svu0YE2xK+21sOaaNWsswpo3btxIU9YkVyxHRUUx5exSrNm5c2dVrElfaT9y5Eim03gtxZr58+cXXGmfHlkzMTFRE2vqsqz0q4r1xkFdGiV15DzZJNIBGV83btwQ9ZYrV07QjMGXr6+vaBhCNol0QMZXdHS0KCiLNWPwlZKSIho80QEZ2SSKSewfSLFmDDGJXTtBHwlNB2R8iR2fTB8JTW8S+Tp27JjocxLbJPL19OlTUa/YJpGv4OBg0TCkUKFCOGTIEDxz5oxxk8hXfHy8aGhFNol0QMaXwWAQBVb6qlsSkIlJ7GoRuhmDbBLFJHYFDH0kNL1J5EvqCjvSjEFvEvm6fPmyqJccCU1vEvl6+/ataBhCbxIJsPEVGRkpGkyKbRL5Sk5OFg0XxTaJYhLb6JJNotKR0GLX/IhtEsU0d+5cyU0ivxmDr3379ok+p2rVquH06dPx4cOHku/i3bt3Rb10M4bUeuvn5yfa5E2uHzp//rzkehsTE4P29vYCr729Pfbt25fzQYKv1NRUrFixosBLmjF2795tDMjE9Mcff4iut+T6Ibn9h9gx6DY2NsarbulmDL7ErimkP0jQARlfp0+fFn1O5IMEHZDx9eLFC1GvWDMGX6GhoaJNh2KN/3wlJCSIBshizRh8GQwG0fBIrPFfTGJH3dPNGOSDhJjEriSgrx+iP0jwtW3bNtHfNbl+iP4gwdfVq1dFveT6ITog4+v9+/eiYQj5IEEHZHxFRUWJBpMODg44YMAATjMGX8nJyaJBP/kgQTf+i0kscBcLyMT0119/CbxizRhiEruGm278pz9I8HXo0CHR50SaMegPEnw9fPhQ1Esa/+kPEnwFBgaKhiGFCxcWfJDgKzY2VjS0srOzE3yQ4MtgMIg2/9EfJEhAJiaxayzp64dIM4aYxo8fL7reNmrUSND4z5fUNS5izRh8nT9/XtQr1vjP16tXr0Q/vJPGf/qDBF/h4eGiH4JIM8apU6ck9z6JiYmiH3NI4z/9QYIvg8EgGuRmzZrVeNUtCcjE1KdPH4GXNP7THyTEJHYdE/1BQi4g08KaN2/eFPVqYU2xZgy+vn37li5Zc8SIEaLr7Y9mzePHj4s+J3OwJt2MwRcLa0rtfeLj40U/2Ik1Y/Alx5r8ZgwxdenSReBNC9aUusLuZ2bNL1++/DDWpJsxxCTWUKKVNfnNGGISu4pSqvGfr/3794s+J9KM8aNY09/fX5Q1SeO/VtaU2vukpqaKNhz97Kwpdk0hYU1+MwZfcqzJb8bgy9PTU9SbFqwpNhTMyppiTZppwZrTpk0TeM3FmvSQOV/Xrl0T9WphTbFmDL7kWJPf+M9XSkqKJGvyh8zFpIU1xa44TAvWPHz4sOhzsjRr0s0YfMXFxWGBAgUEXsKahw8fVs2aYs0YYhK7xlIra4oNmfOlhTUvXLgg6v3RrBkREfFDWVMqZzcYDKIN0+ZgzTVr1pjMmkrNGLt37xZ9TuSq2x/Fmh8/frQYa4o1eLKyplgTXlqw5vLly0XXW8KadOM/X3KsyW/85+tHsSa/8Z8vrawpNoSUFqw5ZcoU0fX2R7PmlStXRL0srPnu3TtZ1qQb//lSYk268Z+vH8GaYkPmYho4cKDoevszs+a9e/dEvWnBmmLDT+ZgTbrxX9fPJb1xUG8c1KVBycnJxikVOiCT2yTSItMiGTJkMAZkcptEWoMGDTL+wyQ2HSqn+fPnG198ejpUagNB68CBA0av2HSonO7fv69qk0jL39/fOMXEskmkFRMTY5w2y5YtG3bo0AG3b98uu0kkSk1NNU4TsQZktNq1a4cA/5sOVQrIaI0dO9b4+2JpxqC1Zs0ao5cEZPR0qJzOnj1r9IpNh8rJy8vL6CXNGHKbRFphYWHGCW6x6VA5JSYmGieRxKZD5WQwGLBOnTqqNom0evXqxdkkKgVktKZPny7YJMoFZLR27Nhh9LIEZLSuX7/O2SQqNWPQ8vHxMYapYtOhcoqOjjZOuIhNh8opJSUFy5YtiwDi06FKIlPrUtOhcho6dKjx9yU2HSqnJUuWGL1kOlQuIKN15MgRo5clIKP1+PFjo1dsOlROQUFBRrhnacagRYep2bJlMwZkch8kiAwGg3GyT2w6VEkdO3Y0rrdi06FymjhxovH3JTYdKqcNGzYYvWLToXK6ePGi0Ut/kJACNlpv3rwxhqnkg4RcQEYrIiLCOFEoNh0qp6SkJOMJNOSDxObNm5nWW0Q0TkPTAZncBwla/fr1M663LM0YtObMmWP8XbM0Y9Das2eP0cvS+E/r9u3bRq/YdKicPn36ZAxTxaZD5fT9+3fjdC/9QYJ170OmN8l0qFJARqtNmzbG9VZsOlROo0aNMv6+atasqRiQ0VqxYoXRW6FCBcWAjNbJkycFARk9HSqn58+fCwIyuWYMWiEhIcYJbtbGf6KEhATj5KfYdKicDAaDccqWtfGfVrdu3YzrLZkOlQvIaLm6uhp/XyyN/7Tc3NyMXrGTiOTk7u5u9LI0/tPy9vY2hqksjf+0vn79ajy5j7UZg0gra5ITgNOaNRcsWGBW1pRrxqClhTUDAgIErCnXjEFLK2uSU7u0siZLMwYtLay5du1ai7EmvfdRw5rh4eEC1lRqxiAyN2uuWrUqTVhzxowZxt81SzMGrZ+BNVka/2lpZU1yOgnNmnLNGLS0sOawYcMErCnXjEGLz5pKzRi0jh49ahbWZGnGoKWVNcmALN2MkRas2alTJ7OyplwzBq2NGzeazJqXLl0SsKZcMwYtLawZGRlpZE3WZgwimjVZmzFokRsu0hNr7t2712KsST4km4M1lZoxiMzJmizNGLS0sObKlSuNXpZmDFpSrMmy90mvrElOs0xr1pw6dapZWJOlGYOWh4dHumRNchpUWrPm4MGDzcqaco3/tA4ePGgyaz548MDoZWn8p6WFNWNjYzmsydL4T6SVNdu3b5/uWPPcuXPpnjVZGv+JDAaD8WRZU1izd+/exneRpfGflhbW3Llzp8msSR/GxDJkTsvHx4eTs5uDNeUa/4m0siY5HZZ1yJyWFtZcunSpRVhTl2WlNw7qjYO6NOjSpUuqNom0vLy8BEd1syo0NBS7dOnCvEmkFR8fjz169FAVkBEZDAYcMmSIqoCM1j///CO4gphVq1evVhWQ0Tp06JDidKiUbt26pTgdKqUPHz6o2iTS+vr1K3bt2pV5k0grKSkJ+/TpozgdKiaDwYCjR48WXEHMqnnz5qkKyGht2bJFVUBG68yZM6oCMlqPHz82BmQsm0RagYGB2KVLF8XpUDHFxMRgt27dFKdDxZSamooDBw5UtUmkNWnSJMFR3axatmyZqk0irb179wquIGaVu7u74FooVr1+/VpVQEYrPDwcu3TpwhyQ0UpISMCePXuqCsiIDAYDDhs2zOSjumfMmKE4HSql9evXK06HSuno0aOK06FSunv3ruJ0qJQ+fvyIXbt2ZQ7IaEVHR2PXrl1VBWREycnJ2LdvX1UBGa0xY8aoCshoLVy4UHE6VErbtm1T1fhP6/z586qaMWg9f/5cVeM/raCgIOzSpQvzBwlacXFx2KNHD84VxKxKTU3FwYMHC66FYpWrq6uqgIzWypUrVQVktA4cOKAqIKN1/fp1VQEZrXfv3jFNh4opMjISu3TpojgdKqbExETs1auXqsZ/IoPBgCNHjlScDpXSnDlzVDX+09q0aZPgWihWnTx5UlVARuvBgwfYt29f5oCMlr+/P3bp0sWk6dDv379jt27dVDX+E6WkpGD//v0FVxCzasKECaoa/2ktXrxY8SQiKe3atUvxJCIpWZo1WZsxaKVX1lyzZk26Y00fHx8ja7I0Y9DSwprJycnYp08fVc0YRJZkTTc3N4uw5pMnT1Q1Y9DSyprdu3dPd6y5fPlyVc0YtLSwpoeHh6pmDFqWYk2y97EEa86cOdMirHns2DEcPnw4czMGrf8ia44dO9YirLl9+3aTWfPChQsWYc3g4GBjzp6WrGkwGHDw4MGqmjFo/ddY09vb2yKsmZSUhL1799bEmmqaMWhpZU01zRi0tLDmw4cPVTVj0LIkaw4YMEBV4z8tLay5ZMkSVUPmtLSw5uXLl1UNmdP6L7LmtGnTVA2Z09LCmocPH1Y1ZE7r9u3bqhr/aWlhzaioKOzatauqIXMiLayJ+P+nWqtp/KdlKdY8e/asRVjz8+fP2LVrV+Yhc1paWXPQoEGqhsxpTZ48WVXjPy2trKlmyJyWFtZ88+ZNumTN4cOHq2r81/Xz6Ec0Dlrh/zfG6ZKRlZVVEQAIAAAICAiAIkWKWPhvpEuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26/gsKDAyEokWLkv9ZFBEDtf5/Wmv9P9ClS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp0pR/pjYO6dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUvXf0h646AuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dL1H5LeOKhLly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunT9h6Q3Dur6z+jBgwdw9uxZiI+PV+199+4dHD58GKKjo1V7w8LCYOfOnRAWFqbam5CQAFu2bAF/f3/VXkSEbdu2wbt371R7AQD2798PT58+BURU7T19+jTcvn0bUlNTVXuvX78Oly9fhsTERNXeZ8+ewcmTJyE2Nla19+PHj7B//374+vWram9UVBRs3boVgoODVXuTk5Nhy5Yt8PHjR9VeRISdO3fCq1evTHpOR44cgYcPH4LBYFDtvXjxIty4cQNSUlJUe+/cuQPnz5+HhIQE1d5Xr17B0aNH4fv376q9nz9/ht27d0NERIRqb2xsLGzZsgUCAwNVew0GA7i5ucH79+9VewEA9u7dCy9evDDpGZ88eRLu3btn0rvo4eEBHh4ekJSUpNr76NEjOHPmDMTFxan2vn//Hg4dOgRRUVGqvREREbBjxw6T1tvExETYvHkz+Pn5qfaS9fbNmzcmPaeDBw/CkydPTPKePXsWbt26ZdK7ePPmTbh06ZJJ6+2LFy/gxIkTEBMTo9rr5+cH+/btgy9fvqj2fvv2zeT1NjU1FbZs2QI+Pj6qvQAAu3btAi8vL5Oe07Fjx+DBgwcmrbeXLl2Ca9euQXJysmrvvXv34Ny5cybtfd68eQNHjhyBb9++qfaGhITArl27IDw8XLU3Pj4etmzZAgEBAaq9BoMBtm7dCt7e3qq9AP+/93n+/LlJz/jUqVNw584dk9bbq1evwpUrV0xab588eQKnTp0yae/j4+MDBw4cMGnv8+XLF9i2bRuEhISo9iYlJcHmzZvh06dPqr2ICNu3b4fXr1+b9JwOHz4Mjx8/NuldPH/+PNy8edOk9fb27dtw8eJFk/Y+Xl5ecPz4cZP2PgEBAbBnzx6IjIxU7Y2JiYEtW7bA58+fVXvJevvhwwfVXgCA3bt3g6enp0nP+Pjx43D//n2TnvGVK1fg6tWrJq23/0XW3Lp1K7x9+9ak56SFNc+cOaOzJqNSUlLSLWtev37dpPX27t27mlnTlL2PzprqpJU1T58+bRHW3L59O4SGhqr2kr2Pzpps0sKa/v7+mljTzc0NgoKCVHvTK2tevnzZZNa8f//+f4o1yd4nvbHmtWvX/lOsSXJ2U1lzx44dFmNNU3N2rax57Ngxi7Cmm5ubRVhzz5496Y41Hz58mC5Zc/PmzRZhzQMHDliENW/cuKGzpgrt3LkTXr58qbMmg4KCgtIta5q699HKmu7u7hZhzYMHD/6nWFPXv1CIqJdCAUARAEAAwICAANSVPhUREYHZs2fHLFmy4B9//IGbN2/Gz58/M3kTExPRyckJM2TIgE2aNMGVK1fihw8fmLwGgwHr16+PVlZWWLt2bZw/fz56enqiwWBg8vfp0wcBACtXroz//PMP3r9/H1NTU5m8s2bNQgDA0qVL49ixY/Hq1auYlJTE5N29ezcCABYuXBiHDBmCZ8+exbi4OCbvzZs3EQDQzs4Oe/fujYcPH8bo6Ggm78ePHzFDhgyYPXt27NixI+7cuRPDwsKYvN++fcO8efNi5syZsXXr1rhhwwb09/dn8qakpKCzszPa2Nhgw4YNcdmyZfj27VsmLyLi77//jgCANWvWxNmzZ+PTp0+Zn/GIESMQALBChQo4ZcoUvH37NqakpDB5ly9fjgCAxYsXx1GjRuHly5cxMTGRyXv8+HEEACxQoAAOHDgQT548iTExMUzep0+fIgBg7ty5sXv37rh//3788uULkzc4OBhtbW0xa9as2K5dO9y6dSsGBwczeePj47FQoUKYMWNGbN68Oa5ZswY/fvzI5DUYDFizZk20trbGunXr4qJFi/Dly5fMz6lLly4IAFitWjWcMWMGPnr0iPldnDJlCgIAli1bFidMmIDXr1/H5ORkJu/mzZsRALBo0aI4bNgwPH/+PMbHxzN5r1y5ggCA+fLlw379+uHRo0fx27dvTN63b9+itbU15syZEzt37oy7d+/GiIgIJu+XL18wZ86caGtri23atMFNmzZhYGAgkzc5ORlLliyJGTJkwMaNG+OKFSvw/fv3TF5ExMaNG6OVlRXWqlUL582bhy9evGB+xgMHDkQAwEqVKuHUqVPx3r17zO/ivHnzEACwZMmSOGbMGHR3d2deb/fv348AgIUKFcK//voLz5w5g7GxsUzee/fuIQBg3rx5sVevXnjw4EGMiopi8vr7+2PGjBkxe/bs2KFDB9yxYweGhoYyeWNiYjBfvnyYKVMmbNWqFa5btw79/PyYvKmpqVipUiW0trbG+vXr45IlS/DNmzfMz6lt27YIAFi9enWcNWsWPnnyhNn7999/IwBg+fLlcdKkSXjr1i3mZ7x69WoEAHRycsKRI0fipUuXMCEhgcl75swZBADMnz8/DhgwAE+cOIHfv39n8np6ehrX227duuG+ffuY19uwsDDMmjUrZs2aFdu2bYtubm4YFBTE5E1ISMCiRYtixowZsVmzZrhq1Sr08fFh8hoMBqxduzZaWVlhnTp1cOHChejl5cX8nHr27IkAgFWrVsVp06bhgwcPmNfbadOmIQBgmTJlcNy4cXjt2jXmd3H79u0IAFikSBEcOnQonjt3jnm9vXbtGgIA2tvbY58+ffDIkSPMe58PHz6gjY0N5siRAzt16oS7du3C8PBwJm9UVBTmzp0bbW1t8ffff8eNGzcy80pKSgqWKVMGbWxssFGjRrh8+XL09vZm8iIitmjRAgEAf/31V5w7dy4+e/aM+RkPGTIEAQArVqyIrq6ueOfOHeZ3cfHixQgAWKJECfz777/xypUrzHufw4cPIwBgwYIFcdCgQXjq1Cnm9fbRo0cIAJgnTx7s0aMHHjhwAL9+/crk/fz5M2bOnBmzZcuG7du3x23btmFISAiTNy4uDgsUKICZMmXCFi1a4Nq1a/HTp09MXoPBgNWqVUNra2usV68eLl68GF+/fs38nDp06IAAgL/88gvOnDlT1d5nwoQJCABYrlw5nDhxIt68eZN577N+/XoEACxWrBiOGDECL1y4wLzeXrhwAQEAHRwcsH///njs2DHm9fb169doZWWFuXLlwq5du+KePXuY9z5aWDMpKcksrPnbb7+pZs2+fftqZs1SpUqlKWveunVLwJqsex+trGlnZ2cW1ly6dGmasebIkSMRANDZ2RknT56cZqx54sQJi7FmlixZzMaavr6+TF6trNm1a1cOaz58+DBNWHPLli1mYc2+ffuqYs13796ZzJpfv37FXLlyWYQ1mzRpYjbWvHv3LvO7OH/+fLOx5unTp9OMNTNlyoTZsmXDP//8E7dv355mrFm5cmWLsOaYMWNMZs01a9ZYhDW9vLwErBkZGcnkJayZJUsWbNu2LW7ZsoWZNRMTE83CmrVr18YFCxakGWtOnz7dmLOnZ9Zk3ftERUVhnjx5zMaa7969Y/IiamPNoUOHGllzypQpJrPm6NGjVbHmkSNHdNZUwZodO3Y0G2veuHGDee+zYcMGs7Bmv3790pQ1c+TIgVmyZEEXF5c0Zc0GDRpYhDVnz55tMmvu2bOHw5pnzpxJE9b89OkThzV37NhhEmu2atUK169fr2rvYw7WrFGjRpqy5ooVKyzCms+ePbMYaxYuXNhk1vz111+NrLlw4cI0Y01XV1cja44fPz7NWNPd3T1dsmapUqU4rKkmZ9fCmoMGDTILa/7999/o7u7O/C7qsqwCAgKQ9K8BQBE0R0+cOf5P/u2lNw7+ezR16lT6JVIVBrm5uQm8JAxS+hDm4eEh8Do6OuLIkSPx4sWLsnDi7e2N1tbWHC/5EHb8+HFZOCH/yNFeAid79+6VDYOSk5OxdOnSHC/5EMYSBjVt2pTjzZgxIzZt2pQpDBo8eDDHqyYMWrBggeB3XaVKFaYw6ODBgwIvaxj04MEDgZcOg+TgJCAgADNlysTxkjBIqekyNjYWHRwcOF4SBil9CEtNTcUqVapwvGo+hLVv357jJWHQsmXLFMOgsWPHCn5fNWvWxDlz5iiGQWvXrhV4SdOlUhh07tw5gbd48eJMYZCXlxdaWVlxvKxhUHh4OGbLlo3jZQ2DEhMTsVixYhwvHQbJwYnBYMC6detyvHQYpNR02atXL46XhEGLFi3CV69eyT6nGTNmCH7Xv/zyC1PT5c6dOwXecuXK4YQJExTDoOvXrwu8xYoVw+HDh+OFCxdk4cTHxwczZMjA8ZKmS6UwKDo6GvPkycPx5syZE7t06aIYBqWkpGC5cuUE6y1rGNSqVSuOV00YNGzYMMF6S8IgJThZunSp4HdNwqB79+7JPuOjR48KvKVKlcIxY8agh4eH7Hr75MkTgZc1DAoKCkJbW1uOl3wIO3TokGwYFBcXhwULFuR4WZsuDQYDVq9eXbDesoZBnTp1Eqy3DRo0YAqDJk2aJPh9sYZBGzduFHhZw6BLly4JvE5OTjhq1CjFD2Fv3rwR7H1IGHTixAnZMCgyMhJz5MjB8ZIwSKnpMikpCUuUKMHxkjDIzc1NMQxq2LAhx0s+hK1evVoxDOrfv7/gXSRNl0ph0Jw5cwS/66pVq+L06dMVw6C9e/cKvGXKlGEKg+7cuSPwsoZBnz59wowZMwrWW5Yw6Pv372hvby9Yb0kYJNd0mZqaihUqVOB4SRjE8iHMxcVFsN6yhkGjR48WPONatWrh3Llz8fnz57LPeOXKlYLfdaVKldDV1VUxDDp16pTAS5oulcKg58+fC7wFCxbEwYMHKzYehIaGYpYsWQTrbc+ePRUbDxISErBw4cIcL2vjgcFgwFq1anG8mTJlwpYtW+K6desUP4R1796d46UbD5Q+hMmx5uPHj2W9W7duFXi1suaIESMUWfP9+/doY2PD8aYH1mzWrJngXUwL1ly4cKHgd20O1lT6ECbHmkpNl4GBgRZhTYPBgFWrVuV4tbImGfBTYs1x48YJfl8/O2u+fPlSwJoFChQwsqbc3keJNeX2PomJiejo6ChYb7WyJsuAX+/evQXrLStrzpw5U/C7Zh3wE2NN0nSpxJo3btwQeM3FmnJ7n+joaMybNy/Hq4U1bW1tjayp9CFMjjWVmi6HDx8uWG/TgjWPHTsm8GphTXrA70exZnx8vMVYs3PnzoL11hysqZSzb9q0SeBND6yZM2dOjpd1wE+KNVkH/Bo1asTxphVrzp07V/C7/tlZ08/PT8Ca9vb2mllTacAvNTUVK1asKFhvTWVNNQN+fNYE+F/TpRJrrlq1SuAlA34/kjVfvHgh8JqLNeVy9oSEBCxSpAjHmx5Y859//hH8vqpXr44zZ840mTVZBvyuXr0q8KYVa+bOnZvjVcOaZcqU4XjTijX/+usvwXprDtZUaro8dOiQwKuFNVkH/MRYk/UwmdjYWMyfPz/HmyNHDqYBP62s+eeffwrW27RgzXXr1gm8rKx5/vx5gdccrKnUdBkeHo7Zs2fneAlrKjVdirEma9OlwWDAevXqCdZbLaxJBvx+JGvu2rVL4E0L1vT19bUIa+qyrPTGQb1xUJcG3blzBxctWiRYeOmSCoM8PT1x/fr1Aujkw4lYGPTx40fcsmUL5suXT9IrFQZFRESgm5sbli9fXtIrFQYlJiaim5sbNmjQQNJLh0H8Cdzdu3cbJ7+kSioMOnHihPEkGalydnYWncB1d3cXBSG6pMKghw8fGidVpIqewKU3RG/evMFNmzZh1qxZJb1SYVBgYCC6ublh0aJFJb1SYVB0dDS6ublhtWrVJL1SYZDBYEA3NzfjFKZYyYVBBw4cwB49esj+vqTCoLNnzxpP7pIqqTDo5s2bosETXSQM4k/gPn36FNeuXSuATrqkJnA/fPiAW7ZsETR38TdEYmFQaGgourm5YalSpSS9UhO4cXFx6ObmhrVr15Z9F6XCoB07duAff/wh+/uSCoOOHj2KAwYMkPVKhUGXLl0SDYHpkgqD7t69i0uWLJH1SoVBL1++xI0bN2LmzJklvVJh0KdPn9DNzU0AnXSRMIg/gfvlyxd0c3MThHx0SYVBycnJ6ObmJghy6SJhkNgE7t69ewVhPb/IBC4/DDp16pTggwy/pE57unr1qmiDJ11SYdCjR49w1apVAuikSyoMevfuHW7evFkAnXRJhUFBQUHo5uYmgE66pMKg79+/o5ubG9aoUUPSS4dB/KbLrVu3Cj6c0SV3svChQ4cEwMovqTDo/Pnzos3WdEmdLHzr1i3Rhnq6pMKg58+f47p16wTQSZdUGOTj44NbtmxBOzs7Sa/UaU/h4eHo5uaGZcuWlfRKhUHx8fHo5uYm+IhNl1wYtGvXLkGjAr+kwqDjx48bp/ukSupk4StXrhgnOKVKKgy6f/8+Llu2TNYrFQa9evUKN23aJAjc6ZKawPX390c3NzdBcxddUmHQ169f0c3NTTC8QJfUycKpqano5uYmGFChSy4M2r9/v3HSVqqkwqAzZ84Yp6mlSioMun79unFiXqqkwqAnT57gmjVrBB846ZI6Wdjb2xu3bNkiaO6iSyoMCg4ORjc3N8EHTrpI4wF/AjcmJgbd3NwEH1XoIo0HYqc9bd++Hdu0aSPplZvAPXLkiPFkA6miTxamn/HFixeNp1dIFTntid94oJU1N2zYIAjc6fqRrOns7CzptTRrig34nTx58oezpthpT+mZNX/55RdJr7lYk/8h7MCBA8ZTnaRKijXPnTvHzJrXrl0zG2s+e/bsh7Km1MnChDX5zbR0/UjWJCesSdWPYs3JkyfLeqVOFr53755oUxldWlgzT5482LNnT8GAn5+fH7q5uWGBAgUkvVpZU+y0J8KajRs3lvTqrClkTf4gEV3mYk16wM8crNm6dWtJr1bWlDrt6fz586IfwOmSYs3bt29rYs3169ebxJq+vr4WYc2EhAR0c3MTfMSmy1ysyR/wO378uGDwgV9aWVPstKf0yJpRUVEWZc1u3brJ/r4sxZpFixbF4cOHC5ou04I1xU570sKasbGxTKwpdbKwzprCUmJN/iARXVKsGRkZqciaUicLs7Cm3MnCe/bs+aGsKXWysIeHh/EWFKn6Uay5efNmwSARXT8Da/KbLtOCNcUG/H40a0qdLJyeWbNOnTqSXjnW3Llzp0VY8/Llyz+cNcUOkyGsyR8koksra4qdLExYs1KlSpJeraxpysnCun689MZBvXFQlwaR62BZi75mSins4hc9gUuOP2ctOgwiR9yrKRIGiZ08oVT00d9yAYxY0WGQ3GZRrOgwiD/toVR0GCQ2XSdXdBgkNtEjV3QYRK6bUFPkmimxyTylIhO45Oh0NUWHQXJhqFjRR3/LgZtY0WEQ/xQ7paLDIKUNH7/oMEhsglKu6DBo3759qn/XJAy6ePGiai99zZQc9IkVPYHLP1VJqegwiBxTz1p0GKQE2Pyij/5WCrv4RYdBYhPrckWHQWKnEigVCYPItTFqir5mSq7RUazoa6bkgjKxoq+ZUvqAxC96AlepkY1fdBikBF/8osMgsaktpSKnPZ09e1a1lw6D5IJUsaLDoJIlS6ry0mFQkyZNVHnpMKhfv36qvHQYpNRYwS/6mimx03rkip7AFTuRSalIGHT58mXVXvpkYbnAW6zoMIg/6apUdBik1BzOLzoMUru/pcMgcsU6a9FhkNhJ3EpFwiBypYiaItdMiU1fKhUdBvFPFlAqOgySa0gVK/q0J/7JAkpFh0FKHxf4RYdBSsEzv+gwSOyEEKUijQdik9BKRTceyDV0iBV9zZTch2Cxoq+ZkgutxYq+ZopcQcla9MnCWlhT7GRYuaJPe0qPrHnmzBnBqUpKZQ7W3LFjhybWVPrQxy/6milTWJMM+J0+fVq192dgTf4JvkplLtYkV/6yljlYc+HChcarZNWUVtYkA35aWFOuCU6s6JOF0yNrbt68WZWXZs3jx4+rfk7mYk25j09ipZU1yYBfly5dVHm1siYZ8FMaYOTXz8Kach+RxcocrHn8+HHZBimx0sKa9JXGWlhT7LQeudLKmmTAj1zPrqbMxZpyTXBiRbOm0gd7ftGsqdQ4zC+aNcm1d6xlDtacM2cOnjx5UrVXK2uSAT8trCnXkCpW5mLNiRMnqvKaizXJVbJqirAmuS5YTdFXGmthTf4JvkqlhTXpAT+lIVV+/QysKXbTjFKZgzU9PDwEp4YqlTlY89ChQ9ihQwdVXpo1lRrZ+EUP+GlhzR07dqj+XZuDNW/fvq3a+zOwptKgBr/MxZqrV69W5dXKmmTAT+yEZ6WiWVPu0AixMhdryjWHi5W5WFPsRiC5MhdrWuK7pn6l8c8hvXFQbxzUpUFqP6yScnZ2Vv3RnpSTk5PqQJRU/vz5FScRpSp37tyCaw1Zi2xm5KZzpYpsZpycnFR7yQSJ2jCEVLVq1VRDNqkyZcpg8+bNTfIWLVpU9Qd/Uvb29qo/XpEiQY4pXrKZkTuZRKpsbGywcePGguPeWZ9xrVq1ZCew5apSpUqqN/akSpQoIXtSmFwVLFhQddBGKk+ePIoTblJFgnO5CRWpIsG52tAK4H/BudrNOanq1avLnnghV+XLl1cdXJNydHRUDQWkHBwcTF5vc+XKZfK7SBrU1QbIAP87rUBuOleqSHAud9KpXFWpUgXr169vkrd06dLYsmVLk7yFCxc2eb21s7NTHeCQIuut2sZBgP81DahtDgX4X3CuNpgkVbNmTfz1119N8laoUEF20kyuihcvLntahlwVKFDA5HdRy3qbNWtWbN++vexJUFKVMWNGbNGiheBKeZYiwbncRKBc/fLLL7JTn3JVrlw5wfUrrFW0aFHBNUqslS9fPpP3Pjlz5tS093FxcRFcvcBSJDiXO3VYqkhwrjZ8JlW5cmXVwxqkSpYsafJ6W6hQIWzXrp1J3rx585q83pLTCuROeZcq0qDOv+aPpcjJeHKnIchVjRo1VDdXkNJZk71I04AlWLNq1aqaWFPth0JSRYoU0cSaWvc+pnjNwZpqG4DJM9bKmnKnh8uVVtY0db3VWVNdaWHNYsWKaWJNU/c+uXLlMvkZE9bkX/PHUumZNU1dbwsXLmxy7pNeWbNhw4Y6azJWnjx5NO19LMmalStXNunvXa1aNZ01GcscrCl3EpRUpWfWNHW9tTRrFipUSLXXHKz522+/meS1JGtaau/Ttm1bi7Gm2oFiUv9F1lR7mAEprazZqFEjTaxZs2ZNk/7eFStW1FmTsdIra5YrVy5dsqbW75qHDx/WTyC0oPTGQb1xUJcGzZ07V/bKX1L0FCM5Pnnnzp3o7Owse4UCAHeKkRyffOXKFXR2dpY9mp8UmWIkxye/efMGnZ2dmZpK6CnGpKQk/P79Ozo7OzNtougpRnKUeZ06dZhgyM7OTnB8cpcuXZg22WLHJ48bN46pKS1z5syC45NXrFjB9IzpKUZydcThw4fR2dlZ9th2Uvzjk+/evYvOzs5MExRkivHOnTuYkpKCfn5+6OzsLHvMNCn+NYUGgwGdnZ2ZQkJydQR9fHLz5s2ZNmD0FCM5Prlfv35MITIJyOjjk6dPn84UTpKAbO3atcarIzZt2oTOzs6KoarY8clnz55FZ2dnpg0rfVVPamoqPn/+HJ2dnTFnzpyKXv5VPREREejs7Mx0sgqZYrx48aLxKPPq1aszfQQnpwUeO3bMeHVEu3btmCawxK4pHDFiBFOTBAnINm/ebLyqZ+HChUzvIj3FSK7q2bNnDzo7OysGOfQUI7mq5+rVq+js7MwUyPKv6nn//j06OzszfVihT8xJSkrC+Ph45vW2UKFCgqt66tevL3sFCyn6xBxydUSPHj2wePHiil56ipFcHTFx4kTm9bZ169acawrXrFmDzs7OstdHAXCvKXz79i0i/v81O87OzkxTvmSKkVzV8+DBA+b1lp5iTElJwaCgIHR2dmYKc52cnARX9VSsWJHpxI78+fMbpxjJ1RGtWrWSvfaBlNhVPYMGDWI6RULsqp5Zs2Yxr7dkipFcU7h161Z0dnZWPP2CnmJ8+fIlGgwGvHjxIvPep1q1apxrCl++fMm83pKrI65fv47JyckYFRWFzs7OTNPF9BQjWW9r1arFtPext7c3TjGS9bZjx45M6y0JyHbv3m3c+/z9999MHwroKUZyVc/SpUuZ9z78q3r279/PvN7yr+q5desWOjs7M51URF/Vk5KSgr6+vszrLX1iTmJiIiYlJaGzs7PsVTmkxK4pbNKkCfPeh5yYQ/Y+vXv3Zlpv6RNzyHrr6urKFE7SJ+aQqyPWr1/PvPfhX9Vz6tQp5vWWnJhDrup58uQJOjs7M4Xu/Kt6QkNDmfc+jo6Ogqt6qlatyrTeOjg4GE9nJdcUuri4MH1czZUrF3br1o1zTeHQoUOZ9j5i1xRaijXd3d0twpoxMTHMe5/ChQuna9Yk1xSuWLGC6YOfVtYk1xQ+e/ZMM2v6+/unOWuSvU/z5s2Z9j5irNm/f3+LsObmzZvTlDXJNYUvXrxQzZrkmkJTWPPChQtmYc327dunKWuSvc+iRYsswprXrl0zmTU/fPigmTVZ9j5irNmgQQMm1hS7plALa06aNIlpvSXNGD8Daz58+NBirFmpUiWLsObgwYNNZs3Zs2czr7fkmkJzsOalS5eY9z7kxJy0Zs0iRYr851nzwIEDqlmT5OymsCa5pvDjx4/Mex9yMj1hzeTkZIuxZp8+fVSzJtn7aGHNDRs2pDvWDAsLU82aFy9eTHPW7Nq1q9lYc968ecx7n6ZNm5qdNVn2PnzWfPv2rcVYs27dusw5uzlYMywsDBERx48fr4o1N2zYYGTNlStXMrMmuQXNHKx579495r1PhQoVzMaaiJguWXPGjBmaWZNl78NnzXPnzqlizRkzZpjMmhMmTDCyZmRkJPN6W7RoURw+fDiHNWvUqGER1hw5cmSasibZ++zduzfdsWZCQoIq1vzrr7/wzJkzxvVWl2WlNw7qjYO6NErq+GSxZgy+Xrx4Ieqlr8olARlfoaGhogs+fX0R2STylZCQIAqd9CaRBGR8GQwGyYkkskkkAZmYevToIeqtUKECJyATk9S1E2STSAdkfG3btk3UKxaQ8XX16lVRr1hAxtf79+9FN25iARlfUVFRov8wizVj8JWcnCwKFfRVua9evZJ8TlKnJZLri8gmUUx//fWXqJe+Kjc5OVnUK3UMOtkk0gEZX4cOHRL1igVkfD18+FDUSzaJdEDGV2BgoGigIRaQ8RUbGysKM/SR0mSTyJfBYBCdOhNrxhCT1NQIvxlDTOPHjxf1kmYMDw8PTEpKEvVKXQFDbxJJQMaX1DWFYh8k+Hr16pXoR4Js2bJhhw4dOM0YfIWHh4vCLv1BggRkfCUmJoqGA9bW1tigQQNOQMaXwWCQnA7kB2Ri6tOnj6iXH5CJadasWaJesWYMvqSuY6KvyiUBGV83b94U9ZJmjH379hkDMr58fX1FQysyHerm5mYMyPj69u2b6AcZ+oMECcj4SklJEYU/Mh1KB2RikjrdgHyQIAGZmKROPuYHZGJatmyZqFes8Z8vqavR6OuLSEDG19OnT0W9Ys0YfAUHB4sGGmKN/3zFx8eLflQRa8bgy2AwSJ42xG/8F5PUtWoVK1ZEV1dXY0AmpsmTJ4t6xQIyvqSuJCAfJOjGf76krmgWC8j4evv2rehHAvr6IhKQ8fXlyxfR4Im+vogEZHwlJyeLfqQUC8jEJHVKCb/xX0wDBgwQ9fIb/8Ukdb2zWOM/X1LXgzg4OGD//v05ARlfd+/elVxvyQcJEpDx5e/vLxpakQ8SdOM/XzExMaIfR8WaMfhKTU0VPU1TLCATk9TkOz8gE5PUNT/8gExMUlfAkOuL6GYMvrSwpqenp6jXHKxJN2PwlZCQIBq4m4M16WYMMWlhzWnTpol6xZox+NLCmlLXuPzMrJmSkqLImqQZQ0xaWFPqmh+trMlvxuDr8OHDol4trCnWjMGXFtaMi4sT/YidFqwpdVqIOVhT7vqi9evXi3pZWFPqmkLCmnQzBl9aWDMiIkKSNfnNGHzJsSa/GYMvg8EgeQrfz8yau3fvFvWKNWPwpYU1P378+MNYk27G4CslJUX0oz8ra0qd7MRvxhCTFtZcvny5qFcLa4o1Y/D1o1lTKmfXyppSpw0R1iTNGGLSwppSVxxqYU2xZgy+pK5o1sKaYs0YfP3MrCm39xk4cKCo1xysSTdj8KWFNe/duyfqFWvG4Esra4o1hqUFa0qdePgzs+aZM2ck19sfyZphYWE/hDX5jf98GQwGyZO/WFizZ8+eol5+47+YtLDm9u3bRb0/mjU/fPiQLllT6rRE/pC5mLSw5uLFi0W9P5o1Hz16JOplYc3Pnz9bjDXFThI3F2uSxn8xTZgwQdSrhTXFGv/50sKar1+/lmRNfuM/X1pYMykpyWKsqcty0hsH9cZBXRpkMBjwl19+EWwS5QIyWvSxvCwBGa2JEydyNolKARmtDRs2GL0sARmtixcvGr10QBYUFKToffPmjfEfOJZmDFoRERHGiTESkNHToXJKSkriTNjxp0OVRB+xT6ZD5QIyWv369TN6xaZD5TRnzhzBJlEuIKO1Z88ewSZRLiCjdfv2baOXpRmD1qdPn4xhKh2QeXt7K3q/f//OmTRhacYgSk1NxQoVKhi9JCCT2yTSoo9t5k+HKmnUqFGqNom0VqxYYfSKTYfK6eTJk6o2ibSeP38u2CTKBWS0QkJCjFPYZJOoFJARJSQkcKbz6GYMJa/BYOBcW1O+fOrNyVoAAQAASURBVHnFgIxWt27djF66GYNlvXV1dTV6SUB2/PhxpvXWzc2Ns97yp0Pl5O7uzllv+dOhcvL29jaGqfR0qFRARuvr16/G6U16OlQuICNKTk7mTF+RDxJyARkt+vh1loCM1qBBg4xeloCM1oIFC4xeOiBjWW8PHDhg9NIBGZkOldP9+/c5661S4z+tgIAA4+Sn2HSonGJiYjhTX/zpUDmlpqZyrmXkT4cqib7OgKXxn9bYsWONXvJBQi4go7V27VqjlyUgo3X27Fmjl3yQkAvIaHl5eXH2PkoBGa3w8HDjiQisjf9EiYmJnKl1lmYMIoPBwLlCigRkZDpUSb169TJ6xaZD5TRjxgyjV2w6VE47duwwelk+SNC6fv260UumQ+UCMlo+Pj7GMJUlIKMVHR1tnKQmHySUAjKilJQUzlQy3YzBst7S10CxNP7TGjZsmNHL0oxBa8mSJYKATK7xn9bRo0c5622HDh04JxHJ6fHjx5y9j1LjP62goCDjh2TS+L906VLJgIxWXFwcZxq6Ro0azAGZVtakrwdJS9bcuHFjumPNyMhIi7Fmw4YNzcaaSs0YtLSw5t69ezmsqdSMQUsra5IPyTprKq+3K1euFLCmXDMGrZ+FNVmaMYi0siZ9PTxLMwYtLaw5depUs7Mmy97Hw8PDrKwp14xBSytr0qecValSRbEZg5YW1hw8eLDZWZNl73Pw4EGTWfPBgwcWYc3Y2FhR1pRrxiASY02lZgxa9LXBWliTpRmDlhbWPHfuHIc1lZoxaKVX1qxbt65ZWZM1Z9fCmjt37hSwplwzBq0bN25wWFOpGYOWj4+PMWfXyposzRhEWlmTvgIzLVlz6dKlZmFNlsZ/Wk+ePDEra8o1Y9DSypr0ldQsjf+0tLDmpEmTLMKaly5d0sSaZO+T1qxJn2THMmROi2ZNlsZ/Wv379zcbayo1/tPSwpp37tyxGGvSA7LmYE3WnN3FxcVk1hw9erSANeWGzGlpYc1Tp05x1lulxn9a9GFMLI3/tEJDQzWxJn0YE8uQOZFW1uzevbsoa7LsfbSw5tatW83KmnKN/7p+HumNg3rjoC4NunDhgqpmDFovX77EunXrKk6HiiksLAzr1KmjOB0qpoSEBGzatKmqTSKRwWDAzp07q9ok0ho9ejT26dOHuRmD1uLFiwVHdbNq3759gqO6WXXr1i1VARktHx8frF27NnMzBq2oqCisX7++qmYMouTkZGzVqpXidKiU+vTpozgdKiVXV1fjdChLQEZr7dq1xk0iS0BG6+TJk9iiRQtcs2YN0yaR1pMnT4zNbywBGa3Pnz9jnTp1mAMyWrGxsdioUSNVARmRwWDAdu3aqWrGoDV06FBVARmtOXPmqGrGoLV9+3bBUd2sunLliuCobla9efMG69Spg/Pnz2cKyGhFRERg3bp1VX2QIEpMTMTmzZvj2LFjmQMyIoPBgN26dVMVkNEaO3asqoCM1vLly1U1Y9A6ePCg4FooVt29e1dxOlRKnz59wjp16ihOh4rp27dv2KBBA1UfJIhSUlKwTZs2OGrUKOaAjFb//v1VfZCgNW3aNOzevTtzQEZr48aN2K5dO+aAjNbZs2dVBWS0Xrx4IbgWilUhISFYp04dVc0YRPHx8dikSRPOtVCsMhgM2KFDB1WN/7RGjBhhnA5Vu/dZsGCBqsZ/Wrt37zZ+kFDLGteuXcPGjRszB2S0vL29sU6dOswBGa0vX75gvXr1VDVjECUnJ2OLFi1UBWS0evbsqaoZg9bEiRNVNf7TWrVqlapmDFrHjh1TnA6V0sOHDxWnQ6UUEBCAderUwVmzZjE1Y9CKiYnBhg0bqgrIiFJTU/GPP/5Q1YxBa/DgwaoCMlozZ85U1fhPy83NTVUzBi1LsmbdunVVNf4TmYs1WZsxaGllTTXNGLQsxZq+vr5Yp06dNGfNlJQUbN26dbpjzXXr1qlq/KelhTWfPn2K9erVY27GoKWFNePi4tIla86dO9cirOnu7m5R1lTTjEGUlJSEzZs3V9WMQaSVNceNG2cR1jx06FC6Zk3WZgwiraw5YMAAVc0YtLSypppmDFrnzp37z7Fmx44d0yVrqmnGoKWFNd+/f28x1mzZsqXJrNmrVy+LsObq1astwpqPHj1SNWRO67/ImrNmzbIIa168eDHdsWZiYiI2bdpUVeM/kVbW/Pvvv1UNmdPSwpr79+9X1fhP6/bt2xZhzejoaIuxZt++fVUNmdOyFGueOnVKVeM/LS2sGRQUZDHWbN++vcmsOWzYMIuw5o4dO1QNmdPSwppv377FOnXqMDf+07Ika3bv3t1k1tRlWf2IxkEr/P/GOF0ysrKyKgIAAQAAAQEBUKRIEQv/jXSZIoPBANbW1v8ZL3m3rays0vzP1r3qvFZWViY9J7KQp8ef+b/k1d/F9OPV8i4C6M/4Z/fqz+nf79Wfcfrx6nuff7dXfxf//V79Gacfr77e/ru9+ruYfrw6a/67vfpz+vd79Wecfrz63uff7dXfxX+/V3/G6cdr6nprjj9b9/54r/4uph+vpVhTl2UVGBgIRYsWJf+zKCIGav3/1BsHGaQ3DurSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLkvoRzQOmta+qkuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOlKl9IbB3Xp0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLl67/kPTGQV26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpes/JL1xUNd/Ri9fvoTXr18DIqr2fvz4ER4/fgwGg0G1Nzw8HG7evAkpKSmqvQkJCXDx4kVISEhQ7UVEuHDhAnz//l21FwDA3d0dIiMjTfLevn0bPn/+bJL3yZMn8OHDB5O8b968AU9PT5OecUBAANy/f9+kZxwVFQVXr16F5ORk1d7k5GS4cOECxMfHq/YiIly6dAmio6NVewEArl27BmFhYSZ579+/D/7+/iZ5X7x4AW/fvjXpOX348AGePn1qkjckJARu374Nqampqr2xsbFw+fJlSExMVO01GAxw/vx5iI2NVe0FALhy5Qp8/frVJO/NmzchODjYJO+jR4/g48ePJnlfvXoFr169Muk5ffr0CR49emTSuxgZGQk3btwwab1NTEyECxcuaFpvv337ptoLAODh4QEREREmee/cuQOBgYEmeZ8+fQrv3783yfvu3Tt48eKFSc/48+fPcO/ePZPexW/fvoGHhwckJSWp9qampsL58+chLi5OtRcA4NKlSxAVFWWS9/r16xAaGmqS9/79++Dn52eS19PTE968eWPSc/Lx8YEnT56Y5A0NDYVbt26Z9C7Gx8fDpUuXTF5vL1y4ADExMaq9AP+/9/ny5YtJ3lu3bkFQUJBJ3sePH4OPj49J3tevX4OXl5dJz8nf3x8ePHhg0nr79etXuHbtmkl7n6SkJE17n4sXL5q83l69ehXCw8NN8t67dw8CAgJM8j5//hy8vb1N8np7e8Pz589NesZBQUFw584dk9bbmJgYuHLliqb11tS9z+XLl03e+9y4cQNCQkJM8j58+BA+ffpkkve/yJrnz5//T7Hm27dv0x1rpqSkpEvWvHfvns6ajPqvsubLly8twprXr183ab0lex9LsObVq1ctwprPnj1Ll6zp7u5u8t7nwoUL6Y41Hzx4kO5YMywszCKsSfY+OmuyyVKsqTVn18Ka165dM5k17969axHWfP/+PTx79kxnTUb911gzIiIiXbKmh4eHRVjz6dOnFmHNwMDAdMeaAKB/11QhS7LmhQsXNLGmlr2PFtb09fU1yauFNf38/ODhw4cWYU2tfSSm7n10/fukNw7q+s8oV65cULVqVShVqhSMGTNGVRjk4OAArVu3hiJFisDgwYPh9OnTzGGQnZ0djBw5EhwcHKBXr15w8OBB5jDI1tYWNmzYAPb29vDnn3/C9u3bmcMgKysruHTpEtjb20PLli1h3bp1qsKg169fg4ODA9SvXx+WLFmiKgz6+vUrFClSBKpXrw6zZs1SFQZlypQJSpcuDeXLl4dJkyapCoPs7Oygdu3a4OTkBCNHjlQVBjk4OECXLl2gYMGCMGDAADhx4gRzGJQrVy6YNm0a5MuXD7p16wZ79+5lhpOMGTPC3r17wc7ODtq2bQtbtmxhDoOsrKzg9u3bYG9vD82aNYNVq1apCoM+fvwIBQoUgNq1a8OCBQtUhUEJCQng6OgIVapUgWnTpqkKg7JlywYVK1aEMmXKwLhx41SFQfny5YOmTZtC0aJFYejQoXDu3DlmOMmXLx8MHDgQ8ufPD3369IEjR44wb4iyZcsGy5YtA3t7e+jUqRPs2rWLOQyytraG06dPg52dHfz++++wceNGVWHQ06dPIV++fNCoUSNYtmwZvHv3jtkbGhoKhQoVgl9//RXmzp2rOgwqUaIEVKxYEaZMmaIqDMqdOzdUr14dSpYsCaNHj1YVBuXPnx/atm0LhQsXhkGDBsGpU6eY4SRv3rwwZswYyJcvH/To0QMOHDjAHAZlzpwZtm7dCnZ2dtC+fXvYtm0bcxhkZWUFHh4eYG9vDy1atIC1a9eqCoPevXsH+fPnh3r16sHixYtVNV1+//4dihYtCr/88gvMnDlT1YcwW1tbKFu2LJQrVw4mTpyoqunS3t4e6tWrB46OjjBixAhVH8LI8ylYsCD069cPjh07xhwG5ciRA2bPng358uWDLl26wJ49e5jXWxsbGzh06BDY2dmBi4sLbN68WVUYdP/+fciXLx80adIEVq5cqSoMCggIgIIFC8Jvv/0G8+fPVxUGJScng5OTE1SuXBn++ecfuH//PvO7mDNnTqhcuTKULl0axo4dqyoMcnBwgBYtWkCRIkVgyJAhcObMGea9j729PQwdOhTy588PvXv3hkOHDjGHQVmyZIE1a9aAvb09dOzYEXbs2MEcBllbW8O5c+fAzs4OWrduDevXr1cVBnl6ekK+fPmgQYMGsHTpUlVhUEREBBQuXBhq1KgBs2fPVhUG2djYQKlSpcDZ2RkmT56sKgzKmzcv/Prrr1CiRAkYNWqUqjDIwcEBOnToAIUKFYKBAwfCyZMnmfc+uXPnhsmTJ4ODgwN0794d9u/fzxwGZcqUCXbu3An29vbQrl072Lp1K3MYZGVlBTdu3AB7e3to3rw5rFmzRlUY9OHDB8ifPz/UrVsXFi5cqCoMio2NhWLFikG1atVg+vTpqsKgrFmzQvny5aFMmTIwfvx4uH79uqq9T8OGDaFYsWIwbNgwOH/+PPN66+DgAH379oUCBQpA37594ejRo8x7n+zZs8PChQvB3t4eOnfuDLt372ZuPLCxsYHjx4+Dvb09tGnTBjZt2qSq8eDRo0eQL18+aNy4MaxYsULVh7CgoCAoWLAg1KpVC+bNm6eq6dJgMEDx4sWhUqVKMHXqVLh79y7zu6iVNX///XfNrNmzZ0/VrLlx40aTWfPy5csWYc2oqCgBa7K+iz8Lax4/fjxNWDNDhgywb98+sLOzgz/++MNk1mzatKlq1vz06ZPJrJmYmGgya2bPnv2nYU3WvU+2bNlg+fLlFmHNZ8+eaWbNmjVrwpw5c1SxppWVFZQoUQIqVKigmjXz5MkDNWrUsAhrjhs3ziTWzJQpkybWvHr1qsms+fbtW4uz5oQJE0xmzeHDh6tiTQcHB02sOWfOHIuw5oMHD9I9a3p4eKhizZYtW5rEmnZ2dkbW7NWrl0msaWdnBx06dFDFmlZWVnDhwgWws7ODVq1apSlrRkZGmpU1Wd/FvHnzQq1atdIVa2bMmBF27doFdnZ20K5dO3BzczOJNZs1awarV69OM9aMi4uDYsWKQdWqVdOcNRs3bmwR1ly0aJEm1rSzszOJNR8/fmwW1pw7d67JrOnq6qqaNatVqwalSpWCv//+O81YM2/evDBq1CiLsOaVK1d+CtZU03TJZ001TZc0a44YMQIuXryYpqxpb28PXbt2TTPWBPj/ARVLsKaW75paWbNZs2Yms+agQYOMrHn48GGTWXPnzp0ms+aGDRtUs6aDgwM0bNgwzVmzZMmSac6aDg4O0K5du3TNmmvWrDF5wE/Xv0SIqJdCAUARAEAAwICAANSVfjVs2DAkzxIAMGfOnNi5c2fcvXs3RkREyHqXLFnC8dra2mKbNm1w06ZNiv9dHD16lOPNkCEDNm7cGFesWIHe3t6y3sePH3O8VlZWWKtWLZw3bx4+f/4cDQaDpDcoKAhtbW05/kqVKqGrqyvevXsXU1JSJL1xcXFYsGBBjrdkyZL4999/o7u7OyYmJkp6DQYD/vLLLxxvoUKFcPDgwXj69GmMjY2V/Zk7derE8ebNmxd79uyJBw8exKioKFnvxIkTOd5s2bLhn3/+idu3b8fQ0FBZ78aNGzneTJkyYcuWLXHdunX46dMnWe+lS5c4Xmtra6xfvz4uWbIE37x5I/uc3rx5g1ZWVhx/9erVcdasWfjkyRNZb2RkJObIkYPjLV++PE6aNAlv3ryJycnJkt6kpCQsXrw4x+vo6IgjR47EixcvYkJCguzP3LBhQ443f/78OGDAADx+/Dh+//5d1tuvXz+ON1euXNi1a1fcu3cvRkZGynrnzJnD8WbJkgX/+OMP3LJlCwYFBcl69+7dy/FmzJgRmzZtiqtWrUIfHx9Z7+3btwXvYu3atXHBggXo5eUl+5w+ffqEGTNm5PirVKmC06ZNwwcPHmBqaqqk9/v372hnZ8fxli5dGseNG4fXrl3DpKQkSW9qaipWqFCB4y1SpAgOHToUz507h3FxcbI/c5s2bThee3t77NOnDx4+fBijo6NlvaNGjeJ4c+TIgZ06dcKdO3diWFiYrHflypUcb+bMmfH333/HDRs2oL+/v6z35MmTHK+NjQ02atQIly1bhu/evZP1Pn/+nOMFAPz1119xzpw5+OzZM9lnHBISglmyZOF4K1SogFOmTME7d+7IrrcJCQlYuHBhjrd48eI4evRovHLliuJ6W6tWLY63YMGCOGjQIDx16pTietutWzeON0+ePNijRw88cOAAfv36VdY7depUwXrbvn173LZtGwYHB8t63dzcBOttixYtcO3atfjx40dZr4eHh2C9rVevHi5evBhfvXol+5y8vb3R2tqa4//ll19wxowZ+OjRI9l38evXr5grVy6Ot1y5cjhhwgS8ceOG7HqbnJyMpUuX5niLFSuGw4cPxwsXLmB8fLzsz9y0aVOON1++fNivXz88duyY4no7ePBgwd6nS5cuuGfPHsW9z4IFCwTrrYuLC27evBk/f/4s6z148KBg79OkSRNcuXIlfvjwQdb74MEDwXr722+/4fz58/HFixeyzzggIAAzZcrE8VeuXBn/+ecfvHfvnuwzjo2NRQcHB463VKlSOHbsWPTw8FBcb6tUqSLY+/z111945swZxfW2ffv2HK+dnR327t0bDx06pLj3GTt2LMebPXt27NChA+7YsUNx77N27VrBetuqVStcv349+vn5yXrPnTsnWG8bNGiAS5cuxbdv38p6vby8BHufGjVq4OzZs/Hp06eyzzg8PByzZcvG8To7O+PkyZPx9u3bsuttYmIiFitWjON1cnLCUaNG4aVLl2T3PgaDAevWrcvxFihQAAcOHIgnT57EmJgY2Z+5d+/eHG/u3Lmxe/fuuG/fPvzy5Yusd8aMGRxv1qxZsV27dujm5qa43u7cuVOw92nevDmuXr0afX19Zb3Xr18XvIt16tTBhQsX4suXL2Wfk4+PD2bIkIHjr1q1Kk6fPh0fPnwo+y5GR0djnjx5ON4yZcrg+PHj8fr167LrbUpKCpYrV47jLVq0KA4bNgzPnz+vuN62atVKsN727dsXjx49it++fZP1yrFmeHi4rHfp0qUcrzlYc/ny5Yqs+eTJE8EzthRrlihRgpk1q1evLlhv04I1J02aJNj7WJo1X79+rcia/L0PYc3Hjx//UNYsUaIEx6uFNR0cHLB///5MrNm/f3+O11KsmSFDBmbWvHPnjuBdTCvWtLe353jNwZpnz55V3Pu4uLhwvGpYc/To0RyvVtZs3bo1E2ueOnVKsPdp2LChyaxZs2ZNJtYMDQ39aVizQIECRtZU2vt0796d46VZU2nvo4U1t27dKlhvtbLmokWLFFnz/fv3aGNjw/GrYc3cuXNzvGXLlk0T1mzWrJlg70NYU2nvo4U1Fy5cKFhvzcGa79+/l/VqYc3AwECzs+aYMWMUWdNgMGDVqlUFex9TWTNv3rzYq1cvJtYcN24cx5seWPPly5c/hDVv3bqlyJqOjo4crzlY88SJEyaxZrdu3ZhYc+bMmRxv1qxZsW3btujm5qa49xFjzWbNmjGx5o0bNwTvYlqxZt68eTleS7Gmvb09M2sOHz5csN5qZc2NGzcqsuaxY8cE662prAnw/zn73LlzTWLNihUrMrFmfHy8WVmzYMGCzKzZuXNnwXprDtYMCQmR9W7atEmw97Eka86cOZOJNXPmzMnxli9fHidOnGgya44YMYKJNRs1asTxphVrzp07V7D3YWXNffv2Cd7FtGBNPz8/Sda8f/++yax59epVRdasWLEix6uFNUnObiprduzYkYk1V61aJdj7pAVrvnjxQrDepgVr6rKsAgIC6OdWBM3RE2eO/5N/e4HeOPiv0Nu3b3HHjh2CxZPeENWtW1c0DPLz88NTp04J/oGkq1q1aqJhUGhoKF6+fBnz5csn6ZUKg759+4bu7u6CfyDpkgqDkpOT0d3dHZs3by7plQuDbty4gX369JH0yoVBDx48EGx06bK1tTWGQYGBgRyvp6en4B9X/oaoSZMmuGLFCkEY9P79e9y/f7+kl/4Qxg+DAgMD8dy5c5g1a1ZJf+XKlXHq1KmCMCgyMhKvXLmCRYsWlfSWLFlSNAyKjY1Fd3d3/PXXXyW9UmGQwWBAd3d3bNeunaRXLgy6ffs2DhkyRNIrFwY9efIEZ82aJemVC4Nev34tgBn+hoiEQfymS19fXzx27JggjKWLhEH8psvg4GC8dOmS4EM0Xc7Ozjhp0iRBGBQVFYXu7u5YpkwZSa+TkxOOHDlSEAYlJiaiu7u74OMXXaTpUiwMunbtGnbt2lXSKxcG3bt3T9BQQpdcGPT8+XNcvHixpFcuDHr37h3u2rVL9l2UCoP8/f3xzJkzmDlzZkm/VBgUFhaGV65cwQIFCkh6SRh07do1znr7/ft3dHd3F4SxdJEw6Ny5c5z1NiUlBd3d3QUBEF3kQ9iRI0cEcHLz5k0BdNJFPoTt2rVLEAY9evRI8FGFLltbW/z9999FwyAvLy9BkMt/Fxs1aiQaBn348AEPHTokCGPpkgqDPn/+jBcuXMDs2bNLeqXCoC9fvuCVK1fQyclJ0isVBsXHx6O7uzv+9ttvkl65MMjd3R07dOgg6SVhkFjT5Z07d3DEiBGSXhIGbdu2TRAGPX36VBAs0EXCoLVr1wrCoDdv3gg+nNFFwqDFixcLwqBPnz7hiRMnBGEsXb/88otoGBQSEoKXLl0SND3TVa5cOdEwKDo6Gt3d3dHZ2VnSKxUGJSUlobu7OzZp0kTSKxcGXb9+HXv27CnplQuDHjx4gBMmTJD00mEQ/0PYixcvcPny5ZJeOgziN116e3sLGhXoImHQ/Pnz0dPTk/OcAgIC8OzZs4JwgK4qVargP//8IwiDIiIi8MqVK4IP0XSVLl0ax44dKwiDYmJi0N3dXRDG0lW4cGEcMmSIIAxKTU1Fd3d3QQBEl1wYdOvWLRw0aJCkN3v27JJh0OPHj3H69OmSXrkw6NWrV7hhwwZJr1wY5OPjg0eOHBGEsXSRMIj/ISwoKAgvXrwoaHqmi4RB/KbLr1+/oru7O5YsWVLSW7x4cRw1ahRevnyZs94mJCSgu7s71qtXT9JLGg/Emi6vXr0qCNzpIk2X+/fvF+x97t69Kwj56CJNl1u3bhU0Hjx79kzwEZsu0nS5Zs0aQeOBOViT/yGaLinWDAsL08yalSpVkvSagzXFPoSxsqbYgN/Dhw9x8uTJkl7Cmps2bTI7ax44cEDSq5U1K1WqZHbWjIuLsyhrDh06VNKrhTUzZcqErVq1wnXr1omy5ubNmyW9cqz58eNHJtYUG/AzB2uWLVtW0vsjWZM/SESXHGvev39fE2vyh3PpolmT/yHs3bt3uHv3btl3kbAm/0OYGtbkN12Gh4ebzJpk7yPHmvSAnxhrtm7dWtL7M7Lmy5cvLcqa/KZnuszBmvymS8KatWvXlvTKsaaHh4csa+bJk+eHsea8efMkvXTTpSmsSQb8zMmaoaGhFmVN/lAfXeZiTbGc/UezptiA349mTdJ0aU7WJDm7pViT30xL18/AmvymS19fXzx69KjFWLNUqVKSXq2sKTXgp7OmsJRYk9/0TJcW1ixatCgOHz5c0HRJWLNFixaSXiXW7Nu3r6RX7jAZFtYkA3581vTy8lJkTXKYjLlZ8/z584KmZ7p+BtYUy9ktxZqzZ8+W9GphTbnDZD5+/IjHjx//YaxJBvx+BGvyGy3pMhdr8nP29Mya/KZnuqpWrSo64MfKmmIDfpZkTV2Wld44qDcO6tIguRBFrOgwSK55Rqzo057kNnxiRYdBN2/eVOWlJ3Dfv3+vyssPg+QCGH7xw6AaNWqo+rPpMEgO3MSKDoPkmhXFqlixYsYwaN26daq8dBh0+vRpVV4SBu3ZswcfPXqkyktP4AYGBqry8sMguTCUX/QErqenJzZu3FjVn02HQQMGDFDlJac9Xb16VXZTL1Z0GMSfglQqOgxyd3dX5aXDoFevXqny8sMgOejjFwmDyASuXNOxWNFhUNu2bVV5K1SoYDztSS5EESs6DJILNMWKDoMOHz6sykuHQfzJK6WiwyBfX19VXn4YlD9/fmYvHQa9fPlS9sOEWJEw6OHDh4ITIJSqbNmyxglcuQ9IYkWHQXKALVb0aU/8qXOlosMgsVM+5IofBskFqfzih0FyYSi/+GGQXFOGWNFh0F9//aXKS4dB/NMGlYqEQadPn8Y9e/ao8tITuPwTzpSKhEHbt2/Ht2/fqvLSE7h+fn6ygTe/+GFQtWrVVP3Z9MnCch8JxYoOg/gnQCgVHQatXr1alZcOg44fP67KS4dB9+/fV+XNkiULtm3bFrds2YJ+fn6qvPwwqEiRIsxeEgaRCdz69eur+rPpMEiuQUqs6NOe5D4giRUdBm3btk2Vlw6D+FPnSkU3Hnh5eany8hsP5Bo6+EU3Hrx7905wAoRS0ScL//7776q8pPHgzp07ghMglKpEiRLG0560sCb/xB2lok970sKaHz58UOU1J2vWrFlT1Z9tDta8ceOGJtZcv369Ki9hzWPHjqlmTXrAj397gVJpZU36ZGEtrCk3ACBW5mJN/mmDSmUO1jx06JBFWHP9+vWaWVPuQ7BY0ac9qWVN+mRhS7HmkSNHVHlp1rx7964qrzlZU+7jE7/MwZpkwK9Hjx6qvFpZk5z2pIU1z58/r8prTtaU+4jML3Ox5vPnz2WbMsSKZk25QWSxIqzp7u6uiTXlGtnESgtr0qc9vXv3TpX3Z2HNjh07qvKaizXXrFmjyquFNXPlyoXdunXDvXv3Ck6UVCqaNf39/VV5+bfYaGHNBg0aqPqz6ZOFtbAm/2R7pUqPrElusTEHa5YvX17Vn62FNenTnkz5rmlp1rx165Yqr7lY8+PHj4ITzuTKXKz56NEj7NKliyovzZpyzYpiRQ/4aWHNM2fOqPKaizU/f/6syvuzsObAgQNVec3FmnIHdIiVVtYkTZevX79W5eWzptyhEfzinyyshTXlGlLFSgtrkpOFL1++jCtWrFDl/RlY8+PHj6q8am6x0fXjpTcO6o2DujRI7QabVI4cOQRXc7CWra0t1qlTxyRvhgwZVId0pKysrFRvcumqVKmSqn/U6SpZsqTgCjjWKliwoOCqG9bKkyeP7DShXGXLlk32BCq5ypQpk8nPydra2uQ/FwBM/nkB/j8IUgNRdDk6OsqePiNXDg4OgqscWStXrlwm/3edJUsWk59ThgwZTH5OVlZWslNXSlW1alXZCRW5Kl26NBYqVMgkb5EiRVR/eCdlZ2cnuKqctbSst5kzZzb5GdvY2Gh6F7WstxUqVFAVINNVvHhxVaBMV4ECBVQ3lpLKkyeP6gZxUlmzZjX5OWXMmNGi662axkG6ypUrJzudK1dFixYVXDvFWvny5ZOdNJOrnDlzmrx22draalpvLbX3qVKliuxJUHJVqlQp2elcuSpUqJDsiRdyZWdnZ/JeIHv27Cavt1r2PjY2Nib/uQBg8toD8P9BEP9KItZycnISXIPCWvnz58fKlSub5M2dO7fJ/11bar3VuvepVq2a7CnvclWmTBlVDRJ0FSlSRHYCW67s7e1Vf9AlZSnWtLGxsdgz1sKaJUqU0FmTsdIza6ppgqFLK2ua+t+1Vta01LuolTXlToKSq8KFC+usqaK0sib/+lvW0sqaaj/2kUqvrKllf6uzJntZkjW1rLdaWLNkyZIWYc28efOmS9a01HqrlTVNzdm1sKaWnF3reqslZ9ey3mplTf71t6yVXllTy7toqWyvYsWKsqcOy5UlWdPUvY9W1jQ1T9DKmlqyPS2sWaxYMZ01GUvremtJ1lTb5E1KC2tq2fukZ9bct2+f7DXIun6s9MZBvXFQlwaNGTOG+R8q/jWHq1evZvaSqydOnTqFsbGxePLkSbS1tZW9YoMU/+qJFy9eoK2tLVOARE/lhISEYHR0NNra2jJNrfKnchARCxcuzARSYldP1K1bV/b4c7roEyBSU1OxZ8+ezJNf/Ksnpk2bxvyc6BMg4uPjcevWrcxe/tUTHh4ezM+Jf/WEj48P83PiXz1hMBjQ1tZW9moPUmJXT5QtW5bpGfOncgwGA7Zs2ZL5GfOvORw6dCjzM6ancpKSknDRokXMz4l/9cShQ4eY30X6tMGoqCi8f/8+8zPmXz0RGhrK/IzFrp6ws7NjesZiV09Ur16d+Tnxr57o1KkT83OiTxtMSUnBCRMmMD8neionMTER161bx+zNnz8/5+qJs2fPMj9j/tUTr169Yn7G/Ksn4uLimN9F+gQIMpXj6OjIvN7yr55o2LAh8zPmXz3Rt29f5mdMrp64fv06Jicn46xZs5ifE//qiV27djF77e3tjSdAfPv2DW/cuMH8nOhrDsPDw9Hf35/5XRS7eiJr1qzM6y3/6okKFSowr7f8qyfatGnD/Iz5V0+MHDmS+XfNv3pi+fLlzF7+1RNHjx5lfhfJ1RMHDx7Er1+/4pMnT1Ttfchpg6GhoRgZGalq70OuniDXbuXPn5/pGVtbW2ODBg04V0/89ttvzM+JPgHCYDBgt27dmN9F/tUTU6ZMYX5Ojo6OnKsnNm3apGq9JSdAfP/+HS9dusT8jMkJEOTqiXfv3qna+5CrJz5//oxJSUmq1lv+1RMlS5ZkfhfpEyAMBgM2bdqU+RnzrzkcNGgQ8zOmT4BISkrCefPmMT8n+gSIuLg43LdvH/Nz4l89cffuXeZ3kX/N4efPn1XtffjXHObKlYt570OfAIGIWKVKFeaPQeSaw2fPnqHBYMD27dszPyf6tMGUlBSTWJNcc6iFNU+dOqWKNckJEFpZ89u3bxZjzXr16qU71ty2bZtq1jx27Bh++/bNJNbcs2cPRkREoK+vr2rWJCdAWJI1W7VqxfyM+dccamHNxYsXW4Q1Hzx4YBJrhoaGmsya5NotLaxZo0YNVaxJToDQypoTJ060CGueO3fOZNZ8/fq1xVjTyclJNWu+fPnSZNZ8+PAhpqamYr9+/SzKmqx7H5o1b968qWrvQ04bNAdrZsuWzSKs6eLiYhJrpqSk4KhRo1SzJsnZtbDmsWPH0pw1Q0JC8MuXL6r2PuS0QVNYk3/NoRbW7N69u0VYc/Pmzar2PuZiTW9vb5NZMzk5WTVrktMGtbJms2bNVOXs9DWHWlhz/vz56Y41g4KCTGJNkrNrYc2qVatahDXHjh3L/JyKFy9uPG1QLWsWKFDAeNpgTEyMJtb09PRUtfcxJ2sWKVLEIqzZq1cvk1lz+vTpqlnzwoULmlnz6tWrqnN2U1jT1taWc7I9IqpiTfq0QUuy5rBhwyzCmocPH7YIa4aFhalmzfXr1xtZ097ennm9pU8b1MqanTt3Zn5O9GmDWlgzISEB169fn+5YMz4+XhNr6rKs9MZBvXFQl0ZJXcdENol0MwZfvr6+kosnvxmDr2/fvklOnZUrVw4nTJiAN27cwOTkZIE3JSVFskOeBGRkkygmqbvp8+XLh/369TNuEsUkdUojf5MopmXLlol6xTaJfEldSUBvEklAxtfTp09FvfQmkQRkfAUHB0v+w042iaQZg6/4+HjJ0934zRh8GQwGySkbfkAmJqlj0ElAdujQIYyKihL1Sh2DTh9JHRoaKuqVugKGNGPQm0S+Ll++LOrlbxLFntPbt28lN0H0kdRi3i9fvmDOnDlFvWSTSAIyvpKTkyUnQMkmkQRkYpK63plsEklAJiapK7f4AZmY5s2bJ7tJdHNzw6CgIFHvvn37JDeJ/GYMvqSOyCYB2cKFC40fJPjy9/eXhD/SjEE+SPAVExMjOXVWpkwZ4/VHYuttamqq5MkIRYoUMV5/JLXe/vHHH6Je8kGCBGRi+vvvv0W95IMECcjEJHXdKPkgQTdj8CV1/Z2NjQ02btwYly9fjt7e3qJeT09PyWdcq1YtnDt3Lj5//lz0GYeGhkpO3JOA7O7du6LvYkJCguTEPb/xny8Suot5STPG6dOnJddbqSu3SOM/+SAhpmnTpol66euPQkJCRL1SV8CIfZDg69q1a6Je+oMECcj4ev/+vWQ4UL16dWNAJuaNioqSPOGkfPnynICMr5SUFCxTpoyol27GkFpvpa535jf+i0nqyi268V9qvV20aJGol9/4Lyapq9ZJM8aqVauMARlfDx8+lHwXa9eujQsWLDAGZHwFBgZKhinkgwQJyPiKi4uTPN2NfJAgARlfBoNB8pSSwoUL49ChQ40BmZikrne2s7PDPn364OHDhyXX2/Hjx4t6+Y3/YpK6Akas8Z+vCxcuSK63pBmDfJDg69WrV5LhEWn8Jx8k+IqIiJA83Y2+/khsvU1MTJQ8bYh8kCDNGHwZDAbJ6535HyTEJHXlFvkgQQIyMc2aNUvUSz5IkIBMTLt37xb1ZsyYEVu0aCEbkMmxJr/xn6+PHz/+ENYkzRhyrCl1Es3PzJpS142mZ9akG//50sqaUlPkP5o1p0yZIrnemoM1pfY+V65ckVxvzcGapBmDr5+VNelmDDFJXbmlhTXpZgwp1ty/f7/keqvEmvfu3ZN8F380a+bLl0/US7Om2LvIwpqkGUNMUtc7W4o1xRr/+ZK6/o5uxlDLmgD/a8aQYs2wsDCLsabUaSEsrNmzZ09R749mze3bt0uut4Q1STMGX0qsSTdj8PXhw4cfwpr8Zgy+tLKm1PXOP5o1pa4b/dGs+ejRI8n11lKsyW/G4MtgMEie0MZvxhCTHGvSzRhimjBhgqj3Z2bN169fW4Q1k5KSfihrkmYMMfXt21dyvdXCmnQzhpjkWFOpGUPq6t+0YE07OztR749mTanrnVlYc+TIkaJemjWl9j5KrEk3/vN14sQJyfW2SZMmnMZ/vuRYk9/4z1dwcDBmyZJF1P8zs2bXrl1FvT+aNbds2SLq1cKaZMh86dKlxsZ/vt69e2cya379+lXy1ipnZ2dO4z9fcqzJb/wXk9T1zj+aNefPny/q/dlZU6rhkT9kzhcLa5LGf75SU1MlTyDWypp047+un0t646DeOKhLo5o2bWp8ifjToUoaNGgQZ5PInw6V04IFCzibRP50qJwOHDigapNI6/79+5xFnkyHSgVktAICAjj/wPGnQ+UUExPDuSqDbBLlAjKi1NRUzpHP/OlQJbVr187oZQnIaI0dO5azSVRqxqC1du1aziaRPx0qp7Nnz3KeE386VE5eXl4cuOdPh8opLCwMs2XLpmqTSJSYmMg5up0/HSong8HAOQadbBLlAjJavXr1EmwS5QIyWjNmzBBsEunpUDnt2LFDsEmkp0PldP36dc4z5k+HysnHx4cTpvKnQ+UUHR2NefLk4WwS6elQOaWkpHCuUSDNGKybxJYtW3LWWzIdKhWQ0Ro2bJjRKzYdKqclS5YYvWLToXI6evQo5znxp0Pl9PjxY463YsWKsgEZLTItS7z86VA5xcXFca7KYGnGIDIYDJzj1/nToUrq1KmT0cufDlXSxIkTOe8ifzpUThs3buSst/zpUDldvHiR85zIdKhUQEbrzZs3nPWWfJCQCshoRUZGcq7K4E+HyikpKQmLFy/OWW/p6VAlNWzY0Ohlacag1a9fP87eR6kZg9acOXM4ex+lZgxae/fu5ay3/OlQOd2+fZvzjPnToXL69OkT50Oy0gcJWt+/f+eEqYUKFcIhQ4bgmTNnFNfb1NRUzpUmLB8kaLVp08boJR8k5AIyWqNGjeKst/zpUDmtXLmSs97yp0PldPLkSc5zUmr8p/X8+XOOlz8dKqeQkBBOmMqfDpVTQkIC56oM/nSonAwGA+fKCv50qJK6devGWW/JBwmpgIzW1KlTOeutmulQNzc3znpbt25d2YCMloeHB+c5VatWTbYZg5a3tzcnTFVq/KfFD1OLFi2q2PhPlJyczLmyj38SkZK0sObgwYM5662prEka/1esWCHZjEHr4MGDnPU2PbBmbGwshzVZmjGI+KzJ0oxBq3379kZvemHNc+fOcZ6TuVhT6V0MDw83O2vKNWMQkRsQiFcrayo1Y9CiWZOlGYPWzp07Oe8iacZIC9akPyRrYU3S+M/KmvR1xWpZs1WrVpz1Nq1Yc+nSpZz1tlGjRrLNGLT4rKnUjEHryZMnHG96YU36mlNzsaZUMwatSZMmcfY+5mBNqWYMWpcuXeI8J7WsSe99lIbMafFZk6UZgygpKQlLlChh9LI0Y9DSwpr9+/fn7H3SA2veuXOH84zNwZpSzRi0vn//zhmQ1cKaLM0YtFxcXIxeLazJMmROSwtrnjp1ivOc0oo1Q0NDfyrWlGvGoNW9e3fOeqs0ZE5LjDXlmjFobd26lbPeamFNpcZ/WvwBWS2syTJkTqSVNZs1a8bZ+5iDNVm+dS9cuJDzLmplTbnGf1oPHjzgPONKlSrJNv7TCgwM5LCmUuM/LS2syR+QTUvWHDduHGe9tTRrSjX+03r58qUoa0o1/tOSYk25xn+ixMREdHR0NHq1sqZS4z+t3r17G71qWXPmzJmcvU9aseaNGzc4zzgtWZMekDUHa8oNmdMSY025xn9aw4cPN3oJa8o1/tPSwprHjh3jPCctrKnU+K/r55HeOKg3DurSoJs3b6raJNLy9fXFYsWKca6FYtW3b9+wdOnSnCuIWZWSkoI1a9ZU1YxBq3379tiyZUvmgIzW6NGjVTVj0Fq+fDnnqG413uPHjytOh0rp6dOn6OjoyLkWilXBwcHo6OioOB0qpvj4eHR2duZcQcwqg8GADRo0ULVJpNWzZ0/BtVCscnV1VRWQ0dq8ebPgCmJWXb58WVUzBq23b99isWLFFKdDxfTlyxcsUaKEqmYMouTkZKxataridKiUWrdurTgdKqW//vpLcC0Uq+bPny+4gphV+/btE1wLxaq7d+8qTodKyd/fH4sVK8YckNGKiYnBMmXKqGrGIEpNTcXffvtNcTpUSh07djT5qO5x48YpTodKafXq1YrToVI6ffq04nSolDw9PdHR0ZFzLRSrQkND0cnJSVVARpSQkIAVK1bkXEHMKoPBgI0bN1bVjEGrb9++qhr/ac2YMUNVMwatbdu2Ca4gZtW1a9cUp0Ol9P79eyxWrJjidKiYoqKisGTJkqo+SBClpKRg9erVOVcQq5GLi4vidKiUhg8fLriCmFWLFy9W1YxB6/Dhw6oa/2k9fPgQnZycmJsxaAUGBqKjoyNz4z+tuLg4LFeunOJ0qJhI0KY0HSqlbt26KU6HSmnixImqGv9prV+/XnE6VEoXLlxQFZDRevXqFRYrVow5IKMVERGBxYsXN2k6NDExEStXrsy5FopVBoMBmzdvrngSkZQGDBigqvGf1uzZsxVPIpLS7t27BddCsUoLa378+FETa5YqVUpVMwZRSkoK/vrrr5pYU00zBi0trLlixQrBtVCs+hlYk7UZg0grazZs2JBzBbEaaWHNqVOnamJNNc0YtK5cuZIuWbNatWqca6HUSAtrDhkyRDNrsjZj0Nq/f7/JrHnv3j3BFcSs0sqaZcuWtQhrdurUySysydKMQUsLa545c0ZwBTGrtLBmWFiYZtZU04xBZDAYsEmTJiazZr9+/SzCmtu3bxdcQcwqmjXV7n0+fPhgFtZkbcYg0sqaf/zxh6pmDFpaWHPJkiUWYc1Hjx6lS9asV68e5wpiNSKsyTpkTmvSpEmaWFNNMwYtLaz5+vVri7BmUlISVqlSxSysqXbvM3DgQLOwJkszBi0trHnr1i1Vjf+0tLJm6dKlTWZNLd81//zzT5NZ8++//7YIa544ccIsrMnS+E8rODgYnZycNLGmmsZ/Iq2s2atXL8EVxKzSwppbtmyxCGu+e/fOZNb8+vUrlixZ0iKs+fvvv6saMqc1ZMgQVY3/tBYsWKCJNdU0/tPSypqOjo4WYc3atWtbhDV1WVY/onHQCv+/MU6XjKysrIoAQAAAQEBAABQpUsTCfyNdpuj79++QPXt2sLKyUu2NiYmBrFmzgrW1tWpvfHw8ZMyYETJkyKDam5SUBAaDAWxtbVV7ERFiY2Mhe/bsqr0A///7ypEjR7rzmvqMY2NjIUuWLCY944SEBLCxsYGMGTOq9qakpEBSUhJkzZpVtRcRISYm5j/1nGJiYiBbtmwmeePi4iBz5sxgY2Oj2puYmAgAAJkzZ1btNRgMEBcXp7+LjLLUepucnAypqakmr7fp9V201Hpra2tr0ruYkJAA1tbWkClTJtXe1NRUSExMNGm9BfjvPSet622mTJlM3vsgor7eqvBaYu8THx8PGTJkMGnvk5ycDCkpKZAlSxbV3v/ieqvlXdSy3iYmJoKVlZXJ621CQgJky5ZNtRcgfT4nS+19tK63Wljzv/Yu6qypTunxOemsmX68lmJNfe+Tdl6dNdOH97/EmnrOrk6WYs2UlBRITk7W11sVXkustzprqvemt5xdZ0313v8SawL8956Tzprpx6uzpq70osDAQChatCj5n0URMVDr/6feOMggvXFQly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunTp0qVLly5dunRZQj+icVB926suXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlK91KbxzUpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26dOnSpUuXLl26/kPSGwd16dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5cuXbp06dKlS5eu/5D0xkFd/xl9+vQJoqOjTfIGBwdDWFiYSd6vX7+Cv7+/Sd6EhAR49+6dSV5EBC8vL0BEk/wvX76E1NRUk7xv3ryBxMREk7wfPnyA2NhYk7z+/v7w9etXk7yhoaEQEhJikvfbt2/w8eNHk7zJycnw6tUrk54TecYGg8GkP/vVq1eQkpJikvfdu3eQkJBgktfX1xe+f/9ukjcwMBAiIiJM8kZEREBgYKBJ3tjYWHj//r1JXoPBYLF38fXr15CUlGSS9/379xAXF2eS11LrbVRUFPj5+ZnkTUxMhDdv3pj8Lnp6emp6xqa+i2/fvjV5vfXx8YGYmBiTvAEBAfDlyxeTvOHh4RAcHGyS9/v37+Dr62uSNzU1FV6+fGnyc9K63iYnJ5vkfffuHcTHx5vk/fjxI3z79s0kb1BQEISHh5vkjYyMhICAAJO88fHx4O3tbZLXkuvtmzdvNK23pu59/Pz8TN77hISEmLz3iY6Ohk+fPpnkTUpKgtevX2tab/9re5/IyEiTvOHh4fD582eTvDExMfDhwweTvKmpqZreRS3r7evXr01eb729vU1eb/+LrKl17/NfYs2wsDCT9z5aWDMlJUVnTRX6/PmzRVgzLi4uXbKm1r2PFtaMiooyyWsp1kxKSrIYa2p5F/+LrOnj42OSN72yppa9j6VY88uXLxZhTUvn7OmNNbXk7FpYMzk5WRNrWmrv8/btW501GWXJ9VZnTXYlJCTA27dvLZaz66zJJkuxJgCk22zP1L2PFtaMjIxMl6zp5eX1n2LNkJAQCA0NNcmbXllT179PeuOgrv+M4uLiIH/+/NCsWTNYvXq1qjAoU6ZMUKZMGahTpw4sWLBA1T+W2bJlg4YNG0LVqlVh+vTp8ODBA+YNUebMmWHw4MFQpkwZGDduHFy7do0ZTqysrGDZsmVQtGhRGDp0KJw7d04VnBw7dgzy588Pffr0gSNHjqjaED169Ajy5csHnTp1gl27dqkKg4KDg8HOzg5+//132Lhxo6owyGAwQOHChaFRo0awfPlyVWFQ1qxZoVKlSvDrr7/C3Llz4fnz56qesYuLC1SsWBFcXV3hzp07zBuijBkzwsSJE6FkyZLw999/w5UrV5g3RFZWVrB582YoXLgwDB48GE6dOqUKTi5dugT58uWDHj16wIEDB1TByevXr8HOzg7at28P27ZtUxUGRUdHg729PbRo0QLWrl2rKgzKkCEDFC9eHOrVqweLFy9WFQZlz54dfvvtN/jll19g5syZ8PjxY+Z3MWvWrNCjRw8oV64cTJw4EW7evMkMJ9bW1jBv3jxwcnKCESNGwMWLF1XByb59+6BgwYLQv39/OHbsmKow6Pbt25AvXz7o2rUr7N27V1UY5OfnB3Z2dvDHH3/A5s2bVYVBiYmJkD9/fmjatCmsXLlSVRhka2sLZcuWhd9++w3mz5+vauOaPXt2aNq0KVSuXBn++ecfuH//vqr1dsSIEVC6dGkYO3YsXL16VdV6u2bNGihSpAgMGTIEzp49q2q9PXXqFOTPnx969+4Nhw8fVhUGPXv2DOzt7aFjx46wc+dOVWFQWFgY2NvbQ+vWrWHDhg2qw6AiRYpAw4YNYdmyZarCoKxZs0K1atWgZs2aMHv2bHj69Kmq9bZ9+/ZQoUIFmDx5Mty+fZt5vbWxsYF//vkHSpQoAaNGjYLLly+rCoO2bdsGhQoVgoEDB8LJkydVrbceHh7g4OAA3bt3h/3796tab729vcHe3h7atWsHW7duVRUGxcTEgIODAzRv3hzWrFmjKgzKmDEjlCxZEurWrQuLFi1SFcxmz54d6tWrB9WqVYMZM2bAw4cPmd9FW1tb6NevH5QtWxYmTJgA169fV7XeLlq0CBwdHWH48OFw/vx5VevtoUOHoECBAtC3b184evSoqr3P/fv3wd7eHjp37gy7d+9WFQZ9/vwZ7O3toU2bNrBp0yZVYVBKSgoUKlQIGjduDCtWrFAVBmXJkgUqVKgAtWrVgnnz5sGLFy9UPeNWrVpBpUqVYOrUqXDv3j3mdzFTpkwwZswYKFWqFIwZMwY8PDxU7X02bNgARYoUgb/++gvOnDmjKgw6d+4cODg4QK9eveDgwYOqwiBPT0+wt7eHDh06wPbt21WFQV++fAF7e3to2bIlrFu3TlUYZGVlBcWKFYP69evDkiVLVIVB2bNnh5o1a0L16tVh1qxZ8OTJE1XrbZcuXaB8+fIwadIkuHXrFvO7aGNjA7NmzYLixYvDyJEj4dKlS6rW2927d0PBggVhwIABcOLECVWNB9evX4d8+fJBt27dYN++far2Pr6+vmBnZwdt27YFNzc3CAoKYvZaijWzZ88OjRo1gipVqsC0adPSlDVXrFhhEdZ8/Pgx2NvbpyvWzJIlC1SuXNnIms+ePUsT1syQIQNMmjQJSpYsCaNHjzaZNQcNGpSmrPnmzRuLsKaNjY1FWDNLlizQs2dPs7DmhQsX0pw1u3TpAnv27DGJNV1cXFSzZlJSEhQoUACaNGmS5qzZrFkzk1gzU6ZMMHLkyP8Ua4aHhxtZc/369Saz5tKlS9OUNTt06ADOzs5pzprbt29Pd6wZGxvLYU01A37mYs3p06ebzJrjx4+H69evq3oXFy9eDMWKFYNhw4bprKkgW1tbs7Hm3bt3VeXsY8eONbKmu7u7Saw5ePBgOH36dJqx5suXL8He3h7+/PPPNGVNa2trcHR0TJes6eTklOaseePGDSNrqs3ZadbcsmWLKtaMj483suaqVavSDWsOGTLEIqx5/Phxi7BmSEiIyayJiEbWXLZsmaoBPy2smT17dvjjjz+gYsWKMGXKlDRjTQAANze3dMea3759AwcHhzRnzWzZskHt2rWNrPno0SOTWfPGjRuqWHP+/Png6OhoEmseOHAAChYsCP369UtT1vT397cYa5YvX95srKkmZ9fCmmvXrjWyptqcXde/UIiol0IBQBEAQADAgIAA1JV+1a1bNyTPEgCwfPnyOGnSJLx16xampKTIel1dXTleJycnHDlyJF66dAkTEhJkvW5ubhxv/vz5ccCAAXjixAn8/v27rNfd3Z3jzZ07N3br1g337duHkZGRsl5vb2+0trY2erNkyYJt27bFLVu2YFBQkKz369evmCtXLqM3Y8aM2KxZM1y1ahX6+PjIepOTk7FUqVJGr5WVFdapUwcXLFiAXl5eaDAYZP1Nmzbl/MxVq1bFadOm4YMHDzA1NVXWO2jQII63dOnSOG7cOLx27RomJSXJehcsWMDxFilSBIcOHYrnzp3D+Ph4We/Bgwc5Xnt7e+zTpw8eOXIEo6OjZb3379/neHPkyIGdOnXCXbt2YXh4uKw3ICAAM2XKZPTa2tri77//jhs3blRcr2JjY9HBwcHotbGxwUaNGuHy5cvx3bt3st7U1FSsUqUK5+/966+/4ty5c/HZs2eKz7hdu3Ycb8WKFXHKlCl4584dxXdx7NixHG+JEiVw9OjReOXKFUxMTJT1rl27luMtWLAgDho0CE+dOoWxsbGy3rNnz3K8efLkwR49euCBAwfw69evsl4vLy+0srIyerNly4bt27fHbdu2YUhIiKw3PDwcs2XLZvRmypQJW7RogWvXrsVPnz7JehMTE7FYsWJGr7W1NdarVw8XL16Mr1+/ln1OBoMB69Spw/mZf/nlF5w5cyY+evRI8V3s1asXx1uuXDmcOHEi3rhxA5OTk2W9M2bM4HiLFSuGI0aMwAsXLiiutzt27OB4HRwcsH///njs2DHF9fb69escb65cubBr1664Z88ejIiIkPX6+PigjY0NZ711cXHBzZs34+fPn2W90dHRmCdPHqM3Q4YM2KRJE1y5ciV++PBB1puSkoLlypXjrLe//fYbzp8/Hz09PRXfxZYtW3J+5sqVK+M///yD9+/fV3zGw4YN43hLlSqFY8eOxatXryqut0uWLOF4CxcujEOGDMEzZ85gXFycrPfo0aMcr52dHfbu3RsPHz6MUVFRst7Hjx9zvNmzZ8eOHTvijh07MCwsTNYbFBSEtra2Rm/mzJmxdevWuH79evT395f1xsXFYcGCBTnrbcOGDXHp0qX49u1bWa/BYMBffvmF8/euUaMGzp49G58+far4jDt16sTxOjs74+TJk/H27duK6+3EiRM53uLFi+OoUaPw8uXLiuvtxo0bOd4CBQrgwIED8eTJkxgTEyPrvXTpkmDv0717d9y/fz9++fJF1vvmzRvOeps1a1Zs164dbt26FYODg2W9kZGRmCNHDs7ep3nz5rhmzRr09fWV9SYlJWHx4sU5623dunVx4cKF+PLlS8Xn1LBhQ87PXK1aNZwxYwY+fPhQ8V3s168fx1u2bFkcP348Xr9+XXG9nTNnDsdbtGhRHDZsGJ4/f15x77N3716ON1++fNi3b188evQofvv2TdZ7+/ZtjjdnzpzYuXNn3L17t+J6++nTJ8yYMSNn79OmTRvctGkTBgYGynq/f/+O9vb2nPW2cePGuGLFCvT29pb1pqamYoUKFTjrba1atXDevHn44sULxWfs4uLC+ZkrVaqEU6dOxbt37yq+i6NGjeJ4S5YsiWPGjEF3d3fF9XblypUcb6FChfCvv/7C06dPK+59Tp48yfHmzZsXe/bsiQcPHlRcb58/f87xZsuWDf/880/cvn07hoaGynpDQkIwS5YsnL1Py5Ytcd26dYp7n4SEBCxcuDDnXaxfvz4uWbIE37x5o7j3qVWrFufvXb16dZw1axY+efJE8RnLsabSuzh16lSO1xysefz4ccW9j4eHh2C9tRRrNm3alJk1S5cuzXkXa9eubTJrVqlShZk1Bw8ezPGaizWV9j5aWPPBgwccL82aSnsfPmtmzpw5TVjTYDCIsuacOXOYWLN9+/Ycb3pgzXPnznG86Z01X716pbje1q1bl/Mzq2HN3r17c7xaWXP48OFMrLlz506O18HBAfv168fEmjdu3BDsfbp06cLMmhkyZOCst+mBNVu1asX5mdOKNZcuXcrxmoM1Dx06pLj3efLkCcerlTVbtWqF69evRz8/P1mvGGs2aNCAmTWrV6/O+XunFWtOmjSJ400vrEnvfczBmqtXr2ZizRIlSnDWWy2sWbVqVZw+fToTa/bv35/jTQ+seefOHcF6y8qafn5+kqyptPfRypoVK1bkrLeENZ8/f24Sa7q6ujKx5ujRoznekiVL4t9//43u7u6K76IYaw4ePJiJNU+dOsXxqmHNFy9ecLxqWDM0NFQTaxYpUoTzLqYVa3bv3p3jJax58+ZN1azp6OiII0eOxIsXLyrufbZu3crxamFNkrPv3btXkTXfv38vyNn/+OMPZtbMnTs3Z71NK9Zs1qwZ52dOK9ZcuHAhx2sO1jx8+LDJrLlz507FvU9gYKAoa27YsEExZ5dizWXLljGxZtWqVTl/by2sWaFCBWbWHDduHMerhjXXrVvH8aYVa758+VKSNZX2PnKs+fHjR1lvYmIiOjo6ctZbraw5Y8YMk1lzwoQJTKw5c+ZMjpdmTaW9D5818+XLlyas6evrazJr6rKsAgIC6OdeBM3RE2eO/5N/e4HeOPivUHh4uKDxhw8nvXr1Eg2DoqKi8OHDhxxwpCt79uzYoUMH3LFjhwBOYmJi8N27d5gvXz5Rr1wYlJCQgD4+PlipUiVRr1wYlJqair6+vvj7779L/sxyYdCnT59w6NChkl65MCgwMBDnz58v6XVycsJRo0aJfggLDQ3F3bt3S3pJGHTixAlBGBQZGSkAErroD2H8MCg6OhpfvHiBWbNmFfWSMMjNzU2wIYqLi8P3799j0aJFRb2k6VIsDEpKSkJfX1/87bffRL2k6VIsDDIYDOjr64tdunSR/JnlwiB/f3/BZpWuMmXKSIZBQUFBuGrVKkmvXBgUFhaGx44dk/Ta29tLhkFfv37Fu3fvcsCRvyEiYRC/6fL79+/4+vVrTmhOFwmDxD6ExcfHo4+PD5YpU0bUS8Kg5cuXC8KglJQU9PX1FXykpJ9xrVq1cO7cuaJh0MePHwVNIXRVrFhRMgwKCAgQfBihq0SJEpJhUEhICG7ZskXSW7BgQckwKCIiAi9cuCC73kqFQVFRUfjkyRPMnDmzqFcuDIqNjUVvb28sUKCAqFcuDEpMTERfX1+sVq2aqJcOg/hNl2S9bdu2reTPXL16dZw5cyY+fvxY8Iz9/PxwxIgRkt7y5cvjxIkTRcOgz58/4+LFiyW9jo6OOGLECNEwKDQ0FPfv3y/pJU2XYmHQly9f8MaNGxxwpEsuDPr27Rt6eXlh9uzZRb1yYVBcXBx++PABnZycJN9FqTAoOTkZfX19BeBIv4tyYZCvr68gqKOLhEFiH8L8/f1x8uTJkl4SBol9CAsODhZ8iKaLhEFnz54VhEHh4eGCMJa/3kqFQV+/fsX79+9zwJGuHDlyYMeOHUXDoJiYGHzz5g3a2dmJeknTpVgYRPY+zs7Ool7SdCkWBpH1lt8QS1fNmjUlw6BPnz4JBhDokguDAgMDcfbs2ZLe4sWLS4ZBISEhgqZnugoUKGAMg8T2PpcvX5b0kjBI7ENYdHQ0Pnv2jBOa89fb9u3bi34Ii42Nxffv33MatPjrbYsWLXDNmjWCMIistzVr1pRcb+vVq4eLFi0ShEFk79OhQwfJn5k0XYqFQX5+fvj3339LesuWLSsZBn3+/BmXLVsm6ZULg8LCwvDw4cOSXjoM4u99vnz5grdu3eJ8pKRLLgz6/v07vnr1itOgRZetra0xDOI3XZK9T8mSJSXX2yZNmuCKFSvw/fv3HC9Zbxs1aiS53pLGA7Gmy48fPwqCOroqV66MU6dOxXv37gmecUBAgODDCF2lSpXCMWPGoIeHh+h6u2nTJkkvaboUazzQypqPHj3ihOZ0/WjWrFy5suR6aw7WFPsQxsqaYgN+gYGBgiY8un4ka169elXSq5U127Zti25ubqJ7H62sWbt2bcl38Uey5vjx4yW95mBNsQG/sLAwPH78uKTXHKwpNuBnDtYsW7as5LtImi7VsibA/wb8pFiT3xRC149kTX7TM11KrHnx4kVJL82a/A9haliT33SZFqwpNuBH1lv+8CVdWliTNF3+CNY8cOCApPdHsybdoEWXuViT33RJ9j716tWTXG+VWLNHjx6Sv68fyZr8D9F0kaZLU1iTHvATY80HDx6kS9bkN8TS9SNZk9+ER5c5WFOs6TIyMhKvXLki6dXCmnJNl0qsSQ/48VmT7H3kWLNu3bo/jDXHjBkj6ZVjzaCgIIux5u3bty3GmvTBE/z1Vgtryg34/UjWJAN+5mbNiIgIQeMPXT+aNekGLf56K8WaiYmJzKzJb7oke582bdpI/sxKrMkfQKDL2dlZ8jAZFtaUGvALDQ3FPXv2SHrpw2R+BGvSDVr89fZnY01ETBPWvHbtmuh6u3r1akmvHGuGh4crsqbUgN+PZk2pAT9zsCa/IZauH8ma/CY8uizNmmJNl1FRUfj06VPOMBBdhDXFBvxYWVNswI+wJv/gCVJaWZMM+Imxpi7LSm8c1BsHdWmQXFDGL34YtHz5cmYvCYPIBK5cg5RY0WHQ06dPVXlLly5tnMCNiIhQ5eWHQVIBjFjxw6AaNWowe8kELgmD5DaL/OKHQVOmTGH28sOgzZs3q/p90WGQ3Ad7sSJh0O3bt/Hdu3eqvPQEbkJCgiovPwySCkPFij+B27hxY2YvPwwaOHAgs5cfBs2bN4/Zyw+D9u3bp+r3RYdB/GlVpaLDoM+fP6vy8sMgKegTKxIGkQ9h9LSqUvHDILkmOH6RMIic9iTXlMEvegL3/fv3suDGL34YJBdaixU57enevXvo6empykuHQdHR0aq8/DAof/78zF5+GCQF52LFD4PkPkzwK1OmTNiqVStct24d+vn54bRp05i9/DBo27Ztqn5fNWrUME7gyoUoYkWHQb6+vqq8/DBIKkgVK34YJBWGihU/DGrevDmzlx8GDRkyhNnLD4PkPhLyiw6DvLy88NChQ6p+1/TJwg8fPlTlpcOg0NBQVV7+ycJSgbdY8cMgqQ/BYsU/WVjuwwS/+GHQhAkTmL38MGj9+vWqfl90GHT+/HlVXjoMevXqlSovCYOuXLmCMTExqrz8MIg+HUCp8uTJwwmD6tevz+zlh0F9+/Zl9vJPe5o1axazl3+y8K5du1T9vugw6NatW6q8dOOBn5+fKi+/8UCqoUOs+I0H9MlISsU/WViuCY5fdOPB58+fTWJNctqTFtaUC63Fij7tSQtrRkZGqvKakzWlPgSL1c/CmnLDOGJFWPPp06cmsSYZ8PP29lbl1cqa9GlPWlizSZMmzF5zsqbc8CO/zMWaDx8+xLt376ryamHNokWL4vDhw40DflpYU2rAVaz4pz2pZU36ZGG5pgx+mZM1T58+rep3TbOml5eXKq85WVPq45NYmYM1yYBfz549mb1aWJN/2pMW1rx27ZoqL32ysFbWlPqILFbmYs3IyEhs0aIFs5fPmnIDAPyiWdPHx0cTa8o1SImVFtakT3tKr6zZsWNHZq85WXPDhg2qfl/mYM07d+7g69evVXlp1oyNjVXl5Z/2pIU1GzRowOzlnyyshTXlhh/5ZU7WvHnzpiovzZr+/v6qvOQWG3OwZvny5Zm9WlmTPu1p5MiRzF6trEmfLKyFNZ89e6bKS58srJU16ZM/lcqcrNm1a1dmL581+bfdyRX/FhstrCnXHC5W5mLNxMREVd6fhTXlBgD4ZU7WlDv4Qay0siYZ8AsKClLl5bOm1KERYsU/WVgLa8o1wfHLnKy5Zs0aZq85WVPLd81v376p8qq5xUbXj5feOKg3DurSIDUfc/ilphGOX/wrH9Qu/qZ66SO11VahQoVU/aNOV+7cuTnX1aipzJkzc66AU1PW1taSHfU/+hmrCXD4ZerPCwCcayrUloODgyqIoitHjhySp88oVcaMGSUnzZTKyspK0/ukxWvq3xkAVH3A5lexYsUkJ1SUKm/evFioUCGTvFmyZDH5721jY6PpndDyLmpZA9Q0WfJLTVDPr4IFC6oKkOnKmTOnKlCmK3PmzCb/zNbW1preJy3PmH+VgJqSOlWApYoXL66qcZAue3t7yelcpcqWLZvJ/55nyJBBcM1fWj0nS623UtOTLFWkSBHJk6CUKk+ePJLTuUqVJUsWk//btLGxSZd7Hy3rran7D4D/Dxrz5s1rkjdHjhwm77syZcpksb2PlmesZf3QsvdxdHSUPOVdqezs7FQ1SNCVNWtWk9eQDBkyaPr3SWdN9sqVK5fOmioqvbKmqXtrraxpqXfRUutt0aJFNbGm1ElQSpVeWdNSex+trElf1aemdNZUV2qaSfils6a60lmTvbSwprW1dbpcb7XsfbSwZv78+TWxpql/dqZMmUze0+usqa7s7Ow418KrqfTKmlr4x5KsKXXqsFLprKmu0iNrZs+e3WKsaanvmlrWWy17H0uypqn7cp011VXBggVx3759+imEFtSPaBy0Bl26dAmUJUsW+OOPP2DLli3w+fNn6N69O7M3Q4YM0LRpU1i1ahX4+PjAP//8w+y1srKC2rVrw4IFC8DLywt2796t6u9dpUoVmDZtGjx48AAePnyoylu6dGkYN24cXLt2DT59+gSZM2dm9hYuXBiGDh0K586dg6CgIHBwcGD22tnZQZ8+feDIkSMQFhYGFSpUYPbmyJEDOnXqBLt27YLQ0FBo0aIFszdz5szw+++/w4YNG8Df3x8GDx7M7LWxsYFGjRrB8uXL4d27d7BkyRJmLwBAzZo1Yc6cOfDs2TM4efKkKm/FihVhypQpcOfOHXj37p0qb/HixWH06NFw5coVCAgIgOzZszN7CxQoAIMGDYJTp05BcHAwFCtWjNmbJ08e6NGjBxw4cADCwsKgZs2azN6sWbNC+/btYdu2bRAcHAx//vknszdjxozQokULWLt2LXz8+BHGjx/P7LW2toZ69erB4sWL4fXr17Bp0yZmLwDAL7/8AjNnzoRHjx7BtWvXVHnLlSsHEydOhBs3boCPjw/Y2Ngwe4sWLQrDhw+HCxcuwOfPnyFv3rzM3nz58kG/fv3g2LFjEBoaCmXKlGH25syZE7p06QJ79uyB0NBQaNCgAbPX1tYWXFxcYPPmzRAYGAi9e/dm9mbIkAGaNGkCK1euhA8fPsCsWbOYvVZWVvDbb7/B/PnzwdPTEw4cOMDsBQCoXLky/PPPP3D//n14/vy5Km+pUqVg7NixcPXqVfDz8wNbW1tmb6FChWDIkCFw5swZCAkJgYIFCzJ78+bNC7169YJDhw5BaGgoVK5cmdmbPXt26NixI+zYsQOCg4OhdevWzN5MmTJBq1atYP369eDn5wfDhw9n9trY2ECDBg1g6dKl8PbtW1i5ciWzFwCgRo0aMHv2bHj69CmcP39eldfZ2RkmT54Mt2/fhvfv36vyOjk5wahRo+Dy5csQGBgIOXPmZPbmz58fBg4cCCdPnoTQ0FBwcnJi9ubOnRu6d+8O+/fvh7CwMPjtt9+YvVmzZoV27drB1q1bITg4GDp37szszZgxIzRr1gxWr14Nvr6+MHnyZGavtbU11K1bFxYuXAgvX76Ebdu2MXsBAKpWrQrTp0+Hhw8fwu3bt1V5y5QpA+PHj4fr16/Dx48fIWPGjMzeIkWKwLBhw+D8+fMQFBQE9vb2zF57e3vo27cvHD16FEJDQ6FcuXLM3hw5ckDnzp1h9+7dEBISAk2aNGH22traQps2bWDTpk0QGBgI/fv3Z/ba2NhA48aNYcWKFeDt7Q0LFixg9lpZWUGtWrVg3rx58Pz5czhy5AizFwCgUqVKMHXqVLh79y68fPlSlbdEiRLw999/g7u7O/j5+UHWrFmZvQULFoTBgwfD6dOnISQkBAoXLszszZMnD/Ts2RMOHjwIoaGhUK1aNWZvtmzZ4M8//4Tt27dDcHAw/PHHH8zeTJkyQcuWLWHdunXw6dMnGD16NLPX2toa6tevD0uWLIE3b97AunXrmL0AANWrV4dZs2bBkydPwN3dXZW3fPnyMGnSJLh16xb4+PiAtTV7TOHo6AgjR46EixcvwufPnyF37tzMXgcHBxgwYAAcP34cQkNDoWTJkszeXLlyQdeuXWHv3r0QGhoKdevWZfaakzWnTZvG7DUnaz569EiV11ysGRwcDPnz52f2mos1Q0JCNLHmX3/9xey1sbGBhg0bwrJlyzSz5qlTp1R5K1SooLMmo8zFmq9evTKJNWfMmGEya06YMAFu3LgBvr6+6ZI1GzZsyOw1F2u+f/8e5syZw+zls+bBgweZvQD/Y8179+6lOWv+9ddfZmHNKlWqMHuzZ88OHTp0sDhrrlq1itkLwGXNCxcuqPLyWdPKyorZa07WLF68OLOXsOa+ffsgLCwMateuzezNkiULtG3bFtzc3CAoKEgTa06ZMoXZa2VlBXXq1DELa965c0eV92dhzfLlyzN7adYMDQ2Fpk2bMnv5rDlgwABmL2HN5cuXm8yac+fOhefPn8OxY8eYvQD/n7O7urrC3bt34dWrV6q8NGv6+/tbjDV/+eUXZi+fNdu2bcvs/VlY08PDQ5W3fPnyMHHiRLh58yZ8+PAhTVmzf//+ZmHNevXqMXvNxZofPnyA6dOnM3v5rLlnzx5mL0D6Zs3Dhw9DWFgYVKxYkdlLcvadO3dCSEgItGzZktmbOXNmaN26tVlYc+nSpcxeAPOxpre3tyqvuVgzJCREE2v++uuvzF7Cmlu3boWgoCDo0KEDs5fPmhMmTGD2kpx90aJFmlnzxo0bqrxly5blsGaGDBmYvf8G1uzTpw+z11ys+eLFC02s+eLFC1XekiVLwpgxY8DDwwP8/PygR48eqjhGVzqQOboP/+0F+omD/wpFR0fLXvPDP9KaVkxMDL548UJyIok+0joqKorjjY+Px0+fPmG+fPlEvfSR1qGhoRxvUlISBgUFSU7okCOt169fj35+fhxvamoqBgcHo4uLi2T3PLk68u3bt4LfV0hICA4fPlzy91WzZk2cPXs2Pn36VNBRHh4ejosWLZL0Ojs7G4+0TklJ4Xi/fv2KBw4ckPQ6OTlxjrSm9e3bN9lr1fLnz8850ppWbGwsvn37VnIClH+kNa2EhAQMDAyUnADlH2lNKzk5GYODgyWvgKGPtPb19eV4DQYDBgcHSx6DTh9p/fLlS8FzCgsLw4kTJ0r+vqpVq4bTp0/Hhw8fYmpqKscbGRmJ69atk/SS65OuX7+OycnJHG9UVJTs0ctFixbFYcOGGY+0pvX9+3d8/Pix5DUu9vb2nCOtacXFxaGvry/myZNH1JsjRw7jkdbh4eEcb2JiIgYFBWGZMmVEvfwjrWmlpKRgcHAwNmvWTNTLP9Kar5CQEBwwYICol3+ktdi7KHftBH2kNf9d/PLlC+7YsUPSS460dnd3F7yL0dHR6OHhIenlXx1JKyYmBl++fCl5dQS5PungwYP49etXjjc+Ph79/PwkTxsiV0eS65NokfVWaronU6ZM2LJlS1y3bh1++vSJ4yXvotQx6Pzrk/jPKTQ0FEePHi35+6pevbrx+iS+NyIiQvbaCfr6JLH19siRI5JeR0dHzvVJtL59+4b37t1DKysrUa+Dg4Px+qTv379zvLGxsejt7S152lCuXLmwW7duuHfvXoyMjOR4ExMTMTAwUPL0iyxZshivT/r8+TPHS97FevXqSa63zZo1w1WrVqGPjw/yFRwcLHnlFrk6csGCBejl5SW63k6dOlXyd12lShXj9Uli6+2mTZskvfT1SUlJSRxvVFSU7DU/9PVJ/L3P9+/f8dmzZ5ghQwZRr52dHef6JFrx8fH48eNHyaso+dcn0SLvotTJCJkzZzZen+Tv78/xkr1Pq1atRL309Unv3r0TPOOQkBDZ653J9UnPnj0TXW/lrp2oWLEiTpkyBe/cuSO63u7Zs0fSW7x4cRw9ejReuXJFdL29fv26pLdAgQLG65PE9j6vX7/GLFmyiHrz5MmDPXr0MF6fRCshIQEDAgIkJ0CzZs3KuT6JFtn7SF0BkzFjRuP1SR8/fuR4yXrbqVMnyfWWvj5JbL0dN26c5O+LXJ/06NEjwbsYERGBq1atkvTS1yeJ7X1OnDgh6SXXJ124cEF07/Pw4UPJk2jI1ZHHjh0T3ft8+PBB8mTbnDlzYpcuXYzXJ9FKTEzEz58/S55+YWtra7w+SWrv07hxY1FvhgwZsEmTJsbrk/gKDg6WvHKLf32S2Ho7ffp0yd81fX0S/xl/+fIFt27dKumlr0/ir7dKrFmoUCFZ1vT09MRMmTJJrrdaWXPHjh2Sex+pqXlLsmaNGjUkWTMiIkL2isMfyZq3b9+W9P5XWXPhwoWSrDlp0iTJ35cW1ixTpozx+iSx9fbMmTOS3p+ZNaVOdNDCmjY2NoqsKXW9s7lY8+7du6J7n507d0p6ydWRUqx59epVSa8W1iRXR0qxpr+/PxNriu19tLJm+/btJd/Fn5U1jx49Kun90awpddqQVtb8448/cMuWLZKsWb9+fcn1Vok1e/XqJfku/kjW3Lx5s6RXC2sWLlzY4qwZFhbG8bKyJrk6khbZ+7Ru3VpyvW3UqBEuW7bMJNYkV0dKseaCBQskvT+SNW/cuCHp/ZlZ89dff5V8F83Bmq9evRJdb8ePHy/5+9LKmhMmTMAbN26oZk1ydeTPyJpSJx2ZizXF9j7plTXlrpQlrHnmzBnVrEly9kOHDomypp+fn+TJtlpYM1OmTNiqVasfxppyt8/9SNY8ePCgpJdmTbG9j1bWzJYtm6jXHKzp5uaGQUFBHC8LazZr1gxXr14tYE3E/38Xu3XrJrneamHNqlWryrLm+vXrJb1aWLNIkSKyrPnkyZN0xZrkXWzevLnku0hY09vbW/CMWVhz7ty5+Pz5c9G9z5w5cyR/1z8za0qdtPijWVPq5NIfyZq6LCv9qmK9cVCXRvHBr0aNGpIBGV/8Biu5gIyvjRs3crxyARlfFy9eFGwSpQIyvt68ecMJ2khAtm/fPkFAxldkZCQnaKObMfibRL6SkpKwePHioptEsYCMr4YNG3I2EHXq1JHcJPLVr18/0U2iWEDGF38jQjaJYgEZX3v37hVsEqUCMr74UGBvby8ZkPH16dMnTkOrXDMGX9+/f+cEbXQzhtJal5qayjmOnG7GENsk8tWmTRvOz0yaMcQ2iXyNGjWK461YsSK6urqKBmR8rVy5knmTyNfJkydFN4mnTp0SbBL5ev78uegmUSwg4yskJIQTtGXLlk0yIOMrISGBE7SRTaJYQMaXwWDgBG1KzRh88cGPBGSPHz9WfBf5obdcMwZfbm5uHC9pxrh48aIA2PjiNzs6ODhg//798fjx44rrrbe3Nydoy5UrF3bt2hX37t0rCMj4+vr1KydoIx8kNm/eLPggwVdycjLnCocMGTJg06ZNJZsx+GratClnvZULyPgaPHgw5/dVpUoVyYCML37oLReQ8cUPYeQa//m6f/8+xyvXjMFXQEAAJ2iTa/znKzY2lhO0kWYMsQ8SfKWmpnKuFbCxscGGDRvismXLRAMyvvjgRz5IiAVkfI0dO5bjrVChgmRAxtfatWs5XrlmDL7OnTsn2PtIBWR8eXl5cfY+cgEZX+Hh4ZygTa4Zg6/ExETOlSZyzRh8GQwGrFu3Lme9JY3/Yh8k+OJ/ZKxWrRrOmDFD9IMEXzNmzOB45Rr/+eKHMOSDhFhAxhe/2VEuIOPLx8eH85GRfJAQC8j4io6O5gRtcgEZXykpKZxrkZQa//miG1qVmjH4GjZsGOf3Jdf4z9fSpUs5XtL47+Hhobje8j/4FypUCP/66y88c+aM4t7nyZMnHK/cBwm+goKCOEFbtmzZsEOHDqKN/3zFxcVxrpCSC8j4MhgMnCtgrK2tsUGDBswBGZ815Zox+OKH3mnFmpcuXRKst5ZmTaW9T1JSEudqI3OwplQzBl/9+/fn/L60sKZcMwZfWljzzp07gvU2rViTvkLKXKwp1ozBF/8jo6VYU64Zg69Tp05xvFpZU6oZg6/Q0FCzsqZUMwZfBoMBa9WqxVlv1bBm9+7dOT9zWrEm/4O/OVhTrBmDr/fv33M+MlqSNeUa//miG1q1sqZcMwZfCxcu5HjTijUfPHjA8aphzcDAQLOzplgzBl8Gg4FzBaY5WFOqGYMv/jBPemDNly9fWow1HR0dOXsfc7AmS87eu3dvzu/Lkqwp1YzBF7/ZUQtryjVj8BUdHc25rji9sCZ/mMccrMmSsx87dozjNQdrijVj8PUzsaaaZozOnTtzfua0Yk3+ILMW1pRr/OfrzZs3gpxdqvGfr8jISMyZMydn76OVNaUa//lq1KgR513Uwppyjf98zZ07l+O1FGvKNf7z5efn90NYkyVnp692NRdrijX+88Uf5lHDmvzmci2sKdf4z9eLFy84Xi2sKdf4z1dCQgIWKVKEs95amjVZ9j7//PMPx2sO1hRr/OeL3+yohTXlGv91/VzSGwf1xkFdGuTp6YlZs2aVnA6VU2hoKObOnRubNm2Kq1atYgrIiBISEtDR0VF2OlRKBoMBf/vtN1XNGLR69OihKiCjNW3aNFUBGa1t27ZxAjKlTSKta9eucQIy/nSonN6/f4/ZsmVjbsagFRUVhfb29saAjGWTSETgXm46VE7NmzfHChUqSE6HymnIkCGqNom0Fi1apCogo3X48GFVARmthw8fqgrIaAUGBmKOHDmYAzJacXFxWLhwYVXNGEQGgwGrVaumKiCj1aFDB2NAJjYdKqfx48fLTofKaf369bLToXI6f/48pxlDzSbx1atXmC1bNnRxcWEKyGhFRERgnjx5VAVkRImJiViiRAn87bffmAMyIoPBgPXr1+cEZGqecZ8+fVQ1Y9CaNWuWqoCM1u7du1U1Y9C6efMmZs+eHTt06CA6HSqnjx8/Yvbs2SWnQ+X07ds3dHBwUNWMQZSSkoIVKlQwToeyBGS0WrdurSogozVixAhVARmt5cuXq2rGoHX8+HFVzRi0nj59ilmzZmVu/KcVHByMOXPmVNWMQRQfH49FixZV1fhPRJqW5aZD5dSlSxdVjf+0pkyZYpwOPXfunKr1dvPmzaqaMWhduXJFVUBGi0wVszZj0Pry5Qva2dmpavwnIh+S1TRj0GrcuLExIBObDpXTwIEDVTX+05o3b57sdKic9u/fLzsdKqd79+6pasag5e/vjzly5GBu/KcVExODBQoUUBWQEaWmpmLlypU5zRhqnnHbtm1VBWS0/v77b04zhpr19v/YO8uwqrIuji+wuzuxu7u5toJdo46KYuvY3djd3Yrd3S12oWKCBYggFtJx1/thnn3efc89te+5cmXc/+dZH+bDf3Q4czb7t86KpUuXMhX+0zp27JhJMQbLeauHNYOCgnSzJksxBpHRaMTq1asnONbctGmTTVjT29v7t2BNLcUYtBo1aiSwppZiDFo0a2opxqA1d+5cm7Dm3bt3MVWqVAmONStUqGAT1hw5cqQu1mQpxqB16tQppsJ/Ws+ePcOUKVNqLsagpYc1yYdklmIMIr2s2b179wTHmteuXbMaa6oVY9AKCQnBbNmy6WJNlmIMWs2aNbOYNQcNGmQT1jx06JDNWDNdunRWYU3WPDvNmlqKMWh17NiRqRiDFmFNrcUYtNatW2cT1nz58mWCZE2DwWAV1mTNs8+cOVM3a2otxqBlDdbUWoxBSy9rli1b1iasOXTo0N+CNVny7E+ePMFUqVJpLvynRbOm1sJ/oqioKMyfP78u1mQp/KfVpUsXi1lz0qRJVmNNlruPNVmTJc/+/ft3zJIli27W1Fr4T4uwptbCf1r9+vVjKvynpYc19+3bp4s1Lf2u6e/vj2nTpk1wrNm2bVvdrKm18J/WqlWrdLEmS+E/Lb2smTFjRpuwZp06dWzCmly2FS8c5IWDXDrk6+vLBGy0Pn36xHRJpPXt2zemBBktMg7cEhmNRqZfTGK9evXK4rGz3t7eTJdEWu/evWMCNlp+fn5MwEbr8+fPTAkyWiEhIUwJMlrR0dFMl0RaRqNR13N6/fo10wWC1ps3b5guibTev3/PdEmkFRAQwJQgo/XlyxemSyKtsLAwi8//uLi4BPkuvn37lgnYaOk5bwMDA5kSZLS+f//OlCCjFRkZyfRBgpbed1GP18fHx+J3Uc956+/vb/F5GxwcbPF5+/PnT6YEGa2YmBimDxJi2fK8tRTYPnz4wJQgo6XnvP369StTgoxWeHg4UzEGrT/xvPXz82NKkNEKCgpiSpDR+vHjB1OCjFZUVBTTBwlatrz76Dlv9dx9Pn78yJQgoxUcHGxxd2hoaChTgoxWbGws0wcJsWz1jN++fWvxefsnsqat7j62Yk09dx9bsWZMTEyCZE0fHx+L30XOmmxKiHefhMiatrz72Io1379//0exZmxsLGdNBn369CnBsWZCzbP/aayZUPPsnDW1y5as6e3tzVlToyIiIhJknp2zpnbpYU3EhHn3ef/+vc3y7Jw1tYuzpnbpPW+5bKtfUThoh/8WxnEpyM7OLjcA+AIA+Pr6Qu7cuW38N+Li4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uL6E+Tn5wd58uQh/5gHEf30/jvt9f4LuLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4Eo544SAXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcX1x8kXjjIxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxfUHiRcOcv0x+vr1KxiNRou8P378gNjYWIu8oaGhEBkZaZE3KioKfv78aZEXEeHr168WeQEAvnz5YjMvIlrk/fbtm8XPOCQkBGJiYizyhoeHQ0REhEXe2NhY+PHjh0VeRLTpc7JUX79+tfgZf//+HeLi4izy/vz5E6KioizyRkZGQlhYmEVeo9EI3759s8gLkDCfk553Uc95GxYWZvF5Gx0d/cedt3qfsZ53MTo62iJvREQEhIeHW+TVc94CJMzfi3rPWz13H0vP26ioKAgNDbXIazQaE+S7aKu7z48fP2xy94mJiYGQkBCLvPzuwya9562ld5+4uDj4/v27RV6AhPku2oo19dx9OGuyibMmmxLq3YezZvx4/0TW1HP3SYjnLWdNNv2J521CY82E+i7+aXcfzppsSqismRDvPrbM+/A8e/x4bXW/TYisCZAw30XOmmxKiM84oZ63tmJNrv+eeOEg1x+jly9fQp48eaBPnz5w7NgxpmRQSEgI5MmTB7p27Qq7d+9m+hBmZ2cHJUqUgDZt2sCmTZsgMDBQszdJkiRgMBigcePGsGLFCnj//j3Tn9urVy+oU6cOzJs3D54/f870y3LGjBlQsWJFmDp1Kty/f5/J6+7uDsWLF4fRo0fDtWvXmH5Z3rhxAxwcHGDQoEFw5swZpguRn58f5MqVC3r27AmHDh1iSgZFRkZC/vz5oVOnTrBjxw6mX5aJEiWC8uXLQ4sWLWD9+vXw8eNHJm+LFi2gQYMGsHTpUvDx8dHstbOzg6FDh0KNGjVg1qxZ8OTJE6bntGTJEihbtixMnDgRbt++zXQhOnLkCBQpUgSGDx8Oly5dYoKTx48fQ548eaBfv35w4sQJJjgJDg6GXLlyQbdu3WDfvn1MFyKj0QhFihSBdu3awdatW+Hz58+avYkTJ4YaNWpAs2bNYPXq1eDr66vZa29vD126dIF69erBwoUL4dWrV5q9AAATJ06EKlWqwPTp0+Hhw4dMz3jDhg1QqlQpGDduHHh4eDDByYULF6BgwYLwzz//wLlz55iSQd7e3pA7d27o3bs3HDlyhAlOQkNDIW/evNC5c2fYtWsXE5zY2dlBqVKloFWrVrBx40b49OmTZm+SJEmgYcOG0KhRI1i+fDm8e/eO6c/t168f1KpVC+bOnQvPnj1jek6zZ8+GChUqwJQpU+DevXtM7+KePXugWLFiMGrUKLh69SrTeXv79m3Inz8/DBw4EE6fPs0EJwEBAZA7d25wcXGBAwcOMCWDoqOjoUCBAtChQwfYvn07EwgmSpQIKlWqBM7OzrB27Vrw9/dn8rZp0wYMBgMsXrwYvL29NXsBAEaOHAnVqlWDmTNnwuPHj5me8YoVK6BMmTIwYcIEuHXrFtMzPnHiBBQuXBiGDRsGFy9eZDpvvby8IHfu3NC3b184fvw403n7/ft3yJMnD/z999+wd+9epmQQIkLRokWhbdu2sGXLFggKCtLsTZw4MdStWxeaNm0KK1euhA8fPmj22tvbQ48ePaBu3bqwYMECePHiBdNzmjp1KlSuXBmmTZsGDx48YPJu3boVSpQoAWPGjIHr168znbdXr16FAgUKwODBg+Hs2bNMd593795Brly5oFevXnD48GGm8zYiIgLy5csHf/31F+zcuZPpvLW3t4eyZctCy5YtYcOGDRAQEKDZmzhxYmjatCk0bNgQli1bBm/fvtXstbOzg0GDBkHNmjVhzpw58PTpU6bntGDBAihfvjxMmjQJ7ty5w/QuHjhwAIoWLQojR46Ey5cvM523Dx48gLx580L//v3h5MmTTOdtYGAg5MqVC7p37w779+9nuvvExsZCoUKFoH379rBt2zYIDg7W7E2SJAlUq1YNmjdvDmvWrAE/Pz/N3kSJEkGHDh3A0dERFi1aBK9fv9bsBQAYO3YsVK1aFWbMmAGenp5Mz3jNmjVQunRpGD9+PNy8eZPpXTx79iwUKlQIhg4dCufPn2e6+9iKNQEASpQoAa1bt4531nR1dYXatWvHO2vu2LEjwbFmVFQUODg4QKdOncDd3Z357qOHNVu2bAkNGjSAJUuWJBjWPHr0qE1Y88uXL5A7d+54Z80kSZJAzZo1Exxrbty4EUqVKgVjx46NV9b08fGBXLlygaura7yypr29vS7WbNy4sU1Yc86cOQJr3r17N95Y886dO5AvXz4YOHAgnDp1KkGwZuLEiaFy5crg5OQU76w5atQom7DmyZMnLWbNZ8+eCazJevfRy5rFihWDtm3bwubNm+ONNe3s7KBHjx5Qp04dmD9/foJhzWvXrtmENcPDwyF//vwCa7Lk2fWyZrNmzQTWfPPmjWavnZ0dDB48GGrWrAmzZ8+OV9Y8ePAgFClSBEaMGAGXL19mehf1sGZQUFCCZM1OnToJrMl699HDmmvXrhVY88aNG/HKmiTPfvTo0QTBmokTJ4b69evbhDVnzpxpwpos76Je1syfP79FrOnv7y+w5sGDB+ONNRMnTgwVKlQAZ2dnWLduXbyxJgDAsGHDoHr16pw1NciWrNm1a1eoV68eLFiwAF6+fKnZCwAwadIkqFy5Mri5ucUra166dMkmrBkWFpYgWbN///4Ca3p5eVlcdMn1HxEi8lAJAMgNAAgA6Ovri1wJV40bN0byLJMnT47NmzfHNWvWoJ+fn6q3f//+gjdx4sTo6OiIixYtwtevX6t6582bJ3jt7OywatWqOGPGDPT09ESj0ajo3b9/v+AFACxdujSOHz8eb968ibGxsYree/fumXgLFiyIQ4cOxfPnz2N0dLSi9+PHj5g8eXLBmzNnTuzTpw8ePXoUw8LCFL3h4eGYPXt2wZsxY0bs2rUr7t69G79//67oNRqNWKFCBcGbOnVqbNOmDW7atAkDAwMVvYiI7dq1E7xJkybFxo0b44oVK/D9+/eq3lGjRglee3t7rF27Ns6bNw+fP3+u+pxWr15t8rOuWLEiTp06Fe/fv6/qPX36tIm3ePHiOHr0aLx27ZrqM37+/Dna2dkJ3vz58+OgQYPwzJkzGBkZqej98uULpkmTRvBmy5YNe/bsiYcOHcKfP38qeqOjo9HBwUHwpk+fHjt16oQ7duzAL1++KHoREevWrSt4U6RIgS1atMB169bhx48fVb09evQQvEmSJMEGDRrgkiVL0MfHR9Xr5uZm8i7WqFEDZ82ahU+ePFF9Ttu3bzd5TuXKlcOJEyfi7du3MS4uTtF7/fp1E2/hwoVx+PDheOnSJdV38d27d5gkSRLBmzt3buzXrx+eOHECIyIiFL0/f/7ETJkyCd7MmTNjt27dcN++ffjjxw9Fb1xcHJYsWVLwpkmTBtu1a4dbt27Fz58/K3oREZs3b25y3jZr1gxXr16t6ffo4MGDBW+iRImwXr16uHDhQnz58qWqd9GiRSY/6ypVquD06dPx4cOHqs/48OHDJt5SpUrhuHHj0MPDQ/VdfPTokYm3QIEC+M8//+C5c+cwKipK0fvp0ydMkSKF4M2RIwe6urrikSNHVM/byMhIzJUrl+DNkCEDdu7cGXft2oXfvn1T9BqNRqxSpYrgTZUqFbZq1Qo3btyInz59UvQiInbq1MnkvG3UqBEuX74c3717p+odP368yXlbq1YtnDt3Lj579kz1Oa1fv97kZ12hQgWcMmUK3rt3T/VdvHDhgom3WLFiOGrUKLxy5QrGxMQoel+9eoX29vaCN2/evDhw4EA8deqU6nn77ds3TJcuneDNmjUruri44IEDB1TP25iYGCxUqJDgTZcuHXbs2BG3b9+OwcHBil5ExPr165uct05OTrh27Vr09/dX9fbu3dvk7mMwGHDx4sXo7e2t6p01a5bJeVutWjWcOXMmPn78WPUZ79692+Q5lSlTBidMmIC3bt1Sfca3bt0y8RYqVAiHDRuGFy9eVD1vfX19MWnSpII3V65c2LdvXzx+/DiGh4cresPCwjBr1qyCN1OmTPj333/jnj17VO8+cXFxWLZsWZO7T9u2bXHLli0YFBSk6EVEbNWqleBNliwZNm3aFFeuXIkfPnxQ9Q4bNszkvK1bty7Onz8fX7x4oepdvny5yc+6UqVKOG3aNHzw4IHqMz5+/LiJt0SJEjhmzBi8fv266nn75MkTk7uPg4MDDh48GM+ePat63n7+/BlTpUoleLNnz469evXCw4cPY2hoqKI3KioK8+bNa3L3+euvv3Dnzp349etXRa/RaMSaNWsK3pQpU2LLli1xw4YNGBAQoOhFROzatavJ3adhw4a4bNkyfPPmjap38uTJJudtzZo1cc6cOfj06VPV57RlyxaT51S+fHmcNGkS3rlzR/VdvHz5som3aNGiOGLECLx8+bLqeevj44OJEycWvHny5MH+/fvjyZMnVe8+P378wAwZMgjeLFmyYPfu3XH//v0YEhKi6I2NjcVixYoJ3rRp02L79u1x27Ztms5bW7Hm/PnzTc5bwpqPHj36pax5//59E298smaOHDkEb8aMGbFLly4WsWaqVKmwdevW8cKao0ePNnkX44s1z5w5Y+KlWVPtXbQlaxYoUMDk7tOpUyd0d3f/5azp4uJict7Wr1/fYtasXr26ZtZ0d3c3eU5ly5ZNEKyZOXNmwWst1tRy93FycjK5+8QXay5evNjkZ12lShV0c3PTxJpHjhwx8ZYsWRLHjh37y1kzMDDQZqxZtWpVk/M2IbDmhg0bTH7WhDXv3r37S1nz9evXmChRIsGbN29eHDBggMWs2aNHD82sWbhwYZO7T4cOHTSzZoMGDUzO2/hizdmzZ5uct/HFmrdv3zbxWoM1jx079ktZ02g0Yrly5QQvybNv3rz5l7Pm8OHDTc7bOnXqxAtrnjhxwsTLwppPnz41u/sQ1lR7F/WyZr58+QRvfLLm33//bXL3adiwIS5dutRi1pw9e/YvZ80rV66YeIsUKRJvrJkxY0bBG5+s2aRJE8FrLdZ89eqVqlcPax44cMDkOZUuXRrHjRuHN27csIg1hwwZgufPn1e9+0ixZu/eveOFNStWrGhy92Fhzfbt25vcfQhrarn76GHNNWvWmPysrcGaV69e1cSadJ49X758OGjQIDx9+rTFrHnw4MFfzpr16tUzufs4OzvHC2tOnz7d5F2ML9b08PAw8bKw5vv372VZU+3uo5c1S5UqJXgJa2rNs0ux5qpVqzTdff755x+Tu0+9evVwwYIFvzVrenp6mngdHBw0syaXbeXr60s/u9xojZo4a/xL/usBvHDwP6ObN2+aHIB0VKhQASdPniybDPrw4YPJLzk6ihYtiiNHjpRNBoWGhmKWLFkkvXQySApO4uLisHTp0pLeLFmyCMkgOThxdnaW9GpJBg0ZMkTSqyUZtGTJEkmvlmTQ0aNHJb10Mkiu6PLx48eyz5gkg27evCn5jAMDAzFlypSSXpIMunDhguSFKDIyEvPkySPpJR/C5JJBRqMRq1WrJuklRZdKyaDOnTtLeulkkBycTJw4UdKbLFkybNKkCa5cuVL2Q9jGjRslvVqSQZcuXZJ9TmrJIG9vb5OEKh1qyaDv379j+vTpJb0kGST3ISwmJgaLFCki6SXJoEOHDskmgxo2bCjpJcmgHTt2yCaD+vbtK+lNmTIltmjRAtevXy8LJ3PmzJH0akkG7d27V/ZdrFGjhmIy6M6dO7LPuFy5corJIH9/f0yWLJmkVy0ZFBYWhtmyZZP0qiWDjEYjli9fXva8VUsGtWnTRva8JckguaLLESNGSHpJMkjpQ9jKlStlz1tHR0dcuHChbDLo5MmTss+4atWqOH36dNlkkJeXl0lClQ61ZFBwcDCmTp1a0lugQAHFZFB0dDTmz59f9rxVSgYZjUasXbu27Hmrlgzq1q2bpFdLMmjq1KmSXi3JoK1bt0p66WSQ3Iewa9euyb6LJBl07949Se/bt29NEqp0FC9eHEeNGiWbDAoJCTEpXKYjX758OHDgQNlkUGxsLJYoUULSS4oulZJBTZs2lfSSokulZNDAgQMlvVqSQQsXLpR9F9WSQQcPHpR9F9WSQQ8ePJB9xiQZJPchLCAgwORjMh0kGST3ISwiIsLkYzIdJBkkV3RpNBqxcuXKkl6SDNq7d69sMqhDhw6SXi3JoLFjx0p6yYcwpWTQ2rVrJb2k6FIpGXTu3DnZ51S5cmXFZNDLly9NEqp0qCWDvn79avIxmQ61ZFBMTAwWLFhQ0ps9e3Z0dXVV/BDm6Ogo6aULD+TuPr169ZI9b1u1aqX4IWzGjBmy522jRo1w2bJl+PbtW0nvzp07Zc/bWrVq4Zw5c9DLy0vyOSmxZvny5VVZk/6YTMevZs0yZcpIerWwZosWLSS9elgzefLkAmvKfQhbunSp7HlLWFOu6NJWrBkUFKTImkOHDv1lrFm9enVJ7+/Mmps2bZI9bwlryn0I+9WsKdfgp4c1Y2NjsWjRorLnrR7WJA1+v4I1586dK+klDX6/ijXv3r0r+4x/JWuKm2Tp0MOamTNnxu7duyt+CNPDmiNHjpQ9by1lTbroUo41T506JfucSIOfJaxJGvyUWJP+mEyHHtbMkSPHL2XN7t27S3pp1pQrutTDmtu2bZP0WoM1SYPff4k1mzVrJun9nVnz0KFDsuctYU25osuHDx/KPmNbsaZag5+4SZYOUnSpxJodO3aU9KZJk0a1wU8Pa65bt072vP2vsibdJEuHFtY0GAySXsKaSkWXelhz5syZkl66wc8S1iQNfnKsKW6SpeNXsyZduEzH78yaQ4cOlfRagzWVGvyOHTsme95Wq1ZNcZjMkydPZJ8x3eAnx5p04TIdaqwZFRVlM9bs0qWLpDehs6Zc0aUe1hQ3ydKh1uCnxJp0g5/ceduoUSNJrxbW7Nevn6T3V7Pmvn37ZN/FX82adOEyHYQ1L126ZDFryjX4iZtk6dDCmm3btpX0sg6T4Ypf8cJBXjjIpUNycC4V4mSQHJxLRYYMGbBLly5CB67ch2CpIMkg0oEr7ipWCnEH7o8fPzR7pTpw5RIwUkFPezIajVipUiXNXtKBS5JBch+CpUKcDJKDc6kQJ4PkPgRLhTgZpATn4qCTQf7+/ujt7a3ZSyeDvL290Wg0avaSZBDdgSuXDJUKcQeu3IdgqShcuLBJB64cnEuFOBkk9yFYKsTJIDk4lwrxtCelD8HiECeDAgMDNXulkkFy0CcVJBlEPoTRnTVqQZJBpOhSDs6lQjztSe5DsFSIO3Dl4FwqxB24ch+CpULcgfv06VPNXnEyKDw8XLNXKhkkV+goFeJkkBycS4U4GST3IVgqSDKIfAiTg3OpIMkgUnQpB+dSIe7AVYJzcZBkEOnAff/+vWav1LQnuUSqOKQmC8slQ6VCnAyS+xAsFWTaE0kGyX0IlgpxMkgOzqVCnAyS+xAsFeJkkHhaslIkTZoUmzRpIkx7+vLli2YvSQbRHbhyCW+pqFSpkkkHrtyHYKkQTxaW+xAsFeJkkNyHYKkQJ4PkPgRLhTgZpPQhWBziZNCLFy80e+lkkI+PD0ZHR2v20skgUnSZO3duzX7xZGG5D8FSIU4GyX0IlgrxtCe5D8FSIe7AlfsQLBXiZJB4gpVSiCcL+/v7a/ZKFR7IFXRIhbjwgJ7ioBbiycJyH4KlghQekA9hlrAmmfakhzXlPgRLhXjakx7WDAkJ0ey1NmvKFR1Lxe/CmnIfgqVCPFnYEtYkDX4+Pj6avYQ1SYOfLVlT7kOwVIinPelhTbkPwVJhTdZU+hAsDmuxJmnw08Oacg2uUlGyZEmTBj89rCn3IVgqrMmach+CpULMml5eXpq91mZNuY9PUkFYk3wIs4Q1SdGl3IdgqciTJ89vwZriaclKIZ72pJc15T4ii8OarBkbGyv7IVgqxKwp9yFYKsSThfWwptyHYKkQb7HRw5pfv37V7JWa9sTCmuJpT3pYU+5DsFRYkzVXrVql2SveYqOHNV++fKnZK2bNmJgYzV6pLTZ6WLNOnTqaveJpT3pYc9q0aZq9vwtrfvz4UbNXarKwHtYsXry4Zq81WXPQoEGaveLJwqysSU8W1sOa4glWSmFt1qSnlKmFeIuNHtaUKzqWCrLFhrDmuHHjNHvFW2z0sOb58+c1e8XDZFhZUzxMRqtXarKwrVjT1dVVs9earLlr1y7NXmuyZlBQkGav1BYbuaERUiFu8NPDmi1bttTstSZrLlu2TLP3d2HNiIgIzV7WLTZcv168cJAXDnLpEMvHHDqSJ0/OdGGkI3HixLIdbmphZ2fHVIAnDnrlHWsULlyY6Zc6HTlz5jRZ48YSGTNmNFlXwxKpUqWSrahXi6RJk1r8nOzt7S32AoDFf2cAYCoKE4eDgwMTRNGRLVs22ekzapE+fXrZTjO1SJEihcXvRJIkSWz2LtIrQVijWLFish0qapEnTx7MmTOnRd7MmTMzfXinI02aNExJTTqSJUtm8XmbKFEiXe8ivUqANSz9fxrg3+Q7SwKZjhw5cjCBMh0ZMmSw+AxJlSqVxT8vveetpf9/AOg7b0uWLKm5cFAc+fLlk+3OVYusWbOarI5iibRp01p8F0iRIsUfd/cpUqSI7CQotciVK5dsd65aZMqUiSn5TEfq1Kkt/v9a73lrq3eRJXEkjgIFCpisFWKJ7Nmzm6wyYYn06dNb/PdOmTKlxeetnruP3vNWz92nePHislPe1SJv3rxMBRJ0ZMmSRbYDWy3Spk1r8X8zZ022+BNZ01bnrS1Zk6UIho506dJx1mQIvawpNwlKLThrsoWeu0/BggVlp2CqxZ/ImnqesaX/XwLYjjWzZMliM9a09NxLnDixyQpslvhTWVNuuqJapE6dWtd5a+n7pJc1bXXe6mVNPXn2hMaadnZ2CZY16RW2LMFZky305NkLFSokO3VYLWzJmn9ant1WrJk1a1bOmgxhK9bMnTs3Z02GsFWevWDBgrhjxw5eQGhD8cJBXjjIpUOshYN0V9D8+fOZvPQodpapOwCmEyhYppwBmHYFsXS7AvwLi3RXEMsUCLor6O3bt0yXEXFXEMsUCPJLkXQFjRkzhslLdwWxdEICmHYFnThxgslLdwWxTPoAMB3F/vnzZyaveAIFSxJY3BXEMnFQ3BXUs2dPpr833RU0ffp0Ji/dFcTSCQlg2hXE0nkOYNoV9Pr1ayYv3RUUGBjINAWCdAWRUewsECaeQMEyBQLg3wkUpCvon3/+YfLSK6YXL17M5CVrv86ePYsHDhxg8mbLlk3oClJarSwVdFcQy2QlAPOuIJaJg3RX0Js3b5imQIi7glgmDgL8+zGEjGKfMGECk5eeQLF+/XomL73268yZM0xeMop9//79TN1XAP/CIr32i+VjjngCBUtSQjyBgmXioHgCRZ8+fZj+m+kJFLNnz2bykgkU58+fZ5q6A2A66Zml8xzg/xModu/ejW/evGHyitd+sRTxitd+sSQWxBMoWCYOAphOoJBbcy4X9ASK5cuXM3nz5csnTKBgmfAK8O/dh0yguH//PpM3Xbp02KlTJ3R3d8dPnz4xeVOkSCFMoPD392eaAkEmUJC1XywTB8UTKFimQAD8f+3X7du3ccqUKUxeegIFy9QdANMJFBcuXGDyZsqUSZhAwTJVEsB8AgXLFIhkyZIJEyg+fPjAlCAkEyjIpGeWKRAA/59A8fDhQxwwYACTt1SpUsLar/hkTbL2Sy9rfvjwgcmrhzWTJEliwposyVhrsebdu3d1sebq1auZvIQ1T506xcya9NovlkkfAPpYU7z2Sw9rskyBsCZrsky3B9DHmjlz5sS+ffvisWPHbMKaZNKzHtZk+chAr/2yhDXpCRQs0+0BrMeaLNtEAExZU2ndlVRYkzVZCuqtwZpk7RfLxEEAfaxJr5jWw5pnz55l8lqTNbVOHATQx5qJEiUSWPPVq1dMEwfFrMky3R7g/6x548YNXazJMnUHQB9rkknPu3fvxrdv3zJ5fxfWZJk4CGA91lyxYgWT1xqsefDgQXzw4AGTl2ZNlim+AOZbhfSwJsvEQXrFtF7WZJluD6CPNXPlymUV1mSZKglgyppBQUG6WJOl6VMva9Irpi35rmlr1mSZcgZgPdYMCAhgKiqzFmt6eXkxTRwEMGVNlun2AP+yJtkqpIc1T548yeS1FmsGBwczea3Fmq9fv9bFmizT7QGsx5rbt29n8uphTXrSM8u2PABz1mRpGCWTnq3BmiwTBwGsx5pLlixh8v4OrMkyxRfg/6yptGKaK/7ECwd54SCXDvn4+KC7u7vsgSdOkNHy9/fH06dPy3YkSa0DIQoODsarV69ilixZZP9s8epJotDQUPTw8FD8JSlePUkUExODHh4eikkgsg7k1KlTGBERYfLffPv2bXRxcZH10pfEkJAQE6+npyeOHz9e1iv+IEHrxYsXiqvzxKsnab17906xcEhqHQhRQEAAXrhwQbYDlFwS6XUgRN++fcPr168rdoCKV08SRUREoIeHh2JHgXgdCJHRaEQPDw9s1aqVrJdePRkWFmby33zv3j3Fj5zidSC0njx5onjZFa+epPX69WvF5AJ9SXz37p2J19fXF48fPy6bVLW3txcuiWQdCFFQUBBeuXJFseNevHqSKCQkBD08PLBIkSKy3hIlSpisAyGKjo5GDw8PrFevnqyXTpBFRkaa/DffvHlTscCLXgfy8+dPE+/Dhw8VV4uQBBlZB0Lr2bNnuGjRIlkvXYwhviS+efNGMZkrXgdC6+PHj3j27FnZRA69elI8EvvLly947do1xUK8cuXK4aRJk4R1IERhYWHo4eGh2ElFr56k38XY2Fj08PBQTALRxRjh4eEm/8137txRHHUvXgdC6/Hjxzh58mRZr7gYg9bLly9xzZo1sl46QSa+/7x//x4PHTqEdnZ2kl6p1ZNEgYGBePHiRUV4FK8DIfr+/Ttev35dMUFACv9v3Lhh8i5GRkaih4cH1qhRQ9ZL1oGcP38eo6KiTP7eHh4e2K5dO1mvePUkrfv37ysW1IpXT9J6+vSp4ocV8kGCFGPQ8vb2xq1bt8p6yQcJkiCj5efnhydPnsTEiRNLeqXWgRB9/vwZr1y5othxL14HQvTz50/08PBQnIwgXgdCRM7b+vXry3rF60Bo3bp1C7t16ybrFa+epPXo0SPFRB9ZB+Lu7o7BwcEm3ufPnyuuzhN/kKD19u1bxWSuePUkrY8fP+K5c+dkO0ClVk8Sff36Fa9fv6442bZs2bIm60CIwsPD0cPDQ7GjWrwOhCguLg49PDzQ2dlZ1iteB0Lr7t27ih856WIMqbuP0ion8ToQWq9evcINGzbIesXrQGh9+PABjxw5Ilu8LLV6kigwMBAvXbqEadOmlf2zxasniX78+IHXr19XnH4hXgdCFBUVhR4eHorFluSDBFkHQuvGjRuKSXc6QRYaGmriffDgAQ4bNkzWK14HQsvLy0vxw4q4GIOWNVgzadKkkt7fkTXJ3adx48ayXvHqSVpaWZOsnqTl6empWFRCWJMUY9CyFWt++vRJlTXFqyeJrMGaStOZfiVrKn3kVGLNp0+fKq5ySpUqlcnqSVrxwZr06kkia7Cm0iQa8epJImuwplKB1+/AmuK7z5s3b3D37t2yXmuxJlk9SURYU6kQTw9rildPEnHWNPdKrZ4kii/WJKsniRIqa3p5eeGcOXNkveLVk7S8vb0Vi6bFTea09LLm1atXFZsQfgVrkjx7gwYNZL00a4rvPiysKb776GHNFy9eKK7OEzeZ09LDmgEBAXj+/HlMkSKFpFdq9SSRFtYUr54kIqypNNRAjjXJ3UepuF2NNZVWeKuxppubm6xX3GROi4U1379/b+L98OEDHj161GasqVT4rMaaSsWWdDHGf4U1d+zYIetN6Kx5+fJlq7OmUjMRXfhvCWvShf+0tLAmXfhPyxqsKdcQZE3WpN9FVtaUuvu0bt1a1msN1ty9e7dknl0Pa27evFnWKy78p6WHNUmePUOGDLJ/Nl34b23WVBoio4c16SZzKdYcNWqUrFeJNZ8/f67YMGZr1iSF/5awJin8l2JNpUYTOdYkefbmzZvLepVYk8u24oWDvHCQS6fEyTKlS6JYs2bNMvGKu0OVJC6goS+Jav9PibtzxN2hSvrw4YMJFJBLolSCTKzQ0FCzdRelS5eWLMYQKy4uzmxss1KCTCxxRwDdHSq+JIolhje6O1R8SRRLnEgRd4cq6fjx45oviWI9efLE7JJId4cqPaegoCAzKCCXxHv37il6o6KizMavk0uiOEEmltFoNEuIkkuiVDGGWF27djW7JMoVY4g1adIks0siSZCJL4liiS/2SsUYYl26dMnESxJkS5YsMUuQieXj42MCBeLuUKXn9OPHDzMooLtD6UuiWLGxsWZQIHdJlJIY0El3qFSCTCxxsox0h+7du9fsg4RY8+bNMztv27VrJ1mMIda+fftMvOSDhFQxhlj37t0zO2/p7lAlffz40az4hu4OVXrG4eHhZlBQsmRJoTtU6bw1Go1m48jp7lC181bcfU53h4oTZGKJ4Y3uDhUnyMQSd0OKu0OVdPr0aROvuDtUSc+fPzf5AEU+SEglyMQKDg42W3dRoUIFyQSZWNHR0ejg4GDipbtD1c5bcUJUqfBfrB49eph4lQr/xRInrsXdoUoSd0OKu0OVJJ4EIe4OVdK7d+9MPkDRHyTECTKxfv78afYBinyQEBdjiBUXF2e2lkSuGENKYkCnu0PV7j6DBw828SoVY4gl/mivVPgv1uHDh83uPnR3qJIePnxodt7S3aFK+vTpk9kHKLo7VOkZR0ZGmq27IN2h4gSZWEaj0azRg/4goXb36dSpk4mXfJCQSpCJNW7cOBMv+SAhlSATSzx5h6U7VDwJQilBJtarV69MPkApFf6L9e3bN7OpLKQY486dO4rvYkxMjNkHKHoSkdJ5i4hmhce5c+cWJhGpnbdKrKl299HDmuKkJmFNqWIMsfSwpq+vr1VZU67wX6y4uDizdYEJgTXFU17jkzXFdx/CmuJiDLFsyZo1a9Y08SoV/oulhzXFRVLxxZriSRAJhTXFU14Ja4qLMaSkhzX79+9v4tXDmkqF/2Lt37/fxKtU+C+WeOIyXYzxq1lTvFoxvlhTXAiXEFhTPOGesKZUMYZYeljzy5cvZqwpV4whlhRryhX+S6lu3bomXhbWFDcBxBdrips14pM16aEC1mBNqcJ/sfSyppOTk4lXqRhDLD2sKf5oH1+sKd7uI2ZNpecUGBgoy5riYgyx9LKmuPiGsKZUMYZYUqwpV4whlnj4g1Ixhlhi1lRqMhdLD2u+fv3a7O4TX6wpXvFOs6bau6iHNXv37m3iJawpVfgvlhxrShX+i6WHNW/fvm32Lso1mYslZk0A+cJ/scLCwmzGmuKmKxbWHD58uNndJz5YUzzhnmZNtTy7HGtKFf6L9fnzZ0nWJIX/lrCmVOG/WHpZ8++//zbxxhdrbtmyxey8jS/WFOfZCWuKC//F+vHjh9lQAcKa4sJ/sfSyZpMmTUy8SoX/YkmxJin8VztvxQXi/3XW5LKteOEgLxzk0qE3b95g4sSJZbtDlRQSEoIZM2ZkSpARxcbGYvHixRW7Q5XUtGlTkwSZ2iWR1oABAxS7Q5W0YMECxe5QJR04cECxO1RJDx48QDs7O9nuUCUFBARg8uTJZbtDlRQREYE5cuRQ7A6Vk9FoxEqVKpmsIFZLkNFq3769cEnUkiCjNWbMGMXuUCWtXbvWbC2UVp09e1axO1RJL168QHt7e9nuUCV9+fIF06ZNK9sdqqSYmBgsWLAg0yWRVr169RS7Q5XUs2dPxe5QJc2YMcNsLZRW7dixQ7E7VEk3btwQLolaijFovX//HpMkSSLbHaqk0NBQzJw5s2J3qJzi4uKwVKlSit2hSnJ2dlbsDlXSkCFDFLtDlbRkyRLF7lAlkc5gegWx1ufk6emJdnZ2wgcJtQQZrcDAQEyZMqVsd6iSIiMjMU+ePCZroVjO22rVqjEV/tPq3LkzUzEGrQkTJih2hypp48aNit2hSrp48aJid6iSSDJVrjtUSd+/f8f06dObrIXS+i7GxMRgkSJFhA8SWhJktBo2bKjYHaqkPn36mHSHstx95syZw1SMQWvv3r1Mhf+0yKp0ue5QJfn5+WGyZMlku0OVFBYWhtmyZVPsDpWT0WjEcuXKKXaHKql169ZMHyRojRgxQrE7VEkrV640WwulVSdPnlTsDlWSl5cX2tvbay7GoPX582dMnTo1U+E/UVRUFObPn9+i7lCj0Yi1a9c2WQulliCj1a1bN8VJREqaOnWq2Voordq6daviJCIlXb161eSDBEuCzJasWaJECaZiDFp6WHPgwIFmK4i1Sg9rHjx4MEGyZs6cOU3WQsUXa3bo0IGpGIPWmDFjmIoxaOlhzXPnztmENb9+/Woz1nR0dExwrLlz506mwn9ahDW1Fv7TIg2y9FooPayp9e4TFxeHpUuXtpg1W7RoYRPWXLp0qU1Y8/HjxwJrainGoEWzptbCfyK9rFm9enWbsObEiROtxppqxRi0Ll26ZDFrent7m7CmWjEGLT2sGRsbi0WKFGEqxqDVsGFDpmIMWn379mUqxqBlK9Yk6+vimzVJg6w1WFNLMQatNm3amKwgZmHNkSNHMhVj0NLDmqdOnWIq/KelhzWDg4MTJGt2797dbAWxVulhzW3btjE1mdOiWZO1GOPt27cCa2op/KdlS9Zs1qyZ1ViT5e6zcOFCpiZzWmLWVCv8pyVmTbXCf1oBAQGYIkUKzU3mtPSyZuXKlZkK/2npYc2xY8dajTVZ8ux6WPPly5eYKFEim7Em3WRuKWtqKfyn1atXL7MVxFo1c+ZMpsJ/WnpY8+bNmzZjzSxZsiQ41hw6dChfQZxAxQsHeeEglw49e/aMKUFG6927d0yXRFqfP39muiTSioiIYLok0jIajXjx4kXNl0Sxrl69ynRJpHXr1i2mSyKtR48eMV0Sab18+ZLpkkjLz8+PKUFG6/v376rdoXKKjo5mgnJaRqMRL126xJQgo3X9+nWmSyKtu3fvMl0SaT19+pQpQUbLx8eHKUFG69OnT0wJMlqhoaFMCTJacXFxePHiRc2XRLGuXLnClCCjdfPmTaYEGa0HDx5YfEl8/vw5U4KM1vv375k+SNAKDg5m+iBBKzIyUlN3qJTIeWvpqO5r164xJcho3blzh+mDBC1PT0+L7zWvX79m+iBBy9/fX7U7VE4/fvxg+iBBKzY2Fi9evKg5QSaWnvPWw8ODKUFG6969e0wfJGh5eXkxJchovX37lqkYg1ZgYKBqd6icwsPDmYoxaOk9b69evWrxeavn7vPw4UOmDxK0Xrx4wVSMQevDhw9MCTJaX79+ZUqQ0YqKitJ997H0vNV792H5IEHryZMnTB8kaHl7ezN9kKAVEBDAlCCj9fPnT6YEGS295+3ly5eZEmS0bty4wZQgo3X//n2mDxK0OGuySQ9r3r592+K7z5/GmjExMZw1GcRZk01/Gmt++fKFqRiDVlRU1B/Hmo8fP06QrMlSjEHLGncfzpraFBQUxFT4T0sPa1rj7mML1nz06JFNWNPX19cmrGmNPLstWPPOnTsW3330siZLMQYtzpps+hNZk6Xwn1ZCZU1PT0+LWfPVq1c2ZU1L3kU9rImoL8/OWVO7/lTWtPTuo5c1WQr/aSVU1uSyrX5F4aAd/lsYx6UgOzu73ADgCwDg6+sLuXPntvHfiIuLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi+tPkJ+fH+TJk4f8Yx5E9NP777TX+y/g4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uJKOOKFg1xcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcf5B44SAXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcX1x8kXjjI9ccoNjY2wXnj4uIAES3yIiLExcVZ/GcnxJ+XLb2WPqe4uDgwGo0WeRExwf68EppXz7toNBr5uxiPXj3vIj9vE4ZXz7to6XlL/mzu/fVe/i4mHC+/+/z3vfy8/W97+XmbcLy2eBf5eRt/Xs6aCcfLWfO/7+V3n/+2l7+LCcfLWfO/7+Xn7X/by8/bhOPl7+J/28tZM+F4bcWaev7eXP898cJBrj9GFy9ehBo1asDs2bPh6dOnTAfp69evoUKFCjBp0iS4c+cO04Xox48fUKlSJRgxYgRcvnwZYmJiNHvj4uKgbt260L9/fzh58iRERERo9gIAdOjQAbp37w779++HkJAQJu/w4cOhffv2sHXrVvj8+TOTd+HChdC8eXNYs2YN+Pn5MXn37dsHjo6OsHDhQnj16hWT9/bt21ClShWYPn06PHr0iOkZ+/n5QYUKFWDcuHFw48YNpgtRREQEVKtWDYYMGQLnz5+H6Ohopr9348aNoXfv3nD06FEIDw/X7LOzswMXFxfo0qUL7N69G75//870506cOBFat24NmzZtgk+fPjF5165dC40bN4YVK1bAu3fvmLwnT56E2rVrw9y5c+HZs2dMz+np06dQqVIlmDp1Kty7d4/pXQwODoaKFSvCqFGj4OrVq0wXopiYGKhZsyYMHDgQTp8+DVFRUZq9dnZ20KpVK3BxcYGDBw9CaGioZi8AwIABA6Bjx47g7u4OX758YfLOnj0bnJ2dYd26dfDx40cm7/bt26F+/fqwZMkS8PHxYfJevXoVqlevDrNmzYInT54wPeO3b99CxYoVYeLEiXDr1i2mZ/zz50+oUqUKDB8+HC5dusR03iIiGAwG6NevHxw/fpzpvLWzs4NOnTrB33//DXv37oUfP35o9gIAjBo1Ctq2bQtbtmxhPm+XLVsGTZs2hVWrVsGHDx+YvIcOHYK6devCggUL4OXLl0zeBw8eQOXKlcHNzQ0ePnzI9IwDAgKgQoUKMHbsWPDw8GA6b6OioqB69erwzz//wLlz55jeRQCApk2bgqurKxw+fBjCwsKYvK6urtC5c2fYtWsXfPv2jck7depUaNWqFWzYsIH5vN2wYQM0atQIli1bBm/fvmXynj17FmrWrAlz5swBLy8vpuf04sULqFixIkyePBnu3r3L9C5++/YNKlasCCNHjoQrV64wnbdxcXFQp04dGDBgAJw6dQoiIyM1ewEA2rZtCz169IADBw7Az58/mbxDhgyBDh06wPbt2yE4OJjJO2/ePHBycrLo7rN7924wGAywePFieP36NZP3xo0bUK1aNZgxYwZ4enoyPeP3799DhQoVYPz48XDz5k2mdzEsLAyqVq0KQ4cOhQsXLjDffRo0aAB9+vSBY8eOMd99unXrBl27doU9e/Ywn7djx46FNm3awObNmyEoKIjJu3LlSmjSpAmsXLkS3r9/z+Q9duwY1KlTB+bPnw/Pnz9nek6enp5QuXJlmDZtGjx48IDJGxQUBBUrVoQxY8bAtWvXmO8+NWrUgEGDBsGZM2eY7z5OTk7Qs2dPOHToEPPdp2/fvtCpUyfYsWMHfP36lck7ffp0aNGiBaxfvx4CAgKYvFu2bIEGDRrA0qVL4c2bN0xePazp7e0NFStW1M2arHcfo9EI9erV082a+/bti1fWXLRoETRr1gxWr14Nvr6+TF49rHnnzp0Ez5osdx+9rDlp0iTdrLl8+XJm1jx16pQu1qxYsSJMmTIl3lmzVq1aAmuy3H30subAgQMtZs1Zs2YJrOnv78/kdXd3t5g1r127JrDm48eP4401Q0NDoUqVKjBs2DC4ePEiM2s6OjpC3759LWLNv/76yyqsyXr30cOahw8fTtCsefbsWWbWbNasmcWs2bt3b/jrr79g586d8cqaGzduhIYNG3LW1Kh27drZhDXnz59vMWvu2rULHB0dYdGiRcysefPmzQTJmg0bNrQKa7LefcaNG5fgWPPx48dCnv3+/ft/BGv269cvwbHmpUuXEiRr1q1bF/r16wcnTpxgZs2OHTtazJojRoyAdu3axTtr7t+/H+rVqxfvrOnv75/gWBMAoGfPntClSxeL8ux6WHPdunW6WLNWrVoWsaaXl5fFrPnlyxebsWbr1q0F1mS9++hhTfq7pqWsuXjxYvD29mby6mXNChUqwIQJE+KdNQ0Gg8Ws2blzZ4tZk+s/KETkoRIAkBsAEADQ19cXuRKmjEYjVq1aFcmzzJ8/Pw4ePBjPnDmDkZGRqv5OnToJ3mzZsmHPnj3x0KFDGBoaquodP3684E2fPj126tQJd+zYgV+/flX1rl+/XvCmTJkSW7RogevXr8ePHz+qei9cuCB4kyRJgg0aNMClS5fimzdvVL2vX7/GRIkSIQCgnZ0d1qhRA2fPno1Pnz5Fo9Go6P327RumS5dO+LPLlSuHkyZNwjt37mBcXJyiNyYmBgsXLix4ixQpgiNGjMDLly9jTEyM6t+7fv36gjdPnjzYv39/PHHiBEZERKh6e/fuLXgzZ86M3bt3x/3792NISIiqd/bs2YI3bdq02L59e9y6dSt+/vxZ1bt7927Bmzx5cmzevDmuXr1a03lz+/ZtwZsoUSKsV68eLly4EF+9eqXq9fX1xaRJkwr+KlWq4PTp0/HRo0eqzzgsLAyzZs0qeEuVKoXjxo3DGzduYGxsrKI3Li4Oy5YtK3gLFCiAQ4YMwfPnz2NUVJTq37tVq1aCN0eOHNi7d288evQohoWFqXqHDx8ueDNmzIhdunTB3bt347dv31S9y5cvF7ypUqXC1q1b46ZNmzAwMFDVe+LECcGbNGlSbNy4Ma5YsQLfvXun6n3y5Ana2dkhAKC9vT3Wrl0b586di8+ePVN9Tp8/f8ZUqVIJf3bFihVxypQpeO/ePVVvVFQU5s2bV/AWK1YMR40ahVevXlV9F41GI9asWVPw5suXDwcOHIinT5/WdN7+/fffgjdr1qzo4uKCBw8exJ8/f6p6J0+eLHjTpUuHHTt2RHd3d/zy5Yuqd8uWLYI3RYoU6OzsjOvWrdN03l6+fFnwJk6cGOvXr49LlixBb29vVa+Pjw8mTpxYOG+rV6+Os2bNwidPnqg+px8/fmDGjBmFP7ts2bI4ceJEvHXrlup5Gxsbi8WKFRO8hQsXxuHDh+PFixcxOjpa9e/dpEkTwZsrVy7s27cvHj9+HMPDw1W9/fv3F7yZMmXCv//+G/fu3Ys/fvxQ9c6fP1/wpkmTBtu2bYtbtmzBoKAgVe/+/fsFb7JkybBp06a4atUq/PDhg6r3/v37Judt3bp1ccGCBfjy5UtV78ePHzF58uSCv3Llyujm5oYPHz5Ufcbh4eGYI0cOwVuyZEkcO3Ysenh4qJ63RqMRK1asKHgdHBzwn3/+wXPnzmk6b9u1ayd4s2fPjq6urnj48GFNd5/Ro0cL3gwZMmDnzp1x586dmu4+a9asMbn7tGzZEjds2IABAQGq3jNnzpict40aNcJly5bh27dvVb3Pnz9He3t74bytWbMmzpkzB728vFSf05cvXzBNmjTCn12+fHmcPHky3r17V/VdjI6OxgIFCgjeokWL4siRI/HKlSua7j5169YVvHnz5sUBAwbgqVOnNN19XFxcBG+WLFmwR48eeODAAU13n+nTp5vcfTp06IDbt2/H4OBgVa+7u7vJ3cfJyQnXrl2Lfn5+ql4PDw+T89ZgMOCiRYvw9evXqt53795hkiRJhPO2atWqOGPGDPT09FR9xj9//sTMmTMLf3aZMmVw/PjxePPmTdVnHBcXh6VKlRK8BQsWxKFDh+KFCxc0nbdOTk6CN2fOnNinTx88duyYpvP2n3/+Mbn7dO3aFffs2YPfv39X9S5evFjwpk6dGtu0aYObN2/WdPc5cuSIyXnbpEkTXLlyJb5//17V++jRI5Pztk6dOjh//nx8/vy56nMKDAzEFClSCP5KlSrhtGnT8P79+6reyMhIzJ07t+AtUaIEjh49Gq9du6bpvNXDmn/99ZdNWHPDhg0JkjXTp09vE9Zs0KCB1VizW7duuG/fPk13Hz2suWfPHpPztlmzZvHCmn5+fjZhTaPRiOXKlUtwrLlixQoz1ty4cSN++vRJ1auHNZ8+fWo11qxQoQITa+bLl89i1qxVq5ZNWHPKlClWZ01/f39V75UrV6zKmjNnzsTHjx//ctYsXry4CWsOGzYsXlhzwIABVmHN1KlTM7HmgQMHLGbNBw8e2IQ1IyIiJFnz+vXrFrHm4MGD8ezZs5rO2/bt21uFNdOnT49//fVXvLDm2bNnTe4+DRs2jDfWTJs2rU1Ys169elZlTa15dj2suWPHDjPWXLNmjUWs6ejoqJk1379/bzXWLF26dLyxprOzs01Yc8mSJVZhzaRJk2KTJk1wxYoVmljT09PTqqw5derUeGHNatWqmbDmoEGD4oU1J0yYYBPWvHjxotVZU0ueXS9rFilSxIw1L126xMyauXPnxn79+mlmzT59+liFNdOkSYPt2rWLF9a8c+eOzVgzW7ZsVmVNrXn21q1bW8yaI0aMELwZMmTALl264K5du345a548edLkvG3UqBEuX77cItasVasWE2umTp06wbFmt27dbMKaW7dutSprLl68WBNrctlWvr6+wrMDgNxojZo4a/xL/usBvHDwP6NTp07RLxFTMsjLy0v4JUeHlmRQcHCwyS85lmRQVFQU5s+fX/LvTZJBDx48kPxlaTQasXbt2pJeLcmg7t27S3q1JIOmTp0q6dWSDNq2bZukV0sy6OrVq5JeLcmgt2/fCglVOrQkg0JCQjBTpkxmXi3JoNjYWCxRooTk31tLMqhZs2aSXi3JoIEDB0p68+TJgwMGDMCTJ0/KwsnChQslvVqSQQcPHpT0kg9h27Ztk00G0QlVOrQkgwICAkwAn74QqSWDIiIiMGfOnGZeLckgo9GIlStXlvx7a0kGdejQQdKrJRk0duxYSa+WZNDatWslvVqSQefOnZM9b9WSQS9fvhQSqnRoSQZ9/frVJKFKn7dqyaCYmBgsWLCg5N9bSzLI0dFR0lu8eHHVZFCvXr0kvVqSQTNnzpT0akkG7dy5U/a8VUsG3bx5U/a8VUsGffjwQUiois9bkgzy8fGR9IaGhmKWLFkk30W1ZFBcXByWLl1a8u9drlw5nDhxIt6+fVv2XWzRooWkV0syaOjQoZJeLcmgpUuXSnq1JIOOHTsm6dWSDHr8+LHseauWDAoKCsKUKVNKvotqyaCoqCjMkyeP5J+tlgwyGo1YvXp1Sa+WZFCXLl0kvVqSQRMnTpT05siRA11dXfHIkSOyyaBNmzZJerUkgy5duiTpTZUqFbZq1UoxGeTt7S0kVMXnrVoy6Pv375ghQwYzr5ZkUGxsrElClQ4tyaBGjRpJerUkg/r27SvpzZs3r2oyaO7cuZJeLcmgffv2SXpJMkjpQ9jdu3clvVqSQf7+/pgsWTIzr5ZkUHh4OGbPnl3yvK1WrZpi4YHRaMTy5ctL/r3LlCmDEyZMUCw8aNOmjaS3UKFCqoUHI0eOlPRqKTxYtWqVpFdL4YEe1nz27NkvY8358+fjixcvJL3R0dG/jDXHjBnzy1hz2rRpkt7s2bNjr169fhlrXrt2TdL7O7NmXFycKmsqfQjTw5qDBg2S9OplTbUGv0OHDkl69bJm8+bNfylr5sqVS/K8/dWs2bFjR0mvNVhT6UPYunXrJL1aWPP8+fOy522bNm0UG/z0sKa4SZZ+F2vXro3z5s2ziDUrVqyoypoGg0HS+zuz5q5du2TPW8Kach/C9LIm/TGZPm/1sqZSg19cXByWKVNG8u+thTVbtmwp6SUNfpcuXZJ9F/Ww5rJlyyS9v5o1nzx5InveWoM1lfLselizRo0akl7CmkoNfnpYc9KkSZJevazZuXPn/yRrFi1aVPLvTbOm3LuoxppKd59+/fpJeq3BmgcOHPglrHnv3j1Jb4oUKYQGv/8aa7Zt21bS+zuz5unTpyW98cGadJMsfd7qYU3S4KfEmnXq1JH0amHNHj16SHp/NWtu375d0vurWfPdu3e/lDXlGvz0smbz5s0lvUWLFlVt8NPDmosWLZL0/mrWfPjwoaRXC2t++vTJZqxZpUoVyb83zZpy76Iaa54/f172vB03bpykVy9rkga/X8Gar169kmVN0uD3q1izUKFCkn9va7GmlgJorvgVLxzkhYNcOjR58mTZi6r4l6U4GbRhwwZ0cHCQhF1xkA5ckgw6ffo0Ojg4SEKUOOhkUExMDD579gwdHBwkPwSJQ5wMCgkJQQcHB5MOGbmQSgZVqFBBMlkmDqlkUIsWLUw6VuVCKhk0aNAgkylnciFVeDB37lx0cHBQ9QL8PxlEOnB37tyJDg4OkoUs4hAXHly/fh0dHBwkL27iKFCggMm0p3fv3qGDg4NkoZM4xMkgo9GIDg4OJh3gciGVDKpdu7bJJAe5kEoGde7cWfKyKQ6pZNCYMWNMOj7kQioZtGLFCnRwcJC8fIlDnAw6cuQIOjg4SCaQxSEuPHjw4AE6ODiYTFSQC3Ey6PPnz+jg4CB56ROHVOFByZIlTbpO5UKqA7dJkyaSSRhxSCWDevfuLZtMpYNMe6KTQW5ubprPW3EyaPPmzejg4CAJu+IQJ4POnz+PDg4OJt32ciFOBr18+RIdHBwkkyHiECeDIiIi0MHBQTKpKQ6pZFDlypU1nbdSyaC2bdtKFrSKgySDVq5cKSSDhgwZovm8FSeDFi5ciA4ODpKJJ3GIk0F79+7VfN6WKFHCJBl08+ZNdHBwkPxIIA5xMsjPz0/zeSuVDCpYsKBkIkUcUskgR0dHk25GuZBKBv39998mXclyIZUMmjBhgqZ3UarwYM2aNZrP2/Lly5t04J44cULz3UecDHr8+LHm85ZMeyLJoG/fvmm++0glg8qUKaP5vBUng5ycnDTffcTJoH79+mk+b8XJoFmzZmm6+0glg7Zv3675vBUngy5fvqz57iMuPPDx8dF83oqTQdHR0ZrvPlLJoBo1ami++4gnC3fo0EHTeSuVDBo5cqTmu484GbRkyRLN5604GXTw4EHNdx9x4cHdu3c1n7f58uUzKTz49OmT5ruPVOFB0aJFNZ236dKlMys8aNCggea7T4sWLUwmC/fs2VPzeUumPZHCA1ux5pkzZyxizejoaF2s+fPnT5uxZsuWLTWdt8mSJbMKa5LCAz2suWvXLs13H/FkYT2s+f79e5uyppa7jxRrdunSRRdrar37iFlz5cqV8cqapPDg4cOHzKx56tQpi1mTLjzgrCkfYta8cOGCxaz56tUrm7FmlSpVNLMmafCzBmsOHTpU83lLGvxszZq3bt3SfPchk4WtxZqFChWyCWt269aNmTXJtKeJEycy3X3oycKENbXcfcSsefLkSc13H/FkYT2s+f379wTJmv37908wrEny7JawJik8ePPmDRNr0tOeYmJibMaaHTt2tAlrLl26NN5ZMyYmRhdrBgYG6sqz62HNhg0bar77iLfY6GHNKVOmaD5vxVtsrMGaWu4+YtZ8/vy5zVizYsWKNmHNwYMHM7EmPUxm3rx5mllTPFk4vlhTvMVGD2siYoJkzbFjxzKzJsmzW8KaZJjM0aNHNd99ihUrZtLgx8qaZLJwZGQkBgcHaz5v6S025LwtVaqUTVizT58+NmHNLVu2JDjWjIyM1MyarJOFuX69eOEgLxzk0iG5yWpq4eDgINvdohbZs2c3GTHNEunTpzdZzcESKVOmlJ0MoBYkGaTll4w4SOGBFliVinLlyslOglKLokWLyk4YUos8efKYrF5giSxZssh2IqpF2rRpsWnTphZ5SdGlJV6SDNJyaRMHSQbRK75YonTp0lihQgWLvAULFjRZf8sSOXPmNFljzRIZM2bExo0bW+RNlSqVxc+JJIO0XBbFQZJBWiBIKipWrIglS5a0yFu8eHHZLiS1yJcvn8nKTZbIli2bxedtunTpLD5vU6RIIdsdpxYkGaQFvsRBkkFakwriKFu2rMnKcJYoXLiwxedt7ty5ZSczqkXmzJktPm/TpElj8btIkkFawF4cpOhSSzJDKqpUqSI7lU0tSpYsabI6iiUKFCggO0VKLXLkyGHxeZshQwaL30W9522jRo00Ja3FQZJBWhISUlGhQgWTtUIsUaxYMZN1NSyRN29ei8/bLFmyYMOGDS3ypk2bVtd5q+fuYzAYNCUlxUGSQXJTgtSiTJkystMQ1KJQoUKyU03UImfOnLIdo2qRKVMmi+8+qVOntvh+S1Yaa0l4i4MUHmhJ8ktFpUqVTFYqskSJEiVkp32pRf78+TlragxSeGAL1ixSpIgu1rT07sNZky30sia9koglOGuyRcWKFWUnk6iFrVgza9asNmNNPedt/fr1NX10F4c1WJNe48YSnDW1h17WrFy5suxUNrUoWbIkVqpUySKvg4MDZ02NYUvWLFq0KFatWtUib968eXXl2fWwpqV3H1uzptyUILXQy5p68uyWsmbGjBktPm85a7LFn8iaDRo0sBlryk0dVos/kTUt/ZaihzUB/s2z24I1CxQoYDFr6rn7/KmsmdC+ayZE1iSThXfu3Km6Oprr1+lXFA4mBi4uLkmlS5cOmjRpAk5OTvD27Vu4evWqZm/y5MmhQYMG4OzsDPb29nD+/HnN3sSJE0PdunXByckJChUqBKdPn9bstbOzg6pVq4KzszM4OjrCyZMnNXsBAMqUKQPOzs7g7OwMzZs3Z/IWKlRI8I4aNQrev3+v2ZsrVy5wcnICZ2dn2Lx5Mzx58kSzN1OmTNCsWTNwdnaGmzdvws2bNzV7U6dODY0bNwZnZ2f4/PkzXL58WbM3WbJkYDAYwNnZGdKlSwdnz57V7E2UKBHUqlULnJycoGzZsnDq1CnNXgCASpUqgbOzMzg5OTE/45IlSwo/665du0JwcLBmb/78+YVnPHPmTHj9+rVmb7Zs2YQ/99ChQ/DgwQPN3vTp00PTpk3B2dkZvLy8wMPDQ7M3ZcqU0LBhQ3B2doaoqCi4cOGCZm+SJEmgXr164OzsDLly5YIzZ85o9trb20P16tXB2dkZqlevzvycypcvLzxjR0dHJm/RokWFn/XAgQPB399fszdPnjzCn7tq1Srw8vLS7M2cOTM0b94cnJ2d4cKFC3Dnzh3N3jRp0kCTJk3A2dkZfH194cqVK5q9yZMnh/r164OzszMkS5aM+bytXbs2ODs7Q9GiRZnP2ypVqoCzszM0bNgQTpw4odkLAFC6dGnhZ926dWv48eOHZm/BggUF78SJE+Ht27eavTlz5gQnJydwcnICd3d38PT01OzNkCGDcN7eu3eP6bxNlSoVNG7cGJycnODHjx9w6dIlzd6kSZOCo6MjODs7Q6ZMmZjOW3t7e6hZsyY4OztDxYoVmd/FihUrCucey/8fAADFixcXvC4uLhAYGKjZmy9fPsE7b948ePXqlWZv1qxZhWd8/PhxuH//vmZvunTphPP21atXcO3aNc3eFClSQMOGDcHJyQmMRiPTeUvuPs7OzpA/f37md7F69erg5OQEderUYX7GZcuWFX7WjRo1YvIWLlxY8A4bNgx8fX01e3Pnzi2c1evWrYOnT59q9mbOnFl4F69evQq3bt3S7E2TJo1w9wkICGA6b5MlSyact6lSpYJz585p9iZKlEg4b0uUKMH8PlWpUgWcnJygSZMmzM+4VKlSwpnZsWNH+Pr1q2avg4OD8IynTZsGPj4+mr3Zs2cXnvHevXvh4cOHmr0ZMmQQ3kVPT0+4ceOGZm/KlCmhUaNG4OzsDGFhYXDx4kXN3qRJkwp3n+zZszPffWrUqAHOzs5QpUoV5vtthQoVhJ81y+8IAIBixYoJz7hv374QEBCg2UvuPs7OzrB06VJ4/vy5Zm/WrFmhefPm4OTkBKdPn4a7d+9q9qZNm1a4++hhzUSJEjHfferUqQPOzs5QsGBBi1nTYDDYhDWdnJxgzJgx8c6aTk5OcOvWLYtZMzg4mOn/a8KaTk5OkD59embWJHefcuXKxStrlihRQnjGelhz1qxZNmHNZ8+ewfXr1zV7rcGaTk5OkDt37nhnTfLz0sOagwYNYmZN4l21ahU8e/ZMs5dmzYsXLyY41ixWrJjFrNmgQQPmZ0yzZps2bZi8elgzR44cwjPesWMHPHr0SLNXL2uSu48e1sycObPNWJPlDACwDms6OTnBggUL4OXLl5q9NGueOHEC7t27p9lLWNPJyQlev35tMWsiYryyZrVq1cDZ2TnBsub69euZWDNTpkzCeXv16lW4ffu2Zi/Nmp8+fWLOs+tlTScnJyhVqhTz3YewZtOmTS3Ks5PnpIc13dzcwNvbW7PXmqzJmme3lDWTJEkinLfZs2dnPm8Ja1atWtVi1nRyctLFmv369Ys31sySJYvwLp45cybBsaae75p6WJO8Fz9//tTs1cOaOXPmFLxbt26Fx48fa/bSrHn79m1m1iTv4pcvXxIcazo7OzN/S/kdWPPw4cMWsaaTk5PFrOnk5AQxMTHxxpokz+7s7Aw1a9bUxZoGg4HJW6RIEeE56WVNS79r6mFNPz+/eGPNRIkSCeetHtZs2LChRaxJftZVqlQBOzs7Jj/Xby5rVB/+1wP4xMH/hO7cuYOLFi1SrJIWr1IjevbsGW7cuFGxI4msUjt27JgwbhkR8cOHD7h9+3bF8dhyI16/fv2K7u7uit3Y9DoRMt4eETE6Ohrd3d0VO/ySJk2KTZo0wZUrVwrjlon27duHHTp0kPXa29sL60TIeHuikydPqk54rFSpksl4e6KrV6/itGnTFL1knQhZpUb08OFDXLFihWrlPz3enujVq1e4ZcsWxQ5QepUaGbeMiPjx40d0d3dX7ACVGm+PiBgSEoLu7u6K3Spkldr69euF8faIiEajEd3d3RU7Ckin1dKlS4Xx9kSHDh3Cbt26yXql1okQnTt3DkeMGKH4sy5XrpzJOhGimzdv4ty5cxW9ZJ0IGW9P9OTJE1y3bp3ieH16vH14eLjgffv2LW7fvl2x4z5z5szYvXt3k/H2iIifP39Gd3d3xY4kqfH2iIgRERHo7u6u2MUpNd6eaPfu3diqVStZr9TabqJjx45hnz59FH/WZJXao0ePTJ7x5cuXccKECYpe8dpuort37+KSJUsUvQUKFMAhQ4bg+fPnMSoqSvA+f/4cN23apDh6PUeOHCbrRIh8fX1x+/btih33GTJkwC5dupiMt0dE/PbtG7q7uytOoqHXiZDx9oiIMTEx6O7urthtSzqtli9fLqyRJdq/fz926tRJ1iu1So3o9OnT+M8//yj+rOlVarT3+vXrOGPGDEWveG030aNHj3D16tWK60zEa7uJvL29cevWrYrrKqTWiSAifvr0Cd3d3RVHxqdLlw47duyI7u7uJudtaGgouru7K3bq0utEyHh7oh07dih2RJJOK3q8PdGRI0fQxcVF1kuvEyHj7YnOnz+Po0ePVnxOZcuWNRlvT3Tr1i1csGCBolc83p7Iy8sLN2zYoDheXzzenujdu3e4fft2xfUv9Co1+u4THByM7u7uWKxYMVmv1NpuRMTIyEh0d3dXnGBBVqmtWrVKWKVGtGfPHmzbtq2sl0z1oNeJEJ04cQL79++v+LMm60TIKjWiK1eu4OTJkxW94nUiRPfv38dly5Ypesk6EbJKjejly5e4ZcsWxZUk2bJlM1ulhojo7++P7u7uih2gUqvUEBF//PiB7u7uipNopFapISLGxcWhu7u7Yle01Co1ooMHD2KXLl1kvVJru4nOnj2Lw4YNU/xZly9fHidPniysEyG6ceMGzp49W9FbtGhRk3UiRJ6enrh27VrFSTR58uTBAQMGCKvUiHx8fHDbtm2Kq2PodSJklRoiYlBQELq7u2OBAgVkvWSdyLZt20zuPmFhYeju7q44ETN58uTo5ORkskqNaOfOnejs7CzrlVqlRnT06FHs1auXrFdqlRrRxYsXcdy4cYrPiV7bTT9ja7Cm0pqvX8maSt3YtmZNepUa0alTp3DQoEGKP2s9rCle20308OFDXLlypaJXjjVfv35tU9ZUmkCc0FmTrFIj+t1ZU7xKDdH2rNm6dWtZrxJrHj9+XBdrTpw4UdFLWFN897l37x4uXbpU0WsN1qRXqSH+nzWVVmbJseb37981saZ4lRri/1lTadLI78Ka9LsYn6xJ333ikzXJKjXE/7Om0pQSNdZ0cnKS9eplTfEqNaILFy7gmDFjFJ+THGvevn3bJqz5/v37eGNN+u5DWFNpepe1WJOs7SaKD9ak13YT3b9/H5cvX67o5az5fx08eBC7du0q6/0dWJOs7SZ6/PjxL2VNkmen13Yj/p81lab6y7FmeHi4JtYUr+0m2rlzJ7Zo0ULW+7uwJv0u3rlzBxcvXqzo/ZWsqbSCWw9rpkqVCtu0aWOythvx/6ypNEmPXtsd36wpXttNdO3aNXRzc1P0/irW3Lp1q+IqWjnWDAgIiDfWFN993N3dFacWWoM16bXdROfOncORI0cq/qz1sKZ4bTfRkydPcP369bpYU2mdbEJnTXGe/fjx49i3b1/Fn7WtWFO8tpvoxYsXuHnz5l/KmuK13Yj/Z02lqadyrBkbG6uJNcnabjFrctlWfFUxLxzk0qlRo0aZHHhk7K3UJVGsVatWmR2Y5JIoLsYQ6/Tp02ZeckkUJ8jEevbsmVmyTK4YQ6zg4GCz0dxyCTKxoqOjzdaSyBVjiGU0Gs0SKUoJMrF69Ohh4iUJsiVLlpglyMQSfwiiizHEl0Sxtm/fbvacypYtixMnTjS7JIp1/fp1zZdEsd69e2eWLMuVKxf269fPLEEm1s+fP82SZZkyZcJu3brh3r17TS6JYsXFxZnBm1wxhpTEBTTkkiiVIBNLDGBKxRhiSX2UJQmyhw8fKj7jw4cPm3nlijHEevjwoeZLolifPn0yS5Zlz54dXV1d8ciRIyYJMrEiIyPNkmX0JZFOkIllNBrNEtcpU6YULol0gkxKHTt2NPEmSZIEGzVqhMuWLVO9JIqTIeSDhFSCTKz169eb/awrVKggmSAT6/z582beYsWKSRZjiPXq1SuzZBlJkJ06dcokQSbWt2/fzFYOyxVjiBUTE2O2loQkyLZv327yQUJK4os9KcZYu3atWYJMLFdXV7Pz1mAw4OLFi80SZGLNmjXL7LwlHyTECTKxdu3aZfacypQpI1mMIdatW7fMvOSDhDhBJpavr69ZskwuQSZWaGioWbJMLkEmVlxcnNlqaLliDCm1bNnSxEsXY7x//17RK04+kxUr8+fPN/sgIZZUQVqlSpVw2rRpZh8kxDp+/LiZV67wX6wnT56Y3X3y58+PgwcPNkuQiRUUFGSWLCMfJMQJMrGioqIwb968Jl7yQUKcIBPLaDSarZSVK8aQkvgDg1KCTKxJkyaZvYtyxRhibd682ew5yRX+i3X58mUzLynGEH+QEMvHx8csWZY7d27s37+/2QcJsX78+GGWLKM/SCjdfWJjY81WsqVJkwbbt29vliCTknjFB/1BQo0TxR/7EiVKhI6OjpLFGGLNmzfP7BlXrVpVMkEm1v79+82ek1zhv1j37t0z88oVY4j18eNHs7UkcoX/YoWHh5sly0gxxu7du00SZGIZjUazhhy5wn8ptWvXzuy8lfsgIZYSa4qLMcRavXq12c9aL2tKFWOI9fz5c4tZ88uXLzZhTUQ0WwETX6wp/hBkLdYUF2OIpcSa4mIMsd69e2fWAJlQWVOuGEOswYMHm523vztrPnr0yMybkFlTXIwhJXExG82a4mIMscaPH2923soVY4glxZpyxRhiXbhwwcwrV/gv1p/Imr179zY7b+ODNXfv3m32nLSy5u3bt828csUYYulhzbCwMJuxprhRVQ9rKjWZiyVVkPa7s+bnz58lWVOqGEMsKdaUK8YQy2g0mn20jy/WFBcd/i6sqfQu+vj4mOXZrcGa4mIMsWJjY82KUvWwplIxhlhSrClX+C/W/PnzzX7WcsUYYulhzfv375t544s1xSuHfwfWVMuzixuKCWtKFf6LJceaUk3mYp05c8bMmxBYU9wAGV+sKS7ktxZrigv/xXJ3dzd7TlpZ08PDw8wrV/gvlhxrShX+i/Xz50+zlcN04f+vZE1xs0Z8saZUAbBW1jxy5IiZ1xqsKS78FyswMFCWNcWF/2JFRkZi7ty5Tbxyhf9iGY1GrFq1qolXL2vKFf6LpYc1N2zYYPazjg/WfP36tVmePT5Yk8u24oWDvHCQS4cCAwMxZcqUwiVRS4KMKDIyEvPkycOUICMyGo1YrVo1xe5QJXXu3FmxO1RJZFpYmTJlJLtDlbRx40amSyKtixcvMl0SaZFfcHLdoUr6/v07pk+fXrY7VEkxMTFYpEgRk0uiWoKMVsOGDYVLopZiDFqkS1+uO1RJc+bMES6JUt2hStq7dy8C/D9BdvbsWUVgo3Xnzh0EkO8OVZKfnx8mS5ZM8yWRVlhYGGbLlk22O1RJRqMRy5Urx3RJpNW6dWumSyItMjGDXBLVEmS0SLdZ0aJFNRVj0Dp58qTJJVEtQUbLy8sL7ezsZLtDlfT582dMnTo1pk2bFtu3b2/WHaqkqKgozJ8/v2J3qJyMRiPWqlVLsTtUSd26dVPsDlXS1KlTEeD/3aFqCTJaW7duRQDTDxJKwEbr6tWrCPD/DxJqCTJab968wcSJEwsfJNQSZLRCQkIwY8aMJt2hagkyotjYWCxRogRTMQatpk2bMhX+0yLTcOW6Q5VEpinIdYcq6eDBgwgg3x2qpAcPHgjnrZYPErQCAgIwefLkmj9I0IqIiMCcOXMKHyS0JMiIjEYjVqpUiemDBK0OHToodocqiUzMKFeunKbCf1pr165FAO2F/7TOnTuHAPLdoUp68eIF2tvby3aHKunr16+YNm1ak+5QtQQZUUxMDBYsWJDpgwQtR0dHxe5QJfXs2RMB/v9BQi1BRotMr5HrDlXSzp07TRJkasUYtG7cuGGSIFMrxqD14cMHTJIkiWx3qJJCQ0Mxc+bMst2hSoqLi8PSpUtb3B3aokULk0lELHefIUOGIID8JCIlke5eMolILUFG6+jRoyYfJNQSZLQeP35s8kGCJUFmS9asXr06UzEGLT2sSTq445s1L126lOBYMzY21oQ1tRRj0NLDmqRLX2sxBi1bsebdu3dtwpqkaJlmTbViDCK9rNmmTRsT1lQrxqBlK9Y8deqUwJpaijFo6WHN4OBgTJ06tVCMEZ+sWbt2bRPWVCvGoNW9e3cT1lQrxqClhzW3bdtmwppqxRi09LDm27dvMXHixJqLMWjZkjWbNWtmE9ZcuHChGWtqfRetwZpZs2bFnj17qhZj0AoICMAUKVIIrKmlGINIL2tWrlyZqRiDlh7WHDt2rEkxRkJgzZcvX6K9vb1Q+G9L1lQrxqClhzXJRLgqVapoKsagNXPmTKZiDFp6WPPmzZs2Y80sWbIwNZkT2ZI1hw4dasKaasUYtPSw5rFjx5iKMWjpYc2goCBMmTIlU+E/kS1Zs0uXLjZhzU2bNpmwplrhPy09rOnt7W3CmmqF/7S+f/+OGTJkYCr8J9LLmo0aNWJqMqelhzXJ5D5S+J8QWNPf39+ENVny7HpZs3z58gJrsubZ9bAmmc5Yvnx5TYX/tMgwJq1N5rT0sCYZxhTfrBkdHW3Gmlrz7LZkTTKMqXTp0poK/7l+H/HCQV44yKVDd+/eZbok0nr58qVqd6icAgMDmS6JtCIiInDbtm2aL4m0jEYjbt++nemSSGvfvn1MCTJaJ0+eZEqQ0bp27RpTMQatR48eMSXIaL19+5apGIPWt2/fmC6JtKKjo3Hr1q2aL4m0jEYj7ty5k+mSSOvQoUNMCTJa586dY7ok0rp16xZTgoyWl5cXnjhxQvMlkZa/vz9TgoxWaGgo0yWRVlxcHG7bts3i3x979uxhuiTSOn78ONMlkdbly5ctviTev3+f6YMErdevXzN9kKD1+fNnpg8StCIjI3Hr1q2aP0jQIqvcLB3VfeDAAdXuUDmdPn1atTtUTtevX1ftDpXT48ePVbtD5fT+/XumDxK0yNoZS87b2NhY3Lp1q+YPEmLt2rWL6YMErSNHjjAlyGidP3+eKUFG6/bt20zFGLRevHjBlCCjFRAQoNodKqfw8HDctm2b5g8StMh5y/JBgta+ffuYPkjQOnHiBFOCjNaVK1eYEmS0Hj58qNodKicfHx+mBBmtL1++MBVj0IqKisKtW7dq/iBBy2g04o4dO5iKMWgdOnSI6YMErTNnzjB9kKB148YNpg8StJ4+fcr0QYKWr68vU4KM1s+fP3H79u0W3X3Ieav1g4RYu3fvZvogQevo0aNMhf+0Ll68qDqJSE5/KmuyFGPQ0sOap06d4qypUTExMQmWNVmKMWjpYc1nz54xFWPQ4qzJJr2syVKMQUsva7IUY9Aid58/iTU9PDwSJGuyFGPQSqiseeHCBYtZ886dOzZlTUvuPnpYk9x9OGtqk61Yk+TZExprnj171uI8u17WZCnGoPUnsuaxY8c4a2pUREQEbt261SasuX///gTHmp6enjZhze/fv9uENRGRsyaDEjJrWnr30cuaLIX/tPSwpre3t9kKYq1KqKzJZVv9isJBO/y3MI5LQXZ2drkBwBcAwNfXF3Lnzm3jvxEXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxfXnyA/Pz/IkycP+cc8iOin999pr/dfwMXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFlXDECwe5uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uP4g8cJBLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLq4/SLxwkIuLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4vrDxIvHOT6Y3TmzBno2rUr7NmzB378+MHkffr0KbRp0wY2b94MgYGBTN6goCBo2bIlrFy5Et6/f8/kjYyMhHbt2sG8efPg+fPngIiavYgIPXv2hGnTpsH9+/eZvAAAY8eOhdGjR8O1a9cgNjaWybt48WIYNGgQnDlzBqKiopi8e/bsgZ49e8KhQ4cgNDSUyXvt2jXo1KkT7NixA75+/crk9fHxgVatWsH69eshICCAyfv9+3do1aoVLF26FN68ecPkjYmJgU6dOsHs2bPh6dOnzM94wIABMGnSJLh9+zYYjUamP3vatGkwfPhwuHTpEsTExDB5165dC/3794cTJ05AREQEk/fo0aPQrVs32LdvH4SEhDB579+/D+3atYOtW7fC58+fmbz+/v7QsmVLWL16Nfj6+jJ5w8LCoE2bNrBw4UJ49eoVk9doNEK3bt1g+vTp8OjRI+Z3cfjw4TBu3Di4ceMGxMXFMXnnzZsHQ4YMgfPnz0N0dDSTd9u2bdC7d284cuQIhIWFMXnPnz8PXbp0gd27d8O3b9+YvM+fP4fWrVvDxo0b4dOnT0ze4OBgaNmyJSxfvhzevXvH5I2KioL27dvD3Llz4dmzZ8zvoqurK0yZMgXu3bvH/C5OmDABRo0aBVevXmU+b5cvXw4DBw6E06dPQ2RkJJN3//794OLiAgcPHoSfP38yeW/evAkdO3YEd3d3+PLlC5P33bt30LJlS1i7di34+/szeUNCQqB169awZMkS8Pb2ZvLGxcVB586dYebMmfD48WPmd3Hw4MEwYcIEuHXrFvMznjFjBgwbNgwuXrzIfN5u2LAB+vbtC8ePH2c+b0+ePAl///037N27l/nu4+npCW3btoUtW7ZAUFAQkzcgIABatmwJq1atgg8fPjB5IyIioG3btrBgwQJ48eIF03MyGo3Qo0cPcHNzg4cPHzI/49GjR8PYsWPh+vXrzOftwoULYfDgwXD27Fnmu8/OnTuhV69ecPjwYebz9vLly/DXX3/Bzp07mc/bV69eQatWrWDDhg3Md5+vX79Cy5YtYdmyZfD27Vsmb3R0NHTs2BHmzJkDXl5ezOdt3759YfLkyXD37l3md3Hy5MkwcuRIuHz5MvN5u2rVKhgwYACcOnWK+bw9fPgw9OjRA/bv389897lz5w506NABtm3bBsHBwUxeX19faNmyJaxZswb8/PyYvKGhodC6dWtYtGgRvH79mskbFxcHXbt2hRkzZoCnpyfzuzh06FAYP3483Lx5k/ldnD17NgwdOhQuXLjAfPfZsmUL9OnTB44dOwbh4eFMXluyZosWLWDFihU2Yc2pU6fGO2suWbIkQbPmx48fmbx6WDM2Nhb++usvmD17Njx58iRBsWa/fv0sYs1jx45x1mTQiBEjdLPmuXPnmM/b7du3W8yaFy5cgM6dO8OuXbsSDGtGR0frYs3evXsnONY8cOBAgmTNVq1aweLFi/8Y1ty4cWOCY81Pnz7ZhDUREXr06AHTpk2DBw8ecNZU0evXr23CmjExMbpYs1+/fjB58mS4c+cO87s4ZcoUXazZv39/OHnyZLyy5t27d6F9+/acNTXKVqx59uxZ6Nq1K+zevRu+f//O5LXGd82Exprjxo2zCWvu3bvXYta8fv26wJqsd583b97oYs2WLVvCkiVLwMfHh8mrhzUBAAYOHAgTJ06Md9Zct26dTVjzwYMHFrPmx48fbcaa3bt3h+nTp1uUZx8xYgSMHTsWPDw8mM/b+fPn62JNV1fXeGfNFy9e2Iw1O3ToYBPW5PoPChF5qAQA5AYABAD09fVFroSp2NhYLFasGAIAJk6cGB0dHXHRokX4+vVrTf7GjRsjAKCdnR1WrVoVZ8yYgZ6enmg0GlW9/fv3R/L/UOnSpXH8+PF48+ZNjIuLU/XOmzdP8BYsWBCHDh2KFy5cwOjoaFXv/v37BW/OnDmxT58+eOzYMQwPD1f13r9/X/BmzJgRu3btinv27MHv37+rej9+/IjJkydHAMDUqVNjmzZtcPPmzRgYGKjqDQ8Pxxw5ciAAYNKkSbFJkya4YsUKfP/+varXaDRihQoVEADQ3t4ea9eujfPmzcPnz59rek7t2rUT/psrVaqEU6dOxfv372vyjh49WvAWL14cR48ejdeuXcPY2FhV7+rVqwVv/vz5cdCgQXjmzBmMjIxU9Z45c0bwZsuWDXv27ImHDh3C0NBQVe/z58/Rzs4OAQDTp0+PnTp1wh07duCXL19UvV++fME0adIgAGDKlCmxRYsWuH79evz48aOqNzo6Gh0cHBAAMEmSJNigQQNcunQp+vj4qHoREevWrSu8izVq1MDZs2fjkydPND0nFxcX4edVrlw5nDhxIt6+fVvTu+jm5iZ4ixQpgiNGjMBLly5hTEyMqtfd3V3w5s6dG/v164cnTpzAiIgIVe/169cFb+bMmbFbt264b98+/PHjh6r33bt3mCRJEgQATJMmDbZr1w63bt2Knz9/VvX+/PkTM2XKhACAyZMnx2bNmuHq1as1/R6Mi4vDkiVLIgBgokSJsF69erhw4UJ89eqVqhcR0cnJSfhvrlKlCk6fPh0fPXqk6RkPHjxY8JYqVQrHjRuHN27c0PQuLl68WPAWKFAAhwwZgufOncOoqChV7+HDhwVvjhw50NXVFY8cOYJhYWGq3kePHgneDBkyYJcuXXDXrl347ds3VW9gYCCmSJECAQBTpUqFrVq1wo0bN+KnT59UvZGRkZgrVy7hvG3UqBEuX74c3717p+o1Go1YtWpV4bytVasWzp07F589e6bpOXXq1En4b65QoQJOmTIF7927p+ldHD9+vOAtVqwYjho1Cq9evarpXVy/fr3gzZs3Lw4cOBBPnz6t6by9cOGC4M2aNSu6uLjgwYMH8efPn6re169fY6JEiRAAMF26dNixY0fcvn07BgcHq3q/ffuG6dKlQwDAFClSoLOzM65btw79/f1VvTExMVi4cGHh7lO/fn1cvHgxent7q3oREevXry+ct9WqVcOZM2fi48ePNT3j3r17Cz+vMmXK4IQJE/DWrVuanvHs2bMFb6FChXDYsGF48eJFTXef3bt3C95cuXJh37598fjx45ruPrdv3xa8mTJlwr///hv37t2r6bz19fXFpEmTCneftm3b4pYtWzAoKEjVGxYWhlmzZkUAwGTJkmHTpk1x1apV+OHDB1VvXFwcli1bVjhv69ati/Pnz8cXL16oehERW7VqJfw3V65cGd3c3PDBgweanvHw4cMFb8mSJXHMmDF4/fp1Teft8uXLBa+DgwMOHjwYz549q+m8PXHihODNnj079urVCw8fPqzp7vPkyROTu89ff/2FO3fuxK9fv6p6P3/+jKlSpRLuPi1btsQNGzZgQECAqjcqKgrz5csn3H0aNmyIy5Ytw7dv36p6jUYj1qxZUzhva9asiXPmzEEvLy9Nz+nvv/8Wfl7ly5fHyZMn4507dzS9i5MnTxa8RYsWxREjRuDly5c1nbdbtmwRvHny5MEBAwbgyZMnNd19Ll++LHizZMmC3bt3x/3792NISIiq18fHBxMnTowAgGnTpsX27dvjtm3bNJ23P378wIwZMwp3n+bNm+OaNWvQz89P1auXNZs0aWJ11tTyLs6fP9+qrHn06FFNdx9rs+amTZvihTUrVqxoFdasWLFivLHmmjVrbMaa9vb2ulkzRYoU2KJFC1y3bp1m1ixQoIDVWHPWrFnxwprTp08XvIULF8bhw4fjpUuXNL2LeljTw8PDZqyZOXNmi1mzVKlSZqz58uVLVS+iPtb8559/zFjTw8PDItb8559/NLPmkSNHrMaanTt3jjfWzJ07t01Y86+//rIqa165ckXT3WfDhg0Ws+bFixfNWPPAgQPxwprp06cXzlsnJydcu3atRaxpMBiYWLNBgwYJjjX37NljE9b08/OzKmuuXLlSE2sajUYsV66cVVizUqVKOG3atHhhzRUrVtiENZ8+fZogWbNWrVpmrPn06dNfzppTpkyxGmv2799fM2teuXIlQbJm8eLFbcKaAwYMsCprnj9/XtN5e+DAAYtZ88GDByas2aVLF9y9e/cvZ82IiAgT1mzcuHG8sWb79u2tzppa3kU9rHn27FlJ1tRy99HLmmnTprUKa9avXx+XLFmimTXr1atnMWv27NlT+HmVLVs23lhzx44dNmHN9+/fW4U1kyVLFq+s6ezsbMKabm5u+PDhw1/OmkuWLLEJa3LZVr6+vsKzA4DcaI2aOGv8S/7rAbxw8D+jnTt30i8RUzLoxo0bkt68efPigAED8NSpU7IXog8fPgi/5OjQkgwKDQ0VfsnRkTZtWuzQoYNiMiguLg5Lly5t5tWaDGrRooWZV2syaMiQIWZercmgpUuXSv6stSSDjh49KunVkgx6/PixpFdLMigoKAhTpkxp5iXJIKUPYZGRkZgnTx4zL0kGbd68WTYZZDQasXr16mZercmgzp07m3kTJUqEderUUU0GTZw4UfLnpSUZtHHjRklviRIlVJNBly5dkvRqSQZ5e3sLCVU6tCSDvn//LiRU6dCSDIqNjcUiRYqYebUmgxo2bGjmJcmgpUuX4ps3b2S9ffv2NfNqTQbNmTNH8mddvnx5nDRpkmIyaO/evZJeLcmgu3fvSnq1JIP8/PwwWbJkZl4tyaDw8HDMnj275HmrlgyiE6p0aE0GtWnTRvK8JckgpaLLkSNHSp63JBmk9CFs5cqVkj9rkgxSKro8deqUpFdLMsjLy0tIqNKRM2dO7N27t2IyKDg4GFOnTm3m1ZIMioqKwvz585t5U6VKha1bt1ZMBhmNRqxdu7aZl04GKX0I6969u+S7qCUZNHXqVMmftZZk0LZt2yS9WpJBV69elfTmy5cPBw0apPgh7O3bt0JClQ4tyaCQkBChcJmOdOnSYadOndDd3V02GRQbG4slSpQw82pNBjVr1kzyvNWSDBo4cKDku1i9enXVZNDChQslf9ZakkEHDx6U9GpJBtEJVTroZJDc3ScgIED4mEyHlmRQREQE5syZ08xLJ4OU7j6VK1c282pNBnXo0MHMS5JBCxYsUEwGjR07VvLnpSUZtG7dOklvyZIlcezYsYrJoHPnzkl6tSSDXr58KSRU6dCSDPr69auQUKVDS+FBTEwMFixYUPK81VJ44OjoKHneksIDpQ9hvXr1kjxvSeGBUtHlzJkzJX/WpPDg7t27su+iHta8efOmpFcPa2bJkgV79OihyppZsmQx8/7urDl06FDJ8/ZXs+axY8ckvdZgTaUGPz2sGRUVJcuapMHPEtZs0qQJrly5UvFDWJcuXSTP21/Nmps2bZL06mHN/PnzC6wp9y7qZc0MGTKYeeODNRs1amTm1cOadIOfEmvOnTtX8methTX37dsn6SUNfr+KNf39/X8pa8p9CDMajVi+fHkz7+/OmqtWrZL8WZcuXVq1wU+JNYcMGYLnz5+Xvfs8e/bMJqwZHR2tizXr1Klj5o0P1pw2bZrkz9oarKnU4Hft2jVJrx7W1NLgp8SaHTt2VGTNuLg4WdYkDX6/ijUHDRok+S7+atY8dOiQpNfWrKlUdBkRESE0ydJBWFOp6FKJNbU0+HXs2NHMq5c1SYPfr2LN8+fPS3odHBx+KWvSTbJ0WIs1le4+BoNB8rzVy5pqDX5KrDl58mRF1ty1a5ekt1ixYjhy5EjdrCl39/nw4YNQuExHfLBmmTJlJM9bLazZsmVLM6+1WFOp6HLZsmWSP2vCmkrDZJRYU63B78mTJ5JePayppcFPC2sq3X1q1Kghed7+atacNGmS5M/rd2ZNHx8fRdZUavBTY80dO3YosmbRokXNvIQ1169fbxFrkgY/Jdbs16+f5LuohzXLlSv3S1nz3r17kt6EzJpaiy654l+8cJAXDnLp0NKlS4XucaWQSgbt3bsXDQaD5AcZOuhkEPkQdu3aNTQYDJIf3eiQSgZ5e3ujwWDAbNmyKXrpZBDpwA0NDUWDwSB0nClFxYoVhQ5c8ou2VatWwtQMpShevLjZtKf+/ftL/qIRR758+cw6cN3c3CQvjOKQSgatX79e8iOjOKSSQceOHUODwSB0FMmFVDLo3r17aDAYJC9fdJBpT3QyyN/fHw0Gg+THc/GFiCSDyIcwo9GIBoNBEpTFQZJB9Iewzp07C90TSkGSQfSHsOHDh2OlSpVUvSQZRBddzp8/X7L4RhxSHbju7u5oMBgkL8l0pEmTxqwD98KFC2gwGCSTwHRIJYO8vLzQYDBIFvHSQTpw6WTQ169f0WAwSEKUOKSSQc2aNZP8ECQOqWRQr169hElUSiGVDJo4cSJWq1ZN1Zs9e3Z0dXU1+RC2YsUKoYNKKUgyiP4QduDAATQYDJJJCTpIMoj+EHbjxg00GAySiSc6pDpw3759iwaDQfKCTYdUMigyMhINBoMwSVMpSAcunQxq27at0DmqFEWLFjVLBg0aNEiYtKoUUsmgmTNnClOslIJOBhE42bRpEzo6Okp+kKFDKhl06tQpNBgMkklgOpInTy4kg8iHsIcPH6LBYBC6dOWCTgaRDtxPnz6hwWCQTCDTQZJB4g7cBg0aYKFChVR/XlKThf/++2/J4gpxSCWDRo0aJZm4FofUZOFFixZJfoASh1QyaNeuXWgwGCQ/yNAhlQy6fPkyGgwGYVqQXEglg16+fIkGg0GYiiAXdDKIfAj78eMHGgwGzJs3r+p/M0kG0R/CnJ2dJZMh4iDJIHraU58+fSSLh8Uh1YE7ZcoUycIMcUglg9asWaPpvKU7cMl5e/jwYTQYDJJJCTqkJgvfvn0bDQaDZEE9HVLJoA8fPqDBYBA6sZXeRXEyKCYmBg0Gg9DhqxRSyaCOHTtKfuwTh9Rk4SFDhggd4EohlQyaM2eOMMlBKTJnzozdu3c3KbrcunUrOjo6Sn6QoUOqA/fs2bNoMBiE6RVyIZUMevLkCRoMBskPq+J3UTxZ+PPnz2gwGIRJQ0ohNe2pcePGwgQbpZCaLNyjRw/JDwziIJOF6cKDcePGCROOlCJHjhxmhQesrEl/CItP1qSnPelhzbCwsHhhTanJwgmRNY8fP87MmuRDmCWsST6ExSdriosu9bDmiBEjNLGmVINfQmTNZ8+eocFgkPywSoe1WJP+EBafrEk3+OlhzZUrV/5y1pQquowv1hRPFtbLmu3atYs31qTvPvHJmnSDH2FNqQ/gdEix5qNHj5hYk572lBBYU2qy8OjRo7FKlSqqXinWXLx48X+eNemiy5CQEM13H72sKZ4srIc1p06dqok1pSYLr1mzRtPdR4o1jxw5Eq+sSfLselgzNjaWmTXposuOHTsK21eUQoo1hw4dysSa9LQnFtYUN/jFF2uKG/wIa2rJs4tZMzg42Gas6eLiEm+sSRddLlu2LN5Yk27w08OaPj4+mllTPFmYsKZUMb446MnC5Bm3bt1a093nd2LNDRs2MLMmufsQ1lTLs0ux5v379+ONNcUNfvHFmuIGvxEjRmjKs0ux5oIFC2zCmhcvXoxX1iRFl9++fdOcZ5dizebNmzOxJl10qYc1J02apJk1xQ1+WllTqsHv4MGDmu8+vwtrRkVF6WJNLtuKFw7ywkEuHZKaAqMWpANXahqCWpAOXKmJblqidOnSkh1MWqJgwYImK6tYgiSD1IBAKkgySMuFTxwETrRc2sRB1kxJTWVTC/IhTKoDW0tUrFjRZCw/SxQvXtxkvQZL5M+f36L/pwH+nwxSS5RJBUkGafnoLg6SDNKSzBAHSQZJdeeqBYETqa5PLVGuXDns0aOHRd7ChQtLdsZoCVJ0qfaBUSpIMkjLpV4cJBmkBZLFQZJBWkBXHCQZRK8yYYkqVapIdpppiVKlSll83hYoUMDid5F04KolQ6WCfAjTAl/iIEWXWhJW4iAduI0bN2b2kmQQvaqPJSpUqCA5SUFLFCtWTHIiipYga6bUEqlSkTVrVuzRo4dq0loqSDJISyJEHKQDV8uHHHGQD2H0GjetQT6E0auoWaJMmTImqxdYolChQhbffUgySC3hLRUkGaQFsMVBJgtr+UAgDpIMIiu+WIIkg1q3bm3Rz6tSpUrYtWtXi7wlSpRAV1dXi7wODg4ma3JYgiSD1D5MSAVJBmkpchIHSQZpSR6LgySDmjZtyuwlySB6XQ1LlC9f3uK7T9GiRS0+b8mHMLWPGlJBOnDVPthLBenA1ZKUFAcputTyIUccCZk1LX0X9bJmly5dbMKajRs31sWabdu2tejnpZc1+/TpY5HX1qyp5aO7OMhkYT2s2bx5c2avXtYsW7asyYpjlrA1a2opnhGHNVhTakqQWtiaNS29+xQoUMDi85awptqHYKmwBmtq+VgnDs6abF49rEmKLrUUHIrD1qxJr6JmiT+VNbUU4ouDFF3Wr1+f2Wtr1rQ0z+7g4GDx3YezJlvoybPbmjW1FCuKwxqsqaWIRRy2Zk1L7z56v2v27t3bZqyppRBfHIQ1paayqYU1WLNbt24WefWwJpksbIlXD2uSPLstWLN+/fp/JGuqFbNKhTW+a2ppfBIH2WJjKWvWrVvXJqxZsmRJm7LmiRMnNK1h5vo1+hWFg/bAxcUlqwoVKoCjoyMUKlSI2VuiRAlwdHSEUqVKMXsdHBzA0dERKleuzOzNnj07ODo6Qp06dZi9GTJkgHr16oGjoyMkTpyYyZsyZUqoU6cOODo6QurUqZm8SZIkgZo1a4LBYICsWbMyee3t7aFKlSrg6OgI+fLlY/ICAJQrVw4MBgMULVqU2VusWDEwGAxQrlw5Zm+ePHnA0dERqlWrxuzNkiWL8JxYlTZtWqhbty44OjpC8uTJmbzJkyeHWrVqgaOjI6RPn57JmzhxYqhWrRo4OjpCjhw5mLx2dnZQsWJFcHR0hAIFCjB5AQBKly4NBoMBSpQowewtVKgQODo6QsWKFZm9OXPmBIPBADVr1mT2ZsqUCRwdHcHR0RESJUrE5E2dOrXwLqZMmZLJmyxZMuEZZ86cmcmbKFEi4V3MkycPkxcAoHz58uDo6AiFCxdm9pLztnTp0sze/Pnzg6OjI1StWpXZmy1bNovP2/Tp0wvvcdKkSZm89HmbJk0aJm+SJEmgRo0a4OjoCNmyZWPy2tnZQaVKlcDR0RHy58/P5AUAKFu2LDg6OkLx4sWZvUWKFAFHR0dd52316tWZvZkzZxbeRValSZMG6tatCwaDQdd5myFDBiZvokSJoFq1amAwGCBnzpxMXnLeGgwGKFiwIJMXAKBUqVIW330KFiwIBoMBKlWqxOzNkSMHODo6Qq1atZi99N2H9bxNlSqVxXefpEmTQs2aNcHR0RGyZMnC5KXvPnnz5mXyAvx793F0dIQiRYowe4sXLw4GgwHKli3L7M2XLx8YDAaLztusWbNCvXr1oF69eszedOnSWXzepkiRAmrXrg2Ojo6QLl06Jm/ixImhevXq4OjoCNmzZ2fy0uetg4MDkxfg37uPo6OjRXefwoULg6OjI1SoUIHZmytXLnB0dIQaNWowe8ndx2AwgL09W5qCnLeW3n3Iu5gpUyYmLzlvHR0dIXfu3ExegP/fffSwpiV3H2uwZu3atZm91mBNg8Fg0d0nobKm3rvPn8Sa5LxNSKxZsGBBm7BmxowZLb776GFN+u7DWVNdCZU1ybsY36xZpkwZ3axZvnx5Zm/u3Lmtwpp2dnZMXr2sSe63elgzV65cTF76vNXDmiVLlmT2FihQABwdHXWxpt67T0JjTYPBoIs1Lbn76GHNvHnzWnze6mVNcvfRw5p67j4JjTUNBoMu1tSbZ09IrFm1atU/kjX1ftdMkiQJk9carOno6BjvrEny7AmNNS3Ns+tlzdq1a4PBYNB13urJs+thTUvuPnpZ09I8u7VYM1WqVExevaxJzltLWdNgMNiENQ0GA1SpUoXZS1izbt26zF767lOtWjVmjuH6zWWN6sP/egCfOPif0MmTJ3HUqFGKVdJSI2IREW/evIlTpkxR7EiiR8SSVWyIiM+fP0c3NzfFUcBSI2IR/1114ebmpjo+XWpEbGRkJLq5ualOlCLrSC5fviyM5Eb8d8VPkyZNFL158uQxW0eC+O8aJ7UOULKKbf/+/cI6EkTE/fv3q1a50+tIyHh8xH/XA40fP17RSzq11qxZI6wjQfx3LPe0adMU15mQTi16HQniv6PX3dzcFCeckE4t8TqSL1++oJubm+pEKXodCRnXbDQa0c3NTXU8ttQ6EsR/x9yrdZ3R60jIeHxExG3btql2B0qtI0FEPHr0KA4bNkzRmypVKmzTpg1u2rRJWEeCiHj16lWcPHmy4khvqbXfiP+uQXBzc1Oc7mZvb2+2jgTx38p9Nzc31S7fihUr4tSpU03WkYSGhqKbm5vqRKnixYubrSNBRJw9e7bqRCnSqUWvI0FEXL16tWoHKL2OhIzHR0TcvXu3audYunTphHUkZBUbIuLp06dxzJgxil7SqbV+/XphPD7ivytJpk6dqjjSW2odCeK/a2fc3NwU1yCQdSSzZs3CJ0+eCM8pKCgI3dzcVLt8pdaRREdHo5ubm+r6F7KK7dKlSybv4sKFC1WnaZJOrRMnTgjj8RH/XeOk1o0ttY4E8d/x6YMHD1b0Sq0jQUS8dOkSTpgwQXF9FOnUoteRIP67bnjatGmK4/XpdSRkFRviv6PX3dzcVNexSa0j+f79O7q5uamuFSHrSOhVbIiI06dPV50oJbX2G/Hf9d1qHfdS60gQ/11loDYZgUwFodeRIP67rmLEiBGKXjIVhF5Hgojo4eGBkydPVlwfRaaCLF++XBiPj/jvenc3NzfFNV9S60gQET9+/Ihubm6qq7rodSTkXQwPD0c3NzfViVJS60gQEefOnava5Uumgpw+fdrk7rNu3TrVDlCyjoRexYb47+oYtS5OqXUkiIjnzp3DsWPHKnrJOpK1a9eanLd3797FadOmKXaA0mu/yToSRMTXr1+jm5ub4oQTMhVEvI7k8+fP6Obmpjq9uEyZMmbrSGJjY9HNzU119V2hQoXM1pEgIi5ZskR1wonUOhJExC1btqh2Y9PrSOi7z+HDh3HIkCGKXjIVZMuWLSZ3n8uXL+PEiRMVJ9GQCZT0KjZERE9PT5w2bZpix73UOhLEf9d8ubm5qU6Uqly5Mk6bNs1kHUlISAi6ubmpTpQqWbIkjhkzxmQdCeK/6w3Vunzz58+PgwcPNllHgoi4atUq1Y77bNmyma0jQUTcuXOnaqeu1DoSROuwptLqTGuxJlnFhvh/1lSbKGVL1hSv/Ub8d42T2vQLPayZJk0abN++/X+CNb9+/Ypubm6qE6WswZr0KjbEf1mzZcuWil5rsObu3btN7j56WPPatWu/nDXJ2m+aNf38/NDNzU11NeLvxppr1qxRZc2sWbNanTXPnDkTL6y5ZMmSeGfNsmXL4sSJE63KmosWLfqlrJkpUyabsyZZxYaojzXfvXvHxJoPHz40Y021iVJKrKk2UUoPa5K130eOHDG5++hhzRMnTqiyZsqUKWVZc8qUKb89a9J3n/hkzVOnTpmxptpUfznW3Ldvnyprkjz79u3bzVhz3Lhxit7fjTWDg4PRzc1NdaKUFGvGxcXpZk1nZ2dFr61Zk177jYh45coVnDRp0i9lzTp16uD8+fMlWVNtFa0e1ixRosR/hjVPnTr1n2bNSZMm4Z07d5hZk6z9FrPmggULVKdp/irWVJtc+itZU2myrRxrvnnzJt5Yk177jfjvame16cV6WJPk2Y8ePWo11jx27Jgm1mzdujVu2rTJ5O6jhzWfPn2Kbm5uipPEf0fWnDNnjk1Yc8+ePZpZ093d3SLWFK/9Rowf1qxevbpVWTMmJkYXa3LZVnxVMS8c5NKpWbNmmR14uXPnlrwkirVr1y4zL7kkihNkYt26dcvMSy6J4gSZWB8+fDC72MsVY4gVGhpqNraZTpC9evVK1hsXFyeZ8JIqxpCS1MWNJMjEl0SxpC5fBQoUwCFDhphdEsVatmyZmVfukijW8ePHzbwZMmTALl26mF0SxXry5IlZUlPukihWUFCQ2cWeviTSCTKxoqKizMY2k0uiOEEmltFolFxnQBdjKD1jqQRy8eLFJRNkYk2aNMnMSxdj0JdEsTZv3ix5SXRxccGDBw+aXBLFunz5suQlkRRj0JdEsXx8fMwu9nKXRLF+/PhhdrFPnDgx1q9fH5csWWKSIBMrNjYWixYtKntJpBNkUpJa80MuiXSCTEpSyUW5BJlY8+bNM/PKJcjE2r9/v5mXTpApnbf37t0z89LFGEFBQbLejx8/mq3rIgmyVatWmXyQECs8PByzZ89udt6SYgz6g4RYRqNRcoR65cqV0c3NzeSDhJSk1jGVLFkSx44da/ZBQiypxBP5ICFOkIm1evVqMy/5ICFOkIl1+vRpM69cgkys58+fm5235IOEOEEmVnBwMKZJk8bEK5cgEys6OtqseFiu8F9KUkWHUsUYUpJKaJBijCtXriiet25ubmZeUvgv/iAh1vbt2828WbJkwR49eph9kBDr+vXrZl65DxJivXv3zqxZI3ny5Ojk5GSWIBPr58+fmClTJrPz1mAwmCXIxIqLizP7wEA+SIgTZFKSWjtBF2MoPWOpD6tyhf9iLVq0yMwrV4wh1uHDh828coX/Yj169EjyvG3Tpo3ZBwmxPn36ZPYRKWnSpNikSRNcuXKlSYJMrMjISLOkJin8nz9/vkmCTCyj0Si5PqZSpUpmCTIpSX2wIx8kxAkysaSSwHIJMrHWr19v5pUr/BfrwoULZl65YgyxXr16ZfYRiS7G+Pjxo6z327dvmC5dOrPzVqrwX6yYmBizD7qkGGP27NkmHySkJLVWTarwX0pS683IBwm1BJkSa4qLMcTavXu3mVcva0oVY4jl6+ubIFlTagVMfLDm8uXLzbzWYE1xMYZYSqwpLsYQ6/Pnz7KsKS7GEEsva0p9eNfDmnLFGGJNnjzZzPs7sKbS3cfHx8esgCa+WFP8gcEarCkuxpCS1Bo6raw5f/58M6+1WFPp7nP//n0zb3yxpriAxlqsSRdjSEmJNcXFGGKNHj3azBsfrHnmzBkzr17WlCrGEOvLly+6WFP8QTe+WFNqhZ01WFMtz+7u7m7mtQZriosxxNLLmuJ1tHLFGGLJsaZUMYaUpJqf4oM1Fy9ebOb93VkzMDDwl7CmuBhDLKPRKFnopIc15YoxxNLDmhs2bDDzxgdrvn79WjLPHh+sKR7SkRBYc/bs2WZeucJ/seRYU6rwX6zbt2+beeODNcPCwhRZU+3uU65cObO/d3yw5vDhw8281mBNcZO5WCdOnDDz6mVNqcJ/seRYU6rwX6yoqCizRlW5wn+xtLCm0rv4999/m3mtxZpKd58tW7aYebWy5pUrVyTP2/hgTXGzBmFNceG/WHKsKVX4LyWpZtPfnTUPHDhg5k3orEkX/nP9XuKFg7xwkEuHQkJChF9wVapU0VSMQRQbG4vFixdHAO3FGLRIh4tcd6iSyEQEue5QJS1YsEC4JEp1hyrp4MGDCGDaHaqUIKP14MEDpksirYCAAEyePLnJJVEtQUYUEREh/IKT6g5VktFoxEqVKplcEtUSZLQ6dOiAANqLMWiRDga57lAlrV27FgG0F2PQOnv2LAL8P0G2du1axQQZrRcvXqC9vb1Jd6hSgozWly9fMG3atEyXRKKYmBgsWLAgAkh3h6rJ0dHR5JKoliCjRbqwtV4Sac2YMcPkkqiWIKO1Y8cO4ZKoJUFG68aNGyaXRHF3qJLev3+PSZIkke0OVVJoaKiQTK1UqZJZd6iS4uLihE41ue5QJZHuXro7VClBRot06Mp1hyppyZIlCPD/DxJqCTJaR48eFc5b8kFCKUFG6/Hjxwjw/w8SagkyWoGBgZgyZUrZ7lAlRUZGCpMYpLpDlWQ0GrFatWoIIN8dqiTS+SnXHaqkCRMmIIB8d6iSNm7cKCTIpLpDlXTp0iXhvCXdoVrvlCSZSn+QUCrGoPX9+3dMnz69yQcJtQQZUUxMjNAZXLp0aU0JMloNGzZEAPnuUCX17dvXJEGmVoxBa86cOSYJMrXCf1p79+4VEmRaCv9p3blzR7j7SHWHKsnPzw+TJUsm2x2qpLCwMKEbkXSHqhVjENHJVPqDhNZ3sU2bNgjw/w8SasUYtMh0EtIdqpYgo7Vy5UohQSbVHaqkkydPMiXIaHl5eaGdnZ3mYgxawcHBmDp1atnuUCVFRUUJkxikukOVZDQahWlhlnSHkqkXuXLlwn79+jHdfaZOnSrcfbR8kKC1detW4bxt166daoKM1tWrV4W7j9QkIiW9ffsWEydOLHyQUCvGoKWXNckEzvhmTTIRwVqsqVSMQcsarJkkSZJ4Z82cOXNahTW1FGPQ0sOaZCqt1mIMWnpY89y5czZhza9fv1qVNdWKMWjpYc1evXohwL/FGH379lUtxqClhzV37typmzXpYgytrPnhwwddrEkm38Q3a5KNDdZgTbViDFpLly61GmuqFWPQ0sOaQUFBmDJlSqZiDCK9rEkmZuhhTa1N5rQmTpxoMWtu2rTJJqzp7e2NiRIlwkSJEulmTS3FGESxsbFWYU2txRi09LDm3LlzbcKad+/etSprKhVj0KIbZK3BmmrFGLT0sObIkSNN8uyWsqaWJnNap06dSnCsGR0dbTPW7N69u9VYU63JnNa2bduswppaijFo6WVN0iCrtcmcSC9rkqnF8c2aCxcutJg1Dx06ZDPWTJEihcCaWgr/iWjW1Fr4T2Q0GoVpuAmJNdetW2cT1nz58qVVWVOt8J9IL2uSSalaC/9p6WHNmTNnIoD2wn9aeljz5s2bVmdNLc9JL2uSTVdam8xp6WHNoUOH6mZNrYX/XL+PfkXhYGLg4vpD5OnpCfPmzYPmzZtD9uzZmbwvX76E/v37g5OTEzg4ODB5g4KCoG7durBgwQIoXrw40773yMhIyJUrF9y5cwcqVqwI9vb2mr3kJb9y5QrUqFEDEidme92DgoLg5MmT4OjoCMmTJ2fyvnz5Evbv3w+NGjWCNGnSMHk9PT1h3bp10LRpU8icOTOT9/HjxzBlyhRwcnKCXLlyMXnfvn0LnTt3hl27dkGhQoWYvN+/f4dy5crBhAkToHTp0kzPOCYmBtKlSwc3b96EKlWqMD/jiIgIuHDhAtSuXRuSJEnC9Pf29fWFo0ePQv369SFlypRMXi8vL9i1axc0btwY0qVLx+T19PSEJUuWQPPmzSFr1qzMf+6wYcPAyckJ8uXLx+T19/eHpk2bwqpVq6Bo0aJMzyksLAwKFiwI9+/fh/LlyzN5jUYjJEmSBK5duwbVq1eHRIkSMf29v337BmfOnIG6detCsmTJmLw+Pj5w6NAhaNCgAaROnZrJ+/jxY9iyZQs0adIEMmbMyOT19PSE2bNnQ/PmzSFHjhxM3tevX4Orqys4OTlBgQIFmLzBwcFQs2ZNmD17NpQoUYLpOUVFRUHWrFnh9u3bUKlSJeZ3MTY2Fi5dugQ1a9Zkfhc/ffoEJ06cAEdHR0iRIgWT9/nz57Bv3z5o1KgRpE2blsnr6ekJq1evhmbNmjGft0+fPoXx48eDk5MT5M6dm8n7/v17aN++PWzduhWKFCnC5A0JCYFSpUrBo0ePoEyZMkzPOC4uDlKnTg0eHh5QtWpV5ncxNDQUzp07B3Xq1IGkSZMyed+9ewdHjhyBBg0aMJ+3T58+BXd3d2jSpAmkT5+eyfvo0SNYuHAhNG/eHLJly8bkffHiBQwePBicnJwgf/78TN5Pnz5BgwYNYOnSpVCsWDGm5xQREQF58+aFe/fuQfny5ZneRaPRCPb29nD16lWoXr06890nODgYTp8+DXXr1mW++7x+/RoOHDgADRs2tOjus2HDBmjatClkypSJyfv48WNwc3MDJycnyJkzJ5PX29sbunfvDvv374eCBQsyeb9+/QqVKlWCqVOnQqlSpZiecXR0NGTKlAlu3boFlStXZj5vo6Ki4OLFi1CrVi3m8/bjx49w/PhxMBgMzOfts2fPYM+ePdCoUSPmu8+jR49gxYoV0LRpU4vuPqNHjwYnJyfIkycPk9fPzw9atGgB69evh6JFizJ5Q0NDoWjRovDgwQMoV64c83mbPHlyuH79OlSrVo35vA0JCYGzZ89C3bp1mc/bt2/fwuHDh6FBgwaQKlUqJu+TJ09g27Zt0KRJE8iQIQOTVw9rvnr1Cvr166eLNefPn89894mMjIScOXNazJpGoxEuX74MNWvW/CNY88mTJzB58uQExZqxsbECa1auXJnpXdTLmh8+fNDFmjt37oTGjRtbdPexlDWfPXtmE9YMDw+HAgUKcNbUKE9PT5g5cyY0b96c+e6jlzWrV68OM2fOhJIlSzLfffSwZkxMTIJjzUePHtmENT98+ADt2rWDLVu2WMSaJUuWhIcPH0LZsmWZ7z6pUqWymDV//vyZ4FjT09PTYtZ8/vx5gmNNRAQ7OzuL8+x6WPPVq1cWs+bjx48tZk1PT0+YNm1agmLNmJgYyJgxo01Y09/fXxdr7t6926I8u17WHDVqFDg5OUHevHmZvHpZs0iRIjZhzR8/fljMmu/evbMZa86dO9cmrFmnTh2YN29egmLNwMBAm7Hm2rVrbcKaf/31F+zcuTPBsCbAv9/bzp8/D7Vr12Z+F23FmuS7ZrNmzZjvPnpY8+PHj9CkSRNYuXJlvLNm4sSJLWbNr1+/wunTp6FevXrxzpqbN2+Gpk2bxjtr9uzZE5ydneOdNbNkyWIT1uT678kO/52ox6UgOzu73ADgC/BvoQ1r0oKLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLyxL5+fnRQwbyIKKf3n+n9rJTLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi6uBC9eOMjFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXF9QeJFw5ycXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcf1B4oWDXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFx/kHjhINcfo4sXL8LkyZPh7t27YDQambxPnz6FkSNHwpUrVyA2NpbJGxQUBIMGDYJTp05BZGQkkzcyMhIGDx4M+/fvh58/fzJ5ERHGjBkD27dvh+DgYCYvAMCcOXNgzZo14Ofnx+xdv349LFq0CF6/fs3sPXz4MMyYMQM8PT0BEZm8N27cgPHjx8PNmzchLi6Oyevj4wP4iQQPAACWU0lEQVRDhw6FCxcuQHR0NJP3+/fvMHDgQDh27BiEh4czeWNiYmDo0KGwZ88e+PHjB5MXEWHSpEmwefNmCAoKYvICACxevBhWrFgB79+/Z/Zu374d5s+fD8+fP2d+TqdPn4apU6fC/fv3mb0PHjyA0aNHw7Vr15jfRX9/fxg8eDCcOXMGoqKimLxhYWEwaNAgOHToEISGhjJ5jUYjjBw5Enbs2AFfv35l8gIAzJgxA9avXw8BAQHM3tWrV8PSpUvhzZs3zN59+/bB7Nmz4enTp8zP6fLlyzBp0iS4c+cO83n7/PlzGDFiBFy6dAliYmKYvMHBwTBo0CA4ceIEREREMHmjoqLgn3/+gX379kFISAiTFxFh7NixsHXrVvj8+TOTFwBg/vz5sHr1avD19WX2btq0CRYuXAivXr1i9h47dgymT58Ojx49Yn7Gt2/fhnHjxsGNGzeYz9t3797BkCFD4Pz588znbUhICAwaNAiOHj0KYWFhTN64uDgYNmwY7Nq1C759+8bkBQCYMmUKbNy4ET59+sTsXbp0KSxfvhzevXvH7N2xYwfMnTsXnj17xvyczp07B1OmTIF79+4xv4uenp4watQouHr1KvN5GxAQAIMHD4bTp08z330iIiJg8ODBcPDgQea7j9FohFGjRoG7uzt8+fKFyQsAMGvWLFi3bh34+/sze9euXQuLFy8Gb29vZu+BAwdg5syZ8PjxY+ZnfO3aNZgwYQLcunWL+Rm/evUKhg0bBhcvXmQ+b79+/QoDBw6E48ePM5+30dHRMGTIENi7d69Fd58JEybAli1bLLr7LFy4EFatWgUfPnxg9m7duhUWLFgAL1++ZPaeOHEC3Nzc4MGDB8zP+N69ezB27Fjw8PBgPm99fX3hn3/+gbNnzzLffUJDQ2HgwIFw+PBhi87b4cOHw86dOy06b6dNmwYbNmyw6O6zYsUKWLZsGbx9+5bZu3v3bpgzZw54eXkxPyc9rOnl5aWbNU+ePBnvrDl69GjYtm1bvLPmhg0b/jjWHDRokEWsGRsbK7Dm9+/fmby2Zs158+bFO2s+fPiQsyaDCGv6+Pgwe/Wy5sSJE+H27dsJhjWjo6N1sea4ceM4a2qUXtYcOHAgHDlyJEGx5rJlyyxmzZ07d9qENR8/fmwxa3769MkmrImIMGrUKNi+fXuCYs2DBw8mSNYcNGiQRawZExNjM9ZctGiRLtacP38+vHjxgvk5nTx5UhdrjhkzBq5fvx7vrDlo0CCbsKabm5vFrLly5UqLWXPPnj1/LGtacvcZM2ZMgmPNI0eO2IQ137x5o/u75tGjR+OVNQEAJk2aBJs2bYLAwEBmrx7WdHd3t5g1z5w5YxPW/PjxY4JlzXXr1sHHjx+ZvXpZc9asWfDkyRPm53TlyhWLWfPFixcwfPjwP4o1uf6DQkQeKgEAuQEAAQB9fX2RK2EqMjISc+XKhQCA2bNnR1dXVzx8+DCGhoaqeo1GI1apUgUBANOnT49//fUX7ty5E79+/arpz+7UqRMCAKZMmRJbtmyJGzZswICAAE3ecePGIQBgkiRJsGHDhrhs2TJ8+/atJu/69esRANDe3h5r1qyJc+bMQS8vLzQajare8+fPI/n/vnz58jh58mS8e/cuxsXFqXpfvXqF9vb2CABYtGhRHDlyJF65cgVjYmJUvd++fcN06dIhAGDevHlxwIABeOrUKYyIiFD1xsTEYKFChRAAMEuWLNijRw/cv38/hoSEqHoREevXr48AgGnTpsUOHTrg9u3bMTg4WJPX1dUVAQCTJ0+OTk5OuGbNGvTz89PknTVrFgIAJk6cGA0GAy5atAhfv36tybt7924EALSzs8OqVavijBkz0NPTU9MzvnXrlvCMS5cujePHj8ebN29qesa+vr6YNGlSBAAsWLAgDh06FC9cuIDR0dGq3tDQUMyaNSsCAObMmRP79OmDx44dw/DwcFVvXFwcli1bFgEAM2bMiF27dsU9e/bg9+/fVb2IiC1btkQAwNSpU2ObNm1w8+bNGBgYqMk7bNgwBABMliwZNmnSBFeuXInv37/X5F2+fDkCACZKlAjr1KmD8+fPx+fPn2t6TsePHxeeU6VKlXDq1Kl4//59Td4nT56gnZ0dAgCWKFECR48ejdeuXcPY2FhVb1BQEKZKlQoBAPPnz4+DBg3CM2fOYGRkpKo3KioK8+bNiwCA2bJlw549e+KhQ4c0n7c1a9YUzttOnTrhjh07NJ+3Xbt2Fc7bFi1a4Pr16/Hjx4+avJMnTxbO2wYNGuDSpUvxzZs3mrybN28W3sUaNWrg7Nmz8cmTJ5qe0+XLl4VnXK5cOZw0aRLeuXNH07vo4+ODiRIlQgDAIkWK4IgRI/DSpUuaztsfP35ghgwZEAAwT5482L9/fzxx4oSm8zY2NhaLFSuGAICZM2fGbt264b59+/DHjx+qXkTExo0bIwBgmjRpsF27drh161b8/PmzJm///v2F87ZZs2a4evVqzfezefPmCe9ivXr1cOHChfjq1StN3v379wvPqUqVKjh9+nR89OiRpmd87949wVuqVCkcN24c3rhxQ9O7+PHjR0yePDkCABYoUACHDBmC58+fx6ioKFVveHg45siRAwEAc+TIgb1798ajR49iWFiYqtdoNGKFChUQADBDhgzYpUsX3LVrF3779k3Vi4jYrl07BABMlSoVtm7dGjdu3IifPn3S5B01ahQCACZNmhQbNWqEy5cvx3fv3mnyrl69Wrj71K5dG+fOnYvPnj3T9JzOnDkjPKcKFSrglClT8N69e5q8z58/F87bYsWK4ahRo/Dq1aua3sUvX75gmjRpEAAwX758OHDgQDx9+rSm8zY6OhodHBwQADBr1qzo4uKCBw8exJ8/f6p6ERHr1q2LAIDp0qXDjh07oru7O3758kWTt0ePHggAmCJFCnR2dsZ169ahv7+/Jq+bm5tw96lfvz4uWbIEvb29NXnd3d2F87Z69eo4c+ZMfPz4sabndP36deEZlylTBidMmIC3bt3SdN6+e/cOkyRJggCAhQsXxmHDhuHFixc13X1+/vyJmTJlQgDAXLlyYd++ffH48eOa7z4lS5ZEAMBMmTLh33//jXv37tV83jo5OQl3n7Zt2+KWLVswKChIk3fw4MHC3adp06a4atUq/PDhgybv4sWLhfO2bt26uGDBAnz58qUm7+HDh4XnVLlyZXRzc8MHDx5oesaPHj0SvCVLlsSxY8fi9evXNZ23nz59whQpUiAAoIODAw4ePBjPnj2r6bzVy5pVq1a1CWuOHz/eJqx54cIFi1nz9evXwt0nvlmzcOHCVmHN9u3b47Zt2zSzZu/eva3Cmo6OjvHGmrdv37YJa4aFhdmMNVu1aqWbNZMmTYpNmjTBFStWxAtrnjhxwiqsWbx4cSbW/Pz5c4Jkzb///tuqrOnj46PJu2XLFqux5sSJE/H27duaWTNx4sS6WTN37tzYr1+/eGPNJk2a2IQ158+fbxPWvH//vlVZ89y5cxaxpqurKx45ckQza1asWNEqrNmqVSsm1hw9erRVWLNWrVrxypokz66HNfPmzcvMmgUKFLAaa7Lk2V1cXCxmzenTp5uw5uLFiy1izWrVqjGxpoeHh1VYs1ChQsysmTlz5gTHmv/884/VWHP+/Pn44sULTd4jR45YjTXHjBmjmTUDAwOtxpq9evWKN9b866+/bMKaGzZssCpras2z62XN9OnTC3n2AQMG4MmTJy1ize7duzOxZoMGDazCms2bN2dizdmzZyc41vTz87Mqa7Lk2cuVK2c11ty0aZNm1hw+fLjFrLlixQqTPPu8efMsYs2KFSsysebTp09txpr58uWzKmtqzbPrYc0pU6ZYjTVnzZqlmTW5bCtfX1/hHQOA3GiNmjhr/Ev+6wG8cPA/o5UrV9IvEVMy6OTJk2ZeOhmk9CHMy8tL+CVHh5Zk0OfPnzF16tRmXpIM8vDwkP1lGRUVhfnz5zfzakkGGY1GrFWrlplXazKoW7duZl6tyaCpU6eaebUmg7Zu3Wrm1ZoMunr1qplXazLozZs3QkKVDjoZJHdxDQkJwYwZM5p5tSSDYmNjsUSJEmZercmgpk2bmnlJMujAgQOKyaCBAweaebUmgxYsWGDmTZEiBTo5OeHatWsVk0EHDx4082pNBj148MDMqzUZFBAQICRU6dCSDIqIiMCcOXOaebUkg4xGI1aqVMnMqzUZ1KFDBzOv1mTQmDFjzLxak0Fr164182pNBp07d07yvNWSDHrx4oWQUKVDSzLo69evmDZtWjOvlmRQTEwMFixY0MyrNRnk6Oho5tWaDOrZs6eZV2syaMaMGWZercmgnTt3mnm1JoNu3Lghed6SZNDTp09ln9OHDx+EhCodWpJBoaGhQkKVjqJFi+KIESPw8uXLsudtXFwcli5d2syrNRnk7Oxs5tWaDBoyZIiZV2syaOnSpWZercmgo0ePSp63WpJBjx8/ljxvtSSDAgMDMWXKlGZ+Ohkk9y5GRkZinjx5zLxakkFGoxGrV69u5tWaDOrcubOZN2PGjNilSxfcvXu3YjJo4sSJkuetlmTQxo0bzbxJkybFxo0bqyaDLl26JPkuakkG0QlVOrQkg75//y4kVOnQkgyKjY3FIkWKmHm1JoMaNmxo5qWTQUp3n759+0qet1qSQXPmzDHzpkiRAlu0aIHr1q1TTAbt3btX8rzVkgy6e/eu5LuoJRnk5+eHyZIlM/OXLVtWtfAgPDwcs2fPbuYtXLgwDh8+HC9duqT4LpKEKh1aCw/atGlj5tVaeDBixAgzr9bCAz2seerUKTOvNVjTzc0NHz58KPuMg4ODfwlr/vPPP6qsWbt2bTOvVtbs3r27mTdDhgzYuXPnX8qa27ZtkzxvfzVrvn379pexptKHML2s2axZMzOvHtbU2uC3cOFCyfNWD2saDIb/LGtWrlzZzGsN1lT7EDZ27FgzrzVYc+XKlb+MNV++fCnJmpUqVcJp06ZZxJolSpT4rVmzV69eZt7fnTVv3rwped7qZU21Br/Q0FDMkiWLmVcva/bv31+VNVu0aGHm1cqaQ4cOlTxvfzVrHjt2TPK8tQZrKuXZg4KCfhlrnj9//pexZpcuXcy8eliTNPipseamTZvMvPHBmt7e3rpYkxQu00GzptLdR4o18+XLh4MGDVK9+zRq1MjMq4c106VLh506dVJt8Js7d66ZVy9rkga/X8Wa/v7+NmPN8uXLm3njgzVHjhxp5tXDmsmSJfvlrPns2TOrsyZp8FNizejo6ATJmtOmTZM8b63Bmkp3n2vXrkmet9ZgTaUGv5CQEKFJlg69rEka/H4Vaw4aNMjMGx+seejQITNvfLEmKVymQytrksJlOqzBmmoNfh07djTz6mVN0uCnxJrr1q2TPG/1sCZp8PtVrEk3ydKhhzXz588vsKaWokuu+BcvHOSFg1w6tGPHDqFiWymkpj2dOXMGe/XqJZk8ooN04NLJoPv376Orq6tksp4OqWTQhw8f0NXVVahwlwupZFB4eDi6urpKJp7EFyKpZNDQoUOxRo0ail46GUS/GzNmzBCmSckFnQyiO3DXrFmD7du3V/TKJYMOHDggTL9RitKlS5t14F65cgVdXV0lk0d0FCxY0Gzak5eXF7q6umK2bNkUvTlz5jSb9hQYGIiurq5CR5FcSCWDjEYjurq6ChOh5EIuGTRmzBih+1Mu6GQQ/SFs/vz5QlehXMglg7Zs2SJ0qykFSQbRHbjHjx/Hnj17SiaP6CDJILro8vbt2+jq6ip5gaJDKhnk4+ODrq6umDt3bkUvSQbRHbg/fvxAV1dXSRCiQ27a08CBA4XOQLmgO3DpZNCUKVOEjjO5kEsGLV++HFu3bq36LlavXt0sGbRr1y7J4mFxSCWDzp8/j7169ZJMHtEhlQx69OgRurq6ShaG0UEngwic+Pn5oaurqzC5Sy5IMoguuoyKikJXV1csU6aMopckg8QfwoYPHy5ZqE0HSQaJiy5nz54tWQBMh9y0p/Xr10t+7BOHVDLo0KFD6OLiIpk8okMqGXT9+nV0dXWVTB7R4eDgYJYMevHiBbq6ugqTDeRCKhkUHByMrq6ukklgOuhkEP0hrHfv3pJFvHTQySD6Q9j48eMlP9jRIZcMWrRokeSHIDroZBDdgbtt2zbJDwziqFChgtm0p1OnTmGvXr0kk0d0SHXg3r17F11dXSWT9XRITXt69+4durq6CpNk5IJMezpw4IBw9wkNDUVXV1ehY14u5JJBgwcPlvyYQ4dcMsjNzU3yIwEdcsmgVatWYdu2bRW9dDKILrrcu3evZFJTHCQZRHfgXrx4EV1dXSWTR3SQZBBddPnkyRN0dXUVOm3lQmraU0BAALq6ukomJeiQSgbFxMSgq6urZFEZHXLTnkaNGiWZQKZDbrLw3LlzsXnz5opeuWTQpk2bhKlwSiGVDDp69Cj27NlTMnlEh1Qy6MaNG+jq6ipZqEAHSQbRRZevX79GV1dXyQQhHaTwgO7A/fbtG7q6ugrTguSCFB6Ipz3169dPMrlIh1wH7sSJE4XJbnJBCg/Ek4WXLl0qdHErvYtk2hNdeGAN1iRd73IhxZoPHjzQzZpSH2TokGLNiIgIZtakP4TpZU0yTUouCGuKpz397qwpNVmYsKbUx1E6pFgzKCgoQbLmggULmFiT/hC2ZcsWyUJ+cUix5okTJzSzprjBLz5YU2ra0+/OmvRkYTFrSn14F7+LUqy5e/duJtakP4TFJ2vSRZf+/v66WZNMw5QLOdYcMWKEJtaUavCLD9YkDX4JiTWlJgsT1ixatKiiV441+/Tpo5k1xUWX8cWa4mlP27dv18SaUpOF9bDmvXv3OGtKBM2adNElC2uKG/z0sOalS5c0s6a4wS8+WFNq2lNsbKxu1qxTp46iV441582bx8SadJ49PlmTbvBLCKwpNVm4X79+wmYxuZBjzUmTJmliTaktNgmZNaUKw+iQYk1fX19NrJk5c2bs3r27SdFlfLKmuOhSD2uuXbtWlTUBpIfJaGVNqcnChDXJhDW5kGLNZ8+eaWJNqS02elgTEZlZky661MuaUs39dMix5tatWzWzpniy8IkTJ7BXr16/nDXFDX6ENaUaH+iQYs2QkBCbsqZU47f4XZRizRUrVjCxJl10qYc1L1y4wMSadNGlNViTTImWC6lhMtHR0ZpZk3WyMNevFy8c5IWDXDok1bGuFiQZRMbjswRJBpGVMyxBOnDJeFmWIB/CpDrN1ILuwJWaAqMWJBlUvHhxZi9JBqklu6SCJIO0JCXFQZJBUl19akGSQVJT2dSCrJki6xNYgiSDpLpb1IL+ECY1lUAtypQpg+PHjxdWirAE6cBVSzxLBUkGkTW0LEGSQWQFAkuQZJBUd65akGSQ1IQhtaCTQWofGKWCrJlSS5RJBVlprPZxQSrItCe1RIhUkKJLqYkGakGSQVJTgtSCJIOkps+oBUkGkZVELEEng9QSMFJBkkFqSRSpIMkgtWSXVJBkkJakpDjIh7ABAwYwe8mHMKluMbUg055mzpzJ7KU7cNUSqVJBkkFqcC4VJBmkVjwjFSQZpPbRXSpIMkjLBwJxkMnCUhMS1YIkgyZNmsTsJR/CLDlv6ZXGZIUTS5AOXLWPhFJBOnDVPi5IBUkGqX0EkgqSDCLrSFiCJIPIOmmWIMkgsqaYJUgyyNK7D1lprNbkIRXkQ5jaBySpICuN1RpqpIJ04GpJSoqDJIOkuqjVgkx7mjBhArOXFB6Q1agsQRceqH3UkApSeKD2YUIqSOGB2sdcqSDTntQ+ukuFHtYkRZe2Ys158+Yxe63FmmpJa6lIqKzZvn17YaUiS+hlTfIhjNWrlzXJtCdbsaaWD7LisBVrkjVTZD0YS1iLNQsVKsTsJQ1+elhTrblNKmzNmlLTZ9TCWqyp9vFJKshKYz2sqVZUKhXkQ5itWHPcuHHMXmuxptpHZKmwBmuqFc9Iha1ZU2pColqQoks9rGlpnp00+NmKNdUKK6SCTBbWw5p9+vRh9lqDNS29+9SvX19yO45aWIs1pSbgqQVp8NPDmlqKf8Vha9a09O5DJgvrYU21BgCpIFts9LBmy5Ytmb2k6PJPZE21wnKpsAZrGgwGZi/ZYmMr1rT0u2bz5s11seaiRYuYvb8Da0pNOVQLW3/XtOS81cOadNHln8aarq6uzF5bs6aldx++0vj30K8oHLQHLi4uWRmNRoiLiwOj0WgTb1xcHLMXES3+c4nXkj8XAKzixX+LdS3y2uo5xffP2lZeAOs8p/j22updtMZ7rPfnZYls/YwteU62OgMS+pn5pzwna72LlsjWXj3PyVbn7Z/4jPnvVHUl1LtPbGxsgn0XOYdoE3nG/Mz8tV4A25+3en7W8f3/h63exT/5GSckDuGsGX9efke1zMtZU5sS8jPm9yZtSsjPOKHmYOPTC8DPzPjyJtR30Rr5hD/xfmuJbH1m6vm9mJB+p/4Oz1iP90+5+/DcnmV/bkJiTT1egP//vS31c/3Gskb14X89gE8c/E9o+/btmiZ2kM4Derz+6dOnsUePHqqriknnAT1e//79++ji4qK6Pooer0/GPb9//x5dXFxUVxVLjdcPDw9HFxcXLFWqlKJXbrz+4MGDsVq1aope0nmwcuVKk3HP06ZNU12hYG9vLzleX8sKBYD/dx7cv39f8O7bt0/TlADSeUCP1798+TK6uLiodkGQ1UL0eH0vLy90cXFR7SwknQeHDh0Sxj0HBgaii4uLagdFunTphPH6ZNyz0WhEFxcX1a7EFClSSI7X17Kujx6vT497njt3rmqHjdx4/U2bNmHHjh1VnxOZqEavsT127Bj26NFDtRubdLnTq4Vu3bqFLi4uqiO9pdbYent7o4uLi+r6KKnx+j9+/EAXFxfVSZyky33r1q0m4/W1rOsja2zF4/UnTpyo2u1Gd7nT4/WXLl2qqaNRarz+zp07NXWtSo3XP3fuHPbo0UN1pLfUeP2HDx+ii4uL6lQFqfH6fn5+6OLioto9Srrcd+3ahd++fUPEf9dHubi4qE5koNfY0uP1hwwZorpCgYzXF68W0rIanu5yp8frr127Ftu1a6f6nEiXOz1e/+DBg9itWzfV9VGky50er3/t2jV0cXFRXR9FutxPnz4trLp4/vw5uri4qK6PkhqvHxwcjC4uLqorFOjx+vRqoZ49e6quUKDH69OrhbSsUCBd7uI1tlrW9cmN19+6daum1fBly5bFCRMmmIzXP3nyJPbo0UN1fRTpcqfH69+5cwddXFxUu3xJlzs9Xv/t27fo4uKiOjmDHq9P7j4/f/5EFxcX1Q5h0uUuHq8/YMAA1RUKcqvctKzrk1vltmLFCk0djaTLnV4ttGfPHk13H9LlTq+xvXDhArq4uKiujyKr3M6ePSuct48fP0YXFxfMkiWLojdbtmzYq1cvk1VuHz9+RBcXF9UVCqTLfefOncJqoZiYGHRxcVFdoUC63MWr3LSshidd7suWLTNZLaRlXR/d5U6vctuwYYOmDnKpVW6HDx/G7t27q049lVrl5uHhgS4uLqrro0iXO71a6NWrV+ji4qLayS21yu3r16/o4uKiOh2FTO8WrxbSshqeXmPr5+cneLWs66O73OlVbosXL1adHEh3udOr3KzBmmrTLxIia6ZKlQrbtGljtsZWy7o+OdbUsq6PsOa8efOsyppaVtb8TqwZFBRkU9ZUm6grx5rz5s3TzJriLnet6/r0sKbUGls9rOnj46OZNbt162Z11lSbOCbHmpMmTWJiTfruE5+sSa+x1cOajx49YmLNI0eOCOetv7+/btYsU6aMoleONbWs65NbYxvfrEneRVux5osXL5hYk777ENYsUqSIoleONXv16qWZNcVrbOODNatVq4YzZ878LVjz7t27ullTbVWxFGuGhoYysyZ994lP1nzx4oXgZWFN8RpbPax58eJFTaxJ1thKsabaqmIp1gwICPhfe/cdHkW59nH8HooJoKIiRQVFLIgdu8YOIgpRj/oe27FX7B07EIo06b03EelIldCrdJEOgvTeO2n3+0d21snu7M7MbsgS9vu5rrlIyN6b9ezZh/k9cz/P6Kuvvup4Bxa7rJmRkZFvsqZ1nj2arDlixAhPWdN6G9vcyJpOtyo259kHDx7sH2/37dvnKmueddZZtrexzY9Zs1+/fp6zpvlZzI2s6XSnHLusuXHjRk9Zc8CAAf5zn7zKmna3sY0ma3bs2NFV1rz55puDsubgwYOjzppOtyqOJmuWKlUqV7OmqnrOmtZzn2izptOt4UNlzZ49e7rKmuZtbPN71jx48GBUWbNWrVpRZU2nu2WFyppt2rTxlDUXLVqUI2u62R0ymqxpzrOnpqbmedZ8/vnnc2TNtLQ0V1mzaNGitlkTscWtimkcRJQ6duwYNOCFOkkMNG7cuKBa67a71pPEQCtWrLCd8DJPEq3NGIF2795tezuDSpUqBU2QBUpLS7P9x8I6QWaeJAbKysqyPfmya8aw88orrwTVWifIrCeJgexuYReqGSNQ3759g2rNCbJWrVrlmCALNGPGjKBaazNGuG13169fbzvhZZ4kWifIAh06dMg2gNmdJAbKzMzUa665Jqj2oosu0nfeeSfHBJkdu5PkEiVK6EsvvaQDBw70nyTa+eCDD4JqQzVjBLLbjjzUBFmg4cOH254k2jVjBFq0aJHtiY/ZjGE9SQy0fft22wkv8/Z21pPEQMePH7edDLE7SQyUlZVle4Jt3t7OOkFmxy7MWE8SzQkyO3a36jFPEgMnyAJ17do1qLZw4cJarVo1bdOmTY4LEoEmTpxoO97aNWMEWr16te2E10033RQ0QRZo3759tgHMrhkjUHp6um1QNifIxo4d658gs2MXhOyaMezYbYNuNmP07ds3xwWJQHa3kzRvb9e5c+ccE2SBBgwYYDvePvjgg9qyZcscE2SB/vjjD9vx9o477giaIAu0adMm2wkv81bq1maMQIcPH7adfLabIAuUmZlpO4FsN0Fmxy6w2jVj2LG7PUioxv9Abdu2Daq1NmNs2LAhZO2oUaNsP4t2jf+BlixZYnvuc8sttwRdkAi0c+dO2wmvq6++WmvXrp1jgizQiRMnbC8EmRckrBNkgbKysjQpKSmo1q4Zw47dxIJ5QSJwgizQDz/8EFQbqhkjUM+ePW3HW7sJskBTpkyx/SzaNf4HWrt2re2El9mMMXfu3JCfxQMHDthe7DMb/60XJAJlZGToVVddFVRbtmxZrVWrVo4LEnbsLoDbNf7bqVWrVlCteUEicIIskN3tdkJNkAUaPHhwUG3BggX9txO1Nv4HWrBgQVCtiH0zRqCtW7dqYmJiUK1d43+go0eP2l54t2vGCJSVlWV78dyu8d+OXaOC2YxhvSBhx+7WaOat1Hv06BF2giyarPn777/bjrfmrdStzRiBQmVNu8b/QHv27IlJ1lRV2yYHt1nT7pZbeZE1+/XrF1SbW1nT2owRaP369baLGKPJmnbNGIGizZp2zSjWZoyTlTVbtmxpO96e7Kz5559/2o63p3rWtGtkiSZr2jVj2Pnmm2+CaqPNmnbNGIGiyZpr1qyxPfexa8YIFG3WtFv8lBdZ88033wyqzY2sGdiMESiarDlnzhzb8TaarGnX+B/oyJEjMcuaTzzxRFCt26z56aef2o63Jztrjh492vazGG3WDGzGCLRr165cz5p2zRiBos2adg18oZoxAkWTNXv16mU73uZF1rSbZ3ebNe0W1dgtMg8UbdasXr16UG20WdOuGSOQ3W3to82adovMA+XXrGl3q9LcyJrWZgw7X375ZVBtbmTNwMb/QNFmzVDz7JFmTbvG/0BpaWm2i01P9axpd/vevMiaM2fOtB1vo82agY3/gQ4dOmTb6BRt1gxs/LcTTda0u/VvXmTNESNG2I63uZE1w82z79ixI6qsadd0aLfIPFC0WdNugUq0WdOu8T9Qt27dgmrzQ9Y855xzgmpzI2s6nfsgdmgcpHEQUTh+/Lh/9xq71aHhZGVl+XffcztBZmWuCHLbjGH17bff+k8S3UyQWXXv3t1/kmi3OjScSZMm+Qec66+/3vEk0cr6D5ybk0Sr/fv3+/+Bc3uSaEpPT/ev7jVPEp0myKweeuihoJPEcBNkVm+99VaOk0SnCTKrxo0b5zhJbNasWY7VoeEMHDjQ/z65acawmjt3rr/WnCCzrg4NZ/Pmzf6VE9bVoeECm+nIkSP+VUx2q0PDycrK0htvvNHTSaKVucrWepIYboLM6rPPPvN0kmjVvn37oJPEcBNkVmPGjMlxkug0QWa1bNky/2RqxYoVHZsxrHbt2uVfpV+uXDlXE2SmEydOaPny5VXEfnVoOFlZWf6dMEOtDg3HXJ0XanVoOHXr1vWPt+bq0HATZFa9e/f2j7fm6tBwE2RW06ZN87/H5gWJcBNkVuvWrfNPppoXJMJNkFkdPHjQP5lqXpBwmiAzZWRk+Ffau23GsDJXUrudILN67733VMR9M4ZV8+bN/Z9FN43/VkOHDvW/T3arQ8NZuHChv9a6OtTNZ3Hbtm3+yVQ3FySsjh075t8tzFwd6jRBZsrKyvKvwjYvSDhNkFmZK97NCxJOE2RWtWvX9n8W3UyQWXXu3Nn/WbRbHRpOampqjgmywNWh4axcudI/meqm8d9q7969/lX6dqtDw0lPT/fvpmA2/jtdkLAyV8tbL0iEmyCzeu211/znPuYFiXATZFYNGjTwn/vYrQ4Np3///v736bbbbnNsxrCaNWuWpwkyq40bN/onU900Y1gdPnzYP5lqTpCNGDHC1blPZmamf0dbu9WhTsxdDayrQ8NNkFl99NFH/nMfu52IwmndurV/vDV3Igo3QWb122+/+d8n84JEuAkyq7/++stfa16QCDdBZrVjxw7/jnBumzFM0WZNc0eEvM6a3333XUyy5uTJkyPOmn///XdQ1gzXjGEVTdbMyMjItazpphnD6u23386VrGk2Y+RF1pw3b15MsubRo0e1TJkyuZY1nZoxrJ588slcy5pOzRhW0WTNsWPH5krWdNP4b7V79+58mTVffvnloKzpdp7YzJpm47+XrNmnT59cy5pOzRhW//zzT65kTbfNGKZos6a5Y2leZ82ffvopV7NmuGYMq2izpnkh2cyaTs0YpmizpnlnjWizpptmDKuvvvoqV7Kmm0XmVtFkzVWrVuVK1nTb+G/K7azp1Ixh9frrr0ecNRs2bJgjazo1Y1hZs6abxn+r2bNnxyxrmncCyK2s6XaePZqs+fHHH+da1nRqxrAaOXJkrmVNp2YMq507d+ZK1nTb+G+KNmuauzznddbs0aNHrmbNcI3/VtFmTXOB7IUXXqhvv/22Y+O/yZo13Tb+W5m7JEaTNd02/ls1adIk32XNLVu25GrWdGr8N2VlZfl3WMyNrOnU+G/1+eefR5w1O3TokGOe3anx38qaNd00/lstX748V7Km28Z/U1paWr7MmvXq1cu1rOnU+I9Tx8loHCwkQJyYMWOGvPjii5KcnCy33XabFChQwHXtsmXL5I477pCGDRvKPffcI4ULF3Zdu3PnTilevLiMHDlSHnzwQSlatKjr2uPHj8u+ffvk119/lYcffliKFy/uulZVZeXKldKzZ0959NFHpVSpUq5rRURmz54t7dq1k5o1a8oll1ziqXbSpEny448/SnJyslSsWFEMw/BU+/HHH0tycrJUrlzZU+3cuXPliSeekOTkZLnzzjulYMGCrmvXrl0rFStWlM8//1zuu+8+SUhIcF27f/9+KVCggAwbNkyqVq0qZ555puva9PR02bJli/z8889SvXp1Oe+881zXqqosXrxYunbtKjVq1JALLrjAda2IyPTp06VVq1aSnJwsFSpU8FQ7ceJEqVu3rtSsWVOuueYaT+/T1KlT5c0335Tk5GS55ZZbPH0WFy1aJA8++KC0bNlSkpKSPH0Wt2zZImXKlJHRo0fLAw88IEWKFHFde+TIETl69KgMGjRIqlWrJmeffbbr2qysLPn777+ld+/e8uijj8r555/vulZEZN68edKxY0epWbOmlC1b1lPt5MmTpXnz5pKcnCxXXHGFp9pJkyZJ7dq1JTk5Wa6//npP7/GsWbPkueee84+3Xj6Lq1atkptuukl++OEHuffee+WMM85wXbt7924pVqyY/Pbbb1KlShVP4+2JEydk165d8ssvv0j16tXlnHPOcV2rqrJs2TLp3r271KhRQ0qXLu26ViT7f6+2bdtKzZo1pXz58p5qJ02aJA0bNpTk5GS56qqrPL1PkydPlg8++ECSk5Plpptu8lQ7f/58qVGjhnTq1EnuvPNOKVTI/Snl+vXrpUKFCjJu3Di57777JDEx0XXtwYMHJSsrS4YOHSoPPfSQp/E2MzNTNm7cKH379pVHHnlESpQo4bpWJHv86dKli9SoUUMuvPBCT7VTp06Vli1bSnJyslx22WWeaidMmCDff/+9JCcny7XXXuvpfZo2bZq8+uqrkpycLLfeequn8favv/6Se+65R5o2bSp33323p/F2+/btUqJECRk1apQ8+OCDnsbbY8eOycGDB2XgwIFSrVo1T+c+WVlZsnr1aunVq5c8+uijUrJkSde1IiJz5syRDh06SM2aNaVcuXKeaidPnixNmjTxn/t4MWnSJPnss88kOTlZbrzxRk/v8ezZs+Xpp5+W5ORkueOOOzyNt6tXr5Zrr71Wvv76a7nvvvs8jbd79+6VM844Q4YPHy5Vq1aVYsWKua5NS0uT7du3S//+/aV69epy7rnnuq5VVfnrr7+kW7duUqNGDSlTpozrWhGRmTNnSps2baRmzZpy6aWXeqqdOHGi1K9fX5KTk6VSpUqe3qcpU6bIu+++KzVr1pSbb77Z02dx4cKF8vDDD0u7du3krrvu8jTebtq0ScqWLStjxoyRBx54wNN4e/jwYTlx4oQMHjxYqlWrJmeddZbr2szMTFm3bp306dNHHnnkEc/nPgsWLJBOnTpJzZo15aKLLvJUO2XKFGnRooUkJyfL5Zdf7ql24sSJ8s0330hycrJcd911nt7jaLLm8uXL5fbbb5cGDRpElDXPPvvsiM59os2aK1askB49ekiNGjXiImvOmTMnZlnTMIyIsmZGRkbMsua0adOiypp16tSR5OTkiLLmG2+8EVHW/PPPP6PKmqVLl853WXPu3LkRZ80pU6ZI8+bNpWbNmnLllVd6qp04cWJUWfPZZ5+V5ORkuf322/M0axYpUkRGjBghVatW9TTepqWlRZU1ly5dGpOsOXHixFzJmpUrV/b0WYw2a1566aURZ83MzEwZMmSIPPTQQ57PfTZs2BBx1ly4cKF07txZatas6TlrTps2LeKsOXHiRPnuu+8iyprTp0+POGsuWbJE7r77bmnSpEm+yZqq6s+ajzzyiOdzn2iy5qRJk/Jd1lyzZk1UWbNw4cIRZc309HTZtm1bxFlzyZIlEWfNGTNmRJU1U1JSJDk5Wa6++mrPWbNWrVoRZ81q1apJ27ZtJSkpKU+z5vHjx2OSNefPn5/vsubMmTP9WfPWW2/19FmMZdbcu3evDBgwQB5++GHP5z7Lly/Pd1lz8uTJ8tFHH+V51ly3bp1ceeWV8tlnn+V51ty8eXNEWVMkO3tFOs+eX7PmAw88IC1atPCcNbdu3Rpx1jx69KgcOXIkptc1a9SoEdE8ezRZ88svv5Tk5GS54YYbPI+30WTNypUrxyRr7ty5MyZZE6cfQ7N31EMYhmGUFZFNIv+eEAMAAAAAAAAAAAAAAAAAcLJt3rzZ2pRbTlU3R/uc7tuhAQAAAAAAAAAAAAAAAABAvkfjIAAAAAAAAAAAAAAAAAAAcYTGQQAAAAAAAAAAAAAAAAAA4giNgwAAAAAAAAAAAAAAAAAAxBEaBxE3pk2bJu3bt5cNGzZ4rl2+fLk0a9ZMVq5cKarqqXbnzp2SkpIiCxcu9Fx7/PhxqVOnjkyfPl0yMjI81aqqNGrUSMaPHy8nTpzwVCsi0q5dOxk2bJgcPnzYc22/fv3k559/lr1793quHTNmjHTt2lW2bdvmuXbOnDnSunVrWbdunefatWvXyo8//ihLly71/D7t379f6tatK3PnzpWsrCxPtenp6VKvXj2ZMmWKpKene6pVVWnWrJmMGTNGjh075qlWRKRLly4yaNAgOXjwoOfaQYMGSZ8+fWTXrl2eaydOnCgdO3aUTZs2ea79888/5aeffpLVq1d7rt2yZYvUr19f/vzzT8/v8ZEjR6ROnToya9YsyczM9FSblZUl9evXlwkTJkhaWpqnWhGR1q1by2+//SZHjx71XNurVy8ZMGCA7N+/33Ptb7/9Jj169JDt27d7rp0xY4a0a9cuovF25cqV0rRpU1m+fLnn92n37t1Sr149mT9/vufP4okTJ6ROnToybdq0iMbbH3/8UcaNGyfHjx/3VCsi0qFDBxk6dGhE4+0vv/wi/fr1kz179niuHTdunHTp0kW2bt3quXbevHnSqlUrWbt2refa9evXS6NGjeSvv/7y/B4fPHhQ6tatK3PmzPH8HmdmZkpKSopMmjTJ83grItK8eXMZNWpURONtt27dZODAgXLgwAHPtUOGDJFevXpFNN5OnjxZOnToIBs3bvRcu2TJEmnevLmsWrXKc+22bdskJSVFFi1a5Pk9PnbsmNSpU0dmzpwZ0XjbsGFDSU1NjWi8bdu2rYwYMUKOHDniubZv377Sv39/2bdvn+faUaNGSbdu3SIab2fPni1t2rSRf/75x3Pt6tWrpXHjxrJs2TLP79PevXulbt26Mm/ePM+fxbS0NKlbt65MnTo1ovG2SZMmMnbs2IjG286dO8uQIUPk0KFDnmt//fVX6du3b0TjbWpqqnTu3Fk2b97suXbhwoXSsmVLWbNmjefaTZs2SYMGDWTx4sWe3+PDhw9LnTp1ZPbs2Z4/i+Z4O3HixIg+iy1btpSRI0dGdO7To0cP+fXXXyMab4cPHy49e/aUnTt3eq6NZdasV6+eLFiwICZZ8/fff8/zrPnzzz/nu6y5bt26mGTNjIyMfJs1e/funedZc/HixWRND3r37i0DBgyI6Nwn2qzZtm1bWb9+vefaaLNm3bp1I8qa5rlPLLJmx44dZejQoRGd+0STNX///fd8mTXr1Kkjf/zxR55nzZ9++immWTOSc58pU6bEJGtu3749JllTVaVhw4YRz7PHOmtGcu4TTdZcs2ZNTLJmenp6VFmzadOmMcuaffr0kd27d3uujTZrtmjRIt9lzfr168cka/bs2ZOs6VIss2b79u1jkjXHjh0bcdacO3duTLLmgQMHpE6dOhHNs0eTNUVEmjVrJqNHj85XWXPSpEkxyZpbt26NWdZs0KBBVFkz0nOfaLNm9+7d8zxrrlq1Spo0aZLvsmbjxo0jzpo4Dakqh8MhImVFREVEN23apMifDh06pOeff76KiF533XX6zTff6OzZszUzM9OxNjMzU6+99loVEb3sssv0448/1okTJ2paWpqr312zZk0VEb3wwgv1rbfe0pEjR+rRo0dd1X744YcqInreeefp//73P/311191//79rmpbtmypIqJnnnmmPvnkk9qzZ0/dsWOHq9oRI0aoiGhCQoJWr15d27dvrxs2bHBVu3jxYhURLViwoN57773arFkzXbFihWZlZTnW7tixQ4sUKaIiorfccovWq1dPFyxY4Kr2+PHjWrZsWRURvfrqq/XLL7/U6dOna0ZGhmNtVlaW3n777SoiWr58eX3//ff1999/1+PHj7v6b37uuedURLR06dL62muv6bBhw/Tw4cOuar/55hsVET3nnHP02Wef1Z9//ln37t3rqrZbt24qIlq0aFF97LHHtGvXrrp161ZXtZMmTVIR0cKFC2vVqlW1devWunbtWle1a9as0YIFC6phGHrXXXfpjz/+qEuXLnX1Pu3bt0/POeccFRG98cYb9fvvv9c5c+a4+iymp6frFVdcoSKiV155pX722Wc6efJkTU9Pd/W6q1atqiKi5cqV01q1auno0aP12LFjrmrffPNNFRE9//zz9eWXX9ZBgwbpgQMHXNX++OOPKiJ61lln6dNPP629e/fWXbt2uar99ddfVUQ0MTFRH330Ue3YsaPrf4vmzJnj/yzef//9+tNPP+nq1atd1W7evFnPOOMMFRG97bbbtH79+vrnn3+6eo+PHDmipUuXVhHRa6+9Vr/++mudNWuW68/ijTfeqCKiFSpU0I8++kgnTJigJ06ccPW6n3jiCRURveCCC/TNN9/U3377TY8cOeKq9tNPP/WPty+88IL+8ssvum/fPle17dq1UxHRYsWK6X/+8x/t3r27bt++3VXt6NGjVUT0jDPO0Icffljbtm2r69evd1W7dOlSNQxDCxQooHfffbc2adJEly9f7up92rVrl5555pkqInrzzTdrnTp1dP78+a5qT5w4oZdccomKiF511VX6xRdf6LRp01x9FrOysvTuu+9WEdFLLrlE33vvPR03bpzr8fbFF19UEdFSpUrpq6++qkOHDtVDhw65qq1Tp46KiBYvXlyfeeYZ7devn+7evdtVba9evVREtEiRIpqcnKxdunTRLVu2uKqdOnWqiogWKlRIq1Spoq1atdK///7bVe26deu0UKFCahiG3nnnndqoUSP966+/XL1PBw4c0PPOO09FRG+44Qb99ttv9Y8//nA13mZkZGilSpVURPSKK67QTz75RCdNmuT63Kd69eoqInrRRRfp22+/raNGjXJ97vPuu++qiGiJEiX0xRdf1IEDB7oeb5s1a+Yfb5966int1auX7ty501XtkCFD/Oc+jzzyiHbo0EE3btzoqnbhwoX+8fa+++7T5s2b68qVK13Vbt26VRMTE1VE9NZbb9WUlBRduHChq/f42LFjesEFF6iI6DXXXKNfffWVzpgxw/V4e8stt6iI6KWXXqoffvihjh8/3vV4+3//938qIlqmTBl9/fXXdfjw4a7Pfb788ksVET333HP1+eef1/79+7s+9+nUqZP/3Ofxxx/Xbt266bZt21zVjh8/3n/u89BDD2mbNm30n3/+cVW7YsUKLVCggBYoUECTkpK0cePGumzZMlfv0549e/Tss89WEdHKlSvrDz/8oPPmzXP1WUxLS9MKFSqoiGjFihX1888/16lTp7o+97n//vtVRPTiiy/Wd999V8eMGeP63Oe1115TEdGSJUvqK6+8ooMHD9aDBw+6qq1fv76KiJ599tn63//+V/v06eN6vP3555/95z41atTQTp066ebNm13Vzpo1yz/ePvjgg9qiRQtds2aNq9oNGzZo4cKF1TAMvf3227VBgwa6ePFiV+9xLLNmcnJyUNZ0e+4TTdZs1arVKZE1mzZt6ilrFi1aNCZZ84477ohJ1vz2229Pi6y5ZMmSPMmaV155pT9rfvrppzp58mTXn8VosuZbb73lz5ovvfRSvsiac+fOPWWy5syZM/Mka/7nP//JkTVHjBjherz97LPPcpz75FXWHDNmjD9rVqtWzVPWXLZsWa5kzZtuuinfZM2XXnopR9YcMmRInmTN3r1758ianTt3dp01p02blmtZs2HDhq6z5sGDB/1Z8/rrr8/TrPnII4/EJGs2b97cf+6TX7Lmtm3bcmTNevXqxSRrfvDBB3mWNWvXru0/93nuuec8Zc3OnTvHJGuuXLkyKGu6nWePJmump6frZZddliNrTpky5ZTPmg0aNPBnzf/7v/+LSdZ84IEH8ixrHj582DZruvksZmZm6nXXXReTrPnRRx/lyJoDBgzIk6z522+/+c99qlevru3atcvzrHnzzTdr3bp1PWXNcuXKqYhopUqV8jRrPv/880FZ0+25TzRZs3v37vkua+7fvz9H1vzuu+/yLGs+9NBDKiJatmxZfeedd/IsazZu3DjirDlw4MCYZc2EhIQcWXPRokUxyZqpqamnfNZs3769P2s+8cQTnrImYmvTpk0qIuZRVnOjJy43nuR0P4TGwdNGkyZNrB8iT5NBgwYNCqo1L4T17ds3bDiZN29eUG2RIkW0Zs2ajpNBW7Zs8f8jZx7mhbCWLVuGnQw6evSolilTJketYRh6xx13OE4GZWVlaeXKlYNet9vJoKeeeiqo9vLLL3c1GfT5558H1ZqTQU5Nlx06dAiqNSeDnC6EjR07NqjWnAzq2bNn2Mmg5cuXq2EYOWrNyaD27duHnQzavXu3nnXWWTlqzcmgZs2ahZ0MSktL0/Llywe9bvNCWLjJoKysLL333nuDaq+++mqtXbu242TQyy+/HFTrdjKoXr16QbVuJ4P69u0bVOt2Mmj69OlBtW4ng9avX6+FChXKUWudDFq3bl3I2oMHD2qJEiVy1JqTQU5Nl5mZmXr11VcHve7KlSvr999/r3Pnzg37WXz00UeDaitWrKifffaZ42TQ+++/H1RrXghzmgxq0aJFUG3JkiX15ZdfdpwMGjZsmO1462YyaNGiRUG1bieDtm3b5m9cto635mRQuHBy7Ngxveiii4LGW3MyKNyFsKysLL311luDXrc5GeTUdPnMM88E1ZqTQRMmTAg73n799ddBteZkkFPTZZcuXYJqzaZLp8mgCRMmBNWaF8J69OgRdjJo1apVWqBAgRy1ZtNlu3btwl4I27dvnxYvXjzos3jPPfc4Tgalp6fr5ZdfHvS63U4GPfjgg0G11smgcJ/FN954I6jW7WRQw4YNg2rNySCnpstffvklqLZ48eL67LPPar9+/XTPnj0ha2fPnh1UW6RIEX3ssce0S5cuYSeDNm7c6L+YbB1vzQth4SaDDh8+rKVKlQr6LJpNl+EmgzIzM/X6668Pet033HCDq8mgxx9/PKj2iiuucDUZ9PHHHwfVWieDwp37tGnTJqjW7WTQqFGjgmqtk0Hhzn2WLFkSVJuQkOBqMmjnzp1arFixHLXWyaBVq1aFrD1x4oR/QtV63HbbbZqSkhJ2MigrK0vvuuuuoFrzQpjTZNALL7wQVFuhQgX98MMPHSeDvv/++6DaCy64QN944w3HyaCePXsG1bqdDJo8ebLteOtmMmjt2rVasGDBoPHWbDwIdyFs//79eu655waNt2bjQbimy4yMDK1YsWLQ6zYbD5wuhD388MNBtWbjgVPT5TvvvBNUa14IGzt2bNjxtmnTpkG1pUqV0ldeeeWkZs358+fbjreneta86aabgl53XmTNL774Iqg2L7LmuHHjgmqtF8IiyZpumi5DZU1zgZ9T1rz00kuDXndeZM1XXnklqLZ8+fL+rBnusxirrDljxoyg2tzImq1btw6bNQ8dOpTrWdNsunTKmjVq1AiqNRf4napZc/jw4bbj7cnOmtu3b49Z1rztttuCXvd1113naoHfs88+G1R72WWXuWq6DJU13Szw69q1a1BtXmTN1atX58usWaVKlaBaM2s6NV3aZc1LLrlE33//fcemy0aNGgXVul3gFyprmk2X4bLmH3/8EVRrXeAXLmtu2rQpZlnzhhtuCHrdeZE1P/nkk6Da3MiaTk2X4bKmU9PlkiVLbM99Hn30Ucemy3BZs3nz5o5Z8+KLLw563eYCv5OZNf/3v/8F1ZoL/E7VrDllyhTb8dbMmuHOfaLJmgcOHAiZNZ0W+IXLmm6aLkNlTTcL/GrVqhVUa82a4c597LKm2XTplDUHDx4cVJsXWdO6SNY8citrhmu6dMqaTgv8nn766aBaM2s6NV1GkzU7duwYVOt2gZ9T1gx37rNixYqIs+aePXtikjVVVe+7776g2tzImk7z7CkpKUG1ZtZ0WuAXLms6NV2Gy5pdu3Z1zJqFCxfOURtN1nS7mUxmZqZec801Qa87L7LmBx98EFTrNmuaGzIFjre5kTXDNV3++eefQbXWrBlunj1c1nRqujx+/HjIrOllgR/yHo2DNA4iCmPGjPHvbhLqCDUZNHv2bK1bt27QRRXrYZ0Msq7AXbFihaakpARNLAQedrs9bd++XVNSUmzDjPWoVKlS0Arc48ePa0pKit55551ha0OtwG3WrJltw5H1CDUZ1LVrV9sLq9Yj1GTQ4MGDbSeQrUeo3Z4mTpyo3377bdCJbuA/lnaTQQsWLNB69er5V0TbHaF2e1q7dq2mpKTYXsS2HuZkkPVC2J49ezQlJcW2UcF6mJNB1gthWVlZmpKSYnuSbD3MyaDAFbht2rTx784W6gi1ArdPnz766quvhq0NtdvTb7/95l8BEeoItQJ32rRp+sMPPwRdVLEe1hW41smgJUuWaEpKin9FdKjDbjJo06ZNmpKS4l+FGeqwmww6fPiwpqSk+FfahjpC7fb0448/arVq1cLWlilTRt94442gC2EdO3a0bSqzHqF2exowYIDtxXPrYU4GBV4IGzdunH711Vdha0OtwJ0zZ47Wq1cvaGLBeoSaDFq1apWmpKT4V0SHOuxW4O7cuVNTUlL8q95DHXa7PaWlpWlKSoomJSWFrQ01GfTTTz/5d6YNdVgng6zhpEePHv4d+EIdoSaDhg4d6l/9GepITEz0TwZZL4RNnjxZv/vuu6CLKtYj1G5PixYt0nr16vlXRNsd5mRQ4Arcf/75R1NSUvw7UIQ67HZ72r9/v6akpPhXfoU6Lr/8ctsVuPXr17dt/rMeoXYWbteunT755JNha0NNBvXr18/2Yo71CDUZNGrUKNtmfOsRajJo5syZWqdOnaCJBesRamfhZcuWaUpKin9FdKjDbrenrVu3akpKin932VCHORlkXYF79OhRTUlJ8e8gHOoI1XTZpEkT/06JoY5Qk0FdunTx7wgV6gi1AnfgwIH+nS9CHaFW4Kampvp3Lg51WFfgWieD5s2bp/Xq1fOviA71WbSbDFqzZo2mpKQETSwEHnaTQbt27dKUlBT/DmuhDrudhTMyMjQlJUXvueeesLWhdntq1aqVPvbYY2FrQ+0s3KtXL9tFE9Yj1Arc4cOH216wsx7mZFBg0+WUKVP0hx9+CLqoEvhZtFuBu3jxYk1JSfGviA512O32tHHjRk1JSbGdyLUedjsLHzx4UFNSUmwn661HqN2eGjZs6N+5K9QRamfhDh06+HcoCXWE2lm4f//+/pXYoQ5r44G16XLMmDH+3U1CHaF2FnabNe12ezKzprkiOtQRTda02+0pllmzW7duUWVNuwlk65FbWdN6ISyvsmZg0+XevXtPetYMtdtTtFnT3IUm1HEysub06dPzLGtaL4Rt3rw56qxptwjJekSbNe2aLjt16nRSs2aopsvff/896qwZeFHFeoTaWTg3sqZdk6b1yI2sGXghrEWLFlFlTXMHvlBHqJ2Fo82a33///UnNmna7Pa1fv/6kZ81Quz1FmzXtGuqtx8nImqNHj7ZtkLAeuZE1A5suzaxZsmTJsL87XNY0d/wJddjtLJwXWTPUzsLRZM1BgwblWda0zrPnZda0Nl3u3r074qyZmZmZJ1nTboFfr169bBtZrEe0WdNugd/UqVPzRda0nvuYWfPmm28OW5sbWTOw6TKvsmbgAr+xY8ee0lnTbmdhM2teddVVYWtPRtZs3rx5VFnTronXeoTaWTg/ZM3ABX7r1q2LOmvaNcVbj1A7C0ebNc3d2UId0WTNUDsLjxw5Ms+yprXpcunSpVFnTbsFKtbDbmfhaLNm48aNT2rWDLXA79dff40qa9otfrIe+T1rWpsu09PTo8qaiC0aB2kcRBTee++9sAOf3WFOBpm3cPJymJNBdevW9VxrTga1bt3ac605GdSjRw/PtdYLYU4nIYGHdetvpwsTdv9Ymk2XTpModoe5AtcpYNsd5gpcp8kuu8OcDDJvDeTlMCeD7HatcDrMyaB+/fp5rrVOBjkFgsDDnAxq1aqVf/tzt4f1QphT84zdYW797XTCZ3eYF8K+++47z7Vm0+VPP/3kudacDDJv8eXlsE4GhZtkszusk0FOF4IDD+tkkNOktd1hTgaZW9x7Oa699lr96quvbHfdcjrMySC7FV9Oh7kCt23btp5rzQth5m2FvBzWFbhOE96Bh3UFrlNTRuBhnQyyW7XldJiTQU4B2+4wJ4OcJrvsjosvvljfe+89252DnQ5ztyfz9qZeDnMyqG/fvmEvXNkd1hW4djvDhjusK3CdglvgYV2B6zShaXeYK3AjOW8yV+D+8MMPnmvNySC7VX1OhzkZFMm5j3Vn4XAXGO0O62SQ04WJwMO6s7B5uwkvh3khzKlx2O4wmy7N27N7Ocydhe12snQ6zMkg8xYIXg5zMqhPnz6ea62TQRdeeKGnWutkkNNEWeBh3e3JbocQp8OcDHrzzTc915o7Cztd6LM7zAth5m2/vRzmCly7HWmdDusK3HAXNewO6wpcp8nQwMO625PTpHXgYW08cJrQtDvMrOl0ccHuMHd7sttZzemINmu+8MILtjuTOB3RZk1zgZ/ThYnAg6zprTaarGndWTiSrGleCHO6SBh4RJs1zQV+drvAOB3xljWtuz05XQgOPHIja6akpDg2Dtsd0WbNDz/8UOvXr++59lTImk6LmAOP3MqaTs2Kdkcss+a7776b51nTusAvXNOO3ZFbWdO8rbPbI56zpnlLRS9HtFnTbLq0260n3GFd4Od0wd7uyI2s6dRYYXfEOmva7QTldORG1mzdurXtzrDhjmizptl06dTIZnfEOmva7UjrdORW1nRa4Bp45FbWtNv91+mIZdZ88803Y5o1A3dHczpyK2s+8sgjnl+3mTWdNuiwO6LJmubOwnmdNa1Nl15rT4Ws6bRQw+7Ijaxpt6us03EqZM3A3X+djmizptl0abcTt9MRTdY0my7jMWuG2+kSJ9/JaBwsJABCWrJkiSQmJsp5553nuXbt2rWSmpoqV155pefarVu3yvjx4+XgwYOea/fu3SupqaliGIbn2iNHjsjkyZMlMTFR0tPTPdWmpaXJtGnTJCEhwfPrzsrKkj/++EMSExNl9+7dnmpFRBYtWiSJiYlSuHBhz7UrVqyQxMREufDCCz3Xrl+/XlJTU+W6667zXLtjxw5JTU2VEydOeK7dv3+/TJgwQc444wzPtUePHpUpU6ZIQkKCHD9+3FNtenq6zJgxQxISEmTfvn2ealVV5s2bJ4mJiXL06FFPtSIiixcvloSEBDnrrLM8165Zs0ZSU1OlQoUKnms3b94sqampnv97RUR2794tEyZMMBvQPTl06JBMnDhREhISJDMz01Pt8ePHZerUqZKYmCiHDx/2VJuZmSmzZs2ShIQE2bVrl6daEZH58+dLQkJCRP/NS5culYSEBClZsqTn2nXr1sn48eOlUqVKnmu3bdsmqampcuTIEc+1+/btkwkTJkihQt5Pp6zjbVpamqfatLQ0mT59uiQmJsr+/fs91WZlZcmcOXMkMTExov9fm+NtQkKC59qVK1dKQkKClCtXznPtxo0bZfz48XLjjTd6rt25c6dMmDDB879rIiIHDhzwfxa9OnbsmP+zeOzYMU+1GRkZMnPmTElMTJS9e/d6qrWOt5H8G/PXX39JYmKiFC9e3HPt33//LampqXL55Zd7rt2yZYuMHz9eDhw44Ll2z549kpqaGtHYc/jwYZk0aZIkJCRIRkaGp9oTJ05EfO6TmZkps2fPloSEBNm5c6enWhGRhQsXSmJiohQoUMBz7fLlyyUxMVHKlCnjufaff/6R1NRUufbaaz3Xbt++XVJTUz1/HkSyz30mTpwY8bnP5MmTIz73mT59ekTnPuZ4m5CQIIcOHfJUKyLy559/SkJCghQtWtRz7apVqyQhIUHKly/vuXbTpk2SmpoqN910k+faXbt2yYQJEzyfu4iIHDx4UCZNmiSJiYmSlZXlqdZ67uP13/OMjAyZNWtWRDlEVWX+/PkRZSeR7KyZkJAgJUqU8FxrZs2KFSt6ro02a06YMCGisSfarGme+3j9d4Ks6U00WfPYsWP+8dbrWJ+enp4r5z6RZE3z3Ies6ezEiRMydepUSUhIiKusmZqaGlXWjOT/l/k1a/7xxx+SkJDguVYktlkzNTU1z7PmwYMHZeLEiZKYmOj5/9e5lTX37NnjqTbWWXP8+PFyxRVXeK7NjawZidzImomJiZ6zhJk1ExMT4yprjh8/nqzp0uLFiyUxMVGKFSvmuTaWWTM1NTVmWTMhISEmWTOS8zWR2GbN1NRUz+eJIrmXNaM594mXrLlhwwYZP368XH/99Z5ro8ma5jx7YmKi59pYZs25c+fGXdZMTU31PF6KxDZrmuc+eZ01ly1bJomJiVKqVCnPtbHOmgULFvRcax1vixQpIv/3f/8XUWbFKSo3ug9P90PYcfC08NNPP7laTWCuXLBuz//LL79oUlKSnnHGGWFr7bbnnzJliiYlJTmuLLTbnn/NmjWalJTkajeqwFvBHT58WJOSklytvrBuz29uF/3oo4+6WkVVtmxZrVWrVo4tal9//XW97rrrHGvtbgX3/fffu9rRxW57/o4dO+pdd90VdktvkX9XLli35x8+fLgmJSWF3UZYxH57/rlz52pSUpKee+65jq87cHv+zZs3a1JSkpYpU8axNvBWcFlZWZqUlORqdbHd9vxPP/20q5UbdreC++CDDxxvwSKSvXIhcHv+H3/80dWOhXa3guvVq5cmJSWF3dJbJOf2/OZ20ePHj9ekpKSw27aL/LtSzLo9/9KlSzUpKcnVirXA7fn37t2rSUlJjrfYELHfnr9q1aqOt60S+XdHNuv2/C+++KKrlcl22/PXrl3b8bYPIva3gmvVqpXeddddjrV22/MPHDhQk5KSHFeA2m3PP2PGDE1KStLixYuHrbW7Fdy6des0KSnJ1Y4MgdvzHz9+XJOSkvTiiy92rDVXyVu3509OTna8VY6I/fb8b7/9tqtdXu22569bt66rVc122/N36dJF77rrLsdd+Oy25x81apQmJSU57nBidyu4hQsXuh5vA7fn3759uyYlJTlu+S5ifyu4e+65x/E2KiL22/M/88wzjrfBFrG/7fjHH3+slStXdqy1256/adOmrs597Lbn79evnyYlJYW9fZRIzh3ZzNvgTpw4UZOSkvSss84KW2u3Pf+KFStcn/sEbs9/4MABTUpK0rJlyzrW2t0K7uGHH3a1W1m5cuWCbjv+6quvutp10O5WcN98843j7exFct4Kzjz3adeunavx1rwVXKdOnfy3ghsyZIgmJSWFvTW8SM5V8uat4GbPnq1JSUmOtyWyu+34hg0bNCkpyfF2NyLBt4JLT0/XpKQkx1vIidjfCu4///mPq914rbeCM8993n33XVerz+1uBdegQQPH25qJ2N8Krnv37pqUlOS4E425+3f79u39tyYaO3asJiUlOa7yLVCgQNBtxxcvXuz63OeWW27RunXr+m8Ft2vXLk1KSnK164a5St56K7gHHnhAK1So4FhrrpK33gru+eefd7w9h0jOW8GZ5z6ff/65q92Vihcv7r8VnHnuE6usOXXq1DzNmuat4I4cOZJnWfOdd97R0aNH+8993njjjXyXNUeMGBHTrOnm3CfWWdN6K7gPP/wwT7KmuUrezJq9e/fOk6wZeCs4M2uef/75jq/7VMia5rnPSy+9lKdZ07wVXOvWrfMsa7Zs2TJXs6abc5/czpqPPfZYnmZN89ynXr16+SZrmreCM7Omm11xo82atWvXznEruHvvvfekZ83SpUsH3Qruk08+iThrNmvWLCZZc9KkSTHNmm7OfXIja1rn2d1mTfPcZ/Dgwf6s+e233+ZJ1jR3ZDOz5tChQ/MkawbedtzMmm7m2UNlTTfnPrmdNd97772TnjWLFSumTz75pPbo0cOfNXv06JFnWdN623EvWdPckS0wa7o598ntrPnCCy/EJGu2aNEiX2TNRo0a6ZIlS3JkTTfz7NFkTXNHNmvWrFGjRp5kzcDbjv/www8RZ81OnTrladY059nnzZuXp1nTOs+eH7Lm888/nyNrNm7cOE+yprn7t5k1U1NT8zxrZmZm+rOmm3n2UFnTzblPbmRN6zz7V199lWdZs3Pnzv6sOWjQoDzJmubu35FkTXP378Cs6Wae3S5rIra4VTGNg4jSkCFDbAe8iy66KOgkMdDChQtta0uUKKEvvfRSjmaMQFu3brUNyuZJonWCLNCxY8dsT76s2/aaE2SBsrKybP+BNE8Src0YdkLddsKcIFu0aJFmZWXZ1n755Ze2tXbNGIFC3eLDnCBLTU31nyQGGj9+vG2t2YwxYsQI/wRZoBUrVthOTFpPEs0JskB79uyxDVFFixZ13LY3LS3NNrAWLlw46CTRzv333x9Uaz1JNCfI7IS6BcxNN92UY4LMTqjtk6+66qqgCbJAP//8s22tXTNGoJkzZ9rW2jVjBNqwYYPtxKT1FjHmSWKgQ4cO2Z5gm80YnTt39k+QBcrMzLSd5LPeIsacILOTnJwc9iTRnCCzE+pW6+ZJojlBZqdVq1ZhTxKtE2SBRowYYVt74YUX6ttvv51jgizQ4sWLbWvtJsgC7dixwzYo2zVjBDp+/LhtELJOkG3YsMG2NisryzY4Wm8RY16QsPPcc8/Z/jebt4gxL0jY+fbbb21rzVvEWC9IBAq15Xz58uX1gw8+0PHjx/snyAJNmjTJtta8IGGdIAu0Zs0a24lJ84KEdYIs0L59+2wnkM0LEtYJskDp6em2F87sJsjsVK1a1fazGNiMYSfULWACG//thLp1hNmMMWXKlJDj7a+//mpba9f4H2ju3Lm2tdYLEqHOfTZv3mw7MXnWWWf5bxFjTpAFOnLkiG3YtV6QCHVOnpWVZTsBVLBgQf8FCbMZw85//vMf2/f49ttvzzFBZifU7ZgCmzHstGvXzrbWboIs0JgxY2xr7Rr/Ay1dutR2YtJsxhgwYIB/gizQrl27bCet7Br/A504ccJ2UsJ6ixjzgkSgrKws29uqWW8RY06Q2XnppZds//cyL0iYzRh26tSpY1trXpCwTpAFCnX7B7vG/0BTp061rbVrxgi0bt0624lJu8b/QAcPHrS9eG7XjBEoIyPD9iK2XeO/Hbvb/FibMcwLEnbeffdd2/+9zFvEmBck7DRv3ty21u6CRCCnrGltxggUTdbctm2bbda0a8YIFC5rBjZjBMrKyrK9EG3X+G8nmqwZ6laUp3LWXLlyZUyyZnp6um1jmJk127RpE3HWtDZj2AmVNQObMew0aNDAttauGSNQNFlz1qxZtrUnO2sePnw4X2bNjz76yPZ/r+uvvz5HM4adUFnTrhkj0G+//WZba9eMESjarGnXkOY2a9pdAM/NrBnqfXr++edt/5tzI2tamzEChbq1q5k1rc0YgU5G1rRrxgi0f/9+26xp14wRKNqs+dBDD9l+Fk921mzcuLFtrZusOXDgQNva3Mia1maMQJs3b7a9KGtmTWszRiCnrGltxgjklDWtjf92YpU1Q92+92RnzWXLlsUsa9o1o7jNmvfcc09Qrd0iczvhsqa18d9O3bp1bWsrVaoU1IwRKJqsOW3aNNvaUz1r2jXw5VbWNJsx7IS61bqZNc1mDDtOWTNcM8bQoUNta0/1rGm3mDAvsuZ///tf2//mk501O3fubFvrJmumpqba1totMg/klDWtjf+B9u7dGzZrWhv/A7nJmmbjv50HHnjAdrwNbPy3E6us2b9/f9vak501N27cGLOsaddM6zZrPvbYY7bjbeAiczvRZM1Qt0s/2Vnzr7/+sq09FbJmuHMfu+Z0u0XmOLXQOEjjIKKQmZmZY6Xsrbfe6jhBZvX444/7a900Y1hZ721vbcYIdZJo1aZNG3+t3erQcEaOHOmvtVsdGs6SJUtynCQGrg4NZ+fOnf5/4OxWh4Zz4sQJ/z9w1pPEcBNkpqysrByrASpXruw4QWb1wgsvBJ0khpsgs/r+++9znCQ6TZBZ9ejRw19rtzo0nMmTJ/tr3TRjWK1du9Y/mWq3OjSc/fv3+1ci2a0ODScjI8O/AtNudaiTatWq+f+bratD3XwW33nnnaCTxHATZFZNmjTxdJJoNWjQoKCTxHATZFbz58/317qZILPasmWLfzLVzQSZ1dGjR/0rdK3NGG5OErOysnKsWg9cHerkqaee8tfarQ4N5/PPP/fX2q0ODadDhw7+2lKlSgWtDg1n3Lhx/lrzgkS4CTKr5cuX+ydTrRckQk2QWe3evdu/0t68INGqVauwFyRMaWlp/slUu9Wh4WRlZem9997r/29204xh9corr/hr3TRjWNWrV89fa7c6NJy+ffv6a80JsnAXJKymT5+eY7wNXB0azvr16/2TqdbVoaEmyKwOHjzoX4Vttzo0nMzMzByTqebq0HATZFY1atTw11577bWOE2RW77//vr/WzQSZVYsWLfy1bpoxrIYNG+avtVsdGs6iRYtynPsErg4NZ/v27f6mZbeN/6Zjx475V8vbrQ4NJysrK8duLubq0HATZFbPPPOMv9ZudWg4X3/9tb/WvCARboLMqkuXLjnG28DVoeFMmDDBX+tmgsxq9erV/slUNxNkVvv27fOv/LROkIW7IGFKT0/3r7K1Wx3q5MEHH8wxQWZdHerkjTfe8Nd6XR3aqFGjHOc+ZuO/m/H2l19+yTHeBu5EFM4ff/yRY4LsqaeeCjtBZrVx40Z/07J5QSJcM4bV4cOH/TsiuG38N8Uya37yySe2WdPNuU80WXPUqFExy5rmzib5KWv+73//89e6acawiiZr9uzZM99lzQMHDvizptvGf1O0WfPhhx8OyprhmjGsosmaTZs29de6acawilXWtC6Qzeusad2xJy+z5hdffBFx1uzYsWNQ1gzXjGEVTdZcsWJFjqzp1IxhFW3WNHfQc9v4b4pl1kxJSfHXullkbhVN1pwxY4Zt1gzVjGEVTdY8dOhQUNZ0asYwZWZm5tgJxk0zhlU0WfODDz6ISdYcPnx4vsuax48ft82a4ZoxTNFmzWeffTZH1nRqxrCKJmt27drVX+umGcNq4sSJp1TWdDPPHm3WrFKlSr7LmgMGDAg69wnXjGEVTdbctGmTP2u6afy3ijZrWnekdNP4bxWrrNm2bduYZU3z3MfNInOraLOmuUO0mTWdGv9N5m7v5n+zm8Z/q2iy5g8//OCvddP4bxVN1pwyZUq+zJrmToduG/+tosmatWrV8te6afy3iiZrDh48OMe5j1Pjv9WCBQtiljXNBbJ5nTWffvrpoKzpdp49Vlnz999/z5E1nRr/ceqgcZDGQURh7NixjqtDQ1m6dKk+9NBDjqtD7ezYsUOrVKni+iTR6tixY1qjRo0cW3W7lZWVpS+88ELQbaHc+vTTTz1NkFk1a9bMcXVoKP379/fUjGE1bdq0oK263fr777+1SpUqjqtD7ezbt08feughTyeJpvT0dH388ccdV4eG8vrrr3s6SbT67rvvgrbqdqt9+/ZBt4Vya8SIEZ4myKwWLFgQdFsotzZv3qxVqlRx3YxhdfjwYX344YcdV4fayczM1P/+97+emjGs3n///aCtut1q2LCh4+rQUHr16hW0Vbdbqampni5IWK1YsUKrVq3quhnDateuXVq1alXH1aF2Tpw4oTVr1vQ0QWbKysrSF198MeKtur/44oug20K51bJlS0/NGFa//vqr4+rQUGbNmuW4OjSU9evXa5UqVXLcFsqtAwcOaLVq1XLcFsqtjIwMffLJJz1NkFm99dZbQbeFcuuHH37wNEFm1alTJ08TZFajRo3y1IxhtXjxYlerQ+1s27ZNq1Sp4rg61M7Ro0f1kUcecVwdaicrK0ufffZZTxckrD766KOg20K51bhxY08TZFZ9+/YNui2UW5MnT/Y0QWa1atUqrVKliuvGf6s9e/Zo1apVPTVjmNLS0jQ5OdlxdaidrKwsfeWVVxxXh4by9ddfe2r8t2rTpo2nCxJWQ4YMCbotlFtz5sxxXB0aysaNG7VKlSquJ8isDh06pA8//LCnCTJTRkaGPvXUU56aMaxq1arlaYLMKiUlxVPjv1W3bt0cdyIKJdZZ020zhlW0WfP555/31IxhFU3WbN68uadmDKtYZc21a9f6s6abZgyraLPmE088EXRbKLdilTU7dOjgqRnDKtqs6aUZwyqarHnkyBGtXr16jttCuRXLrNmoUSNPjf9W0WTNCRMmBN0Wyq1os2aVKlU8NWOYYpk1v/zyy5hkzYEDB/qzptdzn1hlzYMHD2q1atU8NWOYciNrellkbhVN1uzcuXPEWXP06NExz5pe59mjzZrPPfecp0XmVrHMml6aMayiyZqrV6+OWdZ87LHHPC0yN2VlZemrr77qqfHfKpqs2bZtW0+N/1bRZM25c+d6asawilXWzMzM1Keffjqusua4ceM8LTK3ilXWPH78uNaoUcNT478p2qz52WefxSRr/vLLLxFnzenTp3tq/LeKJmvu379fq1Wr5mmRuSk3sqaXxn+reMuaW7ZsyZdZ84MPPvDU+G8Vbdb00vhvFY9Z86WXXuIWxPnUyWgcNDS7MQ5hGIZRVkQ2iYhs2rRJypYtG+NXhEioqhiGQe0p/rup9VYrIvnydVN76v9uar3VivBZPJ1rY/m7qc2b2lj+bmq91Yow3p7OtbH83dTmTW0sfze13mpFGG9P59pY/m5qvdWK8Fk8nWtj+bupzZvaWP5uar3VijDens61sfzd1OZNbSx/N7X543dTmze1sfzd1HqrFYn83AextXnzZilXrpz5bTlV3RztcxaI9gnymmEYFxuG0dwwjBWGYRwxDGOvYRhzDcP43DCMorF+fTh1RTPwxVttLH83td5q8+vrpvbU/93UeqvNr6+b2lP/d1ObN7Wx/N3UeqvNr6+b2lP/d1ObN7Wx/N3UeqvNr6+b2lP/d1PrrTa/vm5qT/3fTW3e1Mbyd1PrrTa/vm5qT/3fTW3e1Mbyd1ObP343tXlTG8vfTa232mjfZ5xeCsX6BXhhGEYNEflZRIpb/rqoiNzqO94wDONRVV0Xi9cHAAAAAAAAAAAAAAAAAMCpLt/sOGgYxg0iMlCymwYPi8i3InKXiFQRka6+h1UUkdGGYZwZkxcJAAAAAAAAAAAAAAAAAMApLj/tONhKsncXzBCRaqo62/KzSYZhrBGRpiJylYh8KiIpef4KAQAAAAAAAAAAAAAAAAA4xeWLHQcNw7hVRO73fds9oGnQ9JOIrPB9/bFhGIXz4rUBAAAAAAAAAAAAAAAAAJCf5IvGQRF5wvJ1T7sHqGqWiPTxfXuu/NtoCAAAAAAAAAAAAAAAAAAAfPJL4+A9vj+PiMiCMI+bavn67pP3cgAAAAAAAAAAAAAAAAAAyJ/yS+NgJd+ff6tqRpjHrbSpcWQYRtlwh4iUieRF49Qyffp06dy5s2zZssVz7fLly6Vly5by999/e67duXOnNGzYUP766y9RVU+1x48fl/r168sff/whWVlZnmpVVZo0aSKTJk2S9PR0T7UiIh06dJBRo0bJsWPHPNf2799ffv31Vzlw4IDn2rFjx0rPnj1l586dnmvnzJkj7du3l40bN3quXbt2rTRr1kxWrlzp+X3av3+/1K9fXxYuXOi5Nj09XRo0aCAzZsyQzMxMT7WqKi1atJDx48fLiRMnPNWKiHTr1k2GDx8uR44c8Vw7ZMgQ6d+/v+zbt89z7aRJk6Rr166ybds2z7WLFy+W1q1by7p16zzXbtmyRX788UdZunSp5/fpyJEjkpKSInPnzvX8WczKypJGjRrJlClTJCMj3D9h9tq2bStjxoyR48ePe67t06ePDB48WA4ePOi5duTIkdKnTx/ZvXu359qZM2dKp06dZPPmzZ5rV65cKS1atJA1a9Z4rt29e7c0bNhQFi9e7Pk9PnHihKSkpMisWbMi+iw2bdpUJkyYIGlpaZ5qRUQ6deokv/32mxw9etRz7YABA2TAgAGyf/9+z7W///679OjRQ3bs2OG5dv78+dKuXTvZsGGD59r169dL06ZNZcWKFZ7fp4MHD0r9+vVlwYIFnmszMzOlYcOGMn369Ig+iy1btpRx48ZFNN726NFDhg4dKocPH/ZcO3ToUOnXr5/s2bPHc+2UKVOkS5cusnXrVs+1S5YskVatWsnatWs9127btk0aNWokS5Ys8fw+HTt2TOrXry9z5syJaLxt3LixTJ48OaJzn/bt28vo0aMjOvfp16+fDBw4MKJzn9GjR0vv3r1l165dnmtnz54tHTp0kE2bNnmuXbNmjTRv3lxWrVrluXbv3r3SoEEDWbRokef3OC0tTerXry8zZ86MaLxt3ry5pKamRjTedunSRUaMGBHRuc+gQYPkl19+iejcZ8KECdK9e3fZvn2759qFCxdK27ZtZf369Z5rN27cKI0bN5Zly5Z5fp8OHz4sKSkpMm/ePM+fRXO8nTp1akTjbevWrWXs2LERnfv06tVLhgwZIocOHfJcO2LECOnbt29E4228Zs2JEydGnDVHjhwZ0blPrLLm3Llz813WzMjIiFnW7N69e8RZc/DgwfLzzz/L3r17PdfGc9aM5LMYr1lz9erVnmt3794tDRo0kD///DPic59YZM3OnTvHJGuOHz8+X2bNlJQUmT9/fsTnPtOmTYvo3KdVq1YxyZrDhg2LOGtOnTo14qy5dOnSiLPm9u3bY5I1VTXfZs1evXrFTdZMT0+PWdbs2rVrvsuaixYtkjZt2sg///zjuTYes2bv3r3jLms2atQo4qyZkpIis2fPjuizGE3W7NixY0yy5rhx42KSNdetWxdx1jxw4ECuZM1IPovRXtccNmxYROc+Q4YMyXdZc+vWrTHLmj/++GNMsmbfvn2jypqRzrPPnDlTOnbsGFHWXLVqlfz0009xlTVxGlLVU/oQkUQRUd8xysXjD/seO9vD71C3x6ZNmxT507hx4/zv40033aR16tTR+fPna2ZmpmPtn3/+qUWLFlUR0auuukq/+OILnTp1qqanpzvW/vPPP1quXDkVEb344ov1vffe03Hjxunx48cda3fv3q2VK1dWEdFSpUrpq6++qkOGDNFDhw451p44cUIfeughFRE9++yz9b///a/27dtXd+/e7Virqvraa6+piGiRIkW0Zs2a2rlzZ92yZYur2vr166uIaKFChfTBBx/Uli1b6t9//+2q9ueff1YRUcMw9I477tCGDRvqX3/9pVlZWY6106ZN04IFC6qI6PXXX6/ffvut/vHHH67e4+XLl+u5556rIqKXX365fvLJJzpp0iRNS0tzrN28ebNeccUVKiJ60UUX6dtvv62jRo3So0ePOtYeOHBA77zzThURLVGihL744ov666+/6v79+x1rs7KyNDk5WUVEzzzzTH3qqae0V69eunPnTsdaVdUPP/xQRUQTEhL0kUce0fbt2+vGjRtd1bZq1UpFRAsWLKj33XefNmvWTFeuXOmqdsSIEf7P4i233KL16tXThQsXunqP586dqwkJCSoievXVV2vt2rV1xowZmpGR4Vi7Zs0aLVOmjIqIXnrppfrBBx/o+PHj9cSJE46127dv12uvvVZFRMuUKaOvv/66Dh8+XA8fPuxYe/ToUb3//vtVRPScc87R5557Tvv376979+51rFVVfe6551REtGjRovr4449rt27ddNu2ba5qv/32WxURLVy4sD700EPapk0b/eeff1zVdu/eXUVECxQooElJSdq4cWNdunSpq/cpNTVVDcNQEdHKlSvr999/r3PnznX1Wfzrr7/0rLPOUhHRihUr6meffaZTpkxxNd6uX79eL7nkEhURLVeunNaqVUvHjBmjx44dc6zdu3ev3nLLLSoiWrJkSX355Zd18ODBevDgQcfa9PR0rV69un+8/b//+z/t06eP6/H2rbfeUhHRxMRErVGjhnbq1Ek3b97sqrZx48b+8faBBx7QFi1a6Jo1a1zV/vrrr/7x9vbbb9cGDRron3/+6eo9njlzphYqVEhFRK+77jr95ptvdPbs2a4+iytXrtQSJUqoiOhll12mH3/8sU6YMMHVeLtlyxatWLGiioheeOGF+tZbb+lvv/2mR44ccaw9dOiQ3n333Soiet555+kLL7ygAwYMcDXeqqr+5z//URHRYsWK6X/+8x/t0aOH7tixw1XtZ599piKiZ5xxhj788MParl073bBhg6vadu3a+T+L99xzjzZt2lRXrFjh6n0aPXq0f7y9+eabtW7durpgwQJXtQsWLNAiRYqoiGilSpX0yy+/1OnTp7v6LK5du1YvvPBCFRG95JJL9P3333d97rNz50694YYbVES0dOnS+tprr+mwYcNcnfscO3ZMq1SpoiKixYsX12effVb79eune/bscaxVVX3ppZf85z6PPfaYdunSRbdu3eqqtk6dOv7xtkqVKtqqVStdu3atq9revXv7P4t33XWXNmrUSJcsWeLqfZo8ebIWKFBARURvuOEG/e6773TOnDmuxtulS5dq8eLFVUT0iiuu0E8//VQnT57s6rO4ceNGrVChgoqIli1bVt955x0dPXq0q/F23759etttt6mI6Pnnn68vvfSSDho0SA8cOOBYm5mZqTVq1FAR0bPOOkuffvpp7d27t+7atcuxVlX13Xff9Z/7PProo9qxY0fX+a558+b+c5/7779ff/rpJ121apWr2iFDhvg/i7fddpumpKTookWLXL3Hf/zxh55xxhkqInrNNdfoV199pTNnznQ13q5evVpLlSqlIqIVKlTQDz/8UFNTU12d+2zbtk0rVaqkIqIXXHCBvvHGGzpixAhX4+3hw4f13nvvVRHRc889V59//nn95ZdfdN++fY61qqr//e9//ePtE088od27d9ft27e7qq1du7Z/vK1WrZq2bdvW9blP586d/ePt3XffrU2aNNHly5e7ep/ssua8efNcZ81ixYrlStZ89913dezYsXmSNatVqxaTrNmgQYO4z5ojR47M86z55JNPas+ePV1nzY8++ihXsua9996bZ1lz3rx5mpiYGHXWLF++vD9ruvks7tixQ6+77rqYZM3nn38+17Jm69atdd26da5qzaxpnvv8+OOPrrPmhAkTciVrXnnllZ6y5oYNG7R8+fL5Lmu+/fbbuZo1V69e7ap24MCBuZY1v/76a501a9ZJz5pbt27NkTXffPPNPMuaTz75ZK5mzfXr17uqbd++fb7MmhdddFHUWdM89xk6dKirc5/jx49r1apVcyVrJicne8qadevWzZWseeedd+brrOnm3Gf//v16++2351rW9DLP/t577+Va1mzevHlEWfPWW2+NSda89NJLPWfNq6++OqKseeTIkZhlza+++irXsmbjxo112bJlrt6n33//3X/uE23W/Pzzz/M8a5YsWVJfeeWVPMuar7/+ekyyZv/+/XM1a86ePTvfZM3zzjtP//e//7nOmqqqjz32WK5kzerVq2v79u1dz7O3bt0632XNv//+Wy+44IJcy5rDhg1znTUfeOCBXMuaXbt2dZ01v/vuu4izZo8ePXIla954441xmzXdzrMjtjZt2uQfk0SkrOZGX15uPMnJPESkpOU/eoCLx+/wPXaJh9+hbg8aB/Ovzz//PMd7WahQIa1SpYoOGjTI8R+Mdu3a+YOyNWx36tTJ8R/2kSNH+ie8zOOGG27Qxo0bOw76S5Ys8Yc387j88sv166+/dgxDBw4c8E/CmMdFF12k7733nqsTZTMUmEeJEiX0pZdecnUSZYY38zCb2v744w/H2ldeeSVHrXmhYcyYMY615kSKeZhNbX379nV8j3v27Ok/ObeG7bZt2zqeZE+ePFkLFy6co/aaa67RlJQUxxOwdevW+RvhzOPSSy/Vzz77zPEf56ysrKD3uEyZMvrWW2+5miQ0A7p5nHPOOfr888/rX3/95VhrTqSYh3nyN3XqVMfaDz74IEetefI3bNgwx/epefPm/hM3M2wnJSVp9+7dHU/eBg0aFPRZrFy5sjZv3tzxJHvu3LlBn8WKFSvqd9995zj5tHPnTn8oMI9y5crpRx995GpiomTJkjlqS5Ysqa+++qqr5jCzMcM8zLA9f/58x9pnn302R21iYqLWrFlTU1NTHWvNiRTrePvggw/qgAEDHN/jTp06BY23t99+u3bo0MHxJHvs2LFB7/H111+vjRo1cgy8y5cvD/osXnbZZVq7dm3HMHT06NGgz+KFF16otWrVcnXecOmll+aoPe+88/TFF1/U5cuXO9aaTVLW8fbJJ5/UWbNmOda+8cYbOWrPOOMMrV69uo4aNcqxtkGDBkGfxXvvvVd79+7t+Fns169f0Hh7yy23aKtWrRzH2+nTpweNt1dffbXWrVvXcfJp48aNQe/xJZdcop9++qmriYkzzzwzR23p0qX1jTfecBVar7/++hy1xYsX1+eee07//PNPx9rHH388R63Z1DZ58mTH2k8++SRovK1ataoOGTLE8bPYqlWroM/iXXfdpV26dHE89xk2bFjQZ/HGG2/Upk2bOp77LFq0KGi8vfLKK/Xbb791nHzau3dv0HhbtmxZ/eCDD1xdlDEnYczj/PPP11deecXVhH1SUlKOWvNCw9y5cx1r//e//wWd+zz66KP6+++/O9Z+//33Qec+999/v/bv39/xPe7WrVuO91gku6mtXbt2juNtampq0Gfx2muv1QYNGjhO9q9evTros1ihQgX94osvHCeC09LSgsbbCy64QN9++21Xk4RXXnlljtpzzz1XX3jhBV26dKlj7cMPP5yj1rywO336dMfaWrVqBY231apV0xEjRji+T40bNw4ab++55x7t2bOn43g7YMCAoPH2pptu0hYtWjhe0Jk9e3bQZ/Gqq67SH374wXHyaevWrUGfxYsvvlg//vhjVxfBzUlv8yhVqpS+/vrrri6Q3nTTTUHj7TPPPKMLFixwrH366aeDxtvk5GSdOHGiY22orDlw4MCTmjVHjRple+5zsrPmwYMHY5Y177vvvqBzn7zKmtbPopes2atXL9us2aZNm5OaNf/555+g8bZ8+fKnfNasWbNmjtq8ypo//fRTTLLmvHnzcj1rfvjhh64uykSTNc3GDPMwLzREmjVr1Kih48ePd6z9+uuvg8bbBx544KRnzXHjxgW9x9ddd52rrLlixYqYZU2z+cY8zKy5bNkyx9pQWXPmzJmOtW+++WbQuU/16tV15MiRjrWxypozZswIGm8rVaoUVdb85JNPXGVN8yKjeeRV1nziiSeCzn3cZs1PP/00aLytWrWqDh48+KRmzeHDh9tmzSZNmkScNb/55hvHrLlv3z7brPn+++9HnDVffvnlk541X3zxxaBzn0cffVTHjRvnWBtt1gz8LOZF1lyzZk3EWTM9Pd323CcvsqZ50d48zKa2k501mzRpEjTe3n333ad01ty2bZtt1nQ7zx5N1rz55puDxttos+aECRMca7/44ougc59TPWsuXbr0pGRNN4sfLr744hy1uZE1Z8+e7Vj76quvBo23brNmvXr1YpI1p0yZEpOsqapB73Hp0qVP+axpbsRiPfd56KGHdOjQoRFnzW7dujl+FgcPHhyTrLlr166osqbZXG4998mLrGluxGIeeZU1O3funOtZs2HDho7nPtFkzWPHjkWVNRFb8do4WM7yH93HxeM3+h77t4ffUdbhuMV8DXxQ8q958+Z5XmVv2rx5s55//vn+lQ9uV32qZk/ylS9f3r/K3u3KB9Xsyfpbb73V88oH01NPPeV55YPp888/97zywdS+fXvPKx9MY8eO1dKlS3taZW9atmyZnnfeefrcc8/pzz//7HrVp2r2KqjSpUv7V9m7XfWpmn0Ru2LFiv6VD25Xfapmv8f333+/5x3dTC+//LLnVfamunXrel75YOrTp4/nlQ+m6dOn+yfI3K58MP3zzz9aokSJiFY+HDx4UMuWLetfZe9lPM/IyNAbbrjB8yp7U82aNT2vsje99957nlfZm3766accq+zdrPo0DRs2TC+44AJPq+xNCxcu1BIlSvhX2btd9amaPQFUsmRJ/yp7t6s+VbNPdCtUqOB5lb1q9mfxzjvv9LzK3vTMM8/4V9nPnz/fU+1XX33leZW9qUuXLp5X2ZtSU1O1VKlS+tprr7leZW9atWqVlihRwvMqe9Xs5q4yZcr4V9m7XfWpmj2RW6lSJf8qe7erPk1Vq1b1vMre9Prrr3teZW9q2LCh51X2pv79+3teZW+aPXu251X2po0bN+r555/veZW9avZuYxdffLF/lb3bHYZUs1f533TTTZ5X2Zsef/xxzzu6mT7++GPPq+xNrVu39rzK3jRy5EgtU6aMf5W9l3OfJUuWaIkSJfyr7N2u+lTNbjYoVaqUf5W921WfqtkrwC+//HLPq+xVs8fbu+++27+jm9tV9qb//e9/nlfZm7777jvPq+xNPXr00HLlyvlX2Xs595k8eXKOVfZezn3+/vtvLVGihOdV9qrZO25ceOGF/lX2bncYUs0+97n22mv9q+zd7mZrql69uudV9qZ33nnH8yp7U5MmTfyr7CdOnOhpvB00aJBeeOGF/lX2Xs59osmaW7ZsiSprXnLJJZ5X2atGnzWffvrpmGTNDh06xCRrLl++XEuUKBF11uzatWueZ02vq+xN0WTNevXqRZU1y5Ytm+dZc/369THJmpmZmTHLmu+//35UWbNChQr60Ucf5WnWXLRoUb7Pmm53szU9++yzEWfNr7/+2p81p02blmdZc8KECZ53dDNFkzX37dunF1xwQb7Lmm+88UZMsuYvv/yiF110kb7zzjuu75xismbNgQMH5nnWfOSRR7RDhw55mjWfeOIJzzu6maLJmm3atMmXWbN06dIxyZr33HOP5x3dTC+88IJWrlxZf/jhB89Z8/vvv893WXPt2rUxy5rXXXddrmTNxYsX51nWbNq0qX+ePS+z5vz587VEiRKed3RTjT5rli9fPteyppf3KZqs+cUXX/iz5vTp0/Msa44bN86fNd3eOcW0fPlyPe+88/TZZ5+NKGuWKVMmqqxZtWrVPM+ar7zyiucd3UzRZM2+ffvmStb0Os8eTdY8dOiQlitXTmvUqOFpN1vV6LNmcnKy3n777Vq/fv2Isua1114bUdZs0aJFxFlz+PDhMcma27dv11KlSuXbrGnepdNLLWLrZDQOGprdOHfKMgyjpIjs9H37q6o+6/D4HSJSSkSWqup1ufQayorIJhGRTZs2SdmyZXPjaZHHdu3aJeedd54ULFjQc+3evXulWLFikpCQ4Ln20KFDYhiGnHnmmZ5rT5w4IUeOHJHzzjvPc62qyo4dO6RMmTKea0VEtm3bJhdccEFEtdu3b5fSpUuLYRiea3fs2CElS5aUAgUKeK7dvXu3FC9eXAoXLuy5dv/+/ZKQkCBFihTxXHvkyBHJzMyUs88+23Ntenq6HDhwQM4//3zPtfn1Pd65c6eUKFEios/inj175KyzzpIzzjjDc+3BgwelUKFCUrRoUc+1x44dkxMnTsg555zjuTYrK0t27dolpUuX9lwrkj8/i7t27ZJzzz1XChUq5Ll27969UrRoUUlMTPRce/jwYRGRiMbbtLQ0OXTokJQoUcJzbX79LObH8fbo0aOSnp4uxYsX91ybmZkpe/bskVKlSnmuFYn+fYr0/x+xGm/37t0rZ555ZsTjbcGCBaVYsWKea48fPy7Hjh2Tc88913NtLMfbbdu2SZkyZfLVeLtv3z4pUqRIxOOtqspZZ53luZZzH2/27NkjZ599dkTj7YEDB6Rw4cIRnfscPXpU0tLSIjr3ifV4G82/i6VKlYqolqzpDec+7kWTNTMyMmT//v2Mty6RNb3X5rdzn2izZqTnPmRNb8ia3pA13Ysma6qq7Ny5k7k9l8ia3uTHc59osmY05z6xHm/Jmu6QNb2Jt6wpEn0OiafxNppzH7KmN/nx3CeWWROxtXnzZilXrpz5bTlV3Rztc+aHxsFEETnm+3a0qtZ0ePxhESkmIn+o6p259BpoHAQAAAAAAAAAAAAAAAAA5LmT0Tjovd02j6nqcRHZ7fs2bMeeYRjnSnbToIiv0Q8AAAAAAAAAAAAAAAAAAPzrlG8c9Fnh+/NywzDC7Q96lU0NAAAAAAAAAAAAAAAAAADwyS+NgzN8fxYTkZvDPO4+y9czT97LAQAAAAAAAAAAAAAAAAAgf8ovjYPDLV+/avcAwzAKiMhLvm/3i8jkk/uSAAAAAAAAAAAAAAAAAADIf/JF46CqzhWR6b5vXzcM406bh30mIpV8X7dW1fQ8eXEAAAAAAAAAAAAAAAAAAOQjhWL9Ajz4SLJvP1xERMYbhtFIsncVLCIiz4rIW77HrRaRn2LyCgEAAAAAAAAAAAAAAAAAOMXlm8ZBVV1kGMYzItJPRM4WkUY2D1stIjVU9VCevjgAAAAAAAAAAAAAAAAAAPKJfHGrYpOqjhSR60WkpWQ3CR4Vkf0iMl9EaotIZVX9O2YvEAAAAAAAAAAAAAAAAACAU1y+2XHQpKobRORT3wEAAAAAAAAAAAAAAAAAADzIVzsOAgAAAAAAAAAAAAAAAACA6NA4CAAAAAAAAAAAAAAAAABAHKFxEAAAAAAAAAAAAAAAAACAOELjIAAAAAAAAAAAAAAAAAAAcYTGQQAAAAAAAAAAAAAAAAAA4giNgwAAAAAAAAAAAAAAAAAAxBEaBwEAAAAAAAAAAAAAAAAAiCM0DgIAAAAAAAAAAAAAAAAAEEdoHAQAAAAAAAAAAAAAAAAAII7QOAgAAAAAAAAAAAAAAAAAQByhcRAAAAAAAAAAAAAAAAAAgDhC4yAAAAAAAAAAAAAAAAAAAHGExkEAAAAAAAAAAAAAAAAAAOIIjYMAAAAAAAAAAAAAAAAAAMQRGgcBAAAAAAAAAAAAAAAAAIgjNA4CAAAAAAAAAAAAAAAAABBHaBwEAAAAAAAAAAAAAAAAACCO0DgIAAAAAAAAAAAAAAAAAEAcoXEQAAAAAAAAAAAAAAAAAIA4QuMgAAAAAAAAAAAAAAAAAABxhMZBAAAAAAAAAAAAAAAAAADiCI2DAAAAAAAAAAAAAAAAAADEERoHAQAAAAAAAAAAAAAAAACIIzQOAgAAAAAAAAAAAAAAAAAQR2gcBAAAAAAAAAAAAAAAAAAgjtA4CAAAAAAAAAAAAAAAAABAHKFxEAAAAAAAAAAAAAAAAACAOELjIAAAAAAAAAAAAAAAAAAAcYTGQQAAAAAAAAAAAAAAAAAA4giNgwAAAAAAAAAAAAAAAAAAxBEaBwEAAAAAAAAAAAAAAAAAiCM0DgIAAAAAAAAAAAAAAAAAEEdoHAQAAAAAAAAAAAAAAAAAII7QOAgAAAAAAAAAAAAAAAAAQByhcRAAAAAAAAAAAAAAAAAAgDhC4yAAAAAAAAAAAAAAAAAAAHGExkEAAAAAAAAAAAAAAAAAAOIIjYMAAAAAAAAAAAAAAAAAAMQRGgcBAAAAAAAAAAAAAAAAAIgjNA4CAAAAAAAAAAAAAAAAABBHaBwEAAAAAAAAAAAAAAAAACCO0DgIAAAAAAAAAAAAAAAAAEAcoXEQAAAAAAAAAAAAAAAAAIA4QuMgAAAAAAAAAAAAAAAAAABxhMZBAAAAAAAAAAAAAAAAAADiCI2DAAAAAAAAAAAAAAAAAADEERoHAQAAAAAAAAAAAAAAAACIIzQOAgAAAAAAAAAAAAAAAAAQR2gcBAAAAAAAAAAAAAAAAAAgjtA4CAAAAAAAAAAAAAAAAABAHKFxEAAAAAAAAAAAAAAAAACAOELjIAAAAAAAAAAAAAAAAAAAcYTGQQAAAAAAAAAAAAAAAAAA4giNgwAAAAAAAAAAAAAAAAAAxBEaBwEAAAAAAAAAAAAAAAAAiCM0DgIAAAAAAAAAAAAAAAAAEEdoHAQAAAAAAAAAAAAAAAAAII7QOAgAAAAAAAAAAAAAAAAAQByhcRAAAAAAAAAAAAAAAAAAgDhC4yAAAAAAAAAAAAAAAAAAAHGExkEAAAAAAAAAAAAAAAAAAOIIjYMAAAAAAAAAAAAAAAAAAMQRGgcBAAAAAAAAAAAAAAAAAIgjNA4CAAAAAAAAAAAAAAAAABBHaBwEAAAAAAAAAAAAAAAAACCO0DgIAAAAAAAAAAAAAAAAAEAcoXEQAAAAAAAAAAAAAAAAAIA4QuMgAAAAAAAAAAAAAAAAAABxpFCsX0A+UdD8Ytu2bbF8HQAAAAAAAAAAAAAAAACAOBLQs1Yw1OO8MFQ1N57ntGYYxi0iMi/WrwMAAAAAAAAAAAAAAAAAENduVdX50T4JtyoGAAAAAAAAAAAAAAAAACCOsOOgC4ZhJIjIdb5vd4lIZgxfDrwrI//uGHmriGyP4WsBALcYuwDkR4xdAPIbxi0A+RFjF4D8iLELQH7DuAUgP2LsAk5vBUWkpO/rJap6ItonLBTtE8QD3//QUW/viNgwDMP67XZV3Ryr1wIAbjF2AciPGLsA5DeMWwDyI8YuAPkRYxeA/IZxC0B+xNgFxIUNuflk3KoYAAAAAAAAAAAAAAAAAIA4QuMgAAAAAAAAAAAAAAAAAABxhMZBAAAAAAAAAAAAAAAAAADiCI2DAAAAAAAAAAAAAAAAAADEERoHAQAAAAAAAAAAAAAAAACIIzQOAgAAAAAAAAAAAAAAAAAQR2gcBAAAAAAAAAAAAAAAAAAgjhiqGuvXAAAAAAAAAAAAAAAAAAAA8gg7DgIAAAAAAAAAAAAAAAAAEEdoHAQAAAAAAAAAAAAAAAAAII7QOAgAAAAAAAAAAAAAAAAAQByhcRAAAAAAAAAAAAAAAAAAgDhC4yAAAAAAAAAAAAAAAAAAAHGExkEAAAAAAAAAAAAAAAAAAOIIjYMAAAAAAAAAAAAAAAAAAMQRGgcBAAAAAAAAAAAAAAAAAIgjNA4CAAAAAAAAAAAAAAAAABBHaBzEac0wjIsNw2huGMYKwzCOGIax1zCMuYZhfG4YRtFYvz4A8cEwjJsMw/jGMIyxhmFsMgzjhGEYhw3DWG0YRi/DMO7x+HzVDcMYahjGZt9zbfZ9X/1k/TcAgMkwjKaGYajluN9FDeMWgDxnGMb5hmF8aRjGTMMwtvvGn62GYcwxDKOZYRh3ungOxi8AecIwjDMMw3jdMIxxhmFss+TGVYZh9DAM4w6Xz8O4BSAqhmGUMgyjpmEYKb65rN2W/NcrgueLelwyDKOoYRhf+Ob29/rGxxW+uf+Lvb4mAKef3Bi7DMNINAzjccMw2vpy417DMNJ9f842DKOuYRgXeHhNjF0AQsrtc66A5y5qGMY6y/Ot91DHuAXEGUNVY/0agJPCMIwaIvKziBQP8ZBVIvKoqq7Lu1cFIN4YhjFVRO518dC+IvKGqqaFeS5DRDqJyFthnqeLiLyj/AMP4CQwDOMGEZkvIoUsf/2Aqk4J8XjGLQAxYRjG/4lIRxEpEeZhI1T1iRD1jF8A8oxhGOVEZLSIXOfw0JYi8pnduMO4BSC3GIYRbozoraqvuHyeXBmXDMO4TLLHyIohHnJARJ5X1TFuXheA01O0Y5dhGNeLyAwROcvhVx2S7Hn8gQ7Px9gFIKzcOucK8dzNReQzy19tUNXyDjWMW0CcYsdBnJZ8F7UHSnbT4GER+VZE7hKRKiLS1fewiiIy2jCMM2PyIgHEi4t8f24VkdYi8rSI3CYid4rIpyKyxffzF0Wkl8NzNZB/J1sXichzvud6zve9+H5ePxdeNwDkYBhGAck+jyokIjtdljFuAchzhmG8JCIDJLtpcKeI1BORh0TkZhGpISIfikiqiKSHeRrGLwB5wjCMQpKzafAvEXlFsjNjNRFJEZEjvp99IiKfh3gqxi0AJ8MmERkfYW3U45Jv7n6U/HsBu6tkz/HfJdlz/ocl+xrAIF/TDwCIRDZ2nS3/Ng3OFJGvJTtH3iQiD4tIZxHJ9D2mv2EYj4R6IsYuABGI5pwrB8MwKovIxyJyXLKbnd3UMG4BcYwdB3FaMgxjsojcLyIZInKvqs4O+PkXItLU920dVU3J21cIIF4YhjFKRPqIyBBVzbT5+fmSPRFxpe+v7lXV6TaPu1xEVkh2w8583+OOWX5eVESmisgtkj32XaWqa3P5PwdAHDMM42PJ3uVmpYgMk+wJVJEQOw4ybgGIBcMwKkn2hegEEZkuIsmqeiDEY8+w2+2Z8QtAXjIM4ykRGez7draI3BOYHQ3DuNn3s8Iisk9ESqlqhuXnjFsAco1hGPVEZJ6IzFPVHYZhlBeRf3w/drX7TW6NS4Zh1BWROr5vv1TVZgE/v1NEpvl+z2RVfdD9fymA00m0Y5dhGHeJyEciUk9Vl4d4zOOSPSdmiMhaEbkixE7QdYWxC4CD3DjnsnnOgiIyR7IXz/4gIq+LyCXisOMg4xYQ39hxEKcdwzBuleymQRGR7oFNgz4/SfbEhYjIx4ZhFM6L1wYg/qhqTVUdaNc06Pv5bsm5XfjTIZ7qE/n31qAfWCdbfc9zVEQ+8H1bSLJXEwFArvDdPs/cBaKWiIS8rboF4xaAWGgr2U2Du0XkyVBNgyIidk2DPoxfAPJSkuXrH+2yo6oukOzdH0REzhWRqwIewrgFINeoah1VHaWqO6J4mqjHJd+c/Ue+b1dI9px+4GudLSLdfd8+4Gu0BhCHoh27VHWWqj4TqmnQ95gRIjLU9+1lInJj4GMYuwC4lUvnXIE+kuymwVUi0sRNAeMWABoHcTp6wvJ1T7sHqGqWZO8AJpI94Xr/yX1JABDWFMvXlwX+0DAMQ0Qe9327UlX/sHsS39+v8n37hK8OAHJDBxE5U7JXOk5xejDjFoBYMAzjKsm+jYqISDvfAg2vz8H4BSCvnWH5el2Yx1l34kowv2DcAnCqycVx6X4ROcf3dW/fnL6dXpavn/T6egHAo8mWr4Pm8oWxC0CMGIZxiYiYd1msFWbBbKD7hXELiGs0DuJ0dI/vzyMisiDM46Zavr775L0cAHBkvVBkd0J+qYhc5Pt6qs3PrcyflxWR8tG9LAAQMQzjvyJSU0T2isgXLssYtwDEwv9Zvh5kfmEYxrmGYVxhGEYJF8/B+AUgr622fF0hzOPMC9MqImssf8+4BeBUk1vj0j02j7MzX7KvBYgwzw/g5EuwfG03l8/YBSBWOohIMRHpq6qTnR5swbgFxDkaB3E6quT7829VzQjzuJU2NQAQC/dZvl5p8/NKDj+XED9nbAMQFcMwzhGR1r5va6vqLpeljFsAYuEO358HRGSFYRgvGIaxWLIbn1eLyG7DMNYZhlHHMIwzQzwH4xeAvPaLiBz0fV3bMIyCgQ8wDKOyiNTwfTtAVQ9afsy4BeBUk1vjkqvn8V0DMHdlZWwDcLLlylw+YxeA3GQYxrMi8qiI7BORzz2WM24BcY7GQZxWDMNIFJHzfd9uDvdYVd0n/3bFlzuZrwsAQjEMo4CIfGX5q4E2D7OOUWHHNhHZFKIOACLRVETKiMgsEenuoY5xC0AsXO37c72ItBWRfiJyfcBjLhWRuiIy2zCMC22eg/ELQJ7yLcx4RUSOiUiSiMwzDOMlwzDuMAyjqmEYdSR714czRORPEfk04CkYtwCcanJrXDK/P6Kq+10+T0nDMBLCPhIAImQYxg3y72KOZaq63OZhjF0A8pRhGOeKSCvft1+p6k6PT8G4BcQ5GgdxujnL8vVhF483GwdD7TYBACfbJyJym+/rYao63+YxXsa2I5avGdsARMwwjLtF5A0RyRCRd1RVPZQzbgGIhfN8f14lIu+JyH4ReUdESolIoojcKiJjfY+5VkQG+RZxWDF+AchzqjpMRG6R7IUaN4pIbxGZLSKpkt3sfFSyGwbvVtXtAeWMWwBONbk1LpnP42We3+55ACBqvgaZbiJi7g79TYiHMnYByGvNRKS0ZGfIrhHUM24BcY7GQZxuEi1fp7l4/Anfn0VOwmsBgLAMw7hPRBr7vt0pIrVCPNTL2HbC8jVjG4CIGIZxhoh0ERFDRFqq6hKPT8G4BSAWivn+TBCRTBF5RFU7q+ouVT3hW6BRU/5tHrxLRJ4MeA7GLwB5zjCMwiLyvIgkS/b5V6DSIvKciNxv8zPGLQCnmtwal8zn8TLPb/c8AJAb2kn2Qg8Rkd6q+luIxzF2AcgzhmHcKyKvSWSL/02MW0Cco3EQp5vjlq/PcPF4cwvdYyfhtQBASIZhXCMiw0SkkGSfaP9XVXeEeLiXsc26NThjG4BIfSMilURko4jUi6CecQtALFjHnkGq+kfgA1Q1S0S+sPzVc2Geg/ELwElnGEYxEZkgIt+KSAkRaSrZ52EJIlJcRKqJyAzJ3jV1pGEYHwU8BeMWgFNNbo1L5vN4mee3ex4AiIphGF9L9l05REQWSPYO96EwdgHIE76dUM3F/61V9a8In4pxC4hzNA7idHPI8rWb7XHNHSncbL0LALnCMIxLRWS8iJwr2bvhPKeqU8OUeBnbilm+ZmwD4JlhGFeJyNe+bz9Q1SPhHh8C4xaAWLCOPWNDPUhVl4nIFt+3t4Z5DsYvAHmhnojc6/v6dVWtraorVTVNVQ+qaqqIPCAikyX7glALwzCut9QzbgE41eTWuGQ+j5d5frvnAYCIGYbxtog08n27SrJ3tg83V8bYBSCvfCsiFUVkk4jUjeJ5GLeAOFco1i8AyE2qetwwjN0icr6IlA33WMMwzpV//3HbdLJfGwCIiBiGcaFk7yZxoYioiLymqsMcyjZbvg47tolIOcvXjG0AIvGJZK8uXCciRQ3DeNbmMddavn7QMIwyvq9H+iZPGbcAxMImETHHo83hHuh77EUiUirg7xm/AOQZwzAMEXnV9+1qVe1t9zhVzTAM43vJ3nmwgK/mE9+PGbcAnGpya1zaLCK3i0gxwzDOUdX9Lp5nl6qeCPM4AHDNMIznRKSD79sNIlJVVXc5lDF2AcgrtX1/ThCRmtnxMojZC1HMMs+/U1UnWR7DuAXEORoHcTpaISL3iMjlhmEUUtWMEI+7KqAGAE4qwzDOF5FUEang+6sPVLWPi9Lllq+vCvmo4J8ztgGIhHm7gQoi8ouLx39v+fpSETkijFsAYmOZ/LuDYEGHx5o/D8yLjF8A8lJpETnP9/Uih8cusHxtHX8YtwCcanJrXFouIk9ZHveH3RMYhlFIRC4L8RwAEBHDMB4TkT6SvWhjm4hUUVWnBWoijF0A8o55a+FX5d8FaaGcL//O9U8VEWvjIOMWEOe4VTFORzN8fxYTkZvDPO4+y9czT97LAQARwzCKi8jvInK176++UtX2Lsv/EZGtvq/vC/dA+fcWV1tEZL2X1wgAuYhxC0AsTLN8fVnIR2UzF3JsCfh7xi8AecnavOy0wLtwiDrGLQCnmtwal2ZYvg73PLfIv7vpMM8PIGqGYVQRkYGSfX62R0QeUtW1LssZuwDkN4xbQJyjcRCno+GWr2276w3DKCAiL/m+3S8ik0/uSwIQzwzDKCoio0XkJt9fNVTVJm7rVVVFZITv26sMw7gjxO+5Q/5dqT3CVwcAnqjqK6pqhDtEpJ6l5AHLz9b7noNxC0As/CYi6b6vnwz1IMMw7hOREr5vp1t/xvgFII/tFZGDvq/v9O3gEIr1As4/5heMWwBONbk4Lk0RkQO+r182Qtx/T0ResXw9zPMLBgALwzDukuwxLEGyz9MeVtVlHp5iijB2AcgDTnP4vnn8Db6Hb7D8/f0BTzVFGLeAuEbjIE47qjpX/r3487phGHfaPOwzEank+7q1qqbbPAYAomYYxhmSfQKd5Pur1qr6XQRP1Ur+3VWirWEYRQJ+TxERaev7NsP3eACIpVbCuAUgD6nqHhHp5vv2IcMwng18jGEYZ0nO8aazzVO1EsYvAHlAVbMke5GZiMiFIvKt3eMMwzhXRKyLz0YFPKSVMG4BOLW0kijHJVVNE5E2vm8ricjngY/xzf2/7vt2qqrOi/aFA4hfhmHcKNnnZsVE5IiIPKqqC7w8B2MXgPyGcQuAweJSnI4Mw6gs2VvkFhGRwyLSSLJ3FSwiIs+KyFu+h64WkVtU9VAsXieA059hGEPk3x1vJonIxyIS7h/fNFVdHeK5fhSRr3zfLpLsC0drJftWfLVFpLLvZz+q6jfRvXIACM0wjLoiUsf37QOqOiXE4xi3AOQpwzBKish8EblYsi9CdxKRoZK9U8R1kj32mDvbdFTVd0M8D+MXgDxhGMZVIrJARIr6/mqkiPQWkXUikigid0h2jrzY9/OJqlrV5nkYtwDkCsMw7haRyy1/db6INPN9PVP+XaghIiKq2ivE80Q9LvkWfcwXkSt9f9VFRAaIyDEReUBEvhGRM33f36Wqf7r4TwRwGop27DIM4zIRmSUipXx/9YmITHD4tTtVdafNa2HsAuAot865HH7HehG5RLJ3HCwf5nGMW0Aco3EQpy3DMJJFpJ+InB3iIatFpIaq/p13rwpAvDEMw+s/tCFP3n23We8qIq+Fqe8uIm/5dq4AgJPCQ+Mg4xaAPGcYRiXJvm3x5WEe1kNE3gm1+zzjF4C8ZBhGVRH5RbIvFIUzSUSeVtV9Ns/BuAUgVxiG0UtEXnb7eN9t8OyeJ1fGJcMwLheRMSJyRYiHHBSRF1Q1cDdWAHEk2rHLMIxXRKSnx19bT1Xrhng9jF0Awsqtcy6H37FeXDQO+h7LuAXEKW5VjNOWqo4UketFpKVkNwkeFZH9kt0tX1tEKtM0CCA/UdUsVX1dRGqIyAgR2Soiab4/R0j2rRPe4CIQgFMF4xaAWFDVFSJyo4h8ISJzRGSvZI89m0XkVxF5UFVfD9U06HsOxi8AeUZVJ0j2bqi1RWSKiOwSkXTJ3s3hHxEZKCJPiEhVu6ZB33MwbgE4peTWuOSbw68s2WPkfMme4z8qIqske+7/ei5gAzjVMHYByG8Yt4D4xY6DAAAAAAAAAAAAAAAAAADEEXYcBAAAAAAAAAAAAAAAAAAgjtA4CAAAAAAAAAAAAAAAAABAHKFxEAAAAAAAAAAAAAAAAACAOELjIAAAAAAAAAAAAAAAAAAAcYTGQQAAAAAAAAAAAAAAAAAA4giNgwAAAAAAAAAAAAAAAAAAxBEaBwEAAAAAAAAAAAAAAAAAiCM0DgIAAAAAAAAAAAAAAAAAEEdoHAQAAAAAAAAAAAAAAAAAII7QOAgAAAAAAAAAAAAAAAAAQByhcRAAAAAAAAAAAAAAAAAAgDhC4yAAAAAAAAAAAAAAAAAAAHGExkEAAAAAAAAAAAAAAAAAAOIIjYMAAAAAAAAAAAAAAAAAAMQRGgcBAAAAAAAAAAAAAAAAAIgjNA4CAAAAAAAAAAAAAAAAABBHaBwEAAAAAAAAAAAAAAAAACCO0DgIAAAAAAAAAAAAAAAAAEAcoXEQAAAAAAAAAAAAAAAAAIA4QuMgAAAAAAAAAAAAAAAAAABxhMZBAAAAAAAAAAAAAAAAAADiCI2DAAAAAAAAAAAAAAAAAADEERoHAQAAAAAAAAAAAAAAAACIIzQOAgAAAAAAAAAAAAAAAAAQR2gcBAAAAAAAAAAAAAAAAAAgjvw/1jJXvZI6cogAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 3200x1200 with 1 Axes>" ] @@ -622,20 +622,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAABmCAYAAAA54Az/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAdpUlEQVR4Ae2d75XUNheHZ/dQAEkqeKEDIBUEOiB5K0joIJx8It84pAOSCgh0QN4KEuiAdBCyHez7+3ktr+3xjP9JY3n86ByvbVm6unruHc0drWzvrq+vd2vfXrx48VTbvSH9ULkfh5SjzPr9YqoN8aft2n6qzxyrhz+dlz9hz2XtCf/l+G+R/YUH9zWnn3/++Qfp/7f2f4R+6Piujr/T9kzHD0N+2CvvtbZn4Zw9BAIB+QX+FGCwn00Af5qNMCsB2HNZc8B/Of5bZX+5HPL5LctoDoafaF8PkB8oz4GOr3nrSm9V51XXBfK2SwB/2q7tU/Qcf0pBdTmZ2HM59m4Z/svx3zL7VQfJchkHuq/rriNjftT2i/L+rufXj3XdQfXj0vD1SxxvmwD+tG37x+49/hSb6LLysCf8lyWwXOub9f07qZmXgehPZTv3yv33yr+K0LYD3anLJopAWTq8i6AHIs6DAP50HnbMpRf40wKWSPidgz0XsGetSfjXYJz4cLPskwfJMuSreiCrY8/8ftB2f46RJccB95xA+0/Vf6KNIHmOIc6kLv50JobMpBv406KGiP6dgz0XtecO/svx3zr7UwTJPwiy1wCHdcOetnfeA20fu0yvfK8lfqzNgfAfB8r52mdtU5MD7DCzPVUG9VZCYIBP4U8rsWUOauJPOVjhoA4pvnMYHw7inn+Bz9N8hlMlwP44ucvjl6Nc9XKIv4ZKksEcHHt5hgPoX7U9Ut5b7dvJgfScmeQ5AXZbF84zJjDQp/CnjG2Yk2r4U07W6NQlxXcO40Mn6vmZfJ7mM5wqAfb95JLPJMsIDnTryQOYH9m2N4usPA9EflrF81qFX52vzbPR39byfWOey09Nnhk4eHPfVKE51RMv9zGwfKRj/zB4rvw99jnpHVMX9XWoT+FPPeDxp90Of+pxkgwuy0YpvnMYHxLYls9TAqgDRcJ+GKhTzCRXmsgofjzbU217zy4uC3kG2f8qawe/HvSelvWLojp2oOcgcGpy3U9TK+deT3zcv+J50DoOz4s2sw8692z9VtIgn8KfjrsD/lTxwZ8qFPkfyG+jfOcwPiSzNZ+nZGh7BcO+F9Fud7IgufyS9Xrkhzq+OqCbg9bf29fLc9dpB3eekW4Eyj7X5nbsAMWxzn/UcTud+017ZtB48oc4eFbZHLuWr7T5nMv5GJ/Cnw5bHX+6YYM/HfaRrK74u0AKxfzOYXyIb2E+T/GZDpUI+wGkki+3sA7lYOV/8zswDefeN5Y76Lz9bzIXD8lLBb4OJ+U+fHGHJQVBZnXeKl+cqp1iprrdflfZFef5B8Un9fELbfUfJb6B0rPy/gHR4L/ivh5UXX0c41P400GSxQ9U/Al/OuwhGV3x+CZ1Yn/nMD5EtjHjc2SgI8TBfhis5EFyOVi9ljoesPyvLyfPcHYGsirjt+V5OUYI7P5Unh/T5kGvEdQp30+++Fbb2IAvDHYSebbJwbCfIBI4tjta/FBoZ57juRgM8imVw58OOwD+VLLBnw47SQ5XZB9/V0T/zmF8SGNdPk9puA6RCvt+ShfX19d7pQTOs5C+Sc4BVvhFXgSouubgykGHn3Ps9a2NmTqd+1/51ctCdP6vzvcCMuVfKL+RlPdeGf6XVrVMQMfWJQx6vomvuhYqK89B70vtre/RpDLW3W2ER9I1yit/VP8alVdwov75Xyz+UbHH3+orP5rth+BQe0l5S/5on1Id/GmI8W78BX/qGaPwp35nEqNo445kJf3OiWlPk5G8pGNgP/00JdSvgzYNLaoM43OAEXEP+3gwL9uiBNcBgmdnfbOXZ3v9i9wv/wjpJ+X7tc92bpetkvIdgPpf+VWwqmP/u/+ivVWVygNdt7yd9o0gWOcOZkNeXY+yZlGnc1a6KtA88JrnzgC5LDaqf03ReZ+p357JL370dGmq61Ft39VGR14y3urPJJ9SPfypw1DtLPzphog4HB2j8Ke25zTPxSfquCN5Sb9zItvTMJKNgU3SpzsbYNOdyjA+JzAJ7ONCvVMXJ7h+8oSD3Prb8PyMYz+Czb8KvS7Yb6pz8vpin9eT8/wEhVFJsh1cW/6hp174l7bT7ze7/b+SUQXm+1dvc46V0zUHkaP7p3rW7ztt4SkStw3mdeRZ/nfS1z9yGkl5SWwvueGH1D9q8CudVwGojpPxluxZPqX6S/rTQWYNoy1/gj/d2uDoGLWwP2U7PolLknHn1izdRzmMD9ZMekwdA7MdI/psqute1sb43O2as3I3wP7kY1l7Jvk3WSh8+IKxPPPoZOW8TCG8xtlBoWeZ68mB7pt6xsBjB05Xkn0owLYODu6uBsqbWmx0/6STBzl/4M3HW5ZJetpW7l/9WdN1XaPbXm2Zyz/aez168d8H7YvZg7LhlLxz8Kkp/etjVrfZYseyI/7UpH+KMWqKP+U+PkUfd5pmOXiWw/hg5abYNPcxos+m7ncO/GFvS+wnxrIak2omWV96DnAd5LVna53v9FFliiC1VrZaj6w8g3X9vaUMuhYC767ZRNcpjKL9Xirbcn4VkB+TtydgRIbkju6f6jiwNxvPiGSZpJsH1S+1L54u0lZS+alsb7t/E9pTO55BeK+tuNFS+yS8JTcLn5rSP7E6yiywXHKvfuFPNQOIRxgj62OUfTDqf5em+JPqZDs+ldzMKcV3zkH+anfK+HBQXs0VRh9OsakayXaMGGjTLPjDft9dS/v5Qn0sOxi/7UsYljOFveosMpZd1rrkGcYqEK7l/1fH/sVVf7KEyzrvqlauCBLLjlTZOu/71ftlWTgsc6jqlgf+xWm9iuB7gLx2/Snng/s3Rfgp64iX7XJf+2oGWccOUv3DJKToti/lezCs+43bs894dqueYvPOzacG9W8kszq/kx1LR/xpn3Z7jEo9ezvIn/bVzC4n+rjjHspH+/iPHR/65MUAO8imKxgjhtg0N/6wv/Xg9ljWF7/d1px2NIj9NNFxatWDZM+GeP1xlcrBxgOEO1JPDrDaSyM8S1kFsqrrAMnJv0Kq2WXl+/hx+WHfae8gqh5s6/Qm6Zq/kK1Xvf2j8sqqc3dj+je3rWT1xc+2+1p7O349mevnWkYK2wf715opDt1uGCTDtai8M/Spof0bwyywO9kef9pHLSZ7Y5Ty/KPey4vaPxD3BUzLGepP06SfrlaKcWfXx1/XR33n9MmLhGuoTbMeI8Si16YZ8oe9DCe77I1lyk4dbw1lH+ljNl7MpasIjj94VrYKXso835jjm9HaAXFj8Nd1B2OPtIVynrn0GmPLtOxGeZ1faXOdkBzEhSdYFHmlTK9t8hv6ivoj5AW5U/cNfUtd9vo3Vfgp6pWsbD/fdPm6vinPNrUNdtonsb1lH0j2MbdZTyl45+RTc/vXxazOL/mx/MSfZfypRlpMPIY1xqja5ZSHc/0ppW6DZC8w7rT1GjQ+tCslPJ9r0xzGiDHfJTnxh33HWFaO+bZpg4/Or7R57IuRGrLLMTWrWOtO2Uv/+nPyDVbhFc5+woUfBRcC36JA+ccO/puu+VeG1xm7o34yxauy/hsdO7WDoZvcm1lMf6iLpDp+/vFnbf4S9kxjSP9Rng0S0iB5ofCM/dD+zWgiedX3asGBjf9d0k51m6ayfd1u9fZtw8YHQ+fReWfmU0P7N4ZZnekpjvGnYWPUKWwx1J9OocvUNlKNO4P0GTE+DJIXodBQm+Y8Rgy2aWb8YX/jwEvEW0PZR/iITRNxp6xWPLpNjuvgxf8mPJpUzh/U+hKIUL4rL1yr7/d+9Uqmn5oRnpxRLzvkeE/ekEqHykTo3yHRJ8tXH+qP8TvWbhLbq/2wZt2Bej0oty6N81S8JTcLnxravzHMjhk0xTXphj/N86doZhnqT9EaTCMoybgzRlVxnDM+jGmqt+xQm6rc4HG1t9H4BcbaNAv+sB/tCNHiraHsR2sYscJlKcu/AKt1wxHlx/7VG1texK6uVlQq2xvIS21hdmGnD4SP/Si/9kyyyy6VcvOpNTA7Zqut+9MxNly7JZDST25bOc+jXMeILdh0S+xz+25c5NN8RwHLXbXs2b4/Y2vgYEibQffOJg5pO7a8IW32lZFO7tszbR4g/NSIYgmK9r0z8odkq26QVT1i71DZOflqJ5ntrZcZaPMSnLAsx7OR38/UOSpv6RbVR+f0zXWlT3RmpdzkPiXdN+9Pc+0fu75sEvXzEvST3Mn+lNpPgo7nuhe/JGPEHF5bsemW2KuvuX03LjKW3dEHw4uknVLMJFtu+OVV/Itd4D24zplNjC3POk5OdiRV9rqamMnBhrfUKbXtd+ITlU0i3rn5VFRmpROdwqfwp9Sf2JHyE31erMUcf0ruJyMxra547HE1AoDN2HRj7LP5blxqLHOQ/Je2J1LgKsIHZU+E5Eb91Rtb3p7C28pIavu1oMSnolkKfxJK+VOSGY9oVlpeUFI/ic0/trzl8SfRIJlN4d9rr5Tso8ZvvT3JsMDF9fV1hmptWyUNCk9FwEs3Ji/Z2DZBet8mgE+1iXA+hwD+NIcedSEAgVwI9I1ll7koih4QgAAEIAABCEAAAhDIhQBBci6WQA8IQAACEIAABCAAgWwIXLx48YL1FgnNoan8i0Pide21rvlGxnYKL1r53L6gc7/y9ujzqHUdm3aAO5esU/sU/nQuntPdD/ypm8tac3vs6Rsu/6fN+6Hp0EvFqvqMERWK3an5w34w+0nxFmuSb/lmcySnZ01yNtY4D0XwqfOwYy69wJ9ysQR6QAACcwj0jWUst5hDl7oQgAAEIAABCEAAAmdJgCD5LM1KpyAAAQhAAAIQgAAE5hAgSJ5Dj7oQgAAEIAABCEAAAmdJgCD5LM1KpyAAAQhAAAIQgAAE5hDwG/dIEIAABCAAAQhAIDsCurHqnpR6Virmp3L4/JXy/yjz2CUiAPvdjiA5kXPNFOtXhHsjQSAWAXwqFknkmAD+hB8kJ6Ag7a4aea59CJJ3OvbTn95r70fTvUuuxEYbENutsD86lvEIuI1+AOg2BCAAAQhAIGcCCtR+lH6vtFUBcRm8/as8vzPgYc76r1k32N9YjzXJa/ZidIcABCAAAQicL4GP6lpjpk/Bm89J6QnAXoxZbpHe0WgBAhCAAAQgAIGRBBQQe93xF/VqyvNyCye/QY2UiADsb8BmPZMsIx39EOj6PW2ftD1I5CeIzYwAPpGZQVauDv60cgNGVh9/iAw0sjjZ57FEevnFMx3/WheP7eo04h9vlX22M8kySLE4f4CpfaerPzj+1wDpjAngE2ds3AW6hj8tAD3jJvGHfI0j23gizN/zX2vzd/1f2qqE7SoU0Q+2zj7nmeQnMs7RO1d1/W95xC/aWKMU/aORpUB8IkuzrFYp/Gm1pkuiOP6QBOt8ofqu9016v2j7VtLeaPug47Dswg1gO1NIkLbOPssgWUbxL8a3dXsr76629/W88viT9jwvsQPMOWXhE+dkzeX7gj8tb4OcNMAfcrLGcV1kK0+eeWLsrY4dFxAvHEcW7eoW2WcZJMui/lXYDnwfKb9rxvi+ynpGmXTeBPCJ87bvqXuHP52aeN7t4Q8Z2kff7Q+8dagWlls4QMZ2HYDmZsH+hmCuQfK9DgP7g+J/s1RJRuwqV13n4KwIdNkanzgrE5+0M/jTSXFn3xj+kKeJPkgtL624e0Q9bHcEzoxLsBe8yxkAU1b1v1CqX4/lse9ofRIaLT80XpJx9AkYoTz71RPAJ1Zvwqw6gD9lZY7FlcEfFjdBpwL+7/E7fd+3/4vs/yw7+T/O2K5AEf0P7IX0TnSscQT67tX/6YPhR7z4V6L/peI36/gXpc+9vOI7bX5dJUstBGIDCZ/YgJFP2EX86YSwV9AU/pCnkZ631dJ3vm/Y88yyHwN3pQ3btSHFOYe9OOY6k/xSunnNkV9J6aD4YflB8Pvb/QvSAfJL5TWek6g80vkSwCfO17ZL9Ax/WoJ6vm3iDxnapvyO/1v712GTmo4DvA45fP9juwS2g/0N1Ivr6+sEeBEJAQhAAAIQgAAEIACB9RLIdSZ5vUTRHAIQgAAEIAABCEBg9QQ2FSTr3wdPtXn5Rm9SOS/1IK2AAHZdgZFQEQIQgAAEILAyAptZbqFA6gfZxmubqucv69iL/72+2TcA+MbARlKe10F5/RMpUwKyD3bN1DaoBQEIQAACEFgzgU3MJCuQcjDceOC48vyIOQdYvuatK/mNPn70HClDAtg1Q6OgEgQgAAEIQOBMCGwiSJatHOg2nqesAKt4F7zyDz5CTmU86/y4DMZ0SMqMAHbNzCCoAwEIQAACEDgXApOek1wGjT+VEMIa3++Vf5UpGAe6U5dNFIGy+uX3xZMmEEjoL9h1gj2oAgEIQAACEIBAP4FJQbLEvqoHnTr2LK1fYXi/v8nTlpBuDuLnBO9/qr7f9EeQPN100f0Fu043BjUhAAEIQAACEOgnMHW5xQ8KUvwWvJD8b+97yqteJR0upN6rTb+S0k+t+PFA+w6SP8/QwwF2mC2fIWbTVUf7C3bdtL/QeQhAAAIQgMDiBKYGyV664DfiLZoUSDlQ97IPv5bSb995pLy32teTb8qbM5M8J8Cu67Hl41H+gl237Cr0HQIQgAAEIJAHgUnLLRTEhNdBhl44CPLj1RysniSpLQe/fmJF/f3ivzpfm59K8W2piG/Mc9mpybPIB2/umyp0S/Vki8H+YvuJDXbdkoPQVwhAAAIQgECGBKbOJFddUVDjJRZPte09Z7gqlObAM8j+N347AHZA5uUXxdIP7R24z1ku4bqftJEiEBjgL9g1AmdEQAACEIAABCAwj8CsIFkBjwNIr0d+qOOreaqMru3A9fd2u+W5damvmfYsdyNQ9rk26+6grDjWeddb9rhpT4BipNIGff6CXWPARgYEIAABCEAAArMITFpu4RbLgOe59g4iw7n3J1maoHba/8K3GiF5HfHX4UR7B2ZeElItzSj1rM5rZatDlSlmqU/Vp6rhMzwQQ/9I6fUXlcOuZ2h/ugQBCEAAAhBYG4FJQXIZ8LxWZx30hCdaNILQU4BQ235jnpd5hFnsP5XnR7U5IKuCdeX9oe1bbZ4xrvJVpi+F4LqvHNePEDB3XR7sLyqPXY/w5BIEIAABCEAAAukJXFxfX+8UlHjG1IGJn3P8QeeN2Tyd+4kR1ctCdP6vzotZVu2rpPyL6kQHOh8lt16371iy36uMl1E4OC+Sjr3EIgRkvomvuuYCOnfQ+1L7EFQ7uzOpjHlYvl8m0ptUzm37ZkHLDrOmYwLy3jbGFpBOSfiPlavyg/zF/VNZ7DrW0JSHAAQgAAEIQCA6gTCT/JOCE88K+wa837RVQbLyHCz6RrjwtIidjr8YqMkouQNlun0HUt63g2DPGPulJk5hf3Omv7rmPjpwHJL21jsfqiSZDr79VI1CH+0dMLv9oZwOiZ6bn4S/lBolVzwGcVA57DrX4tSHAAQgAAEIQCAKgTsKTLxcwm+Vc/L64vZzgZ03+tFuU+WqnoPY77Q90/HeEzOU56DdQejeNeU5hSD495vT5l/Vv2rmdJ+NKOcfFv4RUX/boJ8h7aD5sbZBM9HdWkzPVbuT7Kp6Dvid/tH2lc4b67anyi0kHvkjudj1CB8uQQACEIAABCBwWgKXas5LCsIrlx2ceu1oPTkgfVPPGHg8Wm4ZgDlYcqAbgt12cw7arlT2UODupQ7vdH1QMNwWPuHcM+8hsAzVrYPToT7cXE37dwp/s/9H7Dzj/ouO32tfzO7WVB0tt1b32CF2PUaHaxCAAAQgAAEInJSAZ5KLYFJ7B8MO6upLLRzsOW9vNlTlQ2B4aMZxtFzJdOD7UXvPzu4l5VuXIgjeu6gMXXcfnKpAX3lH9bwpPu1v2Z51as9aBz0OBfLTGhxRS7qN5i/xZvVNaEYyvHzFgXJ1w+NEuTvVM6fO/xCU18ba9aC8oP/UvfQJn4Xs7Dq1T9SDAAQgAAEIQGAcgctaca859ixhEVyV+UWwqrxGsKfzITOOQfRguaHCkf2X5bWwPKRd1LORDrKLoH6knm1ZQ87dN7dXZ+Z6/9VmloveuGdFlAbxl67hB1FbZ/ctPMGkEFj+GSTXZSXb9Y/9h2CsXfvklSpO3q3BrpM7R0UIQAACEIAABPoJ1INkB0mNYFjnXo9cBZwKdjx75+QZx2p2Wfk+9vpby2inMXLbdRvnku8Arh2QFmV0zQG9ZwAd4IQ0Rs9QZ8ze7Xn9cZWkhwM4b3U9qusLHAzlH2zbVvGzMkIQW782VO5OTPxDwss32gF4IU/XRtm1T15dyYnHa7DrxK5RDQIQgAAEIACBIQQua4UaAYwCEQd6j7SFwPm+8rwW2MGRA6pGeZ07eHWddmqUOyS3XenIuWeL20+1cLteG+w3/xXtTdDzSJP7lyTfDMyiCiDLPD8uzzcdBm77lU+bM5e/+9cVQM+V26YwyK7tSrHPV2TX2F1HHgQgAAEIQAACNQJ3ascOUn5TkODZV68zdhDkJ0i8Up5f1/xGm1NXwOT8QzOOQ+VaRm+SLn7+8WdtDkbdZkj/UZ4D9ZDG6hnqDd17ttHJN7mZj5OfcOGXluQSIFunofzr7FwvJHNsBMTlhaFyg5yjezEbatejciJcXItdI3QVERCAAAQgAAEIHCJQBcllgNm1RKArr0te54xjBLl7bUmmn8YRnsixd70no1PPnjpdl4tH40kXB5BeSpBlGsrf/SjLdi2j2Av6h8odA0Uy59h1TFPHyq7Crsc6wDUIQAACEIAABOYTqC+3GCpt7IzjULmxy6XW0zOO1brs2MovJO+l2g0zqTsFrT724/S6ZpIXUjF5s+do1+TQaAACEIAABCBwbgRGB8llwOQA1DOO7bQ349gucOxcsv2oMS/3+ElbcazzsJThWNW9a4n19BIE9//QUzb29BmbIf19I6SfCHGypPY8I+4XiIQlNv4vwvcnU2DhhtTv5HZduIs0DwEIQAACEIDAQAJ3BpZrFwszjkVQrOAiyoyj5HjG0mtdY6Ukeko539DolHIm2QGbt5Mm2SAm/5PqHqGxU9g1gpqIgAAEIAABCEAgNYGL6+vrSW0omPKMr5Nv8vMNa76B7coZOaUUekqmg9dH2icLkiXbj7TzbHq2652H2ll98Ky7n0jiH1MPtLlPfrPfpL7FliddiiS5ye0a2mIPAQhAAAIQgEDeBCYHyXl3a/3aKWA7myB5/dagBxCAAAQgAAEIbI3A5dY6TH8hAAEIQAACEIAABCDQR4AguY8Q1yEAAQhAAAIQgAAENkfg4sWLF9MWJW8O1bQOa9nExbGauv5a171Wt538PGenzze7xl+/5vno86t1Hbs2kMU96bNr3NaQBgEIQAACEIDAqQmwJvnUxAe2pyCMNckDWVEMAhCAAAQgAAEIxCbAcovYRJEHAQhAAAIQgAAEILB6AgTJqzchHYAABCAAAQhAAAIQiE2AIDk2UeRBAAIQgAAEIAABCKyeAEHy6k1IByAAAQhAAAIQgAAEYhMgSI5NFHkQgAAEIAABCEAAAqsnQJCcrwn9iu/sXvOdLy40gwAEIAABCEAAAvEI8Ai4eCyRBAEIQAACEIAABCBwJgSYST4TQ9INCEAAAhCAAAQgAIF4BAiS47FEEgQgAAEIQAACEIDAmRDIOkjWW+f8yuaDSdfvafuk7cHBQlzIjgB2zc4kKAQBCEAAAhCAQItAtkGyAim/lvl9S9+u03vKfNx1gbz8CGDX/GyCRhCAAAQgAAEI7BPINkiWqk8UUL3bV/k2R9f/1tkv2ngKxC2W3I+wa+4WQj8IQAACEIAABHZZBskKfj0z/LZuH+Xd1dY1s/xJ5f6ol+U4TwLYNU+7oBUEIAABCEAAAvsEsgySpaZnG9uB7yPld80Y31dZzyiT8ieAXfO3ERpCAAIQgAAEICACuQbJ9zqs45vz3tTzFRx3lasX4TgvAl32wq552QhtIAABCEAAAhAQgVyDZC+tqJ5YUR6/kr5PgtWUd1fHXpJx9AkYoTz7LAhg1yzMgBIQgAAEIAABCPQRyPKNewqAHRD/oO1XbZ599Brlb7R90OZlGF5e8Z225yrrMqQVEMCuKzASKkIAAhCAAAQgUBDIdSb5pbT7S9uP2hwkP1SA9VH7Z9q8NtkB8ksCZFFYV8Ku67IX2kIAAhCAAAQ2S+D/MzKlhPPMp7MAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAA4CAYAAACv3lq/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAYAElEQVR4Ae2d7bXdNBaGb7JSQAgVTOgAQgUkHTBDBYQOYM0v8i8LOghUwEAHMBUQ6CBMBWSlgzvv41i+so8/ZB/pHOucV2v5WpbkLenZ+0ja/rr3bm9vbxxMwARMwARMwARMoBSBFy9ePJXst9r/uVSHynytMj9o/26p7LXnm+u1W4D7bwLjBO6PJzvVBEzABEzABEzABI4nICfkY0l5rH3PudMxab9qexjXouPvdfxdnOb4IQFxMtdDLE4xARMQATt4NgMTMAETMAETMIGSBL6TM/JDXEHrnDQOSpwexX9WmefRsaOHBMz1kIlTTMAERMAOns3ABEzABEzABEygCAE5aY8luHfnjoqU/qe2X6YqVd5vyns2lX/t6eJjrtduBO6/CcwQeDCT5ywTMAETMAETMAETmCUgZ4M7cbxjxztzPG75V+S8kfdG25bQe3Rzi4CazzHXmrXntpvAeQlcxB08DYKfa+Nq1mJQOV7edjCBjoDtp0PhyEYCtqGN4HZ0mnW4TRnihhP2b+2/18aHUXh/7lPtP28lPtL+bRtfu+PcqwziZ65XqfnDTvNb0uY17iGaalLOocPqHTxB4xn9d9r/FTSt+EPStf0R0sJeaUxCr8Kx99dNADsRAdvPdZvBUb23DR2FbxcnW4dHqeGJzh4uPpljf2ylvh7Jb7MWd1sdw0XBFRQw1wqUVLqJHptKEy4v/1w6rNrBEzSucD3Tnmf1m6A4j4OwaCePbSzw8ra/0DVG5orSbD9XpOxCXbUNFQJ7QrHW4XGwxe83bZ/EUnTMBVcutLLx/t2ncT5xpX+sjSdquEvHHcBwx4/sJl+7g3f3mswr+CMe5noFep7romzAa9w5QBXknVOHtb+Dh5PWuxsnmEwIvLzdmyxiO1AeAydfn2LyeRfnOX5VBGw/V6XuIp21DRXBelKh1uEMbuZJZf9b29/acNReKq3neOk4vPrAfEr58PEUnDfS+FcIT7XFF2ObuVp5PNI5Fr5S+a+GGchRGhdyeQz0nyFfcS7cdschfa97tdVc96qc/bTLY9N+dLG1JWfTYXEHLxrEgBMe4/hS6Qz6xwYmjIMJIFEoEw0TRZiIEk9zsQsiYPu5IGWeqSu2oROA9zxyAsjTVfxXWczZXDjFseL4A4q3euH4G8Vj5+3XNr95dUJ5vJv3tTY+vtK9TkGZsaAyXKDtXbylnNJxirjzx6sWtxxre6eNdjGf1xTM9cTawl5UJRcrCLnXo++l5v3r+SUvz1Fphe3ibDos7uCJJnfKOidMcQZt3o37aJS0ElvYDNb8ALnb1rtayHlKI+8YJ/F3nc8nmO3gCcKlhSUbsv1cmsbz9mfJfqjNNpSX+YI0zyMLgEpky8a5M/da+zAHx49eMv9ydRqnrXPuonb00lQGp4wFdkpg3h+b37kjiLOIA0i9oQzrBd7164LyWCM05bQn/ovSFp3LTkDBiNpRLVewtGxZy/1T8aCDgsSyiV49jmSreSBI3PgtTK5zW8bHsPUad8B85nCTXexdh/dnOpwr67kgYMQhMCE8VhpX3A5CW5YrLEwo/GPUJ0r7+aDg+wH77Uh6ahI/HAZ9hwsjkGhD6N72c2G6z9GdRPuhKttQDuBpMjyPpHHKXYqLs/H8+4QK9BsJC0/ed/+JtEGgHA5AL0Tn9dKHB1PllB6cui90TiyfR0ebu4aRLNqNM4hjx2OgcT+iYmeJVstVLFm7sdW4flo1jpSyDDFkTby0zvX8UkoBh3JX20UNOnxw2M/sKQxkvStrUzUIGFc0+GjKN1EZBmgewxg+X0/ZMMlExZOjxyzukys5ZUExYkAI7Jhg6SOPzvx5ynacsy5sRfWn2JDtZ0RR125DK+wHerahERsqlOR5pBDYKbHtb4E5JZ6/eceteeqlzef03vyi9OaumfZNOQoUCCyQYwePY94N5PFNHiXlt8mF5HdR3Ryf/b370Da1qzqusFT70TeMuVhfW0geR0p1rNW/1yilAG+Tu8ouatHh/W0s0s8SCBy0eJAFJFfhepNCK5ErGnjSDM5x4E4e/wckvuvXPCoSF1oZZ+LaxeMaK9s9Wlxs6M8r7ZsX07Xnq2Yw/kNxJr9rCak2ZPsZWIRtqAGSaj8Utg0NbKjUoWzT80gpuNNym3lD7Jv5ux0fSPuSU9p05hjmnia0ZfgNfdYmdenK40Mrw7k9LrY23szfkkmbkMtxmOseKf5WWxw47toaZ5w4noUrrLXxXiNrI/a5+jbH9cSo8lYnRmvGkbyV30lLnWM8v9wxKxrbYBdV6PB+UWoD4YKIg8bVvd4nlaNibxT/j8o1E0pIb49JC4P3jdJ6E0sou2LPYEh9uwrq11NtPPayNnA1Dee5C5LD3Ty47enRlK59hSJJNmT7GaVvG3o/JngM2jYGjRpV7kT9dj2P5IY6Lq95R128cR6Yk5hfPlE8np9x5HgPizK8V0aZz+IyiqMvtlwOiEQ1TiZPp1DnQ23cLaSNrAsIOHOPmtjdH47jtt/lnDaWhauaXOIRVJz3Oa5FSEmPW9c9m9vT2uXcenSz7IUTL3KNcg4dLnDelJ1oF1Xo8MEmAhtOEjQGdxaQwwmik6Yy3KmbCgzYPGcfB+4EchWrueJEBsfaMcngDJJHnX9rP/wUM4NszyHS8R4CkxXb2kB/36ifH2iLJzFedOcKX4/TWuG1lFc/19iQ7aev2Ku3oZX2Az3bUN+Gih4xjqkCzyNFKXfCecyfxx4nH7VUHnPN7DyqMjhdWR/pa9sUtyuO39Aubd26oO0Rv9VhWpt10t3RXNUP1gjM6fFcz/FRj6DqfDjGLON4SUj0h+0kQf1cHEdKNUR1X+oa5aQ6LKGfVLuoRYcncfBaaFwVwqm6aY/ZHwy2SuMqHHf4wsD1u9IYZPhBDsuHOw7hvbMgszvWOQdB8pqBRPuhvIOyFSXgyPH+QeA2bHrT52HiJR6LQaoN2X76BmAbEo8V9gM921DfhoodSS/MAZ5HihE+EMxdt96XMA9K7DuhubOoJjLPc/duL/8jLwdX+sNF7zhwzG8Eh7pY0O+Q9nMxkDbwD+rDGq1YnTkFrxlHctYby1IbvEaJgewgvtYuatDhqIOnhvPjZTDEWQiTauMMKQ9HAePk3xzwflfvaoSOeWyA/5nTOBrac/4rbUzMDAwErvgdOGHK5ytYXGXrrggqHt+67zlkyuNTygzia+9OhUUZbekFyVrVv97JZzyAw0T1DXPljw76Ss+m64n6D5JLMpbsZBtSWdtPpB3xqMKG9mI/oLMNRQY0iIpNtrFFsjyPDPiWPGx5T/2rgpJVZ5OtPrBeGD65k03+FkEZueLM4WDFgeNm3RUn5o6rD6wl2M7OVm1ZtV5r+S+uR9fKXcNYss+6Rhm2Ve2ZHKeHZUscl2C9VqbKJ88vMFD5KnR4f6gwNRznB6eJj3XghPFj4P/WhcAVG37YdJCyXVA6jh+PA8aDDOdiQOzD9nxQ5kbHyGPfOXftMVcQQ1rcDrJDedrKD30xqBxt5IucPWcxOnFt/6JT9xVVH3HuMNwDZ5qWKj+3rhGbEoowVn9W25DOwbZsPxNaE5892tBu7AdstqFD4xGT3GOL55FDzMVSpD8utDZP3BSr5AoF5+IqOayxhmuYvTyCekrNrp0LksYRdWCt3KQ+S297WKN0bVV7lsbprmzBSAnWa2Wm2sVNTTp8ECtNDeeFUxy0+J+Qv1Yaz3XjpHHV6HdtBAZ/juNAGld2uqDzPugOJiIqg9OF/KmPrwTn7T9jInQ+dwdDmbEicdrBBxRCpmSwmF3VP85t6/6XojgKU32g6KkDd1PD/wDq1a12Ztc1FUhucPr/1uGHOu45lzouwlhyN9sQbdR2TvuZZdZT3OkPdmVDe7QfVLIDG8J+dzEGiUX2sUUyr2Ee2fM4sHnkke4Y85nfH2lj4VXVI32bO17+xL0+glq+56qhtatV6zWdkzKOXOwaJVaMWMyO08ov/nj2Fh3SB503OVZukalzFu2irffs68w1Ouw5eDrxR229BbmOuQNEYAHxWiCCA8di4iUZUWAQH6ZF2ZNR6uSl6CB7WJA24Ki8G2aE47m8UIb9QjmugIU2JPVP5cPkhfhUJ4F2cGcUXsPAJEh+uGsZ5/Oi+tRjdHE5zkc+/Zkqn13Xqgvj7z5oo+On2vg0dnwluBTjo2xIbZy0rRjsQrktfUthFjehiasdRe2HSto69mZDWxin/EaPsp+W17lsKKV/jd3EfwraUPaxJW73TLxmHW4dB5hz/qstee5RWRyDMM/N4MyT1dZFfWd/pC+1R2pzDVx39wjqEt/MY87quWCpfW3+arnqV8oYfNT4pDpyzC8xgqVxOi7bxc+tQ9W/NFau1l/XueVIVTrsHDxBw9lgUBveJQtOCM5FY2BR2e79O6XhhHH+gdevvDlvm3MaB077g9DWRToL2qJBda3un85h4oINV0OSg8qPOXA3rRzeKdw8GepcfgCPtI8dq65tSi+la/Tc/f8j1cM7HDh43TuSimdnLJm7sKEtfROvRWad4qKI6ipmP1Qj+bu0oS2Mdc7sb1T5u7Cflnv230dkNr2o+p3dhiSz1Nhy0+pp9C5lm1ftPCLFbB0HsJfsT42I523PWC7sQP27N9cl5ZvrHKCJvASu2cacVkc32ocx5+j1KN3aIlfnVDPHtH0MzCbX+xMqhs+5dTg7Vm7RX8uEdcDo/BLl72KOaduzqMMHFGwDd3o6Jy4kav+FNjzi+HlvypLWLEbaso2DozQMvQs6XvK2mztWOiHcau/ObSN4zLSrcxwVR8GE0ccA32cd9Te5f0fVUuBksUEPH2nf3blTHKO80T7oMLuu2zr4gYQ6qJKAjXB1a5iek/HebCipbxuYwbN4ULtqsKEkxomwttjP7GSQWO9csZz9m6sndx7tLjGPMIYwoRFgPwzV6nCP44DaNOsADeH7OI2AuaZxWlkqeawU/6X1aFx1stz4pIn4lvGp5Dp3zTg90aWsyUmsV46VSTLpheQuzS8U26LDkuuERR3ep9VtYPLkfbsutJ2m4wiKAw5Dz5HTMXeLGidM5z3XFiZhjDR2zog/VX7sdLxT2kFQGRaatKurH9k65jFA3pviLhd3iH7VPmdY07+c9R4lSxzQ1aewGQiC49sorYSug76japoo9YYfRpyXjbH6i/O4JxtK7dtaZjG/IvGKbCiV8SKnDfbD74xxCP1N6XCx3oUC2fq3UE/u7BJjy410hNPIeD+8UNS0v3IdTtnQ1NiZW2dnkSed8WQHawXe++cfpfPxM35bDkcQEMNr47pmrJxdjw6wr5E7OLV/KJ3sbY2yZpzud6bMUSrrNWNlqswb6Wd2fqHLG3RYep2wqMP7bcOBBoxuIa7OkMYHFvhwyNCZ602yyqcjT7SFctxB4p06ZCKnV17H77TFAzkOSe+2byuTZ4T5x+jx+Wt+oDp9U4jru2nbctC/TZILnaQ2whp98UGcV/GmNHQI8xvt0Ud2XSN7ImBT1DkMuRnvyYaO7dsUsyHDrMeyjZps6FjGQ3bJ9iNOi5PBUPiG49z929CEdaecYWwZNvDSdHiWcWAIteAxczlrhfAhMJ7i4X1Ch+MIXBvXpLGynd9Yi/TK65i1UbweDfR75XQ+ZY5ZByaPT6qn2Dp3wzgdeJTcH8t6bKw8VuZYf5N1KM7F1gmpOnzQ9gBPkMBdsa/fR5v/czf1Mjad/FFlMUIekwQk7wF8157/k+KEsYU96b0rkzrnB21vteGgkBfCP5TGj68Jii85jD2FhvM27FP7t0F0sVO4iwkf7iwMQ3C8SS+l605Pg8qxgTG9ZGUs29iTDaX2bS2zAdrshzXZUCrjJEip9pMkLE+hrP3L06RFKaXGlsWKKVCxDvc2DiTxzlDo5UDGhzqO5/9Btg8TCVwb19SxkrXIWOitR6MCqXKjU6ajqeOTypVe564dp6c7lS8nlfWasTJVZnIvUnWYLHB7wSQdPmjlN//eQI1nIb74cQ+VA3L32GTUxrG0KLuLHnjbkvmLctnmwtof6JysybwM/ZuUXSpDbY7/tcVcNUV0rfrDO5kMTrFDSVuGxzclGEvmLmwotW8qt4rZnFJz5Kk91dhQKuM1XCQzxX7WiNxctkT/Njcm/cQiY0t69Y2TV50OpetdjQNreB9TVv0ezgu8SsBFY4cjCFwb1wxj5cF6FPwZ5B5oUTJTxqfS69xV4/RBJwokpLJWueSxMlXm2u4k6nCt2LXlk3QYHDy8QQwvd1jjbR9T9+gP9BiBZzwXZlPccjSrlK5pG1cOkd9M3PohNHXxoyRz5+FcNpSbWWn7QY22oZ0b85HN22pDJe3iyC7t/vTc48DuOxwaqPmBp4a+0MarBd2XEEO+99sIVMZ165izBs7UuuqhhFzTGqXUOH0KHaLvqx0rI2NP0uEDDQIYN3ddeP49a5DsZG87seLd/UDVR9h9pQ3gvNzcPLaq/eKd0LE+67zugzRj+cekSXYxXdMu+qyNx3TDo7vcEfrymDa3cnMy3pUN5WYmecXsp9VFdTYkJjnt51hzzn5+7v5tsSGdU9QuskPbmUDxKzJ27qybo81p+45jx0dWbjgeLejEVQRq4qq2Fp23AKc6cq9HO31Ids45ptgaRe0sNk5LdnEdtnq82rGy7X+yDh/oBF4aJZRSTjZvu+QP9D2C9X9pk87iWd8aQmld34hHdhY5GSNLGwMoA/LwEaHh8Ul0WoJZwYZXZ0M57acg182id9K/4naxGVAlJ1Y2DmSlqr7zUTbmjj+05/+nnmUsztqpHQgz1wMlZFuPxpLFOds6EFnoTfJLrFEuYpwWn+zrzFifO48n6xAH77W2Z61BZe+X5Ob2tov8QLN3fJ8Ci+p6n10ebZVtaBRLUqJtKAnT1RUqaheaR3JeIb865eytw9InV6H/p+0zxYMzx6KWwAImpDUJ/pNGwFznOYlP7vXofIXbc0utUYqO09u7e94zZRc1zS/JOrx3e3t7XrIbapcywovYfMGTxwD5+meYHDZI9CnXRsA2dG0az9ffwWTwsSTzSBn/m9OPluXDXFSSdVgUb5Jw6eCNCvJvkJq5W3u+AM3c3vt6dpIwF+oImGuHouqI9Oh1bsUalP5ip/Es64QqHbyKde6mm4AJmIAJmMDVE9ACiEXPF9q4UEv4VBsXa2v44EXT4D3+Mdc9asVtMoHTE7CDd3rmrtEETMAETMAETMAETMAETMAEihC4X0SqhZqACZiACZiACZiACZiACZiACZycgB28kyN3hSZgAiZgAiZgAiZgAiZgAiZQhsC9b7/9tr6vrJRhYakmYAImYAImYAImYAImYAImUDUBv4NXtfrceBMwARMwARMwARMwARMwARO4I+BHNO9YOGYCJmACJmACJmACJmACJmACVROwg1e1+tx4EzABEzABEzABEzABEzABE7gjYAfvjoVjJmACJmACJmACJmACJmACJlA1ATt4VavPjTcBEzABEzABEzABEzABEzCBOwJ28O5YOGYCJmACJmACJmACJmACJmACVROwg1e1+tx4EzABEzABEzABEzABEzABE7gjYAfvjoVjJmACJmACJmACJmACJmACJlA1ATt4VavPjTcBEzABEzABEzABEzABEzCBOwJ28O5YOGYCJmACJmACJmACJmACJmACVROwg1e1+tx4EzABEzCBMQIvXrx4NZYe0pT/WNsbbR+HNO9NwARMwARM4BII2MG7BC26DyZgAiZgAh0BOW2f6+DXLmE68lhZT6eznWMCJmACJmAC9RGwg1efztxiEzABEzCBeQLP5OT9MldE+X8p/3tt7+bKOc8ETMAETMAEaiNgB682jbm9JmACJmACkwTkuHFH7ue4gNIeahu7o/dG5X6LyzpuAiZgAiZgArUTsINXuwbdfhMwARMwgZgAd++GTtsTFRi7U/eRynInz8EETMAETMAELoaAHbyLUaU7YgImYAImIAKPRyjwIZWf4nQ5dmPl4iKOm4AJmIAJmECVBOzgVak2N9oETMAETGCCAI9jdl/GbOPfqeyzUF5pDxXnMc7ZL22G8t6bgAmYgAmYQE0E7t3e3tbUXrfVBEzABEzABCYJyHnDmXuu7Qdt3KXjnbzPtP2hjUc3eSTzX9q+UVnKOJiACZiACZjARRHwHbyLUqc7YwImYAJXT+ClCLzW9rU2HLxP5Mj9qf1X2ngXD+fupZ07UXAwARMwARO4SAL/BypkIUzwvshxAAAAAElFTkSuQmCC", "text/latex": [ - "$\\displaystyle \\frac{\\rho u_{0}^{2} {\\partial^{(1)}_{0} u_{1}}}{\\omega} + \\frac{2 \\rho u_{0} u_{1} {\\partial^{(1)}_{0} u_{0}}}{\\omega} + \\frac{2 \\rho u_{0} u_{1} {\\partial^{(1)}_{1} u_{1}}}{\\omega} + \\frac{\\rho u_{1}^{2} {\\partial^{(1)}_{1} u_{0}}}{\\omega} - \\frac{\\rho {\\partial^{(1)}_{1} u_{0}}}{3 \\omega} - \\frac{\\rho {\\partial^{(1)}_{0} u_{1}}}{3 \\omega} + \\frac{u_{0}^{2} u_{1} {\\partial^{(1)}_{0} \\rho}}{\\omega} + \\frac{u_{0} u_{1}^{2} {\\partial^{(1)}_{1} \\rho}}{\\omega}$" + "$\\displaystyle \\frac{\\rho u_{0}^{2} {\\partial^{(1)}_{0} u_{1}} + 2 \\rho u_{0} u_{1} {\\partial^{(1)}_{0} u_{0}} + 2 \\rho u_{0} u_{1} {\\partial^{(1)}_{1} u_{1}} + \\rho u_{1}^{2} {\\partial^{(1)}_{1} u_{0}} - \\frac{\\rho {\\partial^{(1)}_{1} u_{0}}}{3} - \\frac{\\rho {\\partial^{(1)}_{0} u_{1}}}{3} + u_{0}^{2} u_{1} {\\partial^{(1)}_{0} \\rho} + u_{0} u_{1}^{2} {\\partial^{(1)}_{1} \\rho}}{\\omega}$" ], "text/plain": [ - " 2 2 \n", - "Ïâ‹…uâ‚€ â‹…D(u_1) 2â‹…Ïâ‹…u₀⋅uâ‚â‹…D(u_0) 2â‹…Ïâ‹…u₀⋅uâ‚â‹…D(u_1) Ïâ‹…uâ‚ â‹…D(u_0) Ïâ‹…D(u_0) \n", - "──────────── + ──────────────── + ──────────────── + ──────────── - ──────── -\n", - " ω ω ω ω 3⋅ω \n", + " 2 2 Ïâ‹…D(u_0) \n", + "Ïâ‹…uâ‚€ â‹…D(u_1) + 2â‹…Ïâ‹…u₀⋅uâ‚â‹…D(u_0) + 2â‹…Ïâ‹…u₀⋅uâ‚â‹…D(u_1) + Ïâ‹…uâ‚ â‹…D(u_0) - ──────── -\n", + " 3 \n", + "──────────────────────────────────────────────────────────────────────────────\n", + " ω \n", "\n", - " 2 2 \n", - " Ïâ‹…D(u_1) uâ‚€ â‹…uâ‚â‹…D(rho) u₀⋅uâ‚ â‹…D(rho)\n", - " ──────── + ───────────── + ─────────────\n", - " 3⋅ω ω ω " + " Ïâ‹…D(u_1) 2 2 \n", + " ──────── + uâ‚€ â‹…uâ‚â‹…D(rho) + u₀⋅uâ‚ â‹…D(rho)\n", + " 3 \n", + "─────────────────────────────────────────\n", + " " ] }, "execution_count": 17, @@ -788,11 +790,8 @@ } ], "metadata": { - "interpreter": { - "hash": "ca06c80c4febc35b85e85156d391051f9f4a8895eee3f708eb1f33a09d8697a0" - }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.8.2 ('walberla_dev')", "language": "python", "name": "python3" }, @@ -806,7 +805,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.9" + "version": "3.8.2" + }, + "vscode": { + "interpreter": { + "hash": "16c4475f8761a33edafce150242b66df5b4abe8839febe0da1ac663b672fe94f" + } } }, "nbformat": 4, diff --git a/doc/sphinx/methods.rst b/doc/sphinx/methods.rst index 2aa4c63c6d942910db85a4c2f9e9eb5d3a1d31b2..087694e92a6bedcf132200416a8dda211a41dc1f 100644 --- a/doc/sphinx/methods.rst +++ b/doc/sphinx/methods.rst @@ -97,7 +97,7 @@ Class Cumulant-based methods ====================== -These methods are represented by instances of :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod` and will derive +These methods are represented by instances of :class:`lbmpy.methods.cumulantbased.CumulantBasedLbMethod` and will derive collision equations in cumulant space. Creation Functions @@ -105,25 +105,17 @@ Creation Functions The following factory functions create cumulant-based methods using the regular continuous hydrodynamic maxwellian equilibrium. -.. autofunction:: lbmpy.methods.create_with_polynomial_cumulants +.. autofunction:: lbmpy.methods.create_cumulant .. autofunction:: lbmpy.methods.create_with_monomial_cumulants .. autofunction:: lbmpy.methods.create_with_default_polynomial_cumulants -.. autofunction:: lbmpy.methods.create_centered_cumulant_model - - -Utility -------- - -.. autoclass:: lbmpy.methods.centeredcumulant.CenteredCumulantForceModel - :members: Class ----- -.. autoclass:: lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod +.. autoclass:: lbmpy.methods.cumulantbased.CumulantBasedLbMethod :members: diff --git a/doc/sphinx/moment_transforms.rst b/doc/sphinx/moment_transforms.rst index cfe42b4df35d1c9c2706996b0cbced3fdfdd9355..e800409525cbe2f9d44dfec794e5a2d1a0874026 100644 --- a/doc/sphinx/moment_transforms.rst +++ b/doc/sphinx/moment_transforms.rst @@ -241,6 +241,9 @@ Central Moment Space Transforms .. autoclass:: lbmpy.moment_transforms.PdfsToCentralMomentsByMatrix :members: +.. autoclass:: lbmpy.moment_transforms.BinomialChimeraTransform + :members: + .. autoclass:: lbmpy.moment_transforms.FastCentralMomentTransform :members: @@ -250,6 +253,6 @@ Central Moment Space Transforms Cumulant Space Transforms ------------------------- -.. autoclass:: lbmpy.methods.centeredcumulant.cumulant_transform.CentralMomentsToCumulantsByGeneratingFunc +.. autoclass:: lbmpy.moment_transforms.CentralMomentsToCumulantsByGeneratingFunc :members: diff --git a/lbmpy/creationfunctions.py b/lbmpy/creationfunctions.py index adc3d6f7e51104da9ba1a36e231da54944e7d557..83a1ecfcc44777e17a59f88133ce2ce590516908 100644 --- a/lbmpy/creationfunctions.py +++ b/lbmpy/creationfunctions.py @@ -63,7 +63,6 @@ import sympy.core.numbers from lbmpy.enums import Stencil, Method, ForceModel, CollisionSpace import lbmpy.forcemodels as forcemodels -import lbmpy.methods.centeredcumulant.force_model as cumulant_force_model from lbmpy.fieldaccess import CollideOnlyInplaceAccessor, PdfFieldAccessor, PeriodicTwoFieldsAccessor from lbmpy.fluctuatinglb import add_fluctuations_to_collision_rule from lbmpy.non_newtonian_models import add_cassons_model, CassonsParameters @@ -71,7 +70,7 @@ from lbmpy.methods import (create_mrt_orthogonal, create_mrt_raw, create_central create_srt, create_trt, create_trt_kbc) from lbmpy.methods.creationfunctions import CollisionSpaceInfo from lbmpy.methods.creationfunctions import ( - create_with_monomial_cumulants, create_with_polynomial_cumulants, create_with_default_polynomial_cumulants) + create_with_monomial_cumulants, create_cumulant, create_with_default_polynomial_cumulants) from lbmpy.methods.momentbased.entropic import add_entropy_condition, add_iterative_entropy_condition from lbmpy.relaxationrates import relaxation_rate_from_magic_number from lbmpy.simplificationfactory import create_simplification_strategy @@ -86,6 +85,7 @@ from pystencils.field import Field from pystencils.simp import sympy_cse, SimplificationStrategy # needed for the docstring from lbmpy.methods.abstractlbmethod import LbmCollisionRule, AbstractLbMethod +from lbmpy.methods.cumulantbased import CumulantBasedLbMethod # Filter out JobLib warnings. They are not usefull for use: # https://github.com/joblib/joblib/issues/683 @@ -195,7 +195,7 @@ class LBMConfig: galilean_correction: bool = False """ Special correction for D3Q27 cumulant LBMs. For Details see - :mod:`lbmpy.methods.centeredcumulant.galilean_correction` + :mod:`lbmpy.methods.cumulantbased.galilean_correction` """ collision_space_info: CollisionSpaceInfo = None """ @@ -412,8 +412,7 @@ class LBMConfig: force_not_zero = True if self.force_model is None and force_not_zero: - self.force_model = cumulant_force_model.CenteredCumulantForceModel(self.force[:self.stencil.D]) \ - if self.method == Method.CUMULANT else forcemodels.Guo(self.force[:self.stencil.D]) + self.force_model = forcemodels.Guo(self.force[:self.stencil.D]) force_model_dict = { 'simple': forcemodels.Simple, @@ -424,7 +423,6 @@ class LBMConfig: 'silva': forcemodels.Buick, 'edm': forcemodels.EDM, 'kupershtokh': forcemodels.EDM, - 'cumulant': cumulant_force_model.CenteredCumulantForceModel, 'he': forcemodels.He, 'shanchen': forcemodels.ShanChen } @@ -453,10 +451,13 @@ class LBMOptimisation: """ Run common subexpression elimination after all other simplifications have been executed. """ - simplification: Union[str, bool] = 'auto' + simplification: Union[str, bool, SimplificationStrategy] = 'auto' """ - Simplifications applied during the derivation of the collision rule. For details - see :func:`lbmpy.simplificationfactory.create_simplification_strategy` + Simplifications applied during the derivation of the collision rule. If ``True`` or ``'auto'``, + a default simplification strategy is selected according to the type of the method; + see :func:`lbmpy.simplificationfactory.create_simplification_strategy`. + If ``False``, no simplification is applied. + Otherwise, the given simplification strategy will be applied. """ pre_simplification: bool = True """ @@ -637,6 +638,10 @@ def create_lb_collision_rule(lb_method=None, lbm_config=None, lbm_optimisation=N else: collision_rule = lb_method.get_collision_rule(pre_simplification=pre_simplification) + if lbm_config.galilean_correction: + from lbmpy.methods.cumulantbased import add_galilean_correction + collision_rule = add_galilean_correction(collision_rule) + if lbm_config.entropic: if lbm_config.smagorinsky or lbm_config.cassons: raise ValueError("Choose either entropic, smagorinsky or cassons") @@ -666,7 +671,7 @@ def create_lb_collision_rule(lb_method=None, lbm_config=None, lbm_optimisation=N output_eqs = cqc.output_equations_from_pdfs(lb_method.pre_collision_pdf_symbols, lbm_config.output) collision_rule = collision_rule.new_merged(output_eqs) - if lbm_optimisation.simplification == 'auto': + if lbm_optimisation.simplification is True or lbm_optimisation.simplification == 'auto': simplification = create_simplification_strategy(lb_method, split_inner_loop=lbm_optimisation.split) elif callable(lbm_optimisation.simplification): simplification = lbm_optimisation.simplification @@ -674,6 +679,10 @@ def create_lb_collision_rule(lb_method=None, lbm_config=None, lbm_optimisation=N simplification = SimplificationStrategy() collision_rule = simplification(collision_rule) + if isinstance(collision_rule.method, CumulantBasedLbMethod): + from lbmpy.methods.cumulantbased.cumulant_simplifications import check_for_logarithms + check_for_logarithms(collision_rule) + if lbm_config.fluctuating: add_fluctuations_to_collision_rule(collision_rule, **lbm_config.fluctuating) @@ -712,7 +721,6 @@ def create_lb_method(lbm_config=None, **params): 'zero_centered': lbm_config.zero_centered, 'force_model': lbm_config.force_model, 'c_s_sq': lbm_config.c_s_sq, - 'galilean_correction': lbm_config.galilean_correction, 'collision_space_info': lbm_config.collision_space_info, } @@ -741,7 +749,7 @@ def create_lb_method(lbm_config=None, **params): method = create_trt_kbc(dim, relaxation_rates[0], relaxation_rates[1], 'KBC-N' + method_nr, **common_params) elif lbm_config.method == Method.CUMULANT: if lbm_config.nested_moments is not None: - method = create_with_polynomial_cumulants( + method = create_cumulant( lbm_config.stencil, relaxation_rates, lbm_config.nested_moments, **cumulant_params) else: method = create_with_default_polynomial_cumulants(lbm_config.stencil, relaxation_rates, **cumulant_params) @@ -757,7 +765,7 @@ def create_lb_method(lbm_config=None, **params): if lbm_config.entropic: method.set_conserved_moments_relaxation_rate(relaxation_rates[0]) - lbm_config.method = method + lbm_config.lb_method = method return method diff --git a/lbmpy/enums.py b/lbmpy/enums.py index 5471a5d8b37375b2b21300e9f72ecb396d2a0b61..b43300d14faaf1747d3a77147b69383488251b83 100644 --- a/lbmpy/enums.py +++ b/lbmpy/enums.py @@ -159,7 +159,7 @@ class CollisionSpace(Enum): """ Cumulant space, meaning relaxation is applied to a set of linearly independent, polynomial cumulants of the discrete population vector. Default for `lbmpy.enums.Method.CUMULANT` and `lbmpy.enums.Method.MONOMIAL_CUMULANT`. - Results in the creation of an instance of :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod`. + Results in the creation of an instance of :class:`lbmpy.methods.cumulantbased.CumulantBasedLbMethod`. """ def compatible(self, method: Method): @@ -209,10 +209,6 @@ class ForceModel(Enum): """ See :class:`lbmpy.forcemodels.EDM` """ - CUMULANT = auto() - """ - See :class:`lbmpy.methods.centeredcumulant.CenteredCumulantForceModel` - """ HE = auto() """ See :class:`lbmpy.forcemodels.He` diff --git a/lbmpy/forcemodels.py b/lbmpy/forcemodels.py index 10eab7670e49212317d071c43874c63988031cde..0f018a649a853cc2c42cacb41474b882bde8799e 100644 --- a/lbmpy/forcemodels.py +++ b/lbmpy/forcemodels.py @@ -96,7 +96,7 @@ from lbmpy.maxwellian_equilibrium import ( ) from lbmpy.moments import ( MOMENT_SYMBOLS, exponent_tuple_sort_key, exponents_to_polynomial_representations, - extract_monomials, moment_sort_key, + extract_monomials, moment_sort_key, moment_matrix, monomial_to_polynomial_transformation_matrix, set_up_shift_matrix) FORCE_SYMBOLS = sp.symbols("F_x, F_y, F_z") @@ -131,6 +131,7 @@ class AbstractForceModel(abc.ABC): # central moment space self.has_moment_space_forcing = hasattr(self, "moment_space_forcing") self.has_central_moment_space_forcing = hasattr(self, "central_moment_space_forcing") + self.has_symmetric_central_moment_forcing = hasattr(self, "symmetric_central_moment_forcing") def __call__(self, lb_method): r""" @@ -201,6 +202,13 @@ class Simple(AbstractForceModel): moments = (lb_method.moment_matrix * sp.Matrix(self(lb_method))).expand() return lb_method.shift_matrix * moments + def symmetric_central_moment_forcing(self, lb_method, central_moments): + u = lb_method.first_order_equilibrium_moment_symbols + cm_matrix = moment_matrix(central_moments, lb_method.stencil, shift_velocity=u) + before = sp.Matrix([0] * lb_method.stencil.Q) + after = cm_matrix @ sp.Matrix(self(lb_method)) + return before, after + class Luo(AbstractForceModel): r"""Force model by Luo :cite:`luo1993lattice`. @@ -232,6 +240,13 @@ class Luo(AbstractForceModel): moments = lb_method.moment_matrix * self(lb_method) return (lb_method.shift_matrix * moments).expand() + def symmetric_central_moment_forcing(self, lb_method, central_moments): + u = lb_method.first_order_equilibrium_moment_symbols + cm_matrix = moment_matrix(central_moments, lb_method.stencil, shift_velocity=u) + before = sp.Matrix([0] * lb_method.stencil.Q) + after = (cm_matrix @ sp.Matrix(self(lb_method))).expand() + return before, after + class Guo(AbstractForceModel): r""" @@ -269,6 +284,12 @@ class Guo(AbstractForceModel): return central_moments + def symmetric_central_moment_forcing(self, lb_method, central_moments): + luo = Luo(self.symbolic_force_vector) + _, force_cms = luo.symmetric_central_moment_forcing(lb_method, central_moments) + force_cms = sp.Rational(1, 2) * force_cms + return force_cms, force_cms + def equilibrium_velocity_shift(self, density): return default_velocity_shift(density, self.symbolic_force_vector) @@ -324,14 +345,14 @@ class He(AbstractForceModel): return sp.Matrix(result) - def continuous_force_raw_moments(self, lb_method): + def continuous_force_raw_moments(self, lb_method, moments=None): rho = lb_method.zeroth_order_equilibrium_moment_symbol u = lb_method.first_order_equilibrium_moment_symbols dim = lb_method.dim c_s_sq = sp.Rational(1, 3) force = sp.Matrix(self.symbolic_force_vector) - moment_polynomials = lb_method.moments + moment_polynomials = lb_method.moments if moments is None else moments moment_exponents = sorted(extract_monomials(moment_polynomials), key=exponent_tuple_sort_key) moment_monomials = exponents_to_polynomial_representations(moment_exponents) extended_monomials = set() @@ -354,10 +375,12 @@ class He(AbstractForceModel): polynomial_force_moments = mono_to_poly_matrix * sp.Matrix(monomial_force_moments) return polynomial_force_moments - def continuous_force_central_moments(self, lb_method): - raw_moments = self.continuous_force_raw_moments(lb_method) + def continuous_force_central_moments(self, lb_method, moments=None): + if moments is None: + moments = lb_method.moments + raw_moments = self.continuous_force_raw_moments(lb_method, moments=moments) u = lb_method.first_order_equilibrium_moment_symbols - shift_matrix = set_up_shift_matrix(lb_method.moments, lb_method.stencil, velocity_symbols=u) + shift_matrix = set_up_shift_matrix(moments, lb_method.stencil, velocity_symbols=u) return (shift_matrix * raw_moments).expand() def __call__(self, lb_method): @@ -384,6 +407,11 @@ class He(AbstractForceModel): central_moments = (correction_factor * central_moments).expand() return central_moments + def symmetric_central_moment_forcing(self, lb_method, central_moments): + central_moments = exponents_to_polynomial_representations(central_moments) + force_cms = sp.Rational(1, 2) * self.continuous_force_central_moments(lb_method, moments=central_moments) + return force_cms, force_cms + def equilibrium_velocity_shift(self, density): return default_velocity_shift(density, self.symbolic_force_vector) diff --git a/lbmpy/methods/__init__.py b/lbmpy/methods/__init__.py index 1f010cf18a6cdaf4b42ab525f89b9ac0aac7e298..6acf3b43c7e4a2c404aa08530acc7c5355111ec1 100644 --- a/lbmpy/methods/__init__.py +++ b/lbmpy/methods/__init__.py @@ -1,17 +1,15 @@ -from lbmpy.methods.creationfunctions import ( +from .creationfunctions import ( CollisionSpaceInfo, create_mrt_orthogonal, create_mrt_raw, create_central_moment, create_srt, create_trt, create_trt_kbc, create_trt_with_magic_number, create_with_continuous_maxwellian_equilibrium, create_with_discrete_maxwellian_equilibrium, create_from_equilibrium, - create_centered_cumulant_model, create_with_default_polynomial_cumulants, - create_with_polynomial_cumulants, create_with_monomial_cumulants) + create_cumulant, create_with_default_polynomial_cumulants, create_with_monomial_cumulants) -from lbmpy.methods.default_moment_sets import mrt_orthogonal_modes_literature, cascaded_moment_sets_literature +from .default_moment_sets import mrt_orthogonal_modes_literature, cascaded_moment_sets_literature -from lbmpy.methods.abstractlbmethod import LbmCollisionRule, AbstractLbMethod, RelaxationInfo -from lbmpy.methods.conservedquantitycomputation import AbstractConservedQuantityComputation +from .abstractlbmethod import LbmCollisionRule, AbstractLbMethod, RelaxationInfo +from .conservedquantitycomputation import AbstractConservedQuantityComputation, DensityVelocityComputation -from .conservedquantitycomputation import DensityVelocityComputation __all__ = ['CollisionSpaceInfo', 'RelaxationInfo', 'AbstractLbMethod', 'LbmCollisionRule', @@ -21,5 +19,5 @@ __all__ = ['CollisionSpaceInfo', 'RelaxationInfo', 'create_with_continuous_maxwellian_equilibrium', 'create_with_discrete_maxwellian_equilibrium', 'create_from_equilibrium', 'mrt_orthogonal_modes_literature', 'cascaded_moment_sets_literature', - 'create_centered_cumulant_model', 'create_with_default_polynomial_cumulants', - 'create_with_polynomial_cumulants', 'create_with_monomial_cumulants'] + 'create_cumulant', 'create_with_default_polynomial_cumulants', + 'create_with_monomial_cumulants'] diff --git a/lbmpy/methods/abstractlbmethod.py b/lbmpy/methods/abstractlbmethod.py index a0c433ba988f12a2badc7002729239718c77782b..3954fcfc913fb1e29253d7e5f52cef40e329a5ad 100644 --- a/lbmpy/methods/abstractlbmethod.py +++ b/lbmpy/methods/abstractlbmethod.py @@ -98,17 +98,17 @@ class AbstractLbMethod(abc.ABC): # -------------------------------- Helper Functions ---------------------------------------------------------------- - def _generate_symbolic_relaxation_matrix(self): + def _generate_symbolic_relaxation_matrix(self, relaxation_rates=None): """ This function replaces the numbers in the relaxation matrix with symbols in this case, and returns also the subexpressions, that assign the number to the newly introduced symbol """ - rr = [self.relaxation_matrix[i, i] for i in range(self.relaxation_matrix.rows)] + rr = relaxation_rates if relaxation_rates is not None else self.relaxation_rates unique_relaxation_rates = set() subexpressions = {} for relaxation_rate in rr: + relaxation_rate = sp.sympify(relaxation_rate) if relaxation_rate not in unique_relaxation_rates: - relaxation_rate = sp.sympify(relaxation_rate) # special treatment for zero, sp.Zero would be an integer .. if isinstance(relaxation_rate, Zero): relaxation_rate = 0.0 diff --git a/lbmpy/methods/centeredcumulant/__init__.py b/lbmpy/methods/centeredcumulant/__init__.py deleted file mode 100644 index 73535ce03ecb2da214378297148a10ed28d40b5d..0000000000000000000000000000000000000000 --- a/lbmpy/methods/centeredcumulant/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -from .force_model import CenteredCumulantForceModel -from .centeredcumulantmethod import CenteredCumulantBasedLbMethod - -__all__ = ['CenteredCumulantForceModel', 'CenteredCumulantBasedLbMethod'] diff --git a/lbmpy/methods/centeredcumulant/force_model.py b/lbmpy/methods/centeredcumulant/force_model.py deleted file mode 100644 index 4eb66a57b2ba50ad8cb7ee1a3a3eb684507f41f9..0000000000000000000000000000000000000000 --- a/lbmpy/methods/centeredcumulant/force_model.py +++ /dev/null @@ -1,27 +0,0 @@ -from lbmpy.forcemodels import AbstractForceModel, default_velocity_shift - - -# =========================== Centered Cumulant Force Model ========================================================== - - -class CenteredCumulantForceModel(AbstractForceModel): - """ - A force model to be used with the centered cumulant-based LB Method. - It only shifts the macroscopic and equilibrium velocities and does not introduce a forcing term to the - collision process. Forcing is then applied through relaxation of the first central moments in the shifted frame of - reference (cf. https://doi.org/10.1016/j.camwa.2015.05.001). - - Args: - force: force vector which should be applied to the fluid - """ - - def __init__(self, force): - self.override_momentum_relaxation_rate = 2 - - super(CenteredCumulantForceModel, self).__init__(force) - - def __call__(self, lb_method): - raise Exception('This force model does not provide a forcing term.') - - def equilibrium_velocity_shift(self, density): - return default_velocity_shift(density, self.symbolic_force_vector) diff --git a/lbmpy/methods/centeredcumulant/galilean_correction.py b/lbmpy/methods/centeredcumulant/galilean_correction.py deleted file mode 100644 index c5550536cb5ecff4417753735ca7586d4abac730..0000000000000000000000000000000000000000 --- a/lbmpy/methods/centeredcumulant/galilean_correction.py +++ /dev/null @@ -1,73 +0,0 @@ -from pystencils.simp.assignment_collection import AssignmentCollection -import sympy as sp -from pystencils import Assignment - -from lbmpy.moments import MOMENT_SYMBOLS, statistical_quantity_symbol -from lbmpy.methods.centeredcumulant.cumulant_transform import PRE_COLLISION_CUMULANT - -x, y, z = MOMENT_SYMBOLS -corrected_polynomials = [x**2 - y**2, x**2 - z**2, x**2 + y**2 + z**2] - - -def contains_corrected_polynomials(polynomials): - return all(cp in polynomials for cp in corrected_polynomials) - - -def add_galilean_correction(poly_relaxation_eqs, polynomials, correction_terms): - # Call PC1 = (x^2 - y^2), PC2 = (x^2 - z^2), PC3 = (x^2 + y^2 + z^2) - try: - index_pc1 = polynomials.index(corrected_polynomials[0]) - index_pc2 = polynomials.index(corrected_polynomials[1]) - index_pc3 = polynomials.index(corrected_polynomials[2]) - except ValueError: - raise ValueError("For the galilean correction, all three polynomial cumulants" - + "(x^2 - y^2), (x^2 - z^2) and (x^2 + y^2 + z^2) need to be present!") - - cor1 = correction_terms.main_assignments[0].lhs - cor2 = correction_terms.main_assignments[1].lhs - cor3 = correction_terms.main_assignments[2].lhs - - poly_relaxation_eqs[index_pc1] += cor1 - poly_relaxation_eqs[index_pc2] += cor2 - poly_relaxation_eqs[index_pc3] += cor3 - - return poly_relaxation_eqs - - -def get_galilean_correction_terms(cumulant_to_relaxation_info_dict, rho, u_vector, - pre_collision_cumulant_base=PRE_COLLISION_CUMULANT): - - pc1 = corrected_polynomials[0] - pc2 = corrected_polynomials[1] - pc3 = corrected_polynomials[2] - - try: - omega_1 = cumulant_to_relaxation_info_dict[pc1].relaxation_rate - assert omega_1 == cumulant_to_relaxation_info_dict[pc2].relaxation_rate, \ - "Cumulants (x^2 - y^2) and (x^2 - z^2) must have the same relaxation rate" - omega_2 = cumulant_to_relaxation_info_dict[pc3].relaxation_rate - except IndexError: - raise ValueError("For the galilean correction, all three polynomial cumulants" - + "(x^2 - y^2), (x^2 - z^2) and (x^2 + y^2 + z^2) must be present!") - - dx, dy, dz = sp.symbols('Dx, Dy, Dz') - c_xx = statistical_quantity_symbol(pre_collision_cumulant_base, (2, 0, 0)) - c_yy = statistical_quantity_symbol(pre_collision_cumulant_base, (0, 2, 0)) - c_zz = statistical_quantity_symbol(pre_collision_cumulant_base, (0, 0, 2)) - - cor1, cor2, cor3 = sp.symbols("corr_:3") - - # Derivative Approximations - subexpressions = [ - Assignment(dx, - omega_1 / (2 * rho) * (2 * c_xx - c_yy - c_zz) - - omega_2 / (2 * rho) * (c_xx + c_yy + c_zz - rho)), - Assignment(dy, dx + (3 * omega_1) / (2 * rho) * (c_xx - c_yy)), - Assignment(dz, dx + (3 * omega_1) / (2 * rho) * (c_xx - c_zz))] - - # Correction Terms - main_assignments = [ - Assignment(cor1, - 3 * rho * (1 - omega_1 / 2) * (u_vector[0]**2 * dx - u_vector[1]**2 * dy)), - Assignment(cor2, - 3 * rho * (1 - omega_1 / 2) * (u_vector[0]**2 * dx - u_vector[2]**2 * dz)), - Assignment(cor3, - 3 * rho * (1 - omega_2 / 2) - * (u_vector[0]**2 * dx + u_vector[1]**2 * dy + u_vector[2]**2 * dz))] - return AssignmentCollection(main_assignments=main_assignments, subexpressions=subexpressions) diff --git a/lbmpy/methods/creationfunctions.py b/lbmpy/methods/creationfunctions.py index f563b42351ed9d085d926bb7cb0c36cc2cd01294..78f35192b95d1fe718b02d75b830f40be6c82f65 100644 --- a/lbmpy/methods/creationfunctions.py +++ b/lbmpy/methods/creationfunctions.py @@ -14,15 +14,15 @@ from lbmpy.equilibrium import ContinuousHydrodynamicMaxwellian, DiscreteHydrodyn from lbmpy.methods.default_moment_sets import cascaded_moment_sets_literature -from lbmpy.methods.centeredcumulant import CenteredCumulantBasedLbMethod -from lbmpy.methods.centeredcumulant.cumulant_transform import CentralMomentsToCumulantsByGeneratingFunc +from lbmpy.moment_transforms import CentralMomentsToCumulantsByGeneratingFunc -from lbmpy.methods.conservedquantitycomputation import DensityVelocityComputation +from .conservedquantitycomputation import DensityVelocityComputation -from lbmpy.methods.momentbased.momentbasedmethod import MomentBasedLbMethod -from lbmpy.methods.momentbased.centralmomentbasedmethod import CentralMomentBasedLbMethod +from .momentbased.momentbasedmethod import MomentBasedLbMethod +from .momentbased.centralmomentbasedmethod import CentralMomentBasedLbMethod +from .cumulantbased import CumulantBasedLbMethod from lbmpy.moment_transforms import ( - AbstractMomentTransform, PdfsToCentralMomentsByShiftMatrix, PdfsToMomentsByChimeraTransform) + AbstractMomentTransform, BinomialChimeraTransform, PdfsToMomentsByChimeraTransform) from lbmpy.moment_transforms.rawmomenttransforms import AbstractRawMomentTransform from lbmpy.moment_transforms.centralmomenttransforms import AbstractCentralMomentTransform @@ -58,14 +58,14 @@ class CollisionSpaceInfo: """ Python class that determines how PDFs are transformed to central moment space. If left as 'None', this parameter will be inferred from `collision_space`, defaulting to - :class:`lbmpy.moment_transforms.PdfsToCentralMomentsByShiftMatrix` + :class:`lbmpy.moment_transforms.BinomialChimeraTransform` if `CollisionSpace.CENTRAL_MOMENTS` or `CollisionSpace.CUMULANTS` is given, or `None` otherwise. """ cumulant_transform_class: Type[AbstractMomentTransform] = None """ Python class that determines how central moments are transformed to cumulant space. If left as 'None', this parameter will be inferred from `collision_space`, defaulting to - :class:`lbmpy.methods.centeredcumulant.cumulant_transform.CentralMomentsToCumulantsByGeneratingFunc` + :class:`lbmpy.moment_transforms.CentralMomentsToCumulantsByGeneratingFunc` if `CollisionSpace.CUMULANTS` is given, or `None` otherwise. """ @@ -74,7 +74,7 @@ class CollisionSpaceInfo: self.raw_moment_transform_class = PdfsToMomentsByChimeraTransform if self.collision_space in (CollisionSpace.CENTRAL_MOMENTS, CollisionSpace.CUMULANTS) \ and self.central_moment_transform_class is None: - self.central_moment_transform_class = PdfsToCentralMomentsByShiftMatrix + self.central_moment_transform_class = BinomialChimeraTransform if self.collision_space == CollisionSpace.CUMULANTS and self.cumulant_transform_class is None: self.cumulant_transform_class = CentralMomentsToCumulantsByGeneratingFunc @@ -212,9 +212,10 @@ def create_from_equilibrium(stencil, equilibrium, conserved_quantity_computation force_model=force_model, zero_centered=zero_centered, central_moment_transform_class=cspace.central_moment_transform_class) elif cspace.collision_space == CollisionSpace.CUMULANTS: - raise NotImplementedError("Creating a cumulant method from general equilibria is not supported yet.") - # return CenteredCumulantBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc, - # force_model=force_model, zero_centered=zero_centered) + return CumulantBasedLbMethod(stencil, equilibrium, mom_to_rr_dict, conserved_quantity_computation=cqc, + force_model=force_model, zero_centered=zero_centered, + central_moment_transform_class=cspace.central_moment_transform_class, + cumulant_transform_class=cspace.cumulant_transform_class) # ------------------------------------ SRT / TRT/ MRT Creators --------------------------------------------------------- @@ -239,7 +240,7 @@ def create_srt(stencil, relaxation_rate, continuous_equilibrium=True, **kwargs): :class:`lbmpy.methods.momentbased.MomentBasedLbMethod` instance """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) - kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.POPULATIONS)) + check_and_set_mrt_space(CollisionSpace.POPULATIONS) moments = get_default_moment_set_for_stencil(stencil) rr_dict = OrderedDict([(m, relaxation_rate) for m in moments]) if continuous_equilibrium: @@ -268,7 +269,7 @@ def create_trt(stencil, relaxation_rate_even_moments, relaxation_rate_odd_moment :class:`lbmpy.methods.momentbased.MomentBasedLbMethod` instance """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) - kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.POPULATIONS)) + check_and_set_mrt_space(CollisionSpace.POPULATIONS) moments = get_default_moment_set_for_stencil(stencil) rr_dict = OrderedDict([(m, relaxation_rate_even_moments if is_even(m) else relaxation_rate_odd_moments) for m in moments]) @@ -321,7 +322,7 @@ def create_mrt_raw(stencil, relaxation_rates, continuous_equilibrium=True, **kwa :class:`lbmpy.methods.momentbased.MomentBasedLbMethod` instance """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) - kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.RAW_MOMENTS)) + check_and_set_mrt_space(CollisionSpace.RAW_MOMENTS) moments = get_default_moment_set_for_stencil(stencil) nested_moments = [(c,) for c in moments] rr_dict = _get_relaxation_info_dict(relaxation_rates, nested_moments, stencil.D) @@ -349,7 +350,11 @@ def create_central_moment(stencil, relaxation_rates, nested_moments=None, :class:`lbmpy.methods.momentbased.CentralMomentBasedLbMethod` instance """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) + kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.CENTRAL_MOMENTS)) + if kwargs['collision_space_info'].collision_space != CollisionSpace.CENTRAL_MOMENTS: + raise ValueError("Central moment-based methods can only be derived in central moment space.") + if nested_moments and not isinstance(nested_moments[0], list): nested_moments = list(sort_moments_into_groups_of_same_order(nested_moments).values()) second_order_moments = nested_moments[2] @@ -392,7 +397,7 @@ def create_trt_kbc(dim, shear_relaxation_rate, higher_order_relaxation_rate, met used to compute the equilibrium moments. """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) - kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.POPULATIONS)) + check_and_set_mrt_space(CollisionSpace.POPULATIONS) def product(iterable): return reduce(operator.mul, iterable, 1) @@ -473,7 +478,7 @@ def create_mrt_orthogonal(stencil, relaxation_rates, continuous_equilibrium=True raw moments except for the separation of the shear and bulk viscosity. """ continuous_equilibrium = _deprecate_maxwellian_moments(continuous_equilibrium, kwargs) - kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.RAW_MOMENTS)) + check_and_set_mrt_space(CollisionSpace.RAW_MOMENTS) if weighted: weights = get_weights(stencil, sp.Rational(1, 3)) @@ -514,58 +519,8 @@ def create_mrt_orthogonal(stencil, relaxation_rates, continuous_equilibrium=True # ----------------------------------------- Cumulant method creators --------------------------------------------------- - -def create_centered_cumulant_model(stencil, cumulant_to_rr_dict, force_model=None, - zero_centered=True, - c_s_sq=sp.Rational(1, 3), - galilean_correction=False, - collision_space_info=CollisionSpaceInfo(CollisionSpace.CUMULANTS)): - r"""Creates a cumulant lattice Boltzmann model. - - Args: - stencil: instance of :class:`lbmpy.stencils.LBStencil` - cumulant_to_rr_dict: dict that has as many entries as the stencil. Each cumulant, which can be - represented by an exponent tuple or in polynomial form is mapped to a relaxation rate. - See :func:`lbmpy.methods.default_moment_sets.cascaded_moment_sets_literature` - force_model: force model used for the collision. For cumulant LB method a good choice is - `lbmpy.methods.centeredcumulant.CenteredCumulantForceModel` - zero_centered: If `True`, the zero-centered storage format for PDFs is used, storing only their deviation from - the background distribution (given by the lattice weights). - c_s_sq: Speed of sound squared - galilean_correction: special correction for D3Q27 cumulant collisions. See Appendix H in - :cite:`geier2015`. Implemented in :mod:`lbmpy.methods.centeredcumulant.galilean_correction` - central_moment_transform_class: Class which defines the transformation to the central moment space - (see :mod:`lbmpy.moment_transforms`) - cumulant_transform_class: Class which defines the transformation from the central moment space to the - cumulant space (see :mod:`lbmpy.methods.centeredcumulant.cumulant_transform`) - - Returns: - :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod` instance - """ - - assert len(cumulant_to_rr_dict) == stencil.Q, \ - "The number of moments has to be equal to the number of stencil entries" - assert collision_space_info.collision_space == CollisionSpace.CUMULANTS - - # CQC - cqc = DensityVelocityComputation(stencil, True, zero_centered, force_model=force_model, c_s_sq=c_s_sq) - - equilibrium = ContinuousHydrodynamicMaxwellian(dim=stencil.D, compressible=True, - deviation_only=False, - order=None, - c_s_sq=c_s_sq) - - cspace = collision_space_info - return CenteredCumulantBasedLbMethod(stencil, equilibrium, cumulant_to_rr_dict, - conserved_quantity_computation=cqc, force_model=force_model, - zero_centered=zero_centered, - galilean_correction=galilean_correction, - central_moment_transform_class=cspace.central_moment_transform_class, - cumulant_transform_class=cspace.cumulant_transform_class) - - -def create_with_polynomial_cumulants(stencil, relaxation_rates, cumulant_groups, **kwargs): - r"""Creates a cumulant lattice Boltzmann model based on a default polynomial set. +def create_cumulant(stencil, relaxation_rates, cumulant_groups, **kwargs): + r"""Creates a cumulant-based lattice Boltzmann method. Args: stencil: instance of :class:`lbmpy.stencils.LBStencil` @@ -576,17 +531,24 @@ def create_with_polynomial_cumulants(stencil, relaxation_rates, cumulant_groups, that the force is applied correctly to the momentum groups cumulant_groups: Nested sequence of polynomial expressions defining the cumulants to be relaxed. All cumulants within one group are relaxed with the same relaxation rate. - kwargs: See :func:`create_centered_cumulant_model` + kwargs: See :func:`create_with_continuous_maxwellian_equilibrium` Returns: - :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod` instance + :class:`lbmpy.methods.cumulantbased.CumulantBasedLbMethod` instance """ cumulant_to_rr_dict = _get_relaxation_info_dict(relaxation_rates, cumulant_groups, stencil.D) - return create_centered_cumulant_model(stencil, cumulant_to_rr_dict, **kwargs) + kwargs.setdefault('collision_space_info', CollisionSpaceInfo(CollisionSpace.CUMULANTS)) + + if kwargs['collision_space_info'].collision_space != CollisionSpace.CUMULANTS: + raise ValueError("Cumulant-based methods can only be derived in cumulant space.") + + return create_with_continuous_maxwellian_equilibrium(stencil, cumulant_to_rr_dict, + compressible=True, delta_equilibrium=False, + **kwargs) def create_with_monomial_cumulants(stencil, relaxation_rates, **kwargs): - r"""Creates a cumulant lattice Boltzmann model based on a default polinomial set. + r"""Creates a cumulant lattice Boltzmann model using the given stencil's canonical monomial cumulants. Args: stencil: instance of :class:`lbmpy.stencils.LBStencil` @@ -595,29 +557,28 @@ def create_with_monomial_cumulants(stencil, relaxation_rates, **kwargs): used for determine the viscosity of the simulation. All other cumulants are relaxed with one. If a cumulant force model is provided the first order cumulants are relaxed with two to ensure that the force is applied correctly to the momentum groups - kwargs: See :func:`create_centered_cumulant_model` + kwargs: See :func:`create_cumulant` Returns: - :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod` instance + :class:`lbmpy.methods.cumulantbased.CumulantBasedLbMethod` instance """ # Get monomial moments cumulants = get_default_moment_set_for_stencil(stencil) cumulant_groups = [(c,) for c in cumulants] - - return create_with_polynomial_cumulants(stencil, relaxation_rates, cumulant_groups, **kwargs) + return create_cumulant(stencil, relaxation_rates, cumulant_groups, **kwargs) def create_with_default_polynomial_cumulants(stencil, relaxation_rates, **kwargs): - r"""Creates a cumulant lattice Boltzmann model based on a default polynomial set. + r"""Creates a cumulant lattice Boltzmann model based on the default polynomial set of :cite:`geier2015`. - Args: See :func:`create_with_polynomial_cumulants`. + Args: See :func:`create_cumulant`. Returns: - :class:`lbmpy.methods.centeredcumulant.CenteredCumulantBasedLbMethod` instance + :class:`lbmpy.methods.cumulantbased.CumulantBasedLbMethod` instance """ # Get polynomial groups cumulant_groups = cascaded_moment_sets_literature(stencil) - return create_with_polynomial_cumulants(stencil, relaxation_rates, cumulant_groups, **kwargs) + return create_cumulant(stencil, relaxation_rates, cumulant_groups, **kwargs) def _get_relaxation_info_dict(relaxation_rates, nested_moments, dim): @@ -704,6 +665,14 @@ def _get_relaxation_info_dict(relaxation_rates, nested_moments, dim): "relaxed with 0. The last possibility is to specify a relaxation rate for each moment, " "including conserved moments") return result + + +def check_and_set_mrt_space(default, **kwargs): + kwargs.setdefault('collision_space_info', CollisionSpaceInfo(default)) + + if kwargs['collision_space_info'].collision_space not in (CollisionSpace.RAW_MOMENTS, CollisionSpace.POPULATIONS): + raise ValueError("Raw moment-based methods can only be derived in population or raw moment space.") + # ----------------------------------------- Comparison view for notebooks ---------------------------------------------- diff --git a/lbmpy/methods/cumulantbased/__init__.py b/lbmpy/methods/cumulantbased/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..939617543159a0d10584e170acfb9030f72a16bb --- /dev/null +++ b/lbmpy/methods/cumulantbased/__init__.py @@ -0,0 +1,4 @@ +from .cumulantbasedmethod import CumulantBasedLbMethod +from .galilean_correction import add_galilean_correction + +__all__ = ['CumulantBasedLbMethod', 'add_galilean_correction'] diff --git a/lbmpy/methods/cumulantbased/cumulant_simplifications.py b/lbmpy/methods/cumulantbased/cumulant_simplifications.py new file mode 100644 index 0000000000000000000000000000000000000000..9e9312a8fa1aea2718aada3c9daa4a73e3c7e87b --- /dev/null +++ b/lbmpy/methods/cumulantbased/cumulant_simplifications.py @@ -0,0 +1,50 @@ +import sympy as sp +from pystencils.simp.subexpression_insertion import insert_subexpressions + +from warnings import warn + + +def insert_logs(ac, **kwargs): + def callback(exp): + rhs = exp.rhs + logs = rhs.atoms(sp.log) + return len(logs) > 0 + + return insert_subexpressions(ac, callback, **kwargs) + + +def insert_log_products(ac, **kwargs): + def callback(asm): + rhs = asm.rhs + if isinstance(rhs, sp.log): + return True + if isinstance(rhs, sp.Mul): + if any(isinstance(arg, sp.log) for arg in rhs.args): + return True + return False + + return insert_subexpressions(ac, callback, **kwargs) + + +def expand_post_collision_central_moments(ac): + if 'post_collision_monomial_central_moments' in ac.simplification_hints: + subexpr_dict = ac.subexpressions_dict + cm_symbols = ac.simplification_hints['post_collision_monomial_central_moments'] + for s in cm_symbols: + if s in subexpr_dict: + subexpr_dict[s] = subexpr_dict[s].expand() + ac = ac.copy() + ac.set_sub_expressions_from_dict(subexpr_dict) + return ac + + +def check_for_logarithms(ac): + logs = ac.atoms(sp.log) + if len(logs) > 0: + warn("""There are logarithms remaining in your cumulant-based collision operator! + This will let your kernel's performance and numerical accuracy deterioate severly. + Either you have disabled simplification, or it unexpectedly failed. + If the presence of logarithms is intended, please inspect the kernel to make sure + if this warning can be ignored. + Otherwise, if setting `simplification='auto'` in your optimization config does not resolve + the problem, try a different parametrization, or contact the developers.""") diff --git a/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py b/lbmpy/methods/cumulantbased/cumulantbasedmethod.py similarity index 54% rename from lbmpy/methods/centeredcumulant/centeredcumulantmethod.py rename to lbmpy/methods/cumulantbased/cumulantbasedmethod.py index df49699449237b55424472800aa8f24f2fe76129..c77c6e116af431a17604efc9c8a3f8ac290094dd 100644 --- a/lbmpy/methods/centeredcumulant/centeredcumulantmethod.py +++ b/lbmpy/methods/cumulantbased/cumulantbasedmethod.py @@ -1,124 +1,26 @@ -from pystencils.simp.simplifications import sympy_cse import sympy as sp from collections import OrderedDict -from warnings import warn, filterwarnings +from warnings import filterwarnings from pystencils import Assignment, AssignmentCollection -from pystencils.simp.assignment_collection import SymbolGen -from pystencils.stencil import have_same_entries -from pystencils.cache import disk_cache from pystencils.sympyextensions import is_constant -from lbmpy.enums import Stencil -from lbmpy.stencils import LBStencil from lbmpy.methods.abstractlbmethod import AbstractLbMethod, LbmCollisionRule, RelaxationInfo from lbmpy.methods.conservedquantitycomputation import AbstractConservedQuantityComputation -from lbmpy.moments import (moments_up_to_order, get_order, moment_matrix, - monomial_to_polynomial_transformation_matrix, - moment_sort_key, exponent_tuple_sort_key, - exponent_to_polynomial_representation, extract_monomials, MOMENT_SYMBOLS, - statistical_quantity_symbol) - -from lbmpy.forcemodels import Luo, Simple - -# Local Imports - -from .cumulant_transform import ( - PRE_COLLISION_CUMULANT, POST_COLLISION_CUMULANT, - CentralMomentsToCumulantsByGeneratingFunc) +from lbmpy.moments import moment_matrix, MOMENT_SYMBOLS, statistical_quantity_symbol from lbmpy.moment_transforms import ( PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, POST_COLLISION_MONOMIAL_CENTRAL_MOMENT, - PdfsToCentralMomentsByShiftMatrix) - -from lbmpy.methods.centeredcumulant.force_model import CenteredCumulantForceModel -from lbmpy.methods.centeredcumulant.galilean_correction import ( - contains_corrected_polynomials, - add_galilean_correction, - get_galilean_correction_terms) - - -# ============================ Cached Transformations ================================================================ - -@disk_cache -def cached_forward_transform(transform_obj, *args, **kwargs): - return transform_obj.forward_transform(*args, **kwargs) - - -@disk_cache -def cached_backward_transform(transform_obj, *args, **kwargs): - return transform_obj.backward_transform(*args, **kwargs) - - -# ============================ Lower Order Central Moment Collision ================================================== - - -@disk_cache -def relax_lower_order_central_moments(moment_indices, pre_collision_values, - relaxation_rates, equilibrium_values, - post_collision_base=POST_COLLISION_MONOMIAL_CENTRAL_MOMENT): - post_collision_symbols = [statistical_quantity_symbol(post_collision_base, i) for i in moment_indices] - equilibrium_vec = sp.Matrix(equilibrium_values) - moment_vec = sp.Matrix(pre_collision_values) - relaxation_matrix = sp.diag(*relaxation_rates) - moment_vec = moment_vec + relaxation_matrix * (equilibrium_vec - moment_vec) - main_assignments = [Assignment(s, eq) for s, eq in zip(post_collision_symbols, moment_vec)] - - return AssignmentCollection(main_assignments) - - -# ============================ Polynomial Cumulant Collision ========================================================= - -@disk_cache -def relax_polynomial_cumulants(monomial_exponents, polynomials, relaxation_rates, equilibrium_values, - pre_simplification, - galilean_correction_terms=None, - pre_collision_base=PRE_COLLISION_CUMULANT, - post_collision_base=POST_COLLISION_CUMULANT, - subexpression_base='sub_col'): - mon_to_poly_matrix = monomial_to_polynomial_transformation_matrix(monomial_exponents, polynomials) - mon_vec = sp.Matrix([statistical_quantity_symbol(pre_collision_base, exp) for exp in monomial_exponents]) - equilibrium_vec = sp.Matrix(equilibrium_values) - relaxation_matrix = sp.diag(*relaxation_rates) - - subexpressions = [] - - poly_vec = mon_to_poly_matrix * mon_vec - relaxed_polys = poly_vec + relaxation_matrix * (equilibrium_vec - poly_vec) - - if galilean_correction_terms is not None: - relaxed_polys = add_galilean_correction(relaxed_polys, polynomials, galilean_correction_terms) - subexpressions = galilean_correction_terms.all_assignments - - relaxed_monos = mon_to_poly_matrix.inv() * relaxed_polys - - main_assignments = [Assignment(statistical_quantity_symbol(post_collision_base, exp), v) - for exp, v in zip(monomial_exponents, relaxed_monos)] + CentralMomentsToCumulantsByGeneratingFunc, + BinomialChimeraTransform) - symbol_gen = SymbolGen(subexpression_base) - ac = AssignmentCollection( - main_assignments, subexpressions=subexpressions, subexpression_symbol_generator=symbol_gen) - if pre_simplification == 'default_with_cse': - ac = sympy_cse(ac) - return ac - -# =============================== LB Method Implementation =========================================================== - -class CenteredCumulantBasedLbMethod(AbstractLbMethod): +class CumulantBasedLbMethod(AbstractLbMethod): """ This class implements cumulant-based lattice boltzmann methods which relax all the non-conserved quantities as either monomial or polynomial cumulants. It is mostly inspired by the work presented in :cite:`geier2015`. - Conserved quantities are relaxed in central moment space. This method supports an implicit forcing scheme - through :class:`lbmpy.methods.centeredcumulant.CenteredCumulantForceModel` where forces are applied by - shifting the central-moment frame of reference by :math:`F/2` and then relaxing the first-order central - moments with a relaxation rate of two. This corresponds to the change-of-sign described in the paper. - Classical forcing schemes can still be applied. - - The galilean correction described in :cite:`geier2015` is also available for the D3Q27 lattice. - This method is implemented modularily as the transformation from populations to central moments to cumulants is governed by subclasses of :class:`lbmpy.moment_transforms.AbstractMomentTransform` which can be specified by constructor argument. This allows the selection of the most efficient transformation @@ -145,21 +47,15 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): def __init__(self, stencil, equilibrium, relaxation_dict, conserved_quantity_computation=None, force_model=None, zero_centered=False, - galilean_correction=False, - central_moment_transform_class=PdfsToCentralMomentsByShiftMatrix, + central_moment_transform_class=BinomialChimeraTransform, cumulant_transform_class=CentralMomentsToCumulantsByGeneratingFunc): assert isinstance(conserved_quantity_computation, AbstractConservedQuantityComputation) - super(CenteredCumulantBasedLbMethod, self).__init__(stencil) + super(CumulantBasedLbMethod, self).__init__(stencil) if force_model is not None: - assert (isinstance(force_model, CenteredCumulantForceModel) - or isinstance(force_model, Simple) - or isinstance(force_model, Luo)), "Given force model currently not supported." - - for m in moments_up_to_order(1, dim=self.dim): - if exponent_to_polynomial_representation(m) not in relaxation_dict.keys(): - raise ValueError(f'No relaxation info given for conserved cumulant {m}!') + if not force_model.has_symmetric_central_moment_forcing: + raise ValueError(f"Force model {force_model} does not offer symmetric central moment forcing.") self._equilibrium = equilibrium self._relaxation_dict = OrderedDict(relaxation_dict) @@ -167,25 +63,9 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): self._force_model = force_model self._zero_centered = zero_centered self._weights = None - self._galilean_correction = galilean_correction - - if galilean_correction: - if not have_same_entries(stencil, LBStencil(Stencil.D3Q27)): - raise ValueError("Galilean Correction only available for D3Q27 stencil") - - if not contains_corrected_polynomials(relaxation_dict): - raise ValueError("For the galilean correction, all three polynomial cumulants" - "(x^2 - y^2), (x^2 - z^2) and (x^2 + y^2 + z^2) must be present!") - self._cumulant_transform_class = cumulant_transform_class self._central_moment_transform_class = central_moment_transform_class - self.force_model_rr_override = False - if isinstance(self._force_model, CenteredCumulantForceModel) and \ - self._force_model.override_momentum_relaxation_rate is not None: - self.set_first_moment_relaxation_rate(self._force_model.override_momentum_relaxation_rate) - self.force_model_rr_override = True - @property def force_model(self): """Force model employed by this method.""" @@ -228,15 +108,7 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): @property def cumulant_equilibrium_values(self): """Equilibrium values of this method's :attr:`cumulants`.""" - cumulants = self.cumulants - equilibria = list(self._equilibrium.cumulants(cumulants, rescale=True)) - - for i, c in enumerate(cumulants): - if get_order(c) == 0: - equilibria[i] = self.zeroth_order_equilibrium_moment_symbol - elif get_order(c) == 1: - equilibria[i] = sp.Integer(0) - return tuple(equilibria) + return self._equilibrium.cumulants(self.cumulants, rescale=True) @property def relaxation_rates(self): @@ -261,19 +133,11 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): which is its mean value. (see :attr:`lbmpy.equilibrium.AbstractEquilibrium.first_order_moment_symbols`).""" return self._equilibrium.first_order_moment_symbols - @property - def galilean_correction(self): - """Whether or not the gallilean correction is included in the collision equations.""" - return self._galilean_correction - def set_zeroth_moment_relaxation_rate(self, relaxation_rate): e = sp.Rational(1, 1) self._relaxation_dict[e] = relaxation_rate def set_first_moment_relaxation_rate(self, relaxation_rate): - if self.force_model_rr_override: - warn("Overwriting first-order relaxation rates governed by CenteredCumulantForceModel " - "might break your forcing scheme.") for e in MOMENT_SYMBOLS[:self.dim]: assert e in self._relaxation_dict, \ "First cumulants are not relaxed separately by this method" @@ -285,9 +149,8 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): self.set_first_moment_relaxation_rate(relaxation_rate) def set_force_model(self, force_model): - assert (isinstance(force_model, CenteredCumulantForceModel) - or isinstance(force_model, Simple) - or isinstance(force_model, Luo)), "Given force model currently not supported." + if not force_model.has_symmetric_central_moment_forcing: + raise ValueError("Given force model does not support symmetric central moment forcing.") self._force_model = force_model def _repr_html_(self): @@ -326,11 +189,6 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): 'eq_value': sp.latex(eq_value), 'nb': 'style="border:none"', } - order = get_order(cumulant) - if order <= 1: - vals['cumulant'] += ' (central moment)' - if order == 1 and self.force_model_rr_override: - vals['rr'] += ' (overridden by force model)' html += """<tr {nb}> <td {nb}>${cumulant}$</td> <td {nb}>${eq_value}$</td> @@ -354,7 +212,7 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): self._weights = weights def get_equilibrium(self, conserved_quantity_equations=None, subexpressions=False, pre_simplification=False, - keep_cqc_subexpressions=True): + keep_cqc_subexpressions=True, include_force_terms=False): """Returns equation collection, to compute equilibrium values. The equations have the post collision symbols as left hand sides and are functions of the conserved quantities @@ -371,7 +229,12 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): r_info_dict = {c: RelaxationInfo(info.equilibrium_value, sp.Integer(1)) for c, info in self.relaxation_info_dict.items()} ac = self._centered_cumulant_collision_rule( - r_info_dict, conserved_quantity_equations, pre_simplification, include_galilean_correction=False) + r_info_dict, conserved_quantity_equations, pre_simplification, + include_force_terms=include_force_terms, symbolic_relaxation_rates=False) + + # from .cumulant_simplifications import insert_logs + # ac = insert_logs(ac) + if not subexpressions: if keep_cqc_subexpressions: bs = self._bound_symbols_cqc(conserved_quantity_equations) @@ -425,7 +288,6 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): conserved_quantity_equations=None, pre_simplification=False, include_force_terms=False, - include_galilean_correction=True, symbolic_relaxation_rates=False): # Filter out JobLib warnings. They are not usefull for use: @@ -438,15 +300,17 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): velocity = self.first_order_equilibrium_moment_symbols cqe = conserved_quantity_equations - relaxation_info_dict = dict() - subexpressions_relaxation_rates = [] + polynomial_cumulants = self.cumulants + + rrs = [cumulant_to_relaxation_info_dict[c].relaxation_rate for c in polynomial_cumulants] if symbolic_relaxation_rates: - subexpressions_relaxation_rates, sd = self._generate_symbolic_relaxation_matrix() - for i, cumulant in enumerate(cumulant_to_relaxation_info_dict): - relaxation_info_dict[cumulant] = RelaxationInfo(cumulant_to_relaxation_info_dict[cumulant][0], - sd[i, i]) + subexpressions_relaxation_rates, d = self._generate_symbolic_relaxation_matrix(relaxation_rates=rrs) else: - relaxation_info_dict = cumulant_to_relaxation_info_dict + subexpressions_relaxation_rates = [] + d = sp.zeros(len(rrs)) + for i, w in enumerate(rrs): + # note that 0.0 is converted to sp.Zero here. It is not possible to prevent this. + d[i, i] = w if cqe is None: cqe = self._cqc.equilibrium_input_equations_from_pdfs(f, False) @@ -454,6 +318,8 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): forcing_subexpressions = AssignmentCollection([]) if self._force_model is not None: forcing_subexpressions = AssignmentCollection(self._force_model.subs_dict_force) + else: + include_force_terms = False # See if a background shift is necessary if self._zero_centered: @@ -463,70 +329,56 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): else: background_distribution = None - # 1) Extract Monomial Cumulants for the higher-order polynomials - polynomial_cumulants = relaxation_info_dict.keys() - polynomial_cumulants = sorted(list(polynomial_cumulants), key=moment_sort_key) - higher_order_polynomials = [p for p in polynomial_cumulants if get_order(p) > 1] - monomial_cumulants = sorted(list(extract_monomials( - higher_order_polynomials, dim=self.dim)), key=exponent_tuple_sort_key) - - # 2) Get Forward and Backward Transformations between central moment and cumulant space, + # 1) Get Forward and Backward Transformations between central moment and cumulant space, # and find required central moments - k_to_c_transform = self._cumulant_transform_class(stencil, monomial_cumulants, density, velocity) - k_to_c_eqs = cached_forward_transform(k_to_c_transform, simplification=pre_simplification) - c_post_to_k_post_eqs = cached_backward_transform( - k_to_c_transform, simplification=pre_simplification, omit_conserved_moments=True) + k_to_c_transform = self._cumulant_transform_class(stencil, polynomial_cumulants, density, velocity) + k_to_c_eqs = k_to_c_transform.forward_transform(simplification=pre_simplification) + c_post_to_k_post_eqs = k_to_c_transform.backward_transform(simplification=pre_simplification) + + C_pre = k_to_c_transform.pre_collision_symbols + C_post = k_to_c_transform.post_collision_symbols central_moments = k_to_c_transform.required_central_moments - assert len(central_moments) == stencil.Q, 'Number of required central moments must match stencil size.' - # 3) Get Forward Transformation from PDFs to central moments + # 2) Get Forward Transformation from PDFs to central moments pdfs_to_k_transform = self._central_moment_transform_class( stencil, None, density, velocity, moment_exponents=central_moments, conserved_quantity_equations=cqe, background_distribution=background_distribution) - pdfs_to_k_eqs = cached_forward_transform( - pdfs_to_k_transform, f, simplification=pre_simplification, return_monomials=True) - - # 4) Add relaxation rules for lower order moments - lower_order_moments = moments_up_to_order(1, dim=self.dim) - lower_order_moment_symbols = [statistical_quantity_symbol(PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, exp) - for exp in lower_order_moments] - - lower_order_relaxation_infos = [relaxation_info_dict[exponent_to_polynomial_representation(e)] - for e in lower_order_moments] - lower_order_relaxation_rates = [info.relaxation_rate for info in lower_order_relaxation_infos] - lower_order_equilibrium = [info.equilibrium_value for info in lower_order_relaxation_infos] - - lower_order_moment_collision_eqs = relax_lower_order_central_moments( - lower_order_moments, tuple(lower_order_moment_symbols), - tuple(lower_order_relaxation_rates), tuple(lower_order_equilibrium)) - - # 5) Add relaxation rules for higher-order, polynomial cumulants - poly_relaxation_infos = [relaxation_info_dict[c] for c in higher_order_polynomials] - poly_relaxation_rates = [info.relaxation_rate for info in poly_relaxation_infos] - poly_equilibrium = [info.equilibrium_value for info in poly_relaxation_infos] - - if self._galilean_correction and include_galilean_correction: - galilean_correction_terms = get_galilean_correction_terms( - relaxation_info_dict, density, velocity) - else: - galilean_correction_terms = None - - cumulant_collision_eqs = relax_polynomial_cumulants( - tuple(monomial_cumulants), tuple(higher_order_polynomials), - tuple(poly_relaxation_rates), tuple(poly_equilibrium), - pre_simplification, - galilean_correction_terms=galilean_correction_terms) - - # 6) Get backward transformation from central moments to PDFs + pdfs_to_k_eqs = pdfs_to_k_transform.forward_transform( + f, simplification=pre_simplification, return_monomials=True) + + # 3) Symmetric forcing + if include_force_terms: + force_before, force_after = self._force_model.symmetric_central_moment_forcing(self, central_moments) + k_asms_dict = pdfs_to_k_eqs.main_assignments_dict + for cm_exp, kappa_f in zip(central_moments, force_before): + cm_symb = statistical_quantity_symbol(PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, cm_exp) + k_asms_dict[cm_symb] += kappa_f + pdfs_to_k_eqs.set_main_assignments_from_dict(k_asms_dict) + + k_post_asms_dict = c_post_to_k_post_eqs.main_assignments_dict + for cm_exp, kappa_f in zip(central_moments, force_after): + cm_symb = statistical_quantity_symbol(POST_COLLISION_MONOMIAL_CENTRAL_MOMENT, cm_exp) + k_post_asms_dict[cm_symb] += kappa_f + c_post_to_k_post_eqs.set_main_assignments_from_dict(k_post_asms_dict) + + # 4) Add relaxation rules for polynomial cumulants + C_eq = sp.Matrix(self.cumulant_equilibrium_values) + + C_pre_vec = sp.Matrix(C_pre) + collision_rule = C_pre_vec + d @ (C_eq - C_pre_vec) + cumulant_collision_eqs = [Assignment(lhs, rhs) for lhs, rhs in zip(C_post, collision_rule)] + cumulant_collision_eqs = AssignmentCollection(cumulant_collision_eqs) + + # 5) Get backward transformation from central moments to PDFs d = self.post_collision_pdf_symbols - k_post_to_pdfs_eqs = cached_backward_transform( - pdfs_to_k_transform, d, simplification=pre_simplification, start_from_monomials=True) + k_post_to_pdfs_eqs = pdfs_to_k_transform.backward_transform( + d, simplification=pre_simplification, start_from_monomials=True) - # 7) That's all. Now, put it all together. + # 6) That's all. Now, put it all together. all_acs = [] if pdfs_to_k_transform.absorbs_conserved_quantity_equations else [cqe] subexpressions_relaxation_rates = AssignmentCollection(subexpressions_relaxation_rates) all_acs += [subexpressions_relaxation_rates, forcing_subexpressions, pdfs_to_k_eqs, k_to_c_eqs, - lower_order_moment_collision_eqs, cumulant_collision_eqs, c_post_to_k_post_eqs] + cumulant_collision_eqs, c_post_to_k_post_eqs] subexpressions = [ac.all_assignments for ac in all_acs] subexpressions += k_post_to_pdfs_eqs.subexpressions main_assignments = k_post_to_pdfs_eqs.main_assignments @@ -534,18 +386,8 @@ class CenteredCumulantBasedLbMethod(AbstractLbMethod): simplification_hints = cqe.simplification_hints.copy() simplification_hints.update(self._cqc.defined_symbols()) simplification_hints['relaxation_rates'] = [rr for rr in self.relaxation_rates] - - # 8) Maybe add forcing terms if CenteredCumulantForceModel was not used - if self._force_model is not None and \ - not isinstance(self._force_model, CenteredCumulantForceModel) and include_force_terms: - force_model_terms = self._force_model(self) - force_term_symbols = sp.symbols(f"forceTerm_:{len(force_model_terms)}") - force_subexpressions = [Assignment(sym, force_model_term) - for sym, force_model_term in zip(force_term_symbols, force_model_terms)] - subexpressions += force_subexpressions - main_assignments = [Assignment(eq.lhs, eq.rhs + force_term_symbol) - for eq, force_term_symbol in zip(main_assignments, force_term_symbols)] - simplification_hints['force_terms'] = force_term_symbols + simplification_hints['post_collision_monomial_central_moments'] = \ + pdfs_to_k_transform.post_collision_monomial_symbols # Aaaaaand we're done. return LbmCollisionRule(self, main_assignments, subexpressions, simplification_hints) diff --git a/lbmpy/methods/cumulantbased/galilean_correction.py b/lbmpy/methods/cumulantbased/galilean_correction.py new file mode 100644 index 0000000000000000000000000000000000000000..729a8a64e3630b6da88ea44cbe0483c9121739d7 --- /dev/null +++ b/lbmpy/methods/cumulantbased/galilean_correction.py @@ -0,0 +1,91 @@ +import sympy as sp + +from pystencils.simp.assignment_collection import AssignmentCollection +from pystencils import Assignment + +from lbmpy.stencils import Stencil, LBStencil +from lbmpy.moments import MOMENT_SYMBOLS, statistical_quantity_symbol +from lbmpy.moment_transforms import PRE_COLLISION_MONOMIAL_CUMULANT, POST_COLLISION_CUMULANT + +from .cumulantbasedmethod import CumulantBasedLbMethod + +X, Y, Z = MOMENT_SYMBOLS +CORRECTED_POLYNOMIALS = [X**2 - Y**2, X**2 - Z**2, X**2 + Y**2 + Z**2] +CORRECTION_SYMBOLS = sp.symbols("corr_:3") + + +def contains_corrected_polynomials(polynomials): + return all(cp in polynomials for cp in CORRECTED_POLYNOMIALS) + + +def add_galilean_correction(collision_rule): + """Adds the galilean correction terms (:cite:`geier2015`, eq. 58-63) to a given polynomial D3Q27 + cumulant collision rule.""" + method = collision_rule.method + + if not isinstance(method, CumulantBasedLbMethod) or method.stencil != LBStencil(Stencil.D3Q27): + raise ValueError("Galilean correction is only defined for D3Q27 cumulant methods.") + + polynomials = method.cumulants + rho = method.zeroth_order_equilibrium_moment_symbol + u = method.first_order_equilibrium_moment_symbols + + if not (set(CORRECTED_POLYNOMIALS) < set(polynomials)): + raise ValueError("Galilean correction requires polynomial cumulants " + f"{', '.join(CORRECTED_POLYNOMIALS)} to be present") + + # Call PC1 = (x^2 - y^2), PC2 = (x^2 - z^2), PC3 = (x^2 + y^2 + z^2) + poly_symbols = [sp.Symbol(f'{POST_COLLISION_CUMULANT}_{polynomials.index(poly)}') + for poly in CORRECTED_POLYNOMIALS] + + correction_terms = get_galilean_correction_terms(method.relaxation_rate_dict, rho, u) + + subexp_dict = collision_rule.subexpressions_dict + subexp_dict = {**subexp_dict, + **correction_terms.subexpressions_dict, + **correction_terms.main_assignments_dict} + for sym, cor in zip(poly_symbols, CORRECTION_SYMBOLS): + subexp_dict[sym] += cor + + collision_rule.set_sub_expressions_from_dict(subexp_dict) + collision_rule.topological_sort() + + return collision_rule + + +def get_galilean_correction_terms(rrate_dict, rho, u_vector): + + pc1 = CORRECTED_POLYNOMIALS[0] + pc2 = CORRECTED_POLYNOMIALS[1] + pc3 = CORRECTED_POLYNOMIALS[2] + + try: + omega_1 = rrate_dict[pc1] + assert omega_1 == rrate_dict[pc2], \ + "Cumulants (x^2 - y^2) and (x^2 - z^2) must have the same relaxation rate" + omega_2 = rrate_dict[pc3] + except IndexError: + raise ValueError("For the galilean correction, all three polynomial cumulants" + + "(x^2 - y^2), (x^2 - z^2) and (x^2 + y^2 + z^2) must be present!") + + dx, dy, dz = sp.symbols('Dx, Dy, Dz') + c_xx = statistical_quantity_symbol(PRE_COLLISION_MONOMIAL_CUMULANT, (2, 0, 0)) + c_yy = statistical_quantity_symbol(PRE_COLLISION_MONOMIAL_CUMULANT, (0, 2, 0)) + c_zz = statistical_quantity_symbol(PRE_COLLISION_MONOMIAL_CUMULANT, (0, 0, 2)) + + cor1, cor2, cor3 = CORRECTION_SYMBOLS + + # Derivative Approximations + subexpressions = [ + Assignment(dx, - omega_1 / (2 * rho) * (2 * c_xx - c_yy - c_zz) + - omega_2 / (2 * rho) * (c_xx + c_yy + c_zz - rho)), + Assignment(dy, dx + (3 * omega_1) / (2 * rho) * (c_xx - c_yy)), + Assignment(dz, dx + (3 * omega_1) / (2 * rho) * (c_xx - c_zz))] + + # Correction Terms + main_assignments = [ + Assignment(cor1, - 3 * rho * (1 - omega_1 / 2) * (u_vector[0]**2 * dx - u_vector[1]**2 * dy)), + Assignment(cor2, - 3 * rho * (1 - omega_1 / 2) * (u_vector[0]**2 * dx - u_vector[2]**2 * dz)), + Assignment(cor3, - 3 * rho * (1 - omega_2 / 2) + * (u_vector[0]**2 * dx + u_vector[1]**2 * dy + u_vector[2]**2 * dz))] + return AssignmentCollection(main_assignments=main_assignments, subexpressions=subexpressions) diff --git a/lbmpy/methods/momentbased/centralmomentbasedmethod.py b/lbmpy/methods/momentbased/centralmomentbasedmethod.py index 97718f3c6128f13bd4783d14f9b7b799d07459bf..7cdacd2f521b166d49e81c1c26e8976114a33f5c 100644 --- a/lbmpy/methods/momentbased/centralmomentbasedmethod.py +++ b/lbmpy/methods/momentbased/centralmomentbasedmethod.py @@ -6,7 +6,7 @@ from pystencils.sympyextensions import is_constant from lbmpy.methods.abstractlbmethod import AbstractLbMethod, LbmCollisionRule, RelaxationInfo from lbmpy.methods.conservedquantitycomputation import AbstractConservedQuantityComputation -from lbmpy.moment_transforms import FastCentralMomentTransform +from lbmpy.moment_transforms import BinomialChimeraTransform from lbmpy.moments import MOMENT_SYMBOLS, moment_matrix, set_up_shift_matrix @@ -54,7 +54,7 @@ class CentralMomentBasedLbMethod(AbstractLbMethod): def __init__(self, stencil, equilibrium, relaxation_dict, conserved_quantity_computation=None, force_model=None, zero_centered=False, - central_moment_transform_class=FastCentralMomentTransform): + central_moment_transform_class=BinomialChimeraTransform): assert isinstance(conserved_quantity_computation, AbstractConservedQuantityComputation) super(CentralMomentBasedLbMethod, self).__init__(stencil) @@ -102,7 +102,7 @@ class CentralMomentBasedLbMethod(AbstractLbMethod): @property def moment_equilibrium_values(self): """Equilibrium values of this method's :attr:`moments`.""" - return self._equilibrium.central_moments(self.moments) + return self._equilibrium.central_moments(self.moments, self.first_order_equilibrium_moment_symbols) @property def relaxation_rates(self): diff --git a/lbmpy/methods/momentbased/momentbasedsimplifications.py b/lbmpy/methods/momentbased/momentbasedsimplifications.py index dea5f06b39028c3d8b9d7419afd453f84f7594f4..ed24a92258ccdbb558281df7f805acbfcdc8a2d2 100644 --- a/lbmpy/methods/momentbased/momentbasedsimplifications.py +++ b/lbmpy/methods/momentbased/momentbasedsimplifications.py @@ -4,10 +4,12 @@ All of these transformations operate on :class:`pystencils.AssignmentCollection` simplification hints, which are set by the MomentBasedLbMethod. """ import sympy as sp +from itertools import product from lbmpy.methods.abstractlbmethod import LbmCollisionRule from pystencils import Assignment, AssignmentCollection from pystencils.stencil import inverse_direction +from pystencils.simp.subexpression_insertion import insert_subexpressions, is_constant from pystencils.sympyextensions import extract_most_common_factor, replace_second_order_products, subs_additive from collections import defaultdict @@ -318,6 +320,45 @@ def split_pdf_main_assignments_by_symmetry(ac: AssignmentCollection): return ac.copy(main_assignments=main_assignments, subexpressions=subexpressions) +def insert_pure_products(ac, symbols, **kwargs): + """Inserts any subexpression whose RHS is a product containing exclusively factors + from the given sequence of symbols.""" + def callback(exp): + rhs = exp.rhs + if isinstance(rhs, sp.Symbol) and rhs in symbols: + return True + elif isinstance(rhs, sp.Mul): + if all((is_constant(arg) or (arg in symbols)) for arg in rhs.args): + return True + return False + + return insert_subexpressions(ac, callback, **kwargs) + + +def insert_conserved_quantity_products(cr, **kwargs): + from lbmpy.moments import statistical_quantity_symbol as sq_sym + from lbmpy.moment_transforms import PRE_COLLISION_MONOMIAL_RAW_MOMENT as m + + rho = cr.method.zeroth_order_equilibrium_moment_symbol + u = cr.method.first_order_equilibrium_moment_symbols + m000 = sq_sym(m, (0,) * cr.method.dim) + symbols = (rho, m000) + u + + return insert_pure_products(cr, symbols) + + +def insert_half_force(cr, **kwargs): + fmodel = cr.method.force_model + if not fmodel: + return cr + force = fmodel.symbolic_force_vector + force_exprs = set(c * f / 2 for c, f in product((1, -1), force)) + + def callback(expr): + return expr.rhs in force_exprs + + return insert_subexpressions(cr, callback, **kwargs) + # -------------------------------------- Helper Functions -------------------------------------------------------------- diff --git a/lbmpy/moment_transforms/__init__.py b/lbmpy/moment_transforms/__init__.py index 6b2f144c1bd89b65ba8c872f3e8a8335e52d187a..5f99d561cb539ac4ea1262ec7528d07f56eef946 100644 --- a/lbmpy/moment_transforms/__init__.py +++ b/lbmpy/moment_transforms/__init__.py @@ -2,7 +2,9 @@ from .abstractmomenttransform import ( PRE_COLLISION_MONOMIAL_RAW_MOMENT, POST_COLLISION_MONOMIAL_RAW_MOMENT, PRE_COLLISION_RAW_MOMENT, POST_COLLISION_RAW_MOMENT, PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, POST_COLLISION_MONOMIAL_CENTRAL_MOMENT, - PRE_COLLISION_CENTRAL_MOMENT, POST_COLLISION_CENTRAL_MOMENT + PRE_COLLISION_CENTRAL_MOMENT, POST_COLLISION_CENTRAL_MOMENT, + PRE_COLLISION_CUMULANT, POST_COLLISION_CUMULANT, + PRE_COLLISION_MONOMIAL_CUMULANT, POST_COLLISION_MONOMIAL_CUMULANT ) from .abstractmomenttransform import AbstractMomentTransform @@ -12,19 +14,26 @@ from .rawmomenttransforms import ( ) from .centralmomenttransforms import ( - PdfsToCentralMomentsByMatrix, + PdfsToCentralMomentsByMatrix, + BinomialChimeraTransform, PdfsToCentralMomentsByShiftMatrix, FastCentralMomentTransform ) +from .cumulanttransforms import CentralMomentsToCumulantsByGeneratingFunc + __all__ = [ "AbstractMomentTransform", "PdfsToMomentsByMatrixTransform", "PdfsToMomentsByChimeraTransform", - "PdfsToCentralMomentsByMatrix", + "PdfsToCentralMomentsByMatrix", + "BinomialChimeraTransform", "PdfsToCentralMomentsByShiftMatrix", "FastCentralMomentTransform", + "CentralMomentsToCumulantsByGeneratingFunc", "PRE_COLLISION_MONOMIAL_RAW_MOMENT", "POST_COLLISION_MONOMIAL_RAW_MOMENT", "PRE_COLLISION_RAW_MOMENT", "POST_COLLISION_RAW_MOMENT", "PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT", "POST_COLLISION_MONOMIAL_CENTRAL_MOMENT", - "PRE_COLLISION_CENTRAL_MOMENT", "POST_COLLISION_CENTRAL_MOMENT" + "PRE_COLLISION_CENTRAL_MOMENT", "POST_COLLISION_CENTRAL_MOMENT", + "PRE_COLLISION_CUMULANT", "POST_COLLISION_CUMULANT", + "PRE_COLLISION_MONOMIAL_CUMULANT", "POST_COLLISION_MONOMIAL_CUMULANT" ] diff --git a/lbmpy/moment_transforms/abstractmomenttransform.py b/lbmpy/moment_transforms/abstractmomenttransform.py index b54a9f2300495a678c3e2c0161399bd183d2abf9..2308dc59cc7a845e3c096cb7966845d144d2b920 100644 --- a/lbmpy/moment_transforms/abstractmomenttransform.py +++ b/lbmpy/moment_transforms/abstractmomenttransform.py @@ -21,6 +21,12 @@ POST_COLLISION_MONOMIAL_CENTRAL_MOMENT = 'kappa_post' PRE_COLLISION_CENTRAL_MOMENT = 'K' POST_COLLISION_CENTRAL_MOMENT = 'K_post' +PRE_COLLISION_MONOMIAL_CUMULANT = 'c' +POST_COLLISION_MONOMIAL_CUMULANT = 'c_post' + +PRE_COLLISION_CUMULANT = 'C' +POST_COLLISION_CUMULANT = 'C_post' + class AbstractMomentTransform: r"""Abstract Base Class for classes providing transformations between moment spaces.""" diff --git a/lbmpy/moment_transforms/centralmomenttransforms.py b/lbmpy/moment_transforms/centralmomenttransforms.py index 370b4b73f4f0646a824683c55d8110db0fc0cfb3..322474e2ee1ea0ce5ee17daa8d505777cb37cd25 100644 --- a/lbmpy/moment_transforms/centralmomenttransforms.py +++ b/lbmpy/moment_transforms/centralmomenttransforms.py @@ -1,14 +1,16 @@ +from functools import partial import sympy as sp from pystencils import Assignment, AssignmentCollection from pystencils.simp import ( - SimplificationStrategy, add_subexpressions_for_divisions, add_subexpressions_for_constants) + SimplificationStrategy, add_subexpressions_for_constants) from pystencils.simp.assignment_collection import SymbolGen from pystencils.sympyextensions import subs_additive, fast_subs from lbmpy.moments import ( moment_matrix, monomial_to_polynomial_transformation_matrix, set_up_shift_matrix, contained_moments, moments_up_to_order, + moments_of_order, central_moment_reduced_monomial_to_polynomial_matrix) from lbmpy.moments import statistical_quantity_symbol as sq_sym @@ -149,7 +151,7 @@ class PdfsToCentralMomentsByMatrix(AbstractCentralMomentTransform): m_to_f_vec = km_inv * sp.Matrix([s.lhs for s in subexpressions]) main_assignments = [Assignment(f, eq) for f, eq in zip(pdf_symbols, m_to_f_vec)] - ac = AssignmentCollection(main_assignments, subexpressions=subexpressions, + ac = AssignmentCollection(main_assignments, subexpressions=subexpressions, subexpression_symbol_generator=symbol_gen) if simplification: @@ -159,11 +161,328 @@ class PdfsToCentralMomentsByMatrix(AbstractCentralMomentTransform): @property def _default_simplification(self): simplification = SimplificationStrategy() - simplification.add(add_subexpressions_for_divisions) return simplification # end class PdfsToCentralMomentsByMatrix +class BinomialChimeraTransform(AbstractCentralMomentTransform): + """Transform from populations to central moments using a chimera transform implementing the binomial expansion.""" + + def __init__(self, stencil, moment_polynomials, + equilibrium_density, + equilibrium_velocity, + conserved_quantity_equations=None, + **kwargs): + super(BinomialChimeraTransform, self).__init__( + stencil, moment_polynomials, equilibrium_density, equilibrium_velocity, + conserved_quantity_equations=conserved_quantity_equations, **kwargs) + + # Potentially, de-aliasing is required + if len(self.moment_exponents) != self.q: + P, m_reduced = central_moment_reduced_monomial_to_polynomial_matrix(self.moment_polynomials, + self.stencil, + velocity_symbols=equilibrium_velocity) + self.mono_to_poly_matrix = P + self.moment_exponents = m_reduced + else: + self.mono_to_poly_matrix = monomial_to_polynomial_transformation_matrix(self.moment_exponents, + self.moment_polynomials) + + if 'moment_exponents' in kwargs: + del kwargs['moment_exponents'] + + self.raw_moment_transform = PdfsToMomentsByChimeraTransform( + stencil, None, equilibrium_density, equilibrium_velocity, + conserved_quantity_equations=conserved_quantity_equations, + moment_exponents=self.moment_exponents, + **kwargs) + + self.poly_to_mono_matrix = self.mono_to_poly_matrix.inv() + + @property + def absorbs_conserved_quantity_equations(self): + return True + + def forward_transform(self, pdf_symbols, simplification=True, subexpression_base='sub_f_to_k', + return_monomials=False): + r"""Returns equations for polynomial central moments, computed from pre-collision populations + through a cascade of three steps. + + First, the monomial raw moment vector :math:`\mathbf{m}` is computed using the raw-moment + chimera transform (see `lbmpy.moment_transforms.PdfsToMomentsByChimeraTransform`). + + Second, we obtain monomial central moments from monomial raw moments using the binomial + chimera transform: + + .. math:: + + \kappa_{ab|\gamma} &:= \sum_{c = 0}^{\gamma} \binom{\gamma}{c} v_z^{\gamma - c} m_{abc} \\ + \kappa_{a|\beta\gamma} &:= \sum_{b = 0}^{\beta} \binom{\beta}{b} v_z^{\beta - b} \kappa_{ab|\gamma} \\ + \kappa_{\alpha\beta\gamma} &:= + \sum_{a = 0}^{\alpha} \binom{\alpha}{a} v_z^{\alpha - a} \kappa_{a|\beta\gamma} \\ + + Lastly, the polynomial central moments are computed using the polynomialization matrix + as :math:`\mathbf{K} = P \mathbf{\kappa}`. + + **Conserved Quantity Equations** + + If given, this transform absorbs the conserved quantity equations and simplifies them + using the raw moment equations, if simplification is enabled. + + **Simplification** + + If simplification is enabled, the absorbed conserved quantity equations are - if possible - + rewritten using the monomial symbols. If the conserved quantities originate somewhere else + than in the lower-order moments (like from an external field), they are not affected by this + simplification. + + The raw moment chimera transform is simplified by propagation of aliases. + + The equations of the binomial chimera transform are simplified by expressing conserved raw moments + in terms of the conserved quantities, and subsequent propagation of aliases, constants, and any + expressions that are purely products of conserved quantities. + + **De-Aliasing** + + If more than :math:`q` monomial moments are extracted from the polynomial set, they + are de-aliased and reduced to a set of only :math:`q` moments using the same rules + as for raw moments. For polynomialization, a special reduced matrix :math:`\tilde{P}` + is used, which is computed using `lbmpy.moments.central_moment_reduced_monomial_to_polynomial_matrix`. + + + Args: + pdf_symbols: List of symbols that represent the pre-collision populations + simplification: Simplification specification. See :class:`AbstractMomentTransform` + subexpression_base: The base name used for any subexpressions of the transformation. + return_monomials: Return equations for monomial moments. Use only when specifying + ``moment_exponents`` in constructor! + + """ + simplification = self._get_simp_strategy(simplification, 'forward') + + mono_raw_moment_base = self.raw_moment_transform.mono_base_pre + mono_central_moment_base = self.mono_base_pre + + mono_cm_symbols = self.pre_collision_monomial_symbols + + rm_ac = self.raw_moment_transform.forward_transform(pdf_symbols, simplification=False, return_monomials=True) + cq_symbols_to_moments = self.raw_moment_transform.get_cq_to_moment_symbols_dict(mono_raw_moment_base) + + chim = self.BinomialChimera(tuple(-u for u in self.equilibrium_velocity), + mono_raw_moment_base, mono_central_moment_base) + chim_ac = chim(self.moment_exponents) + + cq_subs = dict() + if simplification: + from lbmpy.methods.momentbased.momentbasedsimplifications import ( + substitute_moments_in_conserved_quantity_equations) + rm_ac = substitute_moments_in_conserved_quantity_equations(rm_ac) + + # Compute replacements for conserved moments in terms of the CQE + rm_asm_dict = rm_ac.main_assignments_dict + for cq_sym, moment_sym in cq_symbols_to_moments.items(): + cq_eq = rm_asm_dict[cq_sym] + solutions = sp.solve(cq_eq - cq_sym, moment_sym) + if len(solutions) > 0: + cq_subs[moment_sym] = solutions[0] + + chim_ac = chim_ac.new_with_substitutions(cq_subs, substitute_on_lhs=False) + + fo_kappas = [sq_sym(mono_central_moment_base, es) for es in moments_of_order(1, dim=self.stencil.D)] + ac_filtered = chim_ac.new_filtered(fo_kappas).new_without_subexpressions() + chim_asm_dict = chim_ac.main_assignments_dict + for asm in ac_filtered.main_assignments: + chim_asm_dict[asm.lhs] = asm.rhs + chim_ac.set_main_assignments_from_dict(chim_asm_dict) + + subexpressions = rm_ac.all_assignments + chim_ac.subexpressions + + if return_monomials: + main_assignments = chim_ac.main_assignments + else: + subexpressions += chim_ac.main_assignments + poly_eqs = self.mono_to_poly_matrix * sp.Matrix(mono_cm_symbols) + main_assignments = [Assignment(m, v) for m, v in zip(self.pre_collision_symbols, poly_eqs)] + + symbol_gen = SymbolGen(subexpression_base) + ac = AssignmentCollection(main_assignments=main_assignments, subexpressions=subexpressions, + subexpression_symbol_generator=symbol_gen) + + if simplification: + ac = simplification.apply(ac) + return ac + + def backward_transform(self, pdf_symbols, simplification=True, subexpression_base='sub_k_to_f', + start_from_monomials=False): + r"""Returns an assignment collection containing equations for post-collision populations, + expressed in terms of the post-collision polynomial central moments by three steps. + + The post-collision monomial central moments :math:`\mathbf{\kappa}_{\mathrm{post}}` are first + obtained from the polynomials through multiplication with :math:`P^{-1}`. + + Afterward, monomial post-collision raw moments are obtained from monomial central moments using the binomial + chimera transform: + + .. math:: + + m^{\ast}_{ab|\gamma} &:= \sum_{c = 0}^{\gamma} \binom{\gamma}{c} v_z^{\gamma - c} \kappa^{\ast}_{abc} \\ + m^{\ast}_{a|\beta\gamma} &:= \sum_{b = 0}^{\beta} \binom{\beta}{b} v_z^{\beta - b} m^{\ast}_{ab|\gamma} \\ + m^{\ast}_{\alpha\beta\gamma} &:= + \sum_{a = 0}^{\alpha} \binom{\alpha}{a} v_z^{\alpha - a} m^{\ast}_{a|\beta\gamma} \\ + + Finally, the monomial raw moment transformation + matrix :math:`M_r` provided by :func:`lbmpy.moments.moment_matrix` + is inverted and used to compute the pre-collision moments as + :math:`\mathbf{f}_{\mathrm{post}} = M_r^{-1} \cdot \mathbf{m}_{\mathrm{post}}`. + + **De-Aliasing**: + + See `PdfsToCentralMomentsByShiftMatrix.forward_transform`. + + **Simplifications** + + If simplification is enabled, the inverse shift matrix equations are simplified by recursively + inserting lower-order moments into equations for higher-order moments. To this end, these equations + are factored recursively by the velocity symbols. + + The equations of the binomial chimera transform are simplified by propagation of aliases. + + Further, the equations for populations :math:`f_i` and :math:`f_{\bar{i}}` + of opposite stencil directions :math:`\mathbf{c}_i` and :math:`\mathbf{c}_{\bar{i}} = - \mathbf{c}_i` + are split into their symmetric and antisymmetric parts :math:`f_i^{\mathrm{sym}}, f_i^{\mathrm{anti}}`, such + that + + .. math:: + + f_i = f_i^{\mathrm{sym}} + f_i^{\mathrm{anti}} + + f_{\bar{i}} = f_i^{\mathrm{sym}} - f_i^{\mathrm{anti}} + + + Args: + pdf_symbols: List of symbols that represent the post-collision populations + simplification: Simplification specification. See :class:`AbstractMomentTransform` + subexpression_base: The base name used for any subexpressions of the transformation. + start_from_monomials: Return equations for monomial moments. Use only when specifying + ``moment_exponents`` in constructor! + """ + simplification = self._get_simp_strategy(simplification, 'backward') + + mono_cm_symbols = self.post_collision_monomial_symbols + + subexpressions = [] + if not start_from_monomials: + mono_eqs = self.poly_to_mono_matrix * sp.Matrix(self.post_collision_symbols) + subexpressions += [Assignment(cm, v) for cm, v in zip(mono_cm_symbols, mono_eqs)] + + mono_raw_moment_base = self.raw_moment_transform.mono_base_post + mono_central_moment_base = self.mono_base_post + + chim = self.BinomialChimera(self.equilibrium_velocity, mono_central_moment_base, mono_raw_moment_base) + chim_ac = chim(self.moment_exponents) + + if simplification: + from pystencils.simp import insert_aliases + chim_ac = insert_aliases(chim_ac) + + subexpressions += chim_ac.all_assignments + + rm_ac = self.raw_moment_transform.backward_transform( + pdf_symbols, simplification=False, start_from_monomials=True) + subexpressions += rm_ac.subexpressions + + ac = rm_ac.copy(subexpressions=subexpressions) + if simplification: + ac = simplification.apply(ac) + + return ac + + # ----------------------------- Private Members ----------------------------- + + class BinomialChimera: + def __init__(self, v, from_base, to_base): + self._v = v + self._from_base = from_base + self._to_base = to_base + self._chim_dict = None + + def _chimera_symbol(self, fixed_directions, remaining_exponents): + if not fixed_directions: + return None + + fixed_str = '_'.join(str(direction) for direction in fixed_directions) + exp_str = '_'.join(str(exp) for exp in remaining_exponents) + return sp.Symbol(f"chimera_{self._to_base}_{fixed_str}_e_{exp_str}") + + @property + def chimera_assignments(self): + assert self._chim_dict is not None + return [Assignment(lhs, rhs) for lhs, rhs in self._chim_dict.items()] + + def _derive(self, exponents, depth): + if depth == len(exponents): + return sq_sym(self._from_base, exponents) + + v = self._v + + fixed = exponents[:depth] + remaining = exponents[depth:] + chim_symb = self._chimera_symbol(fixed, remaining) + if chim_symb in self._chim_dict: + return chim_symb + + choose = sp.binomial + + alpha = exponents[depth] + s = sp.Integer(0) + for a in range(alpha + 1): + rec_exps = list(exponents) + rec_exps[depth] = a + s += choose(alpha, a) * v[depth] ** (alpha - a) * self._derive(rec_exps, depth + 1) + + if chim_symb is not None: + self._chim_dict[chim_symb] = s + return chim_symb + else: + return Assignment(sq_sym(self._to_base, exponents), s) + + def __call__(self, monos): + self._chim_dict = dict() + ac = [] + for m in monos: + ac.append(self._derive(m, 0)) + return AssignmentCollection(ac, self._chim_dict) + + @property + def _default_simplification(self): + from pystencils.simp import insert_aliases, insert_constants + from lbmpy.methods.momentbased.momentbasedsimplifications import insert_pure_products + + cq = (self.equilibrium_density,) + self.equilibrium_velocity + fw_skip = cq + self.raw_moment_transform.pre_collision_monomial_symbols + self.pre_collision_monomial_symbols + + forward_simp = SimplificationStrategy() + forward_simp.add(partial(insert_pure_products, symbols=cq, skip=fw_skip)) + forward_simp.add(partial(insert_aliases, skip=fw_skip)) + forward_simp.add(partial(insert_constants, skip=fw_skip)) + + from lbmpy.methods.momentbased.momentbasedsimplifications import split_pdf_main_assignments_by_symmetry + + bw_skip = self.raw_moment_transform.post_collision_monomial_symbols + self.post_collision_monomial_symbols + + backward_simp = SimplificationStrategy() + backward_simp.add(partial(insert_aliases, skip=bw_skip)) + backward_simp.add(split_pdf_main_assignments_by_symmetry) + backward_simp.add(add_subexpressions_for_constants) + + return { + 'forward': forward_simp, + 'backward': backward_simp + } + +# end class PdfsToCentralMomentsByShiftMatrix + + class FastCentralMomentTransform(AbstractCentralMomentTransform): """Transform from populations to central moments, using the fast central-moment transform equations introduced by :cite:`geier2015`. @@ -351,10 +670,8 @@ class FastCentralMomentTransform(AbstractCentralMomentTransform): @property def _default_simplification(self): forward_simp = SimplificationStrategy() - forward_simp.add(add_subexpressions_for_divisions) backward_simp = SimplificationStrategy() - backward_simp.add(add_subexpressions_for_divisions) backward_simp.add(add_subexpressions_for_constants) return { @@ -679,6 +996,7 @@ class PdfsToCentralMomentsByShiftMatrix(AbstractCentralMomentTransform): ac = rm_ac.copy(subexpressions=subexpressions) if simplification: ac = simplification.apply(ac) + return ac # ----------------------------- Private Members ----------------------------- @@ -724,7 +1042,6 @@ class PdfsToCentralMomentsByShiftMatrix(AbstractCentralMomentTransform): @property def _default_simplification(self): forward_simp = SimplificationStrategy() - forward_simp.add(add_subexpressions_for_divisions) from lbmpy.methods.momentbased.momentbasedsimplifications import split_pdf_main_assignments_by_symmetry diff --git a/lbmpy/methods/centeredcumulant/cumulant_transform.py b/lbmpy/moment_transforms/cumulanttransforms.py similarity index 56% rename from lbmpy/methods/centeredcumulant/cumulant_transform.py rename to lbmpy/moment_transforms/cumulanttransforms.py index c273a28ae3284120dc1213af65af5c5f41a6243a..692aee722f12ccb2f8ff18a9c644649bcad04b43 100644 --- a/lbmpy/methods/centeredcumulant/cumulant_transform.py +++ b/lbmpy/moment_transforms/cumulanttransforms.py @@ -2,26 +2,27 @@ import numpy as np import sympy as sp from pystencils import Assignment, AssignmentCollection -from pystencils.simp import SimplificationStrategy, add_subexpressions_for_divisions +from pystencils.simp import SimplificationStrategy from pystencils.simp.assignment_collection import SymbolGen from lbmpy.moments import ( - moments_up_to_order, get_order, statistical_quantity_symbol, exponent_tuple_sort_key + moments_up_to_order, statistical_quantity_symbol, exponent_tuple_sort_key, + monomial_to_polynomial_transformation_matrix ) from itertools import product, chain -from lbmpy.moment_transforms import ( - AbstractMomentTransform, PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, POST_COLLISION_MONOMIAL_CENTRAL_MOMENT +from .abstractmomenttransform import ( + AbstractMomentTransform, + PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, POST_COLLISION_MONOMIAL_CENTRAL_MOMENT, + PRE_COLLISION_CUMULANT, POST_COLLISION_CUMULANT, + PRE_COLLISION_MONOMIAL_CUMULANT, POST_COLLISION_MONOMIAL_CUMULANT ) # ======================= Central Moments <-> Cumulants ============================================================== WAVE_NUMBER_SYMBOLS = sp.symbols('Xi_x, Xi_y, Xi_z') -PRE_COLLISION_CUMULANT = 'C' -POST_COLLISION_CUMULANT = 'C_post' - def moment_index_from_derivative(d, variables): diffs = d.args[1:] @@ -44,14 +45,40 @@ def count_derivatives(derivative): class CentralMomentsToCumulantsByGeneratingFunc(AbstractMomentTransform): - def __init__(self, stencil, cumulant_exponents, equilibrium_density, equilibrium_velocity, **kwargs): + def __init__(self, stencil, cumulant_polynomials, + equilibrium_density, + equilibrium_velocity, + cumulant_exponents=None, + pre_collision_symbol_base=PRE_COLLISION_CUMULANT, + post_collision_symbol_base=POST_COLLISION_CUMULANT, + pre_collision_monomial_symbol_base=PRE_COLLISION_MONOMIAL_CUMULANT, + post_collision_monomial_symbol_base=POST_COLLISION_MONOMIAL_CUMULANT, + **kwargs): super(CentralMomentsToCumulantsByGeneratingFunc, self).__init__( - stencil, equilibrium_density, equilibrium_velocity, - moment_exponents=cumulant_exponents, **kwargs) + stencil, equilibrium_density, equilibrium_velocity, + moment_polynomials=cumulant_polynomials, + moment_exponents=cumulant_exponents, + pre_collision_symbol_base=pre_collision_symbol_base, + post_collision_symbol_base=post_collision_symbol_base, + pre_collision_monomial_symbol_base=pre_collision_monomial_symbol_base, + post_collision_monomial_symbol_base=post_collision_monomial_symbol_base, + **kwargs) self.cumulant_exponents = self.moment_exponents + self.cumulant_polynomials = self.moment_polynomials + + if(len(self.cumulant_exponents) != stencil.Q): + raise ValueError("Number of cumulant exponent tuples must match stencil size.") + + if(len(self.cumulant_polynomials) != stencil.Q): + raise ValueError("Number of cumulant polynomials must match stencil size.") + self.central_moment_exponents = self.compute_required_central_moments() + self.mono_to_poly_matrix = monomial_to_polynomial_transformation_matrix(self.cumulant_exponents, + self.cumulant_polynomials) + self.poly_to_mono_matrix = self.mono_to_poly_matrix.inv() + @property def required_central_moments(self): """The required central moments as a sorted list of exponent tuples""" @@ -68,53 +95,67 @@ class CentralMomentsToCumulantsByGeneratingFunc(AbstractMomentTransform): # --> all of these moments are required for c in self.cumulant_exponents: required_moments |= set(_contained_moments(c)) + + assert len(required_moments) == self.stencil.Q, 'Number of required central moments must match stencil size.' + return sorted(list(required_moments), key=exponent_tuple_sort_key) def forward_transform(self, - cumulant_base=PRE_COLLISION_CUMULANT, central_moment_base=PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, simplification=True, - subexpression_base='sub_k_to_C'): + subexpression_base='sub_k_to_C', + return_monomials=False): simplification = self._get_simp_strategy(simplification) - main_assignments = [] - for exp in self.cumulant_exponents: + monomial_equations = [] + for c_symbol, exp in zip(self.pre_collision_monomial_symbols, self.cumulant_exponents): eq = self.cumulant_from_central_moments(exp, central_moment_base) - c_symbol = statistical_quantity_symbol(cumulant_base, exp) - main_assignments.append(Assignment(c_symbol, eq)) + monomial_equations.append(Assignment(c_symbol, eq)) + + if return_monomials: + subexpressions = [] + main_assignments = monomial_equations + else: + subexpressions = monomial_equations + poly_eqs = self.mono_to_poly_matrix @ sp.Matrix(self.pre_collision_monomial_symbols) + main_assignments = [Assignment(c, v) for c, v in zip(self.pre_collision_symbols, poly_eqs)] + symbol_gen = SymbolGen(subexpression_base) - ac = AssignmentCollection( - main_assignments, subexpression_symbol_generator=symbol_gen) - + ac = AssignmentCollection(main_assignments, subexpressions=subexpressions, + subexpression_symbol_generator=symbol_gen) + if simplification: ac = simplification.apply(ac) return ac def backward_transform(self, - cumulant_base=POST_COLLISION_CUMULANT, central_moment_base=POST_COLLISION_MONOMIAL_CENTRAL_MOMENT, simplification=True, - omit_conserved_moments=False, - subexpression_base='sub_C_to_k'): + subexpression_base='sub_C_to_k', + start_from_monomials=False): simplification = self._get_simp_strategy(simplification) + subexpressions = [] + if not start_from_monomials: + mono_eqs = self.poly_to_mono_matrix @ sp.Matrix(self.post_collision_symbols) + subexpressions = [Assignment(c, v) for c, v in zip(self.post_collision_monomial_symbols, mono_eqs)] + main_assignments = [] for exp in self.central_moment_exponents: - if omit_conserved_moments and get_order(exp) <= 1: - continue - eq = self.central_moment_from_cumulants(exp, cumulant_base) + eq = self.central_moment_from_cumulants(exp, self.mono_base_post) k_symbol = statistical_quantity_symbol(central_moment_base, exp) main_assignments.append(Assignment(k_symbol, eq)) + symbol_gen = SymbolGen(subexpression_base) - ac = AssignmentCollection(main_assignments, subexpression_symbol_generator=symbol_gen) - + ac = AssignmentCollection(main_assignments, subexpressions=subexpressions, + subexpression_symbol_generator=symbol_gen) + if simplification: ac = simplification.apply(ac) return ac def cumulant_from_central_moments(self, cumulant_exponents, moment_symbol_base): dim = self.dim - assert len(cumulant_exponents) == dim wave_numbers = WAVE_NUMBER_SYMBOLS[:dim] K = sp.Function('K') @@ -125,30 +166,17 @@ class CentralMomentsToCumulantsByGeneratingFunc(AbstractMomentTransform): diff_args = chain.from_iterable([var, i] for var, i in zip(wave_numbers, cumulant_exponents)) cumulant = C.diff(*diff_args) - required_central_moments = set() derivatives = cumulant.atoms(sp.Derivative) - derivative_subs = [] - for d in derivatives: - moment_index = moment_index_from_derivative(d, wave_numbers) - if sum(moment_index) > 1: # lower order moments are replaced anyway - required_central_moments.add(moment_index) - derivative_subs.append((d, statistical_quantity_symbol(moment_symbol_base, moment_index))) + derivative_subs = [(d, derivative_as_statistical_quantity(d, wave_numbers, moment_symbol_base)) + for d in derivatives] derivative_subs = sorted(derivative_subs, key=lambda x: count_derivatives(x[0]), reverse=True) + derivative_subs.append((K(*wave_numbers), statistical_quantity_symbol(moment_symbol_base, (0,) * dim))) - # K(0,0,0) = rho cumulant = cumulant.subs(derivative_subs) - # First central moments equal zero value_subs = {x: 0 for x in wave_numbers} - for i in range(dim): - indices = [0] * dim - indices[i] = 1 - value_subs[statistical_quantity_symbol( - moment_symbol_base, indices)] = 0 - cumulant = cumulant.subs(value_subs) - cumulant = cumulant.subs(K(*((0,) * dim)), rho) # K(0,0,0) = rho return (rho * cumulant).collect(rho) @@ -163,27 +191,22 @@ class CentralMomentsToCumulantsByGeneratingFunc(AbstractMomentTransform): K = sp.exp(C(*wave_numbers) - sum(w * u for w, u in zip(wave_numbers, u_symbols))) - diff_args = chain.from_iterable( - [var, i] for var, i in zip(wave_numbers, moment_exponents)) + diff_args = chain.from_iterable([var, i] for var, i in zip(wave_numbers, moment_exponents)) moment = K.diff(*diff_args) derivatives = moment.atoms(sp.Derivative) - c_indices = [moment_index_from_derivative(d, wave_numbers) for d in derivatives] derivative_subs = [(d, derivative_as_statistical_quantity(d, wave_numbers, 'c')) for d in derivatives] derivative_subs = sorted(derivative_subs, key=lambda x: count_derivatives(x[0]), reverse=True) + derivative_subs.append((C(*wave_numbers), statistical_quantity_symbol('c', (0,) * dim))) moment = moment.subs(derivative_subs) - # C(0,0,0) = log(rho), c_100 = u_x, etc. value_subs = [(x, 0) for x in wave_numbers] - for i, u in enumerate(u_symbols): - c_idx = [0] * dim - c_idx[i] = 1 - value_subs.append((statistical_quantity_symbol('c', c_idx), u)) moment = moment.subs(value_subs) - moment = moment.subs(C(*((0,) * dim)), sp.log(rho)) + + c_indices = [(0,) * dim] + [moment_index_from_derivative(d, wave_numbers) for d in derivatives] moment = moment.subs([(statistical_quantity_symbol('c', idx), statistical_quantity_symbol(cumulant_symbol_base, idx) / rho) for idx in c_indices]) @@ -193,7 +216,5 @@ class CentralMomentsToCumulantsByGeneratingFunc(AbstractMomentTransform): @property def _default_simplification(self): simplification = SimplificationStrategy() - simplification.add(add_subexpressions_for_divisions) - return simplification # end class CentralMomentsToCumulantsByGeneratingFunc diff --git a/lbmpy/moment_transforms/rawmomenttransforms.py b/lbmpy/moment_transforms/rawmomenttransforms.py index 4ea8502ef27c3bfb3fffe4df983edcdc8788f188..11013841d0cda6cec0f57bdf5da40cbfd2fc302d 100644 --- a/lbmpy/moment_transforms/rawmomenttransforms.py +++ b/lbmpy/moment_transforms/rawmomenttransforms.py @@ -1,8 +1,10 @@ +from functools import partial import sympy as sp from pystencils import Assignment, AssignmentCollection from pystencils.simp import ( - SimplificationStrategy, add_subexpressions_for_divisions, add_subexpressions_for_constants) + SimplificationStrategy, add_subexpressions_for_divisions, add_subexpressions_for_constants, + insert_aliases, insert_constants) from pystencils.simp.assignment_collection import SymbolGen from lbmpy.moments import ( @@ -174,11 +176,13 @@ class PdfsToMomentsByMatrixTransform(AbstractRawMomentTransform): def _default_simplification(self): forward_simp = SimplificationStrategy() # forward_simp.add(substitute_moments_in_conserved_quantity_equations) + forward_simp.add(insert_aliases) forward_simp.add(add_subexpressions_for_divisions) from lbmpy.methods.momentbased.momentbasedsimplifications import split_pdf_main_assignments_by_symmetry backward_simp = SimplificationStrategy() + backward_simp.add(insert_aliases) backward_simp.add(split_pdf_main_assignments_by_symmetry) backward_simp.add(add_subexpressions_for_constants) @@ -269,7 +273,7 @@ class PdfsToMomentsByChimeraTransform(AbstractRawMomentTransform): If simplification is enabled, the absorbed conserved quantity equations are - if possible - rewritten using the monomial symbols. If the conserved quantities originate somewhere else than in the lower-order moments (like from an external field), they are not affected by this - simplification. + simplification. Furthermore, aliases and constants are propagated in the chimera equations. Args: pdf_symbols: List of symbols that represent the pre-collision populations @@ -417,11 +421,18 @@ class PdfsToMomentsByChimeraTransform(AbstractRawMomentTransform): split_pdf_main_assignments_by_symmetry ) + cq = (self.equilibrium_density,) + self.equilibrium_velocity + fw_skip = cq + self.pre_collision_monomial_symbols + forward_simp = SimplificationStrategy() forward_simp.add(substitute_moments_in_conserved_quantity_equations) - forward_simp.add(add_subexpressions_for_divisions) + forward_simp.add(partial(insert_aliases, skip=fw_skip)) + forward_simp.add(partial(insert_constants, skip=fw_skip)) + + bw_skip = self.post_collision_monomial_symbols backward_simp = SimplificationStrategy() + backward_simp.add(partial(insert_aliases, skip=bw_skip)) backward_simp.add(split_pdf_main_assignments_by_symmetry) backward_simp.add(add_subexpressions_for_constants) diff --git a/lbmpy/simplificationfactory.py b/lbmpy/simplificationfactory.py index 4f3ebb3da67cbac7c45dfcbd530de2abd246f4b4..b16fbcbfa7d03eeff433e5f552e524ee20522319 100644 --- a/lbmpy/simplificationfactory.py +++ b/lbmpy/simplificationfactory.py @@ -3,13 +3,19 @@ import sympy as sp from lbmpy.innerloopsplit import create_lbm_split_groups from lbmpy.methods.momentbased.momentbasedmethod import MomentBasedLbMethod from lbmpy.methods.momentbased.centralmomentbasedmethod import CentralMomentBasedLbMethod -from lbmpy.methods.centeredcumulant import CenteredCumulantBasedLbMethod +from lbmpy.methods.cumulantbased import CumulantBasedLbMethod + +from lbmpy.methods.cumulantbased.cumulant_simplifications import ( + insert_log_products, expand_post_collision_central_moments) from lbmpy.methods.momentbased.momentbasedsimplifications import ( factor_density_after_factoring_relaxation_times, factor_relaxation_rates, - replace_common_quadratic_and_constant_term, replace_density_and_velocity, replace_second_order_velocity_products) + replace_common_quadratic_and_constant_term, replace_density_and_velocity, replace_second_order_velocity_products, + insert_half_force, insert_conserved_quantity_products) from pystencils.simp import ( SimplificationStrategy, add_subexpressions_for_divisions, apply_to_all_assignments, - subexpression_substitution_in_main_assignments, insert_aliases, insert_constants) + subexpression_substitution_in_main_assignments, insert_aliases, insert_constants, + add_subexpressions_for_constants) +# add_subexpressions_for_constants) def create_simplification_strategy(lb_method, split_inner_loop=False): @@ -25,8 +31,8 @@ def create_simplification_strategy(lb_method, split_inner_loop=False): return _mrt_population_space_simplification(split_inner_loop) elif isinstance(lb_method, CentralMomentBasedLbMethod): return _moment_space_simplification(split_inner_loop) - elif isinstance(lb_method, CenteredCumulantBasedLbMethod): - return _moment_space_simplification(split_inner_loop) + elif isinstance(lb_method, CumulantBasedLbMethod): + return _cumulant_space_simplification(split_inner_loop) else: return SimplificationStrategy() @@ -56,6 +62,7 @@ def _srt_trt_population_space_simplification(split_inner_loop): def _mrt_population_space_simplification(split_inner_loop): s = SimplificationStrategy() s.add(subexpression_substitution_in_main_assignments) + s.add(add_subexpressions_for_divisions) if split_inner_loop: s.add(create_lbm_split_groups) s.add(lambda ac: ac.new_without_unused_subexpressions()) @@ -65,7 +72,28 @@ def _mrt_population_space_simplification(split_inner_loop): def _moment_space_simplification(split_inner_loop): s = SimplificationStrategy() s.add(insert_constants) + s.add(insert_half_force) + s.add(insert_aliases) + s.add(add_subexpressions_for_divisions) + s.add(add_subexpressions_for_constants) + if split_inner_loop: + s.add(create_lbm_split_groups) + s.add(lambda ac: ac.new_without_unused_subexpressions()) + return s + + +def _cumulant_space_simplification(split_inner_loop): + s = SimplificationStrategy() + s.add(insert_constants) + s.add(insert_aliases) + s.add(insert_log_products) + s.add(insert_conserved_quantity_products) + s.add(insert_half_force) + s.add(expand_post_collision_central_moments) s.add(insert_aliases) + s.add(insert_constants) + s.add(add_subexpressions_for_divisions) + s.add(add_subexpressions_for_constants) if split_inner_loop: s.add(create_lbm_split_groups) s.add(lambda ac: ac.new_without_unused_subexpressions()) diff --git a/lbmpy_tests/centeredcumulant/test_equilibrium.py b/lbmpy_tests/cumulantmethod/test_equilibrium.py similarity index 94% rename from lbmpy_tests/centeredcumulant/test_equilibrium.py rename to lbmpy_tests/cumulantmethod/test_equilibrium.py index 7f95a7980a0a4a855164f243f38dff648e373fcb..abd5a82768887cfc1307ff5a2df7f547ac045025 100644 --- a/lbmpy_tests/centeredcumulant/test_equilibrium.py +++ b/lbmpy_tests/cumulantmethod/test_equilibrium.py @@ -13,7 +13,8 @@ from lbmpy.methods import CollisionSpaceInfo from lbmpy.moment_transforms import ( FastCentralMomentTransform, PdfsToCentralMomentsByMatrix, - PdfsToCentralMomentsByShiftMatrix) + PdfsToCentralMomentsByShiftMatrix, + BinomialChimeraTransform) sympy_numeric_version = [int(x, 10) for x in sp.__version__.split('.')] if len(sympy_numeric_version) < 3: @@ -30,7 +31,8 @@ reference_equilibria = dict() @pytest.mark.parametrize('stencil_name', [Stencil.D2Q9, Stencil.D3Q19, Stencil.D3Q27]) @pytest.mark.parametrize('cm_transform', [PdfsToCentralMomentsByMatrix, FastCentralMomentTransform, - PdfsToCentralMomentsByShiftMatrix]) + PdfsToCentralMomentsByShiftMatrix, + BinomialChimeraTransform]) def test_equilibrium_pdfs(stencil_name, cm_transform): stencil = LBStencil(stencil_name) cspace = CollisionSpaceInfo(CollisionSpace.CUMULANTS, central_moment_transform_class=cm_transform) diff --git a/lbmpy_tests/centeredcumulant/test_flow_around_sphere.py b/lbmpy_tests/cumulantmethod/test_flow_around_sphere.py similarity index 100% rename from lbmpy_tests/centeredcumulant/test_flow_around_sphere.py rename to lbmpy_tests/cumulantmethod/test_flow_around_sphere.py diff --git a/lbmpy_tests/centeredcumulant/test_periodic_pipe_flow.ipynb b/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb similarity index 72% rename from lbmpy_tests/centeredcumulant/test_periodic_pipe_flow.ipynb rename to lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb index 2c3d8c0a370a08b1a047ebf5131adfb73ea5df90..75838cd604b73b20325b033fdac9fa4b20d6046c 100644 --- a/lbmpy_tests/centeredcumulant/test_periodic_pipe_flow.ipynb +++ b/lbmpy_tests/cumulantmethod/test_periodic_pipe_flow.ipynb @@ -28,8 +28,6 @@ "\n", "from lbmpy.stencils import get_stencil\n", "\n", - "from lbmpy.methods.centeredcumulant import CenteredCumulantForceModel\n", - "\n", "from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter" ] }, @@ -37,7 +35,15 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No pycuda installed\n" + ] + } + ], "source": [ "try:\n", " import pycuda\n", @@ -252,7 +258,7 @@ { "data": { "text/plain": [ - "<matplotlib.colorbar.Colorbar at 0x7f0020a58970>" + "<matplotlib.colorbar.Colorbar at 0x7fc77e7f47c0>" ] }, "execution_count": 7, @@ -261,7 +267,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqe0lEQVR4nO3df4wc533f8c/n9vZ+8I4ySekkMZRUKTEThAka2iVkAS4KJ45sSg1Ku4AAqa6tOkZpIxJgAy4KxfkjTo0CRhDbiQtVghwRllHVggXbNWGwkVnVgWsgdkS5iiyFUcWqikWLFilRFHkk725v99s/bhivz3d735m7JXdv3y9gwN3Zz849t7M7x+8+zzzjiBAAAAAAYGlDl7oBAAAAANDLKJoAAAAAoAOKJgAAAADogKIJAAAAADqgaAIAAACADiiaAAAAAKADiiYAAAAAPcn2btvP2T5i+54lHrftzxePP237rcX6Mdt/bftvbD9r+4/anrPF9kHbzxf/bl6pHRRNAAAAAHqO7ZqkeyXdImmHpDts71gUu0XS9mLZK+m+Yv2spN+KiN+QtFPSbts3FY/dI+nxiNgu6fHifkcUTQAAAAB60Y2SjkTECxExJ+kRSXsWZfZI+lIs+J6kTba3Fveni0y9WKLtOQ8Vtx+S9J6VGjK8ut+jnCuuuCKuv/76i/kjAeCi+j9PvpDOeqhL31u5C9uMlSOVNttqpbO//E9+sTuNAIAe8OSTT74aEVOXuh1lvPs3J+K1k83Kz3/y6dlnJc20rXogIh5ou79N0ktt949KetuizSyV2SbpWNFT9aSkN0u6NyK+X2SuiohjkhQRx2xfuVJbL2rRdP311+vQoUMX80cCwEV189Bt6ezQ+Ib8hmu1dNRe+6opokTV1Mz/AW2dO5fOHjz0aL4NANBnbP/9pW5DWa+ebOr7j11T+fn1rf93JiJ2dYgs9Qdt8R+kZTMR0ZS00/YmSV+3/esR8UyVtjI8DwAAAEAvOirp2rb710h6uWwmIk5J+ktJu4tVr9jeKknFv8dXaghFEwAAAIAKQs1oVV4SnpC03fYNtkck3S5p/6LMfkkfKGbRu0nSG8WQu6mih0m2xyX9tqS/a3vOncXtOyV9Y6WGXNTheQAAAADWh5DU6tZJr5IiYt723ZIek1STtC8inrX9keLx+yUdkHSrpCOSzkn6YPH0rZIeKs5rGpL0lYj4ZvHYpyV9xfaHJP1I0opj6ymaAAAAAFTSUn5Cnyoi4oAWCqP2dfe33Q5Jdy3xvKclvWWZbb4m6Z1l2sHwPAAAAADogJ4mAAAAAKWFQs0ys6v2MYomAAAAAJV085ymXkLRBAAAAKC0kNSkaAKA/lLqwrITE+msN+QvQlvb8cvpbHNyNJ1tjeQvbqva2l/cVs38H8WhufzFbWvTs+ns7qt+L52NEhfNbZ09m84ebHGBXQBoNyg9TUwEAQAAAAAd0NMEAAAAoLSQmAgCAAAAADrp7lWaegdFEwAAAIDSQsFEEAAAAACwrCg1T1BfYyIIAAAAAOiAniYAAAAApYU4pwkAAAAAOrCa6sK1AXsQRRMAAACA0kJSi3OaAAAAAAD0NAHoae8afV86W9v+i+ls8/LJdLYxWc9nN+YPq/Pj+SENzXo+G7V0NM3NfLbWyH/tOHx+Qzpb/4WN+ex0I52tvTadzpZ5P35r9uF0FgD6FcPzAAAAAGAZIYomAAAAAOioFRRNAAAAALCkQeppYiIIAAAAAOiAniYAAAAApYWs5oD0wVA0AQAAAKiEc5oAAAAAYBmDdE4TRRMAAACACqxmDMbwvMH4LQEAAACgInqaAAAAAJQWkloD0gdD0QRgTdw8dFs6W7t8SzrrX3tzOnv+6ol0dmZzLZ1tTObHazcm8tnmaDqqVomjdeR/tTQ389mh+fxrUJvNb7d+Nv+HuT5dT2fHNuV3xNjEWDq7e+rD6WzztZOp3MHWo+ltAsDFwDlNAAAAALCMCM5pAgAAAACIniYAAAAAFbUYngcAAAAAS1u4TtNgDFyjaAIAAABQweCc00TRBAAAAKC0QZpyfDB+SwAAAACoiJ4mAAAAAJU0g4kgAAAAAGBJITMRBAAAAAB00mIiCACQ3jVyRypXe/MN6W02tm5KZ89fOZLOzmzJH7hn35QfTjA/mY5qfizS2VaJbNRLZIfy2Sy38q+XG/ns0Ew+O1wmO53PNiZLZCc2prPjG0fT2fqxN6Vy2c+jJH1r7svpLABUMUhTjg/GbwkAAAAAFa1YNNm+1va3bR+2/aztjxbrP2n7x7afKpZbu99cAAAAAL0gZDWj+tJPMsPz5iV9PCJ+YHujpCdtHywe+1xE/En3mgcAAACgVw3KdZpWLJoi4pikY8XtM7YPS9rW7YYBAAAA6F0RUnNAJoIo9Vvavl7SWyR9v1h1t+2nbe+zvXmtGwcAAAAAl1q6aLI9Kemrkj4WEacl3SfplyTt1EJP1GeWed5e24dsHzpx4sTqWwwAAACgB1itVSz9JFU02a5roWB6OCK+JkkR8UpENCOiJekLkm5c6rkR8UBE7IqIXVNTU2vVbgAAAACXUGhheF7VpZ+seE6TbUt6UNLhiPhs2/qtxflOkvReSc90p4kAAAAAetGgXKcpM3ve2yW9X9IPbT9VrPuEpDts79RCkfmipA93oX0AAAAAelDIavXZ1OFVZWbP+6605KDDA2vfHAAAAADoLZmeJgDrzM1Dt6WztTffkMrNXrclvc1zV9fT2fOX57v95zalo5q7LNLZ5mQzv+GxfLY2ms/Wh/PZoaH875bVauW/SZyfr+WzsyWyM/lsbSKfbY6X+N3GSmx3dDSd3VDPfX7yWyz3OT/YerTElgHgp7o9PM/2bkl/Jqkm6c8j4tOLHnfx+K2Szkn6N8X1Za+V9CVJV0tqSXogIv6seM4nJf1bSRdmqftERHTsEKJoAgAAAFBaSGp1cUIH2zVJ90q6WdJRSU/Y3h8Rf9sWu0XS9mJ5mxZm+H6bpHlJHy8KqI2SnrR9sO25n4uIP8m2haIJAAAAQAVWs7tTh98o6UhEvCBJth+RtEdSe9G0R9KXIiIkfc/2prYJ645JUkScsX1Y0rZFz00bjOkuAAAAAKypCz1NVRdJV1y4nmux7F30I7ZJeqnt/tFiXamM7eslvUXS99tW3237adv7bG9e6XelaAIAAABwKbx64XquxfLAoseX6sZafOJux4ztSS1cb/ZjEXG6WH2fpF+StFMLvVGfWamhDM8DAAAAUEmXh+cdlXRt2/1rJL2czdiua6FgejgivnYhEBGvXLht+wuSvrlSQ+hpAgAAAFBahFc7PG8lT0jabvsG2yOSbpe0f1Fmv6QPeMFNkt6IiGPFrHoPSjocEZ9tf4LtrW133yvpmZUaQk8TAAAAgEqaXZw9LyLmbd8t6TEtTDm+LyKetf2R4vH7tXDt2FslHdHClOMfLJ7+dknvl/RD208V6y5MLf7HtndqYRjfi5I+vFJbKJoAAAAA9KSiyDmwaN39bbdD0l1LPO+7Wvp8J0XE+8u2g6IJAAAAQGkhqdXdc5p6BkUTMIBql29JZxtbN6Vy566up7d57sp8V/7slsWT5CxvblMrnY2N8+ns6MRcOrthrER2pJHOjtfz2Zrzr0NWmeEX5xsl3gtzJbIzI+ns7Fg+OzOa/1PYqudfh6iVGbKSex2GGpvyW3w9/zkHgGrc1eF5vYSiCQAAAEBpC9dpoqcJAAAAAJbVHJDJuAfjtwQAAACAiuhpAgAAAFBayAzPAwAAAIBOWgMycI2iCQAAAEBpEVKTniYAAAAAWN6gDM8bjP40AAAAAKiIniYAAAAApS1MBDEYfTAUTQAAAAAqaWowhudRNAHrxLtG35fO+tfenM6ev3Ikl7s8/03T7JZIZ+e2tNJZb5pLZzdOzqSzmzecT2c3jeazl43ks+O1Rjpbd/41y2qU+CbxfLOezp6eG09nT43ls6+P5LPT9bF0dm4o93lYkH/N3Mxla7P5nz985up0tszx41uzD6ezANa3EOc0AQAAAABETxMAAACASjinCQAAAAA6anFOEwAAAAAsjYvbAgAAAMAKBmV43mD8lgAAAABQET1NAAAAAEpbuLgtw/MAAAAAYFlMBAEAAAAAy+DitgAAAAAASfQ0AT3t5qHb0tna9l9MZ89fPZHOzmzJfbcytym9Sc1taqWz3jSXzr7psnPp7JWT0/ns+Jl0dmokv93LhmfS2Q212XS27mY6m9WIWjp7rjmazp4eGUtnT4xMprNjwxvT2eND+ffjG+mkNNcaSWeHGrnXd2Ym/11n/Wz+cz5+9pp0tsxx6WDr0XQWQH8alNnzKJoAAAAAlBdMBAEAAAAAywoxEQQAAAAAdDQoPU2DMQgRAAAAACqipwkAAABAaYM05ThFEwAAAIBKKJoAAAAAYBkhZs8DAAAAgI4GZfY8JoIAAAAAgA7oaQIAAABQXnBOE4AeMDQxkc42L59MZ2c219LZ2TflDoZzl0V6m7FxPp3dODmTzl45OZ3ObtvwRjq7dSyfvaJ+Jp3dUsu3d2JoLp2tO//6ZjUi/+fibGsknT05nH/fjtca6WzdrXS2jGYrP0DjdCOfnZvNZWvn8/85qU/nP+cjJY4fQy/nj0sA1jdmzwMAAACAFQxK0cQ5TQAAAADQwYpFk+1rbX/b9mHbz9r+aLF+i+2Dtp8v/t3c/eYCAAAA6AUXphyvuvSTTE/TvKSPR8SvSrpJ0l22d0i6R9LjEbFd0uPFfQAAAAADIsKVl36yYtEUEcci4gfF7TOSDkvaJmmPpIeK2EOS3tOlNgIAAADoQS258tJPSk0EYft6SW+R9H1JV0XEMWmhsLJ95TLP2StpryRdd911q2osAAAAgN4QAzTleHoiCNuTkr4q6WMRcTr7vIh4ICJ2RcSuqampKm0EAAAAgEsm1dNku66FgunhiPhasfoV21uLXqatko53q5EAAAAAek+/nZtUVWb2PEt6UNLhiPhs20P7Jd1Z3L5T0jfWvnkAAAAAetPgzJ6X6Wl6u6T3S/qh7aeKdZ+Q9GlJX7H9IUk/knRbV1oIAAAAoCcNSk/TikVTRHxXWnZ6i3eubXMAtPOGDelsY7JeIps/wM1P5nLNyWZ6m6MTc+ns5g3n09krx8+ks1vH3khnrxk5mc5ODefbsKl2Np2dcP41qzu/L7IaUUtnz8ZIOjsxlP+9xtxIZ8toRP467zPz+c/Z7Fx+rqXZmdzrO382v80yn/Myx4+xEsclAOtbiIkgAAAAAACiaAIAAABQRSxMO151ybC92/Zzto/YvmeJx23788XjT9t+a7H+Wtvftn3Y9rO2P9r2nC22D9p+vvh380rtoGgCAAAAUEk3L25ruybpXkm3SNoh6Q7bOxbFbpG0vVj2SrqvWD8v6eMR8auSbpJ0V9tz75H0eERsl/R4cb8jiiYAAAAApYUWJoKouiTcKOlIRLwQEXOSHpG0Z1Fmj6QvxYLvSdp04bJIEfEDSYqIM5IOS9rW9pyHitsPSXrPSg2haAIAAABwKVxh+1DbsnfR49skvdR2/6h+WvikM7avl/QWSd8vVl0VEcckqfj3ypUamp+GBwAAAAD+waqvt/RqROzq+AN+3uKzoTpmbE9K+qqkj0XE6fJNXEBPEwAAAIBKujwRxFFJ17bdv0bSy9mM7boWCqaHI+JrbZlXbG8tMlslHV+pIRRNAAAAACrp8jlNT0jabvsG2yOSbpe0f1Fmv6QPFLPo3STpjYg4ZtuSHpR0OCI+u8Rz7ixu3ynpGys1hOF5AAAAAEpb6DHq3sVtI2Le9t2SHpNUk7QvIp61/ZHi8fslHZB0q6Qjks5J+mDx9LdLer+kH9p+qlj3iYg4IOnTkr5i+0OSfiTptpXaQtEEAAAAoCcVRc6BRevub7sdku5a4nnf1dLnOykiXpP0zjLtoGgCLrKbh1b8MuMf1Hb8cjrb2Jj/ODcm8t8KzY8lrz431kxvc8PYXDq7afR8Ojs1Mp3OXlE/k9/ucJls/hzTTUMz6exGz6ez9S586ddIvg0k6Uw00tm68++bMmains6eb+azp0fH89mx0XR2dmwklZsfq6W3WeZzXub4MTa14jUg/0GZ493B1qPpLIDescqJIPoGRRMAAACASpITOvQ9iiYAAAAAlXTznKZeQtEEAAAAoLRQeha8vseU4wAAAADQAT1NAAAAACoZkFOaKJoAAAAAVNDl6zT1EoomAAAAANUMSFcT5zQBAAAAQAf0NAEAAACohOF5AAAAANABF7cF0BVDGzaks83J0XR2fjz/TU8zv1m1xnJHw9poM73NDSONdPaykfP57PBMOrulNp3ObqqdzWeHSrRhaD6dnXB+NHW9RDarEa38z4/87yXlX69GrZbOnm2NpLNvDOc/k2XejxtGJtLZ08nPT/bzKEnN0fwxodTxo8RxqczxDkD/CdHTBAAAAADLC0kDUjQxEQQAAAAAdEBPEwAAAIBKOKcJAAAAADqhaAIAAACA5ZiJIAAAAACgowHpaWIiCAAAAADogJ4mAAAAAOUF12kCAAAAgM4GZHgeRRMAAACAiuhpAtANtVo62hrJZ5v1/EGrVeKTH/XcV0j14WZ6m+P1Rj5by2c31GbT2YmhuXzW+exGz5fYbv600g1D9XR2WPn3TVbd+f2rVn6fNUq8XudK7Icy+7fM+6bM+7HM+3w4+fmZS34epXKf81LHjxLHpaESxzsA6GUUTQAAAACqYXgeAAAAAHRA0QQAAAAAywhJzJ4HAAAAAMuLAelp4uK2AAAAANABPU0AAAAAqhmQniaKJgAAAADVcE4TAAAAACzP9DQBAAAAwDJCAzM8j4kgAAAAAKADepqAi8wuMfa3ls9GLb/ZUtmh3FdIQ8mcJNXcSmfrpbLNEtn5Lm03HVXd+e+thpXfabUS200r8U1iuder3/Zvvr1l3ufZz0/28yh175hQ5rhU6ngHoA+Zc5oAAAAAoCOG5y2wvc/2cdvPtK37pO0f236qWG7tbjMBAAAA9JxYxdJHMmM4vihp9xLrPxcRO4vlwNo2CwAAAAB6w4pFU0R8R9LJi9AWAAAAAP2EnqYV3W376WL43ublQrb32j5k+9CJEydW8eMAAAAA9IzQwkQQVZc+UrVouk/SL0naKemYpM8sF4yIByJiV0TsmpqaqvjjAAAAAPQaR/Wln1QqmiLilYhoRkRL0hck3bi2zQIAAADQ8xietzzbW9vuvlfSM8tlAQAAAKCfrXidJttflvQOSVfYPirpDyW9w/ZOLdSIL0r6cPeaCAAAAACXzopFU0TcscTqB7vQFgAAAAB9pN/OTapqxaIJAAAAAJbUZ7PgVUXRBAAAAKC8PpzQoarVXKcJAAAAANY9epoAAAAAVENPEwAAAAAsr9sXt7W92/Zzto/YvmeJx23788XjT9t+a9tj+2wft/3Moud80vaPbT9VLLeu1A6KJgAAAADVdPHitrZrku6VdIukHZLusL1jUewWSduLZa+k+9oe+6Kk3cts/nMRsbNYDqzUFoomAAAAAL3oRklHIuKFiJiT9IikPYsyeyR9KRZ8T9Im21slKSK+I+nkWjSEogkAAABANavrabrC9qG2Ze+irW+T9FLb/aPFurKZpdxdDOfbZ3vzSmEmggAAAABQWplzk5bxakTs6vQjlli3+CdmMovdJ+lTRe5Tkj4j6Xc7PYGiCQAAAEA13b247VFJ17bdv0bSyxUyPyMiXrlw2/YXJH1zpYZQNAEXWUSJr2Sa+ayb+c2WyrZyB8NWMidJzciPDG6UytZKZPOHv3LbTUfViFY6Wy+z07ow/eu88j+/zO9V7vXqhf2bfz+WeZ9nPz/Zz6PUvWNCmeNSqeMdgP7U3Y/5E5K2275B0o8l3S7pXy3K7NfCULtHJL1N0hsRcazTRm1vbcu8V9IznfISRRMAAACAHhQR87bvlvSYpJqkfRHxrO2PFI/fL+mApFslHZF0TtIHLzzf9pclvUML504dlfSHEfGgpD+2vVMLJd+Lkj68UlsomgAAAABUsspzmlZUTAd+YNG6+9tuh6S7lnnuHcusf3/ZdlA0AQAAAKhmQEbhUjQBAAAAKG/1s+f1Da7TBAAAAAAd0NMEAAAAoJoB6WmiaAIAAABQDUUTAAAAACyPc5oAAAAAABRNAAAAANAJw/OAi63ZTEeH5vLZWiPfPz4073TWjVx2fr6W3ub5Rj2fbeaz55qj6ezZ1kg+G/nsmWiks/WYT2fVKrFd5983WY1opbNnS2TPRP7PUJn9UGb/lnnflHk/lnmfZz8/2c+jJA2VeHuVOn6UOC6VOd4B6FMDMjyPogkAAABAeQN0nSaKJgAAAADVUDQBAAAAQAcDUjQxEQQAAAAAdEBPEwAAAIDSLM5pAgAAAIDOKJoAAAAAYBkDNHse5zQBAAAAQAf0NAEAAACoZkB6miiaAAAAAFRD0QSgG1rnzqWztenZdHb4/Ib8dvOb1dCMU7n52Vp6m+fm6uns6bnxfHZkLJ09OTyZzk4MzaWzdTfTWWkmnWx4vkQbWiXakPz5Jf4onon8n5ZTrfw+O9WcSGdPNvP79/R8vg1l3o9l3ufN5OdnOPl5lMp9zofP53dwmeNSs8TxDkB/GpRzmiiaAAAAAFQzIEUTE0EAAAAAQAf0NAEAAAAoLzQwPU0UTQAAAAAq4ZwmAAAAAOiEogkAAAAAljcoPU1MBAEAAAAAHdDTBAAAAKCaAelpomgCAAAAUB6z5wEAAADA8lwsg4CiCbjIDrYeTWd3X/V76Wz9Fzbms2fzpzMOz+QOh/MztfQ2z82MpLOnxsbT2RMjk+nseK2Rzo45ny2jUSvxmnkuna27WaU5HTUi39azUWL/NifS2RPz+ff4q4189sRc/n1zajb/fizzPlfy85P9PEpS/Wz+69/6mfl0VideT0fLHO8AoJdRNAEAAACohuF5AAAAALA8phwv2N5n+7jtZ9rWbbF90Pbzxb+bu9tMAAAAAD0nVrH0kcyJDV+UtHvRunskPR4R2yU9XtwHAAAAMEgomhZExHcknVy0eo+kh4rbD0l6z9o2CwAAAAB6Q9Vzmq6KiGOSFBHHbF+5XND2Xkl7Jem6666r+OMAAAAA9JTgnKY1ExEPRMSuiNg1NTXV7R8HAAAA4GJheF5Hr9jeKknFv8fXrkkAAAAA+oGj+tJPqhZN+yXdWdy+U9I31qY5AAAAAPoGPU0LbH9Z0l9J+hXbR21/SNKnJd1s+3lJNxf3AQAAAGDdWXEiiIi4Y5mH3rnGbQGwSJw7l87WpxslsvV0dnjaqVxtopbe5uzYSDr7+sh4Ojs2vDGdrbuVzpYxE/nX9mwr/zpMDM2ls3XPp7NZjcjPG1Tm9zrZnExnX23k9++xmTels8fP57f7+rn8+3H2bP51qE3nPj/D0+lNqj6d/xq3zPGjzHEJwPrXb8Psqqo6ex4AAACAQdaHw+yqomgCAAAAUM2AFE1dn3IcAAAAAPoZPU0AAAAASrM4pwkAAAAAOhuQoonheQAAAAAqcUTlJbV9e7ft52wfsX3PEo/b9ueLx5+2/da2x/bZPm77mUXP2WL7oO3ni383r9QOiiYAAAAA5a3mwraJmsl2TdK9km6RtEPSHbZ3LIrdIml7seyVdF/bY1+UtHuJTd8j6fGI2C7p8eJ+RxRNAAAAAHrRjZKORMQLETEn6RFJexZl9kj6Uiz4nqRNtrdKUkR8R9LJJba7R9JDxe2HJL1npYZQNAEAAACoxFF9kXSF7UNty95Fm98m6aW2+0eLdWUzi10VEcckqfj3ypV+TyaCAAAAAFDN6iaCeDUidnV43ImfmMmsGkUT0MNaZ8+ms7XXptPZsU2j6Wxjcqlj0c9rjudykjQzmj/0TNfH0tnjQ610toxG5Dvlzzfr6ewbwxvS2Q212XS27mY6m9WIWjp7rpl/f52ez+/fE3OT6ezx8xvz2en8dqen8+31mfz7fOR07vMz+kb+/wFjr+ffB2WOH80SxyUA61+Xpxw/KunatvvXSHq5QmaxV2xvjYhjxVC+4ys1hOF5AAAAAKrp4kQQkp6QtN32DbZHJN0uaf+izH5JHyhm0btJ0hsXht51sF/SncXtOyV9Y6WGUDQBAAAA6DkRMS/pbkmPSTos6SsR8aztj9j+SBE7IOkFSUckfUHS7114vu0vS/orSb9i+6jtDxUPfVrSzbafl3Rzcb8jhucBAAAAKC+6PjxPEXFAC4VR+7r7226HpLuWee4dy6x/TdI7y7SDogkAAABANV0umnoFRRMAAACA0qzu9zT1Cs5pAgAAAIAO6GkCAAAAUE0MRlcTRRMAAACASgZleB5FEwAAAIDy8tdb6nsUTQAAAAAqcetSt+DioGgCetjB1qPp7LtG35fOjk2MpbONiY2p3PxYLb3NVj0/B83c0Eg6+0Y6KTVb+TbMzNfT2dOj4+nsZSPn09nxWiOdrXfhL1gj8q/X+WaJ12su/3qdms1nXz+Xz05P5z8PcSr/fhw5lX/NRk7lcmMn8/t27Cdn09nWi0fT2TLHJQBYLyiaAAAAAFTD8DwAAAAAWB4TQQAAAADAckJMOQ4AAAAAnQxKT1P+LFUAAAAAGED0NAEAAACoZkB6miiaAAAAAJRmDc7wPIomAAAAAOVFDMxEEJzTBAAAAAAd0NMEAAAAoBKG5wHoK9+afTid3T314XR2fONoKtcczeUkKWplOrnz2bnWSDp7upHf7uxc/lB5eiz/OmwYmUhnx+uNdLbmVjqb1Yz863W+UU9nz82VyM7k9+/s2XzWZ/L7d+RU/nUYPel0dvy13D4bPz6X3qZf+kk6+1iJ4wcA/AyKJgAAAABYHj1NAAAAALCckNQajKqJiSAAAAAAoAN6mgAAAABUMxgdTRRNAAAAAKrhnCYAAAAA6GRALm5L0QQAAACgkkHpaWIiCAAAAADogJ4mAAAAAOWFmAgCAAAAAJZjSeacJgDrVfO1k+ls/dibUrkN9S0lWlBPJ93MjyIeatTS2bnZ/HZnZ/LbnR0bSWdPjzbT2eHhfHZoaO3/gLVaTmfn5/OvV3M2n1WJ/VCbzmdHTud/t5FT6ajGX2ulsxt+0kjl6sfyDSjzOQeAyvKHur7GOU0AAAAA0MGqeppsvyjpjKSmpPmI2LUWjQIAAADQ+xiel/ebEfHqGmwHAAAAQL9gIggAAAAA6CQG5uK2qz2nKSR9y/aTtvcuFbC91/Yh24dOnDixyh8HAAAAoFc4qi/9ZLVF09sj4q2SbpF0l+1/tjgQEQ9ExK6I2DU1NbXKHwcAAAAAF9eqiqaIeLn497ikr0u6cS0aBQAAAKAPRFRf+kjlosn2hO2NF25LepekZ9aqYQAAAAB6WEhuVV/6yWomgrhK0tdtX9jOf42Iv1iTVgEAAADofX3WY1RV5aIpIl6Q9Btr2BYAAAAA6DlMOQ4MoIOtR9PZd43ckcqNlvj5Q41N6WxtdiSdnZnJjziunXc6O382f6icH6uls62x/Ldzc/V8NobW/ls/t/Kvlxv57PBMl7LT6ahG38i/XmMn8+NJxo/PpbP1Y6dSudaLL6W3WeZzDgCVDUZHE0UTAAAAgGrM8DwAAAAA6ICiCQAAAACWEZL6bBa8qlZ7cVsAAAAAWNfoaQIAAABQmhWc0wQAAAAAHVE0AQAAAEAHA1I0cU4TAAAAgPIuTARRdUmwvdv2c7aP2L5nicdt+/PF40/bfutKz7X9Sds/tv1Usdy6UjsomgAAAAD0HNs1SfdKukXSDkl32N6xKHaLpO3FslfSfcnnfi4idhbLgZXawvA8AB19a+7LqdzNQ7elt1l/fUs6O3zm6vx2z07ks9O1dLYx6Xx2Ip9tjuazrRJH68j/amlu5rND8/lsbTafrZ/NDwGpT+ezY6/nf7mxn5xNZ/3ST9LZ5msnU7mDrUfT2wSAi6HLE0HcKOlIRLwgSbYfkbRH0t+2ZfZI+lJEhKTv2d5ke6uk6xPPTaOnCQAAAEA1EdUX6Qrbh9qWvYu2vk3SS233jxbrMpmVnnt3MZxvn+3NK/2a9DQBAAAAqCBWOxHEqxGxq8PjSw3JWPwDl8t0eu59kj5V3P+UpM9I+t1ODaVoAgAAANCLjkq6tu3+NZJeTmZGlntuRLxyYaXtL0j65koNYXgeAAAAgPJCqx2et5InJG23fYPtEUm3S9q/KLNf0geKWfRukvRGRBzr9NzinKcL3ivpmZUaQk8TAAAAgGqSU4dXERHztu+W9JikmqR9EfGs7Y8Uj98v6YCkWyUdkXRO0gc7PbfY9B/b3qmFsu9FSR9eqS0UTQAAAAAq6fLseSqmAz+waN39bbdD0l3Z5xbr31+2HRRNAAAAAKrpctHUKzinCQAAAAA6oKcJAAAAQHkhqTUYPU0UTQAAAAAqWPV1mvoGRROANXGw9WhXtvuu0fels+Nnr0lnRy6fTGcbk/V8dmP+sDo/vtR195bWrOezUUtH09zMZ2uN/B/Q4fP5bP3MfD473Uhna69Np7OtF4+ms4/NPpzOAkDfomgCAAAAgA4GpGhiIggAAAAA6ICeJgAAAADlMREEAAAAAHQSUrQudSMuCoomAAAAANVwThMAAAAAgJ4mAAAAAOVxThMAAAAArGBAhudRNAEAAACohqIJAAAAAJYTFE0A0Au+NftwOnvz0G3p7NDLE+ns2IYN+ezU5nS2OTmazrZGaumsas5ns5r5P4pDc810tjY9m2/DidfT0Th3Lp1tnj2bzh5sPZrOAgDWD4omAAAAAOWFpBbXaQIAAACA5TE8DwAAAAA6oGgCAAAAgOXEwFynaehSNwAAAAAAehk9TQAAAADKCymCiSAAAAAAYHkDMjyPogkAAABANQMyEQTnNAEAAABAB/Q0AQAAACgvgovbAkC/Odh69FI3QTcP3ZbODm3YkM/Waums7XQ2K8oMv2g289Fz59LZXti/AIBFBmR4HkUTAAAAgEpiQHqaVnVOk+3dtp+zfcT2PWvVKAAAAAC9LhZ6mqoufaRy0WS7JuleSbdI2iHpDts71qphAAAAANALVjM870ZJRyLiBUmy/YikPZL+di0aBgAAAKCHhQbmOk2rGZ63TdJLbfePFut+hu29tg/ZPnTixIlV/DgAAAAAPSVa1Zc+spqiaanpmX6u1IyIByJiV0TsmpqaWsWPAwAAANArQlK0ovLST1YzPO+opGvb7l8j6eXVNQcAAABAX4joux6jqlbT0/SEpO22b7A9Iul2SfvXplkAAAAA0Bsq9zRFxLztuyU9JqkmaV9EPLtmLQMAAADQ0/ptmF1Vq7q4bUQckHRgjdoCAAAAoJ8MyPA8x0W8sJTtE5L+/qL9wMF2haRXL3UjkMb+6j/ss/7DPus/7LP+wv5anX8UEX01a5rtv9DCfq/q1YjYvVbt6aaLWjTh4rF9KCJ2Xep2IIf91X/YZ/2HfdZ/2Gf9hf2F9Ww1E0EAAAAAwLpH0QQAAAAAHVA0rV8PXOoGoBT2V/9hn/Uf9ln/YZ/1F/YX1i3OaQIAAACADuhpAgAAAIAOKJoAAAAAoAOKpnXE9m22n7Xdsr1r0WO/b/uI7edsv/tStRE/z/buYr8csX3PpW4Pfp7tfbaP236mbd0W2wdtP1/8u/lSthE/Zfta29+2fbg4Jn60WM8+61G2x2z/te2/KfbZHxXr2Wc9zHbN9v+2/c3iPvsL6xZF0/ryjKR/Kek77Stt75B0u6Rfk7Rb0n+2Xbv4zcNixX64V9ItknZIuqPYX+gtX9TCZ6fdPZIej4jtkh4v7qM3zEv6eET8qqSbJN1VfK7YZ71rVtJvRcRvSNopabftm8Q+63UflXS47T77C+sWRdM6EhGHI+K5JR7aI+mRiJiNiP8n6YikGy9u67CMGyUdiYgXImJO0iNa2F/oIRHxHUknF63eI+mh4vZDkt5zMduE5UXEsYj4QXH7jBb+U7dN7LOeFQumi7v1Ygmxz3qW7Wsk/XNJf962mv2FdYuiaTBsk/RS2/2jxTpceuyb/nVVRByTFv6TLunKS9weLMH29ZLeIun7Yp/1tGKo11OSjks6GBHss972p5L+vaRW2zr2F9at4UvdAJRj+39IunqJh/4gIr6x3NOWWMdc872BfQN0ie1JSV+V9LGIOG0v9XFDr4iIpqSdtjdJ+rrtX7/ETcIybP+OpOMR8aTtd1zi5gAXBUVTn4mI367wtKOSrm27f42kl9emRVgl9k3/esX21og4ZnurFr4dR4+wXddCwfRwRHytWM0+6wMRccr2X2rhPEL2WW96u6R/YftWSWOSLrP9X8T+wjrG8LzBsF/S7bZHbd8gabukv77EbcKCJyRtt32D7REtTNix/xK3CTn7Jd1Z3L5T0nI9vbjIvNCl9KCkwxHx2baH2Gc9yvZU0cMk2+OSflvS34l91pMi4vcj4pqIuF4Lf7f+Z0T8a7G/sI45gpFA64Xt90r6T5KmJJ2S9FREvLt47A8k/a4WZpX6WET890vVTvys4pu6P5VUk7QvIv7jpW0RFrP9ZUnvkHSFpFck/aGk/ybpK5Kuk/QjSbdFxOLJInAJ2P6nkv6XpB/qp+dbfEIL5zWxz3qQ7X+shYkDalr4QvcrEfEfbF8u9llPK4bn/buI+B32F9YziiYAAAAA6IDheQAAAADQAUUTAAAAAHRA0QQAAAAAHVA0AQAAAEAHFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB38f/SChoDhQ3vWAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqe0lEQVR4nO3df4wc533f8c/n9vZ+8I4ySekkMZRUKTEThAka2iVkAS4KJ45sSg1Ku4AAqa6tOkZpIxJgAy4KxfkjTo0CRhDbiQtVghwRllHVggXbNWGwkVnVgWsgdkS5iiyFUcWqikWLFilRFHkk725v99s/bhivz3d735m7JXdv3y9gwN3Zz849t7M7x+8+zzzjiBAAAAAAYGlDl7oBAAAAANDLKJoAAAAAoAOKJgAAAADogKIJAAAAADqgaAIAAACADiiaAAAAAKADiiYAAAAAPcn2btvP2T5i+54lHrftzxePP237rcX6Mdt/bftvbD9r+4/anrPF9kHbzxf/bl6pHRRNAAAAAHqO7ZqkeyXdImmHpDts71gUu0XS9mLZK+m+Yv2spN+KiN+QtFPSbts3FY/dI+nxiNgu6fHifkcUTQAAAAB60Y2SjkTECxExJ+kRSXsWZfZI+lIs+J6kTba3Fveni0y9WKLtOQ8Vtx+S9J6VGjK8ut+jnCuuuCKuv/76i/kjAeCi+j9PvpDOeqhL31u5C9uMlSOVNttqpbO//E9+sTuNAIAe8OSTT74aEVOXuh1lvPs3J+K1k83Kz3/y6dlnJc20rXogIh5ou79N0ktt949KetuizSyV2SbpWNFT9aSkN0u6NyK+X2SuiohjkhQRx2xfuVJbL2rRdP311+vQoUMX80cCwEV189Bt6ezQ+Ib8hmu1dNRe+6opokTV1Mz/AW2dO5fOHjz0aL4NANBnbP/9pW5DWa+ebOr7j11T+fn1rf93JiJ2dYgs9Qdt8R+kZTMR0ZS00/YmSV+3/esR8UyVtjI8DwAAAEAvOirp2rb710h6uWwmIk5J+ktJu4tVr9jeKknFv8dXaghFEwAAAIAKQs1oVV4SnpC03fYNtkck3S5p/6LMfkkfKGbRu0nSG8WQu6mih0m2xyX9tqS/a3vOncXtOyV9Y6WGXNTheQAAAADWh5DU6tZJr5IiYt723ZIek1STtC8inrX9keLx+yUdkHSrpCOSzkn6YPH0rZIeKs5rGpL0lYj4ZvHYpyV9xfaHJP1I0opj6ymaAAAAAFTSUn5Cnyoi4oAWCqP2dfe33Q5Jdy3xvKclvWWZbb4m6Z1l2sHwPAAAAADogJ4mAAAAAKWFQs0ys6v2MYomAAAAAJV085ymXkLRBAAAAKC0kNSkaAKA/lLqwrITE+msN+QvQlvb8cvpbHNyNJ1tjeQvbqva2l/cVs38H8WhufzFbWvTs+ns7qt+L52NEhfNbZ09m84ebHGBXQBoNyg9TUwEAQAAAAAd0NMEAAAAoLSQmAgCAAAAADrp7lWaegdFEwAAAIDSQsFEEAAAAACwrCg1T1BfYyIIAAAAAOiAniYAAAAApYU4pwkAAAAAOrCa6sK1AXsQRRMAAACA0kJSi3OaAAAAAAD0NAHoae8afV86W9v+i+ls8/LJdLYxWc9nN+YPq/Pj+SENzXo+G7V0NM3NfLbWyH/tOHx+Qzpb/4WN+ex0I52tvTadzpZ5P35r9uF0FgD6FcPzAAAAAGAZIYomAAAAAOioFRRNAAAAALCkQeppYiIIAAAAAOiAniYAAAAApYWs5oD0wVA0AQAAAKiEc5oAAAAAYBmDdE4TRRMAAACACqxmDMbwvMH4LQEAAACgInqaAAAAAJQWkloD0gdD0QRgTdw8dFs6W7t8SzrrX3tzOnv+6ol0dmZzLZ1tTObHazcm8tnmaDqqVomjdeR/tTQ389mh+fxrUJvNb7d+Nv+HuT5dT2fHNuV3xNjEWDq7e+rD6WzztZOp3MHWo+ltAsDFwDlNAAAAALCMCM5pAgAAAACIniYAAAAAFbUYngcAAAAAS1u4TtNgDFyjaAIAAABQweCc00TRBAAAAKC0QZpyfDB+SwAAAACoiJ4mAAAAAJU0g4kgAAAAAGBJITMRBAAAAAB00mIiCACQ3jVyRypXe/MN6W02tm5KZ89fOZLOzmzJH7hn35QfTjA/mY5qfizS2VaJbNRLZIfy2Sy38q+XG/ns0Ew+O1wmO53PNiZLZCc2prPjG0fT2fqxN6Vy2c+jJH1r7svpLABUMUhTjg/GbwkAAAAAFa1YNNm+1va3bR+2/aztjxbrP2n7x7afKpZbu99cAAAAAL0gZDWj+tJPMsPz5iV9PCJ+YHujpCdtHywe+1xE/En3mgcAAACgVw3KdZpWLJoi4pikY8XtM7YPS9rW7YYBAAAA6F0RUnNAJoIo9Vvavl7SWyR9v1h1t+2nbe+zvXmtGwcAAAAAl1q6aLI9Kemrkj4WEacl3SfplyTt1EJP1GeWed5e24dsHzpx4sTqWwwAAACgB1itVSz9JFU02a5roWB6OCK+JkkR8UpENCOiJekLkm5c6rkR8UBE7IqIXVNTU2vVbgAAAACXUGhheF7VpZ+seE6TbUt6UNLhiPhs2/qtxflOkvReSc90p4kAAAAAetGgXKcpM3ve2yW9X9IPbT9VrPuEpDts79RCkfmipA93oX0AAAAAelDIavXZ1OFVZWbP+6605KDDA2vfHAAAAADoLZmeJgDrzM1Dt6WztTffkMrNXrclvc1zV9fT2fOX57v95zalo5q7LNLZ5mQzv+GxfLY2ms/Wh/PZoaH875bVauW/SZyfr+WzsyWyM/lsbSKfbY6X+N3GSmx3dDSd3VDPfX7yWyz3OT/YerTElgHgp7o9PM/2bkl/Jqkm6c8j4tOLHnfx+K2Szkn6N8X1Za+V9CVJV0tqSXogIv6seM4nJf1bSRdmqftERHTsEKJoAgAAAFBaSGp1cUIH2zVJ90q6WdJRSU/Y3h8Rf9sWu0XS9mJ5mxZm+H6bpHlJHy8KqI2SnrR9sO25n4uIP8m2haIJAAAAQAVWs7tTh98o6UhEvCBJth+RtEdSe9G0R9KXIiIkfc/2prYJ645JUkScsX1Y0rZFz00bjOkuAAAAAKypCz1NVRdJV1y4nmux7F30I7ZJeqnt/tFiXamM7eslvUXS99tW3237adv7bG9e6XelaAIAAABwKbx64XquxfLAoseX6sZafOJux4ztSS1cb/ZjEXG6WH2fpF+StFMLvVGfWamhDM8DAAAAUEmXh+cdlXRt2/1rJL2czdiua6FgejgivnYhEBGvXLht+wuSvrlSQ+hpAgAAAFBahFc7PG8lT0jabvsG2yOSbpe0f1Fmv6QPeMFNkt6IiGPFrHoPSjocEZ9tf4LtrW133yvpmZUaQk8TAAAAgEqaXZw9LyLmbd8t6TEtTDm+LyKetf2R4vH7tXDt2FslHdHClOMfLJ7+dknvl/RD208V6y5MLf7HtndqYRjfi5I+vFJbKJoAAAAA9KSiyDmwaN39bbdD0l1LPO+7Wvp8J0XE+8u2g6IJAAAAQGkhqdXdc5p6BkUTMIBql29JZxtbN6Vy566up7d57sp8V/7slsWT5CxvblMrnY2N8+ns6MRcOrthrER2pJHOjtfz2Zrzr0NWmeEX5xsl3gtzJbIzI+ns7Fg+OzOa/1PYqudfh6iVGbKSex2GGpvyW3w9/zkHgGrc1eF5vYSiCQAAAEBpC9dpoqcJAAAAAJbVHJDJuAfjtwQAAACAiuhpAgAAAFBayAzPAwAAAIBOWgMycI2iCQAAAEBpEVKTniYAAAAAWN6gDM8bjP40AAAAAKiIniYAAAAApS1MBDEYfTAUTQAAAAAqaWowhudRNAHrxLtG35fO+tfenM6ev3Ikl7s8/03T7JZIZ+e2tNJZb5pLZzdOzqSzmzecT2c3jeazl43ks+O1Rjpbd/41y2qU+CbxfLOezp6eG09nT43ls6+P5LPT9bF0dm4o93lYkH/N3Mxla7P5nz985up0tszx41uzD6ezANa3EOc0AQAAAABETxMAAACASjinCQAAAAA6anFOEwAAAAAsjYvbAgAAAMAKBmV43mD8lgAAAABQET1NAAAAAEpbuLgtw/MAAAAAYFlMBAEAAAAAy+DitgAAAAAASfQ0AT3t5qHb0tna9l9MZ89fPZHOzmzJfbcytym9Sc1taqWz3jSXzr7psnPp7JWT0/ns+Jl0dmokv93LhmfS2Q212XS27mY6m9WIWjp7rjmazp4eGUtnT4xMprNjwxvT2eND+ffjG+mkNNcaSWeHGrnXd2Ym/11n/Wz+cz5+9pp0tsxx6WDr0XQWQH8alNnzKJoAAAAAlBdMBAEAAAAAywoxEQQAAAAAdDQoPU2DMQgRAAAAACqipwkAAABAaYM05ThFEwAAAIBKKJoAAAAAYBkhZs8DAAAAgI4GZfY8JoIAAAAAgA7oaQIAAABQXnBOE4AeMDQxkc42L59MZ2c219LZ2TflDoZzl0V6m7FxPp3dODmTzl45OZ3ObtvwRjq7dSyfvaJ+Jp3dUsu3d2JoLp2tO//6ZjUi/+fibGsknT05nH/fjtca6WzdrXS2jGYrP0DjdCOfnZvNZWvn8/85qU/nP+cjJY4fQy/nj0sA1jdmzwMAAACAFQxK0cQ5TQAAAADQwYpFk+1rbX/b9mHbz9r+aLF+i+2Dtp8v/t3c/eYCAAAA6AUXphyvuvSTTE/TvKSPR8SvSrpJ0l22d0i6R9LjEbFd0uPFfQAAAAADIsKVl36yYtEUEcci4gfF7TOSDkvaJmmPpIeK2EOS3tOlNgIAAADoQS258tJPSk0EYft6SW+R9H1JV0XEMWmhsLJ95TLP2StpryRdd911q2osAAAAgN4QAzTleHoiCNuTkr4q6WMRcTr7vIh4ICJ2RcSuqampKm0EAAAAgEsm1dNku66FgunhiPhasfoV21uLXqatko53q5EAAAAAek+/nZtUVWb2PEt6UNLhiPhs20P7Jd1Z3L5T0jfWvnkAAAAAetPgzJ6X6Wl6u6T3S/qh7aeKdZ+Q9GlJX7H9IUk/knRbV1oIAAAAoCcNSk/TikVTRHxXWnZ6i3eubXMAtPOGDelsY7JeIps/wM1P5nLNyWZ6m6MTc+ns5g3n09krx8+ks1vH3khnrxk5mc5ODefbsKl2Np2dcP41qzu/L7IaUUtnz8ZIOjsxlP+9xtxIZ8toRP467zPz+c/Z7Fx+rqXZmdzrO382v80yn/Myx4+xEsclAOtbiIkgAAAAAACiaAIAAABQRSxMO151ybC92/Zzto/YvmeJx23788XjT9t+a7H+Wtvftn3Y9rO2P9r2nC22D9p+vvh380rtoGgCAAAAUEk3L25ruybpXkm3SNoh6Q7bOxbFbpG0vVj2SrqvWD8v6eMR8auSbpJ0V9tz75H0eERsl/R4cb8jiiYAAAAApYUWJoKouiTcKOlIRLwQEXOSHpG0Z1Fmj6QvxYLvSdp04bJIEfEDSYqIM5IOS9rW9pyHitsPSXrPSg2haAIAAABwKVxh+1DbsnfR49skvdR2/6h+WvikM7avl/QWSd8vVl0VEcckqfj3ypUamp+GBwAAAAD+waqvt/RqROzq+AN+3uKzoTpmbE9K+qqkj0XE6fJNXEBPEwAAAIBKujwRxFFJ17bdv0bSy9mM7boWCqaHI+JrbZlXbG8tMlslHV+pIRRNAAAAACrp8jlNT0jabvsG2yOSbpe0f1Fmv6QPFLPo3STpjYg4ZtuSHpR0OCI+u8Rz7ixu3ynpGys1hOF5AAAAAEpb6DHq3sVtI2Le9t2SHpNUk7QvIp61/ZHi8fslHZB0q6Qjks5J+mDx9LdLer+kH9p+qlj3iYg4IOnTkr5i+0OSfiTptpXaQtEEAAAAoCcVRc6BRevub7sdku5a4nnf1dLnOykiXpP0zjLtoGgCLrKbh1b8MuMf1Hb8cjrb2Jj/ODcm8t8KzY8lrz431kxvc8PYXDq7afR8Ojs1Mp3OXlE/k9/ucJls/hzTTUMz6exGz6ez9S586ddIvg0k6Uw00tm68++bMmains6eb+azp0fH89mx0XR2dmwklZsfq6W3WeZzXub4MTa14jUg/0GZ493B1qPpLIDescqJIPoGRRMAAACASpITOvQ9iiYAAAAAlXTznKZeQtEEAAAAoLRQeha8vseU4wAAAADQAT1NAAAAACoZkFOaKJoAAAAAVNDl6zT1EoomAAAAANUMSFcT5zQBAAAAQAf0NAEAAACohOF5AAAAANABF7cF0BVDGzaks83J0XR2fjz/TU8zv1m1xnJHw9poM73NDSONdPaykfP57PBMOrulNp3ObqqdzWeHSrRhaD6dnXB+NHW9RDarEa38z4/87yXlX69GrZbOnm2NpLNvDOc/k2XejxtGJtLZ08nPT/bzKEnN0fwxodTxo8RxqczxDkD/CdHTBAAAAADLC0kDUjQxEQQAAAAAdEBPEwAAAIBKOKcJAAAAADqhaAIAAACA5ZiJIAAAAACgowHpaWIiCAAAAADogJ4mAAAAAOUF12kCAAAAgM4GZHgeRRMAAACAiuhpAtANtVo62hrJZ5v1/EGrVeKTH/XcV0j14WZ6m+P1Rj5by2c31GbT2YmhuXzW+exGz5fYbv600g1D9XR2WPn3TVbd+f2rVn6fNUq8XudK7Icy+7fM+6bM+7HM+3w4+fmZS34epXKf81LHjxLHpaESxzsA6GUUTQAAAACqYXgeAAAAAHRA0QQAAAAAywhJzJ4HAAAAAMuLAelp4uK2AAAAANABPU0AAAAAqhmQniaKJgAAAADVcE4TAAAAACzP9DQBAAAAwDJCAzM8j4kgAAAAAKADepqAi8wuMfa3ls9GLb/ZUtmh3FdIQ8mcJNXcSmfrpbLNEtn5Lm03HVXd+e+thpXfabUS200r8U1iuder3/Zvvr1l3ufZz0/28yh175hQ5rhU6ngHoA+Zc5oAAAAAoCOG5y2wvc/2cdvPtK37pO0f236qWG7tbjMBAAAA9JxYxdJHMmM4vihp9xLrPxcRO4vlwNo2CwAAAAB6w4pFU0R8R9LJi9AWAAAAAP2EnqYV3W376WL43ublQrb32j5k+9CJEydW8eMAAAAA9IzQwkQQVZc+UrVouk/SL0naKemYpM8sF4yIByJiV0TsmpqaqvjjAAAAAPQaR/Wln1QqmiLilYhoRkRL0hck3bi2zQIAAADQ8xietzzbW9vuvlfSM8tlAQAAAKCfrXidJttflvQOSVfYPirpDyW9w/ZOLdSIL0r6cPeaCAAAAACXzopFU0TcscTqB7vQFgAAAAB9pN/OTapqxaIJAAAAAJbUZ7PgVUXRBAAAAKC8PpzQoarVXKcJAAAAANY9epoAAAAAVENPEwAAAAAsr9sXt7W92/Zzto/YvmeJx23788XjT9t+a9tj+2wft/3Moud80vaPbT9VLLeu1A6KJgAAAADVdPHitrZrku6VdIukHZLusL1jUewWSduLZa+k+9oe+6Kk3cts/nMRsbNYDqzUFoomAAAAAL3oRklHIuKFiJiT9IikPYsyeyR9KRZ8T9Im21slKSK+I+nkWjSEogkAAABANavrabrC9qG2Ze+irW+T9FLb/aPFurKZpdxdDOfbZ3vzSmEmggAAAABQWplzk5bxakTs6vQjlli3+CdmMovdJ+lTRe5Tkj4j6Xc7PYGiCQAAAEA13b247VFJ17bdv0bSyxUyPyMiXrlw2/YXJH1zpYZQNAEXWUSJr2Sa+ayb+c2WyrZyB8NWMidJzciPDG6UytZKZPOHv3LbTUfViFY6Wy+z07ow/eu88j+/zO9V7vXqhf2bfz+WeZ9nPz/Zz6PUvWNCmeNSqeMdgP7U3Y/5E5K2275B0o8l3S7pXy3K7NfCULtHJL1N0hsRcazTRm1vbcu8V9IznfISRRMAAACAHhQR87bvlvSYpJqkfRHxrO2PFI/fL+mApFslHZF0TtIHLzzf9pclvUML504dlfSHEfGgpD+2vVMLJd+Lkj68UlsomgAAAABUsspzmlZUTAd+YNG6+9tuh6S7lnnuHcusf3/ZdlA0AQAAAKhmQEbhUjQBAAAAKG/1s+f1Da7TBAAAAAAd0NMEAAAAoJoB6WmiaAIAAABQDUUTAAAAACyPc5oAAAAAABRNAAAAANAJw/OAi63ZTEeH5vLZWiPfPz4073TWjVx2fr6W3ub5Rj2fbeaz55qj6ezZ1kg+G/nsmWiks/WYT2fVKrFd5983WY1opbNnS2TPRP7PUJn9UGb/lnnflHk/lnmfZz8/2c+jJA2VeHuVOn6UOC6VOd4B6FMDMjyPogkAAABAeQN0nSaKJgAAAADVUDQBAAAAQAcDUjQxEQQAAAAAdEBPEwAAAIDSLM5pAgAAAIDOKJoAAAAAYBkDNHse5zQBAAAAQAf0NAEAAACoZkB6miiaAAAAAFRD0QSgG1rnzqWztenZdHb4/Ib8dvOb1dCMU7n52Vp6m+fm6uns6bnxfHZkLJ09OTyZzk4MzaWzdTfTWWkmnWx4vkQbWiXakPz5Jf4onon8n5ZTrfw+O9WcSGdPNvP79/R8vg1l3o9l3ufN5OdnOPl5lMp9zofP53dwmeNSs8TxDkB/GpRzmiiaAAAAAFQzIEUTE0EAAAAAQAf0NAEAAAAoLzQwPU0UTQAAAAAq4ZwmAAAAAOiEogkAAAAAljcoPU1MBAEAAAAAHdDTBAAAAKCaAelpomgCAAAAUB6z5wEAAADA8lwsg4CiCbjIDrYeTWd3X/V76Wz9Fzbms2fzpzMOz+QOh/MztfQ2z82MpLOnxsbT2RMjk+nseK2Rzo45ny2jUSvxmnkuna27WaU5HTUi39azUWL/NifS2RPz+ff4q4189sRc/n1zajb/fizzPlfy85P9PEpS/Wz+69/6mfl0VideT0fLHO8AoJdRNAEAAACohuF5AAAAALA8phwv2N5n+7jtZ9rWbbF90Pbzxb+bu9tMAAAAAD0nVrH0kcyJDV+UtHvRunskPR4R2yU9XtwHAAAAMEgomhZExHcknVy0eo+kh4rbD0l6z9o2CwAAAAB6Q9Vzmq6KiGOSFBHHbF+5XND2Xkl7Jem6666r+OMAAAAA9JTgnKY1ExEPRMSuiNg1NTXV7R8HAAAA4GJheF5Hr9jeKknFv8fXrkkAAAAA+oGj+tJPqhZN+yXdWdy+U9I31qY5AAAAAPoGPU0LbH9Z0l9J+hXbR21/SNKnJd1s+3lJNxf3AQAAAGDdWXEiiIi4Y5mH3rnGbQGwSJw7l87WpxslsvV0dnjaqVxtopbe5uzYSDr7+sh4Ojs2vDGdrbuVzpYxE/nX9mwr/zpMDM2ls3XPp7NZjcjPG1Tm9zrZnExnX23k9++xmTels8fP57f7+rn8+3H2bP51qE3nPj/D0+lNqj6d/xq3zPGjzHEJwPrXb8Psqqo6ex4AAACAQdaHw+yqomgCAAAAUM2AFE1dn3IcAAAAAPoZPU0AAAAASrM4pwkAAAAAOhuQoonheQAAAAAqcUTlJbV9e7ft52wfsX3PEo/b9ueLx5+2/da2x/bZPm77mUXP2WL7oO3ni383r9QOiiYAAAAA5a3mwraJmsl2TdK9km6RtEPSHbZ3LIrdIml7seyVdF/bY1+UtHuJTd8j6fGI2C7p8eJ+RxRNAAAAAHrRjZKORMQLETEn6RFJexZl9kj6Uiz4nqRNtrdKUkR8R9LJJba7R9JDxe2HJL1npYZQNAEAAACoxFF9kXSF7UNty95Fm98m6aW2+0eLdWUzi10VEcckqfj3ypV+TyaCAAAAAFDN6iaCeDUidnV43ImfmMmsGkUT0MNaZ8+ms7XXptPZsU2j6Wxjcqlj0c9rjudykjQzmj/0TNfH0tnjQ610toxG5Dvlzzfr6ewbwxvS2Q212XS27mY6m9WIWjp7rpl/f52ez+/fE3OT6ezx8xvz2en8dqen8+31mfz7fOR07vMz+kb+/wFjr+ffB2WOH80SxyUA61+Xpxw/KunatvvXSHq5QmaxV2xvjYhjxVC+4ys1hOF5AAAAAKrp4kQQkp6QtN32DbZHJN0uaf+izH5JHyhm0btJ0hsXht51sF/SncXtOyV9Y6WGUDQBAAAA6DkRMS/pbkmPSTos6SsR8aztj9j+SBE7IOkFSUckfUHS7114vu0vS/orSb9i+6jtDxUPfVrSzbafl3Rzcb8jhucBAAAAKC+6PjxPEXFAC4VR+7r7226HpLuWee4dy6x/TdI7y7SDogkAAABANV0umnoFRRMAAACA0qzu9zT1Cs5pAgAAAIAO6GkCAAAAUE0MRlcTRRMAAACASgZleB5FEwAAAIDy8tdb6nsUTQAAAAAqcetSt+DioGgCetjB1qPp7LtG35fOjk2MpbONiY2p3PxYLb3NVj0/B83c0Eg6+0Y6KTVb+TbMzNfT2dOj4+nsZSPn09nxWiOdrXfhL1gj8q/X+WaJ12su/3qdms1nXz+Xz05P5z8PcSr/fhw5lX/NRk7lcmMn8/t27Cdn09nWi0fT2TLHJQBYLyiaAAAAAFTD8DwAAAAAWB4TQQAAAADAckJMOQ4AAAAAnQxKT1P+LFUAAAAAGED0NAEAAACoZkB6miiaAAAAAJRmDc7wPIomAAAAAOVFDMxEEJzTBAAAAAAd0NMEAAAAoBKG5wHoK9+afTid3T314XR2fONoKtcczeUkKWplOrnz2bnWSDp7upHf7uxc/lB5eiz/OmwYmUhnx+uNdLbmVjqb1Yz863W+UU9nz82VyM7k9+/s2XzWZ/L7d+RU/nUYPel0dvy13D4bPz6X3qZf+kk6+1iJ4wcA/AyKJgAAAABYHj1NAAAAALCckNQajKqJiSAAAAAAoAN6mgAAAABUMxgdTRRNAAAAAKrhnCYAAAAA6GRALm5L0QQAAACgkkHpaWIiCAAAAADogJ4mAAAAAOWFmAgCAAAAAJZjSeacJgDrVfO1k+ls/dibUrkN9S0lWlBPJ93MjyIeatTS2bnZ/HZnZ/LbnR0bSWdPjzbT2eHhfHZoaO3/gLVaTmfn5/OvV3M2n1WJ/VCbzmdHTud/t5FT6ajGX2ulsxt+0kjl6sfyDSjzOQeAyvKHur7GOU0AAAAA0MGqeppsvyjpjKSmpPmI2LUWjQIAAADQ+xiel/ebEfHqGmwHAAAAQL9gIggAAAAA6CQG5uK2qz2nKSR9y/aTtvcuFbC91/Yh24dOnDixyh8HAAAAoFc4qi/9ZLVF09sj4q2SbpF0l+1/tjgQEQ9ExK6I2DU1NbXKHwcAAAAAF9eqiqaIeLn497ikr0u6cS0aBQAAAKAPRFRf+kjlosn2hO2NF25LepekZ9aqYQAAAAB6WEhuVV/6yWomgrhK0tdtX9jOf42Iv1iTVgEAAADofX3WY1RV5aIpIl6Q9Btr2BYAAAAA6DlMOQ4MoIOtR9PZd43ckcqNlvj5Q41N6WxtdiSdnZnJjziunXc6O382f6icH6uls62x/Ldzc/V8NobW/ls/t/Kvlxv57PBMl7LT6ahG38i/XmMn8+NJxo/PpbP1Y6dSudaLL6W3WeZzDgCVDUZHE0UTAAAAgGrM8DwAAAAA6ICiCQAAAACWEZL6bBa8qlZ7cVsAAAAAWNfoaQIAAABQmhWc0wQAAAAAHVE0AQAAAEAHA1I0cU4TAAAAgPIuTARRdUmwvdv2c7aP2L5nicdt+/PF40/bfutKz7X9Sds/tv1Usdy6UjsomgAAAAD0HNs1SfdKukXSDkl32N6xKHaLpO3FslfSfcnnfi4idhbLgZXawvA8AB19a+7LqdzNQ7elt1l/fUs6O3zm6vx2z07ks9O1dLYx6Xx2Ip9tjuazrRJH68j/amlu5rND8/lsbTafrZ/NDwGpT+ezY6/nf7mxn5xNZ/3ST9LZ5msnU7mDrUfT2wSAi6HLE0HcKOlIRLwgSbYfkbRH0t+2ZfZI+lJEhKTv2d5ke6uk6xPPTaOnCQAAAEA1EdUX6Qrbh9qWvYu2vk3SS233jxbrMpmVnnt3MZxvn+3NK/2a9DQBAAAAqCBWOxHEqxGxq8PjSw3JWPwDl8t0eu59kj5V3P+UpM9I+t1ODaVoAgAAANCLjkq6tu3+NZJeTmZGlntuRLxyYaXtL0j65koNYXgeAAAAgPJCqx2et5InJG23fYPtEUm3S9q/KLNf0geKWfRukvRGRBzr9NzinKcL3ivpmZUaQk8TAAAAgGqSU4dXERHztu+W9JikmqR9EfGs7Y8Uj98v6YCkWyUdkXRO0gc7PbfY9B/b3qmFsu9FSR9eqS0UTQAAAAAq6fLseSqmAz+waN39bbdD0l3Z5xbr31+2HRRNAAAAAKrpctHUKzinCQAAAAA6oKcJAAAAQHkhqTUYPU0UTQAAAAAqWPV1mvoGRROANXGw9WhXtvuu0fels+Nnr0lnRy6fTGcbk/V8dmP+sDo/vtR195bWrOezUUtH09zMZ2uN/B/Q4fP5bP3MfD473Uhna69Np7OtF4+ms4/NPpzOAkDfomgCAAAAgA4GpGhiIggAAAAA6ICeJgAAAADlMREEAAAAAHQSUrQudSMuCoomAAAAANVwThMAAAAAgJ4mAAAAAOVxThMAAAAArGBAhudRNAEAAACohqIJAAAAAJYTFE0A0Au+NftwOnvz0G3p7NDLE+ns2IYN+ezU5nS2OTmazrZGaumsas5ns5r5P4pDc810tjY9m2/DidfT0Th3Lp1tnj2bzh5sPZrOAgDWD4omAAAAAOWFpBbXaQIAAACA5TE8DwAAAAA6oGgCAAAAgOXEwFynaehSNwAAAAAAehk9TQAAAADKCymCiSAAAAAAYHkDMjyPogkAAABANQMyEQTnNAEAAABAB/Q0AQAAACgvgovbAkC/Odh69FI3QTcP3ZbODm3YkM/Waums7XQ2K8oMv2g289Fz59LZXti/AIBFBmR4HkUTAAAAgEpiQHqaVnVOk+3dtp+zfcT2PWvVKAAAAAC9LhZ6mqoufaRy0WS7JuleSbdI2iHpDts71qphAAAAANALVjM870ZJRyLiBUmy/YikPZL+di0aBgAAAKCHhQbmOk2rGZ63TdJLbfePFut+hu29tg/ZPnTixIlV/DgAAAAAPSVa1Zc+spqiaanpmX6u1IyIByJiV0TsmpqaWsWPAwAAANArQlK0ovLST1YzPO+opGvb7l8j6eXVNQcAAABAX4joux6jqlbT0/SEpO22b7A9Iul2SfvXplkAAAAA0Bsq9zRFxLztuyU9JqkmaV9EPLtmLQMAAADQ0/ptmF1Vq7q4bUQckHRgjdoCAAAAoJ8MyPA8x0W8sJTtE5L+/qL9wMF2haRXL3UjkMb+6j/ss/7DPus/7LP+wv5anX8UEX01a5rtv9DCfq/q1YjYvVbt6aaLWjTh4rF9KCJ2Xep2IIf91X/YZ/2HfdZ/2Gf9hf2F9Ww1E0EAAAAAwLpH0QQAAAAAHVA0rV8PXOoGoBT2V/9hn/Uf9ln/YZ/1F/YX1i3OaQIAAACADuhpAgAAAIAOKJoAAAAAoAOKpnXE9m22n7Xdsr1r0WO/b/uI7edsv/tStRE/z/buYr8csX3PpW4Pfp7tfbaP236mbd0W2wdtP1/8u/lSthE/Zfta29+2fbg4Jn60WM8+61G2x2z/te2/KfbZHxXr2Wc9zHbN9v+2/c3iPvsL6xZF0/ryjKR/Kek77Stt75B0u6Rfk7Rb0n+2Xbv4zcNixX64V9ItknZIuqPYX+gtX9TCZ6fdPZIej4jtkh4v7qM3zEv6eET8qqSbJN1VfK7YZ71rVtJvRcRvSNopabftm8Q+63UflXS47T77C+sWRdM6EhGHI+K5JR7aI+mRiJiNiP8n6YikGy9u67CMGyUdiYgXImJO0iNa2F/oIRHxHUknF63eI+mh4vZDkt5zMduE5UXEsYj4QXH7jBb+U7dN7LOeFQumi7v1Ygmxz3qW7Wsk/XNJf962mv2FdYuiaTBsk/RS2/2jxTpceuyb/nVVRByTFv6TLunKS9weLMH29ZLeIun7Yp/1tGKo11OSjks6GBHss972p5L+vaRW2zr2F9at4UvdAJRj+39IunqJh/4gIr6x3NOWWMdc872BfQN0ie1JSV+V9LGIOG0v9XFDr4iIpqSdtjdJ+rrtX7/ETcIybP+OpOMR8aTtd1zi5gAXBUVTn4mI367wtKOSrm27f42kl9emRVgl9k3/esX21og4ZnurFr4dR4+wXddCwfRwRHytWM0+6wMRccr2X2rhPEL2WW96u6R/YftWSWOSLrP9X8T+wjrG8LzBsF/S7bZHbd8gabukv77EbcKCJyRtt32D7REtTNix/xK3CTn7Jd1Z3L5T0nI9vbjIvNCl9KCkwxHx2baH2Gc9yvZU0cMk2+OSflvS34l91pMi4vcj4pqIuF4Lf7f+Z0T8a7G/sI45gpFA64Xt90r6T5KmJJ2S9FREvLt47A8k/a4WZpX6WET890vVTvys4pu6P5VUk7QvIv7jpW0RFrP9ZUnvkHSFpFck/aGk/ybpK5Kuk/QjSbdFxOLJInAJ2P6nkv6XpB/qp+dbfEIL5zWxz3qQ7X+shYkDalr4QvcrEfEfbF8u9llPK4bn/buI+B32F9YziiYAAAAA6IDheQAAAADQAUUTAAAAAHRA0QQAAAAAHVA0AQAAAEAHFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB38f/SChoDhQ3vWAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] @@ -282,13 +288,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. Centered Cumulant Method with Implicit Forcing\n", - "\n", - "The default setup of the centered cumulant method does not use a force model to compute the force contributions on all populations, but instead applies the force in cumulant space simply by setting the momentum relaxation rate $\\omega_1 = 2$. Due to the half-force shift of the equilibrium input velocity, the first central moments (which correspond to momentum relative to the moving frame of reference) are not zero, but equal to $-F/2$. The relaxation process causes the first central moments to simply change sign:\n", - "$$\n", - " \\kappa_{100}^* = - \\kappa_{100}.\n", - "$$\n", - "Thus, $\\kappa_{100}^* = F_x /2$. In total, the entire acceleration given by the force is added onto the momentum." + "## 2. Centered Cumulant Method with Central Moment-Space Forcing" ] }, { @@ -298,7 +298,7 @@ "outputs": [], "source": [ "cm_config = LBMConfig(method=Method.MONOMIAL_CUMULANT, stencil=stencil, compressible=True,\n", - " relaxation_rate=viscous_rr, force_model=CenteredCumulantForceModel(force),\n", + " relaxation_rate=viscous_rr,\n", " force=force, streaming_pattern=streaming_pattern)\n", "\n", "lbm_opt = LBMOptimisation(pre_simplification=True)\n", @@ -313,7 +313,7 @@ "outputs": [], "source": [ "lb_method = cm_impl_f_flow.lb_method\n", - "assert all(rr == 2 for rr in lb_method.relaxation_rates[1:4])\n", + "assert all(rr == 0 for rr in lb_method.relaxation_rates[1:4])\n", "assert all(rr == viscous_rr for rr in lb_method.relaxation_rates[4:9])" ] }, @@ -335,7 +335,7 @@ { "data": { "text/plain": [ - "<matplotlib.colorbar.Colorbar at 0x7f0009f1ca60>" + "<matplotlib.colorbar.Colorbar at 0x7fc77deb92b0>" ] }, "execution_count": 11, @@ -344,7 +344,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqq0lEQVR4nO3dbYxc53ne8eva2dkX7lImKa0khpIq2WHSMEFDu4QiwP3gxJFDqUFpFxAg1bVVxyhtRAJswEWhOB/iNChgBLGduFAl0DVhGVUtWLBdEwYbmVUduAZiR5SryFIYVayiWLRokhIlkUtyd2dn7n7Yw3i83p25z9kXznD+P+CAM2euOfvsnJmzvOd5znMcEQIAAAAALG3oUjcAAAAAAHoZRRMAAAAAdEDRBAAAAAAdUDQBAAAAQAcUTQAAAADQAUUTAAAAAHRA0QQAAACgJ9nebfs520dt37fE47b92eLxp22/rVg/ZvuvbP+17Wdt/2Hbc7bYPmT7+eLfzd3aQdEEAAAAoOfYrkm6X9JtknZIusv2jkWx2yRtL5a9kh4o1s9K+o2I+FVJOyXttn1L8dh9kh6PiO2SHi/ud0TRBAAAAKAX3SzpaES8EBFzkh6RtGdRZo+kL8aC70raZHtrcX+6yNSLJdqe81Bx+yFJ7+7WkOGV/R7lXHXVVXHjjTeu548EgHX1f598IZ310Bp9b+U12GZ0j1TabKuVzv7CP33z2jQCAHrAk08++UpETF3qdpTxW78+Ea+eblZ+/pNPzz4WEbs7RLZJeqnt/jFJv5bIbJN0vOipelLSz0u6PyK+V2SuiYjjkhQRx21f3a2t61o03XjjjTp8+PB6/kgAWFe3Dt2Rzg6Nb8hvuFZLR+3Vr5oiSlRNzfwf0Nb58+nsocOP5tsAAH3G9t9f6jaU9crppr732HWVn1/f+v/+se324mBfROxru7/UH7TFf5CWzUREU9JO25skfc32r0TEM1Xauq5FEwAAAAAUXomIXR0ePybp+rb710l6uWwmIl63/ReSdkt6RtKJYgjfcdtbJZ3s1lDOaQIAAABQQagZrcpLwhOSttu+yfaIpDslHViUOSDp/cUserdIeqMohqaKHibZHpf0m5L+tu05dxe375b09W4NoacJAAAAQGkhqbVWJ71Kioh52/dKekxSTdL+iHjW9oeLxx+UdFDS7ZKOSjov6QPF07dKeqg4r2lI0pcj4hvFY5+U9GXbH5T0Q0ldx9ZTNAEAAACopKX8hD5VRMRBLRRG7esebLsdku5Z4nlPS3rrMtt8VdI7y7SD4XkAAAAA0AE9TQAAAABKC4WaZWZX7WMUTQAAAAAqWctzmnoJRRMAAACA0kJSk6IJAPpLqQvLTkyks96QvwhtbccvpLPNydF0tjWSv7itaqt/cVs1838Uh+byF7etTc+ms7uv+d10NkpcNLd17lw6e6jFBXYBoN2g9DQxEQQAAAAAdEBPEwAAAIDSQmIiCAAAAADoZG2v0tQ7KJoAAAAAlBYKJoIAAAAAgGVFqXmC+hoTQQAAAABAB/Q0AQAAACgtxDlNAAAAANCB1dQaXBuwB1E0AQAAACgtJLU4pwkAAAAAQE8TgJ72rtH3prO17W9OZ5tXTqazjcl6Prsxf1idH88PaWjW89mopaNpbuaztUb+a8fhCxvS2frPbcxnpxvpbO3V6XS2zPvxm7MPp7MA0K8YngcAAAAAywhRNAEAAABAR62gaAIAAACAJQ1STxMTQQAAAABAB/Q0AQAAACgtZDUHpA+GogkAAABAJZzTBAAAAADLGKRzmiiaAAAAAFRgNWMwhucNxm8JAAAAABXR0wQAAACgtJDUGpA+GIomAKvi1qE70tnalVvSWf/yz6ezF66dSGdnNtfS2cZkfrx2YyKfbY6mo2rV89m1GCnhVj471Mi/BrXZ/Hbr5/K/WH06/4KNbcrviLGJsXR299SH0tnmq6dTuUOtR9PbBID1wDlNAAAAALCMCM5pAgAAAACIniYAAAAAFbUYngcAAAAAS1u4TtNgDFyjaAIAAABQweCc00TRBAAAAKC0QZpyfDB+SwAAAACoiJ4mAAAAAJU0g4kgAAAAAGBJITMRBAAAAAB00mIiCACQ3jVyVypX2/7m9DYb11yRzl64ZjSdndmSP3DPvik/nGB+Mh3V/Hiks63RfDbqJbJD+WyWW/nXy418dmg2nx2+UCI7nc82JktkJzams+OTI+ls/cSmVC77eZSkb859KZ0FgCoGacrxwfgtAQAAAKCirkWT7ettf8v2EdvP2v5Isf4Ttn9k+6liuX3tmwsAAACgF4SsZlRf+klmeN68pI9FxPdtb5T0pO1DxWOfiYg/WbvmAQAAAOhVg3Kdpq5FU0Qcl3S8uH3W9hFJ29a6YQAAAAB6V4TUHJCJIEr9lrZvlPRWSd8rVt1r+2nb+21vXu3GAQAAAMClli6abE9K+oqkj0bEGUkPSHqLpJ1a6In61DLP22v7sO3Dp06dWnmLAQAAAPQAq7WCpZ+kiibbdS0UTA9HxFclKSJOREQzIlqSPifp5qWeGxH7ImJXROyampparXYDAAAAuIRCC8Pzqi79pOs5TbYt6fOSjkTEp9vWby3Od5Kk90h6Zm2aCAAAAKAXDcp1mjKz571d0vsk/cD2U8W6j0u6y/ZOLRSZL0r60Bq0DwAAAEAPClmtPps6vKrM7HnfkZYcdHhw9ZsDAAAAAL0l09ME4DJz69Ad6Wxt+5tTudnr8xNonr+2ns5euDLf7T+3KR3V3BWRzjYnm/kNj+WztdF8tj6czw4N5X+3rFYr/03i/Hwtn50tkZ3JZ2sT+WxzvMTvNlZiu6Nj6eyGkdx2R9NbLPc5P9R6tMSWAeAn1np4nu3dkv5MUk3Sf4mITy563MXjt0s6L+nfFNeXvV7SFyVdK6klaV9E/FnxnE9I+reSLs5S9/GI6NghRNEEAAAAoLSQ1FrDCR1s1yTdL+lWScckPWH7QET8TVvsNknbi+XXtDDD969Jmpf0saKA2ijpSduH2p77mYj4k2xbKJoAAAAAVGA113bq8JslHY2IFyTJ9iOS9khqL5r2SPpiRISk79re1DZh3XFJioizto9I2rbouWmDMd0FAAAAgFV1saep6iLpqovXcy2WvYt+xDZJL7XdP1asK5WxfaOkt0r6Xtvqe20/bXu/7a7nGFA0AQAAALgUXrl4Pddi2bfo8aW6sRafuNsxY3tSC9eb/WhEnClWPyDpLZJ2aqE36lPdGsrwPAAAAACVrPHwvGOSrm+7f52kl7MZ23UtFEwPR8RXLwYi4sTF27Y/J+kb3RpCTxMAAACA0iK80uF53Twhabvtm2yPSLpT0oFFmQOS3u8Ft0h6IyKOF7PqfV7SkYj4dPsTbG9tu/seSc90awg9TQAAAAAqaa7h7HkRMW/7XkmPaWHK8f0R8aztDxePP6iFa8feLumoFqYc/0Dx9LdLep+kH9h+qlh3cWrxP7a9UwvD+F6U9KFubaFoAgAAANCTiiLn4KJ1D7bdDkn3LPG872jp850UEe8r2w6KJgAAAAClhaTW2p7T1DMomoABVLtySzrbuOaKVO78tfX0Ns9fne/Kn92yeJKc5c1taqWzsXE+nR2dmEtnN4yVyI400tnxej5bc/51yCoz/OJCo8R7Ya5EdmYknZ0dy2dnRvN/Clv1/OsQtTJDVnKvw9Bc7vMoSfXT+c85AFTjNR2e10somgAAAACUtnCdJnqaAAAAAGBZzQGZjHswfksAAAAAqIieJgAAAAClhczwPAAAAADopDUgA9comgAAAACUFiE16WkCAAAAgOUNyvC8wehPAwAAAICK6GkCAAAAUNrCRBCD0QdD0QQAAACgkqYGY3geRRNwmXjX6HvTWf/yz6ezF64ZzeWuzH/TNLsl0tm5La101pvm0tmNkzPp7OYNF9LZTaP57BUj+ex4rZHO1p1/zbIaJb5JvNCsp7Nn5sbT2dfH8tnXRvLZ6fpYOjs3NJLOlhkB72YuW5vNfR4laXj62nS2zPHjm7MPp7MALm8hzmkCAAAAAIieJgAAAACVcE4TAAAAAHTU4pwmAAAAAFgaF7cFAAAAgC4GZXjeYPyWAAAAAFARPU0AAAAASlu4uC3D8wAAAABgWUwEAQAAAADL4OK2AAAAAABJ9DQBPe3WoTvS2dr2N6ezF66dSGdntuS+W5nblN6k5ja10llvmktn33TF+XT26snpfHb8bDo7NZLf7hXDM+nshtpsOjvm+XQ2aybyfy7ON0fT2TMjY+nsqZHJdHZseGM6e3Io/358I52U5loj6exQo5bKzczkv+usn8t/zsfPXZfOljkuHWo9ms4C6E+DMnseRRMAAACA8oKJIAAAAABgWSEmggAAAACAjgalp2kwBiECAAAAQEX0NAEAAAAobZCmHKdoAgAAAFAJRRMAAAAALCPE7HkAAAAA0NGgzJ7HRBAAAAAA0AE9TQAAAADKC85pAtADhiYm0tnmlZPp7MzmWjo7+6bcwXDuikhvMzbOp7MbJ2fS2asnp9PZbRveSGe3juWzV9XPprNbavn2TgzNpbN151/frEbk/1yca42ks6eH8+/b8Vojna27lc6W0WzlB2icaeSzc7O5bO1C/j8n9en853ykxPFj6OX8cQnA5Y3Z8wAAAACgi0Epmrp+tWX7etvfsn3E9rO2P1Ks32L7kO3ni383r31zAQAAAGB9ZcYDzEv6WET8kqRbJN1je4ek+yQ9HhHbJT1e3AcAAAAwAC5OOV516Sddi6aIOB4R3y9un5V0RNI2SXskPVTEHpL07jVqIwAAAIAeFOHKSz8pdU6T7RslvVXS9yRdExHHpYXCyvbVq988AAAAAL1qUK7TlC6abE9K+oqkj0bEGTv3AtneK2mvJN1www1V2ggAAACgx8QATTmemuPUdl0LBdPDEfHVYvUJ21uLx7dKOrnUcyNiX0TsiohdU1NTq9FmAAAAAFg3mdnzLOnzko5ExKfbHjog6e7i9t2Svr76zQMAAADQqzin6SfeLul9kn5g+6li3cclfVLSl21/UNIPJd2xJi0EAAAA0IP6bxa8qroWTRHxHWnZM7zeubrNAQAAANAv+q3HqKpSs+cBWF/esCGdbUzWS2TzB7j5yVyuOdlMb3N0Yi6d3bzhQjp79fjZdHbr2Bvp7HUjp9PZqeF8GzbVzqWzE86/ZnXn90VWI2rp7LkYSWcnhvK/15gb6WwZjUid3itJmpnPf85m5/J/Ymdncq/v/Ln8Nst8zsscP8ZKHJcAXN5CTAQBAAAAABBFEwAAAIAqYmHa8apLhu3dtp+zfdT2fUs8btufLR5/2vbbivXX2/6W7SO2n7X9kbbnbLF9yPbzxb+bu7WDogkAAABAJS258tKN7Zqk+yXdJmmHpLts71gUu03S9mLZK+mBYv28pI9FxC9JukXSPW3PvU/S4xGxXdLjxf2OKJoAAAAAlBZa8ynHb5Z0NCJeiIg5SY9I2rMos0fSF2PBdyVtsr01Io5HxPclKSLOSjoiaVvbcx4qbj8k6d3dGkLRBAAAAKAXbZP0Utv9Y/pJ4ZPO2L5R0lslfa9YdU1EHJek4t+ruzWE2fMAAAAAVLDi6zRdZftw2/19EbHvp37Az1p8NlTHjO1JSV+R9NGIOFO1oRRNAAAAACrJTuiwjFciYleHx49Jur7t/nWSXs5mbNe1UDA9HBFfbcucuDiEz/ZWSSe7NZTheQAAAAAqWeNzmp6QtN32TbZHJN0p6cCizAFJ7y9m0btF0htFMWRJn5d0JCI+vcRz7i5u3y3p690aQk8TAAAAgNIWpg5fu4vbRsS87XslPSapJml/RDxr+8PF4w9KOijpdklHJZ2X9IHi6W+X9D5JP7D9VLHu4xFxUNInJX3Z9gcl/VDSHd3aQtEEAAAAoCcVRc7BResebLsdku5Z4nnf0dLnOykiXpX0zjLtoGgC1tmtQ12/zPgHtR2/kM42NuY/zo2J/LdC8+PJwcpjzfQ2N4zNpbObRi+ks1Mj0+nsVfWz+e0Ol8nmzzHdNDSTzm70fDpbX4Mv/RolxqyfjUY6W3f+fVPGTNTT2QvNfPbM6Hg+Ozaazs6OjaRy8+O19DbLfM7LHD/GprpeA/IflDneHWo9ms4C6B0rnAiib1A0AQAAAKhkhRNB9A2KJgAAAACVrOU5Tb2EogkAAABAaaH0LHh9jynHAQAAAKADepoAAAAAVDIgpzRRNAEAAACoYI2v09RLKJoAAAAAVDMgXU2c0wQAAAAAHdDTBAAAAKAShucBAAAAQAdc3BbAmhjasCGdbU6OprPz4/lvepr5zao1mjsa1kab6W1uGGmks1eMXMhnh2fS2S216XR2U+1cPjtUog1D8+nshPOjqeslslmNaOV/fuR/Lyn/ejVqtXT2XGsknX1jOP+ZLPN+3DAykc6eSX5+sp9HSWqO5o8JpY4fJY5LZY53APpPiJ4mAAAAAFheSBqQoomJIAAAAACgA3qaAAAAAFTCOU0AAAAA0AlFEwAAAAAsx0wEAQAAAAAdDUhPExNBAAAAAEAH9DQBAAAAKC+4ThMAAAAAdDYgw/MomgAAAABURE8TgLVQq6WjrZF8tlnPH7Ra9XRUUc99hVQfbqa3OV5v5LO1fHZDbTadnRiay2edz270fInt5k8r3TCU32nDyr9vsurO71+18vusUeL1Ol9iP5TZv2XeN2Xej2Xe58PJz89c8vMolfuclzp+lDguDZU43gFAL6NoAgAAAFANw/MAAAAAoAOKJgAAAABYRkhi9jwAAAAAWF4MSE8TF7cFAAAAgA7oaQIAAABQzYD0NFE0AQAAAKiGc5oAAAAAYHmmpwkAAAAAlhEamOF5TAQBAAAAAB3Q0wSsM7vE2N9aPhu1/GajxNclMZT7CmkomZOkmlvpbL1EdszzJbZbJtsskU1HVXd+Rwwrv4NrJbabVuKbxHKvV5n3Qpnt5vdvufdNvr1l3ufZz0/287iQTUdLHT/KHJdKHe8A9CFzThMAAAAAdMTwvAW299s+afuZtnWfsP0j208Vy+1r20wAAAAAPSdWsPSRTOf9FyTtXmL9ZyJiZ7EcXN1mAQAAAEBv6Fo0RcS3JZ1eh7YAAAAA6Cf0NHV1r+2ni+F7m5cL2d5r+7Dtw6dOnVrBjwMAAADQM0ILE0FUXfpI1aLpAUlvkbRT0nFJn1ouGBH7ImJXROyampqq+OMAAAAA9BpH9aWfVCqaIuJERDQjoiXpc5JuXt1mAQAAAOh5DM9bnu2tbXffI+mZ5bIAAAAA0M+6XqfJ9pckvUPSVbaPSfoDSe+wvVMLNeKLkj60dk0EAAAAgEuna9EUEXctsfrza9AWAAAAAH2k385Nqqpr0QQAAAAAS+qzWfCqomgCAAAAUF4fTuhQ1Uqu0wQAAAAAlz16mgAAAABUQ08TAAAAACxvrS9ua3u37edsH7V93xKP2/Zni8eftv22tsf22z5p+5lFz/mE7R/ZfqpYbu/WDoomAAAAANWs4cVtbdck3S/pNkk7JN1le8ei2G2SthfLXkkPtD32BUm7l9n8ZyJiZ7Ec7NYWiiYAAAAAvehmSUcj4oWImJP0iKQ9izJ7JH0xFnxX0ibbWyUpIr4t6fRqNISiCQAAAEA1K+tpusr24bZl76Ktb5P0Utv9Y8W6spml3FsM59tve3O3MBNBAAAAACitzLlJy3glInZ1+hFLrFv8EzOZxR6Q9EdF7o8kfUrS73R6AkUTAAAAgGrW9uK2xyRd33b/OkkvV8j8lIg4cfG27c9J+ka3hlA0AessosRXMs181s38Zt0qk80dDFvJnCQ1Iz8yuFEiOxP5Q1qjVLZWIpuOqhH5HVEvs4PXYPrXeeV/fpnfq9zrVWY/5PdvufdN/v1Y5n2e/fxkP48L2XS01PGjzHGp1PEOQH9a24/5E5K2275J0o8k3SnpXy3KHNDCULtHJP2apDci4ninjdre2pZ5j6RnOuUliiYAAAAAPSgi5m3fK+kxSTVJ+yPiWdsfLh5/UNJBSbdLOirpvKQPXHy+7S9JeocWzp06JukPIuLzkv7Y9k4tlHwvSvpQt7ZQNAEAAACoZIXnNHVVTAd+cNG6B9tuh6R7lnnuXcusf1/ZdlA0AQAAAKhmQEbhUjQBAAAAKG/ls+f1Da7TBAAAAAAd0NMEAAAAoJoB6WmiaAIAAABQDUUTAAAAACyPc5oAAAAAABRNAAAAANAJw/OA9dZspqNDc/lsrZHvHx9qOJ11Mjs/X0tv80Kjns8289nzzdF09lxrJJ+NfPZsNNLZesyns2qV2K7z75usRrTS2XMlsmcj/2eozH4os3/LvG/KvB/LvM+zn5/s51GShvJvmXLHjxLHpTLHOwB9akCG51E0AQAAAChvgK7TRNEEAAAAoBqKJgAAAADoYECKJiaCAAAAAIAO6GkCAAAAUJrFOU0AAAAA0BlFEwAAAAAsY4Bmz+OcJgAAAADogJ4mAAAAANUMSE8TRRMAAACAaiiaAKyF1vnz6WxtejadHb6wIb/d/GY1NOtUbn62lt7m+bl6OntmbjyfHRlLZ08PT6azE0Nz6WzdzXRWmkknG54v0YZWiTYkf36JP4pnI/+n5fVWfp+93pxIZ0838/v3zHy+DWXej2Xe583k52c4+XmUyn3Ohy/kd3CZ41KzxPEOQH8alHOaKJoAAAAAVDMgRRMTQQAAAABAB/Q0AQAAACgvNDA9TRRNAAAAACrhnCYAAAAA6ISiCQAAAACWNyg9TUwEAQAAAAAd0NMEAAAAoJoB6WmiaAIAAABQHrPnAQAAAMDyXCyDgKIJWGeHWo+ms7uv+d10tv5zG/PZc/nTGYcv5A6H8zO19DbPz4yks6+Pjaezp0Ym09nxWiOdHXM+W0ajVuI181w6W3ezSnM6akS+reeixP5tTqSzp+bz7/FXGvnsqbn8++b12fz7scz7XMnPT/bzKEn1c/mvf+tn59NZnXotHS1zvAOAXkbRBAAAAKCaARme1/XrZtv7bZ+0/Uzbui22D9l+vvh389o2EwAAAECvcVRf+klmjM4XJO1etO4+SY9HxHZJjxf3AQAAAAySWMHSR7oWTRHxbUmnF63eI+mh4vZDkt69us0CAAAA0PMomjq6JiKOS1Lx79Wr1yQAAAAA6B1rPhGE7b2S9krSDTfcsNY/DgAAAMB66MNzk6qq2tN0wvZWSSr+PblcMCL2RcSuiNg1NTVV8ccBAAAA6DkMz+vogKS7i9t3S/r66jQHAAAAQL9g9ryC7S9J+ktJv2j7mO0PSvqkpFttPy/p1uI+AAAAgEEyID1NXc9pioi7lnnonavcFgAAAADoOWs+EQSA6uL8+XS2Pt0oka2ns8PTTuVqE7X0NmfHRtLZ10bG09mx4Y3pbN2tdLaMmci/tuda+ddhYmguna17Pp3NakT+z0WZ3+t0czKdfaWR37/HZ96Uzp68kN/ua+fz78fZc/nXoTad+/wMT6c3qfp0/mvcMsePMsclAJe/fhtmVxVFEwAAAIDy+nCYXVUUTQAAAACqGZCiqerseQAAAAAwEOhpAgAAAFCaxTlNAAAAANDZgBRNDM8DAAAAUIkjKi+p7du7bT9n+6jt+5Z43LY/Wzz+tO23tT223/ZJ288ses4W24dsP1/8u7lbOyiaAAAAAJS3kgvbJmom2zVJ90u6TdIOSXfZ3rEodpuk7cWyV9IDbY99QdLuJTZ9n6THI2K7pMeL+x1RNAEAAADoRTdLOhoRL0TEnKRHJO1ZlNkj6Yux4LuSNtneKkkR8W1Jp5fY7h5JDxW3H5L07m4NoWgCAAAAUImj+pKwTdJLbfePFevKZha7JiKOS1Lx79XdGsJEEAAAAACqWdlEEFfZPtx2f19E7Gu778RPzGRWjKIJ6GGtc+fS2dqr0+ns2KbRdLYxudSx6Gc1x3M5SZoZzR96putj6ezJoVY6W0Yj8p3yF5r1dPaN4Q3p7IbabDo75vl0Nmsm8vvsfDP//jozn9+/p+Ym09mTFzbms9P57U5P59vrs/nXbORM7vMz+kb+/wFjrzXT2TLHj2aJ4xKAy98Kpxx/JSJ2dXj8mKTr2+5fJ+nlCpnFTtjeGhHHi6F8J7s1lOF5AAAAAKpZw4kgJD0habvtm2yPSLpT0oFFmQOS3l/MoneLpDcuDr3r4ICku4vbd0v6ereGUDQBAAAA6DkRMS/pXkmPSToi6csR8aztD9v+cBE7KOkFSUclfU7S7158vu0vSfpLSb9o+5jtDxYPfVLSrbafl3Rrcb8jhucBAAAAKC8/oUP1HxFxUAuFUfu6B9tuh6R7lnnuXcusf1XSO8u0g6IJAAAAQDVrXDT1CoomAAAAAKVZa9/T1Cs4pwkAAAAAOqCnCQAAAEA1MRhdTRRNAAAAACoZlOF5FE0AAAAAystfb6nvUTQBAAAAqMStS92C9UHRBPSwQ61H09l3jb43nR2bGEtnGxMbU7n5sVp6m616fg6auaGRdPaNdFJqtvJtmJmvp7NnRsfT2StGLqSz47VGOltfg79gjci/XheaJV6vufzr9fpsPvva+Xx2ejr/eYjX8+/Hkdfzr9nI67nc2On8vh378bl0tvXisXS2zHEJAC4XFE0AAAAAqmF4HgAAAAAsj4kgAAAAAGA5IaYcBwAAAIBOBqWnKX+WKgAAAAAMIHqaAAAAAFQzID1NFE0AAAAASrMGZ3geRRMAAACA8iIGZiIIzmkCAAAAgA7oaQIAAABQCcPzAPSVb84+nM7unvpQOjs+OZLKNUfH0tuMWplO7nx2rpVrqySdaeS3OzuXP1SeGRtNZzeMTKSz4/VGOltzK53Nakb+9brQqKez5+dKZGfy+3f2XD7rs/n9O/J6/nUYPe10dvzV3D4bPzGb3qZf+nE6+1iJ4wcA/BSKJgAAAABYHj1NAAAAALCckNQajKqJiSAAAAAAoAN6mgAAAABUMxgdTRRNAAAAAKrhnCYAAAAA6GRALm5L0QQAAACgkkHpaWIiCAAAAADogJ4mAAAAAOWFmAgCAAAAAJZjSeacJgCXq+arp9PZ+olNqdyGkVqJFtTTSTfzo4iHGvk2zM3mtzs7k9/u7NhIOntmtJnODg/ns0NDq/8HrNVyOjs/n3+9mrMl3jcl9kNtOp8dOZP/3UZeT0c1/mornd3w40YqVz9xJr3NMp9zAKgsf6jraysqmmy/KOmspKak+YjYtRqNAgAAAIBesRo9Tb8eEa+swnYAAAAA9BGG5wEAAADAcgZoIoiVTjkekr5p+0nbe1ejQQAAAAD6QSxc3Lbq0kdW2tP09oh42fbVkg7Z/tuI+HZ7oCim9krSDTfcsMIfBwAAAKBXcHHbhIh4ufj3pKSvSbp5icy+iNgVEbumpqZW8uMAAAAAYN1VLppsT9jeePG2pHdJema1GgYAAACgxzE8r6trJH3N9sXt/LeI+PNVaRUAAACA3haSuU5TZxHxgqRfXcW2AAAAAOgnfdZjVNVKZ88DAAAAgMsa12kCBtCh1qPp7LtG7krlRkv8/KG5K9LZ2mx+yzMz+e+Baheczs6fyx8q58dr6WxrNP/t3Fw9n42h1f/Wz6386+VGPjs8WyJbYp8NT6ejGn0j/3qNnc6PQxk/MZvO1k+cSeVaf/fD9DbLfM4BoLLB6GiiaAIAAABQjQdkeB5FEwAAAIBqKJoAAAAAYBkhaUBmz2MiCAAAAADogJ4mAAAAAKVZwTlNAAAAANARRRMAAAAAdDAgRRPnNAEAAAAo7+JEEFWXBNu7bT9n+6jt+5Z43LY/Wzz+tO23dXuu7U/Y/pHtp4rl9m7toGgCAAAA0HNs1yTdL+k2STsk3WV7x6LYbZK2F8teSQ8kn/uZiNhZLAe7tYXheQA6+ubcl1K5W4fuSG+zfnpLOjs8fW1+u+cm8tnpWjrbmHQ+O5HPNkfz2VY9HVWswddhLjGl7FAjn63N5rP1c/khIPXpfHbstWY+++Nz6axf+nE623z1dCp3qPVoepsAsB7WeCKImyUdjYgXJMn2I5L2SPqbtsweSV+MiJD0XdubbG+VdGPiuWn0NAEAAACoJqL60t02SS+13T9WrMtkuj333mI4337bm7s1hKIJAAAAQAUrKJgWiqarbB9uW/Yu+gFLDclYXG0tl+n03AckvUXSTknHJX2q22/K8DwAAAAAl8IrEbGrw+PHJF3fdv86SS8nMyPLPTciTlxcaftzkr7RraH0NAEAAAAoL7TWw/OekLTd9k22RyTdKenAoswBSe8vZtG7RdIbEXG803OLc54ueo+kZ7o1hJ4mAAAAANWUmCiorIiYt32vpMck1STtj4hnbX+4ePxBSQcl3S7pqKTzkj7Q6bnFpv/Y9k4tlH0vSvpQt7ZQNAEAAACoZI1nz1MxHfjBResebLsdku7JPrdY/76y7aBoAgAAAFDNGhdNvYJzmgAAAACgA3qaAAAAAJQXklqD0dNE0QQAAACggvQseH2PognAqjjUenRNtvuu0fems+PnrktnR66cTGcbk/V8dmP+sDo/vtR195bWrOezUUtH09zMZ2uN/B/Q4Qv5bP3sfD473Uhna69Op7OtF4+ls4/NPpzOAkDfomgCAAAAgA4GpGhiIggAAAAA6ICeJgAAAADlMREEAAAAAHQSUrQudSPWBUUTAAAAgGo4pwkAAAAAQE8TAAAAgPI4pwkAAAAAuhiQ4XkUTQAAAACqoWgCAAAAgOUERRMA9IJvzj6czt46dEc6O/TyRDo7tmFDPju1OZ1tTo6ms62RWjqrmvPZrGb+j+LQXDOdrU3P5ttw6rV0NM6fT2eb586ls4daj6azAIDLB0UTAAAAgPJCUovrNAEAAADA8hieBwAAAAAdUDQBAAAAwHJiYK7TNHSpGwAAAAAAvYyeJgAAAADlhRTBRBAAAAAAsLwBGZ5H0QQAAACgmgGZCIJzmgAAAACgA3qaAAAAAJQXwcVtAaDfHGo9eqmboFuH7khnhzZsyGdrtXTWdjqbFWWGXzSb+ej58+lsL+xfAMAiAzI8j6IJAAAAQCUxID1NKzqnyfZu28/ZPmr7vtVqFAAAAIBeFws9TVWXPlK5aLJdk3S/pNsk7ZB0l+0dq9UwAAAAAOgFKxmed7OkoxHxgiTZfkTSHkl/sxoNAwAAANDDQgNznaaVDM/bJumltvvHinU/xfZe24dtHz516tQKfhwAAACAnhKt6ksfWUnRtNT0TD9TakbEvojYFRG7pqamVvDjAAAAAPSKkBStqLz0k5UMzzsm6fq2+9dJenllzQEAAADQFyL6rseoqpX0ND0habvtm2yPSLpT0oHVaRYAAAAA9IbKPU0RMW/7XkmPSapJ2h8Rz65aywAAAAD0tH4bZlfVii5uGxEHJR1cpbYAAAAA6CcDMjzPsY4XlrJ9StLfr9sPHGxXSXrlUjcCaeyv/sM+6z/ss/7DPusv7K+V+UcR0Vezptn+cy3s96peiYjdq9WetbSuRRPWj+3DEbHrUrcDOeyv/sM+6z/ss/7DPusv7C9czlYyEQQAAAAAXPYomgAAAACgA4qmy9e+S90AlML+6j/ss/7DPus/7LP+wv7CZYtzmgAAAACgA3qaAAAAAKADiqbLiO07bD9ru2V716LHfs/2UdvP2f6tS9VG/Czbu4v9ctT2fZe6PfhZtvfbPmn7mbZ1W2wfsv188e/mS9lG/ITt621/y/aR4pj4kWI9+6xH2R6z/Ve2/7rYZ39YrGef9TDbNdv/x/Y3ivvsL1y2KJouL89I+peSvt2+0vYOSXdK+mVJuyX9Z9u19W8eFiv2w/2SbpO0Q9Jdxf5Cb/mCFj477e6T9HhEbJf0eHEfvWFe0sci4pck3SLpnuJzxT7rXbOSfiMiflXSTkm7bd8i9lmv+4ikI2332V+4bFE0XUYi4khEPLfEQ3skPRIRsxHxd5KOSrp5fVuHZdws6WhEvBARc5Ie0cL+Qg+JiG9LOr1o9R5JDxW3H5L07vVsE5YXEccj4vvF7bNa+E/dNrHPelYsmC7u1oslxD7rWbavk/TPJf2XttXsL1y2KJoGwzZJL7XdP1asw6XHvulf10TEcWnhP+mSrr7E7cESbN8o6a2Svif2WU8rhno9JemkpEMRwT7rbX8q6d9LarWtY3/hsjV8qRuAcmz/T0nXLvHQ70fE15d72hLrmDaxN7BvgDVie1LSVyR9NCLO2Et93NArIqIpaaftTZK+ZvtXLnGTsAzbvy3pZEQ8afsdl7g5wLqgaOozEfGbFZ52TNL1bfevk/Ty6rQIK8S+6V8nbG+NiOO2t2rh23H0CNt1LRRMD0fEV4vV7LM+EBGv2/4LLZxHyD7rTW+X9C9s3y5pTNIVtv+r2F+4jDE8bzAckHSn7VHbN0naLumvLnGbsOAJSdtt32R7RAsTdhy4xG1CzgFJdxe375a0XE8v1pkXupQ+L+lIRHy67SH2WY+yPVX0MMn2uKTflPS3Yp/1pIj4vYi4LiJu1MLfrf8VEf9a7C9cxri47WXE9nsk/SdJU5Jel/RURPxW8djvS/odLcwq9dGI+B+Xqp34acU3dX8qqSZpf0T8x0vbIixm+0uS3iHpKkknJP2BpP8u6cuSbpD0Q0l3RMTiySJwCdj+Z5L+t6Qf6CfnW3xcC+c1sc96kO1/ooWJA2pa+EL3yxHxH2xfKfZZTyuG5/27iPht9hcuZxRNAAAAANABw/MAAAAAoAOKJgAAAADogKIJAAAAADqgaAIAAACADiiaAAAAAKADiiYAAAAA6ICiCQAAAAA6oGgCAAAAgA7+P8U4kwQjMpvdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqqElEQVR4nO3df4wc533f8c/n9vZ+8I4ySekkMZQcyQkThAka2iVkAS4KJ44cSg1Ku4AAqa6sOkZpIxJgAy4KxfkjTo0CRhDbiQtVghwTllHVggXbNWGwkVnVgWsgVkS5iiyFUcUqikWLJilREnkk725v99s/bhivz3e735m74+1y3y9gwN3Zz849t7M7x+8+zzzjiBAAAAAAYGlD690AAAAAAOhlFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAACAnmR7t+3nbB+xfc8Sj9v254rHn7b9tmL9mO2/tv03tp+1/Udtz9li+6Dt54t/N3drB0UTAAAAgJ5juybpXkk3S9oh6XbbOxbFbpa0vVj2SrqvWD8r6Tcj4tcl7ZS02/aNxWP3SHosIrZLeqy43xFFEwAAAIBedIOkIxHxQkTMSXpY0p5FmT2SvhQLvidpk+2txf3pIlMvlmh7zoPF7QclvadbQ4ZX9nuUc8UVV8R11113MX8kAFxU//fJF9JZD63R91Zeg21G90ilzbZa6ewv/dO3rE0jAKAHPPnkk69ExNR6t6OM3/6NiXj1VLPy8598evZZSTNtqx6IiAfa7m+T9FLb/aOS3r5oM0tltkk6VvRUPSnpFyXdGxGPF5mrIuKYJEXEMdtXdmvrRS2arrvuOh06dOhi/kgAuKhuGro1nR0a35DfcK2WjtqrXzVFlKiamvk/oK1z59LZg4ceybcBAPqM7X9Y7zaU9cqpph5/9JrKz69v/X8zEbGrQ2SpP2iL/yAtm4mIpqSdtjdJ+rrtX4uIZ6q0leF5AAAAAHrRUUnXtt2/RtLLZTMR8bqkv5S0u1h13PZWSSr+PdGtIRRNAAAAACoINaNVeUl4QtJ229fbHpF0m6T9izL7Jb2/mEXvRklvFEPupooeJtkel/Rbkv6u7Tl3FrfvlPSNbg25qMPzAAAAAFwaQlJrrU56lRQR87bvlvSopJqkfRHxrO0PF4/fL+mApFskHZF0TtIHiqdvlfRgcV7TkKSvRMQ3i8c+Jekrtj8o6YeSuo6tp2gCAAAAUElL+Ql9qoiIA1oojNrX3d92OyTdtcTznpb01mW2+aqkd5VpB8PzAAAAAKADepoAAAAAlBYKNcvMrtrHKJoAAAAAVLKW5zT1EoomAAAAAKWFpCZFEwD0l1IXlp2YSGe9IX8R2tqOX0pnm5Oj6WxrJH9xW9VW/+K2aub/KA7N5S9uW5ueTWd3X/V76WyUuGhu6+zZdPZgiwvsAkC7QelpYiIIAAAAAOiAniYAAAAApYXERBAAAAAA0MnaXqWpd1A0AQAAACgtFEwEAQAAAADLilLzBPU1JoIAAAAAgA7oaQIAAABQWohzmgAAAACgA6upNbg2YA+iaAIAAABQWkhqcU4TAAAAAICeJgA97d2j70tna9vfks42L59MZxuT9Xx2Y/6wOj+eH9LQrOezUUtH09zMZ2uN/NeOw+c3pLP1n9uYz0430tnaq9PpbJn347dmH0pnAaBfMTwPAAAAAJYRomgCAAAAgI5aQdEEAAAAAEsapJ4mJoIAAAAAgA7oaQIAAABQWshqDkgfDEUTAAAAgEo4pwkAAAAAljFI5zRRNAEAAACowGrGYAzPG4zfEgAAAAAqoqcJAAAAQGkhqTUgfTAUTQBWxU1Dt6aztcu3pLP+1V9MZ89fPZHOzmyupbONyfx47cZEPtscTUfVquezazFSwq18dqiRfw1qs/nt1s/mf7H6dP4FG9uU3xFjE2Pp7O6pD6WzzVdPpXIHW4+ktwkAFwPnNAEAAADAMiI4pwkAAAAAIHqaAAAAAFTUYngeAAAAACxt4TpNgzFwjaIJAAAAQAWDc04TRRMAAACA0gZpyvHB+C0BAAAAoCJ6mgAAAABU0gwmggAAAACAJYXMRBAAAAAA0EmLiSAAQHr3yO2pXG37W9LbbFx1WTp7/qrRdHZmS/7APfum/HCC+cl0VPPjkc62RvPZqJfIDuWzWW7lXy838tmh2Xx2+HyJ7HQ+25gskZ3YmM6OT46ks/Xjm1K57OdRkr419+V0FgCqGKQpxwfjtwQAAACAiroWTbavtf1t24dtP2v7I8X6T9j+ke2niuWWtW8uAAAAgF4QsppRfeknmeF585I+FhHft71R0pO2DxaPfTYi/mTtmgcAAACgVw3KdZq6Fk0RcUzSseL2GduHJW1b64YBAAAA6F0RUnNAJoIo9Vvavk7SWyU9Xqy62/bTtvfZ3rzajQMAAACA9ZYummxPSvqqpI9GxGlJ90n6BUk7tdAT9ellnrfX9iHbh06ePLnyFgMAAADoAVZrBUs/SRVNtutaKJgeioivSVJEHI+IZkS0JH1e0g1LPTciHoiIXRGxa2pqarXaDQAAAGAdhRaG51Vd+knXc5psW9IXJB2OiM+0rd9anO8kSe+V9MzaNBEAAABALxqU6zRlZs97h6Q7JP3A9lPFuo9Lut32Ti0UmS9K+tAatA8AAABADwpZrT6bOryqzOx535WWHHR4YPWbAwAAAAC9JdPTBOASc9PQrelsbftbUrnZa/MTaJ67up7Onr883+0/tykd1dxlkc42J5v5DY/ls7XRfLY+nM8ODeV/t6xWK/9N4vx8LZ+dLZGdyWdrE/lsc7zE7zZWYrujY+nshpHcdkfTWyz3OT/YeqTElgHgJ9Z6eJ7t3ZL+TFJN0p9HxKcWPe7i8VsknZP0b4vry14r6UuSrpbUkvRARPxZ8ZxPSPp3ki7MUvfxiOjYIUTRBAAAAKC0kNRawwkdbNck3SvpJklHJT1he39E/G1b7GZJ24vl7VqY4fvtkuYlfawooDZKetL2wbbnfjYi/iTbFoomAAAAABVYzbWdOvwGSUci4gVJsv2wpD2S2oumPZK+FBEh6Xu2N7VNWHdMkiLijO3DkrYtem7aYEx3AQAAAGBVXehpqrpIuuLC9VyLZe+iH7FN0ktt948W60plbF8n6a2SHm9bfbftp23vs931HAOKJgAAAADr4ZUL13MtlgcWPb5UN9biE3c7ZmxPauF6sx+NiNPF6vsk/YKknVrojfp0t4YyPA8AAABAJWs8PO+opGvb7l8j6eVsxnZdCwXTQxHxtQuBiDh+4bbtz0v6ZreG0NMEAAAAoLQIr3R4XjdPSNpu+3rbI5Juk7R/UWa/pPd7wY2S3oiIY8Wsel+QdDgiPtP+BNtb2+6+V9Iz3RpCTxMAAACASpprOHteRMzbvlvSo1qYcnxfRDxr+8PF4/dr4dqxt0g6ooUpxz9QPP0dku6Q9APbTxXrLkwt/se2d2phGN+Lkj7UrS0UTQAAAAB6UlHkHFi07v622yHpriWe910tfb6TIuKOsu2gaAIAAABQWkhqre05TT2DogkYQLXLt6SzjasuS+XOXV1Pb/Pclfmu/NktiyfJWd7cplY6Gxvn09nRibl0dsNYiexII50dr+ezNedfh6wywy/ON0q8F+ZKZGdG0tnZsXx2ZjT/p7BVz78OUSszZCX3OgzN5T6PklQ/lf+cA0A1XtPheb2EogkAAABAaQvXaaKnCQAAAACW1RyQybgH47cEAAAAgIroaQIAAABQWsgMzwMAAACATloDMnCNogkAAABAaRFSk54mAAAAAFjeoAzPG4z+NAAAAACoiJ4mAAAAAKUtTAQxGH0wFE0AAAAAKmlqMIbnUTQBl4h3j74vnfWv/mI6e/6q0Vzu8vw3TbNbIp2d29JKZ71pLp3dODmTzm7ecD6d3TSaz142ks+O1xrpbN351yyrUeKbxPPNejp7em48nX19LJ99bSSfna6PpbNzQyPpbJkR8G7msrXZ3OdRkoanr05nyxw/vjX7UDoL4NIW4pwmAAAAAIDoaQIAAABQCec0AQAAAEBHLc5pAgAAAIClcXFbAAAAAOhiUIbnDcZvCQAAAAAV0dMEAAAAoLSFi9syPA8AAAAAlsVEEAAAAACwDC5uCwAAAACQRE8T0NNuGro1na1tf0s6e/7qiXR2Zkvuu5W5TelNam5TK531prl09k2XnUtnr5yczmfHz6SzUyP57V42PJPObqjNprNjnk9ns2Yi/+fiXHM0nT09MpbOnhyZTGfHhjemsyeG8u/HN9JJaa41ks4ONWqp3MxM/rvO+tn853z87DXpbJnj0sHWI+ksgP40KLPnUTQBAAAAKC+YCAIAAAAAlhViIggAAAAA6GhQepoGYxAiAAAAAFRETxMAAACA0gZpynGKJgAAAACVUDQBAAAAwDJCzJ4HAAAAAB0Nyux5TAQBAAAAAB3Q0wQAAACgvOCcJgA9YGhiIp1tXj6Zzs5srqWzs2/KHQznLov0NmPjfDq7cXImnb1ycjqd3bbhjXR261g+e0X9TDq7pZZv78TQXDpbd/71zWpE/s/F2dZIOntqOP++Ha810tm6W+lsGc1WfoDG6UY+Ozeby9bO5/9zUp/Of85HShw/hl7OH5cAXNqYPQ8AAAAAuhiUoolzmgAAAACgg65Fk+1rbX/b9mHbz9r+SLF+i+2Dtp8v/t289s0FAAAA0AsuTDledeknmZ6meUkfi4hfkXSjpLts75B0j6THImK7pMeK+wAAAAAGRIQrL/2ka9EUEcci4vvF7TOSDkvaJmmPpAeL2IOS3rNGbQQAAADQg1py5aWflJoIwvZ1kt4q6XFJV0XEMWmhsLJ95TLP2StpryS9+c1vXlFjAQAAAPSGGKApx9MTQdielPRVSR+NiNPZ50XEAxGxKyJ2TU1NVWkjAAAAAKybVE+T7boWCqaHIuJrxerjtrcWvUxbJZ1Yq0YCAAAA6D39dm5SVZnZ8yzpC5IOR8Rn2h7aL+nO4vadkr6x+s0DAAAA0JsGZ/a8TE/TOyTdIekHtp8q1n1c0qckfcX2ByX9UNKta9JCAAAAAD1pUHqauhZNEfFdadnpLd61us0B0M4bNqSzjcl6iWz+ADc/mcs1J5vpbY5OzKWzmzecT2evHD+Tzm4deyOdvWbkVDo7NZxvw6ba2XR2wvnXrO78vshqRC2dPRsj6ezEUP73GnMjnS2jEfnrvM/M5z9ns3P5uZZmZ3Kv7/zZ/DbLfM7LHD/GShyXAFzaQkwEAQAAAAAQRRMAAACAKmJh2vGqS4bt3bafs33E9j1LPG7bnysef9r224r119r+tu3Dtp+1/ZG252yxfdD288W/m7u1g6IJAAAAQCVreXFb2zVJ90q6WdIOSbfb3rEodrOk7cWyV9J9xfp5SR+LiF+RdKOku9qee4+kxyJiu6THivsdUTQBAAAAKC20MBFE1SXhBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9KmC5dFiojvS1JEnJF0WNK2tuc8WNx+UNJ7ujWEogkAAADAerjC9qG2Ze+ix7dJeqnt/lH9pPBJZ2xfJ+mtkh4vVl0VEcckqfj3ym4NzU/DAwAAAAD/aMXXW3olInZ1/AE/a/HZUB0zticlfVXSRyPidPkmLqCnCQAAAEAlazwRxFFJ17bdv0bSy9mM7boWCqaHIuJrbZnjtrcWma2STnRrCEUTAAAAgErW+JymJyRtt3297RFJt0navyizX9L7i1n0bpT0RkQcs21JX5B0OCI+s8Rz7ixu3ynpG90awvA8AAAAAKUt9Bit3cVtI2Le9t2SHpVUk7QvIp61/eHi8fslHZB0i6Qjks5J+kDx9HdIukPSD2w/Vaz7eEQckPQpSV+x/UFJP5R0a7e2UDQBAAAA6ElFkXNg0br7226HpLuWeN53tfT5ToqIVyW9q0w7KJqAi+ymoa5fZvyj2o5fSmcbG/Mf58ZE/luh+fHk1efGmultbhibS2c3jZ5PZ6dGptPZK+pn8tsdLpPNn2O6aWgmnd3o+XS2vgZf+jWSbwNJOhONdLbu/PumjJmop7Pnm/ns6dHxfHZsNJ2dHRtJ5ebHa+ltlvmclzl+jE11vQbkPypzvDvYeiSdBdA7VjgRRN+gaAIAAABQSXJCh75H0QQAAACgkrU8p6mXUDQBAAAAKC2UngWv7zHlOAAAAAB0QE8TAAAAgEoG5JQmiiYAAAAAFazxdZp6CUUTAAAAgGoGpKuJc5oAAAAAoAN6mgAAAABUwvA8AAAAAOiAi9sCWBNDGzaks83J0XR2fjz/TU8zv1m1RnNHw9poM73NDSONdPaykfP57PBMOrulNp3ObqqdzWeHSrRhaD6dnXB+NHW9RDarEa38z4/87yXlX69GrZbOnm2NpLNvDOc/k2XejxtGJtLZ08nPT/bzKEnN0fwxodTxo8RxqczxDkD/CdHTBAAAAADLC0kDUjQxEQQAAAAAdEBPEwAAAIBKOKcJAAAAADqhaAIAAACA5ZiJIAAAAACgowHpaWIiCAAAAADogJ4mAAAAAOUF12kCAAAAgM4GZHgeRRMAAACAiuhpArAWarV0tDWSzzbr+YNWq56OKuq5r5Dqw830NsfrjXy2ls9uqM2msxNDc/ms89mNni+x3fxppRuG8jttWPn3TVbd+f2rVn6fNUq8XudK7Icy+7fM+6bM+7HM+3w4+fmZS34epXKf81LHjxLHpaESxzsA6GUUTQAAAACqYXgeAAAAAHRA0QQAAAAAywhJzJ4HAAAAAMuLAelp4uK2AAAAANABPU0AAAAAqhmQniaKJgAAAADVcE4TAAAAACzP9DQBAAAAwDJCAzM8j4kgAAAAAKADepqAi8wuMfa3ls9GLb/ZKPF1SQzlvkIaSuYkqeZWOlsvkR3zfIntlsk2S2TTUdWd3xHDyu/gWontppX4JrHc61XmvVBmu/n9W+59k29vmfd59vOT/TwuZNPRUsePMselUsc7AH3InNMEAAAAAB0xPG+B7X22T9h+pm3dJ2z/yPZTxXLL2jYTAAAAQM+JFSx9JNN5/0VJu5dY/9mI2FksB1a3WQAAAADQG7oWTRHxHUmnLkJbAAAAAPQTepq6utv208Xwvc3LhWzvtX3I9qGTJ0+u4McBAAAA6BmhhYkgqi59pGrRdJ+kX5C0U9IxSZ9eLhgRD0TErojYNTU1VfHHAQAAAOg1jupLP6lUNEXE8YhoRkRL0ucl3bC6zQIAAADQ8xietzzbW9vuvlfSM8tlAQAAAKCfdb1Ok+0vS3qnpCtsH5X0h5LeaXunFmrEFyV9aO2aCAAAAADrp2vRFBG3L7H6C2vQFgAAAAB9pN/OTaqqa9EEAAAAAEvqs1nwqqJoAgAAAFBeH07oUNVKrtMEAAAAAJc8epoAAAAAVENPEwAAAAAsb60vbmt7t+3nbB+xfc8Sj9v254rHn7b9trbH9tk+YfuZRc/5hO0f2X6qWG7p1g6KJgAAAADVrOHFbW3XJN0r6WZJOyTdbnvHotjNkrYXy15J97U99kVJu5fZ/GcjYmexHOjWFoomAAAAAL3oBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9Im21slKSK+I+nUajSEogkAAABANSvrabrC9qG2Ze+irW+T9FLb/aPFurKZpdxdDOfbZ3tztzATQQAAAAAorcy5Sct4JSJ2dfoRS6xb/BMzmcXuk/TJIvdJSZ+W9LudnkDRBAAAAKCatb247VFJ17bdv0bSyxUyPyUijl+4bfvzkr7ZrSEUTcBFFlHiK5lmPutmfrNulcnmDoatZE6SmpEfGdwokZ2J/CGtUSpbK5FNR9WI/I6ol9nBazD967zyP7/M71Xu9SqzH/L7t9z7Jv9+LPM+z35+sp/HhWw6Wur4Uea4VOp4B6A/re3H/AlJ221fL+lHkm6T9K8XZfZrYajdw5LeLumNiDjWaaO2t7Zl3ivpmU55iaIJAAAAQA+KiHnbd0t6VFJN0r6IeNb2h4vH75d0QNItko5IOifpAxeeb/vLkt6phXOnjkr6w4j4gqQ/tr1TCyXfi5I+1K0tFE0AAAAAKlnhOU1dFdOBH1i07v622yHprmWee/sy6+8o2w6KJgAAAADVDMgoXIomAAAAAOWtfPa8vsF1mgAAAACgA3qaAAAAAFQzID1NFE0AAAAAqqFoAgAAAIDlcU4TAAAAAICiCQAAAAA6YXgecLE1m+no0Fw+W2vk+8eHGk5nnczOz9fS2zzfqOezzXz2XHM0nT3bGslnI589E410th7z6axaJbbr/PsmqxGtdPZsieyZyP8ZKrMfyuzfMu+bMu/HMu/z7Ocn+3mUpKH8W6bc8aPEcanM8Q5AnxqQ4XkUTQAAAADKG6DrNFE0AQAAAKiGogkAAAAAOhiQoomJIAAAAACgA3qaAAAAAJRmcU4TAAAAAHRG0QQAAAAAyxig2fM4pwkAAAAAOqCnCQAAAEA1A9LTRNEEAAAAoBqKJgBroXXuXDpbm55NZ4fPb8hvN79ZDc06lZufraW3eW6uns6enhvPZ0fG0tlTw5Pp7MTQXDpbdzOdlWbSyYbnS7ShVaINyZ9f4o/imcj/aXm9ld9nrzcn0tlTzfz+PT2fb0OZ92OZ93kz+fkZTn4epXKf8+Hz+R1c5rjULHG8A9CfBuWcJoomAAAAANUMSNHERBAAAAAA0AE9TQAAAADKCw1MTxNFEwAAAIBKOKcJAAAAADqhaAIAAACA5Q1KTxMTQQAAAABAB/Q0AQAAAKhmQHqaKJoAAAAAlMfseQAAAACwPBfLIKBoAi6yg61H0tndV/1eOlv/uY357Nn86YzD53OHw/mZWnqb52ZG0tnXx8bT2ZMjk+nseK2Rzo45ny2jUSvxmnkuna27WaU5HTUi39azUWL/NifS2ZPz+ff4K4189uRc/n3z+mz+/Vjmfa7k5yf7eZSk+tn817/1M/PprE6+lo6WOd4BQC+jaAIAAABQzYAMz+v6dbPtfbZP2H6mbd0W2wdtP1/8u3ltmwkAAACg1ziqL/0kM0bni5J2L1p3j6THImK7pMeK+wAAAAAGSaxg6SNdi6aI+I6kU4tW75H0YHH7QUnvWd1mAQAAAOh5FE0dXRURxySp+PfK1WsSAAAAAPSONZ8IwvZeSXsl6c1vfvNa/zgAAAAAF0MfnptUVdWepuO2t0pS8e+J5YIR8UBE7IqIXVNTUxV/HAAAAICew/C8jvZLurO4faekb6xOcwAAAAD0C2bPK9j+sqS/kvTLto/a/qCkT0m6yfbzkm4q7gMAAAAYJAPS09T1nKaIuH2Zh961ym0BAAAAgJ6z5hNBAKguzp1LZ+vTjRLZejo7PO1UrjZRS29zdmwknX1tZDydHRvemM7W3Upny5iJ/Gt7tpV/HSaG5tLZuufT2axG5P9clPm9TjUn09lXGvn9e2zmTensifP57b52Lv9+nD2bfx1q07nPz/B0epOqT+e/xi1z/ChzXAJw6eu3YXZVUTQBAAAAKK8Ph9lVRdEEAAAAoJoBKZqqzp4HAAAAAAOBniYAAAAApVmc0wQAAAAAnQ1I0cTwPAAAAACVOKLyktq+vdv2c7aP2L5nicdt+3PF40/bflvbY/tsn7D9zKLnbLF90Pbzxb+bu7WDogkAAABAeSu5sG2iZrJdk3SvpJsl7ZB0u+0di2I3S9peLHsl3df22Bcl7V5i0/dIeiwitkt6rLjfEUUTAAAAgF50g6QjEfFCRMxJeljSnkWZPZK+FAu+J2mT7a2SFBHfkXRqie3ukfRgcftBSe/p1hCKJgAAAACVOKovCdskvdR2/2ixrmxmsasi4pgkFf9e2a0hTAQBAAAAoJqVTQRxhe1DbfcfiIgH2u478RMzmRWjaAJ6WOvs2XS29up0Oju2aTSdbUwudSz6Wc3xXE6SZkbzh57p+lg6e2Kolc6W0Yh8p/z5Zj2dfWN4Qzq7oTabzo55Pp3Nmon8PjvXzL+/Ts/n9+/Jucl09sT5jfnsdH6709P59vpM/jUbOZ37/Iy+kf9/wNhrzXS2zPGjWeK4BODSt8Ipx1+JiF0dHj8q6dq2+9dIerlCZrHjtrdGxLFiKN+Jbg1leB4AAACAatZwIghJT0jabvt62yOSbpO0f1Fmv6T3F7Po3SjpjQtD7zrYL+nO4vadkr7RrSEUTQAAAAB6TkTMS7pb0qOSDkv6SkQ8a/vDtj9cxA5IekHSEUmfl/R7F55v+8uS/krSL9s+avuDxUOfknST7ecl3VTc74jheQAAAADKy0/oUP1HRBzQQmHUvu7+ttsh6a5lnnv7MutflfSuMu2gaAIAAABQzRoXTb2CogkAAABAadba9zT1Cs5pAgAAAIAO6GkCAAAAUE0MRlcTRRMAAACASgZleB5FEwAAAIDy8tdb6nsUTQAAAAAqcWu9W3BxUDQBPexg65F09t2j70tnxybG0tnGxMZUbn6slt5mq56fg2ZuaCSdfSOdlJqtfBtm5uvp7OnR8XT2spHz6ex4rZHO1tfgL1gj8q/X+WaJ12su/3q9PpvPvnYun52ezn8e4vX8+3Hk9fxrNvJ6Ljd2Kr9vx358Np1tvXg0nS1zXAKASwVFEwAAAIBqGJ4HAAAAAMtjIggAAAAAWE6IKccBAAAAoJNB6WnKn6UKAAAAAAOIniYAAAAA1QxITxNFEwAAAIDSrMEZnkfRBAAAAKC8iIGZCIJzmgAAAACgA3qaAAAAAFTC8DwAfeVbsw+ls7unPpTOjk+OpHLN0bH0NqNWppM7n51r5doqSacb+e3OzuUPlafHRtPZDSMT6ex4vZHO1txKZ7OakX+9zjfq6ey5uRLZmfz+nT2bz/pMfv+OvJ5/HUZPOZ0dfzW3z8aPz6a36Zd+nM4+WuL4AQA/haIJAAAAAJZHTxMAAAAALCcktQajamIiCAAAAADogJ4mAAAAANUMRkcTRRMAAACAajinCQAAAAA6GZCL21I0AQAAAKhkUHqamAgCAAAAADqgpwkAAABAeSEmggAAAACA5ViSOacJwKWq+eqpdLZ+fFMqt2GkVqIF9XTSzfwo4qFGvg1zs/ntzs7ktzs7NpLOnh5tprPDw/ns0NDq/wFrtZzOzs/nX6/mbIn3TYn9UJvOZ0dO53+3kdfTUY2/2kpnN/y4kcrVj59Ob7PM5xwAKssf6voa5zQBAAAAQAcr6mmy/aKkM5KakuYjYtdqNAoAAABA72N4Xt5vRMQrq7AdAAAAAP2CiSAAAAAAoJMYmIvbrvScppD0LdtP2t67VMD2XtuHbB86efLkCn8cAAAAgF7hqL70k5UWTe+IiLdJulnSXbb/+eJARDwQEbsiYtfU1NQKfxwAAAAAXFwrKpoi4uXi3xOSvi7phtVoFAAAAIA+EFF96SOViybbE7Y3Xrgt6d2SnlmthgEAAADoYSG5VX3pJyuZCOIqSV+3fWE7/y0i/mJVWgUAAACg9/VZj1FVlYumiHhB0q+vYlsAAAAAoOcw5TgwgA62Hkln3z1yeyo3WuLnD81dls7WZvNbnpnJjziunXc6O382f6icH6+ls63R/Ldzc/V8NoZW/1s/t/Kvlxv57PBsiWyJfTY8nY5q9I386zV2Kj+eZPz4bDpbP346lWv9/Q/T2yzzOQeAygajo4miCQAAAEA1ZngeAAAAAHRA0QQAAAAAywhJfTYLXlUrvbgtAAAAAFzS6GkCAAAAUJoVnNMEAAAAAB1RNAEAAABABwNSNHFOEwAAAIDyLkwEUXVJsL3b9nO2j9i+Z4nHbftzxeNP235bt+fa/oTtH9l+qlhu6dYOiiYAAAAAPcd2TdK9km6WtEPS7bZ3LIrdLGl7seyVdF/yuZ+NiJ3FcqBbWxieB6Cjb819OZW7aejW9Dbrp7aks8PTV+e3e3Yin52upbONSeezE/lsczSfbdXTUcUafB3mElPKDjXy2dpsPls/mx8CUp/OZ8dea+azPz6bzvqlH6ezzVdPpXIHW4+ktwkAF8MaTwRxg6QjEfGCJNl+WNIeSX/bltkj6UsREZK+Z3uT7a2Srks8N42eJgAAAADVRFRfpCtsH2pb9i7a+jZJL7XdP1qsy2S6PffuYjjfPtubu/2a9DQBAAAAqCBWOhHEKxGxq8PjSw3JWPwDl8t0eu59kj5Z3P+kpE9L+t1ODaVoAgAAANCLjkq6tu3+NZJeTmZGlntuRBy/sNL25yV9s1tDGJ4HAAAAoLzQSofndfOEpO22r7c9Iuk2SfsXZfZLen8xi96Nkt6IiGOdnluc83TBeyU9060h9DQBAAAAqKbEREFlRcS87bslPSqpJmlfRDxr+8PF4/dLOiDpFklHJJ2T9IFOzy02/ce2d2qh7HtR0oe6tYWiCQAAAEAlazx7norpwA8sWnd/2+2QdFf2ucX6O8q2g6IJAAAAQDVrXDT1Cs5pAgAAAIAO6GkCAAAAUF5Iag1GTxNFEwAAAIAKVnydpr5B0QRgVRxsPbIm23336PvS2fGz16SzI5dPprONyXo+uzF/WJ0fX+q6e0tr1vPZqKWjaW7ms7VG/g/o8Pl8tn5mPp+dbqSztVen09nWi0fT2UdnH0pnAaBvUTQBAAAAQAcDUjQxEQQAAAAAdEBPEwAAAIDymAgCAAAAADoJKVrr3YiLgqIJAAAAQDWc0wQAAAAAoKcJAAAAQHmc0wQAAAAAXQzI8DyKJgAAAADVUDQBAAAAwHKCogkAesG3Zh9KZ28aujWdHXp5Ip0d27Ahn53anM42J0fT2dZILZ1VzflsVjP/R3ForpnO1qZn8204+Vo6GufOpbPNs2fT2YOtR9JZAMClg6IJAAAAQHkhqcV1mgAAAABgeQzPAwAAAIAOKJoAAAAAYDkxMNdpGlrvBgAAAABAL6OnCQAAAEB5IUUwEQQAAAAALG9AhudRNAEAAACoZkAmguCcJgAAAADogJ4mAAAAAOVFcHFbAOg3B1uPrHcTdNPQrens0IYN+Wytls7aTmezoszwi2YzHz13Lp3thf0LAFhkQIbnUTQBAAAAqCQGpKdpRec02d5t+znbR2zfs1qNAgAAANDrYqGnqerSRyoXTbZrku6VdLOkHZJut71jtRoGAAAAAL1gJcPzbpB0JCJekCTbD0vaI+lvV6NhAAAAAHpYaGCu07SS4XnbJL3Udv9ose6n2N5r+5DtQydPnlzBjwMAAADQU6JVfekjKymalpqe6WdKzYh4ICJ2RcSuqampFfw4AAAAAL0iJEUrKi/9ZCXD845Kurbt/jWSXl5ZcwAAAAD0hYi+6zGqaiU9TU9I2m77etsjkm6TtH91mgUAAAAAvaFyT1NEzNu+W9KjkmqS9kXEs6vWMgAAAAA9rd+G2VW1oovbRsQBSQdWqS0AAAAA+smADM9zXMQLS9k+KekfLtoPHGxXSHplvRuBNPZX/2Gf9R/2Wf9hn/UX9tfK/HxE9NWsabb/Qgv7vapXImL3arVnLV3UogkXj+1DEbFrvduBHPZX/2Gf9R/2Wf9hn/UX9hcuZSuZCAIAAAAALnkUTQAAAADQAUXTpeuB9W4ASmF/9R/2Wf9hn/Uf9ll/YX/hksU5TQAAAADQAT1NAAAAANABRRMAAAAAdEDRdAmxfavtZ223bO9a9Njv2z5i+znbv71ebcTPsr272C9HbN+z3u3Bz7K9z/YJ28+0rdti+6Dt54t/N69nG/ETtq+1/W3bh4tj4keK9eyzHmV7zPZf2/6bYp/9UbGefdbDbNds/x/b3yzus79wyaJourQ8I+lfSfpO+0rbOyTdJulXJe2W9F9s1y5+87BYsR/ulXSzpB2Sbi/2F3rLF7Xw2Wl3j6THImK7pMeK++gN85I+FhG/IulGSXcVnyv2We+alfSbEfHrknZK2m37RrHPet1HJB1uu8/+wiWLoukSEhGHI+K5JR7aI+nhiJiNiL+XdETSDRe3dVjGDZKORMQLETEn6WEt7C/0kIj4jqRTi1bvkfRgcftBSe+5mG3C8iLiWER8v7h9Rgv/qdsm9lnPigXTxd16sYTYZz3L9jWS/oWkP29bzf7CJYuiaTBsk/RS2/2jxTqsP/ZN/7oqIo5JC/9Jl3TlOrcHS7B9naS3Snpc7LOeVgz1ekrSCUkHI4J91tv+VNJ/kNRqW8f+wiVreL0bgHJs/09JVy/x0B9ExDeWe9oS65hrvjewb4A1YntS0lclfTQiTttLfdzQKyKiKWmn7U2Svm7719a5SViG7d+RdCIinrT9znVuDnBRUDT1mYj4rQpPOyrp2rb710h6eXVahBVi3/Sv47a3RsQx21u18O04eoTtuhYKpoci4mvFavZZH4iI123/pRbOI2Sf9aZ3SPqXtm+RNCbpMtv/VewvXMIYnjcY9ku6zfao7eslbZf01+vcJix4QtJ229fbHtHChB3717lNyNkv6c7i9p2SluvpxUXmhS6lL0g6HBGfaXuIfdajbE8VPUyyPS7ptyT9ndhnPSkifj8iromI67Twd+t/RcS/EfsLlzBHMBLoUmH7vZL+s6QpSa9Leioifrt47A8k/a4WZpX6aET8j/VqJ35a8U3dn0qqSdoXEf9pfVuExWx/WdI7JV0h6bikP5T03yV9RdKbJf1Q0q0RsXiyCKwD2/9M0v+W9AP95HyLj2vhvCb2WQ+y/U+0MHFATQtf6H4lIv6j7cvFPutpxfC8fx8Rv8P+wqWMogkAAAAAOmB4HgAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAAAAdEDRBAAAAAAdUDQBAAAAQAf/H4PTlos+eCz9AAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] @@ -374,7 +374,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 3. Centered Cumulant Method with Explicit Forcing" + "## 3. Centered Cumulant Method with Simple force model" ] }, { @@ -423,7 +423,7 @@ { "data": { "text/plain": [ - "<matplotlib.colorbar.Colorbar at 0x7f0009d3d070>" + "<matplotlib.colorbar.Colorbar at 0x7fc77d2b8e80>" ] }, "execution_count": 16, @@ -432,7 +432,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqqElEQVR4nO3df4wc533f8c/n9vZ+8I4ySekkMZQcyQkThAka2iVkAS4KJ44cSg1Ku4AAqa6sOkZpIxJgAy4KxfkjTo0CRhDbiQtVghwTllHVggXbNWGwkVnVgWsgVkS5iiyFUcUqikWLJilREnkk725v99s/bhivz3e735m74+1y3y9gwN3Zz849t7M7x+8+zzzjiBAAAAAAYGlD690AAAAAAOhlFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAACAnmR7t+3nbB+xfc8Sj9v254rHn7b9tmL9mO2/tv03tp+1/Udtz9li+6Dt54t/N3drB0UTAAAAgJ5juybpXkk3S9oh6XbbOxbFbpa0vVj2SrqvWD8r6Tcj4tcl7ZS02/aNxWP3SHosIrZLeqy43xFFEwAAAIBedIOkIxHxQkTMSXpY0p5FmT2SvhQLvidpk+2txf3pIlMvlmh7zoPF7QclvadbQ4ZX9nuUc8UVV8R11113MX8kAFxU//fJF9JZD63R91Zeg21G90ilzbZa6ewv/dO3rE0jAKAHPPnkk69ExNR6t6OM3/6NiXj1VLPy8598evZZSTNtqx6IiAfa7m+T9FLb/aOS3r5oM0tltkk6VvRUPSnpFyXdGxGPF5mrIuKYJEXEMdtXdmvrRS2arrvuOh06dOhi/kgAuKhuGro1nR0a35DfcK2WjtqrXzVFlKiamvk/oK1z59LZg4ceybcBAPqM7X9Y7zaU9cqpph5/9JrKz69v/X8zEbGrQ2SpP2iL/yAtm4mIpqSdtjdJ+rrtX4uIZ6q0leF5AAAAAHrRUUnXtt2/RtLLZTMR8bqkv5S0u1h13PZWSSr+PdGtIRRNAAAAACoINaNVeUl4QtJ229fbHpF0m6T9izL7Jb2/mEXvRklvFEPupooeJtkel/Rbkv6u7Tl3FrfvlPSNbg25qMPzAAAAAFwaQlJrrU56lRQR87bvlvSopJqkfRHxrO0PF4/fL+mApFskHZF0TtIHiqdvlfRgcV7TkKSvRMQ3i8c+Jekrtj8o6YeSuo6tp2gCAAAAUElL+Ql9qoiIA1oojNrX3d92OyTdtcTznpb01mW2+aqkd5VpB8PzAAAAAKADepoAAAAAlBYKNcvMrtrHKJoAAAAAVLKW5zT1EoomAAAAAKWFpCZFEwD0l1IXlp2YSGe9IX8R2tqOX0pnm5Oj6WxrJH9xW9VW/+K2aub/KA7N5S9uW5ueTWd3X/V76WyUuGhu6+zZdPZgiwvsAkC7QelpYiIIAAAAAOiAniYAAAAApYXERBAAAAAA0MnaXqWpd1A0AQAAACgtFEwEAQAAAADLilLzBPU1JoIAAAAAgA7oaQIAAABQWohzmgAAAACgA6upNbg2YA+iaAIAAABQWkhqcU4TAAAAAICeJgA97d2j70tna9vfks42L59MZxuT9Xx2Y/6wOj+eH9LQrOezUUtH09zMZ2uN/NeOw+c3pLP1n9uYz0430tnaq9PpbJn347dmH0pnAaBfMTwPAAAAAJYRomgCAAAAgI5aQdEEAAAAAEsapJ4mJoIAAAAAgA7oaQIAAABQWshqDkgfDEUTAAAAgEo4pwkAAAAAljFI5zRRNAEAAACowGrGYAzPG4zfEgAAAAAqoqcJAAAAQGkhqTUgfTAUTQBWxU1Dt6aztcu3pLP+1V9MZ89fPZHOzmyupbONyfx47cZEPtscTUfVquezazFSwq18dqiRfw1qs/nt1s/mf7H6dP4FG9uU3xFjE2Pp7O6pD6WzzVdPpXIHW4+ktwkAFwPnNAEAAADAMiI4pwkAAAAAIHqaAAAAAFTUYngeAAAAACxt4TpNgzFwjaIJAAAAQAWDc04TRRMAAACA0gZpyvHB+C0BAAAAoCJ6mgAAAABU0gwmggAAAACAJYXMRBAAAAAA0EmLiSAAQHr3yO2pXG37W9LbbFx1WTp7/qrRdHZmS/7APfum/HCC+cl0VPPjkc62RvPZqJfIDuWzWW7lXy838tmh2Xx2+HyJ7HQ+25gskZ3YmM6OT46ks/Xjm1K57OdRkr419+V0FgCqGKQpxwfjtwQAAACAiroWTbavtf1t24dtP2v7I8X6T9j+ke2niuWWtW8uAAAAgF4QsppRfeknmeF585I+FhHft71R0pO2DxaPfTYi/mTtmgcAAACgVw3KdZq6Fk0RcUzSseL2GduHJW1b64YBAAAA6F0RUnNAJoIo9Vvavk7SWyU9Xqy62/bTtvfZ3rzajQMAAACA9ZYummxPSvqqpI9GxGlJ90n6BUk7tdAT9ellnrfX9iHbh06ePLnyFgMAAADoAVZrBUs/SRVNtutaKJgeioivSVJEHI+IZkS0JH1e0g1LPTciHoiIXRGxa2pqarXaDQAAAGAdhRaG51Vd+knXc5psW9IXJB2OiM+0rd9anO8kSe+V9MzaNBEAAABALxqU6zRlZs97h6Q7JP3A9lPFuo9Lut32Ti0UmS9K+tAatA8AAABADwpZrT6bOryqzOx535WWHHR4YPWbAwAAAAC9JdPTBOASc9PQrelsbftbUrnZa/MTaJ67up7Onr883+0/tykd1dxlkc42J5v5DY/ls7XRfLY+nM8ODeV/t6xWK/9N4vx8LZ+dLZGdyWdrE/lsc7zE7zZWYrujY+nshpHcdkfTWyz3OT/YeqTElgHgJ9Z6eJ7t3ZL+TFJN0p9HxKcWPe7i8VsknZP0b4vry14r6UuSrpbUkvRARPxZ8ZxPSPp3ki7MUvfxiOjYIUTRBAAAAKC0kNRawwkdbNck3SvpJklHJT1he39E/G1b7GZJ24vl7VqY4fvtkuYlfawooDZKetL2wbbnfjYi/iTbFoomAAAAABVYzbWdOvwGSUci4gVJsv2wpD2S2oumPZK+FBEh6Xu2N7VNWHdMkiLijO3DkrYtem7aYEx3AQAAAGBVXehpqrpIuuLC9VyLZe+iH7FN0ktt948W60plbF8n6a2SHm9bfbftp23vs931HAOKJgAAAADr4ZUL13MtlgcWPb5UN9biE3c7ZmxPauF6sx+NiNPF6vsk/YKknVrojfp0t4YyPA8AAABAJWs8PO+opGvb7l8j6eVsxnZdCwXTQxHxtQuBiDh+4bbtz0v6ZreG0NMEAAAAoLQIr3R4XjdPSNpu+3rbI5Juk7R/UWa/pPd7wY2S3oiIY8Wsel+QdDgiPtP+BNtb2+6+V9Iz3RpCTxMAAACASpprOHteRMzbvlvSo1qYcnxfRDxr+8PF4/dr4dqxt0g6ooUpxz9QPP0dku6Q9APbTxXrLkwt/se2d2phGN+Lkj7UrS0UTQAAAAB6UlHkHFi07v622yHpriWe910tfb6TIuKOsu2gaAIAAABQWkhqre05TT2DogkYQLXLt6SzjasuS+XOXV1Pb/Pclfmu/NktiyfJWd7cplY6Gxvn09nRibl0dsNYiexII50dr+ezNedfh6wywy/ON0q8F+ZKZGdG0tnZsXx2ZjT/p7BVz78OUSszZCX3OgzN5T6PklQ/lf+cA0A1XtPheb2EogkAAABAaQvXaaKnCQAAAACW1RyQybgH47cEAAAAgIroaQIAAABQWsgMzwMAAACATloDMnCNogkAAABAaRFSk54mAAAAAFjeoAzPG4z+NAAAAACoiJ4mAAAAAKUtTAQxGH0wFE0AAAAAKmlqMIbnUTQBl4h3j74vnfWv/mI6e/6q0Vzu8vw3TbNbIp2d29JKZ71pLp3dODmTzm7ecD6d3TSaz142ks+O1xrpbN351yyrUeKbxPPNejp7em48nX19LJ99bSSfna6PpbNzQyPpbJkR8G7msrXZ3OdRkoanr05nyxw/vjX7UDoL4NIW4pwmAAAAAIDoaQIAAABQCec0AQAAAEBHLc5pAgAAAIClcXFbAAAAAOhiUIbnDcZvCQAAAAAV0dMEAAAAoLSFi9syPA8AAAAAlsVEEAAAAACwDC5uCwAAAACQRE8T0NNuGro1na1tf0s6e/7qiXR2Zkvuu5W5TelNam5TK531prl09k2XnUtnr5yczmfHz6SzUyP57V42PJPObqjNprNjnk9ns2Yi/+fiXHM0nT09MpbOnhyZTGfHhjemsyeG8u/HN9JJaa41ks4ONWqp3MxM/rvO+tn853z87DXpbJnj0sHWI+ksgP40KLPnUTQBAAAAKC+YCAIAAAAAlhViIggAAAAA6GhQepoGYxAiAAAAAFRETxMAAACA0gZpynGKJgAAAACVUDQBAAAAwDJCzJ4HAAAAAB0Nyux5TAQBAAAAAB3Q0wQAAACgvOCcJgA9YGhiIp1tXj6Zzs5srqWzs2/KHQznLov0NmPjfDq7cXImnb1ycjqd3bbhjXR261g+e0X9TDq7pZZv78TQXDpbd/71zWpE/s/F2dZIOntqOP++Ha810tm6W+lsGc1WfoDG6UY+Ozeby9bO5/9zUp/Of85HShw/hl7OH5cAXNqYPQ8AAAAAuhiUoolzmgAAAACgg65Fk+1rbX/b9mHbz9r+SLF+i+2Dtp8v/t289s0FAAAA0AsuTDledeknmZ6meUkfi4hfkXSjpLts75B0j6THImK7pMeK+wAAAAAGRIQrL/2ka9EUEcci4vvF7TOSDkvaJmmPpAeL2IOS3rNGbQQAAADQg1py5aWflJoIwvZ1kt4q6XFJV0XEMWmhsLJ95TLP2StpryS9+c1vXlFjAQAAAPSGGKApx9MTQdielPRVSR+NiNPZ50XEAxGxKyJ2TU1NVWkjAAAAAKybVE+T7boWCqaHIuJrxerjtrcWvUxbJZ1Yq0YCAAAA6D39dm5SVZnZ8yzpC5IOR8Rn2h7aL+nO4vadkr6x+s0DAAAA0JsGZ/a8TE/TOyTdIekHtp8q1n1c0qckfcX2ByX9UNKta9JCAAAAAD1pUHqauhZNEfFdadnpLd61us0B0M4bNqSzjcl6iWz+ADc/mcs1J5vpbY5OzKWzmzecT2evHD+Tzm4deyOdvWbkVDo7NZxvw6ba2XR2wvnXrO78vshqRC2dPRsj6ezEUP73GnMjnS2jEfnrvM/M5z9ns3P5uZZmZ3Kv7/zZ/DbLfM7LHD/GShyXAFzaQkwEAQAAAAAQRRMAAACAKmJh2vGqS4bt3bafs33E9j1LPG7bnysef9r224r119r+tu3Dtp+1/ZG252yxfdD288W/m7u1g6IJAAAAQCVreXFb2zVJ90q6WdIOSbfb3rEodrOk7cWyV9J9xfp5SR+LiF+RdKOku9qee4+kxyJiu6THivsdUTQBAAAAKC20MBFE1SXhBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9KmC5dFiojvS1JEnJF0WNK2tuc8WNx+UNJ7ujWEogkAAADAerjC9qG2Ze+ix7dJeqnt/lH9pPBJZ2xfJ+mtkh4vVl0VEcckqfj3ym4NzU/DAwAAAAD/aMXXW3olInZ1/AE/a/HZUB0zticlfVXSRyPidPkmLqCnCQAAAEAlazwRxFFJ17bdv0bSy9mM7boWCqaHIuJrbZnjtrcWma2STnRrCEUTAAAAgErW+JymJyRtt3297RFJt0navyizX9L7i1n0bpT0RkQcs21JX5B0OCI+s8Rz7ixu3ynpG90awvA8AAAAAKUt9Bit3cVtI2Le9t2SHpVUk7QvIp61/eHi8fslHZB0i6Qjks5J+kDx9HdIukPSD2w/Vaz7eEQckPQpSV+x/UFJP5R0a7e2UDQBAAAA6ElFkXNg0br7226HpLuWeN53tfT5ToqIVyW9q0w7KJqAi+ymoa5fZvyj2o5fSmcbG/Mf58ZE/luh+fHk1efGmultbhibS2c3jZ5PZ6dGptPZK+pn8tsdLpPNn2O6aWgmnd3o+XS2vgZf+jWSbwNJOhONdLbu/PumjJmop7Pnm/ns6dHxfHZsNJ2dHRtJ5ebHa+ltlvmclzl+jE11vQbkPypzvDvYeiSdBdA7VjgRRN+gaAIAAABQSXJCh75H0QQAAACgkrU8p6mXUDQBAAAAKC2UngWv7zHlOAAAAAB0QE8TAAAAgEoG5JQmiiYAAAAAFazxdZp6CUUTAAAAgGoGpKuJc5oAAAAAoAN6mgAAAABUwvA8AAAAAOiAi9sCWBNDGzaks83J0XR2fjz/TU8zv1m1RnNHw9poM73NDSONdPaykfP57PBMOrulNp3ObqqdzWeHSrRhaD6dnXB+NHW9RDarEa38z4/87yXlX69GrZbOnm2NpLNvDOc/k2XejxtGJtLZ08nPT/bzKEnN0fwxodTxo8RxqczxDkD/CdHTBAAAAADLC0kDUjQxEQQAAAAAdEBPEwAAAIBKOKcJAAAAADqhaAIAAACA5ZiJIAAAAACgowHpaWIiCAAAAADogJ4mAAAAAOUF12kCAAAAgM4GZHgeRRMAAACAiuhpArAWarV0tDWSzzbr+YNWq56OKuq5r5Dqw830NsfrjXy2ls9uqM2msxNDc/ms89mNni+x3fxppRuG8jttWPn3TVbd+f2rVn6fNUq8XudK7Icy+7fM+6bM+7HM+3w4+fmZS34epXKf81LHjxLHpaESxzsA6GUUTQAAAACqYXgeAAAAAHRA0QQAAAAAywhJzJ4HAAAAAMuLAelp4uK2AAAAANABPU0AAAAAqhmQniaKJgAAAADVcE4TAAAAACzP9DQBAAAAwDJCAzM8j4kgAAAAAKADepqAi8wuMfa3ls9GLb/ZKPF1SQzlvkIaSuYkqeZWOlsvkR3zfIntlsk2S2TTUdWd3xHDyu/gWontppX4JrHc61XmvVBmu/n9W+59k29vmfd59vOT/TwuZNPRUsePMselUsc7AH3InNMEAAAAAB0xPG+B7X22T9h+pm3dJ2z/yPZTxXLL2jYTAAAAQM+JFSx9JNN5/0VJu5dY/9mI2FksB1a3WQAAAADQG7oWTRHxHUmnLkJbAAAAAPQTepq6utv208Xwvc3LhWzvtX3I9qGTJ0+u4McBAAAA6BmhhYkgqi59pGrRdJ+kX5C0U9IxSZ9eLhgRD0TErojYNTU1VfHHAQAAAOg1jupLP6lUNEXE8YhoRkRL0ucl3bC6zQIAAADQ8xietzzbW9vuvlfSM8tlAQAAAKCfdb1Ok+0vS3qnpCtsH5X0h5LeaXunFmrEFyV9aO2aCAAAAADrp2vRFBG3L7H6C2vQFgAAAAB9pN/OTaqqa9EEAAAAAEvqs1nwqqJoAgAAAFBeH07oUNVKrtMEAAAAAJc8epoAAAAAVENPEwAAAAAsb60vbmt7t+3nbB+xfc8Sj9v254rHn7b9trbH9tk+YfuZRc/5hO0f2X6qWG7p1g6KJgAAAADVrOHFbW3XJN0r6WZJOyTdbnvHotjNkrYXy15J97U99kVJu5fZ/GcjYmexHOjWFoomAAAAAL3oBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9Im21slKSK+I+nUajSEogkAAABANSvrabrC9qG2Ze+irW+T9FLb/aPFurKZpdxdDOfbZ3tztzATQQAAAAAorcy5Sct4JSJ2dfoRS6xb/BMzmcXuk/TJIvdJSZ+W9LudnkDRBAAAAKCatb247VFJ17bdv0bSyxUyPyUijl+4bfvzkr7ZrSEUTcBFFlHiK5lmPutmfrNulcnmDoatZE6SmpEfGdwokZ2J/CGtUSpbK5FNR9WI/I6ol9nBazD967zyP7/M71Xu9SqzH/L7t9z7Jv9+LPM+z35+sp/HhWw6Wur4Uea4VOp4B6A/re3H/AlJ221fL+lHkm6T9K8XZfZrYajdw5LeLumNiDjWaaO2t7Zl3ivpmU55iaIJAAAAQA+KiHnbd0t6VFJN0r6IeNb2h4vH75d0QNItko5IOifpAxeeb/vLkt6phXOnjkr6w4j4gqQ/tr1TCyXfi5I+1K0tFE0AAAAAKlnhOU1dFdOBH1i07v622yHprmWee/sy6+8o2w6KJgAAAADVDMgoXIomAAAAAOWtfPa8vsF1mgAAAACgA3qaAAAAAFQzID1NFE0AAAAAqqFoAgAAAIDlcU4TAAAAAICiCQAAAAA6YXgecLE1m+no0Fw+W2vk+8eHGk5nnczOz9fS2zzfqOezzXz2XHM0nT3bGslnI589E410th7z6axaJbbr/PsmqxGtdPZsieyZyP8ZKrMfyuzfMu+bMu/HMu/z7Ocn+3mUpKH8W6bc8aPEcanM8Q5AnxqQ4XkUTQAAAADKG6DrNFE0AQAAAKiGogkAAAAAOhiQoomJIAAAAACgA3qaAAAAAJRmcU4TAAAAAHRG0QQAAAAAyxig2fM4pwkAAAAAOqCnCQAAAEA1A9LTRNEEAAAAoBqKJgBroXXuXDpbm55NZ4fPb8hvN79ZDc06lZufraW3eW6uns6enhvPZ0fG0tlTw5Pp7MTQXDpbdzOdlWbSyYbnS7ShVaINyZ9f4o/imcj/aXm9ld9nrzcn0tlTzfz+PT2fb0OZ92OZ93kz+fkZTn4epXKf8+Hz+R1c5rjULHG8A9CfBuWcJoomAAAAANUMSNHERBAAAAAA0AE9TQAAAADKCw1MTxNFEwAAAIBKOKcJAAAAADqhaAIAAACA5Q1KTxMTQQAAAABAB/Q0AQAAAKhmQHqaKJoAAAAAlMfseQAAAACwPBfLIKBoAi6yg61H0tndV/1eOlv/uY357Nn86YzD53OHw/mZWnqb52ZG0tnXx8bT2ZMjk+nseK2Rzo45ny2jUSvxmnkuna27WaU5HTUi39azUWL/NifS2ZPz+ff4K4189uRc/n3z+mz+/Vjmfa7k5yf7eZSk+tn817/1M/PprE6+lo6WOd4BQC+jaAIAAABQzYAMz+v6dbPtfbZP2H6mbd0W2wdtP1/8u3ltmwkAAACg1ziqL/0kM0bni5J2L1p3j6THImK7pMeK+wAAAAAGSaxg6SNdi6aI+I6kU4tW75H0YHH7QUnvWd1mAQAAAOh5FE0dXRURxySp+PfK1WsSAAAAAPSONZ8IwvZeSXsl6c1vfvNa/zgAAAAAF0MfnptUVdWepuO2t0pS8e+J5YIR8UBE7IqIXVNTUxV/HAAAAICew/C8jvZLurO4faekb6xOcwAAAAD0C2bPK9j+sqS/kvTLto/a/qCkT0m6yfbzkm4q7gMAAAAYJAPS09T1nKaIuH2Zh961ym0BAAAAgJ6z5hNBAKguzp1LZ+vTjRLZejo7PO1UrjZRS29zdmwknX1tZDydHRvemM7W3Upny5iJ/Gt7tpV/HSaG5tLZuufT2axG5P9clPm9TjUn09lXGvn9e2zmTensifP57b52Lv9+nD2bfx1q07nPz/B0epOqT+e/xi1z/ChzXAJw6eu3YXZVUTQBAAAAKK8Ph9lVRdEEAAAAoJoBKZqqzp4HAAAAAAOBniYAAAAApVmc0wQAAAAAnQ1I0cTwPAAAAACVOKLyktq+vdv2c7aP2L5nicdt+3PF40/bflvbY/tsn7D9zKLnbLF90Pbzxb+bu7WDogkAAABAeSu5sG2iZrJdk3SvpJsl7ZB0u+0di2I3S9peLHsl3df22Bcl7V5i0/dIeiwitkt6rLjfEUUTAAAAgF50g6QjEfFCRMxJeljSnkWZPZK+FAu+J2mT7a2SFBHfkXRqie3ukfRgcftBSe/p1hCKJgAAAACVOKovCdskvdR2/2ixrmxmsasi4pgkFf9e2a0hTAQBAAAAoJqVTQRxhe1DbfcfiIgH2u478RMzmRWjaAJ6WOvs2XS29up0Oju2aTSdbUwudSz6Wc3xXE6SZkbzh57p+lg6e2Kolc6W0Yh8p/z5Zj2dfWN4Qzq7oTabzo55Pp3Nmon8PjvXzL+/Ts/n9+/Jucl09sT5jfnsdH6709P59vpM/jUbOZ37/Iy+kf9/wNhrzXS2zPGjWeK4BODSt8Ipx1+JiF0dHj8q6dq2+9dIerlCZrHjtrdGxLFiKN+Jbg1leB4AAACAatZwIghJT0jabvt62yOSbpO0f1Fmv6T3F7Po3SjpjQtD7zrYL+nO4vadkr7RrSEUTQAAAAB6TkTMS7pb0qOSDkv6SkQ8a/vDtj9cxA5IekHSEUmfl/R7F55v+8uS/krSL9s+avuDxUOfknST7ecl3VTc74jheQAAAADKy0/oUP1HRBzQQmHUvu7+ttsh6a5lnnv7MutflfSuMu2gaAIAAABQzRoXTb2CogkAAABAadba9zT1Cs5pAgAAAIAO6GkCAAAAUE0MRlcTRRMAAACASgZleB5FEwAAAIDy8tdb6nsUTQAAAAAqcWu9W3BxUDQBPexg65F09t2j70tnxybG0tnGxMZUbn6slt5mq56fg2ZuaCSdfSOdlJqtfBtm5uvp7OnR8XT2spHz6ex4rZHO1tfgL1gj8q/X+WaJ12su/3q9PpvPvnYun52ezn8e4vX8+3Hk9fxrNvJ6Ljd2Kr9vx358Np1tvXg0nS1zXAKASwVFEwAAAIBqGJ4HAAAAAMtjIggAAAAAWE6IKccBAAAAoJNB6WnKn6UKAAAAAAOIniYAAAAA1QxITxNFEwAAAIDSrMEZnkfRBAAAAKC8iIGZCIJzmgAAAACgA3qaAAAAAFTC8DwAfeVbsw+ls7unPpTOjk+OpHLN0bH0NqNWppM7n51r5doqSacb+e3OzuUPlafHRtPZDSMT6ex4vZHO1txKZ7OakX+9zjfq6ey5uRLZmfz+nT2bz/pMfv+OvJ5/HUZPOZ0dfzW3z8aPz6a36Zd+nM4+WuL4AQA/haIJAAAAAJZHTxMAAAAALCcktQajamIiCAAAAADogJ4mAAAAANUMRkcTRRMAAACAajinCQAAAAA6GZCL21I0AQAAAKhkUHqamAgCAAAAADqgpwkAAABAeSEmggAAAACA5ViSOacJwKWq+eqpdLZ+fFMqt2GkVqIF9XTSzfwo4qFGvg1zs/ntzs7ktzs7NpLOnh5tprPDw/ns0NDq/wFrtZzOzs/nX6/mbIn3TYn9UJvOZ0dO53+3kdfTUY2/2kpnN/y4kcrVj59Ob7PM5xwAKssf6voa5zQBAAAAQAcr6mmy/aKkM5KakuYjYtdqNAoAAABA72N4Xt5vRMQrq7AdAAAAAP2CiSAAAAAAoJMYmIvbrvScppD0LdtP2t67VMD2XtuHbB86efLkCn8cAAAAgF7hqL70k5UWTe+IiLdJulnSXbb/+eJARDwQEbsiYtfU1NQKfxwAAAAAXFwrKpoi4uXi3xOSvi7phtVoFAAAAIA+EFF96SOViybbE7Y3Xrgt6d2SnlmthgEAAADoYSG5VX3pJyuZCOIqSV+3fWE7/y0i/mJVWgUAAACg9/VZj1FVlYumiHhB0q+vYlsAAAAAoOcw5TgwgA62Hkln3z1yeyo3WuLnD81dls7WZvNbnpnJjziunXc6O382f6icH6+ls63R/Ldzc/V8NoZW/1s/t/Kvlxv57PBsiWyJfTY8nY5q9I386zV2Kj+eZPz4bDpbP346lWv9/Q/T2yzzOQeAygajo4miCQAAAEA1ZngeAAAAAHRA0QQAAAAAywhJfTYLXlUrvbgtAAAAAFzS6GkCAAAAUJoVnNMEAAAAAB1RNAEAAABABwNSNHFOEwAAAIDyLkwEUXVJsL3b9nO2j9i+Z4nHbftzxeNP235bt+fa/oTtH9l+qlhu6dYOiiYAAAAAPcd2TdK9km6WtEPS7bZ3LIrdLGl7seyVdF/yuZ+NiJ3FcqBbWxieB6Cjb819OZW7aejW9Dbrp7aks8PTV+e3e3Yin52upbONSeezE/lsczSfbdXTUcUafB3mElPKDjXy2dpsPls/mx8CUp/OZ8dea+azPz6bzvqlH6ezzVdPpXIHW4+ktwkAF8MaTwRxg6QjEfGCJNl+WNIeSX/bltkj6UsREZK+Z3uT7a2Srks8N42eJgAAAADVRFRfpCtsH2pb9i7a+jZJL7XdP1qsy2S6PffuYjjfPtubu/2a9DQBAAAAqCBWOhHEKxGxq8PjSw3JWPwDl8t0eu59kj5Z3P+kpE9L+t1ODaVoAgAAANCLjkq6tu3+NZJeTmZGlntuRBy/sNL25yV9s1tDGJ4HAAAAoLzQSofndfOEpO22r7c9Iuk2SfsXZfZLen8xi96Nkt6IiGOdnluc83TBeyU9060h9DQBAAAAqKbEREFlRcS87bslPSqpJmlfRDxr+8PF4/dLOiDpFklHJJ2T9IFOzy02/ce2d2qh7HtR0oe6tYWiCQAAAEAlazx7norpwA8sWnd/2+2QdFf2ucX6O8q2g6IJAAAAQDVrXDT1Cs5pAgAAAIAO6GkCAAAAUF5Iag1GTxNFEwAAAIAKVnydpr5B0QRgVRxsPbIm23336PvS2fGz16SzI5dPprONyXo+uzF/WJ0fX+q6e0tr1vPZqKWjaW7ms7VG/g/o8Pl8tn5mPp+dbqSztVen09nWi0fT2UdnH0pnAaBvUTQBAAAAQAcDUjQxEQQAAAAAdEBPEwAAAIDymAgCAAAAADoJKVrr3YiLgqIJAAAAQDWc0wQAAAAAoKcJAAAAQHmc0wQAAAAAXQzI8DyKJgAAAADVUDQBAAAAwHKCogkAesG3Zh9KZ28aujWdHXp5Ip0d27Ahn53anM42J0fT2dZILZ1VzflsVjP/R3ForpnO1qZn8204+Vo6GufOpbPNs2fT2YOtR9JZAMClg6IJAAAAQHkhqcV1mgAAAABgeQzPAwAAAIAOKJoAAAAAYDkxMNdpGlrvBgAAAABAL6OnCQAAAEB5IUUwEQQAAAAALG9AhudRNAEAAACoZkAmguCcJgAAAADogJ4mAAAAAOVFcHFbAOg3B1uPrHcTdNPQrens0IYN+Wytls7aTmezoszwi2YzHz13Lp3thf0LAFhkQIbnUTQBAAAAqCQGpKdpRec02d5t+znbR2zfs1qNAgAAANDrYqGnqerSRyoXTbZrku6VdLOkHZJut71jtRoGAAAAAL1gJcPzbpB0JCJekCTbD0vaI+lvV6NhAAAAAHpYaGCu07SS4XnbJL3Udv9ose6n2N5r+5DtQydPnlzBjwMAAADQU6JVfekjKymalpqe6WdKzYh4ICJ2RcSuqampFfw4AAAAAL0iJEUrKi/9ZCXD845Kurbt/jWSXl5ZcwAAAAD0hYi+6zGqaiU9TU9I2m77etsjkm6TtH91mgUAAAAAvaFyT1NEzNu+W9KjkmqS9kXEs6vWMgAAAAA9rd+G2VW1oovbRsQBSQdWqS0AAAAA+smADM9zXMQLS9k+KekfLtoPHGxXSHplvRuBNPZX/2Gf9R/2Wf9hn/UX9tfK/HxE9NWsabb/Qgv7vapXImL3arVnLV3UogkXj+1DEbFrvduBHPZX/2Gf9R/2Wf9hn/UX9hcuZSuZCAIAAAAALnkUTQAAAADQAUXTpeuB9W4ASmF/9R/2Wf9hn/Uf9ll/YX/hksU5TQAAAADQAT1NAAAAANABRRMAAAAAdEDRdAmxfavtZ223bO9a9Njv2z5i+znbv71ebcTPsr272C9HbN+z3u3Bz7K9z/YJ28+0rdti+6Dt54t/N69nG/ETtq+1/W3bh4tj4keK9eyzHmV7zPZf2/6bYp/9UbGefdbDbNds/x/b3yzus79wyaJourQ8I+lfSfpO+0rbOyTdJulXJe2W9F9s1y5+87BYsR/ulXSzpB2Sbi/2F3rLF7Xw2Wl3j6THImK7pMeK++gN85I+FhG/IulGSXcVnyv2We+alfSbEfHrknZK2m37RrHPet1HJB1uu8/+wiWLoukSEhGHI+K5JR7aI+nhiJiNiL+XdETSDRe3dVjGDZKORMQLETEn6WEt7C/0kIj4jqRTi1bvkfRgcftBSe+5mG3C8iLiWER8v7h9Rgv/qdsm9lnPigXTxd16sYTYZz3L9jWS/oWkP29bzf7CJYuiaTBsk/RS2/2jxTqsP/ZN/7oqIo5JC/9Jl3TlOrcHS7B9naS3Snpc7LOeVgz1ekrSCUkHI4J91tv+VNJ/kNRqW8f+wiVreL0bgHJs/09JVy/x0B9ExDeWe9oS65hrvjewb4A1YntS0lclfTQiTttLfdzQKyKiKWmn7U2Svm7719a5SViG7d+RdCIinrT9znVuDnBRUDT1mYj4rQpPOyrp2rb710h6eXVahBVi3/Sv47a3RsQx21u18O04eoTtuhYKpoci4mvFavZZH4iI123/pRbOI2Sf9aZ3SPqXtm+RNCbpMtv/VewvXMIYnjcY9ku6zfao7eslbZf01+vcJix4QtJ229fbHtHChB3717lNyNkv6c7i9p2SluvpxUXmhS6lL0g6HBGfaXuIfdajbE8VPUyyPS7ptyT9ndhnPSkifj8iromI67Twd+t/RcS/EfsLlzBHMBLoUmH7vZL+s6QpSa9Leioifrt47A8k/a4WZpX6aET8j/VqJ35a8U3dn0qqSdoXEf9pfVuExWx/WdI7JV0h6bikP5T03yV9RdKbJf1Q0q0RsXiyCKwD2/9M0v+W9AP95HyLj2vhvCb2WQ+y/U+0MHFATQtf6H4lIv6j7cvFPutpxfC8fx8Rv8P+wqWMogkAAAAAOmB4HgAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAAAAdEDRBAAAAAAdUDQBAAAAQAf/H4PTlos+eCz9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAFoCAYAAACL/RCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqqElEQVR4nO3df4wc533f8c/n9vZ+8I4ySekkMZQcyQkThAka2iVkAS4KJ44cSg1Ku4AAqa6sOkZpIxJgAy4KxfkjTo0CRhDbiQtVghwTllHVggXbNWGwkVnVgWsgVkS5iiyFUcUqikWLJilREnkk725v99s/bhivz3e735m74+1y3y9gwN3Zz849t7M7x+8+zzzjiBAAAAAAYGlD690AAAAAAOhlFE0AAAAA0AFFEwAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAACAnmR7t+3nbB+xfc8Sj9v254rHn7b9tmL9mO2/tv03tp+1/Udtz9li+6Dt54t/N3drB0UTAAAAgJ5juybpXkk3S9oh6XbbOxbFbpa0vVj2SrqvWD8r6Tcj4tcl7ZS02/aNxWP3SHosIrZLeqy43xFFEwAAAIBedIOkIxHxQkTMSXpY0p5FmT2SvhQLvidpk+2txf3pIlMvlmh7zoPF7QclvadbQ4ZX9nuUc8UVV8R11113MX8kAFxU//fJF9JZD63R91Zeg21G90ilzbZa6ewv/dO3rE0jAKAHPPnkk69ExNR6t6OM3/6NiXj1VLPy8598evZZSTNtqx6IiAfa7m+T9FLb/aOS3r5oM0tltkk6VvRUPSnpFyXdGxGPF5mrIuKYJEXEMdtXdmvrRS2arrvuOh06dOhi/kgAuKhuGro1nR0a35DfcK2WjtqrXzVFlKiamvk/oK1z59LZg4ceybcBAPqM7X9Y7zaU9cqpph5/9JrKz69v/X8zEbGrQ2SpP2iL/yAtm4mIpqSdtjdJ+rrtX4uIZ6q0leF5AAAAAHrRUUnXtt2/RtLLZTMR8bqkv5S0u1h13PZWSSr+PdGtIRRNAAAAACoINaNVeUl4QtJ229fbHpF0m6T9izL7Jb2/mEXvRklvFEPupooeJtkel/Rbkv6u7Tl3FrfvlPSNbg25qMPzAAAAAFwaQlJrrU56lRQR87bvlvSopJqkfRHxrO0PF4/fL+mApFskHZF0TtIHiqdvlfRgcV7TkKSvRMQ3i8c+Jekrtj8o6YeSuo6tp2gCAAAAUElL+Ql9qoiIA1oojNrX3d92OyTdtcTznpb01mW2+aqkd5VpB8PzAAAAAKADepoAAAAAlBYKNcvMrtrHKJoAAAAAVLKW5zT1EoomAAAAAKWFpCZFEwD0l1IXlp2YSGe9IX8R2tqOX0pnm5Oj6WxrJH9xW9VW/+K2aub/KA7N5S9uW5ueTWd3X/V76WyUuGhu6+zZdPZgiwvsAkC7QelpYiIIAAAAAOiAniYAAAAApYXERBAAAAAA0MnaXqWpd1A0AQAAACgtFEwEAQAAAADLilLzBPU1JoIAAAAAgA7oaQIAAABQWohzmgAAAACgA6upNbg2YA+iaAIAAABQWkhqcU4TAAAAAICeJgA97d2j70tna9vfks42L59MZxuT9Xx2Y/6wOj+eH9LQrOezUUtH09zMZ2uN/NeOw+c3pLP1n9uYz0430tnaq9PpbJn347dmH0pnAaBfMTwPAAAAAJYRomgCAAAAgI5aQdEEAAAAAEsapJ4mJoIAAAAAgA7oaQIAAABQWshqDkgfDEUTAAAAgEo4pwkAAAAAljFI5zRRNAEAAACowGrGYAzPG4zfEgAAAAAqoqcJAAAAQGkhqTUgfTAUTQBWxU1Dt6aztcu3pLP+1V9MZ89fPZHOzmyupbONyfx47cZEPtscTUfVquezazFSwq18dqiRfw1qs/nt1s/mf7H6dP4FG9uU3xFjE2Pp7O6pD6WzzVdPpXIHW4+ktwkAFwPnNAEAAADAMiI4pwkAAAAAIHqaAAAAAFTUYngeAAAAACxt4TpNgzFwjaIJAAAAQAWDc04TRRMAAACA0gZpyvHB+C0BAAAAoCJ6mgAAAABU0gwmggAAAACAJYXMRBAAAAAA0EmLiSAAQHr3yO2pXG37W9LbbFx1WTp7/qrRdHZmS/7APfum/HCC+cl0VPPjkc62RvPZqJfIDuWzWW7lXy838tmh2Xx2+HyJ7HQ+25gskZ3YmM6OT46ks/Xjm1K57OdRkr419+V0FgCqGKQpxwfjtwQAAACAiroWTbavtf1t24dtP2v7I8X6T9j+ke2niuWWtW8uAAAAgF4QsppRfeknmeF585I+FhHft71R0pO2DxaPfTYi/mTtmgcAAACgVw3KdZq6Fk0RcUzSseL2GduHJW1b64YBAAAA6F0RUnNAJoIo9Vvavk7SWyU9Xqy62/bTtvfZ3rzajQMAAACA9ZYummxPSvqqpI9GxGlJ90n6BUk7tdAT9ellnrfX9iHbh06ePLnyFgMAAADoAVZrBUs/SRVNtutaKJgeioivSVJEHI+IZkS0JH1e0g1LPTciHoiIXRGxa2pqarXaDQAAAGAdhRaG51Vd+knXc5psW9IXJB2OiM+0rd9anO8kSe+V9MzaNBEAAABALxqU6zRlZs97h6Q7JP3A9lPFuo9Lut32Ti0UmS9K+tAatA8AAABADwpZrT6bOryqzOx535WWHHR4YPWbAwAAAAC9JdPTBOASc9PQrelsbftbUrnZa/MTaJ67up7Onr883+0/tykd1dxlkc42J5v5DY/ls7XRfLY+nM8ODeV/t6xWK/9N4vx8LZ+dLZGdyWdrE/lsc7zE7zZWYrujY+nshpHcdkfTWyz3OT/YeqTElgHgJ9Z6eJ7t3ZL+TFJN0p9HxKcWPe7i8VsknZP0b4vry14r6UuSrpbUkvRARPxZ8ZxPSPp3ki7MUvfxiOjYIUTRBAAAAKC0kNRawwkdbNck3SvpJklHJT1he39E/G1b7GZJ24vl7VqY4fvtkuYlfawooDZKetL2wbbnfjYi/iTbFoomAAAAABVYzbWdOvwGSUci4gVJsv2wpD2S2oumPZK+FBEh6Xu2N7VNWHdMkiLijO3DkrYtem7aYEx3AQAAAGBVXehpqrpIuuLC9VyLZe+iH7FN0ktt948W60plbF8n6a2SHm9bfbftp23vs931HAOKJgAAAADr4ZUL13MtlgcWPb5UN9biE3c7ZmxPauF6sx+NiNPF6vsk/YKknVrojfp0t4YyPA8AAABAJWs8PO+opGvb7l8j6eVsxnZdCwXTQxHxtQuBiDh+4bbtz0v6ZreG0NMEAAAAoLQIr3R4XjdPSNpu+3rbI5Juk7R/UWa/pPd7wY2S3oiIY8Wsel+QdDgiPtP+BNtb2+6+V9Iz3RpCTxMAAACASpprOHteRMzbvlvSo1qYcnxfRDxr+8PF4/dr4dqxt0g6ooUpxz9QPP0dku6Q9APbTxXrLkwt/se2d2phGN+Lkj7UrS0UTQAAAAB6UlHkHFi07v622yHpriWe910tfb6TIuKOsu2gaAIAAABQWkhqre05TT2DogkYQLXLt6SzjasuS+XOXV1Pb/Pclfmu/NktiyfJWd7cplY6Gxvn09nRibl0dsNYiexII50dr+ezNedfh6wywy/ON0q8F+ZKZGdG0tnZsXx2ZjT/p7BVz78OUSszZCX3OgzN5T6PklQ/lf+cA0A1XtPheb2EogkAAABAaQvXaaKnCQAAAACW1RyQybgH47cEAAAAgIroaQIAAABQWsgMzwMAAACATloDMnCNogkAAABAaRFSk54mAAAAAFjeoAzPG4z+NAAAAACoiJ4mAAAAAKUtTAQxGH0wFE0AAAAAKmlqMIbnUTQBl4h3j74vnfWv/mI6e/6q0Vzu8vw3TbNbIp2d29JKZ71pLp3dODmTzm7ecD6d3TSaz142ks+O1xrpbN351yyrUeKbxPPNejp7em48nX19LJ99bSSfna6PpbNzQyPpbJkR8G7msrXZ3OdRkoanr05nyxw/vjX7UDoL4NIW4pwmAAAAAIDoaQIAAABQCec0AQAAAEBHLc5pAgAAAIClcXFbAAAAAOhiUIbnDcZvCQAAAAAV0dMEAAAAoLSFi9syPA8AAAAAlsVEEAAAAACwDC5uCwAAAACQRE8T0NNuGro1na1tf0s6e/7qiXR2Zkvuu5W5TelNam5TK531prl09k2XnUtnr5yczmfHz6SzUyP57V42PJPObqjNprNjnk9ns2Yi/+fiXHM0nT09MpbOnhyZTGfHhjemsyeG8u/HN9JJaa41ks4ONWqp3MxM/rvO+tn853z87DXpbJnj0sHWI+ksgP40KLPnUTQBAAAAKC+YCAIAAAAAlhViIggAAAAA6GhQepoGYxAiAAAAAFRETxMAAACA0gZpynGKJgAAAACVUDQBAAAAwDJCzJ4HAAAAAB0Nyux5TAQBAAAAAB3Q0wQAAACgvOCcJgA9YGhiIp1tXj6Zzs5srqWzs2/KHQznLov0NmPjfDq7cXImnb1ycjqd3bbhjXR261g+e0X9TDq7pZZv78TQXDpbd/71zWpE/s/F2dZIOntqOP++Ha810tm6W+lsGc1WfoDG6UY+Ozeby9bO5/9zUp/Of85HShw/hl7OH5cAXNqYPQ8AAAAAuhiUoolzmgAAAACgg65Fk+1rbX/b9mHbz9r+SLF+i+2Dtp8v/t289s0FAAAA0AsuTDledeknmZ6meUkfi4hfkXSjpLts75B0j6THImK7pMeK+wAAAAAGRIQrL/2ka9EUEcci4vvF7TOSDkvaJmmPpAeL2IOS3rNGbQQAAADQg1py5aWflJoIwvZ1kt4q6XFJV0XEMWmhsLJ95TLP2StpryS9+c1vXlFjAQAAAPSGGKApx9MTQdielPRVSR+NiNPZ50XEAxGxKyJ2TU1NVWkjAAAAAKybVE+T7boWCqaHIuJrxerjtrcWvUxbJZ1Yq0YCAAAA6D39dm5SVZnZ8yzpC5IOR8Rn2h7aL+nO4vadkr6x+s0DAAAA0JsGZ/a8TE/TOyTdIekHtp8q1n1c0qckfcX2ByX9UNKta9JCAAAAAD1pUHqauhZNEfFdadnpLd61us0B0M4bNqSzjcl6iWz+ADc/mcs1J5vpbY5OzKWzmzecT2evHD+Tzm4deyOdvWbkVDo7NZxvw6ba2XR2wvnXrO78vshqRC2dPRsj6ezEUP73GnMjnS2jEfnrvM/M5z9ns3P5uZZmZ3Kv7/zZ/DbLfM7LHD/GShyXAFzaQkwEAQAAAAAQRRMAAACAKmJh2vGqS4bt3bafs33E9j1LPG7bnysef9r224r119r+tu3Dtp+1/ZG252yxfdD288W/m7u1g6IJAAAAQCVreXFb2zVJ90q6WdIOSbfb3rEodrOk7cWyV9J9xfp5SR+LiF+RdKOku9qee4+kxyJiu6THivsdUTQBAAAAKC20MBFE1SXhBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9KmC5dFiojvS1JEnJF0WNK2tuc8WNx+UNJ7ujWEogkAAADAerjC9qG2Ze+ix7dJeqnt/lH9pPBJZ2xfJ+mtkh4vVl0VEcckqfj3ym4NzU/DAwAAAAD/aMXXW3olInZ1/AE/a/HZUB0zticlfVXSRyPidPkmLqCnCQAAAEAlazwRxFFJ17bdv0bSy9mM7boWCqaHIuJrbZnjtrcWma2STnRrCEUTAAAAgErW+JymJyRtt3297RFJt0navyizX9L7i1n0bpT0RkQcs21JX5B0OCI+s8Rz7ixu3ynpG90awvA8AAAAAKUt9Bit3cVtI2Le9t2SHpVUk7QvIp61/eHi8fslHZB0i6Qjks5J+kDx9HdIukPSD2w/Vaz7eEQckPQpSV+x/UFJP5R0a7e2UDQBAAAA6ElFkXNg0br7226HpLuWeN53tfT5ToqIVyW9q0w7KJqAi+ymoa5fZvyj2o5fSmcbG/Mf58ZE/luh+fHk1efGmultbhibS2c3jZ5PZ6dGptPZK+pn8tsdLpPNn2O6aWgmnd3o+XS2vgZf+jWSbwNJOhONdLbu/PumjJmop7Pnm/ns6dHxfHZsNJ2dHRtJ5ebHa+ltlvmclzl+jE11vQbkPypzvDvYeiSdBdA7VjgRRN+gaAIAAABQSXJCh75H0QQAAACgkrU8p6mXUDQBAAAAKC2UngWv7zHlOAAAAAB0QE8TAAAAgEoG5JQmiiYAAAAAFazxdZp6CUUTAAAAgGoGpKuJc5oAAAAAoAN6mgAAAABUwvA8AAAAAOiAi9sCWBNDGzaks83J0XR2fjz/TU8zv1m1RnNHw9poM73NDSONdPaykfP57PBMOrulNp3ObqqdzWeHSrRhaD6dnXB+NHW9RDarEa38z4/87yXlX69GrZbOnm2NpLNvDOc/k2XejxtGJtLZ08nPT/bzKEnN0fwxodTxo8RxqczxDkD/CdHTBAAAAADLC0kDUjQxEQQAAAAAdEBPEwAAAIBKOKcJAAAAADqhaAIAAACA5ZiJIAAAAACgowHpaWIiCAAAAADogJ4mAAAAAOUF12kCAAAAgM4GZHgeRRMAAACAiuhpArAWarV0tDWSzzbr+YNWq56OKuq5r5Dqw830NsfrjXy2ls9uqM2msxNDc/ms89mNni+x3fxppRuG8jttWPn3TVbd+f2rVn6fNUq8XudK7Icy+7fM+6bM+7HM+3w4+fmZS34epXKf81LHjxLHpaESxzsA6GUUTQAAAACqYXgeAAAAAHRA0QQAAAAAywhJzJ4HAAAAAMuLAelp4uK2AAAAANABPU0AAAAAqhmQniaKJgAAAADVcE4TAAAAACzP9DQBAAAAwDJCAzM8j4kgAAAAAKADepqAi8wuMfa3ls9GLb/ZKPF1SQzlvkIaSuYkqeZWOlsvkR3zfIntlsk2S2TTUdWd3xHDyu/gWontppX4JrHc61XmvVBmu/n9W+59k29vmfd59vOT/TwuZNPRUsePMselUsc7AH3InNMEAAAAAB0xPG+B7X22T9h+pm3dJ2z/yPZTxXLL2jYTAAAAQM+JFSx9JNN5/0VJu5dY/9mI2FksB1a3WQAAAADQG7oWTRHxHUmnLkJbAAAAAPQTepq6utv208Xwvc3LhWzvtX3I9qGTJ0+u4McBAAAA6BmhhYkgqi59pGrRdJ+kX5C0U9IxSZ9eLhgRD0TErojYNTU1VfHHAQAAAOg1jupLP6lUNEXE8YhoRkRL0ucl3bC6zQIAAADQ8xietzzbW9vuvlfSM8tlAQAAAKCfdb1Ok+0vS3qnpCtsH5X0h5LeaXunFmrEFyV9aO2aCAAAAADrp2vRFBG3L7H6C2vQFgAAAAB9pN/OTaqqa9EEAAAAAEvqs1nwqqJoAgAAAFBeH07oUNVKrtMEAAAAAJc8epoAAAAAVENPEwAAAAAsb60vbmt7t+3nbB+xfc8Sj9v254rHn7b9trbH9tk+YfuZRc/5hO0f2X6qWG7p1g6KJgAAAADVrOHFbW3XJN0r6WZJOyTdbnvHotjNkrYXy15J97U99kVJu5fZ/GcjYmexHOjWFoomAAAAAL3oBklHIuKFiJiT9LCkPYsyeyR9KRZ8T9Im21slKSK+I+nUajSEogkAAABANSvrabrC9qG2Ze+irW+T9FLb/aPFurKZpdxdDOfbZ3tztzATQQAAAAAorcy5Sct4JSJ2dfoRS6xb/BMzmcXuk/TJIvdJSZ+W9LudnkDRBAAAAKCatb247VFJ17bdv0bSyxUyPyUijl+4bfvzkr7ZrSEUTcBFFlHiK5lmPutmfrNulcnmDoatZE6SmpEfGdwokZ2J/CGtUSpbK5FNR9WI/I6ol9nBazD967zyP7/M71Xu9SqzH/L7t9z7Jv9+LPM+z35+sp/HhWw6Wur4Uea4VOp4B6A/re3H/AlJ221fL+lHkm6T9K8XZfZrYajdw5LeLumNiDjWaaO2t7Zl3ivpmU55iaIJAAAAQA+KiHnbd0t6VFJN0r6IeNb2h4vH75d0QNItko5IOifpAxeeb/vLkt6phXOnjkr6w4j4gqQ/tr1TCyXfi5I+1K0tFE0AAAAAKlnhOU1dFdOBH1i07v622yHprmWee/sy6+8o2w6KJgAAAADVDMgoXIomAAAAAOWtfPa8vsF1mgAAAACgA3qaAAAAAFQzID1NFE0AAAAAqqFoAgAAAIDlcU4TAAAAAICiCQAAAAA6YXgecLE1m+no0Fw+W2vk+8eHGk5nnczOz9fS2zzfqOezzXz2XHM0nT3bGslnI589E410th7z6axaJbbr/PsmqxGtdPZsieyZyP8ZKrMfyuzfMu+bMu/HMu/z7Ocn+3mUpKH8W6bc8aPEcanM8Q5AnxqQ4XkUTQAAAADKG6DrNFE0AQAAAKiGogkAAAAAOhiQoomJIAAAAACgA3qaAAAAAJRmcU4TAAAAAHRG0QQAAAAAyxig2fM4pwkAAAAAOqCnCQAAAEA1A9LTRNEEAAAAoBqKJgBroXXuXDpbm55NZ4fPb8hvN79ZDc06lZufraW3eW6uns6enhvPZ0fG0tlTw5Pp7MTQXDpbdzOdlWbSyYbnS7ShVaINyZ9f4o/imcj/aXm9ld9nrzcn0tlTzfz+PT2fb0OZ92OZ93kz+fkZTn4epXKf8+Hz+R1c5rjULHG8A9CfBuWcJoomAAAAANUMSNHERBAAAAAA0AE9TQAAAADKCw1MTxNFEwAAAIBKOKcJAAAAADqhaAIAAACA5Q1KTxMTQQAAAABAB/Q0AQAAAKhmQHqaKJoAAAAAlMfseQAAAACwPBfLIKBoAi6yg61H0tndV/1eOlv/uY357Nn86YzD53OHw/mZWnqb52ZG0tnXx8bT2ZMjk+nseK2Rzo45ny2jUSvxmnkuna27WaU5HTUi39azUWL/NifS2ZPz+ff4K4189uRc/n3z+mz+/Vjmfa7k5yf7eZSk+tn817/1M/PprE6+lo6WOd4BQC+jaAIAAABQzYAMz+v6dbPtfbZP2H6mbd0W2wdtP1/8u3ltmwkAAACg1ziqL/0kM0bni5J2L1p3j6THImK7pMeK+wAAAAAGSaxg6SNdi6aI+I6kU4tW75H0YHH7QUnvWd1mAQAAAOh5FE0dXRURxySp+PfK1WsSAAAAAPSONZ8IwvZeSXsl6c1vfvNa/zgAAAAAF0MfnptUVdWepuO2t0pS8e+J5YIR8UBE7IqIXVNTUxV/HAAAAICew/C8jvZLurO4faekb6xOcwAAAAD0C2bPK9j+sqS/kvTLto/a/qCkT0m6yfbzkm4q7gMAAAAYJAPS09T1nKaIuH2Zh961ym0BAAAAgJ6z5hNBAKguzp1LZ+vTjRLZejo7PO1UrjZRS29zdmwknX1tZDydHRvemM7W3Upny5iJ/Gt7tpV/HSaG5tLZuufT2axG5P9clPm9TjUn09lXGvn9e2zmTensifP57b52Lv9+nD2bfx1q07nPz/B0epOqT+e/xi1z/ChzXAJw6eu3YXZVUTQBAAAAKK8Ph9lVRdEEAAAAoJoBKZqqzp4HAAAAAAOBniYAAAAApVmc0wQAAAAAnQ1I0cTwPAAAAACVOKLyktq+vdv2c7aP2L5nicdt+3PF40/bflvbY/tsn7D9zKLnbLF90Pbzxb+bu7WDogkAAABAeSu5sG2iZrJdk3SvpJsl7ZB0u+0di2I3S9peLHsl3df22Bcl7V5i0/dIeiwitkt6rLjfEUUTAAAAgF50g6QjEfFCRMxJeljSnkWZPZK+FAu+J2mT7a2SFBHfkXRqie3ukfRgcftBSe/p1hCKJgAAAACVOKovCdskvdR2/2ixrmxmsasi4pgkFf9e2a0hTAQBAAAAoJqVTQRxhe1DbfcfiIgH2u478RMzmRWjaAJ6WOvs2XS29up0Oju2aTSdbUwudSz6Wc3xXE6SZkbzh57p+lg6e2Kolc6W0Yh8p/z5Zj2dfWN4Qzq7oTabzo55Pp3Nmon8PjvXzL+/Ts/n9+/Jucl09sT5jfnsdH6709P59vpM/jUbOZ37/Iy+kf9/wNhrzXS2zPGjWeK4BODSt8Ipx1+JiF0dHj8q6dq2+9dIerlCZrHjtrdGxLFiKN+Jbg1leB4AAACAatZwIghJT0jabvt62yOSbpO0f1Fmv6T3F7Po3SjpjQtD7zrYL+nO4vadkr7RrSEUTQAAAAB6TkTMS7pb0qOSDkv6SkQ8a/vDtj9cxA5IekHSEUmfl/R7F55v+8uS/krSL9s+avuDxUOfknST7ecl3VTc74jheQAAAADKy0/oUP1HRBzQQmHUvu7+ttsh6a5lnnv7MutflfSuMu2gaAIAAABQzRoXTb2CogkAAABAadba9zT1Cs5pAgAAAIAO6GkCAAAAUE0MRlcTRRMAAACASgZleB5FEwAAAIDy8tdb6nsUTQAAAAAqcWu9W3BxUDQBPexg65F09t2j70tnxybG0tnGxMZUbn6slt5mq56fg2ZuaCSdfSOdlJqtfBtm5uvp7OnR8XT2spHz6ex4rZHO1tfgL1gj8q/X+WaJ12su/3q9PpvPvnYun52ezn8e4vX8+3Hk9fxrNvJ6Ljd2Kr9vx358Np1tvXg0nS1zXAKASwVFEwAAAIBqGJ4HAAAAAMtjIggAAAAAWE6IKccBAAAAoJNB6WnKn6UKAAAAAAOIniYAAAAA1QxITxNFEwAAAIDSrMEZnkfRBAAAAKC8iIGZCIJzmgAAAACgA3qaAAAAAFTC8DwAfeVbsw+ls7unPpTOjk+OpHLN0bH0NqNWppM7n51r5doqSacb+e3OzuUPlafHRtPZDSMT6ex4vZHO1txKZ7OakX+9zjfq6ey5uRLZmfz+nT2bz/pMfv+OvJ5/HUZPOZ0dfzW3z8aPz6a36Zd+nM4+WuL4AQA/haIJAAAAAJZHTxMAAAAALCcktQajamIiCAAAAADogJ4mAAAAANUMRkcTRRMAAACAajinCQAAAAA6GZCL21I0AQAAAKhkUHqamAgCAAAAADqgpwkAAABAeSEmggAAAACA5ViSOacJwKWq+eqpdLZ+fFMqt2GkVqIF9XTSzfwo4qFGvg1zs/ntzs7ktzs7NpLOnh5tprPDw/ns0NDq/wFrtZzOzs/nX6/mbIn3TYn9UJvOZ0dO53+3kdfTUY2/2kpnN/y4kcrVj59Ob7PM5xwAKssf6voa5zQBAAAAQAcr6mmy/aKkM5KakuYjYtdqNAoAAABA72N4Xt5vRMQrq7AdAAAAAP2CiSAAAAAAoJMYmIvbrvScppD0LdtP2t67VMD2XtuHbB86efLkCn8cAAAAgF7hqL70k5UWTe+IiLdJulnSXbb/+eJARDwQEbsiYtfU1NQKfxwAAAAAXFwrKpoi4uXi3xOSvi7phtVoFAAAAIA+EFF96SOViybbE7Y3Xrgt6d2SnlmthgEAAADoYSG5VX3pJyuZCOIqSV+3fWE7/y0i/mJVWgUAAACg9/VZj1FVlYumiHhB0q+vYlsAAAAAoOcw5TgwgA62Hkln3z1yeyo3WuLnD81dls7WZvNbnpnJjziunXc6O382f6icH6+ls63R/Ldzc/V8NoZW/1s/t/Kvlxv57PBsiWyJfTY8nY5q9I386zV2Kj+eZPz4bDpbP346lWv9/Q/T2yzzOQeAygajo4miCQAAAEA1ZngeAAAAAHRA0QQAAAAAywhJfTYLXlUrvbgtAAAAAFzS6GkCAAAAUJoVnNMEAAAAAB1RNAEAAABABwNSNHFOEwAAAIDyLkwEUXVJsL3b9nO2j9i+Z4nHbftzxeNP235bt+fa/oTtH9l+qlhu6dYOiiYAAAAAPcd2TdK9km6WtEPS7bZ3LIrdLGl7seyVdF/yuZ+NiJ3FcqBbWxieB6Cjb819OZW7aejW9Dbrp7aks8PTV+e3e3Yin52upbONSeezE/lsczSfbdXTUcUafB3mElPKDjXy2dpsPls/mx8CUp/OZ8dea+azPz6bzvqlH6ezzVdPpXIHW4+ktwkAF8MaTwRxg6QjEfGCJNl+WNIeSX/bltkj6UsREZK+Z3uT7a2Srks8N42eJgAAAADVRFRfpCtsH2pb9i7a+jZJL7XdP1qsy2S6PffuYjjfPtubu/2a9DQBAAAAqCBWOhHEKxGxq8PjSw3JWPwDl8t0eu59kj5Z3P+kpE9L+t1ODaVoAgAAANCLjkq6tu3+NZJeTmZGlntuRBy/sNL25yV9s1tDGJ4HAAAAoLzQSofndfOEpO22r7c9Iuk2SfsXZfZLen8xi96Nkt6IiGOdnluc83TBeyU9060h9DQBAAAAqKbEREFlRcS87bslPSqpJmlfRDxr+8PF4/dLOiDpFklHJJ2T9IFOzy02/ce2d2qh7HtR0oe6tYWiCQAAAEAlazx7norpwA8sWnd/2+2QdFf2ucX6O8q2g6IJAAAAQDVrXDT1Cs5pAgAAAIAO6GkCAAAAUF5Iag1GTxNFEwAAAIAKVnydpr5B0QRgVRxsPbIm23336PvS2fGz16SzI5dPprONyXo+uzF/WJ0fX+q6e0tr1vPZqKWjaW7ms7VG/g/o8Pl8tn5mPp+dbqSztVen09nWi0fT2UdnH0pnAaBvUTQBAAAAQAcDUjQxEQQAAAAAdEBPEwAAAIDymAgCAAAAADoJKVrr3YiLgqIJAAAAQDWc0wQAAAAAoKcJAAAAQHmc0wQAAAAAXQzI8DyKJgAAAADVUDQBAAAAwHKCogkAesG3Zh9KZ28aujWdHXp5Ip0d27Ahn53anM42J0fT2dZILZ1VzflsVjP/R3ForpnO1qZn8204+Vo6GufOpbPNs2fT2YOtR9JZAMClg6IJAAAAQHkhqcV1mgAAAABgeQzPAwAAAIAOKJoAAAAAYDkxMNdpGlrvBgAAAABAL6OnCQAAAEB5IUUwEQQAAAAALG9AhudRNAEAAACoZkAmguCcJgAAAADogJ4mAAAAAOVFcHFbAOg3B1uPrHcTdNPQrens0IYN+Wytls7aTmezoszwi2YzHz13Lp3thf0LAFhkQIbnUTQBAAAAqCQGpKdpRec02d5t+znbR2zfs1qNAgAAANDrYqGnqerSRyoXTbZrku6VdLOkHZJut71jtRoGAAAAAL1gJcPzbpB0JCJekCTbD0vaI+lvV6NhAAAAAHpYaGCu07SS4XnbJL3Udv9ose6n2N5r+5DtQydPnlzBjwMAAADQU6JVfekjKymalpqe6WdKzYh4ICJ2RcSuqampFfw4AAAAAL0iJEUrKi/9ZCXD845Kurbt/jWSXl5ZcwAAAAD0hYi+6zGqaiU9TU9I2m77etsjkm6TtH91mgUAAAAAvaFyT1NEzNu+W9KjkmqS9kXEs6vWMgAAAAA9rd+G2VW1oovbRsQBSQdWqS0AAAAA+smADM9zXMQLS9k+KekfLtoPHGxXSHplvRuBNPZX/2Gf9R/2Wf9hn/UX9tfK/HxE9NWsabb/Qgv7vapXImL3arVnLV3UogkXj+1DEbFrvduBHPZX/2Gf9R/2Wf9hn/UX9hcuZSuZCAIAAAAALnkUTQAAAADQAUXTpeuB9W4ASmF/9R/2Wf9hn/Uf9ll/YX/hksU5TQAAAADQAT1NAAAAANABRRMAAAAAdEDRdAmxfavtZ223bO9a9Njv2z5i+znbv71ebcTPsr272C9HbN+z3u3Bz7K9z/YJ28+0rdti+6Dt54t/N69nG/ETtq+1/W3bh4tj4keK9eyzHmV7zPZf2/6bYp/9UbGefdbDbNds/x/b3yzus79wyaJourQ8I+lfSfpO+0rbOyTdJulXJe2W9F9s1y5+87BYsR/ulXSzpB2Sbi/2F3rLF7Xw2Wl3j6THImK7pMeK++gN85I+FhG/IulGSXcVnyv2We+alfSbEfHrknZK2m37RrHPet1HJB1uu8/+wiWLoukSEhGHI+K5JR7aI+nhiJiNiL+XdETSDRe3dVjGDZKORMQLETEn6WEt7C/0kIj4jqRTi1bvkfRgcftBSe+5mG3C8iLiWER8v7h9Rgv/qdsm9lnPigXTxd16sYTYZz3L9jWS/oWkP29bzf7CJYuiaTBsk/RS2/2jxTqsP/ZN/7oqIo5JC/9Jl3TlOrcHS7B9naS3Snpc7LOeVgz1ekrSCUkHI4J91tv+VNJ/kNRqW8f+wiVreL0bgHJs/09JVy/x0B9ExDeWe9oS65hrvjewb4A1YntS0lclfTQiTttLfdzQKyKiKWmn7U2Svm7719a5SViG7d+RdCIinrT9znVuDnBRUDT1mYj4rQpPOyrp2rb710h6eXVahBVi3/Sv47a3RsQx21u18O04eoTtuhYKpoci4mvFavZZH4iI123/pRbOI2Sf9aZ3SPqXtm+RNCbpMtv/VewvXMIYnjcY9ku6zfao7eslbZf01+vcJix4QtJ229fbHtHChB3717lNyNkv6c7i9p2SluvpxUXmhS6lL0g6HBGfaXuIfdajbE8VPUyyPS7ptyT9ndhnPSkifj8iromI67Twd+t/RcS/EfsLlzBHMBLoUmH7vZL+s6QpSa9Leioifrt47A8k/a4WZpX6aET8j/VqJ35a8U3dn0qqSdoXEf9pfVuExWx/WdI7JV0h6bikP5T03yV9RdKbJf1Q0q0RsXiyCKwD2/9M0v+W9AP95HyLj2vhvCb2WQ+y/U+0MHFATQtf6H4lIv6j7cvFPutpxfC8fx8Rv8P+wqWMogkAAAAAOmB4HgAAAAB0QNEEAAAAAB1QNAEAAABABxRNAAAAANABRRMAAAAAdEDRBAAAAAAdUDQBAAAAQAf/H4PTlos+eCz9AAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1152x432 with 2 Axes>" ] @@ -462,7 +462,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.8.2 ('walberla_dev')", "language": "python", "name": "python3" }, @@ -477,6 +477,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" + }, + "vscode": { + "interpreter": { + "hash": "16c4475f8761a33edafce150242b66df5b4abe8839febe0da1ac663b672fe94f" + } } }, "nbformat": 4, diff --git a/lbmpy_tests/test_central_moment.py b/lbmpy_tests/test_central_moment.py index 17b16f426ccd9fe788a9670c9a5fbbaf27dc7d2c..ba727632968931ba85acc51c9bb3f9d038753bcb 100644 --- a/lbmpy_tests/test_central_moment.py +++ b/lbmpy_tests/test_central_moment.py @@ -10,7 +10,7 @@ from lbmpy.methods.creationfunctions import cascaded_moment_sets_literature from lbmpy.scenarios import create_lid_driven_cavity from lbmpy.stencils import LBStencil -from lbmpy.moment_transforms import PdfsToCentralMomentsByShiftMatrix +from lbmpy.moment_transforms import BinomialChimeraTransform def test_central_moment_ldc(): @@ -50,7 +50,7 @@ def test_central_moment_class(): default_moments = cascaded_moment_sets_literature(stencil) default_moments = [item for sublist in default_moments for item in sublist] - assert method.central_moment_transform_class == PdfsToCentralMomentsByShiftMatrix + assert method.central_moment_transform_class == BinomialChimeraTransform assert method.conserved_quantity_computation.density_symbol == rho assert method.conserved_quantity_computation.velocity_symbols == u assert method.moment_equilibrium_values == eq diff --git a/lbmpy_tests/test_central_moment_transform.py b/lbmpy_tests/test_central_moment_transform.py index 8c84c54dbea6f48fad0373680fce440cbcf9063f..82e9299bd41fdd6fa824999a91dbcf2e12004d92 100644 --- a/lbmpy_tests/test_central_moment_transform.py +++ b/lbmpy_tests/test_central_moment_transform.py @@ -7,16 +7,18 @@ import pytest from lbmpy.enums import Stencil from lbmpy.stencils import LBStencil from lbmpy.moment_transforms import ( - PdfsToCentralMomentsByMatrix, FastCentralMomentTransform, PdfsToCentralMomentsByShiftMatrix) + PdfsToCentralMomentsByMatrix, FastCentralMomentTransform, + BinomialChimeraTransform, PdfsToCentralMomentsByShiftMatrix) -@pytest.mark.parametrize('cumulants', ['monomial', 'polynomial']) +@pytest.mark.parametrize('central_moments', ['monomial', 'polynomial']) @pytest.mark.parametrize('stencil', [Stencil.D2Q9, Stencil.D3Q15, Stencil.D3Q19, Stencil.D3Q27]) -def test_forward_transform(cumulants, stencil): +@pytest.mark.parametrize('transform_class', [BinomialChimeraTransform, FastCentralMomentTransform, PdfsToCentralMomentsByShiftMatrix]) +def test_forward_transform(central_moments, stencil, transform_class): stencil = LBStencil(stencil) - if cumulants == 'monomial': + if central_moments == 'monomial': moment_polynomials = get_default_moment_set_for_stencil(stencil) - elif cumulants == 'polynomial': + elif central_moments == 'polynomial': moment_polynomials = [item for sublist in cascaded_moment_sets_literature(stencil) for item in sublist] pdfs = sp.symbols(f"f_:{stencil.Q}") @@ -24,44 +26,36 @@ def test_forward_transform(cumulants, stencil): u = sp.symbols(f"u_:{stencil.D}") matrix_transform = PdfsToCentralMomentsByMatrix(stencil, moment_polynomials, rho, u) - fast_transform = FastCentralMomentTransform(stencil, moment_polynomials, rho, u) - shift_transform = PdfsToCentralMomentsByShiftMatrix(stencil, moment_polynomials, rho, u) - - assert shift_transform.moment_exponents == fast_transform.moment_exponents - - if cumulants == 'monomial' and not have_same_entries(stencil, LBStencil(Stencil.D3Q15)): - assert fast_transform.mono_to_poly_matrix == sp.eye(stencil.Q) - assert shift_transform.mono_to_poly_matrix == sp.eye(stencil.Q) + test_transform = transform_class(stencil, moment_polynomials, rho, u) + + if central_moments == 'monomial' and not have_same_entries(stencil, LBStencil(Stencil.D3Q15)): + assert test_transform.mono_to_poly_matrix == sp.eye(stencil.Q) else: - assert not fast_transform.mono_to_poly_matrix == sp.eye(stencil.Q) - assert not shift_transform.mono_to_poly_matrix == sp.eye(stencil.Q) + assert not test_transform.mono_to_poly_matrix == sp.eye(stencil.Q) f_to_k_matrix = matrix_transform.forward_transform(pdfs) f_to_k_matrix = f_to_k_matrix.new_without_subexpressions().main_assignments_dict - f_to_k_fast = fast_transform.forward_transform(pdfs) - f_to_k_fast = f_to_k_fast.new_without_subexpressions().main_assignments_dict - - f_to_k_shift = shift_transform.forward_transform(pdfs, simplification=False) - f_to_k_shift = f_to_k_shift.new_without_subexpressions().main_assignments_dict + f_to_k_test = test_transform.forward_transform(pdfs) + f_to_k_test = f_to_k_test.new_without_subexpressions().main_assignments_dict cm_symbols = matrix_transform.pre_collision_symbols for moment_symbol in cm_symbols: rhs_matrix = f_to_k_matrix[moment_symbol].expand() - rhs_fast = f_to_k_fast[moment_symbol].expand() - rhs_shift = f_to_k_shift[moment_symbol].expand() - assert (rhs_matrix - rhs_fast) == 0, f"Mismatch between matrix and fast transform at {moment_symbol}." - assert (rhs_matrix - rhs_shift) == 0, f"Mismatch between matrix and shift-matrix transform at {moment_symbol}." + rhs_test = f_to_k_test[moment_symbol].expand() + assert (rhs_matrix - rhs_test) == 0, \ + f"Mismatch between matrix transform and {transform_class.__name__} at {moment_symbol}." -@pytest.mark.parametrize('cumulants', ['monomial', 'polynomial']) +@pytest.mark.parametrize('central_moments', ['monomial', 'polynomial']) @pytest.mark.parametrize('stencil', [Stencil.D2Q9, Stencil.D3Q15, Stencil.D3Q19, Stencil.D3Q27]) -def test_backward_transform(cumulants, stencil): +@pytest.mark.parametrize('transform_class', [BinomialChimeraTransform, FastCentralMomentTransform, PdfsToCentralMomentsByShiftMatrix]) +def test_backward_transform(central_moments, stencil, transform_class): stencil = LBStencil(stencil) - if cumulants == 'monomial': + if central_moments == 'monomial': moment_polynomials = get_default_moment_set_for_stencil(stencil) - elif cumulants == 'polynomial': + elif central_moments == 'polynomial': moment_polynomials = [item for sublist in cascaded_moment_sets_literature(stencil) for item in sublist] pdfs = sp.symbols(f"f_:{stencil.Q}") @@ -69,23 +63,16 @@ def test_backward_transform(cumulants, stencil): u = sp.symbols(f"u_:{stencil.D}") matrix_transform = PdfsToCentralMomentsByMatrix(stencil, moment_polynomials, rho, u) - fast_transform = FastCentralMomentTransform(stencil, moment_polynomials, rho, u) - shift_transform = PdfsToCentralMomentsByShiftMatrix(stencil, moment_polynomials, rho, u) - - assert shift_transform.moment_exponents == fast_transform.moment_exponents + test_transform = transform_class(stencil, moment_polynomials, rho, u) k_to_f_matrix = matrix_transform.backward_transform(pdfs) k_to_f_matrix = k_to_f_matrix.new_without_subexpressions().main_assignments_dict - k_to_f_fast = fast_transform.backward_transform(pdfs) - k_to_f_fast = k_to_f_fast.new_without_subexpressions().main_assignments_dict - - k_to_f_shift = shift_transform.backward_transform(pdfs) - k_to_f_shift = k_to_f_shift.new_without_subexpressions().main_assignments_dict + k_to_f_test = test_transform.backward_transform(pdfs) + k_to_f_test = k_to_f_test.new_without_subexpressions().main_assignments_dict for f in pdfs: rhs_matrix = k_to_f_matrix[f].expand() - rhs_fast = k_to_f_fast[f].expand() - rhs_shift = k_to_f_shift[f].expand() - assert (rhs_matrix - rhs_fast) == 0, f"Mismatch between matrix and fast transform at {f}." - assert (rhs_matrix - rhs_shift) == 0, f"Mismatch between matrix and shift-matrix transform at {f}." + rhs_test = k_to_f_test[f].expand() + assert (rhs_matrix - rhs_test) == 0, \ + f"Mismatch between matrix transform and {transform_class.__name__} at {f}." diff --git a/lbmpy_tests/test_conserved_quantity_relaxation_invariance.py b/lbmpy_tests/test_conserved_quantity_relaxation_invariance.py index 306e4b34263a09e1360d9b789ab3dae0ec07eee5..34559a9392d0808813a59a0096bc2146e5d29ff5 100644 --- a/lbmpy_tests/test_conserved_quantity_relaxation_invariance.py +++ b/lbmpy_tests/test_conserved_quantity_relaxation_invariance.py @@ -12,7 +12,7 @@ from lbmpy.enums import Stencil, Method from lbmpy.methods import create_srt, create_trt, create_trt_kbc, \ create_with_default_polynomial_cumulants from lbmpy.methods.momentbased.momentbasedmethod import MomentBasedLbMethod -from lbmpy.methods.centeredcumulant.centeredcumulantmethod import CenteredCumulantBasedLbMethod +from lbmpy.methods.cumulantbased import CumulantBasedLbMethod from lbmpy.moments import MOMENT_SYMBOLS from lbmpy.simplificationfactory import create_simplification_strategy from lbmpy.stencils import LBStencil @@ -29,8 +29,8 @@ def __change_relaxation_rate_of_conserved_moments(method, new_relaxation_rate=sp changed_method = MomentBasedLbMethod(method.stencil, method.equilibrium_distribution, rr_dict, method.conserved_quantity_computation, force_model=method.force_model) - elif isinstance(method, CenteredCumulantBasedLbMethod): - changed_method = CenteredCumulantBasedLbMethod(method.stencil, method.equilibrium_distribution, rr_dict, + elif isinstance(method, CumulantBasedLbMethod): + changed_method = CumulantBasedLbMethod(method.stencil, method.equilibrium_distribution, rr_dict, method.conserved_quantity_computation, force_model=method.force_model, zero_centered=True) diff --git a/lbmpy_tests/test_cumulant_transform.py b/lbmpy_tests/test_cumulant_transform.py new file mode 100644 index 0000000000000000000000000000000000000000..89c905e5ef906793a4b52bf73fa8574e7ce1f1da --- /dev/null +++ b/lbmpy_tests/test_cumulant_transform.py @@ -0,0 +1,32 @@ +import pytest +from itertools import chain +import sympy as sp + +from pystencils import AssignmentCollection + +from lbmpy.moment_transforms import ( + CentralMomentsToCumulantsByGeneratingFunc, PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT, + PRE_COLLISION_CUMULANT, PRE_COLLISION_MONOMIAL_CUMULANT +) +from lbmpy.methods import cascaded_moment_sets_literature +from lbmpy.stencils import Stencil, LBStencil + +@pytest.mark.parametrize("stencil", [Stencil.D2Q9, Stencil.D3Q19]) +def test_identity(stencil): + stencil = LBStencil(stencil) + polys = list(chain.from_iterable(cascaded_moment_sets_literature(stencil))) + rho = sp.Symbol('rho') + u = sp.symbols('u_:2') + transform = CentralMomentsToCumulantsByGeneratingFunc(stencil, polys, rho, u, + post_collision_symbol_base=PRE_COLLISION_CUMULANT) + + forward_eqs = transform.forward_transform() + backward_eqs = transform.backward_transform(central_moment_base=PRE_COLLISION_MONOMIAL_CENTRAL_MOMENT) + + subexpressions = forward_eqs.all_assignments + backward_eqs.subexpressions + main_assignments = backward_eqs.main_assignments + ac = AssignmentCollection(main_assignments, subexpressions=subexpressions) + ac = ac.new_without_subexpressions() + + for lhs, rhs in ac.main_assignments_dict.items(): + assert (lhs - rhs).expand() == 0 diff --git a/lbmpy_tests/test_force.py b/lbmpy_tests/test_force.py index 32e7a9ee2fbecfc97108fdeb3ba5a06f83fdd71e..be0e953f22b7b221bc4fbeb0bf4bcafd2fab7351 100644 --- a/lbmpy_tests/test_force.py +++ b/lbmpy_tests/test_force.py @@ -9,19 +9,24 @@ from pystencils import Target from lbmpy.creationfunctions import create_lb_method, create_lb_update_rule, LBMConfig, LBMOptimisation from lbmpy.enums import Stencil, Method, ForceModel from lbmpy.macroscopic_value_kernels import macroscopic_values_setter, macroscopic_values_getter -from lbmpy.moments import is_bulk_moment +from lbmpy.moments import (is_bulk_moment, moments_up_to_component_order, + exponents_to_polynomial_representations, exponent_tuple_sort_key) from lbmpy.stencils import LBStencil from lbmpy.updatekernels import create_stream_pull_with_output_kernel # all force models available are defined in the ForceModel enum, but Cumulant is not a "real" force model -force_models = [f for f in ForceModel if f is not ForceModel.CUMULANT] +force_models = [f for f in ForceModel] -@pytest.mark.parametrize("method_enum", [Method.SRT, Method.TRT, Method.MRT]) +@pytest.mark.parametrize("method_enum", [Method.SRT, Method.TRT, Method.MRT, Method.CUMULANT]) @pytest.mark.parametrize("zero_centered", [False, True]) @pytest.mark.parametrize("force_model", force_models) @pytest.mark.parametrize("omega", [0.5, 1.5]) def test_total_momentum(method_enum, zero_centered, force_model, omega): + if method_enum == Method.CUMULANT and \ + force_model not in (ForceModel.SIMPLE, ForceModel.LUO, ForceModel.GUO, ForceModel.HE): + return True + L = (16, 16) stencil = LBStencil(Stencil.D2Q9) F = (2e-4, -3e-4) @@ -279,7 +284,7 @@ def test_modes_central_moment(force_model, compressible): method = create_lb_method(lbm_config=lbm_config) subs_dict = method.subs_dict_relxation_rate - force_moments = method.force_model.moment_space_forcing(method) + force_moments = method.force_model.central_moment_space_forcing(method) force_moments = force_moments.subs(subs_dict) # The mass mode should be zero @@ -289,6 +294,34 @@ def test_modes_central_moment(force_model, compressible): assert list(force_moments[1:stencil.D + 1]) == F +@pytest.mark.parametrize("force_model", force_models) +@pytest.mark.parametrize("compressible", [True, False]) +def test_symmetric_forcing_equivalence(force_model, compressible): + stencil = LBStencil(Stencil.D2Q9) + omega_s = sp.Symbol("omega_s") + F = list(sp.symbols(f"F_:{stencil.D}")) + + moments = moments_up_to_component_order(2, dim=2) + moments = sorted(moments, key=exponent_tuple_sort_key) + moment_polys = exponents_to_polynomial_representations(moments) + + lbm_config = LBMConfig(method=Method.CENTRAL_MOMENT, stencil=stencil, relaxation_rate=omega_s, + nested_moments=moment_polys, compressible=True, force_model=force_model, force=tuple(F)) + method = create_lb_method(lbm_config=lbm_config) + if not method.force_model.has_symmetric_central_moment_forcing: + return True + + subs_dict = method.subs_dict_relxation_rate + force_moments = method.force_model.central_moment_space_forcing(method) + force_moments = force_moments.subs(subs_dict) + + force_before, force_after = method.force_model.symmetric_central_moment_forcing(method, moments) + d = method.relaxation_matrix + eye = sp.eye(stencil.Q) + force_combined = (eye - d) @ force_before + force_after + assert (force_moments - force_combined).expand() == sp.Matrix([0] * stencil.Q) + + @pytest.mark.parametrize("stencil", [Stencil.D3Q15, Stencil.D3Q19, Stencil.D3Q27]) @pytest.mark.parametrize("force_model", force_models) @pytest.mark.parametrize("compressible", [True, False]) @@ -380,7 +413,8 @@ def _check_modes(stencil, force_model, compressible): - (2 + lambda_b) * sp.Matrix(u).dot(F)) == 0 # All other moments should be zero - assert list(force_moments[stencil.D + 1 + num_stresses:]) == [0] * (len(stencil) - (stencil.D + 1 + num_stresses)) + assert list(force_moments[stencil.D + 1 + num_stresses:]) == [0] * \ + (len(stencil) - (stencil.D + 1 + num_stresses)) elif force_model == ForceModel.SIMPLE: # All other moments should be zero assert list(force_moments[stencil.D + 1:]) == [0] * (len(stencil) - (stencil.D + 1))