diff --git a/generate_all_operators.py b/generate_all_operators.py
index 282f968421204f8f540bd6040003dc56603159ec..50a66bcd0e613cad016ff67423ef3ebfba7e3e31 100644
--- a/generate_all_operators.py
+++ b/generate_all_operators.py
@@ -619,7 +619,7 @@ def all_operators(
                             type_descriptor=type_descriptor, geometries=list(geometries), opts=opts, blending=blending))
     ops.append(OperatorInfo("P1", "NonlinearDiffusionNewtonGalerkin", TrialSpace(P1),
                             TestSpace(P1), form=partial(nonlinear_diffusion_newton_galerkin,
-                            coefficient_function_space=P1, onlyNewtonGalerkinPartOfForm=False),
+                            coefficient_function_space=P1, only_newton_galerkin_part_of_form=False),
                             type_descriptor=type_descriptor, geometries=list(geometries), opts=opts, blending=blending))
 
     ops.append(OperatorInfo("P1Vector", "Diffusion", TrialSpace(P1Vector), TestSpace(P1Vector),
diff --git a/hog/forms.py b/hog/forms.py
index b959b215a52d2f2f5c48f1d5806e1f221a64510f..b3f87b4d9d92f2f43a7797b67904bd7339af486c 100644
--- a/hog/forms.py
+++ b/hog/forms.py
@@ -212,7 +212,7 @@ Note: :math:`a(c) = 1/8 + u^2` is currently hard-coded and the form is intended
         tabulate,
         **_,
     ):
-        a = sp.Matrix([sp.Rational(1, 8)]) + k[0] * k[0]
+        a = sp.Rational(1, 8) + k["u"] * k["u"]
         return a * tabulate(
             double_contraction(
                 jac_a_inv.T * grad_u,
@@ -279,8 +279,8 @@ Note: :math:`a(k) = 1/8 + k^2` is currently hard-coded and the form is intended
         tabulate,
         **_,
     ):
-        a = sp.Matrix([sp.Rational(1, 8)]) + k[0] * k[0]
-        a_prime = 2 * k[0]
+        a = sp.Rational(1, 8) + k["k"] * k["k"]
+        a_prime = 2 * k["k"]
 
         diffusion_term = a * tabulate(
             dot(jac_a_inv.T * grad_u, jac_a_inv.T * grad_v) * jac_a_abs_det
@@ -289,7 +289,7 @@ Note: :math:`a(k) = 1/8 + k^2` is currently hard-coded and the form is intended
         newton_galerkin_term = (
             a_prime
             * u
-            * dot(jac_a_inv.T * grad_k, tabulate(jac_a_inv.T * grad_v))
+            * dot(jac_a_inv.T * grad_k["k"], tabulate(jac_a_inv.T * grad_v))
             * tabulate(jac_a_abs_det)
         )