diff --git a/doc/notebooks/08_tutorial_shanchen_twophase.ipynb b/doc/notebooks/08_tutorial_shanchen_twophase.ipynb
index 74e5605cd0d4d66cffb87e9cd0a52745373a0899..2a7351cd542b0ffa520b0aa2d700881d321dba41 100644
--- a/doc/notebooks/08_tutorial_shanchen_twophase.ipynb
+++ b/doc/notebooks/08_tutorial_shanchen_twophase.ipynb
@@ -62,11 +62,9 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "dim = len(stencil[0])\n",
+    "dh = ps.create_data_handling((N,) * stencil.D, periodicity=True, default_target=ps.Target.CPU)\n",
     "\n",
-    "dh = ps.create_data_handling((N,)*dim, periodicity=True, default_target=ps.Target.CPU)\n",
-    "\n",
-    "src = dh.add_array('src', values_per_cell=len(stencil))\n",
+    "src = dh.add_array('src', values_per_cell=stencil.Q)\n",
     "dst = dh.add_array_like('dst', 'src')\n",
     "\n",
     "ρ = dh.add_array('rho')"
@@ -105,7 +103,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "zero_vec = sp.Matrix([0] * dh.dim) \n",
+    "zero_vec = sp.Matrix([0] * stencil.D) \n",
     "\n",
     "force = sum((psi(ρ[d]) * w_d * sp.Matrix(d)\n",
     "            for d, w_d in zip(stencil, weights)), zero_vec) * psi(ρ.center) * -1 * g_aa"
@@ -133,11 +131,10 @@
     "stream = create_stream_pull_with_output_kernel(collision.method, src, dst, {'density': ρ})\n",
     "\n",
     "\n",
-    "opts = {'cpu_openmp': False, \n",
-    "        'target': dh.default_target}\n",
+    "config = ps.CreateKernelConfig(target=dh.default_target, cpu_openmp=False)\n",
     "\n",
-    "stream_kernel = ps.create_kernel(stream, **opts).compile()\n",
-    "collision_kernel = ps.create_kernel(collision, **opts).compile()"
+    "stream_kernel = ps.create_kernel(stream, config=config).compile()\n",
+    "collision_kernel = ps.create_kernel(collision, config=config).compile()"
    ]
   },
   {
@@ -158,7 +155,7 @@
     "                                             pdfs=src.center_vector, density=ρ.center)\n",
     "\n",
     "\n",
-    "init_kernel = ps.create_kernel(init_assignments, ghost_layers=0).compile()"
+    "init_kernel = ps.create_kernel(init_assignments, ghost_layers=0, config=config).compile()"
    ]
   },
   {
@@ -235,7 +232,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAACQcAAAQKCAYAAAD3zl6bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AAB210lEQVR4nOzdfbStV10f+u/vZBNAQKUgBhIUBGySSi0KXKzKqa9FxQhcteJLTQEBe29upR0CFXpFtPdWpePipVaxUqJelaqAiRa0WOUUqWjoUGsbIopQE8I7oryEBPb63T/2c5rl8eyzTvbZa6/1zPP5jPGMPZ/1zDWf797BMAZ+x5zV3QEAAAAAAAAAAMZzbNMBAAAAAAAAAACA9VAOAgAAAAAAAACAQSkHAQAAAAAAAADAoJSDAAAAAAAAAABgUMpBAAAAAAAAAAAwKOUgAAAAAAAAAAAYlHIQAAAAAAAAAAAMSjkIAAAAAAAAAAAGpRwEAAAAAAAAAACDUg4CAAAAAAAAAIBBKQcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADAo5SAAAAAAAAAAABiUchAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAINSDgIAAAAAAAAAgEEpBwEAAAAAAAAAwKCUgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjlIAAAAAAAAAAAGJRyEAAAAAAAAAAADEo5CAAAAAAAAAAABqUcBAAAAGyFqrp7VT2nqn6rqt5dVbdO19uq6iVV9Tc2nREAAAAA5qa6e9MZAAAAgPNcVX1Fkn+T5OIzTPtokm/p7l84mlQAAAAAMH/KQQAAAMBGVdXzknz30kd/lOS6JLcm+ZtJPnfp2UeSfE53/+GRBQQAAACAGVMOAgAAADamqv7PJN8z3d6U5Nu6+1dOmfPYJL+Q5M7TR1d39z84upQAAAAAMF/KQQAAAMBGVNUXJ/m1JJXkT5P87e5++z5z/1mS50+3H0zyyd29OJKgAAAAADBjykEAAADAkauqC5Jcn+Qzk3T2ikFvOMP8S5LcuPTRpY4WAwAAAIDVjm06AAAAAHBe+vrsFYOS5N+dqRiUJN19U5K/WProk9YVDAAAAABGohwEAAAAbMI/WBr/8Fl+52NLY1shAwAAAMBZcKwYAAAAcKSq6h5J/izJBUnem+Q+veJ/oKiqnSS3JNmZPrpvd79zrUEBAAAAYAB2DgIAAACO2t/OXjEoSX5zVTFo8uDcXgz6YJJ3rSMYAAAAAIxGOQgAAAA4av/L0vhNZ/mdL1wa/6ezLBQBAAAAwHlPOQgAAAA4ag9bGr/7LL/z+KXxrx5iFgAAAAAYmnIQAAAAcNSWy0F3WjW5qh6c5O9Otx9N8tPrCAUAAAAAI1IOAgAAAI5MVf21JJ++9NHlZ/G1f5nb/zeMl3b3+w89GAAAAAAMSjkIAAAAOEoPO+X+8VV1z/0mV9Wzk1wx3b4/yT9bVzAAAAAAGJFyEAAAAHCUlstBtyX5pCQvq6pPXp5UVZ9UVT+c5P+ePtpN8i3d/b4jSQkAAAAAg9jZdAAAAADgvLJcDnpOkn+R5MuT/I+q+o9J3pvkkiTHk3zCNG83ydO7+1VHGRQAAAAARlDdvekMAAAAwHmiqq5Pctl0e//sHRn2ouy/u/FNSb6tu3/lCOIBAAAAwHCUgwAAAIAjUVWfkOQvklyQ5P3dfa/p889P8o+SPDLJfZP8eZLrk7w8yUu6+yObSQwAAAAA8+dYMQAAAOCofHb2ikFJ8vsnP+zu1yd5/UYSAQAAAMDg9tuyGwAAAOCwPWxp/HubCgEAAAAA5xPlIAAAAOCoLJeDfn/fWQAAAADAoVEOAgAAAI6KchAAAAAAHLHq7k1nAAAAAAZXVTtJPpTkzkk+luTu3X3bZlMBAAAAwPjsHAQAAAAchcuzVwxKkhsUgwAAAADgaCgHAQAAAEfBkWIAAAAAsAGOFQMAAAAAAAAA4LxQVZ+T5DFJvjDJZyW5T5KPJbk5yX9O8pLuft0hvOd5Sb77LKd/UXe/9lzfuZ+ddS0MAAAAAAAAAADboqpOJHn0aR5dmOQh0/WtVfVTSZ7S3bcdZb51UQ4CAAAAAAAAAOB8cPH08+YkP5/kdUn+NMkFST4vyT+Z5nxL9jo133hI733oiudvPaT3nJZjxQAAAAAAAAAAGF5V/XKSn0zy8u7ePc3zeyd5fZLPnD569EGPGFs+Vqy760CBD8mxTb4cAAAAAAAAAACOQnc/trt/7nTFoOn5e7O3e9BJX3s0ydZLOQgAAAAAAAAAAPa8dmn8oE2FOEzKQQAAAAAAAAAAsOfCpfFiYykOkXIQAAAAAAAAAADsOb40vuEwFqyq11TV+6rqtqp6d1W9tqqeXVX3PIz1V76/u4/iPbNWVXdO8tDp9j1JTnv2HAAAAAAAAABsuQuSfMo0/oPuvnWTYVivqtpJctGmcxzQRTmLjkZ333RYL6yqY0l+K8kjp48e0d1vPOBaz0vy3SumfSDJld19zUHecbZ21rn4QB6a5LpNhwAAAAAAAACAQ/SIJAcqPjAbFyW5cdMh1qwOca1n5PZi0CsPWgxa8gdJfjHJ7yS5Ocmdkvz1JN+U5MuTfHKSl1fVV3f3q8/xXfuyc9BZqKqHRzkIAAAAAAAAgLEceFcU5qGqLsng5aDuPpRyUFUdT/Jr2dto591J/mZ3v+sc1vvk7v7AGZ4/LcmPTrc3J3lwd99y0PediZ2Dzs57Tg5+53d+J/e97303mQUAGNQ3/63v2nQEAAAAtsj/93v/16YjAAADesc73pFHPvLkxii3///CGd8bXn3/3Pc+F2w6xkrvePduHvUV/7PP9Igk71z3O6vqbyR5ZfZ6NLcm+fpzKQYlyZmKQdPzF0+b1Twlyf2SPCHJT5/LO/ejHHR2/uf5dfe9731zySWXbDILADCou1xw901HAAAAYIv436IBgCOwu3oKo7jvfS7IJfe706Zj3FHv7O6b1vmCqnpgkv+Q5J7Z+7+JJ3b3iXW+c8mLs1cOSpLjUQ4CAAAAAAAAAOAgFukssth0jJUW6SN7V1XdL3tHid0vSSd5Une/8sgCJNcvjS9e10uOrWthAAAAAAAAAADYRlV17ySvSfIZ00dXdfdPHnWMo3iJchAAAAAAAAAAAOeNqvqkJL+a5PLpo2d39w9vIMrlS+Ob1/US5SAAAAAAAAAAAM4LVfUJSf59ks+ZPvrn3f39G4rztKXxiXW9ZGddCwMAAAAAAAAAsB12e5HdXmw6xkrrzFhVFyZ5ZZLPnz76oe5+7gHWuTLJS6fb7+nu553y/KFJbunuPz7DGk9L8uTp9p1TrrVQDgIAAAAAAAAA4Hzws0m+fBr/epKXVNVnnWH+bd395gO853OT/HhV/UaSVyf5gyTvy15P59Ik35zky6a5u0me1t0fPsB7zopyEAAAAAAAAAAA54MnLI2/OMl/XTH/fyR5wAHfdUGSL52u/bwvyZO7+9oDvuOsKAcBAAAAAAAAAAxukc4ivekYK80h41l4VfaODPu8JA9L8qlJ7pWkkrw/ye8n+ZUkV3f3X6w7jHIQAAAAAAAAAADD6+46pHWuTnL1GZ6/O8m/na6NO7bpAAAAAAAAAAAAwHooBwEAAAAAAAAAwKAcKwYAAAAAAAAAMLjOIossNh1jpZ5BxrmxcxAAAAAAAAAAAAxKOQgAAAAAAAAAAAblWDEAAAAAAAAAgMHtdme3e9MxVppDxrmxcxAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAIPa2XQAAAAAAAAAAADWa5HOIr3pGCvNIePc2DkIAAAAAAAAAAAGpRwEAAAAAAAAAACDcqwYAAAAAAAAAMDgFkl2Z3Bk12LTAQZk5yAAAAAAAAAAABiUchAAAAAAAAAAAAxKOQgAAAAAAAAAAAa1s+kAAAAAAAAAAACs1yKdRXrTMVaaQ8a5sXMQAAAAAAAAAAAMSjkIAAAAAAAAAAAG5VgxAAAAAAAAAIDB7XZnt7f/yK45ZJwbOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADConU0HAAAAAAAAAABgvRbTte3mkHFu7BwEAAAAAAAAAACDUg4CAAAAAAAAAIBBOVYMAAAAAAAAAGBwi3R205uOsdJiBhnn5sh2Dqqqe1fVM6vq9VX1zqq6tapurqrfrqofrKrPO4s1HlNVr6iqm6bv3zTdP+YofgcAAAAAAAAAAJiTI9k5qKq+LsmPJLnXKY/uO12PTPKQJI/b5/uV5EeTPPWURxcneXySx1fVjyV5enerkAEAAAAAAAAAQI6gHFRVfz/JS7O3S9G7s1cS+s0k709yUZIHJfnqJB87wzLfl9uLQb+b5AeSvGX67jOTPGx6/p4kzz30XwIAAAAAAAAAAGZoreWgqrosyY9lrxj0uiRf3d1/fpqpL6qqC/dZ48HZKwAlyRuTPLq7b5nur6uqa5OcSPLwJM+qqpd291sO8/cAAAAAAAAAAJiz3SS7MziLaXfTAQZ0bM3rvyjJnZO8N8kT9ikGJUm6+7Z9Hj0jt5eYrloqBp383keSXDXd7iT5jnMJDAAAAAAAAAAAo1hbOaiqLk3yJdPtv+ru9x5gjUryNdPtDd39htPNmz7/w+n2cdP3AAAAAAAAAADgvLbOnYO+bmn88ycHVXXPqnpIVd3rLNZ4YJKLp/GJFXNPPr8kyQPONiQAAAAAAAAAAIxqneWgR00//zzJm6rqm6rq95O8P8mbk7y3qv6kqr67qu6+zxqXLY1vWPG+5eeX7TsLAAAAAAAAAOA8s5jRxeHaWePal08/35bkRUn+t9PMeWCS5yX52qr6u9198ynP7780vmnF+27c53srVdUlK6ZcdEfWAwAAAAAAAACAbbDOctBfm35emuSzk3wgybOTvCLJXyR5aJLnJ/mKJJ+V5Oer6gu7e7kEdo+l8YdWvO/DS+P9diLaz42rpwAAAAAAAAAAwLyssxx0t+nnnZPsJvmK7n7D0vM3VtVjk/xy9gpCfzvJE5L8wtKcuyyNb1vxvluXxnc9UGIAAAAAAAAAgAEtUtlNbTrGSosZZJybdZaDPprbC0I/f0oxKEnS3Yuq+s7slYOS5In5y+Wgjy6NL1zxvjsvjW+5g1lXHUN2UZLr7uCaAAAAAAAAAACwUessB30wt5eDXr3fpO7+71X19iQXJ3nEadY4adVRYXdbGq86guzUDDed6XmVVhoAAAAAAAAAAPNzbI1r37g0PmP5ZmnufU75fPl7l6xYY3n3nxv3nQUAAAAAAAAAAOeJde4c9N9z+05AF6yYe/L5x0/5/Pql8aUr1lh+/qYVcwEAAAAAAAAAzhuL3ru23Rwyzs06dw76T0vjB62Y+xnTz7ef8vlbk9w8jY+vWOPRS2u8bVU4AAAAAAAAAAAY3TrLQdcm+dg0fsJ+k6rqeJJ7TbevW37W3Z3kmun20qp61D5rPCq37xx0zfQ9AAAAAAAAAAA4r62tHNTd70vy49Ptl1XVN5w6p6rukeSFSx+9+DRLvTC3Hzf2oqq66ylr3DXJi6bbj5+yHgAAAAAAAADAeW83NZuLw7XOnYOS5LuT/Ok0/qmqelFVfVFVfW5VXZnkd5L8ren5j3T3dacu0N1vTvKC6fbhSV5fVX+vqh5eVX8vyeunz5PkB7v7j9b0uwAAAAAAAAAAwKzsrHPx7n5PVT0me0eMPTjJ/z5dp/q3Sf7RGZZ6TpL7JHlSkocledlp5rwkyXPPKTAAAAAAAAAAAAxk3TsHpbvflL3dgb4zyW8neX+S25LclOTfJfni7n5yd3/sDGssuvvJSb4qyTVJbp7WuHm6/8rufkp3L9b5uwAAAAAAAAAAwJysdeegk7r7w9k7GuwFq+auWOdVSV51KKEAAAAAAAAAAM4Tu6nspjYdY6U5ZJybte8cBAAAAAAAAAAAbIZyEAAAAAAAAAAADOpIjhUDAAAAAAAAAGBzupNFb/+RXd2bTjAeOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADConU0HAAAAAAAAAABgvXZT2U1tOsZKc8g4N3YOAgAAAAAAAACAQSkHAQAAAAAAAADAoBwrBgAAAAAAAAAwuN0cy+4M9pCZQ8a58RcFAAAAAAAAAIBBKQcBAAAAAAAAAMCglIMAAAAAAAAAAGBQO5sOAAAAAAAAAADAenVXFl2bjrFSzyDj3Ng5CAAAAAAAAAAABqUcBAAAAAAAAAAAg3KsGAAAAAAAAADA4HZT2c32H9k1h4xzY+cgAAAAAAAAAAAYlHIQAAAAAAAAAAAMSjkIAAAAAAAAAAAGtbPpAAAAAAAAAAAArNduH8tub/8eMnPIODf+ogAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAABrdIZTGDPWQWqU1HGM72/1MHAAAAAAAAAAAORDkIAAAAAAAAAAAGpRwEAAAAAAAAAACD2tl0AAAAAAAAAAAA1muRym5q0zFWWswg49zYOQgAAAAAAAAAAAalHAQAAAAAAAAAAINSDgIAAAAAAAAAgEHtbDoAAAAAAAAAAADrtdvHstvbv4fMHDLOjb8oAAAAAAAAAAAMSjkIAAAAAAAAAAAG5VgxAAAAAAAAAIDBLVJZpDYdY6U5ZJwbOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADConU0HAAAAAAAAAABgvRY5lt0Z7CGzmEHGufEXBQAAAAAAAACAQSkHAQAAAAAAAADAoBwrBgAAAAAAAAAwuN0+lt3e/j1k5pBxbvxFAQAAAAAAAABgUMpBAAAAAAAAAAAwKOUgAAAAAAAAAAAY1M6mAwAAAAAAAAAAsF6LVBYz2ENmkdp0hOFs/z91AAAAAAAAAADgQJSDAAAAAAAAAABgUI4VAwAAAAAAAAAY3KIru739R3YtZpBxbuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQSkHAQAAAAAAAADAoHY2HQAAAAAAAAAAgPXazbHszmAPmTlknBt/UQAAAAAAAAAAGJRyEAAAAAAAAAAADMqxYgAAAAAAAAAAg1v0sSx6+/eQmUPGufEXBQAAAAAAAACAQSkHAQAAAAAAAADAoJSDAAAAAAAAAABgUDubDgAAAAAAAAAAwHrt5lh2Z7CHzBwyzo2/KAAAAAAAAAAADEo5CAAAAAAAAAAABuVYMQAAAAAAAACAwS2S7HZtOsZKi00HGJCdgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjlIAAAAAAAAAAAGNTOpgMAAAAAAAAAALBeixzLYgZ7yMwh49z4iwIAAAAAAAAAwKCUgwAAAAAAAAAAYFDKQQAAAAAAAAAAMKidTQcAAAAAAAAAAGC9dvtYdnv795CZQ8a58RcFAAAAAAAAAIBBKQcBAAAAAAAAAMCgHCsGAAAAAAAAADC4RSqL1KZjrDSHjHNj5yAAAAAAAAAAABiUchAAAAAAAAAAAAxKOQgAAAAAAAAAAAa1s+kAAAAAAAAAAACs16KPZbe3fw+ZxQwyzo2/KAAAAAAAAAAADEo5CAAAAAAAAAAABuVYMQAAAAAAAACAwe2msjuDPWR2U5uOMJzt/6cOAAAAAAAAAAAciHIQAAAAAAAAAAAMSjkIAAAAAAAAAAAGtbPpAAAAAAAAAAAArNeiK4uuTcdYaQ4Z58bOQQAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAABrfIsezOYA+ZxQwyzo2/KAAAAAAAAAAADEo5CAAAAAAAAAAABqUcBAAAAAAAAAAAg9rZdAAAAAAAAAAAANZr0cey6O3fQ2YOGefGXxQAAAAAAAAAAAalHAQAAAAAAAAAAINyrBgAAAAAAAAAwOB2U9lNbTrGSnPIODd2DgIAAAAAAAAAgEEpBwEAAAAAAAAAwKCUgwAAAAAAAAAAYFA7mw4AAAAAAAAAAMB6LfpYFr39e8jMIePc+IsCAAAAAAAAAMCglIMAAAAAAAAAAGBQjhUDAAAAAAAAABjcIsluatMxVlpsOsCA7BwEAAAAAAAAAACDUg4CAAAAAAAAAIBBKQcBAAAAAAAAAMCgdjYdAAAAAAAAAACA9Vr0sSx6+/eQmUPGufEXBQAAAAAAAACAQSkHAQAAAAAAAADAoBwrBgAAAAAAAAAwuN0+lt0ZHNk1h4xz4y8KAAAAAAAAAACDUg4CAAAAAAAAAOC8UFWfU1XfVVWvrqobq+rWqvpQVb25qq6uqi9cwzu/oap+tareUVUfraq3VdVPVdWjDvtdp+NYMQAAAAAAAAAAhldVJ5I8+jSPLkzykOn61qr6qSRP6e7bzvF9d0ny80kee8qjT5+ub6yq53X3957Le1ZRDgIAAAAAAAAAGFynskhtOsZKvd6MF08/b85eaed1Sf40yQVJPi/JP5nmfEv2OjXfeI7ve0luLwb9RpIfmt790CTfleRBSZ5fVe/o7h8/x3ftSzkIAAAAAAAAAIDzwQ3ZK+W8vLt3T3n2hmnHoNcn+cwkT6yqH+nu1x3kRVV1PLeXi34pyeOX3nldVV2b5L8k+bQkP1BVv9DdHzjIu1Y5to5FAQAAAAAAAABgm3T3Y7v7505TDDr5/L3Z2z3opK89h9c9c/q5m+QfnvrO6V3Pmm7vmeTJ5/CuM1IOAgAAAAAAAACAPa9dGj/oIAtU1d2TfMl0+5ruvmmfqa9I8hfT+AkHedfZcKwYAAAAAAAAAMDgdvtYdnv795DZgowXLo0XB1zjkUnuPI1P7Depu2+rqjck+fIkj6yqO3X3xw74zn1t/C8KAAAAAAAAAABb4vjS+IYDrnHZHVjj5POdJA854PvOyM5BAAAAAAAAAABso4uq6owTznBk1x1WVceSPHvpo5874FL3XxqvynfjKd+7/oDv3JdyEAAAAAAAAADA4BapLPrMRZttsMhfynjdWXzlMH+pZ2TvSLAkeWV3v/GA69xjafyhFXM/vDS++wHfd0ZrPVasqvosr9eexVqPqapXVNVNVXXr9PMVVfWYdf4OAAAAAAAAAACMraqOJ/kX0+27k3z7OSx3l6XxbSvm3ro0vus5vHNfW79zUO3tD/WjSZ56yqOLkzw+yeOr6seSPL27+6jzAQAAAAAAAACwFo9I8s51v6Sq/kaSV2avR3Nrkq/v7nedw5IfXRpfuGLunZfGt5zDO/d1VOWgH0nyr8/w/MNnePZ9ub0Y9LtJfiDJW5I8KMkzkzxsev6eJM8956QAAAAAAAAAAGyDd3b3Tet8QVU9MMl/SHLPJLtJntjdJ85x2Q8ujVcdFXa3pfGqI8gO5KjKQe/u7v92R79UVQ/OXgEoSd6Y5NHdfbIldV1VXZvkRJKHJ3lWVb20u99yKIkBAAAAAAAAAAaxm8pujm06xkq7qSN7V1XdL8mvJblfkk7ypO5+5SEsvVxouiR7nZf93H9pfOMhvPuv2PZ/6s/I7QWmq5aKQUmS7v5Ikqum250k33F00QAAAAAAAAAAmKOquneS1yT5jOmjq7r7Jw9p+euXxpeumHvy+ceT/PEhvf8v2dpyUFVVkq+Zbm/o7jecbt70+R9Ot4+bvgcAAAAAAAAAAH9FVX1Skl9Ncvn00bO7+4cP8RXXJbltGh8/Q44Lkzzq5He6+7b95p6LrS0HJXlgkoun8aqz3E4+vyTJA9YVCAAAAAAAAABgjrorixlc3evdE6aqPiHJv0/yOdNH/7y7v/8w39HdH0zyH6fbL62qS/aZ+oQknziND+M4s9M6qnLQ11XVH1bVLVX1war6o6r6iar6ojN857Kl8Q0r1l9+ftm+swAAAAAAAAAAOC9NO/W8MsnnTx/9UHc/9wDrXFlVPV3P22faC6afO0l+uKouOGWNeyc5WUr6QJIfv6M5ztbOuhY+xeWn3D94uv5+Vf1ikiu7+89PmXP/pfFNK9a/cZ/vnZUzNLROuuiOrgkAAAAAAAAAwFb52SRfPo1/PclLquqzzjD/tu5+80Fe1N2/XlUvS/INSa5I8pqqemGSm5M8NMlzknzaNP3Z3f1nB3nP2Vh3OegjSa7N3lZJNyT5UJJPyd55ak9Pcq8kj0tyTVV9WXd/bOm791gaf2jFez68NL77AXLeuHoKAAAAAAAAAAAz9oSl8Rcn+a8r5v+PJA84h/c9KXvHhn1lki+armWLJN/b3S8+h3estO5y0MXd/YHTfP6aqnpRklcneVj2ykLfnuT/XZpzl6XxbSvec+vS+K4HyAkAAAAAAAAAMKxFjmWRY5uOsdIcMp6t7r4lyVdV1TcmuTLJZyf55CTvSvK6JP+qu39r3TnWWg7apxh08tm7quprk7wpyYVJrspfLgd9dGl84YpX3XlpfMsdjJmsPorsoiTXHWBdAAAAAAAAAAC2QHfXIa1zdZKr78D8n0nyM4fx7oNY985BZ9Tdf1JVr0nyVUkeXFX36+6bp8cfXJq66qiwuy2NVx1BdrocN53pedWh/GcDAAAAAAAAAACO1EbLQZPrs1cOSpKLk5wsBy0Xdi5Zscbyzj83HlIuAAAAAAAAAIAh7HZl93A2zlmrOWScm204qG2/f6rXL40vXbHG8vM3nVscAAAAAAAAAAAYwzaUgy5fGt+8NH7r0v3xFWs8evr59iRvO5xYAAAAAAAAAAAwbxstB1XVZyT5sun2T7r77SefdXcnuWa6vbSqHrXPGo/K7TsHXTN9DwAAAAAAAAAAzntrKwdV1VdX1c4Znn9qkl9Icqfpox8+zbQXJvn4NH5RVd31lDXumuRF0+3Hp/kAAAAAAAAAACxZdM3m4nDtW945BC9KcqeqenmS38recV+3JLl3kr+T5OlJ7jXN/c2cphzU3W+uqhckeXaShyd5fVV9f5K3JHlQkmcledg0/Qe7+4/W9csAAAAAAAAAAMDcrLMclCT3S3LVdO3n5Ume0t237vP8OUnuk+RJ2SsCvew0c16S5LnnkBMAAAAAAAAAAIazznLQtyY5nuTzknxG9nYM+sQkH0pyY5L/nOQnuvu3zrRIdy+SPHnageipSR4xrfXeJNcleXF3v3pdvwQAAAAAAAAAwNx1H8uij206xko9g4xzs7ZyUHefSHLiENd7VZJXHdZ6AAAAAAAAAAAwOnUrAAAAAAAAAAAYlHIQAAAAAAAAAAAMam3HigEAAAAAAAAAsB12U9lNbTrGSnPIODd2DgIAAAAAAAAAgEEpBwEAAAAAAAAAwKAcKwYAAAAAAAAAMLhFJ4ve/iO7Fr3pBOOxcxAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAIPa2XQAAAAAAAAAAADWa9HHsujt30NmDhnnxl8UAAAAAAAAAAAGpRwEAAAAAAAAAACDcqwYAAAAAAAAAMDgOpVFatMxVuoZZJwbOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADConU0HAAAAAAAAAABgvXa7stu16RgrzSHj3Ng5CAAAAAAAAAAABqUcBAAAAAAAAAAAg1IOAgAAAAAAAACAQe1sOgAAAAAAAAAAAOu16GNZ9PbvITOHjHPjLwoAAAAAAAAAAINSDgIAAAAAAAAAgEE5VgwAAAAAAAAAYHCLVBZdm46x0iLbn3FulIMAAACArXLFiesP9L1rj19+yEkAAAAAYP4cKwYAAAAAAAAAAINSDgIAAAAAAAAAgEE5VgwAAAAAAAAAYHCdyiK16Rgr9Qwyzo2dgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjHigEAAAAAAAAADG7RyaK3/8iuRW86wXjsHAQAAAAAAAAAAINSDgIAAAAAAAAAgEEpBwEAAAAAAAAAwKB2Nh0AAAAAAAAAAID1WvSxLHr795CZQ8a58RcFAAAAAAAAAIBBKQcBAAAAAAAAAMCgHCsGAAAAAAAAADC4RVcWXZuOsdIcMs6NchAAAABswBUnrt90hOH4m+7v2uOXbzoCAAAAABviWDEAAAAAAAAAABiUchAAAAAAAAAAAAzKsWIAAAAAAAAAAINbpLJIbTrGSnPIODd2DgIAAAAAAAAAgEEpBwEAAAAAAAAAwKAcKwYAAAAAAAAAMLjuyqK3/8iunkHGubFzEAAAAAAAAAAADEo5CAAAAAAAAAAABqUcBAAAAAAAAAAAg9rZdAAAAAAAAAAAANZr0ZVF16ZjrDSHjHNj5yAAAAAAAAAAABiUchAAAAAAAAAAAAzKsWIAAAAAAAAAAINzrNj5SzkIAAAAklxx4vpNR4C1Oer/fF97/PIjfR8AAAAA+3OsGAAAAAAAAAAADEo5CAAAAAAAAAAABuVYMQAAAAAAAACAwS26sujadIyV5pBxbuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQTlWDAAAAAAAAABgcJ1kke0/sqs3HWBAdg4CAAAAAAAAAIBBKQcBAAAAAAAAAMCglIMAAAAAAAAAAGBQO5sOAAAAAAAAAADAei26sujadIyV5pBxbuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQSkHAQAAAAAAAADAoHY2HQAAAABO54oT1286AnBAm/i/32uPX37k7wQAAIA5WaSy6Np0jJUW2f6Mc2PnIAAAAAAAAAAAGJRyEAAAAAAAAAAADMqxYgAAAAAAAAAAg1v0TI4Vm0HGubFzEAAAAAAAAAAADEo5CAAAAAAAAAAABqUcBAAAAAAAAAAAg9rZdAAAAAAAAAAAANZr0ZVF16ZjrDSHjHNj5yAAAAAAAAAAABiUchAAAAAAAAAAAAzKsWIAAAAAAAAAAKPrSs/hyK45ZJwZOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADConU0HAAAAYFxXnLh+0xGA88RB/31z7fHLDzkJAAAAbKdFKovUpmOsNIeMc2PnIAAAAAAAAAAAGJRyEAAAAAAAAAAADMqxYgAAAAAAAAAAg1t0ZdHbf2TXHDLOjZ2DAAAAAAAAAABgUMpBAAAAAAAAAAAwKOUgAAAAAAAAAAAY1M6mAwAAAAAAAAAAsF7dle7adIyV5pBxbuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQTlWDAAAAAAAAABgcItOFjM4smvRm04wHjsHAQAAAAAAAADAoJSDAAAAAAAAAABgUMpBAAAAAAAAAAAwqJ1NBwAAAGD7XXHi+k1HAFiLg/777drjlx9yEgAAAFiv7kp3bTrGSnPIODd2DgIAAAAAAAAAgEEpBwEAAAAAAAAAwKAcKwYAAAAAAAAAMLjuymIGR3Y5Vuzw2TkIAAAAAAAAAAAGpRwEAAAAAAAAAACDUg4CAAAAAAAAAIBB7Ww6AAAAAAAAAAAA69VJujedYrUZRJwdOwcBAAAAAAAAAMCglIMAAAAAAAAAAGBQjhUDAAAAAAAAABjcIpVFatMxVppDxrmxcxAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAIPa2XQAAAAAjs4VJ67fdASAIRz036fXHr/8kJMAAADA2emudNemY6w0h4xzY+cgAAAAAAAAAAAYlHIQAAAAAAAAAAAMSjkIAAAAAAAAAAAGtbPpAAAAAAAAAAAArNeiK4uuTcdYaQ4Z58bOQQAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAABte9d227OWScGzsHAQAAAAAAAADAoJSDAAAAAAAAAABgUMpBAAAAAAAAAAAwqI2Ug6rqB6qql66/cxbfeUxVvaKqbqqqW6efr6iqx6w/MQAAAAAAAADAjHWlZ3Cla9N/qeEceTmoqj47yTPuwPyqqhcneXWSxye5OMmF08/HJ3l1Vb24qvynAwAAAAAAAAAAlhxpOaiqjiX5N0l2krz7LL/2fUmeOo1/N8kTkzxy+vm70+dPTfK9h5cUAAAAAAAAAADmb+eI3/d/JHlEkhuSvDLJPz3T5Kp6cJJnTrdvTPLo7r5lur+uqq5NciLJw5M8q6pe2t1vWUtyAAAAAAAAAICZ+p/Hdm25OWScmyPbOaiq7p/bd/f59iS3ncXXnpHbC0xXLRWDkiTd/ZEkV023O0m+49yTAgAAAAAAAADAGI7yWLF/neTuSX6iu1+7anJVVZKvmW5v6O43nG7e9PkfTrePm74HAAAAAAAAAADnvSMpB1XV1yd5bJL3J/nOs/zaA5NcPI1PrJh78vklSR5wR/MBAAAAAAAAAMCIdlZPOTdV9clJfmi6fVZ3v+csv3rZ0viGFXOXn1+W5K1n+Q4AAAAAAAAAgOEturLo7T+MaQ4Z52bt5aAkP5DkoiT/OclL7sD37r80vmnF3Bv3+d5ZqapLVky56I6uCQAAAAAAAAAAm7bWclBVfUGSpyT5eJKnd3ffga/fY2n8oRVzP7w0vvsdeMdJN66eAgAAAAAAAAAA87K2clBVXZjkx5JUkv+nu//gDi5xl6XxbSvm3ro0vusdfA8AAAAAAAAAwNC6965tN4eMc7POnYO+K8llSf40yfcc4PsfXRpfuGLunZfGtxzgXauOIrsoyXUHWBcAAAAAAAAAADZmLeWgqro0yT+dbq/q7g+faf4+Prg0XnVU2N2WxquOIPsruvumMz2vqju6JAAAAAAAAAAAbNy6dg56RvZ2+/mTJJ9QVd9wmjmftTT+4qq6aBr/0lQmWi7sXLLifcs7/9x4R8MCAAAAAAAAAMCI1lUOOnnM12ck+dmzmP/PlsYPTPLhJNcvfXbpiu8vP3/TWbwPAAAAAAAAAOC80Z10b//JSd2bTjCeY5sOcAZvTXLzND6+Yu6jp59vT/K2dQUCAAAAAAAAAIA5WUs5qLuv7O4605Xke5a+8kVLz942rdFJrpmeX1pVjzrdu6bPT+4cdM30PQAAAAAAAAAAOO9t885BSfLCJB+fxi+qqrsuP5zuXzTdfnyaDwAAAAAAAADAkk6lewZXtv/os7nZ2XSAM+nuN1fVC5I8O8nDk7y+qr4/yVuSPCjJs5I8bJr+g939R5tJCgAAcLSuOHH9piMAcAAH/ff3tccvP+QkAAAAwPliq8tBk+ckuU+SJ2WvCPSy08x5SZLnHmUoAAAAAAAAAADYdtt+rFi6e9HdT07yVUmuSXJzktumn9ck+crufkp3LzYYEwAAAAAAAAAAts7Gdg7q7ucled4dmP+qJK9aVx4AAAAAAAAAgFH1dG27OWScm63fOQgAAAAAAAAAADgY5SAAAAAAAAAAABjUxo4VAwAAAAAAAADgaHRXumvTMVaaQ8a5sXMQAAAAAAAAAAAMSjkIAAAAAAAAAAAGpRwEAAAAAAAAAACD2tl0AAAAAAAAAAAA1qyna9vNIePM2DkIAAAAAAAAAAAGpRwEAAAAAAAAAMB5oaruU1WPrarnV9Wrq+q9VdXTdfUhvud5S+uuuv7OYb33dBwrBgAAAAAAAAAwuq5016ZTrLb+jO9a9wu2jXIQAAAAAAAAAADnoxuTvCnJl6/5PQ9d8fyt63y5chAAAAAAAAAAAOeL5ye5Lsl13f2uqnpA1lzO6e7/ts71V1EOAgAAAAAAAADgvNDd373pDEdNOQgAAAAAAAAAYHDde9e2m0PGuTm26QAAAAAAAAAAAMB6KAcBAAAAAAAAAMCaVNVrqup9VXVbVb27ql5bVc+uqnsexfsdKwYAAAAAAAAAwDa6qKrOOKG7bzqiLOfiS5fGn5Lk+HQ9q6qu7O5r1vly5SAAAAAAAAAAgMF1V7rPXLTZBqdkvO4svrLNv9QfJPnFJL+T5OYkd0ry15N8U5IvT/LJSV5eVV/d3a9eVwjlIAAAAAAAAAAAOFwv7O7nnebz307yk1X1tCQ/muSCJD9eVQ/u7lvWEUQ5CAAAAAAAAACAbfSIJO/cdIiD6O4PrHj+4qp6eJKnJLlfkick+el1ZFEOAgAAAAAAAAAYXdfete3+csZ3dvdNm4pyBF6cvXJQkhzPmspBx9axKAAAAAAAAAAAcEbXL40vXtdLlIMAAAAAAAAAAODoHclWTspBAAAAAAAAAABw9C5fGt+8rpfsrGthAAAAVrvixPWrJwFw3jvof19ce/zy1ZMAAAA4L3TvXdtuDhkP0dOWxifW9RI7BwEAAAAAAAAAwFmqqiurqqfread5/tCqevCKNZ6W5MnT7TuTvPLwk+6xcxAAAAAAAAAAAOeFqvqCJMvFnXsvjR9cVVcuz+/uqw/wms9N8uNV9RtJXp3kD5K8L3s9nUuTfHOSL5vm7iZ5Wnd/+ADvOSvKQQAAAAAAAAAAo+vp2nbrz/iUJN+6z7PPn65lVx/wPRck+dLp2s/7kjy5u6894DvOinIQAAAAAAAAAAAcnldl78iwz0vysCSfmuReSSrJ+5P8fpJfSXJ1d//FusMoBwEAAAAAAAAAcF7o7iuTXHmOa1ydM+wo1N3vTvJvp2vjjm06AAAAAAAAAAAAsB52DgIAAAAAAAAAGFx3pbs2HWOlOWScGzsHAQAAAAAAAADAoJSDAAAAAAAAAABgUI4VAwAAAAAAAAA4H/SmA7AJdg4CAAAAAAAAAIBBKQcBAAAAAAAAAMCglIMAAAAAAAAAAGBQO5sOAAAAAAAAAADAenVXumvTMVaaQ8a5sXMQAAAAAAAAAAAMSjkIAAAAAAAAAAAG5VgxAAAAAAAAAIDR9XRtuzlknBk7BwEAAAAAAAAAwKCUgwAAAAAAAAAAYFDKQQAAAAAAAAAAMKidTQcAAAAAAAAAAGDdarq23RwyzoudgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjHigEAAAAAAAAAjK6na9vNIePM2DkIAAAAAAAAAAAGpRwEAAAAAAAAAACDUg4CAAAAAAAAAIBB7Ww6AAAAAAAAAAAAa9bTte3mkHFm7BwEAAAAAAAAAACDUg4CAAAAAAAAAIBBOVYMAAAAAAAAAGB0naRr0ylWc6zYobNzEAAAAAAAAAAADEo5CAAAAAAAAAAABqUcBAAAAAAAAAAAg9rZdAAAAAAAAAAAANare+/adnPIODd2DgIAAAAAAAAAgEEpBwEAAAAAAAAAwKCUgwAAAAAAAAAAYFA7mw4AAAAAAAAAAMCa9XRtuzlknBk7BwEAAAAAAAAAwKCUgwAAAAAAAAAAYFCOFQMAAAAAAAAAGF3X3rXt5pBxZuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQSkHAQAAAAAAAADAoHY2HQAAAAAAAAAAgPWqJNWbTrFabTrAgOwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQTlWDAAAAAAAAABgdD1d224OGWfGzkEAAAAAAAAAADAo5SAAAAAAAAAAABiUchAAAAAAAAAAAAxqZ9MBAAAAAAAAAABYs669a9vNIePM2DkIAAAAAAAAAAAGpRwEAAAAAAAAAACDcqwYAAAAAAAAAMDoerq23RwyzoydgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjlIAAAAAAAAAAAGNTOpgMAAAAAAAAAALBmPV3bbg4ZZ8bOQQAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAARudYsfOWnYMAAAAAAAAAAGBQykEAAAAAAAAAADAo5SAAAAAAAAAAABjUzqYDAAAAAAAAAACwZl1717abQ8aZsXMQAAAAAAAAAAAMSjkIAAAAAAAAAAAG5VgxAAAAAAAAAIDBVe9d224OGedGOQgAAOAQXHHi+k1HAIC/4qD//XTt8csPOQkAAACwKY4VAwAAAAAAAACAQSkHAQAAAAAAAADAoBwrBgAAAAAAAAAwup6ubTeHjDNj5yAAAAAAAAAAABiUchAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAINSDgIAAAAAAAAAgEEpBwEAAAAAAAAAwKB2Nh0AAAAAAAAAAID1qiTVm06xWm06wIDsHAQAAAAAAAAAAINSDgIAAAAAAAAAgEEpBwEAAAAAAAAAwKB2Nh0AAABgBNcev/xA37vixPWHnAQAbnfQ/34CAABgQF1717abQ8aZsXMQAAAAAAAAAAAMSjkIAAAAAAAAAAAG5VgxAAAAAAAAAIDR9XRtuzlknBk7BwEAAAAAAAAAwKCUgwAAAAAAAAAAYFDKQQAAAAAAAAAAMKidTQcAAAAAAAAAAGDNerq23RwyzoydgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjHigEAAAAAAAAADK5679p2c8g4N2vbOaiqPrGqvqGq/mVVnaiqP66qP6+q26rq3VX12qp6ZlXd6yzXe0xVvaKqbqqqW6efr6iqx6zrdwAAAAAAAAAAgDlb585Bj0zys/s8+5Qkx6frO6vqm7v7V083saoqyY8meeopjy5O8vgkj6+qH0vy9O7WHwMAAAAAAAAAgMm6jxW7MclvJPkv0/gd2dut6JIkX5vkCUnuneTaqnpEd//X06zxfbm9GPS7SX4gyVuSPCjJM5M8bHr+niTPXdtvAgAAAAAAAAAAM7POctBvdPenneH5z1XV45K8MsmFSb47yf+6PKGqHpy9AlCSvDHJo7v7lun+uqq6NsmJJA9P8qyqeml3v+UQfwcAAAAAAAAAgPnr6dp2c8g4M8fWtXB3757FnF9McsN0++jTTHlGbi8wXbVUDDr5/Y8kuWq63UnyHQfJCgAAAAAAAAAAI1pbOegO+PD08y7LH1ZVJfma6faG7n7D6b48ff6H0+3jpu8BAAAAAAAAAMB5b6PloKq6LMnfmm5vOOXxA5NcPI1PrFjq5PNLkjzgMLIBAAAAAAAAAAyjZ3RxqI68HFRVn1BVD6mqf5zkN5JcMD36oVOmXrY0PrU4dKrl55ftOwsAAAAAAAAAAM4jO0fxkqq6MslLzzDlBUl++pTP7r80vmnFK27c53tnpaouWTHloju6JgAAAAAAAAAAbNqRlIPO4PeSPL27f/s0z+6xNP7QinU+vDS++wFy3Lh6CgAAAAAAAAAAzMtRlYN+Mckbp/FdkzwoydcneXySn66q7+juXz7lO3dZGt+2Yv1bl8Z3PYecAAAAAAAAAADDqd67tt0cMs7NkZSDuvsDST6w9NF1SV5WVd+S5CeSXFNVT+7uq5fmfHRpfOGKV9x5aXzLASKuOorsouxlBgAAAAAAAACA2djosWLd/VNV9djs7SL0r6rqmu7+s+nxB5emrjoq7G5L41VHkJ0ux01nel5Vd3RJAAAAAAAAAADYuGObDpDkmunn3ZJ8xdLny4WdS1assbzzz42HEQoAAAAAAAAAYBhd87k4VNtQDnrP0vjTl8bXL40vXbHG8vM3nXMiAAAAAAAAAAAYwDaUgy5eGi8fCfbWJDdP4+Mr1nj09PPtSd52OLEAAAAAAAAAAGDetqEc9HVL4z84Oejuzu1Hjl1aVY863Zenz0/uHHTN9D0AAAAAAAAAADjvra0cVFVXVtVdVsx5RpKvnG7fluQ3T5nywiQfn8Yvqqq7nvL9uyZ50XT78Wk+AAAAAAAAAACn6hlcHLqdNa79vCT/sqpenr3Sz1uyd2zYPZI8NMk3Jfn8ae5tSb6tuz++vEB3v7mqXpDk2UkenuT1VfX901oPSvKsJA+bpv9gd//RGn8fAAAAAAAAAACYlXWWg5LkryX5tunaz01JntTdv7bP8+ckuU+SJ2WvCPSy08x5SZLnnkNOAAAAAAAAAAAYzjrLQV+S5EuTfFGSy5J8apJ7Jflokncl+b0kv5zk57r7I/st0t2LJE+ediB6apJHJLl3kvcmuS7Ji7v71ev7NQAAAAAAAAAA5q1679p2c8g4N2srB3X3W7J3/NeLD2m9VyV51WGsBQAAAAAAAAAA54Njmw4AAAAAAAAAAACsh3IQAAAAAAAAAAAMam3HigEAAAAAAAAAsCV6urbdHDLOjJ2DAAAAAAAAAABgUMpBAAAAAAAAAAAwKMeKAQAAAAAAAACMrpOaw5Fdc8g4M3YOAgAAAAAAAACAQSkHAQAAAAAAAADAoJSDAAAAAAAAAABgUDubDgAAAAAAAAAAwJr1dG27OWScGTsHAQAAAAAAAADAoJSDAAAAAAAAAABgUMpBAAAAAAAAAAAwqJ1NBwAAAAAAAAAAYM16urbdHDLOjJ2DAAAAAAAAAABgUMpBAAAAAAAAAAAwKMeKAQAAAAAAAAAMrnrv2nZzyDg3dg4CAAAAAAAAAIBBKQcBAAAAAAAAAMCglIMAAAAAAAAAAGBQykEAAAAAAAAAADAo5SAAAAAAAAAAABiUchAAAAAAAAAAAAxqZ9MBAAAAAAAAAABYs56ubTeHjDNj5yAAAAAAAAAAABiUchAAAAAAAAAAAAxKOQgAAAAAAAAAAAa1s+kAAAAAAAAAAACsV/Xete3mkHFu7BwEAAAAAAAAAACDUg4CAAAAAAAAAIBBOVYMAAAAAAAAAOB84Miu85KdgwAAAAAAAAAAYFDKQQAAAAAAAAAAMCjlIAAAAAAAAAAAGNTOpgMAAAAAAAAAALBmPV3bbg4ZZ8bOQQAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAABle9d227OWScG+UgAACADbr2+OUH+t4VJ64/5CQAbLOD/vcFAAAAgGPFAAAAAAAAAABgUMpBAAAAAAAAAAAwKMeKAQAAAAAAAACMrqdr280h48zYOQgAAAAAAAAAAAalHAQAAAAAAAAAAINyrBgAAAAAAAAAwOCq965tN4eMc2PnIAAAAAAAAAAAGJRyEAAAAAAAAAAADEo5CAAAAAAAAACA80JV3aeqHltVz6+qV1fVe6uqp+vqNb3zG6rqV6vqHVX10ap6W1X9VFU9ah3vO9XOUbwEAAAAAAAAAIAN6unaduvP+K61v2FSVXdJ8vNJHnvKo0+frm+squd19/euM4edgwAAAAAAAAAAOB/dmOQ/rHH9l+T2YtBvJHlckkcmeXKSt2Svt/P8qnrKGjPYOQgAAAAAAAAAgPPG85Ncl+S67n5XVT0gyVsP+yVVdTzJN063v5Tk8d29O91fV1XXJvkvST4tyQ9U1S909wcOO0di5yAAAAAAAAAAgPH1jK416u7v7u5f7u51Hy/2zOnnbpJ/uFQMOpnjvUmeNd3eM3u7Ca2FchAAAAAAAAAAABySqrp7ki+Zbl/T3TftM/UVSf5iGj9hXXmUgwAAAAAAAAAA4PA8Msmdp/GJ/SZ1921J3nDyO1V1p3WEUQ4CAAAAAAAAAIDDc9nS+IYVc08+30nykHWE2VnHogAAAAAAAAAAbI/qvWvbnZLxoqo64/wzHNm1SfdfGq/Kd+Mp37v+sMMoBwEAAAAAAAAAsI2uO4s5Z24PbcY9lsYfWjH3w0vju68hi2PFAAAAAAAAAADgEN1laXzbirm3Lo3vuoYsdg4CAAAAAAAAAGArPSLJOzcd4gA+ujS+cMXcOy+Nb1lDFuUgAAAAAAAAAIDh9XRtu7+c8Z3dfdOGkpyLDy6NVx0Vdrel8aojyA7EsWIAAAAAAAAAAHB4lgtNl6yYe/+l8Y1ryKIcBAAAAAAAAAAAh+j6pfGlK+aefP7xJH+8jjDKQQAAAAAAAAAA54OewTWG65LcNo2P7zepqi5M8qiT3+nu2/abey6UgwAAAAAAAAAA4JB09weT/Mfp9kurar+jxZ6Q5BOn8SvXlUc5CAAAAAAAAAAAzlJVXVlVPV3P22faC6afO0l+uKouOGWNeyf5/un2A0l+fB1ZTwYAAAAAAAAAAIDhVdUXJHnw0kf3Xho/uKquXJ7f3Vcf5D3d/etV9bIk35DkiiSvqaoXJrk5yUOTPCfJp03Tn93df3aQ95wN5SAAAIAZuvb45Qf63hUnrj/kJADcEQf99zcAAACcq+q9a9sdQcanJPnWfZ59/nQtu/oc3vWk7B0b9pVJvmi6li2SfG93v/gc3rGSY8UAAAAAAAAAAOCQdfct3f1VSb4pyWuSvDvJbUluTPIzSb6gu5+37hx2DgIAAAAAAAAA4LzQ3VcmufIc17g6d2BHoe7+meyVgTZCOQgAAAAAAAAAYHQ9XdtuDhlnxrFiAAAAAAAAAAAwKOUgAAAAAAAAAAAYlHIQAAAAAAAAAAAMamfTAQAAAAAAAAAAWK/qvWvbzSHj3Ng5CAAAAAAAAAAABqUcBAAAAAAAAAAAg3KsGAAAAAAAAADA6Hq6tt0cMs6MnYMAAAAAAAAAAGBQykEAAAAAAAAAADAo5SAAAAAAAAAAABjUzqYDAAAAAAAAAACwZj1d224OGWfGzkEAAAAAAAAAADAo5SAAAAAAAAAAABiUY8UAAAAAAAAAAAZX07Xt5pBxbuwcBAAAAAAAAAAAg1IOAgAAAAAAAACAQSkHAQAAAAAAAADAoHY2HQAAAAAAAAAAgDXr6dp2c8g4M3YOAgAAAAAAAACAQSkHAQAAAAAAAADAoBwrBgAAAAAAAAAwuk5qDkd2zSHjzNg5CAAAAAAAAAAABqUcBAAAAAAAAAAAg1IOAgAAAAAAAACAQe1sOgAAAABH59rjlx/oe1ecuP6QkwDM20H/fQoAAAAb09O17eaQcWbsHAQAAAAAAAAAAINSDgIAAAAAAAAAgEEpBwEAAAAAAAAAwKB2Nh0AAAAAAAAAAIAj0JsOwCbYOQgAAAAAAAAAAAalHAQAAAAAAAAAAINyrBgAAAAAAAAAwOCq965tN4eMc2PnIAAAAAAAAAAAGJRyEAAAAAAAAAAADEo5CAAAAAAAAAAABrWz6QAAAAAAAAAAAKxZT9e2m0PGmbFzEAAAAAAAAAAADEo5CAAAAAAAAAAABuVYMQAAAAAAAACAwVXvXdtuDhnnRjkIAACAla49fvmBvnfFiesPOQnA4Trov98AAAAA5sKxYgAAAAAAAAAAMCjlIAAAAAAAAAAAGJRjxQAAAAAAAAAARtfTte3mkHFm7BwEAAAAAAAAAACDUg4CAAAAAAAAAIBBOVYMAAAAAAAAAGBw1XvXtptDxrmxcxAAAAAAAAAAAAxKOQgAAAAAAAAAAAalHAQAAAAAAAAAAINaazmoqj6nqr6rql5dVTdW1a1V9aGqenNVXV1VX3gH13tMVb2iqm6a1rppun/Mun4HAAAAAAAAAIDZ6xldHKqddS1cVSeSPPo0jy5M8pDp+taq+qkkT+nu286wViX50SRPPeXRxUken+TxVfVjSZ7e3f5jAgAAAAAAAAAAWe/OQRdPP29O8kNJvjbJI5N8XpJ/nOTt0/NvSXL1irW+L7cXg343yROntZ443Wd6/r2HkBsAAAAAAAAAAIawtp2DktyQ5LuSvLy7d0959oZpx6DXJ/nMJE+sqh/p7tedukhVPTjJM6fbNyZ5dHffMt1fV1XXJjmR5OFJnlVVL+3ut6zh9wEAAAAAAAAAmKe5HNk1h4wzs7ZyUHc/dsXz91bVP0nyS9NHX5vkr5SDkjwjt+e8aqkYdHKdj1TVVUl+a5r3HUmuOofoAAAAHJJrj19+4O9eceL6Q0wCjO5c/n0DAAAAMLJ1Hit2Nl67NH7QqQ+rqpJ8zXR7Q3e/4XSLTJ//4XT7uOl7AAAAAAAAAABwXtt0OejCpfHiNM8fmOTiaXxixVonn1+S5AHnFgsAAAAAAAAAAOZvbceKnaXjS+MbTvP8shXPs8/zy5K89aChAAAAAAAAAABGUr13bbs5ZJybjZWDqupYkmcvffRzp5l2/6XxTSuWvHGf751NlktWTLnojqwHAAAAAAAAAADbYJM7Bz0jySOn8Su7+42nmXOPpfGHVqz34aXx3e9glhtXTwEAAAAAAAAAgHnZSDmoqo4n+RfT7buTfPs+U++yNL5txbK3Lo3vesBoAADw/7d371G2XXWd6L+/UOQJYtqIDAhckNgkqNgIwSCPgCJtE1REW0GvGEgE9Q5aHmpQ7MtDGxoEhYuoiGhEvCIoEJ7doEAEGiQw6G5vEwgv7QQEeUVIyINwfvePvY5nc6yqvetU1am9Vn0+Y6yx59prrjl/5TCTvdf57d8EAAAAAIBpsmXXvnTUk4Oq6puTvHKY+7okP9Ldn9qg+7Vz7WMXDH3cXPuaLYa1aBuyWyS5ZItjAgAAAAAAAADAnjqqyUFVdbskb0xycpKvJHlod1+8yS1fnGsv2irspLn2oi3Ivkp3X7HZ9araynAAAAAAAAAAALASjjlaE1XVLZP8ZZJbZlao6hHd/coFt80n7Zy6oO989Z/Ltx4hAAAAAAAAAABMy1GpHFRVpyR5U5JvHN56dHe/eIlb3z/XPn1B3/nrl24hPAAAAAAAAACASavuVPdeh7HQGGIcm12vHFRVN0vyX5PccXjrCd39/CVv/1iSTwztsxf0vffw+vEkf7eVGAEAAAAAAAAAYIp2NTmoqk5M8rok3z689Z+6+xnL3t/dneSi4fT0qjprg3nOyqHKQRcN9wEAAAAAAAAAwL62a8lBVXVsklcmucfw1nO7+1eOYKjnJLlhaD+vqk44bJ4TkjxvOL1h6A8AAAAAAAAAwEE9ooMdtbaLY/9pkvsP7TcneVFVfcsm/a/v7ssOf7O7L6uqZyV5QpK7JnlHVT0jyUeS3D7JBUnuPHT/9e7+0E79AQAAAOydV599x8WddtD3X/z+ozofTNnR/u8XAAAAgI3tZnLQg+fa35Xkfy7o//dJbrvBtScmuXmSR2SWCPTSdfq8KMmRVCYCAAAAAAAAAIBJ2rVtxXZSdx/o7vOSnJPkoiSfSHL98HpRkgd09/ndfWAPwwQAAAAAAAAAgJWya5WDurt2YczXJ3n9To8LAAAAAAAAADBl1bNj1Y0hxrEZReUgAAAAAAAAAABg6yQHAQAAAAAAAADAREkOAgAAAAAAAACAiVrb6wAAAAAAAAAAANhlPRyrbgwxjozKQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKJsKwYAAAAAAAAAMHHVs2PVjSHGsVE5CAAAAAAAAAAAJkpyEAAAAAAAAAAATJTkIAAAAAAAAAAAmKi1vQ4AAAAAVsGrz77jUZ3v+y9+/1Gdj/3taP//NwAAALCCejhW3RhiHBmVgwAAAAAAAAAAYKIkBwEAAAAAAAAAwETZVgwAAAAAAAAAYOKqZ8eqG0OMY6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFFrex0AAAAAAAAAAAC7rIdj1Y0hxpFROQgAAAAAAAAAACZKchAAAAAAAAAAAEyUbcUAAAAAAAAAAPaBsmXXvqRyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFFrex0AAAAA7EevPvuOex3Cyvr+i99/RPf5vykAAADAJrpnx6obQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKNuKAQAAAAAAAABMXPXsWHVjiHFsVA4CAAAAAAAAAICJkhwEAAAAAAAAAAATJTkIAAAAAAAAAAAmam2vAwAAAAAAAAAAYJf1cKy6McQ4MioHAQAAAAAAAADAREkOAgAAAAAAAACAibKtGAAAAAAAAADAxNWB2bHqxhDj2KgcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJkpyEAAAAAAAAAAATNTaXgcAAAAAMO/VZ99xr0MAAAAAmJ4ejlU3hhhHRuUgAAAAAAAAAACYKMlBAAAAAAAAAAAwUbYVAwAAAAAAAACYuOrZserGEOPYqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmSnIQAAAAAAAAAABM1NpeBwAAAAAAAAAAwC7rnh2rbgwxjozKQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIkBwEAAAAAAAAAwESt7XUAAAAAAAAAAADsrurZserGEOPYqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmyrZiAAAAAAAAAAD7gS279iWVgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgIla2+sAAAAAAAAAAADYXdWzY9WNIcaxUTkIAAAAAAAAAAAmSnIQAAAAAAAAAABMlG3FAAAAAAAAAACmrnt2rLoxxDgyKgcBAAAAAAAAAMBESQ4CAAAAAAAAAICJkhwEAAAAAAAAAAATtbbXAQAAAAAAAAAAsLuqZ8eqG0OMY6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjbigEAAAAAAAAATF0Px6obQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwUWt7HQAAAAAAAAAAALurenasujHEODYqBwEAAAAAAAAAwERJDgIAAAAAAAAAgImyrRgAAAAAAAAAwNQd6Nmx6sYQ48ioHAQAAAAAAAAAABMlOQgAAAAAAAAAACZKchAAAAAAAAAAAEzU2l4HAAAAAAAAAADALuvhWHVjiHFkVA4CAAAAAAAAAICJkhwEAAAAAAAAAAATZVsxAAAAAAAAAICJqyQ1gi27aq8DmCCVgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgIla2+sAAAAAAAAAAADYZZ2ke6+jWGwEIY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAExdJzWC42huK1ZVt6mqZ1XVpVV1dVV9rqreXVU/X1UnbnPsJ1dVL3ncZ2f+ovWt7ebgAAAAAAAAAACwaqrqnCR/kuRmc2+fmOTM4Ti/qh7Q3R/di/h2kuQgAAAAAAAAAAD2jar6tiQvyywZ6KokT0/yliQnJHlIkp9Kcockr6uqM7v7qm1O+a0Lrn9sm+NvSnIQAAAAAAAAAAD7yXMySwy6Icn9u/udc9feXFUfSvLMJKcneVySp25nsu7+/7Zz/3Yds5eTAwAAAAAAAABwFPSIjl1UVWcmuc9w+qLDEoMOenaSS4f2Y6rqxrsb1e6SHAQAAAAAAAAAwH7xoLn2H67XobsPJHnxcHpyDiUTjZLkIAAAAAAAAAAA9ot7Da9XJ3nvJv0unmvfc/fC2X2SgwAAAAAAAAAA2C/OGF4/3N03bNLvA+vcc0Sq6k1V9dmqur6q/rGq3lpVT6iqk7cz7rLWjsYkAAAAAAAAAADsnepOde91GAsdFuMtqmrT/t19xdJjVx2f5JThdNP7uvvzVXV1kpOS3HrZOTZwv7n21yc5ezguqKpzu/uibY6/KclBAAAAAAAAAACsokuW6LN59tBXu+lc+6ol+h9MDrrJFuaY97dJXpXk3Uk+keTGSe6Q5MeT3D/J1yb5i6r6vu5+wxHOsZDkIAAAAAAAAAAA9oPj59rXL9H/uuH1hCOY6znd/eR13v+bJC+uqkcl+d0kN0ry+1V1WndfcwTzLCQ5CAAAAAAAAABg6g4Mx6r76hjPTPLJHRz92rn2sUv0P2543XLSTndfueD6C6rqrknOT3LLJA9O8idbnWcZkoMAAAAAAAAAAFhFn+zuK3ZwvC/OtZfZKuyk4XWZLciOxAsySw5KkrOzS8lBx+zGoAAAAAAAAAAAsEq6+9oknxlOT92sb1WdnEPJQZfvUkjvn2vfapfmkBwEAAAAAAAAAMC+cenwelpVbbbj1unr3LPTapfG/Sq2FQMAAAAAAAAAmLjqTnXvdRgLHYUY357kXplVBbpLkr/ZoN/Zc+137FIsd5xrf2KX5lA5CAAAAAAAAACAfeNVc+2Hr9ehqo5J8rDh9Mokb9mlWB411754l+aQHAQAAAAAAAAAwP7Q3e9O8rbh9Lyquvs63R6f5Iyh/dzu/vL8xao6t6p6OJ58+M1V9a1VddpmcVTVo5KcN5x+Mskrt/BnbIltxQAAAAAAAAAApq6HY9UdnRh/LrOtwk5I8saqelpm1YFOSPKQJI8c+l2W5NlHMP5dkvx+Vb0lyRuS/G2Sz2aWp3N6kv8zyfcMfb+S5FHdffWR/SmLSQ4CAAAAAAAAAGDf6O73VdWPJnlJkq9J8rR1ul2W5Jzu/uIRTnOjJPcbjo18Nsl53f3qI5xjKZKDAAAAAAAAAADYV7r7NVV1p8yqCJ2T5NQk1yf5cJKXJ/mt7v7SEQ7/+sy2DLt7kjsn+YYkX5ekknwuyf9I8l+SXNjdX9jO37EMyUEAAAAAAAAAAOw73f33SR43HFu578IkF25y/R+T/MFw7DnJQQAAAAAAAAAAk9dJ914HsYQxxDgux+x1AAAAAAAAAAAAwO6QHAQAAAAAAAAAABNlWzEAAAAAAAAAgImrnh2rbgwxjo3KQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIkBwEAAAAAAAAAwESt7XUAAAAAAAAAAADssu7ZserGEOPIqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmyrZiAAAAAAAAAAATVwdmx6obQ4xjs6uVg6rq5lX1wKp6alW9oao+U1U9HBcewXjfW1WvqKorquq64fUVVfW9uxA+AAAAAAAAAACM2m5XDvrUTgxSVZXkd5M88rBLt0ryg0l+sKp+L8lPd3fvxJwAAAAAAAAAADB2u1o56DCXJ3njEd77azmUGPS+JA9Ncrfh9X3D+49M8qvbCRAAAAAAAAAAAKZktysHPTXJJUku6e5PVdVtk3xsKwNU1WlJfnE4fU+Se3f3NcP5JVX16iQXJ7lrkguq6g+7+yM7Ej0AAAAAAAAAwBR0z45VN4YYR2ZXKwd195O6+7XdvZ3txR6bQ0lMj55LDDo4x5eSPHo4XUvymG3MBQAAAAAAAAAAk3E0txXbsqqqJD8wnH6gu9+1Xr/h/Q8Opw8a7gMAAAAAAAAAgH1tpZODktwuya2G9sUL+h68fmqS2+5WQAAAAAAAAAAAo9MjOthRq54cdMZc+wML+s5fP2PDXgAAAAAAAAAAsE+s7XUAC9x6rn3Fgr6Xb3DfQlV16oIut9jKeAAAAAAAAAAAsApWPTnopnPtqxb0vXqufZMtznP54i4AAAAAAAAAADAuq54cdPxc+/oFfa+ba5+wC7EAAAAAAAAAAIxSdae69zqMhcYQ49isenLQtXPtYxf0PW6ufc0W51m0DdktklyyxTEBAAAAAAAAAGBPrXpy0Bfn2ou2Cjtprr1oC7Kv0t1XbHa9qrYyHAAAAAAAAAAArIRVTw6aT9o5dUHf+eo/l+9CLAAAAAAAAAAA49Q9O1bdGGIcmWP2OoAF3j/XPn1B3/nrl+5CLAAAAAAAAAAAMCqrnhz0sSSfGNpnL+h77+H140n+brcCAgAAAAAAAACAsVjp5KDu7iQXDaenV9VZ6/Ub3j9YOeii4T4AAAAAAAAAANjXVjo5aPCcJDcM7edV1QnzF4fz5w2nNwz9AQAAAAAAAAA4qJMcGMGhHMyOW9vNwavqnklOm3vrlLn2aVV17nz/7r7w8DG6+7KqelaSJyS5a5J3VNUzknwkye2TXJDkzkP3X+/uD+3YHwAAAAAAAAAAACO2q8lBSc5P8pMbXLvHcMy7cIO+T0xy8ySPyCwR6KXr9HlRkl/ZeogAAAAAAAAAADBNY9hWLN19oLvPS3JOkouSfCLJ9cPrRUke0N3nd/eBPQwTAAAAAAAAAABWyq5WDuruc5Ocu4PjvT7J63dqPAAAAAAAAACA/aC6U917HcZCY4hxbEZROQgAAAAAAAAAANg6yUEAAAAAAAAAADBRu7qtGAAAAAAAAAAAK6CTjGHLrhGEODYqBwEAAAAAAAAAwERJDgIAAAAAAAAAgImSHAQAAAAAAAAAABO1ttcBAAAAAAAAAACwy7pnx6obQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKNuKAQAAAAAAAABM3YHhWHVjiHFkVA4CAAAAAAAAAICJkhwEAAAAAAAAAAATJTkIAAAAAAAAAAAmam2vAwAAAAAAAAAAYHdVd6p7r8NYaAwxjo3KQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKJsKwYAAAAAAAAAMHXds2PVjSHGkVE5CAAAAAAAAAAAJkpyEAAAAAAAAAAATJTkIAAAAAAAAAAAmKi1vQ4AAAAAAAAAAIDd1kn3XgexhDHEOC4qBwEAAAAAAAAAwERJDgIAAAAAAAAAgImyrRgAAAAAAAAAwNT1SLYVG0OMI6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFFrex0AAAAAAAAAAAC77MBwrLoxxDgyKgcBAAAAAAAAAMBESQ4CAAAAAAAAAICJsq0YAAAAAAAAAMDEVXeqe6/DWGgMMY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEre11AAAAAAAAAAAA7LLu2bHqxhDjyKgcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJsq2YgAAAAAAAAAAU3egZ8eqG0OMI6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFFrex0AAAAAAAAAAAC7rJN073UUi40gxLFROQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAJiotb0OAAAAAAAAAACA3dZJ914HsYQxxDguKgcBAAAAAAAAAMBESQ4CAAAAAAAAAICJsq0YAAAAAAAAAMDU9Ui2FRtDjCOjchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgoyUEAAAAAAAAAADBRa3sdAAAAAAAAAAAAu+xAz45VN4YYR0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFG2FQMAAAAAAAAAmLo+MDtW3RhiHBmVgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgIla2+sAAAAAAAAAAADYZd2zY9WNIcaRUTkIAAAAAAAAAAAmSnIQAAAAAAAAAABMlG3FAAAAAAAAAACm7kDPjlU3hhhHRuUgAAAAAAAAAACYKMlBAAAAAAAAAAAwUZKDAAAAAAAAAABgotb2OgAAAAAAAAAAAHZZ9+xYdWOIcWRUDgIAAAAAAAAAgImSHAQAAAAAAAAAABNlWzEAAAAAAAAAgP3All37kspBAAAAAAAAAAAwUZKDAAAAAAAAAABgoiQHAQAAAAAAAADARK3tdQAAAAAAAAAAAOyy7tmx6sYQ48ioHAQAAAAAAAAAABMlOQgAAAAAAAAAACbKtmIAAAAAAAAAAFN34EBSB/Y6isUOjCDGkVE5CAAAAAAAAAAAJkpyEAAAAAAAAAAATJTkIAAAAAAAAAAAmKi1vQ4AAAAAAAAAAIBd1j07Vt0YYhwZlYMAAAAAAAAAAGCiJAcBAAAAAAAAAMBE2VYMAAAAAAAAAGDqbCu2b6kcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJkpyEAAAAAAAAAAATNTaXgcAAAAAAAAAAMAuO9BJ9V5HsdiBEcQ4MioHAQAAAAAAAADAREkOAgAAAAAAAACAiZIcBAAAAAAAAAAAE7W21wEAAAAAAAAAALC7ug+k+8Beh7HQGGIcG5WDAAAAAAAAAABgoiQHAQAAAAAAAADARNlWDAAAAAAAAABg6jrJgd7rKBYbQYhjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwUWt7HQAAAAAAAAAAALuse3asujHEODIqBwEAAAAAAAAAwERJDgIAAAAAAAAAgImyrRgAAAAAAAAAwNQdOJDkwF5HsdiBEcQ4MioHAQAAAAAAAADAREkOAgAAAAAAAACAiZIcBAAAAAAAAAAAE7W21wEAAAAAAAAAALDLumfHqhtDjCOjchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgo24oBAAAAAAAAAExcHziQzoG9DmOhPrD6MY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEre11AAAAAAAAAAAA7LLu2bHqxhDjyKgcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJsq2YgAAAAAAAAAAU9edHBjBll22FdtxKgcBAAAAAAAAAMBESQ4CAAAAAAAAAICJkhwEAAAAAAAAAAATtbbXAQAAAAAAAAAAsMu6kxzY6ygW697rCCZndJWDquo2VfWsqrq0qq6uqs9V1bur6uer6sS9jg8AAAAAAAAAAFbFqCoHVdU5Sf4kyc3m3j4xyZnDcX5VPaC7P7oX8QEAAAAAAAAAwCoZTXJQVX1bkpdllgx0VZKnJ3lLkhOSPCTJTyW5Q5LXVdWZ3X3VXsUKAAAAAAAAALBK+kCna/W37Grbiu240SQHJXlOZolBNyS5f3e/c+7am6vqQ0memeT0JI9L8tSjHiEAAAAAAAAAAKyQY/Y6gGVU1ZlJ7jOcvuiwxKCDnp3k0qH9mKq68dGIDQAAAAAAAAAAVtUokoOSPGiu/YfrdejuA0lePJyenEPJRAAAAAAAAAAAsC+NZVuxew2vVyd57yb9Lp5r3zPJm3YtIgAAAAAAAACAsegDSQ7sdRSL9QhiHJmxJAedMbx+uLtv2KTfB9a5Z6GqOnVBl1ssOxYAAAAAAAAAAKuvqm6T5D8kOSfJbZJcl+TDSV6W5Le7+0s7NM9Dkjw8yZ0y2w3rk0neluT53f2unZhjMyufHFRVxyc5ZTi9YrO+3f35qro6yUlJbr2FaS4/wvAAAAAAAAAAABiZqjonyZ8kudnc2ycmOXM4zq+qB3T3R7cxx/FJXp7kgYdd+j+G48eq6snd/atHOscyjtnNwXfITefaVy3R/+rh9Sa7EAsAAAAAAAAAwOj0gR7Nsduq6tsyqw50s8xyUZ6Y5DuTfHeSFw7d7pDkdVW1nfyTF+VQYtBbkjwoyd2SnJfkI5nl7Ty1qs7fxhwLrXzloCTHz7WvX6L/dcPrCVuYY1GVoVskuWQL4wEAAAAAAAAAsJqek1mVoBuS3L+73zl37c1V9aEkz0xyepLHJXnqVieoqrOT/Nhw+pokP9jdXxnOL6mqVyd5b2bbmT2zqv68u688gr9loTFUDrp2rn3sEv2PG16vWXaC7r5isyOzvd4AAAAAAAAAABixqjozyX2G0xcdlhh00LOTXDq0H1NVNz6CqX5xeP1Kkp+dSwxKknT3Z5JcMJyenFk1oV0xhuSgL861lynVdNLwuswWZAAAAAAAAAAA7B8Pmmv/4XoduvtAkhcPpyfnUDLRUoatyL57OH3TUJhmPa9I8oWh/eCtzLEVK58c1N3XJvnMcHrqZn2r6uQcSg66fDfjAgAAAAAAAAAYjT4wnmN33Wt4vTqzbb02cvFc+55bnONuObTz1cUbderu65O86+A9R1ihaKGVTw4aHCzVdFpVrW3S7/R17gEAAAAAAAAAgCQ5Y3j9cHffsEm/D6xzz1bnOHyczeZZS/JNW5xnKZsl2qySt2eWuXVSkrsk+ZsN+p09137HDs5/o4ONf/iHf9jBYQEADrn2K3ZFBQAA4JArrtho5wEAgCN32L9532ijfkzPdbk26b2OYrHrcu386S2qatP+m2zZ9S9U1fFJThlON72vuz9fVVdnlqty62XnGMz3XxTf/M5Yt07y/i3OtdBYkoNeleSXhvbDs05yUFUdk+Rhw+mVSd6yg/N//cHG3e52tx0cFgAAAAAA1nfrW//xXocAAEzf1yf5+70OgqPjkrx5r0M4Epcs0Wfz7KGvdtO59jK/2j6YHHSTLcyx1XmunmtvdZ6ljGJbse5+d5K3DafnVdXd1+n2+Bwqy/Tc7v7yUQkOAAAAAAAAAIAxOH6uff0S/a8bXk/YxXmum2tvdZ6ljKVyUJL8XGZbhZ2Q5I1V9bTMqgOdkOQhSR459LssybN3eO6/TXLm0P50kq/s8PjAON0ihzJVz0zyyT2MBZguaw1wNFhrgKPBWgMcDdYa4Giw1gBHw26uNTfKod1z/nYHx2U1fTJb3xJrVdwiO5+jMb9n2bFL9D9ueL1mF+c5bq691XmWMprkoO5+X1X9aJKXJPmaJE9bp9tlSc7p7i/u8NzXJXnPTo4JjN9he1t+cit7WQIsy1oDHA3WGuBosNYAR4O1BjgarDXA0XAU1hpbie0T3X1DkrH+b9VuxD2fT7LMFl4nDa/LbEF2pPOcNNfe6jxLGcW2Ygd192uS3CnJb2aWCPSlJFdmlrhzQZI7d/eH9yxAAAAAAAAAAABWUndfm+Qzw+mpm/WtqpNzKHHn8i1ONZ/YtOk8+erKTludZymjqRx0UHf/fZLHDQcAAAAAAAAAACzr0iT3SnJaVa0N1ZXWc/ph92zF+zcYZ7N5bkiyKwVxRlU5CAAAAAAAAAAAtuHtw+tJSe6ySb+z59rv2OIclyS5fp1xvkpVHZvkrIP3dPf1G/XdDslBAAAAAAAAAADsF6+aaz98vQ5VdUyShw2nVyZ5y1Ym6O4vJvmr4fR+VbXR1mIPTvI1Q/uVW5ljKyQHAQAAAAAAAACwL3T3u5O8bTg9r6ruvk63xyc5Y2g/t7u/PH+xqs6tqh6OJ28w1bOG17Ukz6+qGx02xilJnjGcXpnk97f0h2yB5CAAAAAAAAAAAPaTn0tyTWaJO2+sql+qqrOq6r5V9YIkzxz6XZbk2UcyQXe/OclLh9PvT/Kmqvr+qrprVT08ybuS3Ga4/oTu/vyR/jGLrO3WwAAAAAAAAAAAsGq6+31V9aNJXpLZtl5PW6fbZUnOGbYIO1KPGMZ/QJL7Dse8A0l+tbtfsI05FpIcBHCEuvuKJLXXcQDTZq0BjgZrDXA0WGuAo8FaAxwN1hrgaLDWwO7r7tdU1Z0yqyJ0TpJTk1yf5MNJXp7kt7r7S9uc45ok51TVjyU5N8m3JfnaJJ/KbGuz3+rud25njmVUd+/2HAAAAAAAAAAAwB44Zq8DAAAAAAAAAAAAdofkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgImSHAQAAAAAAAAAABMlOQgAAAAAAAAAACZKchDAFlXVbarqZ6rqz6rqg1V1dVVdW1VXVNVFVfXQqlrbwnjfXFW/W1UfrqprqurTVfXXVfWorYwDTM+w3jyrqi4d1prPVdW7q+rnq+rEvY4PWE1V9e1V9ctV9Yaquryqrquqq6rqsqq6sKrutcXxvreqXjF81rlueH1FVX3vbv0NwLhV1TOrqueO+yxxj7UGWKiqTqmqX6yqd1TVJ4f14hNV9TdV9etVdfclxrDeABuqqmOr6ryq+i9V9Q9z36c+WFV/UFVnLTmOtQb2maq6eVU9sKqeOjyT+czcd6ILj2C8ba8jVXViVf3C8Ez5c8N6dunwzPk2W40JGLfq7r2OAWA0quqpSX4lSS3o+p4kP9Td/3vBeOcleX6S4zbo8q4kD+zuz241VmDcquqcJH+S5GYbdPlgkgd090ePXlTAqquqi5Pce4muf5zk/O6+fpOxKsnvJnnkJuP8XpKfbl8sgUFVfVtm34fmf+hw3+5+6wb9rTXAUqrq3yf5nSRft0m3i7r7QRvcb70BNlVVt07yuiTfuqDrbyZ5/HprhbUG9q+q2uy/6T/q7nOXHGdH1pGqun1ma9odNujyT0l+rLtfv0xcwPipHASwNbfMLDHo6iQvSfLwJPdMctckP5HkkqHfXZP8ZVXdZKOBqurfZvYB7rgkn0ryH5J8R5J/l+QVQ7ezkryiqqzXsI8M/6j2sswSg65K8sQk35nku5O8cOh2hySv22ydAfalWw2vn0jy3CQ/nORuSe6e5HFJPj5c/4kkFy4Y69dy6EHU+5I8dBjrocN5huu/ugNxAxMwfG95YWaJQf+45G3WGmChqnpYkpdmlhj0j0mekuR7ktwlyTmZPVN5U5IvbzKM9QbY0FDBfT4x6H8mOTez71L3T/LUzJ4JJ8ljk/z8BkNZa4AkuTzJG4/w3m2vI8Mz49fmUGLQCzN7tvydmT1rviqzZ88vr6o7HWGcwMioHASwBVX1jCSfTfI73f3Fda7fKMn/m+RHhrf+7+7+Fx/Qhi+blyY5LckXknx7d3/ksD7PT/Kzw+lPdveLd+wPAVZaVb0lyX2S3JDk3t39zsOu/0KSZw6nT+rupx7dCIFVVVWvTfLiJH/R3V9Z5/opSd6R5F8Pb927u9+2Tr/TMvusspZZBZB7d/c1c9dPTHJxZgnRNyQ5/fDPMsD+U1WPyeyX9B9I8sokvzRcWrdykLUGWEZVnZHZP4Qdl+RtSb6vu/9pg77HrlcZ0XoDLFJVP5Tkz4fTdya51+HfqarqLsO1Gyf5fJKbd/cNc9etNbCPVdVTMvsB+SXd/amqum2Sjw2Xl6octFPrSFU9OcmThtNf7O5fP+z63ZP89TDPW7r7u5b/S4GxUokCYAu6+4LufuZ6iUHD9a9kltBz8EHUD28w1A9mlhiUJE/f4EvgL2T2JfNgG9gHqurMzBKDkuRFhycGDZ6d2ZfEJHlMVd34aMQGrL7ufmB3v2y9xKDh+meSPH7urY0+qzw2h7YEevT8g6hhnC8lefRwupbkMUccNDAJwzYcB38Y8TM59J1oM9YaYBnPyywx6DNJHrxRYlCSbLJlqvUGWOQec+2nr/edqrvfm1kljiQ5Ocnph3Wx1sA+1t1P6u7XdventjHMtteR4Vnxzw2nl2b2LPnwWN+Z5EXD6X2H5Edg4iQHAeyw7v5sZmVnk+T2G3R70Fz7wg3G+VJm2wolybdU1TftRHzAynvQXPsP1+vQ3QcyqwySzB5G3Wd3QwIm5q1z7X/xWWXY2/4HhtMPdPe71htkeP+Dw+mDhvuA/eu3k9wks1/EvnVRZ2sNsIyqOj2zLTCS5LeGROetjmG9AZZx7Fz7o5v0m/+R53EHG9YaYLt2cB25T5KvHdp/NDxLXs+Fc+0HbzVeYHwkBwHsjoNfDDf60HWv4fWD3f3JTca5eK59z21HBYzBwfXh6iTv3aSf9QE4UvMPvdf7rHK7JLca2hevc33eweunJrnt9sICxqqqfiTJA5N8LstXPbXWAMv493Ptlx9sVNXJVfVNVfV1S4xhvQGWcdlc+xs36XfwBxad5ENz71trgO3aqXXkXuv0W897MnsGnXi+DPuC5CCAHVZVN09yxnD6gXWu3ySzD2zrXj/M/PUzNuwFTMnB/9Y/PL9v/TqsD8CROnuuvd5nkTMWXM8G161FsA9V1dcmee5wekF3f3rJW601wDLOGl7/KcmlVfXjVfU/MktGvCzJZ6rqo1X1pOF5y3qsN8Ay/jTJF4b2BVV1o8M7VNWdk5wznL60u78wd9laA2zXTq0jS40zPHs+WA3NWgT7gOQggJ33Czm0J+zL1rl+apKDZR6vWDDW5XPtW28zLmDFVdXxSU4ZTjddH7r78zn0yw7rA7CUqjomyRPm3lrvs8r8muKzCrDIM5PcIsl/S/KiLdxnrQGWccfh9e+SPC/JS5Lc6bA+t0vy5CTvrKpbrjOG9QZYaEhwPjfJNUnukeSSqnpYVZ1VVferqidlVoHj2CT/PcnjDhvCWgNs106tIwfPr+7uK5cc5+ur6rhNewKjJzkIYAdV1XckecxwekWS316n203n2lctGPLqufZGv4ADpmMr60NyaI2wPgDLemySuw3tV3b3e9bp47MKsJSqumeS85PckOSnu7u3cLu1BljGvxpeT0/yfyW5MslPJ7l5kuOTnJnkDUOfb0ny8iEZep71BlhKd78yyV0zS3j+N0n+KMk7k7wpsyTEL2WWFHTP7v7kYbdba4Dt2ql15OA4W3m+vN44wMRIDgLYIVX1DUn+PLOqQZ3kJ7v7S+t0PX6uff2CYa+ba5+wvQiBEdjK+pAcWiOsD8BCVXV2kv88nP5jkp/ZoKvPKsBCVXVskt/LrCrqb3b3325xCGsNsIyThtfjknwlyb/r7hd096e7+7oh0fmBOZQg9J1JHnzYGNYbYClVdeMkP5bk+3Ko8vu8b0jy0CT3WeeatQbYrp1aRw6Os5Xny+uNA0yM5CBgkqpqrap6B45zl5zvpklel9mWYUnyy9395g26XzvXPnbB0PNlHK9ZJhZg1LayPiSH1gjrA7CpqvrmJK/MLIn5uiQ/0t2f2qC7zyrAMn45yRlJ/neSpxzB/dYaYBnza8XLu/tdh3fo7gOZbfF+0EM3GcN6A6yrqk5K8pdJnpjk6zLbOvWMzNaFmyW5f5K3Z1ax7DVV9XOHDWGtAbZrp9aRg+Ns5fnyeuMAEyM5CGCbqur4JBclucvw1m9093/e5JYvzrUXlWk8aa69TAlIYNy2sj4kh9YI6wOwoaq6XZI3Jjk5s1/cP7S7L97kFp9VgE1V1elJfmk4fXR3X71Z/w1Ya4BlzK8Vb9ioU3f/ryQfH07P3GQM6w2wkackuffQPq+7L+juD3T39d39he5+U5L7JnlLZlWFfqOq7jR3v7UG2K6dWkcOjrOV58vrjQNMzNpeBwCwG7r7hqo6YweG+ofNLlbVWpKXZfbFMEl+v7sfv2DMK+bap27Ya+bWc+3LF/QFRq67r62qzyQ5JQvWh6o6OYe+vFkfgHVV1S0z+/XrLTPb9vQR3f3KBbf5rAIs8tjMfoX60SQnVtVD1unzLXPt76qqWwzt1wzJRNYaYBmXJzm4flyxWceh762S3Pyw9603wKaqqpI8fDi9rLv/aL1+wzPn/5hZBaFjhnseO1y21gDbtVPryBVJviPJSVX1td195RLjfLq7r9ukHzABkoOAyeruD+zm+FV1TJI/zmwP6iT5sySPWiKuq6rq8sw+dJ2+oPv89UuPJE5gdC5Ncq8kp1XVWnffsEE/6wOwqao6Jcmbknzj8Naju/vFS9z6/rm2zyrAeg6Wnv/GJH+6RP//ONe+XZKrY60BlvO/cqgS0I0W9D14/fDvUNYbYJFvSPKvhvb7FvR971x7fs2w1gDbtVPryPuT/NBcv3+xLWvyzz9+v/0GYwATZFsxgCP3giQHfyH72iQ/Mexzv4y3D693mPsF7XrOnmu/Y4vxAeN0cH04KYe2K1yP9QHYUFXdLMl/TXLH4a0ndPfzl7z9Y0k+MbTP3qxjDpXd/3iSv9tKjMC+Z60BlvHXc+3bb9hr5mBC9McPe996Aywyn1S46Ef1N97gPmsNsF07tY68fa692Th3zaHK9J4vwz4gOQjgCFTVbyQ5fzj9qyQ/3N1f3sIQr5prn7vBHCcm+ZHh9P3dfdkWwwTG6VVz7Yev12GoXPaw4fTKzPa7B0jyz58hXpfk24e3/lN3P2PZ+7u7k1w0nJ5eVWdtMM9ZOfRLtYuG+4B9oLvP7e7a7EjylLlb7jt37e+GMaw1wDJeneTg85YHb9Spqs5O8nXD6dvmr1lvgCV8LskXhvbdh2oaG5n/h/aPHWxYa4Dt2sF15K1J/mlo/+SwdeJ6zp1rL9qCHpgAyUEAW1RVT86hvaT/W5IfOIK9WF+Z5CND+5eqar1fv/16kpPn2sA+0N3vzqGH2edV1d3X6fb4JGcM7eduMTkRmLCqOjazzxn3GN56bnf/yhEM9Zwc+hXs86rqhMPmOSHJ84bTG4b+AFv1nFhrgE1092eT/P5w+j1V9ZDD+1TVTfPV68ML1hnqObHeABsYqsG/bji9ZZInrtevqk5OMv/Di9ce1uU5sdYA2/OcbHMd6e7rk/w/w+kZSX7+8D7DM+fzhtOLu/uS7QYOrL6SlAywvKp6dA59qPp4kh/NoQzsjXxwvX+4r6oHJHlNZoman0rya0nenVlC0E/l0J6wb09yn+7+yrb/AGAUqurOmZVyPSHJVUmelll1oBMy287wkUPXy5Lctbu/uBdxAqunqv4ih35V/+Ykj0my2Ze+6zeqTlhVT0/yhOH0fZk9BP9IZlt6XJDkzsO1p3f3L28vcmBqhh9VPGk4vW93v3WDftYaYFNV9fVJ3pPkNpn9I9jvJnlFZlU+vjWzteLgr+d/p7t/doNxrDfAhqrq9CTvTXLi8NZrkvxRko8mOT7JWZl9v7rNcP2vuvt+64xjrYF9qqrumeS0ubdOyaEffr8jhxKekyTdfeEG42x7HRmSp9+T5F8Pb/1ekpcmuSbJfZP8cpKbDOff2d3/fYk/ERg5yUEAW1BVb83ivV4Pd7uDpfPXGe+nkvxWkmM3uPfdSc7p7s9scU5g5Krq+5K8JMnXbNDlsszWhw8fvaiAVVdVW/2C9/fdfdsNxjomyQuTPGKT+1+U5JHDL20B/tkWkoOsNcBCVXVGZluMnbZJtz9I8tMbVVa13gCLVNX9kvxpZv+gv5k3J/nh7v78OmNYa2CfqqoLk/zksv2H7ZjXG2dH1pGqOi3J65N80wZdvpDkx7v78CpowETZVgxgD3X3C5PcJbMPeh9Ncm2Sz2ZWLehnktxDYhDsT939miR3SvKbmSUCfSnJlZn94uOCJHeWGATspu4+0N3nJTknsz3vP5Hk+uH1oiQP6O7zPdAGtsNaAyyjuy9N8m+S/EKSv0nyuczWiiuS/FmS7+ru8zbbctl6AyzS3X+ZWSWyC5K8Ncmnk3w5s8oaH0vysiQPSnK/9RKDhjGsNcC27NQ6Mjw7vnNma9p7Mnu2/KUkH8zsmfOdJAbB/qJyEAAAAAAAAAAATJTKQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgImSHAQAAAAAAAAAABMlOQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgoyUEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBESQ4CAAAAAAAAAICJkhwEAAAAAAAAAAATJTkIAAAAAAAAAAAmSnIQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwUZKDAAAAAAAAAABgoiQHAQAAAAAAAADAREkOAgAAAAAAAACAiZIcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJkpyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFH/PzNFPTDfBmnBAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACQcAAAQKCAYAAAD3zl6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzde7BlZ1kn4N97cki4ChjA3FAuwQmRqEHIBCloRUFQQJJCS1AUAQVnJqWUpaQEB7zMjChThRMZhCGCMirKJZIZCYgXWkQYwpSiYwggiiYESAJyD+mw9zt/nN32tu1zduf02Weftfp5qnadb6317e97z+rOP51fvV91dwAAAAAAAAAAgPFZW3UBAAAAAAAAAADAcggHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAHtCVd2xqp5bVe+squur6ubZ58NVdWlVfc2qawQAAACAoanuXnUNAAAAwHGuqh6T5H8kOX2LaV9M8pTuft3uVAUAAAAAwyccBAAAAKxUVb0gyfPnbn0wyZVJbk7ytUm+Ye7ZF5I8sLvfv2sFAgAAAMCACQcBAAAAK1NV/zHJz8wur03yQ9395sPmPDbJ65KcNLv1qu7+wd2rEgAAAACGSzgIAAAAWImqekSSP0xSSf4xyTd290c2mfvTSX52dvnZJHfp7umuFAoAAAAAAyYcBAAAAOy6qjohyVVJvjpJZyMY9K4t5p+R5Jq5W2c5WgwAAAAAFltbdQEAAADAcem7sxEMSpLf2SoYlCTdfW2Sz8zduvOyCgMAAACAMREOAgAAAFbhB+fGLznK79wyN9YKGQAAAACOgmPFAAAAgF1VVXdK8k9JTkhyY5J79IJ/oKiq9SQ3JVmf3Tq1uz+21EIBAAAAYAR0DgIAAAB22zdmIxiUJH+2KBg0c2YOBYM+m+TjyygMAAAAAMZGOAgAAADYbf92bvy+o/zOw+bGf3qUgSIAAAAAOO4JBwEAAAC77dy58fVH+Z0L5sZv2cFaAAAAAGDUhIMAAACA3TYfDrrNoslVdWaSb5tdfjHJby6jKAAAAAAYI+EgAAAAYNdU1Zcn+aq5W2cfxdf+aw79G8Yru/uTO14YAAAAAIyUcBAAAACwm8497PqCqrrrZpOr6uIkj59dfjLJTy+rMAAAAAAYI+EgAAAAYDfNh4MOJLlzktdU1V3mJ1XVnavqJUn+y+zWJMlTuvsTu1MmAAAAAIzD+qoLAAAAAI4r8+Gg5yb5hSSPSvIPVfVHSW5MckaSfUluP5s3SfKs7n7TbhYKAAAAAGNQ3b3qGgAAAIDjRFVdleT+s8t7ZuPIsEuyeXfja5P8UHe/eRfKAwAAAIDREQ4CAAAAdkVV3T7JZ5KckOST3X3y7P5Dk/xokvOSnJrk00muSvL6JJd29xdWUzEAAAAADJ9jxQAAAIDd8nXZCAYlyXsP3uzudyR5x0oqAgAAAICR26xlNwAAAMBOO3du/JcrqwIAAAAAjiPCQQAAAMBumQ8HvXfTWQAAAADAjhEOAgAAAHaLcBAAAAAA7LLq7lXXAAAAAIxcVa0n+VySk5LckuSO3X1gtVUBAAAAwPjpHAQAAADshrOzEQxKkqsFgwAAAABgdwgHAQAAALvBkWIAAAAAsAKOFQMAAAAAAAAA4LhQVQ9M8ugkD0vygCT3SHJLkuuS/HmSS7v77TuwzwuSPP8op39zd7/tWPfczPqyFgYAAAAAAAAAgL2iqvYnefgRHp2Y5H6zzw9U1auTPKO7D+xmfcsiHAQAAAAAAAAAwPHg9NnP65K8Nsnbk/xjkhOSPCTJj8/mPCUbmZon79C+5yx4/vc7tM8ROVYMAAAAAAAAAIDRq6r/neQ3kry+uydHeH63JO9I8tWzWw/f7hFj88eKdXdtq+AdsrbKzQEAAAAAAAAAYDd092O7+3ePFAyaPb8xG92DDnri7lS2XMJBAAAAAAAAAACw4W1z4/uuqoidJBwEAAAAAAAAAAAbTpwbT1dWxQ4SDgIAAAAAAAAAgA375sZX78SCVfXWqvpEVR2oquur6m1VdXFV3XUn1l+4f3fvxj6DVlUnJTlndnlDkiOePQcAAAAAAAAAe9wJSe4+G/91d9+8ymJYrqpaT3LKquvYplNyFBmN7r52pzasqrUk70xy3uzWg7v7Pdtc6wVJnr9g2qeSPLW737idPY7W+jIXH5Fzkly56iIAAAAAAAAAYAc9OMm2gg8MxilJrll1EUtWO7jWs3MoGHTZdoNBc/46ye8leXeS65LcJsm/SfK9SR6V5C5JXl9Vj+vuK45xr03pHHQUqupBEQ4CAAAAAAAAYFy23RWFYaiqMzLycFB370g4qKr2JfnDbDTauT7J13b3x49hvbt096e2eP7MJL86u7wuyZndfdN299uKzkFH54aDg3e/+9059dRTV1kLADBS3/f1P7XqEgAAANhD/udf/udVlwAAjNBHP/rRnHfewcYoh/5fOOP3rivumVPvccKqy1joo9dPcv5j/jnP9OAkH1v2nlX1NUkuy0aO5uYk330swaAk2SoYNHv+slmzmmckOS3JhUl+81j23Ixw0NH55/PrTj311JxxxhmrrAUAGKnbnnDHVZcAAADAHuLfogGAXTBZPIWxOPUeJ+SM026z6jJurY9197XL3KCq7p3kD5LcNRv/TTypu/cvc885L8tGOChJ9mVJ4aC1ZSwKAAAAAAAAAAB7WVWdlo2jxE5L0kme1t2X7WIJV82NT1/WJjoHAQAAAAAAAACM3DSdaaarLmOhaXpX9qmquyV5a5L7zG5d1N2/sSubz5WxG5voHAQAAAAAAAAAwHGjqu6c5C1Jzp7duri7X7KCUs6eG1+3rE2EgwAAAAAAAAAAOC5U1e2T/H6SB85u/afufuGKynnm3Hj/sjZxrBgAAAAAAAAAwMhNeppJ7/1jxZZZY1WdmOSyJA+d3frl7n7eNtZ5apJXzi5/prtfcNjzc5Lc1N1/u8Uaz0zy9Nnlx2Z1LYVwEAAAAAAAAAAAx4PfTvKo2fiPk1xaVQ/YYv6B7v7ANvb5hiSvqKo/SXJFkr9O8ols5HTOSvJ9SR45mztJ8szu/vw29jkqwkEAAAAAAAAAABwPLpwbPyLJXy2Y/w9J7rXNvU5I8q2zz2Y+keTp3X35Nvc4KsJBAAAAAAAAAACwc96UjSPDHpLk3CRfkeTkJJXkk0nem+TNSV7V3Z9ZdjHCQQAAAAAAAAAAIzdNZ5pedRkLLbPG7q4dWudVSV61xfPrk/za7LNya6suAAAAAAAAAAAAWA7hIAAAAAAAAAAAGCnHigEAAAAAAAAAjFxnmmmmqy5joR5AjUOjcxAAAAAAAAAAAIyUcBAAAAAAAAAAAIyUcBAAAAAAAAAAAIzU+qoLAAAAAAAAAABguSbdmXSvuoyFhlDj0OgcBAAAAAAAAAAAIyUcBAAAAAAAAAAAI+VYMQAAAAAAAACAkZumM83eP7JrCDUOjc5BAAAAAAAAAAAwUsJBAAAAAAAAAAAwUsJBAAAAAAAAAAAwUuurLgAAAAAAAAAAgOWaJpmkV13GQtNVFzBCOgcBAAAAAAAAAMBICQcBAAAAAAAAAMBIOVYMAAAAAAAAAGDkpulMB3Gs2N6vcWh0DgIAAAAAAAAAgJESDgIAAAAAAAAAgJESDgIAAAAAAAAAgJFaX3UBAAAAAAAAAAAs16Q7k+5Vl7HQEGocGp2DAAAAAAAAAABgpISDAAAAAAAAAABgpBwrBgAAAAAAAAAwctPZZ68bQo1Do3MQAAAAAAAAAACMlHAQAAAAAAAAAACMlHAQAAAAAAAAAACM1PpubVRVd0vytCTfmeS+Se6a5BNJrknyp0ne0N3vXLDGo5P8cJLzktw9yQ1J3p3k5d395uVVDwAAAAAAAAAwXNN0JulVl7HQdAA1Ds2uhIOq6ruSvDTJyYc9OnX2OS/J/ZI8YZPvV5JfzUYwaN7pSS5IckFVvTzJs7rb3xIAAAAAAAAAAMguhIOq6vuTvDIbR5hdn42Q0J8l+WSSU7LRRehxSW7ZYpmfz6Fg0F8k+cUkH5p99yeTnDt7fkOS5+34LwEAAAAAAAAAAAO01HBQVd0/ycuzEQx6e5LHdfenjzD1kqo6cZM1zsxGAChJ3pPk4d190+z6yqq6PMn+JA9K8pyqemV3f2gnfw8AAAAAAAAAABiitSWvf0mSk5LcmOTCTYJBSZLuPrDJo2fnUIjporlg0MHvfSHJRbPL9SQ/dkwVAwAAAAAAAACMzCTJpAfwWfWLGqGlhYOq6qwk3zK7/JXuvnEba1SS75xdXt3d7zrSvNn9988unzD7HgAAAAAAAAAAHNeW2Tnou+bGrz04qKq7VtX9qurko1jj3klOn433L5h78PkZSe51tEUCAAAAAAAAAMBYLTMcdP7s56eTvK+qvreq3pvkk0k+kOTGqvq7qnp+Vd1xkzXuPze+esF+88/vv+ksAAAAAAAAAIDjzHRAH3bW+hLXPnv288NJLkny748w595JXpDkiVX1bd193WHP7zk3vnbBftds8r2FquqMBVNOuTXrAQAAAAAAAADAXrDMcNCXz36eleTrknwqycVJ3pDkM0nOSfKzSR6T5AFJXltVD+vu+RDYnebGn1uw3+fnxpt1ItrMNYunAAAAAAAAAADAsCzzWLE7zH6elGSS5DHd/bLuvqG7b+7u9yR5bJIrZvO+McmFh61x27nxgQX73Tw3vt02awYAAAAAAAAAgNFYZuegL+ZQQOi13f2uwyd097SqfiIb3YOS5ElJXnfYGgeduGC/k+bGN93KWhcdQ3ZKkitv5ZoAAAAAAAAAAHvCNJVJatVlLDQdQI1Ds8xw0GdzKBx0xWaTuvtvquojSU5P8uAjrHHQoqPC7jA3XnQE2eE1XLvV8yp/8QAAAAAAAAAAGJ5lHit2zdx4y/DN3Nx7HHZ//ntnLFhjvvvPNZvOAgAAAAAAAACA48QyOwf9TQ51AjphwdyDz7902P2r5sZnLVhj/vn7FswFAAAAAAAAADhuTHvjs9cNocahWWbnoD+dG993wdz7zH5+5LD7f5/kutl434I1Hj63xocXFQcAAAAAAAAAAGO3zHDQ5UlumY0v3GxSVe1LcvLs8u3zz7q7k7xxdnlWVZ2/yRrn51DnoDfOvgcAAAAAAAAAAMe1pYWDuvsTSV4xu3xkVX3P4XOq6k5JXjx362VHWOrFOXTc2CVVdbvD1rhdkktml186bD0AAAAAAAAAADhurS95/ecn+Y4kX5nk1VX10CRvSPKZJOckeU4Odfx5aXdfefgC3f2BqnpRkouTPCjJO6rqhUk+lI3jyp6T5NzZ9F/q7g8u8fcBAAAAAAAAABicSSqT1KrLWGgINQ7NUsNB3X1DVT06G0eMnZnkP8w+h/u1JD+6xVLPTXKPJE/LRhDoNUeYc2mS5x1TwQAAAAAAAAAAMCJLO1bsoO5+X5KvT/ITSf5Pkk8mOZDk2iS/k+QR3f307r5lizWm3f30bHQhemOS62ZrXDe7/vbufkZ3T5f6ywAAAAAAAAAAwIAs+1ixJEl3fz7Ji2afY1nnTUnetCNFAQAAAAAAAAAcJxwrdvxaeucgAAAAAAAAAABgNYSDAAAAAAAAAABgpISDAAAAAAAAAABgpNZXXQAAAAAAAAAAAMvVnUy7Vl3GQt2rrmB8dA4CAAAAAAAAAICREg4CAAAAAAAAAICRcqwYAAAAAAAAAMDITVKZZO8fKzaEGodG5yAAAAAAAAAAABgp4SAAAAAAAAAAABgp4SAAAAAAAAAAABip9VUXAAAAAAAAAADAck2ylskAesgMocah8UYBAAAAAAAAAGCkhIMAAAAAAAAAAGCkHCsGAAAAAAAAADBy3ZVp16rLWKgHUOPQ6BwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjtb7qAgAAAAAAAAAAWK5JKpPUqstYaAg1Do3OQQAAAAAAAAAAMFLCQQAAAAAAAAAAMFKOFQMAAAAAAAAAGLlJr2XSe7+HzBBqHBpvFAAAAAAAAAAARko4CAAAAAAAAAAARko4CAAAAAAAAAAARmp91QUAAAAAAAAAALBc01SmA+ghM02tuoTR2ft/6gAAAAAAAAAAwLYIBwEAAAAAAAAAwEgJBwEAAAAAAAAAwEitr7oAAAAAAAAAAACWa5rKJLXqMhaaDqDGodE5CAAAAAAAAAAARko4CAAAAAAAAAAARsqxYgAAAAAAAAAAIzfptUx67/eQGUKNQ+ONAgAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASK2vugAAAAAAAAAAAJZrmso0teoyFhpCjUOjcxAAAAAAAAAAAIyUcBAAAAAAAAAAAIyUY8UAAAAAAAAAAEZumrVMBtBDZjqAGofGGwUAAAAAAAAAgJESDgIAAAAAAAAAgJESDgIAAAAAAAAAgJFaX3UBAAAAAAAAAAAs16TXMum930NmCDUOjTcKAAAAAAAAAAAjJRwEAAAAAAAAAAAj5VgxAAAAAAAAAICRm6YyHUAPmWlq1SWMzt7/UwcAAAAAAAAAALZFOAgAAAAAAAAAAEZKOAgAAAAAAAAAAEZqfdUFAAAAAAAAAACwXNOuTLpWXcZC0wHUODQ6BwEAAAAAAAAAwEgJBwEAAAAAAAAAwEg5VgwAAAAAAAAAYOQmWctkAD1khlDj0HijAAAAAAAAAAAwUsJBAAAAAAAAAAAwUsJBAAAAAAAAAAAwUuurLgAAAAAAAAAAgOWa9lqmvfd7yAyhxqHxRgEAAAAAAAAAYKSEgwAAAAAAAAAAYKQcKwYAAAAAAAAAMHKTrGUygB4yQ6hxaLxRAAAAAAAAAAAYKeEgAAAAAAAAAAAYKeEgAAAAAAAAAAAYqfVVFwAAAAAAAAAAwHJNk0y6Vl3GQtNVFzBCOgcBAAAAAAAAAMBICQcBAAAAAAAAAMBIOVYMAAAAAAAAAGDkplnLdAA9ZIZQ49B4owAAAAAAAAAAMFLCQQAAAAAAAAAAMFLCQQAAAAAAAAAAMFLrqy4AAAAAAAAAAIDlmvRaJr33e8gMocah8UYBAAAAAAAAAGCkhIMAAAAAAAAAAGCkhIMAAAAAAAAAAGCk1lddAAAAAAAAAAAAyzVNZZpadRkLDaHGodE5CAAAAAAAAAAARko4CAAAAAAAAAAARsqxYgAAAAAAAAAAIzfttUx67/eQmQ6gxqHxRgEAAAAAAAAAYKSEgwAAAAAAAAAAYKSEgwAAAAAAAAAAYKTWV10AAAAAAAAAAADLNUllMoAeMpPUqksYnb3/pw4AAAAAAAAAAGyLcBAAAAAAAAAAAIyUY8UAAAAAAAAAAEZu2pVp7/0ju4ZQ49DoHAQAAAAAAAAAACMlHAQAAAAAAAAAACMlHAQAAAAAAAAAACO1vuoCAAAAAAAAAABYrmnWMhlAD5npAGocGm8UAAAAAAAAAABGSjgIAAAAAAAAAABGyrFiAAAAAAAAAAAjN+21THvv95AZQo1D440CAAAAAAAAAMBICQcBAAAAAAAAAMBICQcBAAAAAAAAAMBIra+6AAAAAAAAAAAAlmuSyiS16jIWGkKNQ6NzEAAAAAAAAAAAjJRwEAAAAAAAAAAAjJRjxQAAAAAAAAAARm7aa5n23u8hM4Qah8YbBQAAAAAAAACAkRIOAgAAAAAAAACAkRIOAgAAAAAAAACAkVpfdQEAAAAAAAAAACzXNMkkteoyFpquuoAR0jkIAAAAAAAAAABGSjgIAAAAAAAAAABGyrFiAAAAAAAAAAAjN+21THvv95AZQo1D440CAAAAAAAAAMBICQcBAAAAAAAAAMBICQcBAAAAAAAAAMBIra+6AAAAAAAAAAAAlmvSa5n03u8hM4Qah8YbBQAAAAAAAADguFBVD6yqn6qqK6rqmqq6uao+V1UfqKpXVdXDlrDn91TVW6rqo1X1xar6cFW9uqrO3+m9jkTnIAAAAAAAAAAARq+q9id5+BEenZjkfrPPD1TVq5M8o7sPHON+t03y2iSPPezRV80+T66qF3T3zx3LPosIBwEAAAAAAAAAjFynMk2tuoyFerk1nj77eV02QjtvT/KPSU5I8pAkPz6b85RsZGqefIz7XZpDwaA/SfLLs73PSfJTSe6b5Ger6qPd/Ypj3GtTwkEAAAAAAAAAABwPrs5GKOf13T057Nm7Zh2D3pHkq5M8qape2t1v385GVbUvh8JF/yvJBXN7XllVlyf5v0m+MskvVtXruvtT29lrkbVlLAoAAAAAAAAAAHtJdz+2u3/3CMGgg89vzEb3oIOeeAzb/eTs5yTJvzt8z9lez5ld3jXJ049hry0JBwEAAAAAAAAAwIa3zY3vu50FquqOSb5ldvnW7r52k6lvSPKZ2fjC7ex1NBwrBgAAAAAAAAAwcpNey6T3fg+ZPVDjiXPj6TbXOC/JSbPx/s0mdfeBqnpXkkclOa+qbtPdt2xzz02t/I0CAAAAAAAAAMAesW9ufPU217j/rVjj4PP1JPfb5n5b0jkIAAAAAAAAAIC96JSq2nLCFkd23WpVtZbk4rlbv7vNpe45N15U3zWHfe+qbe65KeEgAAAAAAAAAAD2oiuPYs7W6aFb59nZOBIsSS7r7vdsc507zY0/t2Du5+fGd9zmfltaajioqvoop+7v7m9asNajk/xwNv4Q7p7khiTvTvLy7n7zsdQJAAAAAAAAADBm01SmvZM5muWY7mjW5+hV1b4kvzC7vD7JjxzDcredGx9YMPfmufHtjmHPTe35zkG10R/qV7MRDJp3epILklxQVS9P8qzuPtowEgAAAAAAAAAAe9uDk3xs2ZtU1dckuSwbOZqbk3x3d3/8GJb84tz4xAVzT5ob33QMe25qt8JBL03y37d4/vktnv18DgWD/iLJLyb5UJL7JvnJJOfOnt+Q5HnHXCkAAAAAAAAAAHvBx7r72mVuUFX3TvIHSe6aZJLkSd29/xiX/ezceNFRYXeYGy86gmxbdiscdH13/79b+6WqOjMbAaAkeU+Sh3f3wZTUlVV1eZL9SR6U5DlV9cru/tCOVAwAAAAAAAAAMBKTVCZZW3UZC0128VixqjotyR8mOS1JJ3lad1+2A0vPB5rOyEbmZTP3nBtfswN7/yt7/U/92TkUYLpoLhiUJOnuLyS5aHa5nuTHdrE2AAAAAAAAAAAGqKruluStSe4zu3VRd//GDi1/1dz4rAVzDz7/UpK/3aH9/4U9Gw6qqkrynbPLq7v7XUeaN7v//tnlE2bfAwAAAAAAAACAf6Wq7pzkLUnOnt26uLtfsoNbXJnkwGy8b4s6Tkxy/sHvdPeBzeYeiz0bDkpy7ySnz8aLznI7+PyMJPdaVkEAAAAAAAAAAAxXVd0+ye8neeDs1n/q7hfu5B7d/dkkfzS7/NaqOmOTqRcm+bLZeCeOMzui3QoHfVdVvb+qbqqqz1bVB6vq16vqm7f4zv3nxlcvWH/++f03nQUAAAAAAAAAcBzqrkwH8Ole3oFRs049lyV56OzWL3f387axzlOrqmefF2wy7UWzn+tJXlJVJxy2xt2SHAwlfSrJK25tHUdrfVkLH+bsw67PnH2+v6p+L8lTu/vTh82559z42gXrX7PJ947KFgmtg065tWsCAAAAAAAAALCn/HaSR83Gf5zk0qp6wBbzD3T3B7azUXf/cVW9Jsn3JHl8krdW1YuTXJfknCTPTfKVs+kXd/c/bWefo7HscNAXklyejVZJVyf5XJK7Z+M8tWclOTnJE5K8saoe2d23zH33TnPjzy3Y5/Nz4ztuo85rFk8BAAAAAAAAAGDALpwbPyLJXy2Y/w9J7nUM+z0tG8eGfXuSb5595k2T/Fx3v+wY9lho2eGg07v7U0e4/9aquiTJFUnOzUZY6EeS/Le5ObedGx9YsM/Nc+PbbadQAAAAAAAAAICxmmYt06ytuoyFhlDj0erum5J8R1U9OclTk3xdkrsk+XiStyf5le5+57LrWGo4aJNg0MFnH6+qJyZ5X5ITk1yUfxkO+uLc+MQFW500N77p1taZxUeRnZLkym2sCwAAAAAAAADAHtDdtUPrvCrJq27F/N9K8ls7sfd2LLtz0Ja6+++q6q1JviPJmVV1WndfN3v82bmpi44Ku8PceNERZEeq49qtnlftyN8NAAAAAAAAAADYVXuhF9NVc+PT58bzgZ0zFqwx3/nnmmOuCAAAAAAAAAAARmClnYNmNmvLMx8aOmvBGvPP33ds5QAAAAAAAAAAjMukK5OdOVVrqYZQ49Dshc5BZ8+Nr5sb//3c9b4Fazx89vMjST68M2UBAAAAAAAAAMCwrTQcVFX3SfLI2eXfdfdHDj7r7k7yxtnlWVV1/iZrnJ9DnYPeOPseAAAAAAAAAAAc95YWDqqqx1XVpseWVdVXJHldktvMbr3kCNNenORLs/ElVXW7w9a4XZJLZpdfms0HAAAAAAAAAGDOtGswH3bWpuGdHXBJkttU1euTvDMbx33dlORuSb4pybOSnDyb+2c5Qjiouz9QVS9KcnGSByV5R1W9MMmHktw3yXOSnDub/kvd/cFl/TIAAAAAAAAAADA0ywwHJclpSS6afTbz+iTP6O6bN3n+3CT3SPK0bASBXnOEOZcmed4x1AkAAAAAAAAAAKOzzHDQDyTZl+QhSe6TjY5BX5bkc0muSfLnSX69u9+51SLdPU3y9FkHoh9O8uDZWjcmuTLJy7r7imX9EgAAAAAAAAAAMFRLCwd19/4k+3dwvTcledNOrQcAAAAAAAAAcLzoXsu011Zdxo1MB5cAACAASURBVEI9gBqHxhsFAAAAAAAAAICREg4CAAAAAAAAAICRWtqxYgAAAAAAAAAA7A2TVCapVZex0BBqHBqdgwAAAAAAAAAAYKSEgwAAAAAAAAAAYKSEgwAAAAAAAAAAYKTWV10AAAAAAAAAAADLNe1k2rXqMhaa9qorGB+dgwAAAAAAAAAAYKSEgwAAAAAAAAAAYKQcKwYAAAAAAAAAMHLTXsu0934PmSHUODTeKAAAAAAAAAAAjJRwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjNT6qgsAAAAAAAAAAGC5OpVpatVlLNQDqHFodA4CAAAAAAAAAICREg4CAAAAAAAAAICRcqwYAAAAAAAAAMDITboy6b1/ZNcQahwanYMAAAAAAAAAAGCkhIMAAAAAAAAAAGCkhIMAAAAAAAAAAGCk1lddAAAAAAAAAAAAyzXttUx77/eQGUKNQ+ONAgAAAAAAAADASAkHAQAAAAAAAADASAkHAQAAAAAAAADASK2vugAAAACAeY/ff9W2vnf5vrN3uBIAAACA8ZimMu1adRkLTbP3axwanYMAAAAAAAAAAGCkhIMAAAAAAAAAAGCkHCsGAAAAAAAAADBynRrEkV09gBqHRucgAAAAAAAAAAAYKeEgAAAAAAAAAAAYKeEgAAAAAAAAAAAYqfVVFwAAAAAAAAAAwHJNO5l2rbqMhaa96grGR+cgAAAAAAAAAAAYKeEgAAAAAAAAAAAYKceKAQAAAAAAAACM3LTXMu2930NmCDUOjTcKAAAAAAAAAAAjJRwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjtb7qAgAAAOB49Pj9V626hNHxTjd3+b6zV10CAAAAsGLTrky7Vl3GQkOocWh0DgIAAAAAAAAAgJESDgIAAAAAAAAAgJFyrBgAAAAAAAAAwMhNU5lm7x/ZNYQah0bnIAAAAAAAAAAAGCnhIAAAAAAAAAAAGCnhIAAAAAAAAAAAGKn1VRcAAAAAAAAAAMBydVemXasuY6EeQI1Do3MQAAAAAAAAAACMlHAQAAAAAAAAAACMlGPFAAAAAAAAAABGbjqQY8WGUOPQ6BwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjJRwEAAAAAAAAAAAjtb7qAgAAAGAvePz+q1ZdAizNbv/9vnzf2bu6HwAAALDYtCvTrlWXsdAQahwanYMAAAAAAAAAAGCkhIMAAAAAAAAAAGCkHCsGAAAAAAAAADByjhU7fukcBAAAAAAAAAAAIyUcBAAAAAAAAAAAIyUcBAAAAAAAAAAAI7W+6gIAAAAAAAAAAPj/7N1/sKZnWR/w7xWOIRFwtCJmmqBQYpvslGlpgcGBslqpQxFXQq0j/hgzEAE7kw5pR0LVjhH8oyKd4tAfhEqNdVTGVjCrQ7S0xZ3WFl0cbOmsUZuG6cbIT2WEEMjAXv3jPDt5u+7uu3v2PPu+z30+n5l73vt5n/u5n+/JbM7555rrnlcnOZXadIy1etMBBqRzEAAAAAAAAAAADEpxEAAAAAAAAAAADMqxYgAAAAAAAAAAgzvVlVO9/ceKLSHj0ugcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg9rZdAAAAAA4myPHTmw6ArBHm/j/9+jhQ5f9nQAAALAkp1I51bXpGGudyvZnXBqdgwAAAAAAAAAAYFCKgwAAAAAAAAAAYFCKgwAAAAAAAAAAYFA7mw4AAAAAAAAAAMC8TnXlVNemY6y1hIxLo3MQAAAAAAAAAAAMSnEQAAAAAAAAAAAMyrFiAAAAAAAAAACDc6zYwaVzEAAAAAAAAAAADEpxEAAAAAAAAAAADEpxEAAAAAAAAAAADGpn0wEAAAAAAAAAAJhZV7pr0ynWW0LGhdE5CAAAAAAAAAAABqU4CAAAAAAAAAAABuVYMQAAAGZz5NiJTUcADoi9/r45evjQPicBAACA7XQqlVPZ/iO7lpBxaXQOAgAAAAAAAACAQSkOAgAAAAAAAACAQSkOAgAAAAAAAACAQe1sOgAAAAAAAAAAAPM61ZVTXZuOsdYSMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAox4oBAAAAAAAAAAyuu9ILOLJrCRmXRucgAAAAAAAAAAAYlOIgAAAAAAAAAAAYlOIgAAAAAAAAAAAY1M6mAwAAAAAAAAAAMK9TnZzq2nSMtU71phOMR+cgAAAAAAAAAAAYlOIgAAAAAAAAAAAYlGPFAAAAWOvIsRObjgAwi73+fjt6+NA+JwEAAIB5dVd6AceKLSHj0ugcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg9rZdAAAAAAAAAAAAObVXTnVtekYa/UCMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAox4oBAAAAAAAAAAyuk3RvOsV6C4i4ODoHAQAAAAAAAADAoBQHAQAAAAAAAADAoBQHAQAAAAAAAADAoHY2HQAAAAAAAAAAgHmdSuVUatMx1lpCxqXROQgAAAAAAAAAAAalOAgAAAAAAAAAAAblWDEAAIAD5MixE5uOADCEvf4+PXr40D4nAQAAgAvTXene/iO7lpBxaXQOAgAAAAAAAACAQSkOAgAAAAAAAACAQSkOAgAAAAAAAACAQe1sOgAAAAAAAAAAAPM61ZVTXZuOsdYSMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAoxUEAAAAAAAAAADConU0HAAAAAAAAAABgXt27Y9stIePS6BwEAAAAAAAAAACDUhwEAAAAAAAAAACD2khxUFW9sap6ZXzdBTzzwqp6Z1U9UFWfmz7fWVUvvAyRAQAAAAAAAACWqyu9gJGuTf+XGs5lLw6qqr+S5LaLWF9VdWeSe5LclOTaJFdOnzcluaeq7qwq/zoAAAAAAAAAAGDFZS0OqqorkvzrJDtJPnqBj/1okldO8w8keVmSZ0+fH5i+f2WSN+xfUgAAAAAAAAAAWL7L3Tno7yd5VpJ7k7x93eKquj7Ja6fL9yd5bne/o7uPd/c7kjxv+j5Jbq+qp82QGQAAAAAAAAAAFumyFQdV1ZPzaHef70vyyAU8dlt2uwwlya3d/fDqze7+TJJbp8udJK/Zh6gAAAAAAAAAAEPprsUM9tfl7Bz0L5M8PslPd/evr1tcVZXkW6bLe7v7fWdbN33/e9PlS6bnAAAAAAAAAADgwLssxUFV9W1JXpzkj5N8/wU+9tQk107zY2vWnr5/XZKnXGw+AAAAAAAAAAAY0c76JZemqr40yU9Ml7d398cu8NEbV+b3rlm7ev/GJPdf4DsAAAAAAAAAAIZ3qiunFnBk1xIyLs3sxUFJ3pjkmiT/LcnbL+K5J6/MH1iz9uQ5nrsgVXXdmiXXXOyeAAAAAAAAAACwabMWB1XV85LckuTzSV7d3X0Rjz9hZf7pNWsfWpk//iLecdrJ9UsAAAAAAAAAAGBZrphr46q6MsnbklSSf9bdH7zILa5amT+yZu3nVuZXX+R7AAAAAAAAAABgSHN2DvqBJDcm+b9JfmQPz392ZX7lmrWPXZk/vId3rTuK7Jokx/ewLwAAAAAAAADAxnXvjm23hIxLM0txUFXdkOQfTZe3dvdD51t/Dp9ama87KuxxK/N1R5D9Gd39wPnuV9XFbgkAAAAAAAAAABs3V+eg27Lb7ef/JPniqvr2s6z5yyvzv1lV10zzX56KiVYLdq5b877Vzj8nLzYsAAAAAAAAAACMaK7ioNPHfP2FJD9/Aev/8cr8qUkeSnJi5bsb1jy/ev93L+B9AAAAAAAAAAAHxu6xYtt/cpJjxfbfFZsOcB73J3lwmh9es/b50+cfJvnQXIEAAAAAAAAAAGBJZikO6u6bu7vON5L8yMojX79y70PTHp3k7un+DVX1nLO9a/r+dOegu6fnAAAAAAAAAADgwNvmzkFJ8uYkn5/mb6mqq1dvTtdvmS4/P60HAAAAAAAAAACS7Gw6wPl09+9X1ZuSvC7JM5P8RlX9WJL7kjwtye1JnjEt//Hu/oPNJAUAALi8jhw7sekIAOzBXn9/Hz18aJ+TAAAAcNB0KrsHPW23zvZnXJqtLg6a/GCSJyV5eXYLgd5xljVvT/JDlzMUAAAAAAAAAABsu20/Vizdfaq7X5Hkm5LcneTBJI9Mn3cneVF339LdpzYYEwAAAAAAAAAAts7GOgd19x1J7riI9e9O8u658gAAAAAAAAAAjKqnse2WkHFptr5zEAAAAAAAAAAAsDeKgwAAAAAAAAAAYFCKgwAAAAAAAAAAYFA7mw4AAAAAAAAAAMC8uivdtekYay0h49LoHAQAAAAAAAAAAINSHAQAAAAAAAAAAINyrBgAAAAAAAAAwOh6GttuCRkXRucgAAAAAAAAAAAYlOIgAAAAAAAAAAAOhKp6UlW9uKpeX1X3VNXHq6qncdc+vueOlX3Xja/br/eejWPFAAAAAAAAAAA4KD6y6QCXm+IgAAAAAAAAAIDRdaW7Np1ivcub8WSS303yjTO/5+lr7t8/58sVBwEAAAAAAAAAcFC8PsnxJMe7+yNV9ZTMXJzT3f9rzv3XURwEAAAAAAAAAMCB0N0/vOkMl5viIAAAAAAAAACAwXXvjm23hIxLc8WmAwAAAAAAAAAAAPNQHAQAAAAAAAAAADOpqvdU1Seq6pGq+mhV/XpVva6qvuxyvN+xYgAAAAAAAAAAbKNrquq8C7r7gcuU5VK8YGX+FUkOT+P2qrq5u++e8+WKgwAAAAAAAAAABtdd6T5/oc02OCPj8Qt4ZJt/qA8m+aUkv5XkwSRflOQvJfnOJN+Y5EuT/GJVfXN33zNXCMVBAAAAAAAAAACwv97c3Xec5fvfTPJvq+pVSd6a5DFJfrKqru/uh+cIojgIAAAAAAAAAIBt9KwkH950iL3o7k+uuX9nVT0zyS1J/nySlyb52TmyKA4CAAAAAAAAAGAbfbi7H9h0iBndmd3ioCQ5HMVBAAAAAAAAAADsSdfu2HZLyLh/TqzMr53rJVfMtTEAAAAAAAAAAHBOl6USSnEQAAAAAAAAAABcfodW5g/O9RLHigEAAGzQkWMn1i8C4MDb69+Lo4cPrV8EAADAgdC9O7bdEjLuo1etzI/N9RKdgwAAAAAAAAAA4AJV1c1V1dO44yz3n15V16/Z41VJXjFdfjjJu/Y/6S6dgwAAAAAAAAAAOBCq6nlJVgt3nrgyv76qbl5d39137eE1fz3JT1bVe5Pck+SDST6R3TqdG5J8V5K/Na39QpJXdfdDe3jPBVEcBAAAAAAAAADAQXFLku85x73nTmPVXXt8z2OSvGAa5/KJJK/o7qN7fMcFURwEAAAAAAAAADC6nsa2W0LG9d6d3SPDvjbJM5J8ZZIvT1JJ/jjJ/0jyq0nu6u4/nTuM4iAAAAAAAAAAAA6E7r45yc2XuMddOU9Hoe7+aJJ/M42Nu2LTAQAAAAAAAAAAgHnoHAQAAAAAAAAAMLjuSndtOsZaS8i4NDoHAQAAAAAAAADAoBQHAQAAAAAAAADAoBQHAQAAAAAAAADAoHY2HQAAAAAAAAAAgMugNx2ATdA5CAAAAAAAAAAABqU4CAAAAAAAAAAABuVYMQAAAAAAAACAwXVXumvTMdZaQsal0TkIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGtbPpAAAAAAAAAAAAzKynse2WkHFhdA4CAAAAAAAAAIBBKQ4CAAAAAAAAAIBBOVYMAAAAAAAAAGB4NY1tt4SMy6JzEAAAAAAAAAAADEpxEAAAAAAAAAAADEpxEAAAAAAAAAAADGpn0wEAAAAAAAAAAJhZT2PbLSHjwugcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg3KsGAAAAAAAAADA6BwrdmDpHAQAAAAAAAAAAINSHAQAAAAAAAAAAINSHAQAAAAAAAAAAIPa2XQAAAAAAAAAAABm1km6Np1ivd50gPHoHAQAAAAAAAAAAINSHAQAAAAAAAAAAINSHAQAAAAAAAAAAIPa2XQAAAAAAAAAAADm1b07tt0SMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAox4oBAAAAAAAAAIyup7HtlpBxYXQOAgAAAAAAAACAQSkOAgAAAAAAAACAQSkOAgAAAAAAAACAQe1sOgAAAAAAAAAAADPr2h3bbgkZF0bnIAAAAAAAAAAAGJTiIAAAAAAAAAAAGJRjxQAAAAAAAAAABldJqjedYj2Hiu0/nYMAAAAAAAAAAGBQioMAAAAAAAAAAGBQioMAAAAAAAAAAGBQO5sOAAAAAAAAAADAzHoa224JGRdG5yAAAAAAAAAAABiU4iAAAAAAAAAAABiUY8UAAAAAAAAAAEbXtTu23RIyLozOQQAAAAAAAAAAMCjFQQAAAAAAAAAAMCjFQQAAAAAAAAAAMKidTQcAAAAAAAAAAGBmPY1tt4SMC6NzEAAAAAAAAAAADEpxEAAAAAAAAAAADMqxYgAAAAAAAAAAo3Os2IGlcxAAAAAAAAAAAAxKcRAAAAAAAAAAAAxKcRAAAAAAAAAAAAxqZ9MBAAAAAAAAAACYWU9j2y0h48LoHAQAAAAAAAAAAINSHAQAAAAAAAAAAINyrBgAAAAAAAAAwOi6dse2W0LGhdE5CAAAAAAAAAAABqU4CAAAAAAAAAAABqU4CAAAAAAAAAAABrWz6QAAAAAjOHLsxKYjAMCfsde/T0cPH9rnJAAAAGxa9e7YdkvIuDQ6BwEAAAAAAAAAwKAUBwEAAAAAAAAAwKAcKwYAAAAAAAAAMLqexrZbQsaF0TkIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGtbPpAAAAAAAAAAAAzKuSVG86xXq16QAD0jkIAAAAAAAAAAAGpTgIAAAAAAAAAAAG5VgxAACAfXD08KE9PXfk2Il9TgIAj9rr3ycAAAAG1LU7tt0SMi6MzkEAAAAAAAAAADAoxUEAAAAAAAAAADAoxUEAAAAAAAAAADConU0HAAAAAAAAAABgZj2NbbeEjAujcxAAAAAAAAAAAAxKcRAAAAAAAAAAAAzKsWIAAAAAAAAAAKNzrNiBpXMQAAAAAAAAAAAMSnEQAAAAAAAAAAAMSnEQAAAAAAAAAAAMameujavqS5K8KMmzkjwzybVJviLJ1Uk+meREkncneXt3f+IC9nthklcmefa0z8eS/FaSt3X3r87xMwAAAAAAAAAAjKB6d2y7JWRcmtmKg7JbxPPz57j3FUkOT+P7q+q7uvvXzrawqirJW7NbGLTq2iQ3Jbmpqt6W5NXd7Z8IAAAAAAAAAABM5iwOSpKTSd6b5Len+R9l9yiz65J8a5KXJnlikqNV9azu/p9n2eNH82hh0AeSvDHJfUmeluS1SZ4x3f9Ykh+a7ScBAAAAAAAAAICFmbM46L3d/VXnuf8LVfWSJO9KcmWSH07yd1YXVNX12S0ASpL3J3l+dz88XR+vqqNJjmX32LLbq+qnuvu+/fwhAAAAAAAAAAAWr6ex7ZaQcWGumGvj7v7CBaz5pST3TpfPP8uS2/JoAdOtK4VBp5//TJJbp8udJK/ZW1oAAAAAAAAAABjPbMVBF+Gh6fOq1S+rqpJ8y3R5b3e/72wPT9//3nT5kuk5AAAAAAAAAAA48DZaHFRVNyb5q9PlvWfcfmqSa6f5sTVbnb5/XZKn7Es4AAAAAAAAAABYuJ31S/ZXVX1xdot+vjnJa5M8Zrr1E2csvXFlfmbh0JlW79+Y5P5LyQgAAAAAAAAAMJSexrZbQsaFuSzFQVV1c5KfOs+SNyX52TO+e/LK/IE1rzh5jucuSFVdt2bJNRe7JwAAAAAAAAAAbNpl7xx0ht9J8uru/s2z3HvCyvzTa/Z5aGX++D3kOLl+CQAAAAAAAAAALMvlKg76pSTvn+ZXJ3lakm9LclOSn62q13T3r5zxzFUr80fW7P+5lfnVlxIUAAAAAAAAAGA01btj2y0h49JcluKg7v5kkk+ufHU8yTuq6ruT/HSSu6vqFd1918qaz67Mr1zziseuzB/eQ8R1R5Fdk93MAAAAAAAAAACwGBs9Vqy7f6aqXpzdLkL/vKru7u4/mW5/amXpuqPCHrcyX3cE2dlyPHC++1V1sVsCAAAAAAAAAMDGXbHpAEnunj4fl+Rvr3y/WrBz3Zo9Vjv/nNyPUAAAAAAAAAAAsHQb7Rw0+djK/KtX5idW5jes2WP1/u9eciIAAAAAAAAAgJF07Y5tt4SMC7MNnYOuXZmvHgl2f5IHp/nhNXs8f/r8wyQf2p9YAAAAAAAAAACwbNtQHPR3V+YfPD3p7s6jR47dUFXPOdvD0/enOwfdPT0HAAAAAAAAAAAH3mzFQVV1c1VdtWbNbUleNF1+KMl/PWPJm5N8fpq/paquPuP5q5O8Zbr8/LQeAAAAAAAAAIAz9QIG+25nxr3vSPJPq+oXs1v0c192jw17QpKnJ/nOJM+d1j6S5Hu7+/OrG3T371fVm5K8Lskzk/xGVf3YtNfTktye5BnT8h/v7j+Y8ecBAAAAAAAAAIBFmbM4KEn+XJLvnca5PJDk5d39H89x/weTPCnJy7NbCPSOs6x5e5IfuoScAAAAAAAAAAAwnDmLg74hyQuSfH2SG5N8ZZIvT/LZJB9J8jtJfiXJL3T3Z861SXefSvKKqQPRK5M8K8kTk3w8yfEkd3b3PTP+HAAAAAAAAAAAsEizFQd1933ZPf7rzn3a791J3r0fewEAAAAAAAAAHCTVu2PbLSHj0lyx6QAAAAAAAAAAAMA8FAcBAAAAAAAAAMCgZjtWDAAAAAAAAACALdHT2HZLyLgwOgcBAAAAAAAAAMCgFAcBAAAAAAAAAMCgFAcBAAAAAAAAAMCgdjYdAAAAAAAAAACAmXVSvekQF2AJGRdG5yAAAAAAAAAAABiU4iAAAAAAAAAAABiU4iAAAAAAAAAAABjUzqYDAAAAAAAAAAAws57GtltCxoXROQgAAAAAAAAAAAalOAgAAAAAAAAAAAblWDEAAAAAAAAAgNE5VuzA0jkIAAAAAAAAAAAGpTgIAAAAAAAAAAAGpTgIAAAAAAAAAAAGtbPpAAAAAAAAAAAAzKt6d2y7JWRcGp2DAAAAAAAAAABgUIqDAAAAAAAAAABgUIqDAAAAAAAAAABgUIqDAAAAAAAAAABgUIqDAAAAAAAAAABgUIqDAAAAAAAAAABgUDubDgAAAAAAAAAAwMx6GttuCRkXRucgAAAAAAAAAAAYlOIgAAAAAAAAAAAYlGPFAAAAAAAAAAAGV707tt0SMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAoxUEAAAAAAAAAADConU0HAAAAAAAAAADgMuhNB2ATdA4CAAAAAAAAAIBBKQ4CAAAAAAAAAIBBOVYMAAAAAAAAAGB0nWUcK7aEjAujcxAAAAAAAAAAAAxKcRAAAAAAAAAAAAxKcRAAAAAAAAAAAAxqZ9MBAAAADrKjhw/t6bkjx07scxIAttle/14AAADAadW7Y9stIePS6BwEAAAAAAAAAACDUhwEAAAAAAAAAACDcqwYAAAAAAAAAMDoehrbbgkZF0bnIAAAAAAAAAAAGJTiIAAAAAAAAAAAGJTiIAAAAAAAAAAAGNTOpgMAAAAAAAAAADCv6t2x7ZaQcWl0DgIAAAAAAAAAgEEpDgIAAAAAAAAA4ECoqidV1Yur6vVVdU9Vfbyqehp3zfTOb6+qX6uqP6qqz1bVh6rqZ6rqOXO870yOFQMAAAAAAAAAGF1PY9vNn/Ejs79hUlVXJfl3SV58xq2vnsZ3VNUd3f2GOXPoHAQAAAAAAAAAwEF0Msl/mHH/t+fRwqD3JnlJkmcneUWS+7Jbt/P6qrplxgw6BwEAAAAAAAAAcGC8PsnxJMe7+yNV9ZQk9+/3S6rqcJLvmC5/OclN3f2F6fp4VR1N8ttJvirJG6vq33f3J/c7R6JzEAAAAAAAAAAAB0R3/3B3/0p3z3282Gunzy8k+XsrhUGnc3w8ye3T5Zdlt5vQLBQHAQAAAAAAAACMrhc0Fq6qHp/kG6bL93T3A+dY+s4kfzrNXzpXHsVBAAAAAAAAAACwf56d5LHT/Ni5FnX3I0ned/qZqvqiOcIoDgIAAAAAAAAAgP1z48r83jVrT9/fSfI1c4TZmWNTAAAAAAAAAAC4RNdU1XkXnOfIrk168sp8Xb6TZzx3Yr/DKA4CAAAAAAAAABhc9e7YdmdkPH4hj8yT5JI8YWX+6TVrH1qZP36GLI4VAwAAAAAAAACAfXTVyvyRNWs/tzK/eoYsOgcBAAAAAAAAALCVnpXkw5sOsQefXZlfuWbtY1fmD8+QRXEQAAAAAAAAAMDwehrb7v/P+OHufmBDSS7Fp1bm644Ke9zKfN0RZHviWDEAAAAAAAAAANg/qwVN161Z++SV+ckZsigOAgAAAAAAAACAfXRiZX7DmrWn738+yf+eI4ziIAAAAAAAAAAA2D/HkzwyzQ+fa1FVXZnkOaef6e5HzrX2UigOAgAAAAAAAAA4CHoBYwDd/akk/2m6fEFVnetosZcm+ZJp/q658igOAgAAAAAAAACAC1RVN1dVT+OOcyx70/S5k+RfVNVjztjjiUl+bLr8ZJKfnCXsFAAAAAAAAAAAAIZXVc9Lcv3KV09cmV9fVTevru/uu/bynu7+z1X1jiTfnuRIkvdU1ZuTPJjk6Ul+MMlXTctf191/spf3XAjFQQAAAAt09PChPT135NiJfU4CwMXY6+9vAAAAuFTVu2PbXYaMtyT5nnPce+40Vt11Ce96eXaPDXtRkq+fxqpTSd7Q3XdewjvWcqwYAAAAAAAAAADss+5+uLu/Kcl3JnlPko8meSTJySQ/l+R53X3H3Dl0DgIAD4vzrQAAIABJREFUAAAAAAAA4EDo7puT3HyJe9yVi+go1N0/l91ioI3QOQgAAAAAAAAAAAalcxAAAAAAAAAAwOh6GttuCRkXRucgAAAAAAAAAAAYlOIgAAAAAAAAAAAYlGPFAAAAAAAAAAAGV707tt0SMi6NzkEAAAAAAAAAADAoxUEAAAAAAAAAADAoxUEAAAAAAAAAADConU0HAAAAAAAAAABgZj2NbbeEjAujcxAAAAAAAAAAAAxKcRAAAAAAAAAAAAzKsWIAAAAAAAAAAKNzrNiBpXMQAAAAAAAAAAAMSnEQAAAAAAAAAAAMSnEQAAAAAAAAAAAMamfTAQAAAAAAAAAAmFdNY9stIePS6BwEAAAAAAAAAACDUhwEAAAAAAAAAACDcqwYAAAAAAAAAMDoehrbbgkZF0bnIAAAAAAAAAAAGJTiIAAAAAAAAAAAGJTiIAAAAAAAAAAAGNTOpgMAAAAAAAAAADCzTqo3HeICLCHjwugcBAAAAAAAAAAAg1IcBAAAAAAAAAAAg3KsGAAAwAFy9PChPT135NiJfU4CsGx7/X0KAAAAG9NZxpFdS8i4MDoHAQAAAAAAAADAoBQHAQAAAAAAAADAoBQHAQAAAAAAAADAoHY2HQAAAAAAAAAAgMugNx2ATdA5CAAAAAAAAAAABqU4CAAAAAAAAAAABqU4CAAAAAAAAAAABrWz6QAAAAAAAAAAAMyrendsuyVkXBqdgwAAAAAAAAAAYFCKgwAAAAAAAAAAYFCOFQMAAAAAAAAAGF1PY9stIePC6BwEAAAAAAAAAACDUhwEAAAAAAAAAACDUhwEAAAAAAAAAACD2tl0AAAAALbf0cOH9vTckWMn9jkJwP7a6+83AAAAWJrq3bHtlpBxaXQOAgAAAAAAAACAQSkOAgAAAAAAAACAQTlWDAAAAAAAAABgdD2NbbeEjAujcxAAAAAAAAAAAAxKcRAAAAAAAAAAAAxKcRAAAAAAAAAAAAxqZ9MBAAAAAAAAAACYV/Xu2HZLyLg0OgcBAAAAAAAAAMCgFAcBAAAAAAAAAMCgZi0Oqqq/VlU/UFX3VNXJqvpcVX26qn6/qu6qqr9xkfu9sKreWVUPTHs9MF2/cK6fAQAAAAAAAABg8XpBg321M9fGVXUsyfPPcuvKJF8zje+pqp9Jckt3P3KevSrJW5O88oxb1ya5KclNVfW2JK/ubv9MAAAAAAAAAAAg83YOunb6fDDJTyT51iTPTvK1Sf5Bkj+c7n93krvW7PWjebQw6ANJXjbt9bLpOtP9N+xDbgAAAAAAAAAAGMJsnYOS3JvkB5L8Ynd/4Yx775s6Bv1Gkr+Y5GVV9a+6+7+cuUlVXZ/ktdPl+5M8v7sfnq6PV9XRJMeSPDPJ7VX1U9193ww/DwAAAAAAAAAALMpsxUHd/eI19z9eVf8wyS9PX31rkj9THJTktjya89aVwqDT+3ymqm5N8t+nda9JcuulZAcAAGB/HD18aM/PHjl2Yh+TAKO7lN83AAAAcCD0NLbdEjIuzJzHil2IX1+ZP+3Mm1VVSb5lury3u993tk2m739vunzJ9BwAAAAAAAAAABxomy4OunJlfuos95+a5NppfmzNXqfvX5fkKZcWCwAAAAAAAAAAlm+2Y8Uu0OGV+b1nuX/jmvs5x/0bk9y/11AAAAAAAAAAACOp3h3bbgkZl2ZjxUFVdUWS16189QtnWfbklfkDa7Y8eY7nLiTLdWuWXHMx+wEAAAAAAAAAwDbYZOeg25I8e5q/q7vff5Y1T1iZf3rNfg+tzB9/kVlOrl8CAAAAAAAAAADLcsUmXlpVh5P8k+nyo0m+7xxLr1qZP7Jm28+tzK/eYzQAAP4fe/cfbN1V1gf8+4RLQhIUMyLNaKBaYgmoMAihoISgKLUEMaJVsVUDSUGdQRFUsDgVQ4vDrxEG8RdGIkprUYGAoAULRmT4ER2m2iEQAmgTMWj4oSTkh+E+/ePsd97D67333Pu+99xz9r6fz8yas/bZa6/1XIas3HPy3GcBAAAAAAAwGQdeOaiqvirJ64a1b0vyXd398W2G3zrXP3nB1KfM9W/ZY1iLjiE7M8lVe5wTAAAAAAAAAGB99KoDYBUONDmoqr4iyVuSnJHkc0me0N1X7vDIZ+b6i44KO32uv+gIss/T3dfvdL+q9jIdAAAAAAAAAACshQM7VqyqvjTJHyX50sxy0Z7U3a9b8Nh80s5ZC8bOV/+5bu8RAgAAAAAAAADAtBxI5aCqunuStyb5V8NbT+3uV+3i0ffP9c9ZMHb+/tV7CA8AAAAAAAAAYNKqO9Xrf67YGGIcm6VXDqqquyX5X0nuN7z1rO5++S4f/2iSjw398xeMfcTw+jdJ/movMQIAAAAAAAAAwBQtNTmoqk5L8qYkXzu89d+6+/m7fb67O8kVw+U5VfXQbdZ5aI5WDrpieA4AAAAAAAAAAA61pSUHVdXJSV6X5OuHt17a3T99HFO9JMkdQ/9lVXXqMeucmuRlw+Udw3gAAAAAAAAAADj0NpY49/9I8uih/7Ykl1XVV+8w/vbuvubYN7v7mqp6UZJnJXlwkndW1fOTfDjJvZM8M8kDh+Ev7O4P7dcPAAAAwOq84fz7LR60jx535fsPdD2YsoP+5xcAAADYhR7auhtDjCOzzOSgx8/1vzHJXywY/9dJvnybe89Oco8kT8osEei3txhzWZLjqUwEAAAAAAAAAACTtLRjxfZTd29298VJLkhyRZKPJbl9eL0iyWO6+5Lu3lxhmAAAAAAAAAAAsFaWVjmou2sJc745yZv3e14AAAAAAAAAgCmrnrV1N4YYx2YUlYMAAAAAAAAAAIC9kxwEAAAAAAAAAAATJTkIAAAAAAAAAAAmamPVAQAAAAAAAAAAsGQ9tHU3hhhHRuUgAAAAAAAAAACYKMlBAAAAAAAAAAAwUZKDAAAAAAAAAABgojZWHQAAAAAAAAAAAMtVPWvrbgwxjo3KQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIcKwYAAABJ3nD+/Q50vcdd+f4DXY/D7aD//w0AAACsoR7auhtDjCOjchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgoyUEAAAAAAAAAADBRG6sOAAAAAAAAAACA5aqetXU3hhjHRuUgAAAAAAAAAACYKMlBAAAAAAAAAAAwUY4VAwAAAAAAAACYuh7auhtDjCOjchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgoyUEAAAAAAAAAADBRG6sOAAAAAAAAAACA5atedQSsgspBAAAAAAAAAAAwUZKDAAAAAAAAAABgohwrBgAAACvwhvPvt+oQ1tbjrnz/cT3nf1MAAACAHXTP2robQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwURurDgAAAAAAAAAAgOWqnrV1N4YYx0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGOFQMAAAAAAAAAmLoe2robQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwURurDgAAAAAAAAAAgOWqzVlbd2OIcWxUDgIAAAAAAAAAgImSHAQAAAAAAAAAABPlWDEAAABgrbzh/PutOgQAAACA6emhrbsxxDgyKgcBAAAAAAAAAMBESQ4CAAAAAAAAAICJkhwEAAAAAAAAAAATtbHqAAAAAAAAAAAAWK7qWVt3Y4hxbFQOAgAAAAAAAACAiZIcBAAAAAAAAAAAE+VYMQAAAAAAAACAqeuetXU3hhhHRuUgAAAAAAAAAACYKMlBAAAAAAAAAAAwUZKDAAAAAAAAAABgojZWHQAAAAAAAAAAAMtVPWvrbgwxjo3KQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERtrDoAAAAAAAAAAAAOQK86AFZB5SAAAAAAAAAAAJgoyUEAAAAAAAAAADBRjhUDAAAAAAAAAJi46llbd2OIcWxUDgIAAAAAAAAAgImSHAQAAAAAAAAAABMlOQgAAAAAAAAAACZqY9UBAAAAAAAAAACwZN2ztu7GEOPIqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmyrFiAAAAAAAAAAATVz1r624MMY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEbaw6AAAAAAAAAAAAlqyHtu7GEOPIqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmyrFiAAAAAAAAAAATVz1r624MMY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEbaw6AAAAAAAAAAAAlmyzZ23djSHGkVE5CAAAAAAAAAAAJkpyEAAAAAAAAAAATJRjxQAAAAAAAAAApq6Htu7GEOPIqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmSnIQAAAAAAAAAABM1MaqAwAAAAAAAAAAYLkqSfWqo1isVh3ABKkcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJsqxYgAAAAAAAAAAU9dJegTnio0gxLFROQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAA6dqrpXVb2oqq6uqpur6pNV9d6q+vGqOu0E535OVfUu2yP36Ufa0sYyJwcAAAAAAAAAYA10Ur3qIHbhgGKsqguSvDrJ3ebePi3JuUO7pKoe090fOZiIlkdyEAAAAAAAAAAAh0ZVPSDJazJLBropyc8leXuSU5N8T5L/lOQ+Sd5UVed2900nuOTXLLj/0ROcf0eSgwAAAAAAAAAAOExeklli0B1JHt3d75q797aq+lCSFyQ5J8nTk1x6Iot19/89kedP1EmrXBwAAAAAAAAAgAPQI2pLVFXnJnnkcHnZMYlBR7w4ydVD/2lVdeflRrVckoMAAAAAAAAAADgsLpzrv3KrAd29meRVw+UZOZpMNEqSgwAAAAAAAAAAOCzOG15vTvLnO4y7cq7/8OWFs3ySgwAAAAAAAAAAOCzuO7xe29137DDuA1s8c1yq6q1V9Ymqur2q/q6q/riqnlVVZ5zIvLu1cRCLAAAAAAAAAACwOtWd6l51GAsdE+OZVbXj+O6+ftdzV90lyd2Hyx2f6+5PVdXNSU5Pcs/drrGNb5rrf0mS84f2zKq6qLuvOMH5dyQ5CAAAAAAAAACAdXTVLsbsnD30+b5grn/TLsYfSQ666x7WmPeXSV6f5L1JPpbkzknuk+Q/JHl0ki9K8ntV9a3d/QfHucZCkoMAAAAAAAAAADgM7jLXv30X428bXk89jrVe0t3P2eL99yR5VVU9JckvJ7lTkl+rqrO7+5bjWGchyUEAAAAAAAAAAKyjc5PcsI/z3TrXP3kX408ZXvectNPdn15w/1eq6sFJLknypUken+TVe11nNyQHAQAAAAAAAABM3ebQ1t3nx3hDd1+/j7N/Zq6/m6PCTh9ed3ME2fH4lcySg5Lk/CwpOeikZUwKAAAAAAAAAADrpLtvTXLjcHnWTmOr6owcTQ66bkkhvX+u/2VLWkNyEAAAAAAAAAAAh8bVw+vZVbXTiVvnbPHMfqslzft5HCsGAAAAAAAAADBx1Z3qXnUYCx1AjH+a5LzMqgI9KMl7thl3/lz/nUuK5X5z/Y8taQ2VgwAAAAAAAAAAODReP9d/4lYDquqkJN8/XH46yduXFMtT5vpXLmkNyUEAAAAAAAAAABwO3f3eJO8YLi+uqodtMewZSe479F/a3f80f7OqLqqqHtpzjn24qr6mqs7eKY6qekqSi4fLG5K8bg8/xp44VgwAAAAAAAAAgMPkRzM7KuzUJG+pqudlVh3o1CTfk+TJw7hrkrz4OOZ/UJJfq6q3J/mDJH+Z5BOZ5emck+Q/JvnmYeznkjylu28+vh9lMclBAAAAAAAAAABT10NbdwcQY3e/r6q+O8lvJfnCJM/bYtg1SS7o7s8c5zJ3SvJNQ9vOJ5Jc3N1vOM41dkVyEAAAAAAAAAAAh0p3v7Gq7p9ZFaELkpyV5PYk1yb5nSS/0N2fPc7p35zZkWEPS/LAJP8iyRcnqSSfTPJ/kvxhksu7+x9P5OfYDclBAAAAAAAAAAAcOt3910mePrS9PHd5kst3uP93SX59aCsnOQgAAAAAAAAAYPI6aeeKHUYnrToAAAAAAAAAAABgOSQHAQAAAAAAAADAREkOAgAAAAAAAACAidpYdQAAAAAAAAAAACxX9aytuzHEODYqBwEAAAAAAAAAwERJDgIAAAAAAAAAgIlyrBgAAAAAAAAAwNR1z9q6G0OMI6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFFLTQ6qqntU1WOr6tKq+oOqurGqemiXH8d831JVr62q66vqtuH1tVX1LUsIHwAAAAAAAABgEmpzPI39tbHk+T++H5NUVSX55SRPPubWlyX59iTfXlW/muQHu7v3Y00AAAAAAAAAABi7gzxW7LokbznOZ/9rjiYGvS/JE5I8ZHh93/D+k5M890QCBAAAAAAAAACAKVl25aBLk1yV5Kru/nhVfXmSj+5lgqo6O8lPDpd/luQR3X3LcH1VVb0hyZVJHpzkmVX1yu7+8H4EDwAAAAAAAAAwCd2ztu7GEOPILLVyUHf/THf/fnefyPFiP5ajSUxPnUsMOrLGZ5M8dbjcSPK0E1gLAAAAAAAAAAAm4yCPFduzqqok3zZcfqC7373VuOH9Dw6XFw7PAQAAAAAAAADAobbWyUFJviLJlw39KxeMPXL/rCRfvqyAAAAAAAAAAABgLDYWD1mp+871P7Bg7Pz9+yb56P6HAwAAAAAAAAAwQj20dTeGGEdm3ZOD7jnXv37B2Ou2eW6hqjprwZAz9zIfAAAAAAAAAACsg3VPDvqCuf5NC8bePNe/6x7XuW7xEAAAAAAAAAAAGJd1Tw66y1z/9gVjb5vrn7qEWAAAAAAAAAAARqm6U73+Z3aNIcaxWffkoFvn+icvGHvKXP+WPa6z6BiyM5Nctcc5AQAAAAAAAABgpdY9Oegzc/1FR4WdPtdfdATZ5+nu63e6X1V7mQ4AAAAAAAAAANbCSasOYIH5pJ2zFoydr/5z3RJiAQAAAAAAAACAUVn3ykHvn+ufs2Ds/P2rlxALAAAAAAAAAMA4dc/auhtDjCOz7pWDPprkY0P//AVjHzG8/k2Sv1pWQAAAAAAAAAAAMBZrnRzU3Z3kiuHynKp66FbjhvePVA66YngOAAAAAAAAAAAOtbVODhq8JMkdQ/9lVXXq/M3h+mXD5R3DeAAAAAAAAAAAjugkmyNoysHsu41lTl5VD09y9txbd5/rn11VF82P7+7Lj52ju6+pqhcleVaSByd5Z1U9P8mHk9w7yTOTPHAY/sLu/tC+/QAAAAAAAAAAADBiS00OSnJJkh/Y5t7XD23e5duMfXaSeyR5UmaJQL+9xZjLkvz03kMEAAAAAAAAAIBpGsOxYunuze6+OMkFSa5I8rEktw+vVyR5THdf0t2bKwwTAAAAAAAAAADWylIrB3X3RUku2sf53pzkzfs1HwAAAAAAAADAYVDdqe5Vh7HQGGIcm1FUDgIAAAAAAAAAAPZOchAAAAAAAAAAAEyU5CAAAAAAAAAAAJiojVUHAAAAAAAAAADAknWS7lVHsdgIQhwblYMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEOVYMAAAAAAAAAGDqukdyrNgIYhwZlYMAAAAAAAAAAGCiJAcBAAAAAAAAAMBESQ4CAAAAAAAAAICJ2lh1AAAAAAAAAAAALNnm0NbdGGIcGZWDAAAAAAAAAABgoiQHAQAAAAAAAADARDlWDAAAAAAAAABg4qo71b3qMBYaQ4xjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwURurDgAAAAAAAAAAgCXrnrV1N4YYR0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGOFQMAAAAAAAAAmLyRHCuWMcQ4LioHAQAAAAAAAADAREkOAgAAAAAAAACAiZIcBAAAAAAAAAAAE7Wx6gAAAAAAAAAAAFiy7llbd2OIcWRUDgIAAAAAAAAAgImSHAQAAAAAAAAAABPlWDEAAAAAAAAAgKnbHNq6G0OMI6NyEAAAAAAAAAAATJTkIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFEbqw4AAAAAAAAAAIDlqu5U96rDWGgMMY6NykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiHCsGAAAAAAAAADB13bO27sYQ48ioHAQAAAAAAAAAABMlOQgAAAAAAAAAACZKchAAAAAAAAAAAEzUxqoDAAAAAAAAAABgyTZ71tbdGGIcGZWDAAAAAAAAAABgoiQHAQAAAAAAAADARDlWDAAAAAAAAABg6jpJj+DIrhGEODYqBwEAAAAAAAAAwERJDgIAAAAAAAAAgImSHAQAAAAAAAAAABO1seoAAAAAAAAAAABYtk66Vx3ELowhxnFROQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAJiojVUHAAAAAAAAAADAknXP2robQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMeKAQAAAAAAAABM3WbP2robQ4wjo3IQAAAAAAAAAABMlOQgAAAAAAAAAACYKMlBAAAAAAAAAAAwURurDgAAAAAAAAAAgCXrzVlbd2OIcWRUDgIAAAAAAAAAgImSHAQAAAAAAAAAABPlWDEAAAAAAAAAgKnrnrV1N4YYR0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKI2Vh0AAAAAAAAAAABLttmztu7GEOPIqBwEAAAAAAAAAAATJTkIAAAAAAAAAAAmyrFiAAAAAAAAAABT1z1r624MMY6MykEAAAAAAAAAADBRkoMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEbaw6AAAAAAAAAAAADkD3qiNgBVQOAgAAAAAAAACAiZIcBAAAAAAAAAAAE+VYMQAAAAAAAACAqesex7FiY4hxZFQOAgAAAAAAAACAiZIcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJmpj1QEAAAAAAAAAALBkm5tJba46isU2RxDjyKgcBAAAAAAAAAAAEyU5CAAAAAAAAAAAJsqxYgAAAAAAAAAAU9c9a+tuDDGOjMpBAAAAAAAAAAAwUZKDAAAAAAAAAABgoiQHAQAAAAAAAADARG2sOgAAAAAAAAAAAJase9bW3RhiHBmVgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgInaWHUAAAAAAAAAAAAs2WYn1auOYrHNEcQ4MioHAQAAAAAAAADAREkOAgAAAAAAAACAiXKsGAAAAAAAAADAxHVvpntz1WEsNIYYx0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKI2Vh0AAAAAAAAAAABL1kk2e9VRLDaCEMdG5SAAAAAAAAAAAJgoyUEAAAAAAAAAADBRjhUDAAAAAAAAAJi67llbd2OIcWRUDgIAAAAAAAAAgImSHAQAAAAAAAAAABMlOQgAAAAAAAAAACZqY9UBAAAAAAAAAACwZJubSTZXHcVimyOIcWRUDgIAAAAAAAAAgImSHAQAAAAAAAAAABPlWDEAAAAAAAAAgKnrnrV1N4YYR0blIAAAAAAAAAAAmCjJQQAAAAAAAAAAMFGSgwAAAAAAAAAAYKI2Vh0AAAAAAAAAAADL1Zub6WyuOoyFenP9YxwblYMAAAAAAAAAAGCiJAcBAAAAAAAAAMBEOVYMAAAAAAAAAGDqumdt3Y0hxpFROQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAJiojVUHAAAAAAAAAADAknUnm73qKBbrEcQ4MioHAQAAAAAAAADAREkOAgAAAAAAAACAiXKsGAAAAAAAAADA1HUn2Vx1FIs5Vmzfja5yUFXdq6peVFVXV9XNVfXJqnpvVf14VZ226vgAAAAAAAAAAGBdjKpyUFVdkOTVSe429/ZpSc4d2iVV9Zju/sgq4gMAAAAAAAAAgHUymspBVfWAJK/JLDHopiTPTvJ1SR6V5BXDsPskeVNV3XUlQQIAAAAAAAAAwBoZU+Wgl2RWJeiOJI/u7nfN3XtbVX0oyQuSnJPk6UkuPfgQAQAAAAAAAADWT292unrVYSzUvf4xjs0oKgdV1blJHjlcXnZMYtARL05y9dB/WlXd+SBiAwAAAAAAAACAdTWK5KAkF871X7nVgO7eTPKq4fKMHE0mAgAAAAAAAACAQ2ksx4qdN7zenOTPdxh35Vz/4UneurSIAAAAAAAAAADGojeTbK46isV6BDGOzFiSg+47vF7b3XfsMO4DWzyzUFWdtWDImbudCwAAAAAAAACA9VdV90ryI0kuSHKvJLcluTbJa5L8Ynd/dp/W+Z4kT0xy/8xOw7ohyTuSvLy7370fa+xk7ZODquouSe4+XF6/09ju/lRV3Zzk9CT33MMy1x1neAAAAAAAAAAAjExVXZDk1UnuNvf2aUnOHdolVfWY7v7ICaxxlyS/k+Sxx9z6l0P73qp6Tnc/93jX2I2Tljn5PvmCuf5Nuxh/8/B61yXEAgAAAAAAAADAiFXVAzKrDnS3zHJRnp3k65I8KskrhmH3SfKmqjqR/JPLcjQx6O1JLkzykCQXJ/lwZnk7l1bVJSewxkJrXzkoyV3m+rfvYvxtw+upe1hjUZWhM5NctYf5AAAAAAAAAADWRm92unrVYSzUfSAxviSzKkF3JHl0d79r7t7bqupDSV6Q5JwkT09y6V4XqKrzk3zvcPnGJN/e3Z8brq+qqjck+fPMjjN7QVX9bnd/+rh+mgXGUDno1rn+ybsYf8rwestuF+ju63dqmZ31BgAAAAAAAADAiFXVuUkeOVxedkxi0BEvTnL10H9aVd35OJYDYvLXAAAXS0lEQVT6yeH1c0l+eC4xKEnS3TcmeeZweUZm1YSWYgzJQZ+Z6++mVNPpw+tujiADAAAAAAAAAODwuHCu/8qtBnT3ZpJXDZdn5Ggy0a4MR5E9arh861CYZiuvTfKPQ//xe1ljL9Y+Oai7b01y43B51k5jq+qMHE0Oum6ZcQEAAAAAAAAAMDrnDa83Z3as13aunOs/fI9rPCRHT766crtB3X17kncfeeY4KxQttPbJQYMjpZrOrqqNHcads8UzAAAAAAAAAACHW2+Opy3XfYfXa7v7jh3GfWCLZ/a6xrHz7LTORpKv3OM6u7JTos06+dPMMrdOT/KgJO/ZZtz5c/137uP6dzrS+du//dt9nBYA4KhbP+dUVAAAAI66/vrtTh4AADh+x/w37zttN47puS23Jr3qKBa7LbfOX55ZVTuO3+HIrn+mqu6S5O7D5Y7PdfenqurmzHJV7rnbNQbz4xfFN38y1j2TvH+Pay00luSg1yf5qaH/xGyRHFRVJyX5/uHy00nevo/rf8mRzkMe8pB9nBYAAAAAALZ2z3v+5qpDAACm70uS/PWqg+BgXJW3rTqE43HVLsbsnD30+b5grr+bv9o+khx01z2ssdd1bp7r73WdXRnFsWLd/d4k7xguL66qh20x7Bk5Wpbppd39TwcSHAAAAAAAAAAAY3CXuf7tuxh/2/B66hLXuW2uv9d1dmUslYOS5EczOyrs1CRvqarnZVYd6NQk35PkycO4a5K8eJ/X/ssk5w79v0/yuX2eHxinM3M0U/XcJDesMBZguuw1wEGw1wAHwV4DHAR7DXAQ7DXAQVjmXnOnHD095y/3cV7W0w3Z+5FY6+LM7H+OxvyZZSfvYvwpw+stS1znlLn+XtfZldEkB3X3+6rqu5P8VpIvTPK8LYZdk+SC7v7MPq99W5I/2885gfE75mzLG/ZyliXAbtlrgINgrwEOgr0GOAj2GuAg2GuAg3AAe42jxA6J7r4jyVj/XbWMuOfzSXZzhNfpw+tujiA73nVOn+vvdZ1dGcWxYkd09xuT3D/Jz2eWCPTZJJ/OLHHnmUke2N3Xri5CAAAAAAAAAADWUXffmuTG4fKsncZW1Rk5mrhz3R6Xmk9s2nGdfH5lp72usyujqRx0RHf/dZKnDw0AAAAAAAAAAHbr6iTnJTm7qjaG6kpbOeeYZ/bi/dvMs9M6dyRZSkGcUVUOAgAAAAAAAACAE/Cnw+vpSR60w7jz5/rv3OMaVyW5fYt5Pk9VnZzkoUee6e7btxt7IiQHAQAAAAAAAABwWLx+rv/ErQZU1UlJvn+4/HSSt+9lge7+TJL/PVx+U1Vtd7TY45N84dB/3V7W2AvJQQAAAAAAAAAAHArd/d4k7xguL66qh20x7BlJ7jv0X9rd/zR/s6ouqqoe2nO2WepFw+tGkpdX1Z2OmePuSZ4/XH46ya/t7SfZPclBAAAAAAAAAAAcJj+a5JbMEnfeUlU/VVUPrapvqKpfSfKCYdw1SV58PAt099uS/PZw+bgkb62qx1XVg6vqiUneneRew/1ndfenjveHWWRjWRMDAAAAAAAAAMC66e73VdV3J/mtzI71et4Ww65JcsFwRNjxetIw/2OSfMPQ5m0meW53/8oJrLGQ5CCA49Td1yepVccBTJu9BjgI9hrgINhrgINgrwEOgr0GOAj2Gli+7n5jVd0/sypCFyQ5K8ntSa5N8jtJfqG7P3uCa9yS5IKq+t4kFyV5QJIvSvLxzI42+4XufteJrLEb1d3LXgMAAAAAAAAAAFiBk1YdAAAAAAAAAAAAsBySgwAAAAAAAAAAYKIkBwEAAAAAAAAAwERJDgIAAAAAAAAAgImSHAQAAAAAAAAAABMlOQgAAAAAAAAAACZKchAAAAAAAAAAAEyU5CAAAAAAAAAAAJgoyUEAe1RV96qqH6qq/1lVH6yqm6vq1qq6vqquqKonVNXGHub7qqr65aq6tqpuqaq/r6o/qaqn7GUeYHqG/eZFVXX1sNd8sqreW1U/XlWnrTo+YD1V1ddW1X+uqj+oquuq6raquqmqrqmqy6vqvD3O9y1V9drhd53bhtfXVtW3LOtnAMatql5QVT3XHrmLZ+w1wEJVdfeq+smqemdV3TDsFx+rqvdU1Qur6mG7mMN+A2yrqk6uqour6g+r6m/nPk99sKp+vaoeust57DVwyFTVParqsVV16fCdzI1zn4kuP475TngfqarTquonhu+UPznsZ1cP3znfa68xAeNW3b3qGABGo6ouTfLTSWrB0D9L8h3d/f8WzHdxkpcnOWWbIe9O8tju/sReYwXGraouSPLqJHfbZsgHkzymuz9ycFEB666qrkzyiF0M/c0kl3T37TvMVUl+OcmTd5jnV5P8YPtgCQyq6gGZfR6a/0OHb+juP95mvL0G2JWq+vdJfinJF+8w7IruvnCb5+03wI6q6p5J3pTkaxYM/fkkz9hqr7DXwOFVVTv9M/0b3X3RLufZl32kqu6d2Z52n22G/EOS7+3uN+8mLmD8VA4C2JsvzSwx6OYkv5XkiUkenuTBSb4vyVXDuAcn+aOquut2E1XVv83sF7hTknw8yY8k+TdJ/l2S1w7DHprktVVlv4ZDZPiPaq/JLDHopiTPTvJ1SR6V5BXDsPskedNO+wxwKH3Z8PqxJC9N8p1JHpLkYUmenuRvhvvfl+TyBXP91xz9Iup9SZ4wzPWE4TrD/efuQ9zABAyfW16RWWLQ3+3yMXsNsFBVfX+S384sMejvkvxskm9O8qAkF2T2ncpbk/zTDtPYb4BtDRXc5xOD/iLJRZl9lnp0kksz+044SX4syY9vM5W9BkiS65K85TifPeF9ZPjO+PdzNDHoFZl9t/x1mX3XfFNm3z3/TlXd/zjjBEZG5SCAPaiq5yf5RJJf6u7PbHH/Tkn+e5LvGt76L939z35BGz5sXp3k7CT/mORru/vDx4x5eZIfHi5/oLtftW8/CLDWqurtSR6Z5I4kj+judx1z/yeSvGC4/JnuvvRgIwTWVVX9fpJXJfm97v7cFvfvnuSdSf718NYjuvsdW4w7O7PfVTYyqwDyiO6+Ze7+aUmuzCwh+o4k5xz7uwxw+FTV0zL7S/oPJHldkp8abm1ZOcheA+xGVd03s/8QdkqSdyT51u7+h23GnrxVZUT7DbBIVX1Hkt8dLt+V5LxjP1NV1YOGe3dO8qkk9+juO+bu22vgEKuqn83sD8iv6u6PV9WXJ/nocHtXlYP2ax+pquck+Znh8ie7+4XH3H9Ykj8Z1nl7d3/jrn9QYLRUogDYg+5+Zne/YKvEoOH+5zJL6DnyRdR3bjPVt2eWGJQkP7fNh8CfyOxD5pE+cAhU1bmZJQYlyWXHJgYNXpzZh8QkeVpV3fkgYgPWX3c/trtfs1Vi0HD/xiTPmHtru99VfixHjwR66vwXUcM8n03y1OFyI8nTjj9qYAqGYziO/GHED+XoZ6Kd2GuA3XhZZolBNyZ5/HaJQUmyw5Gp9htgka+f6//cVp+puvvPM6vEkSRnJDnnmCH2GjjEuvtnuvv3u/vjJzDNCe8jw3fFPzpcXp3Zd8nHxvquJJcNl98wJD8CEyc5CGCfdfcnMis7myT33mbYhXP9y7eZ57OZHSuUJF9dVV+5LwEC625+f3jlVgO6ezOzyiDJ7MuoRy45JmBa/niu/89+VxnOtv+24fID3f3urSYZ3v/gcHnh8BxweP1ikrtm9hexf7xosL0G2I2qOiezIzCS5BeGROe9zmG/AXbj5Ln+R3YYN/9Hnqcc6dhrgBO1j/vII5N80dD/jeG75K1cPtd//J4DBkZHchDAchz5YLjdL13nDa8f7O4bdpjnyrn+w084Kvj/7d15rDZnWQfg311K6QJCaVlSllAo2g+xoQJSNktJNZElGkSkEqFQQNAQQSSFIgESFdQERNzYDFWSsqi1FiTKYtECCiVgDC1UKGhbFMtSCi20FG7/mDmc8fhu5zsH6Xm/60pO3mdmnnnOfH98v8w7557nYS/YyIdrk3xkQT/5AOyv6UPvWfcqxya509h+34zjUxvH75zkbju7LGCvqqrHJXlUki9l9VlPZQ2wip+ZtN+20aiqI6vqnlV11ApjyBtgFZdO2ndf0G/jBYtO8m+T/bIG2KndypGHzug3y0UZnkEnni/DAUFxEMAuq6rbJ9k3bn5ixvFbZrhhm3l8i+nxfXN7Aetk4//6p6br1s8gH4D9dfKkPeteZN+S45lzXBbBAaiqbpPkVePmmd191YqnyhpgFSeNn19JcklVPaGq/iVDMeKlSb5QVZdV1YvH5y2zyBtgFeckuWZsn1lVN9vaoapOTPLIcfPN3X3N5LCsAXZqt3JkpXHGZ88bs6HJIjgAKA4C2H3Py+aasG+dcfzOSTamebxiyViXT9p32eF1ATdxVXVokqPHzYX50N1fzuabHfIBWElVHZTk+ZNds+5VppniXgVY5reT3DHJB5K8YRvnyRpgFfcaPz+b5NVJ3pTkhC19jk3ykiQfrKpjZowhb4ClxgLn05N8PcmDk3y4qp5YVSdV1alV9eIMM3AckuRjSX5lyxCyBtip3cqRje1ru/vqFce5XVXdYmFPYM9THASwi6rqAUmePW5ekeQPZ3S71aT9tSVDXjtpz3sDDlgf28mHZDMj5AOwquck+ZGxfW53XzSjj3sVYCVV9ZAkT01yY5JndHdv43RZA6zituPn8Ul+KcnVSZ6R5PZJDk1y/yTvHPvcO8nbxmLoKXkDrKS7z01yvwwFz/dJcnaSDyZ5V4YixOsyFAU9pLv/a8vpsgbYqd3KkY1xtvN8edY4wJpRHASwS6rqDkn+PMOsQZ3kSd193Yyuh07aNywZ9vpJ+7CdXSGwB2wnH5LNjJAPwFJVdXKSl4+b/53kmXO6ulcBlqqqQ5K8NsOsqK/s7n/d5hCyBljFEePnLZJ8K8lPdPdruvuq7r5+LHR+VDYLhB6U5DFbxpA3wEqq6uZJfi7Jo7M58/vUHZKcluRhM47JGmCnditHNsbZzvPlWeMAa0ZxELCWqurgqupd+Dl9xd93qyTvyLBkWJKc1d3vndP9G5P2IUuGnk7j+PVVrgXY07aTD8lmRsgHYKGq+sEk52YoYr4+yeO6+/NzurtXAVZxVpJ9Sf4jyUv343xZA6ximhVv6+5/2tqhu7+dYYn3DactGEPeADNV1RFJ3p3khUmOyrB06r4MuXDrJD+e5MIMM5adX1W/vGUIWQPs1G7lyMY423m+PGscYM0oDgLYoao6NMl5Se477npFd798wSlfnbSXTdN4xKS9yhSQwN62nXxINjNCPgBzVdWxSf4uyZEZ3rg/rbvft+AU9yrAQlV1fJIXjJvP6u5rF/WfQ9YAq5hmxTvnderujye5cty8/4Ix5A0wz0uT/OjYPqO7z+zuT3T3Dd19TXe/K8kpSf4+w6xCr6iqEybnyxpgp3YrRzbG2c7z5VnjAGvm4O/1BQB8N3T3jVW1bxeG+s9FB6vq4CRvzfDFMEle393PXTLmFZP2nef2Gtxl0r58SV9gj+vub1TVF5IcnSX5UFVHZvPLm3wAZqqqYzK8/XpMhmVPn9Ld5y45zb0KsMxzMryFelmSw6vq8TP63HvSfnhV3XFsnz8WE8kaYBWXJ9nIjysWdRz73inJ7bfslzfAQlVVSZ48bl7a3WfP6jc+c35RhhmEDhrPec54WNYAO7VbOXJFkgckOaKqbtPdV68wzlXdff2CfsAaUBwErK3u/sR3c/yqOijJn2VYgzpJ3pLkF1a4rq9V1eUZbrqOX9J9evyS/blOYM+5JMlDkxxXVQd3941z+skHYKGqOjrJu5Lcfdz1rO7+0xVOvXjSdq8CzLIx9fzdk5yzQv8XTdrHJrk2sgZYzcezORPQzZb03Ti+9TuUvAGWuUOS247tjy7p+5FJe5oZsgbYqd3KkYuT/PSk3/9ZljX5zsvv95gzBrCGLCsGsP9ek2TjDdm3J/n5cZ37VVw4fv7A5A3aWU6etN+/zesD9qaNfDgim8sVziIfgLmq6tZJ/jbJvcZdz+/uP1jx9M8k+dzYPnlRx2xOu39lks9u5xqBA56sAVbxD5P2Peb2GmwURF+5Zb+8AZaZFhUue6n+5nPOkzXATu1Wjlw4aS8a537ZnJne82U4ACgOAtgPVfWKJE8dN9+T5LHd/c1tDPFXk/bpc37H4UkeN25e3N2Xbvc6gT1pmg9PntVhnLnsiePm1RnWuwdI8p17iHck+eFx129092+ten53d5Lzxs3jq+qkOb/npGy+qXbeeB5wAOju07u7Fv0keenklFMmxz47jiFrgFX8dZKN5y2Pmdepqk5OctS4+Y/TY/IGWMGXklwzth84zqYxz/QP7Z/ZaMgaYKd2MUcuSPKVsf2kcenEWU6ftJctQQ+sAcVBANtUVS/J5lrSH0jyk/uxFuu5ST49tl9QVbPefvudJEdO2sABoLs/lM2H2WdU1QNndHtukn1j+1XbLE4E1lhVHZLhPuPB465Xdfev7cdQv5vNt2BfXVWHbfk9hyV59bh549gfYLtkDbBQd38xyevHzR+rqsdv7VNVt8r/zofXzBhK3gBzjbPBv2PcPCbJC2f1q6ojk0xfvHj7li6yBtipHedId9+Q5PfGzX1JfnVrn/GZ8xnj5vu6+8M7v3Tgpq4UJQOsrqqelc2bqiuT/Gw2K7Dn+eSsP9xX1SOSnJ+hUPPzSX49yYcyFAQ9LZtrwl6Y5GHd/a0d/wOAPaGqTswwlethSb6W5DczzA50WIblDJ8+dr00yf26+6vfi+sEbnqq6i+y+Vb9e5M8O8miL303zJudsKpeluT54+ZHMzwE/3SGJT3OTHLieOxl3X3WDi8dWDPjSxUvHjdP6e4L5vSTNcBCVXW7JBcluWuGP4L9cZK/zDDLxw9lyIqNt+f/qLt/cc448gaYq6qOT/KRJIePu85PcnaSy5IcmuSkDN+v7joef093nzpjHFkDB6iqekiS4ya7js7mi9/vz2bBc5Kku984Z5wd58hYPH1Rku8fd702yZuTfD3JKUnOSnLLcftB3f2xVf6NwN6mOAhgG6rqgixf63WrYzemzp8x3tOS/H6SQ+ac+6Ekj+zuL2zzdwJ7XFU9OsmbknzfnC6XZsiHT/3/XRVwU1dV2/2C9+/dfbc5Yx2U5HVJnrLg/Dckefr4pi3Ad2yjOEjWAEtV1b4MS4wdt6DbnyR5xryZVeUNsExVnZrknAx/0F/kvUke291fnjGGrIEDVFW9McmTVu0/Lsc8a5xdyZGqOi7J3yS555wu1yR5QndvnQUNWFOWFQP4Huru1yW5b4YbvcuSfCPJFzPMFvTMJA9WGAQHpu4+P8kJSV6ZoRDouiRXZ3jj48wkJyoMAr6buvvb3X1GkkdmWPP+c0luGD/PS/KI7n6qB9rATsgaYBXdfUmS+yR5XpJ/TvKlDFlxRZK3JHl4d5+xaMlleQMs093vzjAT2ZlJLkhyVZJvZphZ4zNJ3prkp5KcOqswaBxD1gA7sls5Mj47PjFDpl2U4dnydUk+meGZ8wkKg+DAYuYgAAAAAAAAAABYU2YOAgAAAAAAAACANaU4CAAAAAAAAAAA1pTiIAAAAAAAAAAAWFOKgwAAAAAAAAAAYE0pDgIAAAAAAAAAgDWlOAgAAAAAAAAAANaU4iAAAAAAAAAAAFhTioMAAAAAAAAAAGBNKQ4CAAAAAAAAAIA1pTgIAAAAAAAAAADWlOIgAAAAAAAAAABYU4qDAAAAAAAAAABgTSkOAgAAAAAAAACANaU4CAAAAAAAAAAA1pTiIAAAAAAAAAAAWFOKgwAAAAAAAAAAYE0pDgIAAAAAAAAAgDWlOAgAAAAAAAAAANaU4iAAAAAAAAAAAFhTioMAAAAAAAAAAGBNKQ4CAAAAAAAAAIA1pTgIAAAAAAAAAADWlOIgAAAAAAAAAABYU4qDAAAAAAAAAABgTSkOAgAAAAAAAACANfU/Fk9Xo30BqhkAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 3200x1200 with 2 Axes>"
       ]
@@ -251,34 +248,6 @@
     "plot_ρs()"
    ]
   },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Check the first time step against reference data\n",
-    "\n",
-    "The reference data was obtained with the [sample code](https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp) after making the following changes:\n",
-    "```c++\n",
-    "const int nsteps = 1000;\n",
-    "const int noutput = 1;\n",
-    "```\n",
-    "\n",
-    "Remove the next cell if you changed the parameters at the beginning of this notebook."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "init()\n",
-    "time_loop(1)\n",
-    "ref = np.array([0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.136756, 0.220324, 1.2382, 2.26247, 2.26183, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.26183, 2.26247, 1.2382, 0.220324, 0.136756, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15])\n",
-    "\n",
-    "assert np.allclose(dh.gather_array(ρ.name)[N//2], ref)"
-   ]
-  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -288,12 +257,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAACQcAAAQKCAYAAAD3zl6bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACH3UlEQVR4nOzdfbSkWV0f+u/vnNPdM8MMCjPCwAwKggkQiUGBi1EZ34OKEbhqfIlxAigk93IjN0vgBryMaNaNiuviJUYxEkZdKlEBIQY0GGWiRHTIMsYERhQhzji8IzCvfaar9v3jVGfKTp+u7n1OvTzP+XzWelbvqmf/nv2rOlXPc6r6d/au1loAAAAAAAAAAIDx2Vp3AgAAAAAAAAAAwHIoDgIAAAAAAAAAgJFSHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIKQ4CAAAAAAAAAICRUhwEAAAAAAAAAAAjpTgIAAAAAAAAAABGSnEQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUoqDAAAAAAAAAABgpBQHAQAAAAAAAADASCkOAgAAAAAAAACAkVIcBAAAAAAAAAAAI6U4CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQUBwEAAAAboaouraoXVdXvVNWHqurkbHtfVb2qqv7aunMEAAAAgKGp1tq6cwAAAACOuKr6qiT/MslV5+h2d5Jva6390mqyAgAAAIDhUxwEAAAArFVVXZfkJXN3/XGSG5OcTPLXk3ze3L47k3xua+2PVpYgAAAAAAyY4iAAAABgbarq/07yvbObtyT5jtbar57R5ylJfinJidld17fW/v7qsgQAAACA4VIcBAAAAKxFVX1pkl9PUkn+LMnfbK39+T59vyfJS2c3b0vyqa216UoSBQAAAIABUxwEAAAArFxVbSd5Z5K/kqRlrzDo7efof3WSm+fueqSlxQAAAABgsa11JwAAAAAcSd+YvcKgJPnX5yoMSpLW2i1JPjl316csKzEAAAAAGBPFQQAAAMA6/P259o+eZ8w9c21TIQMAAADAebCsGAAAALBSVXVZkr9Isp3kI0ke0BZ8QVFVO0nuSrIzu+tBrbUPLDVRAAAAABgBMwcBAAAAq/Y3s1cYlCS/vagwaOYRubcw6LYkH1xGYgAAAAAwNoqDAAAAgFX7X+ba7zrPmC+aa/+H8ywoAgAAAIAjT3EQAAAAsGqPnWt/6DxjnjbX/rVDzAUAAAAARk1xEAAAALBq88VBxxZ1rqpHJPlbs5t3J/nZZSQFAAAAAGOkOAgAAABYmaq6f5LPmLvr0ecR9sO59zuMV7fWPnboiQEAAADASCkOAgAAAFbpsWfcflpV3W+/zlX1wiR/e3bzY0m+Z1mJAQAAAMAYKQ4CAAAAVmm+OGg3yackeU1Vfep8p6r6lKr60ST/z+yuSZJva619dCVZAgAAAMBI7Kw7AQAAAOBImS8OelGSf5bkK5P896r690k+kuTqJNckuWTWb5LkOa21N60yUQAAAAAYg2qtrTsHAAAA4IioqncmedTs5kOyt2TYK7L/7Ma3JPmO1tqvriA9AAAAABgdxUEAAADASlTVJUk+mWQ7ycdaa5fP7v+CJP8oyROSPCjJJ5K8M8lrk7yqtXbnejIGAAAAgOGzrBgAAACwKp+TvcKgJPmD03e21t6W5G1ryQgAAAAARm6/KbsBAAAADttj59r/eV1JAAAAAMBRojgIAAAAWJX54qA/2LcXAAAAAHBoFAcBAAAAq6I4CAAAAABWrFpr684BAAAAGLmq2klye5ITSe5JcmlrbXe9WQEAAADA+Jk5CAAAAFiFR2evMChJblIYBAAAAACroTgIAAAAWAVLigEAAADAGlhWDAAAAAAAAACAI6GqPjfJk5N8UZLPTvKAJPckuTXJf0zyqtbabx3CONclecl5dv+S1tpbDzrmfnaWdWAAAAAAAAAAANgUVXVDkiedZdfxJJ812769qn4mybNaa7urzG9ZFAcBAAAAAAAAAHAUXDX799Ykv5jkt5L8WZLtJJ+f5B/P+nxb9mpqvuWQxn3Mgv3vPaRxzsqyYgAAAAAAAAAAjF5V/UqSn07y2tba5Cz7r0jytiR/ZXbXk3qXGJtfVqy1Vl0JH5KtdQ4OAAAAAAAAAACr0Fp7SmvtF85WGDTb/5HszR502tevJrPlUhwEAAAAAAAAAAB73jrXfvi6kjhMioMAAAAAAAAAAGDP8bn2dG1ZHCLFQQAAAAAAAAAAsOeaufZNh3HAqnpLVX20qnar6kNV9daqemFV3e8wjr9w/NbaKsYZtKo6keQxs5sfTnLWtecAAAAAAAAAYMNtJ/m0WfsPW2sn15kMy1VVO0muXHcena7MedRotNZuOawBq2orye8kecLsrse31t7ReazrkrxkQbePJ7m2tfaGnjHO184yDz4ij0ly47qTAAAAAAAAAIBD9PgkXYUPDMaVSW5edxJLVod4rOfl3sKg1/cWBs35wyS/nOT3ktya5FiSv5rkW5N8ZZJPTfLaqvra1tqbDzjWvswcdB6q6nFRHAQAAAAAAADAuHTPisIwVNXVGXlxUGvtUIqDquqaJL+evYl2PpTkr7fWPniA431qa+3j59j/7CQ/Prt5a5JHtNbu6h3vXMwcdH4+fLrxe7/3e3nQgx60zlwAgJH6tsd9z7pTAKBHHeYfJsGG8UdlAGv1M+/4vnWnAACM0Pvf//484QmnJ0a59//CGb+3v/khedADttedxkLv/9AkT/yq/1HP9PgkH1j2mFX115K8Pnt1NCeTfONBCoOS5FyFQbP9r5xNVvOsJA9O8vQkP3uQMfejOOj8/I/16x70oAfl6quvXmcuAMBIXbR96bpTAKDH1ta6M4DlmU7XnQHAkea7aABgBSaLuzAWD3rAdq5+8LF1p3GhPtBau2WZA1TVw5L8uyT3y9574ptbazcsc8w5r8xecVCSXBPFQQAAAAAAAAAA9JimZZrN/0OgaVY3k3FVPTh7S4k9OElL8ozW2utXlkDyzrn2VcsaxJ83AgAAAAAAAABwpFTVFUnekuQzZ3c9t7X206tOYxWDKA4CAAAAAAAAAODIqKpPSfJrSR49u+uFrbUfXUMqj55r37qsQRQHAQAAAAAAAABwJFTVJUn+bZLPnd31T1trP7CmdJ49175hWYPsLOvAAAAAAAAAAABshkmbZtKm605joWXmWFXHk7w+yRfM7vqR1tqLO45zbZJXz25+b2vtujP2PybJXa21PznHMZ6d5Jmzmx+Y5bUUioMAAAAAAAAAADgKfj7JV87av5HkVVX12efov9tae3fHOJ+X5Cer6jeTvDnJHyb5aPbqdB6Z5O8m+YpZ30mSZ7fW7ugY57woDgIAAAAAAAAA4Ch4+lz7S5P8lwX9/3uSh3aOtZ3ky2fbfj6a5JmttTd2jnFeFAcBAAAAAAAAAIzcNC3TtHWnsdAQcjwPb8rekmGfn+SxSR6Y5PIkleRjSf4gya8mub619sllJ6M4CAAAAAAAAACA0Wut1SEd5/ok159j/4eS/KvZtnZb604AAAAAAAAAAABYDsVBAAAAAAAAAAAwUpYVAwAAgIOYTvvitvy9DivU+zoFAAAARqNlmmk2/zuCNoAch8Y3kQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQsKwYAAAAAAAAAMHKT1jJpbd1pLDSEHIfGzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBI7aw7AQAAAAAAAAAAlmualmnautNYaAg5Do2ZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYOSmSSYDWLJruu4ERsjMQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEjtrDsBAAAAAAAAAACWa5qWadq601hoCDkOjZmDAAAAAAAAAABgpBQHAQAAAAAAAADASFlWDAAAAAAAAABg5CatZdI2f8muIeQ4NGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI6U4CAAAAAAAAAAARmpn3QkAAAAAAAAAALBc09m26YaQ49CYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyUZcUAAAAAAAAAAEZumpZJ2rrTWGg6gByHZmUzB1XVFVX1/Kp6W1V9oKpOVtWtVfW7VfVDVfX553GMJ1fV66rqlln8LbPbT17FYwAAAAAAAAAAgCFZycxBVfUNSX4syeVn7HrQbHtCks9K8tR94ivJjyf5zjN2XZXkaUmeVlU/keQ5rTUlZAAAAAAAAAAAkBUUB1XV30vy6uzNUvSh7BUJ/XaSjyW5MsnDk3xtknvOcZjvz72FQb+f5AeTvGcW+/wkj53t/3CSFx/6gwAAAAAAAAAAgAFaanFQVT0qyU9krzDot5J8bWvtE2fp+oqqOr7PMR6RvQKgJHlHkie11u6a3b6xqt6Y5IYkj0vygqp6dWvtPYf5OAAAAAAAAAAAhmySZDKAtZgm605ghLaWfPxXJDmR5CNJnr5PYVCSpLW2u8+u5+XeIqbnzhUGnY67M8lzZzd3knzXQRIGAAAAAAAAAICxWFpxUFU9MsmXzW7+89baRzqOUUm+bnbzptba28/Wb3b/H81uPnUWBwAAAAAAAAAAR9oyZw76hrn2L55uVNX9quqzqury8zjGw5JcNWvfsKDv6f1XJ3no+SYJAAAAAAAAAABjtczioCfO/v1EkndV1bdW1R8k+ViSdyf5SFX9aVW9pKou3ecYj5pr37RgvPn9j9q3FwAAAAAAAADAETMd0Mbh2lnisR89+/d9SV6R5H87S5+HJbkuyddX1d9qrd16xv6HzLVvWTDezfvELVRVVy/ocuWFHA8AAAAAAAAAADbBMouD7j/795FJPifJx5O8MMnrknwyyWOSvDTJVyX57CS/WFVf1FqbLwK7bK59+4Lx7phr7zcT0X5uXtwFAAAAAAAAAACGZZnFQfeZ/XsiySTJV7XW3j63/x1V9ZQkv5K9AqG/meTpSX5prs9Fc+3dBeOdnGtf3JUxAAAAAAAAAMAITVOZpNadxkLTAeQ4NMssDro79xYI/eIZhUFJktbatKq+O3vFQUnyzfnLxUF3z7WPLxjvxFz7rgvMddEyZFcmufECjwkAAAAAAAAAAGu1zOKg23JvcdCb9+vUWvtvVfXnSa5K8vizHOO0RUuF3WeuvWgJsjNzuOVc+6tUpQEAAAAAAAAAMDxbSzz2zXPtcxbfzPV9wBn3z8ddveAY87P/3LxvLwAAAAAAAAAAOCKWOXPQf8u9MwFtL+h7ev+pM+5/51z7kQuOMb//XQv6AgAAAAAAAAAcGdO2t226IeQ4NMucOeg/zLUfvqDvZ87+/fMz7n9vkltn7WsWHONJc8d436LkAAAAAAAAAABg7JZZHPTGJPfM2k/fr1NVXZPk8tnN35rf11prSd4wu/nIqnriPsd4Yu6dOegNszgAAAAAAAAAADjSllYc1Fr7aJKfnN38iqr6pjP7VNVlSV4+d9crz3Kol+fe5cZeUVUXn3GMi5O8Ynbz1BnHAwAAAAAAAAA48iapwWwcrmXOHJQkL0nyZ7P2z1TVK6rqS6rq86rq2iS/l+RvzPb/WGvtxjMP0Fp7d5KXzW4+LsnbqurvVNXjqurvJHnb7P4k+aHW2h8v6bEAAAAAAAAAAMCg7Czz4K21D1fVk7O3xNgjkvzvs+1M/yrJPzrHoV6U5AFJnpHksUlec5Y+r0ry4gMlDAAAAAAAAAAAI7LsmYPSWntX9mYH+u4kv5vkY0l2k9yS5F8n+dLW2jNba/ec4xjT1tozk3xNkjckuXV2jFtnt7+6tfas1tp0mY8FAAAAAAAAAACGZKkzB53WWrsje0uDvWxR3wXHeVOSNx1KUgAAAAAAAAAAR8QklUlq3WksNIQch2bpMwcBAAAAAAAAAADroTgIAAAAAAAAAABGaiXLigEAAAAAAAAAsD6tJdO2+Ut2tbbuDMbHzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBI7aw7AQAAAAAAAAAAlmuSyiS17jQWGkKOQ2PmIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFKWFQMAAAAAAAAAGLlJtjIZwBwyQ8hxaBQHAQAAwDpMp31xW74cOdJ6XzcAAAAAHFm+UQQAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAAAAAAAAAgJFrrTJtte40FmoDyHFozBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAAAAAAAAAAAjN0llks1fsmsIOQ6NmYMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIKQ4CAAAAAAAAAICR2ll3AgAAAAAAAAAALNekbWXSNn8OmSHkODSeUQAAAAAAAAAAGCnFQQAAAAAAAAAAMFKWFQMAAAAAAAAAGLlpKtMBzCEzTa07hdFRHAQAAABDMp32x25t/pc/R8ZBfo4AAAAAcAF8KwgAAAAAAAAAACOlOAgAAAAAAAAAAEbKsmIAAAAAAAAAACM3TWWSWncaC00HkOPQmDkIAAAAAAAAAABGSnEQAAAAAAAAAACMlOIgAAAAAAAAAAAYqZ11JwAAAAAAAAAAwHJN2lYmbfPnkBlCjkPjGQUAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAAAAAAAAAgJGbpjJNrTuNhYaQ49CYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABipnXUnAAAAAAAAAADAck2zlckA5pCZDiDHofGMAgAAAAAAAADASCkOAgAAAAAAAACAkbKsGAAAAAAAAADAyE3aViZt8+eQGUKOQ+MZBQAAAAAAAACAkVIcBAAAAAAAAAAAI6U4CAAAAAAAAAAARmpn3QkAAAAAAAAAALBc01SmA5hDZppadwqjs/k/dQAAAAAAAAAAoIviIAAAAAAAAAAAGCnLigEAAAAAAAAAjNy0VSZt85fsmg4gx6ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSO+tOAAAAALgAW/7OZxR6f47T6eHmAQAAABwZk2xlMoA5ZIaQ49B4RgEAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYOSmbSvTtvlzyAwhx6HxjAIAAAAAAAAAwEgpDgIAAAAAAAAAgJFSHAQAAAAAAAAAACO1s+4EAAAAAAAAAABYrkm2MhnAHDJDyHFoPKMAAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADBy0ySTVutOY6HpuhMYITMHAQAAAAAAAADASCkOAgAAAAAAAACAkVIcBAAAAAAAAAAAI7Wz7gQAAABgI2z5+xkGYCiv0+l03RkAAAAAZ5hmK9MBzCEzhByHxjMKAAAAAAAAAAAjpTgIAAAAAAAAAABGSnEQAAAAAAAAAACM1M66EwAAAAAAAAAAYLkmbSuTtvlzyAwhx6HxjAIAAAAAAAAAwEgpDgIAAAAAAAAAgJGyrBgAAAAAAAAAwMhNU5mm1p3GQkPIcWjMHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIzUzroTAAAAAAAAAABguaZtK5O2+XPITAeQ49B4RgEAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYOQmqUwGMIfMJLXuFEZHcRAAAACbaWvzv6gA9rGO9+90uvoxAQAAAAbAN60AAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADBy01aZtlp3GgsNIcehMXMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcuKAQAAAAAAAACM3DRbmQxgDpnpAHIcGs8oAAAAAAAAAACMlOIgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUjvrTgAAAAAAAAAAgOWatq1M2+bPITOEHIfGMwoAAAAAAAAAACOlOAgAAAAAAAAAAEbKsmIAAAAAAAAAACM3SWWSWncaCw0hx6FRHAQAAMDybJmwdqOUL1Y2RmvrzmB8es830+nh5gEAAACwYXxLCwAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAIzdtW5m2zZ9DZgg5Do1nFAAAAAAAAAAARkpxEAAAAAAAAAAAjJRlxQAAAAAAAAAARm6aZJJadxoLTdedwAiZOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABipnXUnAAAAAAAAAADAck3bVqZt8+eQGUKOQ+MZBQAAAAAAAACAkVIcBAAAAAAAAAAAI2VZMQAAAAAAAACAkZu0rUwGsGTXEHIcGsVBAAAAR8mWD9aHrmq1cVudcQex6se4aq2tNu4gpivOdR2PcdVWfV6cTlc7HgAAAHDk+VYYAAAAAAAAAIAjoao+t6r+SVW9uapurqqTVXV7Vb27qq6vqi9awpjfVFW/VlXvr6q7q+p9VfUzVfXEwx7rbMwcBAAAAAAAAADA6FXVDUmedJZdx5N81mz79qr6mSTPaq3tHnC8i5L8YpKnnLHrM2bbt1TVda217zvIOIsoDgIAAAAAAAAAGLmWyjSbvwx8W26OV83+vTV7RTu/leTPkmwn+fwk/3jW59uyV1PzLQcc71W5tzDoN5P8yGzsxyT5J0kenuSlVfX+1tpPHnCsfSkOAgAAAAAAAADgKLgpe0U5r22tTc7Y9/bZjEFvS/JXknxzVf1Ya+23egaqqmtyb3HRv0nytLkxb6yqNyb5T0k+PckPVtUvtdY+3jPWIlvLOCgAAAAAAAAAAGyS1tpTWmu/cJbCoNP7P5K92YNO+/oDDPf82b+TJP/wzDFnY71gdvN+SZ55gLHOSXEQAAAAAAAAAADseetc++E9B6iqS5N82ezmW1prt+zT9XVJPjlrP71nrPNhWTEAAAAAAAAAgJGbtK1M2ubPIbMBOR6fa087j/GEJCdm7Rv269Ra262qtyf5yiRPqKpjrbV7Osfc19qfUQAAAAAAAAAA2BDXzLVv6jzGoy7gGKf37yT5rM7xzsnMQQAAAAAAAAAAbKIrq+qcHc6xZNcFq6qtJC+cu+sXOg/1kLn2ovxuPiPunZ1j7ktxEAAAAAAAAADAyE1TmbZzF9psgmn+Uo43nkfIYT6o52VvSbAkeX1r7R2dx7lsrn37gr53zLUv7RzvnJa6rFhVtfPc3noex3pyVb2uqm6pqpOzf19XVU9e5mMAAAAAAAAAAGDcquqaJP9sdvNDSf7BAQ530Vx7d0Hfk3Ptiw8w5r42fuag2psf6seTfOcZu65K8rQkT6uqn0jynNZaW3V+AAAAAAAAAAAsxeOTfGDZg1TVX0vy+uzV0ZxM8o2ttQ8e4JB3z7WPL+h7Yq591wHG3NeqioN+LMm/OMf+O86x7/tzb2HQ7yf5wSTvSfLwJM9P8tjZ/g8nefGBMwUAAAAAAAAAYBN8oLV2yzIHqKqHJfl3Se6XZJLkm1trNxzwsLfNtRctFXafufaiJci6rKo46EOttf96oUFV9YjsFQAlyTuSPKm1drpK6saqemOSG5I8LskLqurVrbX3HErGAAAAm2xrqatEb4bqXCq8N26rN67vZ9G2O3+G29t9cUmy0xfbdjpz7fxZtM646p1QuDOuTk37xkuSU5O+uElfXE06c532xq32Z3Hg2FXqPX/3/iwAAABgZpLKJJv/veIknd/TdaiqByf59SQPTtKSPKO19vpDOPR8QdPV2at52c9D5to3H8LY/5NN/6k/L/cWMD13rjAoSdJauzPJc2c3d5J81+pSAwAAAAAAAABgiKrqiiRvSfKZs7ue21r76UM6/Dvn2o9c0Pf0/lNJ/uSQxv9LNrY4qKoqydfNbt7UWnv72frN7v+j2c2nzuIAAAAAAAAAAOB/UlWfkuTXkjx6dtcLW2s/eohD3Jhkd9a+5hx5HE/yxNMxrbXd/foexMYWByV5WJKrZu1Fa7md3n91kocuKyEAAAAAAAAAgCFqrTIdwNbacueEqapLkvzbJJ87u+ufttZ+4DDHaK3dluTfz25+eVVdvU/Xpye576x9GMuZndWqioO+oar+qKruqqrbquqPq+qnqupLzhHzqLn2TQuOP7//Ufv2AgAAAAAAAADgSJrN1PP6JF8wu+tHWmsv7jjOtVXVZtt1+3R72ezfnSQ/WlXbZxzjiiSni5I+nuQnLzSP87WzrAOf4dFn3H7EbPt7VfXLSa5trX3ijD4PmWvfsuD4N+8Td17OUaF12pUXekwAAAAAAAAAADbKzyf5yln7N5K8qqo++xz9d1tr7+4ZqLX2G1X1miTflORvJ3lLVb08ya1JHpPkRUk+fdb9ha21v+gZ53wsuzjoziRvzN5USTcluT3Jp2VvPbXnJLk8yVOTvKGqvqK1ds9c7GVz7dsXjHPHXPvSjjxvXtwFAAAAAAAAAIABe/pc+0uT/JcF/f97koceYLxnZG/ZsK9O8iWzbd40yfe11l55gDEWWnZx0FWttY+f5f63VNUrkrw5yWOzVyz0D5L8f3N9Lppr7y4Y5+Rc++KOPAEAAAAAAAAARmuarUyzte40FhpCjuertXZXkq+pqm9Jcm2Sz0nyqUk+mOS3kvzz1trvLDuPpRYH7VMYdHrfB6vq65O8K8nxJM/NXy4OunuufXzBUCfm2nddYJrJ4qXIrkxyY8dxAQAAAAAAAADYAK21OqTjXJ/k+gvo/3NJfu4wxu6x7JmDzqm19qdV9ZYkX5PkEVX14NbarbPdt811XbRU2H3m2ouWIDtbHreca3/Vobw2AAAAAAAAAABgpdZaHDTzzuwVByXJVUlOFwfNF+xcveAY8zP/3HxIeQEAAAAAAAAAjMKkVSaHM3HOUg0hx6HZhIXa9vupvnOu/cgFx5jf/66DpQMAAAAAAAAAAOOwCcVBj55r3zrXfu/c7WsWHONJs3//PMn7DictAAAAAAAAAAAYtrUWB1XVZyb5itnNP22t/fnpfa21luQNs5uPrKon7nOMJ+bemYPeMIsDAAAAAAAAAIAjb2dZB66qr03y5tbaqX32PzDJLyU5NrvrR8/S7eVJviN7eb6iqp7UWrtr7hgXJ3nF7OapWX8AAIDV29qEiVk3UB1gffDtzud0e7srrJ04trjTIcZNLu6Lm17U9/iS5FRn7PR4389xutP58+992XT+udDWqb7Ard3+v0/auXvSN2Zn3PZd93TF1cnVxmXS9/j2Yqd9cUP5O7NVX2emnc8nAAAAG2vaKtN2gO/rVmQIOQ7N0oqDsle0c6yqXpvkd7K33NddSa5I8sVJnpPk8lnf385ZioNaa++uqpcleWGSxyV5W1X9QJL3JHl4khckeeys+w+11v54WQ8GAAAAAAAAAACGZpnFQUny4CTPnW37eW2SZ7XWTu6z/0VJHpDkGdkrBHrNWfq8KsmLD5AnAAAAAAAAAACMzjKLg749yTVJPj/JZ2ZvxqD7Jrk9yc1J/mOSn2qt/c65DtJamyZ55mwGou9M8vjZsT6S5MYkr2ytvXlZDwIAAAAAAAAAYOha28q0rXjZ6g5tADkOzdKKg1prNyS54RCP96Ykbzqs4wEAAAAAAAAAwNgptwIAAAAAAAAAgJFSHAQAAAAAAAAAACO1tGXFAAAAAAAAAADYDJNUJql1p7HQEHIcGjMHAQAAAAAAAADASCkOAgAAAAAAAACAkbKsGAAAAAAAAADAyE1bMm2bv2TXtK07g/ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSO+tOAAAAYGNsHYG/n6jONcV743a2++KStIuOd8VNL+mLO3XZia643U/p+2i9e1nf62330v514U9d0hc77XtKM+398fe+Faedw00643b74pJk586+183x21tf3G19r+/jnzjVFbdz28muuK07+5/Uursz9lTnC6D1/Sy641btINfEaeebEQAAgKWatq1M2+Z/BzqEHIfGMwoAAAAAAAAAACOlOAgAAAAAAAAAAEbKsmIAAAAAAAAAACPXUpmmf8n6VWkDyHFozBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGSnEQAAAAAAAAAACM1M66EwAAAAAAAAAAYLkmrTJpte40FhpCjkNj5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkdtadAAAAAAAAAAAAyzVtW5m2zZ9DZgg5Do1nFAAAAAAAAAAARkpxEAAAAAAAAAAAjJRlxQAAAAAAAAAARm6ayrTVutNYaJrNz3FoFAcBAADjs3UEJkmtzg/I233PTTt+rC/ukhNdcUly6r4XdcXdfcXxrri7Lu97bk7ev+9nsXtZ64qbXNIXlyTTi6ZdcW2nLy7bnbn2fv/T+9RM+gasU/3nmq27+8bcvrMv7vhtfV8BnfjYdlfcxR/tO2dc9JHdrrgk2fnk3V1xdefJvrjde7riMul8P7X+9/7K9V6Hp53PDQAAAHBOR+AbcwAAAAAAAAAAOJoUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYORaKtPu9dxXpw0gx6ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpy4oBAAAAAAAAAIzctCXTtvlLdk3bujMYHzMHAQAAAAAAAADASCkOAgAAAAAAAACAkVIcBAAAAAAAAAAAI7Wz7gQAAAAAAAAAAFiuadvKtG3+HDJDyHFoPKMAAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADBy01aZtlp3GgsNIcehURwEAACwTtX5QXdnuyusHT/WFTe978VdcSev6ItLkjse2PeR9a4H9j2nd9+/dcWduu+prrhcPOkK2z7RF5ckx7anXXFbW33PTdVq41rnF0e9cdNp/xdVk0nfZM67J/ve+7t39cXdff++uJOdcRff96KuuCS5zwf7zhknPtKX69Yn7+qKq917uuJyqvO93/reTwAAAMB4WFYMAAAAAAAAAABGSnEQAAAAAAAAAACMlGXFAAAAAAAAAABGbprKNP3LpK/KEHIcGjMHAQAAAAAAAADASCkOAgAAAAAAAACAkbKsGAAAAAAAAADAyLVWmbbNX7KrDSDHoTFzEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFI7604AAAAAAAAAAIDlmrbKtNW601hoCDkOjZmDAAAAAAAAAABgpBQHAQAAAAAAAADASFlWDAAAAAAAAABg5CwrdnQpDgIAADbX1oAmO63OD6w7211h7cTxrrjJ/S7pirvrgRd1xd3+4L7HlyR3PqgvbvfySV/gpfd0hR07caov7lhfntvb0664JNmu1hVXnXG9esdrK/7i6CDjTTpjJyf6zov3XNz3Xjx1n76vju647FhX3D2X9p/3T13Sl+ulJ/rOixfv9OW6/Rd3dsVVdrvicqrznNhW+75P0n/dn/afFwEAAOAoGNA37QAAAAAAAAAAwIVQHAQAAAAAAAAAACNlWTEAAAAAAAAAgJGbtsp0xcuy9xhCjkNj5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSlhUDAAAAAAAAABi5lmSazV+yq607gREycxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSO+tOAAAAAAAAAACA5Zq2yrTVutNYaAg5Do2ZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJHaWXcCAADAEbA1kL9LqAOsZb3d9xjb8WNdcZP7XdIVd+eDLu6K++Snb3eO17rikuTU5ae64nbuc09X3PETfXE729OuuO2t3rj+57RX1erH7LPaPFvrP2f0fiEz6Xzd9L5OTx2bdMXtHusb72TnOTFJJsf7ntXeuLbVdz7tO3sn2x/re31X63xfTPp+hkmS3jF79f6eMT3AYwQAABigaSrTA3yfsSrTbH6OQzOQb+gBAAAAAAAAAIALpTgIAAAAAAAAAABGyrJiAAAAAAAAAAAjN20DWVZsADkOjZmDAAAAAAAAAABgpBQHAQAAAAAAAADASCkOAgAAAAAAAACAkdpZdwIAAAAAAAAAACzXtFWmrdadxkJDyHFozBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAAAAAAAAAABj1yptCEt2DSHHgTFzEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFI7604AAABgY1T/Wtbt+LGuuOl9L+6Ku+uBF3XFffLTt7vi7ryqdcWduuKerrgkOXHpya6448dPdcXtbE274ra3+p6bqr64IdkayGOcdq5jv46f4c5235i9r9Pt3vfFdl/c7s6kKy5JTm6f6Iq7c6vv/J30nU9r2nf+vuRU33O69YnOc9Tdu11xSZI2jPc+AADAUTNNZZr+70BXZQg5Do2ZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYOSmrbqXV1+lIeQ4NGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI6U4CAAAAAAAAAAARmpn3QkAAAAAAAAAALBcrVVaq3WnsdAQchwaMwcBAAAAAAAAAMBIKQ4CAAAAAAAAAICRsqwYAAAAAAAAAMDITVsyHcCSXdO27gzGx8xBAAAAAAAAAAAwUoqDAAAAAAAAAABgpBQHAQAAAAAAAADASO2sOwEAAGBAtgby9wXVuW72znb3kO2SE11xJ6+4uCvu9gf35Xrng/oW7D51xT1dcScuPdkVlyQnjp/qitvZnnTFbXW+bKpWuwj61orHOwqG9JxOW98Ltfd1ut152q/qex/W8b7xkiSX9oX1nqXunB7ritve7Tt/b5/su15cdE/nz+JUX1yS5J7O91Rb8Xux9/ea6fRw8wAAAFiR1iqt87uFVRpCjkMzkG/2AQAAAAAAAACAC6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAI9dadS9ZvkqWFTt8Zg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjpTgIAAAAAAAAAABGamfdCQAAAAAAAAAAsFwtSWvrzmKxAaQ4OGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI2VZMQAAAAAAAACAkZumMk2tO42FhpDj0Jg5CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKmddScAAACswdZA/k6gOteW3u57fO2i433jJTl134u64u54YN/Hsjsf1BWWU5ef6oo7cenJvrjjfeMlyc72pCtue6t1j9ljq1Y7Hkfbql9v08647c7Td9L3vk+S9J7CL+0LOznpe5B37vad93fu7Iy7o+/6dGy3//xd085XzqQzrq34PNz7e1Tv8wIAAHBIWqu01v2hfWWGkOPQDOR/BAAAAAAAAAAAgAulOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIxU32LlAAAAAAAAAAAMxrRVpq3WncZCQ8hxaMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAI9fa3rbphpDj0Jg5CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKm1FAdV1Q9WVZvbvvg8Yp5cVa+rqluq6uTs39dV1ZOXnzEAAAAAAAAAwIC1ShvAllbrfqZGZ+XFQVX1OUmedwH9q6pemeTNSZ6W5Kokx2f/Pi3Jm6vqlVXl1QEAAAAAAAAAAHNWWhxUVVtJ/mWSnSQfOs+w70/ynbP27yf55iRPmP37+7P7vzPJ9x1epgAAAAAAAAAAMHw7Kx7v/0jy+CQ3JXl9kv/rXJ2r6hFJnj+7+Y4kT2qt3TW7fWNVvTHJDUkel+QFVfXq1tp7lpI5AAAAAAAAAMBA/Y9luzbcEHIcmpUVB1XVQ3Lv7D7/IMkXn0fY83Jvjs+dKwxKkrTW7qyq5yb5nVm/70ry3MPIFwAA2AC9qwdvb3eFTS853jdekruv6Iu964F9j3H38klX3M597umKO378VN942315Jsn2VuuO7bFVqx0PhqD3fTHt/BLvYO/7vvNN6zz1TzrPp7uX903kfdftfde2E5/se4Dbd/ZfE7dP9j03mXb+/JvzNwAAAJzLKpcV+xdJLk3yU621ty7qXFWV5OtmN29qrb39bP1m9//R7OZTZ3EAAAAAAAAAAHDkraQ4qKq+MclTknwsyXefZ9jDklw1a9+woO/p/VcneeiF5gcAAAAAAAAAAGO09GXFqupTk/zI7OYLWmsfPs/QR821b1rQd37/o5K89zzHAAAAAAAAAAAYvWmr7qXAV2kIOQ7N0ouDkvxgkiuT/Mckr7qAuIfMtW9Z0PfmfeLOS1VdvaDLlRd6TAAAAAAAAAAAWLelFgdV1RcmeVaSU0me01prFxB+2Vz79gV975hrX3oBY5x28+IuAAAAAAAAAAAwLEsrDqqq40l+Ikkl+X9ba394gYe4aK69u6Dvybn2xRc4DgAAAAAAAADAqLW2t226IeQ4NMucOeifJHlUkj9L8r0d8XfPtY8v6Htirn1Xx1iLliK7MsmNHccFAAAAAAAAAIC1WUpxUFU9Msn/Nbv53NbaHefqv4/b5tqLlgq7z1x70RJk/5PW2i3n2l9VF3pIAAAAAAAAAABYu2XNHPS87M3286dJLqmqbzpLn8+ea39pVV05a/+bWTHRfMHO1QvGm5/55+YLTRYAAAAAAAAAAMZoWcVBp5f5+swkP38e/b9nrv2wJHckeefcfY9cED+//13nMR4AAAAAAAAAwJHRWtLa5q+c1Nq6MxifrXUncA7vTXLrrH3Ngr5Pmv3750net6yEAAAAAAAAAABgSJZSHNRau7a1VufaknzvXMiXzO173+wYLckbZvsfWVVPPNtYs/tPzxz0hlkcAAAAAAAAAAAceZs8c1CSvDzJqVn7FVV18fzO2e1XzG6emvUHAAAAAAAAAGBOS6W1AWzZ/KXPhmZn3QmcS2vt3VX1siQvTPK4JG+rqh9I8p4kD0/ygiSPnXX/odbaH68nUwAAWJOtTa/3P6Ctvg+B7cSxrrhTl53oikuSuy7v+1ncff/OyU8vvacr7PiJvridrWlXXOeP8EC2yoSysG6978Np6z9p9J5ves9vvefTuy7tvV70xfVen078Rf81cevO3a64mkz6Buz7Ea7eQX5vmw7lQQIAALCJNro4aOZFSR6Q5BnZKwR6zVn6vCrJi1eZFAAAAAAAAAAAbLqN/zPj1tq0tfbMJF+T5A1Jbk2yO/v3DUm+urX2rNaaP58BAAAAAAAAAIA5a5s5qLV2XZLrLqD/m5K8aVn5AAAAAAAAAACMVZttm24IOQ7Nxs8cBAAAAAAAAAAA9FEcBAAAAAAAAAAAI7W2ZcUAAAAAAAAAAFiN1iqt1brTWGgIOQ6NmYMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIKQ4CAAAAAAAAAICR2ll3AgAAAAAAAAAALFmbbZtuCDkOjJmDAAAAAAAAAABgpBQHAQAAAAAAAABwJFTVA6rqKVX10qp6c1V9pKrabLv+EMe5bu64i7YvPqxxz8ayYgAAAAAAAAAAY9cqrdW6s1hs+Tl+cNkDbBrFQQAAm2JrxZM6TqerHY+jrTo/zHW+L9qJY11xu5/S/xHp5P37HuOp+57qijt2oi9uZ7vvvb+91bfQd1X/AuFbB4jlcE2H8KXRGniNHr6DPKe9v9lsd/4K1ns+3ek8f99z375r1Mn798Ud5Jp47ON91+G6e7dvwOr86TfvYVZo1Z/3AACA83Vzkncl+colj/OYBfvfu8zBFQcBAAAAAAAAAHBUvDTJjUlubK19sKoemiUX57TW/usyj7+I4iAAAAAAAAAAAI6E1tpL1p3DqikOAgAAAAAAAAAYudaGscLyEHIcGgsdAwAAAAAAAADASCkOAgAAAAAAAACAJamqt1TVR6tqt6o+VFVvraoXVtX9VjG+ZcUAAAAAAAAAANhEV1bVOTu01m5ZUS4H8eVz7U9Lcs1se0FVXdtae8MyB1ccBAAAAAAAAAAwcq1VWjt3oc0mOCPHG88jZJMf1B8m+eUkv5fk1iTHkvzVJN+a5CuTfGqS11bV17bW3rysJBQHAQAAAAAAAADA4Xp5a+26s9z/u0l+uqqeneTHk2wn+cmqekRr7a5lJKI4CAAAAAAAAACATfT4JB9YdxI9WmsfX7D/lVX1uCTPSvLgJE9P8rPLyEVxEAAAAAAAAADA2LXa2zbdX87xA621W9aVygq8MnvFQUlyTZZUHLS1jIMCAAAAAAAAAADn9M659lXLGkRxEAAAAAAAAAAArN5KpnJSHAQAAAAAAAAAAKv36Ln2rcsaZGdZBwYAYMNtHYE68el03RlwWvX98UPb7nudTi4+1hW3e1n/+2L3stYXePGkK+zYsb647a2+90VV5+Pj0E2HsC78EbGOn8WW9+Kh6z2/9Z5Pe8/f93ReL3Yv2+6M678mXtR5Ha7b+8asU53vxeb9tDGOwmcTAADYAK0N46PQEHI8RM+ea9+wrEF86gIAAAAAAAAAgPNUVddWVZtt151l/2Oq6hELjvHsJM+c3fxAktcffqZ7zBwEAAAAAAAAAMCRUFVfmGS+cOeKufYjqura+f6ttes7hvm8JD9ZVb+Z5M1J/jDJR7NXp/PIJH83yVfM+k6SPLu1dkfHOOdFcRAAAAAAAAAAwNi12bbplp/js5J8+z77vmC2zbu+c5ztJF8+2/bz0STPbK29sXOM86I4CAAAAAAAAAAADs+bsrdk2OcneWySBya5PEkl+ViSP0jyq0mub619ctnJKA4CAAAAAAAAAOBIaK1dm+TaAx7j+pxjRqHW2oeS/KvZtnZb604AAAAAAAAAAABYDjMHAQAAAAAAAACMXGuV1mrdaSw0hByHxsxBAAAAAAAAAAAwUoqDAAAAAAAAAABgpCwrBgAAAAAAAABwFLR1J8A6mDkIAAAAAAAAAABGSnEQAAAAAAAAAACMlOIgAAAAAAAAAAAYqZ11JwAAAEuz1VkLP50ebh6L9OY5JFvVF7e93RU2vagvbvfSzjyTTC7pW6x7+8SkL26773W6vbXaRcW3yiLm+5m2/tcbR1fv6+YovBd7H2Pvc9p7Pu0+f3deL3qvTwe5JvZeh3uv+9k61Re34l/5DsTvtQAAwCFordIG8J3UEHIcGp/WAAAAAAAAAABgpBQHAQAAAAAAAADASFlWDAAAAAAAAABg7Nps23RDyHFgzBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGSnEQAAAAAAAAAACM1M66EwAAAAAAAAAAYNlqtm26IeQ4LGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI2VZMQAAAAAAAACAsWuzbdMNIceBMXMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUjvrTgAAADbOlhr6fVWtdryd7a6wUxd1xl3S//imF0274o5t98Vtl4W3AYao9/y93Xm9uOeivvFOXdL/+1Dvdfh453W/W+/vNW1A12C/1wIAAPPabNt0Q8hxYHw6BAAAAAAAAACAkVIcBAAAAAAAAAAAI2VZMQAAAAAAAACAsWtJWucSy6tkWbFDZ+YgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUoqDAAAAAAAAAABgpHbWnQAAAAAAAAAAAMvV2t626YaQ49CYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABipnXUnAAAAAAAAAADAkrXZtumGkOPAmDkIAAAAAAAAAABGSnEQAAAAAAAAAACMlGXFAAAAAAAAAADGrtXetumGkOPAKA4CAACWr/o+zLWdvslOp8f7xpse7wpLkrSdaVfc1lbfAtpVq41jf1NfVjAAva/TLeeMfa36PNx7vei9Pk2Pb3fF7cWu9rpfnb9nAAAAwFFhWTEAAAAAAAAAABgpxUEAAAAAAAAAADBSlhUDAAAAAAAAABi5SjKEFcQtHn34zBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAAAAAAAAAABj12bbphtCjgNj5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkdtadAAAAAAAAAAAAS9Zqb9t0Q8hxYMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAY9dm26YbQo4DozgIAABYvupcI7ozbrrTGbfdFbZnu+8Ta9UwPuluDSRPgAvVe36bts5rW6fu60Xn9ekg18Te6/Cqf18AAACAo8KyYgAAAAAAAAAAMFKKgwAAAAAAAAAAYKQsKwYAAAAAAAAAMHZttm26IeQ4MGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI2VZMQAAAAAAAACAsbOs2JFl5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkdtadAAAAAAAAAAAAS9Zqb9t0Q8hxYMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAI1dtb9t0Q8hxaBQHAQAAG6tV59rSvUtSH2Ru1d5UOz/p9sYBsF4rP+8P6JrYfd0HAAAAzsmyYgAAAAAAAAAAMFKKgwAAAAAAAAAAYKQsKwYAAAAAAAAAMHZttm26IeQ4MGYOAgAAAAAAAACAkVIcBAAAAAAAAAAAI6U4CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFI7604AAAAAAAAAAIDlqiTV1p3FYrXuBEbIzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBI7aw7AQAAgP1U61wAu3fd7Gln3AHGbK1vBe3euP4nB4DDsPLz/oCuid3XfQAAAM5Pq71t0w0hx4ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpy4oBAAAAAAAAAIxdS//y06s0hBwHxsxBAAAAAAAAAAAwUoqDAAAAAAAAAABgpBQHAQAAAAAAAADASO2sOwEAAAAAAAAAAJaszbZNN4QcB8bMQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQsKwYAAAAAAAAAMHLV9rZNN4Qch2ZpMwdV1X2r6puq6oer6oaq+pOq+kRV7VbVh6rqrVX1/Kq6/DyP9+Sqel1V3VJVJ2f/vq6qnrysxwAAAAAAAAAAAEO2zJmDnpDk5/fZ92lJrplt311Vf7e19mtn61hVleTHk3znGbuuSvK0JE+rqp9I8pzWmvoxAAAAAAAAAACYWfayYjcn+c0k/2nWfn/2Ziu6OsnXJ3l6kiuSvLGqHt9a+y9nOcb3597CoN9P8oNJ3pPk4Umen+Sxs/0fTvLipT0SAAAAAAAAAAAYmGUWB/1ma+3Tz7H/F6rqqUlen+R4kpck+V/nO1TVI7JXAJQk70jypNbaXbPbN1bVG5PckORxSV5QVa9urb3nEB8DAABwGHon+eyM2zrVGTfpCtszqa6w1vriVm3ameeWBcKBDdd7flu17utF5/XpINfE3uvwqn9fAAAAOHLabNt0Q8hxYLaWdeDW2sKvEFprv5zkptnNJ52ly/NybwHTc+cKg07H35nkubObO0m+qydXAAAAAAAAAAAYo6UVB12AO2b/XjR/Z1VVkq+b3byptfb2swXP7v+j2c2nzuIAAAAAAAAAAODIW2txUFU9KsnfmN286YzdD0ty1ax9w4JDnd5/dZKHHkZuAAAAAAAAAACj0Qa0cahWXhxUVZdU1WdV1f+Z5DeTbM92/cgZXR811z6zcOhM8/sftW8vAAAAAAAAAAA4QnZWMUhVXZvk1efo8rIkP3vGfQ+Za9+yYIib94k7L1V19YIuV17oMQEAAAAAAAAAYN1WUhx0Dv85yXNaa797ln2XzbVvX3CcO+bal3bkcfPiLgAAAAAAAAAAMCyrKg765STvmLUvTvLwJN+Y5GlJfraqvqu19itnxFw0195dcPyTc+2LD5AnAAAAAAAAAMDoVNvbNt0QchyalRQHtdY+nuTjc3fdmOQ1VfVtSX4qyRuq6pmttevn+tw91z6+YIgTc+27OlJctBTZldnLGQAAAAAAAAAABmOty4q11n6mqp6SvVmE/nlVvaG19hez3bfNdV20VNh95tqLliA7Wx63nGt/VV3oIQEAAAAAAAAAYO221p1AkjfM/r1Pkq+au3++YOfqBceYn/nn5sNICgAAAAAAAABgNFoNZ+NQbUJx0Ifn2p8x137nXPuRC44xv/9dB84IAAAAAAAAAABGYBOKg66aa88vCfbeJLfO2tcsOMaTZv/+eZL3HU5aAAAAAAAAAAAwbJtQHPQNc+0/PN1orbXcu+TYI6vqiWcLnt1/euagN8ziAAAAAAAAAADgyNtZ1oGr6tokr2mt3X2OPs9L8tWzm+9L8ttndHl5ku/IXp6vqKontdbumou/OMkrZjdPzfoDAACbprOGv05Nu+K2dvvG29rtCkuS1Km+v72YTvvWz26d6273xlX5O4z9bHU+N1Nrp7NCva9T9rfq83Dv9aL3+nSQa2Lvdbj3ut/7ewYAAMCR5CPUkbS04qAk1yX54ap6bfaKft6TvWXDLkvymCTfmuQLZn13k3xHa+3U/AFaa++uqpcleWGSxyV5W1X9wOxYD0/ygiSPnXX/odbaHy/x8QAAAAAAAAAAwKAsszgoSe6fvZl/vuMcfW5J8ozW2q/vs/9FSR6Q5BnZKwR6zVn6vCrJiw+QJwAAAAAAAAAAjM4yi4O+LMmXJ/mSJI9K8sAklye5O8kHk/znJL+S5Bdaa3fud5DW2jTJM2czEH1nkscnuSLJR5LcmOSVrbU3L+9hAAAAAAAAAAAMW7W9bdMNIcehWVpxUGvtPdlb/uuVh3S8NyV502EcCwAAAAAAAAAAjoKtdScAAAAAAAAAAAAsh+IgAAAAAAAAAAAYqaUtKwYAAAAAAAAAwIZos23TDSHHgTFzEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnLigEAAAAAAAAAjF1LaghLdg0hx4ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSO+tOAAAANs50utrxtgZUs99WvNjzqUlX2M7dnXF39n9E2rq7uuImk76f/6T1jedDIMB69Z6/e68XvdennTv7r/m91+He6363Vf9esw5+rwUAAOa12bbphpDjwPi0BgAAAAAAAAAAI6U4CAAAAAAAAAAARkpxEAAAAAAAAAAAjNTOuhMAAAAAAAAAAGDJ2mzbdEPIcWDMHAQAAAAAAAAAACOlOAgAAAAAAAAAAEbKsmIAAAAAAAAAACNXbW/bdEPIcWjMHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkdtadAAAAAAAAAAAAS9Zm26YbQo4DozgIAIDxmk7XncH5OUieWwOZDHTa+WluMukK27q7L+747f2fOrfvrK643ZPbXXGTE30/+8lW3+ttZ7vvuZm2vuclSbZq3N8C9D6+gzynDN/Y3xcHser3xmTaN95k0nn+7rxeHO+8Ph3kmth7He697nf/njEkY/+9dii/0wIAAAyUT10AAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADBy1fa2TTeEHIfGzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAAHAUWLLrSDJzEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFI7604AAAAAAAAAAIAla7Nt0w0hx4ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpy4oBAAAAAAAAAIxctb1t0w0hx6FRHAQAcFRNp+vOgKOk9X2aq0nf63T7rnu64o7fdqIrbi+27+PV7l3bXXH3XNwXt7Pd+Zxudf4MfZI/dFtreE6nrVY+5hCs42fB4Wudr+/JtG9C7nvu6Tt/p/N6cfy2vsd3/LZJV1zSfx3uve73/p7BBjkKn022TOIPAACsj08kAAAAAAAAAAAwUoqDAAAAAAAAAABgpCwrBgAAAAAAAAAwdm22bboh5DgwZg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjZVkxAAAAAAAAAICRq7a3bboh5Dg0Zg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjpTgIAAAAAAAAAIAjoaoeUFVPqaqXVtWbq+ojVdVm2/VLGvObqurXqur9VXV3Vb2vqn6mqp64jPHOtLOKQQAAAAAAAAAAWKM22zbd8nP84NJHmKmqi5L8YpKnnLHrM2bbt1TVda2171tmHmYOAgAAAAAAAADgKLo5yb9b4vFflXsLg34zyVOTPCHJM5O8J3t1Oy+tqmctMQczBwEAAAAAAAAAcGS8NMmNSW5srX2wqh6a5L2HPUhVXZPkW2Y3/02Sp7XWJrPbN1bVG5P8pySfnuQHq+qXWmsfP+w8EjMHAQAAAAAAAACMXxvQtkSttZe01n6ltbbs5cWeP/t3kuQfzhUGnc7jI0leMLt5v+zNJrQUZg4CANgU0+m6M4DlaZ2f5jrfF3Xynq6445841RWXJCc+tt0Vd/f9++JO3afv49ypY5PFnc5ie6vvZ7F9gD9J6T0rbtUQFk4fFs8pqzJt1R3bOmMn0764U5O+E9ypk33n751P9l0vTnys7/17kGti73W4+/fh3t8zYJV83gMAgCOlqi5N8mWzm29prd2yT9fXJflkkvsmeXqSH15GPmYOAgAAAAAAAACAw/OEJCdm7Rv269Ra203y9tMxVXVsGckoDgIAAAAAAAAAgMPzqLn2TQv6nt6/k+SzlpGMZcUAAAAAAAAAAEau2t626c7I8cqqcy8Jfo4lu9bpIXPtRfndfEbcOw87GcVBAAAAAAAAAABsohvPo8+5q4fW47K59u0L+t4x1750CblYVgwAAAAAAAAAAA7RRXPt3QV9T861L15CLmYOAgAAAAAAAABgIz0+yQfWnUSHu+faxxf0PTHXvmsJuSgOAgAAAAAAAAAYvTbbNt1fzvEDrbVb1pTJQdw21160VNh95tqLliDrYlkxAAAAAAAAAAA4PPMFTVcv6PuQufbNS8hFcRAAAAAAAAAAAByid861H7mg7+n9p5L8yTKSURwEAAAAAAAAAHAUtAFs43Bjkt1Z+5r9OlXV8SRPPB3TWtvdr+9BKA4CAAAAAAAAAIBD0lq7Lcm/n9388qrab2mxpye576z9+mXlozgIAAAAAAAAAADOU1VdW1Vttl23T7eXzf7dSfKjVbV9xjGuSPIDs5sfT/KTy8j1dAIAAAAAAAAAADB6VfWFSR4xd9cVc+1HVNW18/1ba9f3jNNa+42qek2Sb0ryt5O8papenuTWJI9J8qIknz7r/sLW2l/0jHM+FAcBAMCQTad9cVsDmUR02rfAdJ28pytu57aTXXFJcvFHj3XFnbz/9uJOZ3HHZX3j7R7re81sb/fFVU264pJku/ripq0vcKvGs6A5rFvv+/BgY/bFnZr2XRN3T/adh3N7X9xFH+t7Ti/+aN95+CDXxN7rcPcPcSh6f28DAAA4JNX2tk23ghyfleTb99n3BbNt3vUHGOsZ2Vs27KuTfMlsmzdN8n2ttVceYIyFBvI/AgAAAAAAAAAAMByttbtaa1+T5FuTvCXJh5LsJrk5yc8l+cLW2nXLzsPMQQAAAAAAAAAAHAmttWuTXHvAY1yfC5hRqLX2c9krBloLxUEAAAAAAAAAAGPXZtumG0KOA2NZMQAAAAAAAAAAGCnFQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKR21p0AAAAAAAAAAADLVW1v23RDyHFozBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAAAAAAAAAABj12bbphtCjgNj5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkdtadAAAAwL5a5+LSk0lX2Nadu33jJbnoI32xF9/3oq64ey7t+1uPk8ePdcXt7vQ9p3W8K2ymb8ztrb7XzbRVV9xWWQSd8ep9X/SaTPvHOzXZ7orb3e37euzUHX3n0xMf7Tt/X/zBvnNN7/XpINfE3utw93UfAACA89Nm26YbQo4DY+YgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUpYVAwAAAAAAAAAYuZptm24IOQ6NmYMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIKQ4CAAAAAAAAAICR2ll3AgAAAAAAAAAALFmbbZtuCDkOjJmDAAAAAAAAAABgpBQHAQAAAAAAAADASFlWDAAAAAAAAABg7FpSQ1iyawg5DoyZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJHaWXcCAADAGkynfXFbK/77gta5uPSk7/HV3bt94yXZ+eTdXXH3+WDfx7JTl/TFTY73xZ3cPtEVl0v7wpIkx3sDJ11RW9U3Wue7qdvWIBaGZ1mmrfOF2ql1jjftfJmemmz3BSY5udt5fru97/y289G+8S55f1dY7vPBU11xvdeng1wTe6/D3df9Vev9PQoAAGDd2mzbdEPIcWDMHAQAAAAAAAAAACOlOAgAAAAAAACA/7+9+4+z7azrQ//5njM5JycJYgSRFwQuSJTEKhYhFBQIWEotwYrUKtirBhNRe19UfqhBtBdEqxWlwkWrqGikerVQwYhACxZIgYIEXrT1loTID21CIBog5vc5OWee+8de07M5zszes2b2zF5r3u/Xa732s/Z6fnxnzswze6/z3c8DwEhJDgIAAAAAAAAAgJHqtzk6AAAAAAAAAADD0vY6APaClYMAAAAAAAAAAGCkJAcBAAAAAAAAAMBI2VYMAAAAAAAAAGDkqk2OZTeEGIfGykEAAAAAAAAAADBSkoMAAAAAAAAAAGCkJAcBAAAAAAAAAMBIrex1AAAAAAAAAAAALFjrjmU3hBgHxspBAAAAAAAAAAAwUpKDAAAAAAAAAABgpGwrBgAAAAAAAAAwctUmx7IbQoxDIzkIAACY3+pqv3YHdnnR0tbz3ePxE72HrDuO9mp3+KaDvdqddfiMXu1OHOr3NvCOA6f1atfvu9I5q1+zdqhfu5UD/X6+D/b88a6edzlWW/UbcA8cGMidnCF9T/tqPb/GE6v92h1f7feLcexY/1tVR2873Kvdyk395rczPt3ve3PWDcd7tTt805292vX9+7Sdv4m9/w7vtr6vawAAAGBgbCsGAAAAAAAAAAAjJTkIAAAAAAAAAABGyrZiAAAAAAAAAABj17pj2Q0hxoGxchAAAAAAAAAAAIyU5CAAAAAAAAAAABgp24oBAAAAAAAAAIxctcmx7IYQ49BYOQgAAAAAAAAAAEZKchAAAAAAAAAAAIyU5CAAAAAAAAAAABiphSYHVdXXVdWLquqtVXVdVR2tqtuq6tqquryqHrfF/r6pqt5QVdd3fV3fnX/Tor4GAAAAAAAAAIDBawM62FEri+q4qq5M8vh1Lh1K8hXd8T1V9e+SXNpaO7ZJX5XkV5M8+5RL90/yrUm+tap+LckPtNb8mAAAAAAAAAAAQBa7ctD9u8cbkrwyybcleVSSxyR5fpJPdde/K8nlM/r66ZxMDPpwkmd2fT2zO093/ad2IG4AAAAAAAAAABiFha0clOSaJC9K8gettROnXHt/t2LQe5N8ZZJnVtWvtNbefWonVXVukh/tTj+Y5PGttTu786uq6o+SXJnkkUkuq6rfaq19fAFfDwAAAAAAAADAMA1ly64hxDgwC0sOaq09dcb1m6rqBUne1D31bUn+VnJQkuflZJzPmUoMWuvnjqp6TpL3dfWem+Q52wgdAADYr7axS3Edu7tXuwO33Dm70jqOrPRbCLYdONKrXXKwV6s7Vk/rOV5y9ET1anfizH7/FocO92u3cnC1V7uDB/q22/27I1X9xlxt/f4Nh6Ltwdd3YrXn78Vqvznj+Il+7Y4d7fe7f/z2/nPGymf73eY649P9vqdf9L9O/SzcfI7ceFevdn3/XvT9+7Sdv4kAAADAclnktmLzeNdU+SGnXqyqSvIt3ek1rbX3r9dJ9/xHu9Onde0AAAAAAAAAAGBf2+vkoENT5fU+MvngJPfvylfO6Gvt+jlJHrS9sAAAAAAAAAAAYPgWtq3YnC6cKl+zzvXzZ1zPBtfPT/LJvkEBAAAAAAAAAIxJtcmx7IYQ49DsWXJQVR1I8sKpp163TrUHTJWvn9HldRu0myeWc2ZUue9W+gMAAAAAAAAAgGWwlysHPS/Jo7ryG1trH1ynzj2myrfN6O/2qfJZW4zlutlVAAAAAAAAAABgWPYkOaiqLkzyr7vTv0rygxtUPX2qfGxGt0enykd6hgYAAAAAAAAAME627NqXdj05qKr+TpI3dmMfTfLtrbUbN6h+11T50IyuD0+V79xiWLO2Ibtvkqu22CcAAAAAAAAAAOypXU0OqqoHJ3lbkrOTnEjyzNbalZs0uXWqPGursDOnyrO2IPsCrbXrN7teVVvpDgAAAAAAAAAAlsKB3Rqoqu6X5E+S3C+Thaq+t7X2xhnNppN2zplRd3r1n+u2HiEAAAAAAAAAAIzLrqwcVFX3TvL2JF/ePfWc1tpr52j6kanyeTPqTl+/egvhAQAAAAAAAACMWrWWam2vw5hpCDEOzcJXDqqqeyb5T0m+qnvqha21X56z+SeT3NCVL5xR9/Hd46eS/MVWYgQAAAAAAAAAgDFaaHJQVZ2R5M1Jvq576l+11n5u3vattZbkiu70vKp69AbjPDonVw66omsHAAAAAAAAAAD72sKSg6rqUJI3JvmG7qlXttZ+okdXr0hyvCu/qqqOnDLOkSSv6k6Pd/UBAAAAAAAAAFjTBnSwo1YW2PfvJXlyV35HktdU1VdvUv9Ya+3aU59srV1bVb+Q5IVJHpnkvVX1c0k+nuQhSS5L8vCu+s+31v58p74AAABgh6yu9mt3YOE7IX+h7SxCeqLf11jH7u7V7uDn7+jV7oxerZJaPb1Xu4PHDvYcMbnjWL+3rMfu1e/n5s6z+rVbOXx8dqV1nHbaiV7tDh7s+fuU5GD1+xmvnu366jtea7XDkSxuvBM925440e/n9O67+/0uHj/a89bRbaf1anb4s/3n/TM+3a/dWTf0+x0+cuNdvdr1nb/7/r3o+/dpW38Td1vf1xkAAACwTywyOejpU+VvTPI/ZtT/yyQP2uDajye5T5LvzSQR6PfXqfOaJH1WJgIAAAAAAAAAgFHa5Y/h9tNaW22tXZLkoiRXJLkhybHu8YokT2mtXdpa8zEhAAAAAAAAAADoLGzloLaAtbxba29J8pad7hcAAAAAAAAAYMyqTY5lN4QYh2YQKwcBAAAAAAAAAABbJzkIAAAAAAAAAABGSnIQAAAAAAAAAACM1MpeBwAAAAAAAAAAwIK17lh2Q4hxYKwcBAAAAAAAAAAAIyU5CAAAAAAAAAAARsq2YgAAAAAAAAAAI1dtciy7IcQ4NFYOAgAAAAAAAACAkZIcBAAAAAAAAAAAIyU5CAAAAAAAAAAARmplrwMAAADY0Opqv3YH9uBzEK3nRtjHT/RqVjnWq93Bz/WL84zj/f4tDh490qtdkqzc0e8t6523HezV7q4v6fdzc/cX9Yvz7iP9/u0PHu7XLkkOHuz373jgQL+fm+q5QXzfdq3VrrZbXe3XLklOnOj383biaL+f79zZr93KLf3anf65ft+bIzf2nEuTnHnj8V7tDt90Z692B27p166O3d2rXd+/F73/Pu2Fvn/3AQAAmE/rjmU3hBgHxspBAAAAAAAAAAAwUpKDAAAAAAAAAABgpGwrBgAAAAAAAAAwctUmx7IbQoxDY+UgAAAAAAAAAAAYKclBAAAAAAAAAAAwUpKDAAAAAAAAAABgpFb2OgAAAAAAAAAAABasdceyG0KMA2PlIAAAAAAAAAAAGCnJQQAAAAAAAAAAMFK2FQMAAAAAAAAA2AfKll37kpWDAAAAAAAAAABgpCQHAQAAAAAAAADASEkOAgAAAAAAAACAkVrZ6wAAAAD2tdZzk+/jJ3o1q57jHfibfu1Ov7tfnEmycvvpvdodvuVQr3Z33qvf52eOfkm/t9bH7nGwV7sTZ/TfGP7u0/u1bSur/QY82DPW6tcsfb81J/oNWMf7f+bqwF39xjx0R892t/Zrd/hz/b6pRz7b73f/9JuO9WqXJCu33NWrXd1xtF+7Y3f3apcTPX+f+v69AAAAgDWtDeP95RBiHBgrBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJGyrRgAAAAAAAAAwMhVmxzLbggxDo2VgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJFa2esAAAAAAAAAAABYsNYdy24IMQ6MlYMAAAAAAAAAAGCkJAcBAAAAAAAAAMBI2VYMAAAAAAAAAGDkanVyLLshxDg0Vg4CAAAAAAAAAICRkhwEAAAAAAAAAAAjJTkIAAAAAAAAAABGamWvAwAAANhxqz03pT4woM9PtNav3Yl+35u661i/dsdP9GqXJKcdO96r3cE7DvVqd/jzh3u1O3bPfm+tj92j38/bsbOqV7skOX5GvzFXDx3s165fs/4fZer7q9/zx/RAv1+LJMnKHf1+hw/d1rPdrf2+yEN/0+/3cOXWo73aHbij/ze17zyVvvNU33m4b7sh6ft3GAAAgMVq3bHshhDjwAzozjcAAAAAAAAAALAVkoMAAAAAAAAAAGCkbCsGAAAAAAAAADBy1SbHshtCjENj5SAAAAAAAAAAABgpyUEAAAAAAAAAADBSkoMAAAAAAAAAAGCkVvY6AAAAAAAAAAAAFqy1ybHshhDjwFg5CAAAAAAAAAAARkpyEAAAAAAAAAAAjJTkIAAAAAAAAAAAGKmVvQ4AAAAAAAAAAIDFqjY5lt0QYhwaKwcBAAAAAAAAAMBISQ4CAAAAAAAAAICRsq0YAAAAAAAAAMB+YMuufUlyEAAAwJrV1f5tDwxkYdbW891/33Z397/bUD3/PQ4evbtXuwN3HOvV7rSbT+vV7vQj/dqtnn6wV7skOd6z7eqh6tdupV+79GzW9+bWgeP9Gh441v/ne+WuE/3G7Nnu4J39fi+q5+9T33Y50e/rm7TtOYf3nd/Gbjt/EwEAAIClMpC71wAAAAAAAAAAwFZJDgIAAAAAAAAAgJGyrRgAAAAAAAAAwMhVmxzLbggxDo2VgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEjZVgwAAAAAAAAAYOxamxzLbggxDoyVgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJFa2esAAAAAAAAAAABYrGqTY9kNIcahsXIQAAAAAAAAAACMlOQgAAAAAAAAAAAYKduKAQAAAAAAAACMXeuOZTeEGAdGchAAAMBOWF3d3fEODGQh2LaNd/Inen5PV/uNWSdO9Gt317F+7W7r+W948GC/dkkOrfRr21Z6xlrVb7ye7arvz1vPdnV8G7/3x/v9vKXvz2nv36fd/T3c1pyxnbZDsNt/ZwAAAIDRGMjdZAAAAAAAAAAAYKskBwEAAAAAAAAAwEjZVgwAAAAAAAAAYOSqTY5lN4QYh8bKQQAAAAAAAAAAMFKSgwAAAAAAAAAAYKRsKwYAAAAAAAAAMHarbXIsuyHEODBWDgIAAAAAAAAAgJGSHAQAAAAAAAAAACMlOQgAAAAAAAAAAEZqZa8DAAAAAAAAAABgwVp3LLshxDgwVg4CAAAAAAAAAICRkhwEAAAAAAAAAAAjZVsxAAAAAAAAAICRqyQ1gC27aq8DGCHJQQAAAEO0utqv3YEBLSDbet6p6Nuu57c01a9hHe95m+PA8X7ttqGqZ6x92+223f5Z247VXY51L77Gses7fwMAAAD0NKC7wgAAAAAAAAAAwFZIDgIAAAAAAAAAgJGyrRgAAAAAAAAAwNi1DGML8QGEODRWDgIAAAAAAAAAgJGSHAQAAAAAAAAAACMlOQgAAAAAAAAAYOxaUgM4dnNbsap6YFX9QlVdXVW3V9XnquoDVfXDVXXGNvt+SVW1OY8n7MxXtL6VRXYOAAAAAAAAAADLpqouSvK7Se459fQZSS7ojkur6imttU/sRXw7SXIQAAAAAAAAAAD7RlV9bZLXZZIMdFuSn03yziRHkjwjyfcleWiSN1fVBa2127Y55NfMuP7Jbfa/KclBAAAAAAAAAADsJ6/IJDHoeJInt9beN3XtHVX150leluS8JM9P8tLtDNZa+/+20367Duzl4AAAAAAAAAAA7II2oGOBquqCJE/oTl9zSmLQmpcnuborP7eqTltsVIslOQgAAAAAAAAAgP3iaVPl31qvQmttNclru9OzczKZaJAkBwEAAAAAAAAAsF88rnu8PcmHNql35VT5sYsLZ/EkBwEAAAAAAAAAsF+c3z1+rLV2fJN616zTppeqentVfbaqjlXVX1XVu6rqhVV19nb6ndfKbgwCAADAklhd3d3xDuyDz6S0npug9223nX/Cqm00Zkf1/fdn5+32vAgAAAB7pFpLDeCexCkx3rdm3NNqrV0/d99Vpye5d3e6abvW2uer6vYkZyZ5wLxjbOBJU+UvTXJhd1xWVRe31q7YZv+bkhwEAAAAAAAAAMAyumqOOlv5RNw9psq3zVF/LTnorC2MMe3Pkvxhkg8kuSHJaUkemuSfJXlyki9O8gdV9c2ttbf2HGMmyUEAAAAAAAAAAOwHp0+Vj81R/2j3eKTHWK9orb1knef/NMlrq+r7k/xqkoNJfqOqzm2t3dljnJkkBwEAAAAAAAAAjN1qtrdl/W75whgvSPKZHez9rqnyoTnqH+4et5y001q7ecb1V1fVI5NcmuR+SZ6e5He3Os48JAcBAAAAAAAAALCMPtNau34H+7t1qjzPVmFndo/zbEHWx6szSQ5KkguzoOSgA4voFAAAAAAAAAAAlklr7a4kN3Wn52xWt6rOzsnkoOsWFNJHpsr3X9AYkoMAAAAAAAAAANg3ru4ez62qzXbcOm+dNjutFtTvF7CtGAAAAAAAAADAyFVrqdb2OoyZdiHG9yR5XCarAj0iyZ9uUO/CqfJ7FxTLV02Vb1jQGFYOAgAAAAAAAABg3/jDqfKz1qtQVQeSfHd3enOSdy4olu+fKl+5oDEkBwEAAAAAAAAAsD+01j6Q5N3d6SVV9Zh1qr0gyfld+ZWttbunL1bVxVXVuuMlpzauqq+pqnM3i6Oqvj/JJd3pZ5K8cQtfxpbYVgwAAAAAAAAAYOxadyy73YnxhzLZKuxIkrdV1c9ksjrQkSTPSPLsrt61SV7eo/9HJPmNqnpnkrcm+bMkn80kT+e8JP9nkn/Q1T2R5Ptba7f3+1JmkxwEAAAAAAAAAMC+0Vr7cFV9R5LfSfJFSX5mnWrXJrmotXZrz2EOJnlSd2zks0kuaa39Uc8x5iI5CAAAAAAAAACAfaW19qaqelgmqwhdlOScJMeSfCzJ65P8Umvtjp7dvyWTLcMek+ThSb4syb2SVJLPJfnvSf5jkstba7ds5+uYh+QgAAAAAAAAAAD2ndbaXyZ5fndspd3lSS7f5PpfJfnN7thzkoMAAABYnNXV/m0PHNi5OJhoQ9hUHnraznwDAAAA+0IbyP2hIcQ4LO60AgAAAAAAAADASEkOAgAAAAAAAACAkbKtGAAAAAAAAADAyFWbHMtuCDEOjZWDAAAAAAAAAABgpCQHAQAAAAAAAADASEkOAgAAAAAAAACAkVrZ6wAAAAAAAAAAAFiw1ibHshtCjANj5SAAAAAAAAAAABgpyUEAAAAAAAAAADBSthUDAAAAAAAAABi5Wp0cy24IMQ7NQlcOqqr7VNVTq+qlVfXWqrqpqlp3XN6jv2+qqjdU1fVVdbR7fENVfdMCwgcAAAAAAAAAgEFb9MpBN+5EJ1VVSX41ybNPuXT/JN+a5Fur6teS/EBrre3EmAAAAAAAAAAAMHQLXTnoFNcleVvPtj+dk4lBH07yzCSP6h4/3D3/7CQ/tZ0AAQAAAAAAAABgTBa9ctBLk1yV5KrW2o1V9aAkn9xKB1V1bpIf7U4/mOTxrbU7u/OrquqPklyZ5JFJLquq32qtfXxHogcAAGDvrO7y5uIHdvPzMzByu/37CwAAAMzW2uRYdkOIcWAWeueztfbi1toft9a2s73Y83Iyiek5U4lBa2PckeQ53elKkuduYywAAAAAAAAAABiNpf5YZFVVkm/pTq9prb1/vXrd8x/tTp/WtQMAAAAAAAAAgH1tqZODkjw4yf278pUz6q5dPyfJgxYVEAAAAAAAAADA4LQBHeyoZU8OOn+qfM2MutPXz9+wFgAAAAAAAAAA7BMrex3ADA+YKl8/o+51G7SbqarOmVHlvlvpDwAAAAAAAAAAlsGyJwfdY6p824y6t0+Vz9riONfNrgIAAAAAAAAAAMOy7MlBp0+Vj82oe3SqfGQBsQAAAAAAAAAADFK1lmptr8OYaQgxDs2yJwfdNVU+NKPu4anynVscZ9Y2ZPdNctUW+wQAAAAAAAAAgD217MlBt06VZ20VduZUedYWZF+gtXb9ZteraivdAQAAAAAAAADAUlj25KDppJ1zZtSdXv3nugXEAgAAAAAAAAAwTK1NjmU3hBgH5sBeBzDDR6bK582oO3396gXEAgAAAAAAAAAAg7LsyUGfTHJDV75wRt3Hd4+fSvIXiwoIAAAAAAAAAACGYqmTg1prLckV3el5VfXo9ep1z6+tHHRF1w4AAAAAAAAAAPa1lb0OYA6vSPJ9mcT6qqp6fGvtzrWLVXUkyau60+NdfQAAANia1dW9jmA+B5b6cz4s2lB+TgEAAIDl05IM4daC5WB23EKTg6rqsUnOnXrq3lPlc6vq4un6rbXLT+2jtXZtVf1CkhcmeWSS91bVzyX5eJKHJLksycO76j/fWvvzHfsCAAAAAAAAAABgwBa9ctClSb5ng2vf0B3TLt+g7o8nuU+S780kEej316nzmiQ/sfUQAQAAAAAAAABgnAaxFnlrbbW1dkmSi5JckeSGJMe6xyuSPKW1dmlrbQgLYAEAAAAAAAAAwK5Y6MpBrbWLk1y8g/29Jclbdqo/AAAAAAAAAID9oFpLtbbXYcw0hBiHZhArBwEAAAAAAAAAAFsnOQgAAAAAAAAAAEZqoduKAQAAAAAAAACwBFqSIWzZNYAQh8bKQQAAAAAAAAAAMFKSgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEit7HUAAAAAAAAAAAAsWGuTY9kNIcaBsXIQAAAAAAAAAACMlOQgAAAAAAAAAAAYKduKAQAAAAAAAACM3Wp3LLshxDgwkoMAAABgSFa3cXfkgAWEl8Z2/h0BAAAAYAvcFQQAAAAAAAAAgJGSHAQAAAAAAAAAACNlWzEAAAAAAAAAgJGr1lKt7XUYMw0hxqGxchAAAAAAAAAAAIyU5CAAAAAAAAAAABgp24oBAAAAAAAAAIxda5Nj2Q0hxoGxchAAAAAAAAAAAIyU5CAAAAAAAAAAABgpyUEAAAAAAAAAADBSK3sdAAAAAAAAAAAAi9aS1vY6iDkMIcZhsXIQAAAAAAAAAACMlOQgAAAAAAAAAAAYKduKAQAAAAAAAACMXRvItmJDiHFgrBwEAAAAAAAAAAAjJTkIAAAAAAAAAABGSnIQAAAAAAAAAACM1MpeBwAAAAAAAAAAwIKtdseyG0KMA2PlIAAAAAAAAAAAGCnJQQAAAAAAAAAAMFK2FQMAAAAAAAAAGLlqLdXaXocx0xBiHBorBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJGSHAQAAAAAAAAAACO1stcBAAAAAAAAAACwYK1NjmU3hBgHxspBAAAAAAAAAAAwUpKDAAAAAAAAAABgpGwrBgAAAAAAAAAwdqttciy7IcQ4MJKDAAAAYEgOWAR4FPr+O66u7mwcAAAAAIyeO4oAAAAAAAAAADBSkoMAAAAAAAAAAGCkbCsGAAAAAAAAADB2LUlrex3FbAMIcWisHAQAAAAAAAAAACMlOQgAAAAAAAAAAEZKchAAAAAAAAAAAIzUyl4HAAAAAAAAAADAorWktb0OYg5DiHFYrBwEAAAAAAAAAAAjJTkIAAAAAAAAAABGyrZiAAAAAAAAAABj1wayrdgQYhwYKwcBAAAAAAAAAMBISQ4CAAAAAAAAAICRkhwEAAAAAAAAAAAjtbLXAQAAAMC+dMDndeih78/N6urOxgEAAAAMz2qbHMtuCDEOjDuRAAAAAAAAAAAwUpKDAAAAAAAAAABgpGwrBgAAAAAAAAAwdm11ciy7IcQ4MFYOAgAAAAAAAACAkZIcBAAAAAAAAAAAIyU5CAAAAAAAAAAARmplrwMAAAAAAAAAAGDBWpscy24IMQ6MlYMAAAAAAAAAAGCkJAcBAAAAAAAAAMBI2VYMAAAAAAAAAGDsVtvkWHZDiHFgrBwEAAAAAAAAAAAjJTkIAAAAAAAAAABGSnIQAAAAAAAAAACM1MpeBwAAAAAAAAAAwIK1NjmW3RBiHBgrBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJGyrRgAAAAAAAAAwH5gy659ycpBAAAAAAAAAAAwUpKDAAAAAAAAAABgpCQHAQAAAAAAAADASK3sdQAAAAAAAAAAACxYa5Nj2Q0hxoGxchAAAAAAAAAAAIyU5CAAAAAAAAAAABgp24oBAAAAAAAAAIzd6mpSq3sdxWyrA4hxYKwcBAAAAAAAAAAAIyU5CAAAAAAAAAAARkpyEAAAAAAAAAAAjNTKXgcAAAAAAAAAAMCCtTY5lt0QYhwYKwcBAAAAAAAAAMBISQ4CAAAAAAAAAICRsq0YAAAAAAAAAMDY2VZs37JyEAAAAAAAAAAAjJTkIAAAAAAAAAAAGCnJQQAAAAAAAAAAMFIrex0AAAAAAAAAAAALttqSansdxWyrA4hxYKwcBAAAAAAAAAAAIyU5CAAAAAAAAAAARkpyEAAAAAAAAAAAjNTKXgcAAAAAAAAAAMBitbaa1lb3OoyZhhDj0Fg5CAAAAAAAAAAARkpyEAAAAAAAAAAAjJRtxQAAAAAAAAAAxq4lWW17HcVsAwhxaKwcBAAAAAAAAAAAIyU5CAAAAAAAAAAARkpyEAAAAAAAAAAAjNTKXgcAAAAAAAAAAMCCtTY5lt0QYhwYKwcBAAAAAAAAAMBISQ4CAAAAAAAAAICRsq0YAAAAAAAAAMDYra4mWd3rKGZbHUCMA2PlIAAAAAAAAAAAGCnJQQAAAAAAAAAAMFKSgwAAAAAAAAAAYKRW9joAAAAAAAAAAAAWrLXJseyGEOPAWDkIAAAAAAAAAABGSnIQAAAAAAAAAACMlG3FAAAAAAAAAABGrq2upmV1r8OYqa0uf4xDIzkIAAAAtuOARXkZgL4/p27GAQAAAAyeO5gAAAAAAAAAADBSkoMAAAAAAAAAAGCkbCsGAAAAAAAAADB2rU2OZTeEGAfGykEAAAAAAAAAADBSkoMAAAAAAAAAAGCkbCsGAAAAAAAAADB2rSWrA9iyy7ZiO87KQQAAAAAAAAAAMFKSgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEit7HUAAAAAAAAAAAAsWGtJVvc6itla2+sIRmdwKwdV1QOr6heq6uqqur2qPldVH6iqH66qM/Y6PgAAAAAAAAAAWBaDWjmoqi5K8rtJ7jn19BlJLuiOS6vqKa21T+xFfAAAAAAAAAAAsEwGkxxUVV+b5HWZJAPdluRnk7wzyZEkz0jyfUkemuTNVXVBa+22vYoVAAAAAAAAAGCZtNWWVsu/ZVezrdiOG0xyUJJXZJIYdDzJk1tr75u69o6q+vMkL0tyXpLnJ3nprkcIAAAAAAAAAABL5MBeBzCPqrogyRO609eckhi05uVJru7Kz62q03YjNgAAAAAAAAAAWFaDSA5K8rSp8m+tV6G1tprktd3p2TmZTAQAAAAAAAAAAPvSULYVe1z3eHuSD21S78qp8mOTvH1hEQEAAAAAAAAADEVbTbK611HM1gYQ48AMJTno/O7xY62145vUu2adNjNV1Tkzqtx33r4AAAAAAAAAAFh+VfXAJP8iyUVJHpjkaJKPJXldkn/bWrtjh8Z5RpJnJXlYJrthfSbJu5P8cmvt/TsxxmaWPjmoqk5Pcu/u9PrN6rbWPl9Vtyc5M8kDtjDMdT3DAwAAAAAAAABgYKrqoiS/m+SeU0+fkeSC7ri0qp7SWvvENsY4Pcnrkzz1lEv/R3d8Z1W9pLX2U33HmMeBRXa+Q+4xVb5tjvq3d49nLSAWAAAAAAAAAIDBaattMMeiVdXXZrI60D0zyUX58SRfn+TvJ/n1rtpDk7y5qraTf/KanEwMemeSpyV5VJJLknw8k7ydl1bVpdsYY6alXzkoyelT5WNz1D/aPR7ZwhizVhm6b5KrttAfAAAAAAAAAADL6RWZrBJ0PMmTW2vvm7r2jqr68yQvS3JekucneelWB6iqC5N8Z3f6piTf2lo70Z1fVVV/lORDmWxn9rKq+g+ttZt7fC0zDWHloLumyofmqH+4e7xz3gFaa9dvdmSy1xsAAAAAAAAAAANWVRckeUJ3+ppTEoPWvDzJ1V35uVV1Wo+hfrR7PJHkn08lBiVJWms3JbmsOz07k9WEFmIIyUG3TpXnWarpzO5xni3IAAAAAAAAAADYP542Vf6t9Sq01laTvLY7PTsnk4nm0m1F9ve707d3C9Os5w1JbunKT9/KGFux9MlBrbW7ktzUnZ6zWd2qOjsnk4OuW2RcAAAAAAAAAACD0VaHcyzW47rH2zPZ1msjV06VH7vFMR6VkztfXblRpdbasSTvX2vTc4WimZY+OaiztlTTuVW1skm989ZpAwAAAAAAAAAASXJ+9/ix1trxTepds06brY5xaj+bjbOS5Cu2OM5cNku0WSbvySRz68wkj0jypxvUu3Cq/N4dHP/gWuHTn/70DnYLAHDSXSfsigowSKu11xHA4rS21xEA7GvXX7/RzgMAAP2d8n/eBzeqx/gczV3JAN7qH81d06f3rdr8/tsmW3b9LVV1epJ7d6ebtmutfb6qbs8kV+UB847Rma4/K77pnbEekOQjWxxrpqEkB/1hkh/rys/KOslBVXUgyXd3pzcneecOjv+la4VHPepRO9gtAAAAAACs7wEPuHyvQwAAxu9Lk/zlXgfB7rgq79jrEPq4ao46W/n03j2myvN8anstOeisLYyx1XFunypvdZy5DGJbsdbaB5K8uzu9pKoes061F+TkskyvbK3dvSvBAQAAAAAAAAAwBKdPlY/NUf9o93hkgeMcnSpvdZy5DGXloCT5oUy2CjuS5G1V9TOZrA50JMkzkjy7q3dtkpfv8Nh/luSCrvzXSU7scP/AMN03JzNVL0jymT2MBRgvcw2wG8w1wG4w1wC7wVwD7AZzDbAbFjnXHMzJ3XP+bAf7ZTl9JlvfEmtZ3Dc7n6MxvWfZoTnqH+4e71zgOIenylsdZy6DSQ5qrX24qr4jye8k+aIkP7NOtWuTXNRau3WHxz6a5IM72ScwfKfsbfmZrexlCTAvcw2wG8w1wG4w1wC7wVwD7AZzDbAbdmGusZXYPtFaO55kqH+rFhH3dD7JPFt4ndk9zrMFWd9xzpwqb3WcuQxiW7E1rbU3JXlYkl/MJBHojiQ3Z5K4c1mSh7fWPrZnAQIAAAAAAAAAsJRaa3cluak7PWezulV1dk4m7ly3xaGmE5s2HSdfuLLTVseZy2BWDlrTWvvLJM/vDgAAAAAAAAAAmNfVSR6X5NyqWulWV1rPeae02YqPbNDPZuMcT7KQBXEGtXIQAAAAAAAAAABsw3u6xzOTPGKTehdOld+7xTGuSnJsnX6+QFUdSvLotTattWMb1d0OyUEAAAAAAAAAAOwXfzhVftZ6FarqQJLv7k5vTvLOrQzQWrs1yX/uTp9UVRttLfb0JF/Uld+4lTG2QnIQAAAAAAAAAAD7QmvtA0ne3Z1eUlWPWafaC5Kc35Vf2Vq7e/piVV1cVa07XrLBUL/QPa4k+eWqOnhKH/dO8nPd6c1JfmNLX8gWSA4CAAAAAAAAAGA/+aEkd2aSuPO2qvqxqnp0VT2xql6d5GVdvWuTvLzPAK21dyT5/e70Hyd5e1X946p6ZFU9K8n7kzywu/7C1trn+34xs6wsqmMAAAAAAAAAAFg2rbUPV9V3JPmdTLb1+pl1ql2b5KJui7C+vrfr/ylJntgd01aT/FRr7dXbGGMmyUEAPbXWrk9Sex0HMG7mGmA3mGuA3WCuAXaDuQbYDeYaYDeYa2DxWmtvqqqHZbKK0EVJzklyLMnHkrw+yS+11u7Y5hh3Jrmoqr4zycVJvjbJFye5MZOtzX6ptfa+7Ywxj2qtLXoMAAAAAAAAAABgDxzY6wAAAAAAAAAAAIDFkBwEAAAAAAAAAAAjJTkIAAAAAAAAAABGSnIQAAAAAAAAAACMlOQgAAAAAAAAAAAYKclBAAAAAAAAAAAwUpKDAAAAAAAAAABgpCQHAQAAAAAAAADASEkOAtiiqnpgVf1gVf37qvpoVd1eVXdV1fVVdUVVPbOqVrbQ39+pql+tqo9V1Z1V9ddV9V+q6vu30g8wPt188wtVdXU313yuqj5QVT9cVWfsdXzAcqqqr6uqF1XVW6vquqo6WlW3VdW1VXV5VT1ui/19U1W9oXutc7R7fENVfdOivgZg2KrqZVXVpo4nzNHGXAPMVFX3rqofrar3VtVnuvnihqr606r6+ap6zBx9mG+ADVXVoaq6pKr+Y1V9eur91Eer6jer6tFz9mOugX2mqu5TVU+tqpd292RumnpPdHmP/rY9j1TVGVX1I9095c9189nV3T3nB241JmDYqrW21zEADEZVvTTJTySpGVU/mOSftNb+14z+Lknyy0kOb1Dl/Ume2lr77FZjBYatqi5K8rtJ7rlBlY8meUpr7RO7FxWw7KrqyiSPn6Pqv0tyaWvt2CZ9VZJfTfLsTfr5tSQ/0LyxBDpV9bWZvB+a/qDDE1tr79qgvrkGmEtV/dMkv5LkXptUu6K19rQN2ptvgE1V1QOSvDnJ18yo+otJXrDeXGGugf2rqjb7nf7t1trFc/azI/NIVT0kkzntoRtU+Zsk39lae8s8cQHDZ+UggK25XyaJQbcn+Z0kz0ry2CSPTPJdSa7q6j0yyZ9U1VkbdVRV/zCTF3CHk9yY5F8k+XtJ/lGSN3TVHp3kDVVlvoZ9pPtPtddlkhh0W5IfT/L1Sf5+kl/vqj00yZs3m2eAfen+3eMNSV6Z5NuSPCrJY5I8P8mnuuvfleTyGX39dE7eiPpwkmd2fT2zO093/ad2IG5gBLr3Lb+eSWLQX83ZzFwDzFRV353k9zNJDPqrJD+Z5B8keUSSizK5p/L2JHdv0o35BthQt4L7dGLQ/0hycSbvpZ6c5KWZ3BNOkucl+eENujLXAElyXZK39Wy77Xmku2f8xzmZGPTrmdxb/vpM7jXflsm959dX1cN6xgkMjJWDALagqn4uyWeT/Epr7dZ1rh9M8v8m+fbuqf+7tfa3XqB1bzavTnJukluSfF1r7eOn1PnlJP+8O/2e1tprd+wLAZZaVb0zyROSHE/y+Nba+065/iNJXtadvri19tLdjRBYVlX1x0lem+QPWmsn1rl+7yTvTfKV3VOPb629e51652byWmUlkxVAHt9au3Pq+hlJrswkIfp4kvNOfS0D7D9V9dxMPkl/TZI3Jvmx7tK6KweZa4B5VNX5mfxH2OEk707yza21v9mg7qH1VkY03wCzVNU/SfIfutP3JXncqe+pquoR3bXTknw+yX1aa8enrptrYB+rqp/M5APkV7XWbqyqByX5ZHd5rpWDdmoeqaqXJHlxd/qjrbWfP+X6Y5L8l26cd7bWvnH+rxQYKitRAGxBa+2y1trL1ksM6q6fyCShZ+1G1Ldt0NW3ZpIYlCQ/u8GbwB/J5E3mWhnYB6rqgkwSg5LkNacmBnVensmbxCR5blWdthuxAcuvtfbU1trr1ksM6q7flOQFU09t9FrleTm5JdBzpm9Edf3ckeQ53elKkuf2DhoYhW4bjrUPRvxgTr4n2oy5BpjHqzJJDLopydM3SgxKkk22TDXfALN8w1T5Z9d7T9Va+1AmK3EkydlJzjulirkG9rHW2otba3/cWrtxG91sex7p7hX/UHd6dSb3kk+N9X1JXtOdPrFLfgRGTnIQwA5rrX02k2Vnk+QhG1R72lT58g36uSOTbYWS5Kur6it2Ij5g6T1tqvxb61Vora1msjJIMrkZ9YTFhgSMzLumyn/rtUq3t/23dKfXtNbev14n3fMf7U6f1rUD9q9/m+SsTD4R+65Zlc01wDyq6rxMtsBIkl/qEp232of5BpjHoanyJzapN/0hz8NrBXMNsF07OI88IckXd+Xf7u4lr+fyqfLTtxovMDySgwAWY+2N4UYvuh7XPX60tfaZTfq5cqr82G1HBQzB2vxwe5IPbVLP/AD0NX3Te73XKg9Ocv+ufOU616etXT8nyYO2FxYwVFX17UmemuRzmX/VU3MNMI9/OlV+/Vqhqs6uqq+oqnvN0Yf5BpjHtVPlL9+k3toHLFqSP5963lwDbNdOzSOPW6feej6YyT3oxP1l2BckBwHssKq6T5Lzu9Nr1rl+ViYv2Na9forp6+dvWAsYk7Xf9Y9N71u/DvMD0NeFU+X1XoucP+N6NrhuLoJ9qKq+OMkru9PLWmt/PWdTcw0wj0d3j3+T5Oqq+mdV9d8zSUa8NslNVfWJqnpxd79lPeYbYB6/l+SWrnxZVR08tUJVPTzJRd3p77fWbpm6bK4Btmun5pG5+unuPa+thmYugn1AchDAzvuRnNwT9nXrXD8nydoyj9fP6Ou6qfIDthkXsOSq6vQk9+5ON50fWmufz8lPdpgfgLlU1YEkL5x6ar3XKtNzitcqwCwvS3LfJP81yWu20M5cA8zjq7rHv0jyqiS/k+Rhp9R5cJKXJHlfVd1vnT7MN8BMXYLzxUnuTPINSa6qqu+uqkdX1ZOq6sWZrMBxKMl/S/L8U7ow1wDbtVPzyNr57a21m+fs50ur6vCmNYHBkxwEsIOq6u8leW53en2Sf7tOtXtMlW+b0eXtU+WNPgEHjMdW5ofk5BxhfgDm9bwkj+rKb2ytfXCdOl6rAHOpqscmuTTJ8SQ/0FprW2hurgHm8SXd43lJ/q8kNyf5gST3SXJ6kguSvLWr89VJXt8lQ08z3wBzaa29MckjM0l4/rtJfjvJ+5K8PZMkxDsySQp6bGvtM6c0N9cA27VT88haP1u5v7xeP8DISA4C2CFV9WVJ/kMmqwa1JN/TWrtjnaqnT5WPzej26FT5yPYiBAZgK/NDcnKOMD8AM1XVhUn+dXf6V0l+cIOqXqsAM1XVoSS/lsmqqL/YWvuzLXZhrgHmcWb3eDjJiST/qLX26tbaX7fWjnaJzk/NyQShr0/y9FP6MN8Ac6mq05J8Z5JvzsmV36d9WZJnJnnCOtfMNcB27dQ8stbPVu4vr9cPMDKSg4BRqqqVqmo7cFw853j3SPLmTLYMS5IXtdbesUH1u6bKh2Z0Pb2M453zxAIM2lbmh+TkHGF+ADZVVX8nyRszSWI+muTbW2s3blDdaxVgHi9Kcn6S/5XkJ3u0N9cA85ieK17fWnv/qRVaa6uZbPG+5pmb9GG+AdZVVWcm+ZMkP57kXplsnXp+JvPCPZM8Ocl7Mlmx7E1V9UOndGGuAbZrp+aRtX62cn95vX6AkZEcBLBNVXV6kiuSPKJ76t+01v71Jk1unSrPWqbxzKnyPEtAAsO2lfkhOTlHmB+ADVXVg5O8LcnZmXzi/pmttSs3aeK1CrCpqjovyY91p89prd2+Wf0NmGuAeUzPFW/dqFJr7X8m+VR3esEmfZhvgI38ZJLHd+VLWmuXtdauaa0da63d0lp7e5InJnlnJqsK/ZuqethUe3MNsF07NY+s9bOV+8vr9QOMzMpeBwCwCK2141V1/g509enNLlbVSpLXZfLGMEl+o7X2ghl9Xj9VPmfDWhMPmCpfN6MuMHCttbuq6qYk986M+aGqzs7JN2/mB2BdVXW/TD79er9Mtj393tbaG2c081oFmOV5mXwK9RNJzqiqZ6xT56unyt9YVfftym/qkonMNcA8rkuyNn9cv1nFru79k9znlOfNN8CmqqqSPKs7vba19tvr1evuOf/LTFYQOtC1eV532VwDbNdOzSPXJ/l7Sc6sqi9urd08Rz9/3Vo7ukk9YAQkBwGj1Vq7ZpH9V9WBJP8ukz2ok+TfJ/n+OeK6raquy+RF13kzqk9fv7pPnMDgXJ3kcUnOraqV1trxDeqZH4BNVdW9k7w9yZd3Tz2ntfbaOZp+ZKrstQqwnrWl5788ye/NUf9fTpUfnOT2mGuA+fzPnFwJ6OCMumvXT30PZb4BZvmyJF/SlT88o+6HpsrTc4a5BtiunZpHPpLkn0zV+1vbsib/+8PvD9mgD2CEbCsG0N+rk6x9QvaPk3xXt8/9PN7TPT506hO067lwqvzeLcYHDNPa/HBmTm5XuB7zA7Chqrpnkv+U5Ku6p17YWvvlOZt/MskNXfnCzSrm5LL7n0ryF1uJEdj3zDXAPP7LVPkhG9aaWEuI/tQpz5tvgFmmkwpnfaj+tA3amWuA7dqpeeQ9U+XN+nlkTq5M7/4y7AOSgwB6qKp/k+TS7vQ/J/m21trdW+jiD6fKF28wxhlJvr07/Uhr7dothgkM0x9OlZ+1XoVu5bLv7k5vzmS/e4Ak//s1xJuTfF331L9qrf3cvO1bay3JFd3peVX16A3GeXROflLtiq4dsA+01i5urdVmR5KfnGryxKlrf9H1Ya4B5vFHSdbutzx9o0pVdWGSe3Wn756+Zr4B5vC5JLd05cd0q2lsZPo/2j+5VjDXANu1g/PIu5L8TVf+nm7rxPVcPFWetQU9MAKSgwC2qKpekpN7Sf/XJN/SYy/WNyb5eFf+sapa79NvP5/k7KkysA+01j6QkzezL6mqx6xT7QVJzu/Kr9xiciIwYlV1KJPXGd/QPfXK1tpP9OjqFTn5KdhXVdWRU8Y5kuRV3enxrj7AVr0i5hpgE621zyb5je70H1TVM06tU1X3yBfOD69ep6tXxHwDbKBbDf7N3en9kvz4evWq6uwk0x+8+ONTqrwi5hpge16Rbc4jrbVjSf6f7vT8JD98ap3unvMl3emVrbWrths4sPxKUjLA/KrqOTn5oupTSb4jJzOwN/LR9f7jvqqekuRNmSRq3pjkp5N8IJOEoO/LyT1h35PkCa21E9v+AoBBqKqHZ7KU65EktyX5mUxWBzqSyXaGz+6qXpvkka21W/ciTmD5VNUf5OSn6t+R5LlJNnvTd2yj1Qmr6meTvLA7/XAmN8E/nsmWHpcleXh37Wdbay/aXuTA2HQfqnhxd/rE1tq7NqhnrgE2VVVfmuSDSR6YyX+C/WqSN2SyysfXZDJXrH16/ldaa/98g37MN8CGquq8JB9Kckb31JuS/HaSTyQ5PcmjM3l/9cDu+n9urT1pnX7MNbBPVdVjk5w79dS9c/KD3+/NyYTnJElr7fIN+tn2PNIlT38wyVd2T/1akt9PcmeSJyZ5UZKzuvOvb639tzm+RGDgJAcBbEFVvSuz93o91YPXls5fp7/vS/JLSQ5t0PYDSS5qrd20xTGBgauqb07yO0m+aIMq12YyP3xs96ICll1VbfUN3l+21h60QV8Hkvx6ku/dpP1rkjy7+6QtwP+2heQgcw0wU1Wdn8kWY+duUu03k/zARiurmm+AWarqSUl+L5P/0N/MO5J8W2vt8+v0Ya6BfaqqLk/yPfPW77ZjXq+fHZlHqurcJG9J8hUbVLklyT9rrZ26ChowUrYVA9hDrbVfT/KITF7ofSLJXUk+m8lqQT+Y5BskBsH+1Fp7U5KHJfnFTBKB7khycyaf+LgsycMlBgGL1Fpbba1dkuSiTPa8vyHJse7xiiRPaa1d6oY2sB3mGmAerbWrk/zdJD+S5E+TfC6TueL6JP8+yTe21i7ZbMtl8w0wS2vtTzJZieyyJO9K8tdJ7s5kZY1PJnldkqcledJ6iUFdH+YaYFt2ah7p7h0/PJM57YOZ3Fu+I8lHM7nn/DCJQbC/WDkIAAAAAAAAAABGyspBAAAAAAAAAAAwUpKDAAAAAAAAAABgpCQHAQAAAAAAAADASEkOAgAAAAAAAACAkZIcBAAAAAAAAAAAIyU5CAAAAAAAAAAARkpyEAAAAAAAAAAAjJTkIAAAAAAAAAAAGCnJQQAAAAAAAAAAMFKSgwAAAAAAAAAAYKQkBwEAAAAAAAAAwEhJDgIAAAAAAAAAgJGSHAQAAAAAAAAAACMlOQgAAAAAAAAAAEZKchAAAAAAAAAAAIyU5CAAAAAAAAAAABgpyUEAAAAAAAAAADBSkoMAAAAAAAAAAGCkJAcBAAAAAAAAAMBISQ4CAAAAAAAAAICRkhwEAAAAAAAAAAAjJTkIAAAAAAAAAABGSnIQAAAAAAAAAACMlOQgAAAAAAAAAAAYKclBAAAAAAAAAAAwUv8/yIWTPpoVKA8AAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACQcAAAQKCAYAAAD3zl6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdfZDtd10f8Pdn7+Ym4flJTEiw8mQDijYUKOpI6hPVilUYddQWRUClD0zrdCqZgoVqO63WzmhTqlApKGNrBaTQlmCx1ogIJXRaawsRi6IJAUKgQCDJvbnnfPrHntt7env3npvf7tmzv9++XjNn9vs7v+/DZ8/ZvRkO7/1+q7sDAAAAAAAAAABMz9amCwAAAAAAAAAAANZDOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAA4FKrqflX1kqp6V1XdVlUnFo8PVdWrq+qLN10jAAAAAIxNdfemawAAAACOuKr6xiT/PMkV5+l2d5LndPcbDqYqAAAAABg/4SAAAABgo6rq5UletvTU7ye5McmJJF+a5E8v3bszyZO6+/cOrEAAAAAAGDHhIAAAAGBjqurvJPm7i8tbknx/d7/trD7PTPKGJBcvnnptd3/fwVUJAAAAAOMlHAQAAABsRFV9TZJfS1JJ/jjJV3T3h3fp+yNJfnRxeUeSB3X3/EAKBQAAAIAREw4CAAAADlxVHUvyviRflKSzEwx693n6X5nk5qWnrnK0GAAAAACstrXpAgAAAIAj6TuyEwxKkn99vmBQknT3LUk+s/TUA9dVGAAAAABMiXAQAAAAsAnft9R+xQWOuWepbStkAAAAALgAjhUDAAAADlRV3T/J/05yLMntSR7eKz6gqKrtJHcl2V48dXl3f3SthQIAAADABNg5CAAAADhoX5GdYFCS/NaqYNDCY3MmGHRHko+tozAAAAAAmBrhIAAAAOCg/Zml9vsvcMxXLbV/8wIDRQAAAABw5AkHAQAAAAft6qX2bRc45llL7V/dx1oAAAAAYNKEgwAAAICDthwOumhV56p6bJI/t7i8O8kvrqMoAAAAAJgi4SAAAADgwFTVQ5L8iaWnnnABw/5xznyG8Zru/uS+FwYAAAAAEyUcBAAAABykq8+6flZVPXi3zlV1bZK/sLj8ZJIfWVdhAAAAADBFwkEAAADAQVoOB51M8sAkv1RVD1ruVFUPrKpXJPkHi6dmSZ7T3Z84mDIBAAAAYBq2N10AAAAAcKQsh4NekuQfJnlGkj+qqv+Y5PYkVya5Jsl9Fv1mSV7Y3W89yEIBAAAAYAqquzddAwAAAHBEVNX7kjx+cfnI7BwZdl123934liTf391vO4DyAAAAAGByhIMAAACAA1FV90nymSTHknyyux+6eP4rk/z1JE9NcnmSTyd5X5I3Jnl1d9+5mYoBAAAAYPwcKwYAAAAclC/LTjAoSX7n9JPd/c4k79xIRQAAAAAwcbtt2Q0AAACw365eav+3jVUBAAAAAEeIcBAAAABwUJbDQb+zay8AAAAAYN8IBwEAAAAHRTgIAAAAAA5YdfemawAAAAAmrqq2k3w2ycVJ7klyv+4+udmqAAAAAGD67BwEAAAAHIQnZCcYlCQ3CQYBAAAAwMEQDgIAAAAOgiPFAAAAAGADHCsGAAAAAAAAAMCRUFVPSvINSb4qyZckeXiSe5LcmuS3k7y6u9+xD+u8PMnLLrD7V3f3b+x1zd1sr2tiAAAAAAAAAAA4LKrqhiRPP8et40ket3h8b1W9LskLuvvkQda3LsJBAAAAAAAAAAAcBVcsvt6a5PVJ3pHkj5McS/LlSf7mos9zspOp+e59WveJK+7/4T6tc06OFQMAAAAAAAAAYPKq6t8l+YUkb+zu2TnuPyzJO5N80eKppw89Ymz5WLHurkEF75OtTS4OAAAAAAAAAAAHobuf2d2/fK5g0OL+7dnZPei0bzuYytZLOAgAAAAAAAAAAHb8xlL7MZsqYj8JBwEAAAAAAAAAwI7jS+35xqrYR8JBAAAAAAAAAACw45ql9k37MWFVvb2qPlFVJ6vqtqr6jaq6tqoevB/zr1y/uw9inVGrqouTPHFx+fEk5zx7DgAAAAAAAAAOuWNJPm/R/t3uPrHJYlivqtpOctmm6xjoslxARqO7b9mvBatqK8m7kjx18dRTuvu9A+d6eZKXrej2qSTP7e43D1njQm2vc/IJeWKSGzddBAAAAAAAAADso6ckGRR8YDQuS3LzpotYs9rHuX4oZ4JBbxoaDFryu0n+TZL3JLk1yUVJ/mSSv5jkGUkelOSNVfXN3X39HtfalZ2DLkBVPTnCQQAAAAAAAABMy+BdURiHqroyEw8Hdfe+hIOq6pokv5adjXZuS/Kl3f2xPcz3oO7+1Hnu/2CSn11c3prksd1919D1zsfOQRfm46cb73nPe3L55ZdvshYAYKKe8+Qf2XQJAAxR+/mHSXDI+KMygI163Xt/bNMlAAAT9JGPfCRPferpjVHO/H/hTN+7r39kLn/4sU2XsdJHbpvlad/4f/NMT0ny0XWvWVVfnORN2cnRnEjyHXsJBiXJ+YJBi/uvXGxW84Ikj0jy7CS/uJc1dyMcdGH+7/l1l19+ea688spN1gIATNQlx+636RIAGGJra9MVwPrM55uuAOBI81k0AHAAZqu7MBWXP/xYrnzERZsu4976aHffss4FqupRSf5Dkgdn53fiu7r7hnWuueSV2QkHJck1WVM4yCeYAAAAAAAAAAAcOVX1iOwcJfaIJJ3ked39pgMs4X1L7SvWtYidgwAAAAAAAAAAJm6ezjyHf5fgeQ7mmPOqeliStyd59OKpF3X3LxzI4ktlHMQidg4CAAAAAAAAAODIqKoHJvnVJE9YPHVtd79iA6U8Yal967oWEQ4CAAAAAAAAAOBIqKr7JPn3SZ60eOrvd/ePb6icH1xq37CuRRwrBgAAAAAAAAAwcbOeZ9aH/1ixddZYVceTvCnJVy6e+unufumAeZ6b5DWLy7/b3S8/6/4Tk9zV3f/rPHP8YJLnLy4/uqhrLYSDAAAAAAAAAAA4Cv5Vkmcs2r+e5NVV9SXn6X+yuz8wYJ0/neTnquo/Jbk+ye8m+UR2cjpXJflLSb5+0XeW5Ae7+3MD1rkgwkEAAAAAAAAAABwFz15qf02S/76i/x8l+cKBax1L8nWLx24+keT53f2WgWtcEOEgAAAAAAAAAADYP2/NzpFhX57k6iSfn+ShSSrJJ5P8TpK3JXltd39m3cUIBwEAAAAAAAAATNw8nXl602WstM4au7v2aZ7XJnntee7fluRfLB4bt7XpAgAAAAAAAAAAgPUQDgIAAAAAAAAAgIlyrBgAAADsxXw+bNyWv9fhAA39OQUAAAAmozPPPIf/M4IeQY1j45NIAAAAAAAAAACYKOEgAAAAAAAAAACYKOEgAAAAAAAAAACYqO1NFwAAAAAAAAAAwHrNujPr3nQZK42hxrGxcxAAAAAAAAAAAEyUcBAAAAAAAAAAAEyUY8UAAAAAAAAAACZuns48h//IrjHUODZ2DgIAAAAAAAAAgIkSDgIAAAAAAAAAgIkSDgIAAAAAAAAAgIna3nQBAAAAAAAAAACs1zzJLL3pMlaab7qACbJzEAAAAAAAAAAATJRwEAAAAAAAAAAATJRjxQAAAAAAAAAAJm6eznwUx4od/hrHxs5BAAAAAAAAAAAwUcJBAAAAAAAAAAAwUcJBAAAAAAAAAAAwUdubLgAAAAAAAAAAgPWadWfWvekyVhpDjWNj5yAAAAAAAAAAAJgo4SAAAAAAAAAAAJgox4oBAAAAAAAAAEzcfPE47MZQ49jYOQgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZq+6AWqqqHJXlekm9J8pgkD07yiSQ3J/nNJL/S3e9aMcc3JPmBJE9N8nlJPp7kPUle1d1vW1/1AAAAAAAAAADjNU9nlt50GSvNR1Dj2BxIOKiqvj3JzyR56Fm3Ll88nprkcUm+dZfxleRnsxMMWnZFkmcleVZVvSrJC7vbTwkAAAAAAAAAAOQAwkFV9T1JXpOdI8xuy05I6LeSfDLJZdnZReibk9xznmn+Xs4Eg/5rkp9I8sHF2B9OcvXi/seTvHTfvwkAAAAAAAAAABihtYaDqurxSV6VnWDQO5J8c3d/+hxdr6uq47vM8djsBICS5L1Jnt7ddy2ub6yqtyS5IcmTk7y4ql7T3R/cz+8DAAAAAAAAAADGaGvN81+X5OIktyd59i7BoCRJd5/c5dYP5UyI6UVLwaDT4+5M8qLF5XaSv7GnigEAAAAAAAAAJmaWZNYjeGz6hZqgtYWDquqqJF+7uPyn3X37gDkqybcsLm/q7nefq9/i+d9bXH7rYhwAAAAAAAAAABxp69w56NuX2q8/3aiqB1fV46rqoRcwx6OSXLFo37Ci7+n7Vyb5wgstEgAAAAAAAAAApmqd4aCnLb5+Osn7q+ovVtXvJPlkkg8kub2q/qCqXlZV99tljscvtW9asd7y/cfv2gsAAAAAAAAA4IiZj+jB/tpe49xPWHz9UJLrkvzVc/R5VJKXJ/m2qvpz3X3rWfcfudS+ZcV6N+8ybqWqunJFl8vuzXwAAAAAAAAAAHAYrDMc9JDF16uSfFmSTyW5NsmvJPlMkicm+dEk35jkS5K8vqq+qruXQ2D3X2p/dsV6n1tq77YT0W5uXt0FAAAAAAAAAADGZZ3Hit138fXiJLMk39jdr+zuj3f3ie5+b5JnJrl+0e8rkjz7rDkuWWqfXLHeiaX2pQNrBgAAAAAAAACAyVjnzkF350xA6PXd/e6zO3T3vKr+VnZ2D0qS70ryhrPmOO34ivUuXmrfdS9rXXUM2WVJbryXcwIAAAAAAAAAHArzVGapTZex0nwENY7NOsNBd+RMOOj63Tp19/+sqg8nuSLJU84xx2mrjgq771J71RFkZ9dwy/nuV/nBAwAAAAAAAABgfNZ5rNjNS+3zhm+W+j78rOeXx125Yo7l3X9u3rUXAAAAAAAAAAAcEevcOeh/5sxOQMdW9D19/9RZz79vqX3VijmW779/RV8AAAAAAAAAgCNj3juPw24MNY7NOncO+s2l9mNW9H304uuHz3r+D5Pcumhfs2KOpy/N8aFVxQEAAAAAAAAAwNStMxz0liT3LNrP3q1TVV2T5KGLy3cs3+vuTvLmxeVVVfW0XeZ4Ws7sHPTmxTgAAAAAAAAAADjS1hYO6u5PJPm5xeXXV9V3nt2nqu6f5KeWnnrlOab6qZw5buy6qrr0rDkuTXLd4vLUWfMBAAAAAAAAAMCRtb3m+V+W5JuSfEGS11XVVyb5lSSfSfLEJC/OmR1/fqa7bzx7gu7+QFX9ZJJrkzw5yTur6seTfDA7x5W9OMnVi+7/qLt/f43fDwAAAAAAAADA6MxSmaU2XcZKY6hxbNYaDuruj1fVN2TniLHHJvlri8fZ/kWSv36eqV6S5OFJnpedINAvnaPPq5O8dE8FAwAAAAAAAADAhKztWLHTuvv9Sf5Ukr+V5D8n+WSSk0luSfKvk3xNdz+/u+85zxzz7n5+dnYhenOSWxdz3Lq4/vPd/YLunq/1mwEAAAAAAAAAgBFZ97FiSZLu/lySn1w89jLPW5O8dV+KAgAAAAAAAAA4IhwrdnStfecgAAAAAAAAAABgM4SDAAAAAAAAAABgooSDAAAAAAAAAABgorY3XQAAAAAAAAAAAOvVncy7Nl3GSt2brmB67BwEAAAAAAAAAAATJRwEAAAAAAAAAAAT5VgxAAAAAAAAAICJm6Uyy+E/VmwMNY6NnYMAAAAAAAAAAGCihIMAAAAAAAAAAGCihIMAAAAAAAAAAGCitjddAAAAABxJ8/mwcVv+zudIG/pzAwAAABx5s2xlNoI9ZMZQ49h4RQEAAAAAAAAAYKKEgwAAAAAAAAAAYKIcKwYAAAAAAAAAMHHdlXnXpstYqUdQ49jYOQgAAAAAAAAAACZKOAgAAAAAAAAAACZKOAgAAAAAAAAAACZqe9MFAAAAAAAAAACwXrNUZqlNl7HSGGocGzsHAQAAAAAAAADARAkHAQAAAAAAAADARDlWDAAAAAAAAABg4ma9lVkf/j1kxlDj2HhFAQAAAAAAAABgooSDAAAAAAAAAABgooSDAAAAAAAAAABgorY3XQAAAABwL8znw8du+RuhQ2Mv7yMAAADAAPNU5iPYQ2ae2nQJk3P433UAAAAAAAAAAGAQ4SAAAAAAAAAAAJgo4SAAAAAAAAAAAJio7U0XAAAAAAAAAADAes1TmaU2XcZK8xHUODZ2DgIAAAAAAAAAgIkSDgIAAAAAAAAAgIlyrBgAAAAAAAAAwMTNeiuzPvx7yIyhxrHxigIAAAAAAAAAwEQJBwEAAAAAAAAAwEQJBwEAAAAAAAAAwERtb7oAAAAAAAAAAADWa57KPLXpMlYaQ41jY+cgAAAAAAAAAACYKOEgAAAAAAAAAACYKMeKAQAAAAAAAABM3DxbmY1gD5n5CGocG68oAAAAAAAAAABMlHAQAAAAAAAAAABMlHAQAAAAAAAAAABM1PamCwAAAAAAAAAAYL1mvZVZH/49ZMZQ49h4RQEAAAAAAAAAYKKEgwAAAAAAAAAAYKIcKwYAAAAAAAAAMHHzVOYj2ENmntp0CZNz+N91AAAAAAAAAABgEOEgAAAAAAAAAACYKOEgAAAAAAAAAACYqO1NFwAAAAAAAAAAwHrNuzLr2nQZK81HUOPY2DkIAAAAAAAAAAAmSjgIAAAAAAAAAAAmyrFiAAAAMCZb/s5nEoa+j/P5/tYBAAAAHBmzbGU2gj1kxlDj2HhFAQAAAAAAAABgooSDAAAAAAAAAABgooSDAAAAAAAAAABgorY3XQAAAAAAAAAAAOs1763M+/DvITOGGsfGKwoAAAAAAAAAABMlHAQAAAAAAAAAABPlWDEAAAAAAAAAgImbZSuzEewhM4Yax8YrCgAAAAAAAAAAEyUcBAAAAAAAAAAAEyUcBAAAAAAAAAAAE7W96QIAAAAAAAAAAFiveZJZ16bLWGm+6QImyM5BAAAAAAAAAAAwUcJBAAAAAAAAAAAwUY4VAwAAgCTZ8vczjMBYfk7nNgAHAACAw2aercxHsIfMGGocG68oAAAAAAAAAABMlHAQAAAAAAAAAABMlHAQAAAAAAAAAABM1PamCwAAAAAAAAAAYL1mvZVZH/49ZMZQ49h4RQEAAAAAAAAAYKKEgwAAAAAAAAAAYKKEgwAAAAAAAAAAYKK2N10AAAAAAAAAAADrNU9lntp0GSuNocaxsXMQAAAAAAAAAABMlHAQAAAAAAAAAABMlGPFAAAAAAAAAAAmbt5bmfXh30NmPoIax8YrCgAAAAAAAAAAEyUcBAAAAAAAAAAAEyUcBAAAAAAAAAAAE7W96QIAAADgnLb8PQuM1iZ+f+fzg18TAAAARmSWymwEe8jMUpsuYXIO/7sOAAAAAAAAAAAMIhwEAAAAAAAAAAAT5VgxAAAAAAAAAICJm3dl3of/yK4x1Dg2dg4CAAAAAAAAAICJEg4CAAAAAAAAAICJEg4CAAAAAAAAAICJ2t50AQAAAAAAAAAArNc8W5mNYA+Z+QhqHBuvKAAAAAAAAAAATJRwEAAAAAAAAAAATJRjxQAAAAAAAAAAJm7eW5n34d9DZgw1jo1XFAAAAAAAAAAAJko4CAAAAAAAAAAAJko4CAAAAAAAAAAAJmp70wUAAAAwYVv+JuVQqdp0BZzWvekKpmfovzfz+f7WAQAAAIfULJVZDv/nQ2OocWx8SgsAAAAAAAAAABMlHAQAAAAAAAAAABPlWDEAAAAAAAAAgImb91bmffj3kBlDjWPjFQUAAAAAAAAAgIkSDgIAAAAAAAAAgIkSDgIAAAAAAAAAgIna3nQBAAAAAAAAAACs1zzJLLXpMlaab7qACbJzEAAAAAAAAAAATJRwEAAAAAAAAAAATJRjxQAAAAAAAAAAJm7eW5n34d9DZgw1jo1XFAAAAAAAAAAAJko4CAAAAAAAAAAAJko4CAAAAAAAAAAAJmp70wUAAABwgLb8jci+qzrYcVsDx+3FQX+PB637YMftxfyAa93E93jQDvrfxfn8YNcDAACAhVlvZdaH//PBMdQ4Nl5RAAAAAAAAAACOhKp6UlX97aq6vqpurqoTVfXZqvpAVb22qr5qDWt+Z1X9alV9pKrurqoPVdXrqupp+73Wudg5CAAAAAAAAACAyauqG5I8/Ry3jid53OLxvVX1uiQv6O6Te1zvkiSvT/LMs279icXju6vq5d39Y3tZZxXhIAAAAAAAAACAietU5jn8x8D3emu8YvH11uyEdt6R5I+THEvy5Un+5qLPc7KTqfnuPa736pwJBv2nJD+9WPuJSf52ksck+dGq+kh3/9we19qVcBAAAAAAAAAAAEfBTdkJ5byxu2dn3Xv3Ysegdyb5oiTfVVU/093vGLJQVV2TM+Gif5vkWUtr3lhVb0nyX5J8QZKfqKo3dPenhqy1ytY6JgUAAAAAAAAAgMOku5/Z3b98jmDQ6fu3Z2f3oNO+bQ/L/fDi6yzJXzl7zcVaL15cPjjJ8/ew1nkJBwEAAAAAAAAAwI7fWGo/ZsgEVXW/JF+7uHx7d9+yS9dfSfKZRfvZQ9a6EI4VAwAAAAAAAACYuFlvZdaHfw+ZQ1Dj8aX2fOAcT01y8aJ9w26duvtkVb07yTOSPLWqLuruewauuauNv6IAAAAAAAAAAHBIXLPUvmngHI+/F3Ocvr+d5HED1zsvOwcBAAAAAAAAAHAYXVZV5+1wniO77rWq2kpy7dJTvzxwqkcutVfVd/NZ4943cM1dCQcBAAAAAAAAAHAY3XgBfc6fHrp3fig7R4IlyZu6+70D57n/UvuzK/p+bql9v4Hrnddaw0FV1RfY9Ybu/rMr5vqGJD+QnTfh85J8PMl7kryqu9+2lzoBAAAAAAAAAKZsnsq89zNHsx7zfc36XLiquibJP1xc3pbkL+9hukuW2idX9D2x1L50D2vu6tDvHFQ7+0P9bHaCQcuuSPKsJM+qqlcleWF3X2gYCQAAAAAAAACAw+0pST667kWq6ouTvCk7OZoTSb6juz+2hynvXmofX9H34qX2XXtYc1cHFQ76mST/7Dz3P3eee38vZ4JB/zXJTyT5YJLHJPnhJFcv7n88yUv3XCkAAAAAAAAAAIfBR7v7lnUuUFWPSvIfkjw4ySzJd3X3DXuc9o6l9qqjwu671F51BNkgBxUOuq27/8e9HVRVj81OAChJ3pvk6d19OiV1Y1W9JckNSZ6c5MVV9Zru/uC+VAwAAHCYbW1tuoL1q4HbBw8dtzV03LD3oo8NfA+PHRs2Lkm2h43t7YG1DnwveuC4Grqh8MBxdWo+bL0kOTUbNm42bFzNBtY6HzruYN+LPY89SEP//R76XgAAAMDCLJVZDv/nirMDPFasqh6R5NeSPCJJJ3led79pH6ZeDjRdmZ3My24eudS+eR/W/v8c9nf9h3ImwPSipWBQkqS770zyosXldpK/cYC1AQAAAAAAAAAwQlX1sCRvT/LoxVMv6u5f2Kfp37fUvmpF39P3TyX5X/u0/v/j0IaDqqqSfMvi8qbufve5+i2e/73F5bcuxgEAAAAAAAAAwP+nqh6Y5FeTPGHx1LXd/Yp9XOLGJCcX7WvOU8fxJE87Paa7T+7Wdy8ObTgoyaOSXLForzrL7fT9K5N84boKAgAAAAAAAABgvKrqPkn+fZInLZ76+9394/u5RnffkeQ/Li6/rqqu3KXrs5M8YNHej+PMzumgwkHfXlW/V1V3VdUdVfX7VfXzVfXV5xnz+KX2TSvmX77/+F17AQAAAAAAAAAcQd2V+Qge3es7MGqxU8+bknzl4qmf7u6XDpjnuVXVi8fLd+n2k4uv20leUVXHzprjYUlOh5I+leTn7m0dF2p7XROf5QlnXT928fieqvo3SZ7b3Z8+q88jl9q3rJj/5l3GXZDzJLROu+zezgkAAAAAAAAAwKHyr5I8Y9H+9SSvrqovOU//k939gSELdfevV9UvJfnOJH8hydur6qeS3JrkiUlekuQLFt2v7e7/PWSdC7HucNCdSd6Sna2Sbkry2SSfl53z1F6Y5KFJvjXJm6vq67v7nqWx919qf3bFOp9bat9vQJ03r+4CAAAAAAAAAMCIPXup/TVJ/vuK/n+U5Av3sN7zsnNs2J9P8tWLx7J5kh/r7lfuYY2V1h0OuqK7P3WO599eVdcluT7J1dkJC/3lJP9kqc8lS+2TK9Y5sdS+dEihAAAAAAAAAABTNc9W5tnadBkrjaHGC9XddyX5pqr67iTPTfJlSR6U5GNJ3pHkn3b3u9Zdx1rDQbsEg07f+1hVfVuS9yc5nuRF+X/DQXcvtY+vWOripfZd97bOrD6K7LIkNw6YFwAAAAAAAACAQ6C7a5/meW2S196L/v8yyb/cj7WHWPfOQefV3X9QVW9P8k1JHltVj+juWxe371jquuqosPsutVcdQXauOm453/2qffnZAAAAAAAAAACAA3UY9mJ631L7iqX2cmDnyhVzLO/8c/OeKwIAAAAAAAAAgAnY6M5BC7tty7McGrpqxRzL99+/t3IAAAAAAAAAAKZl1pXZ/pyqtVZjqHFsDsPOQU9Yat+61P7DpetrVszx9MXXDyf50P6UBQAAAAAAAAAA47bRcFBVPTrJ1y8u/6C7P3z6Xnd3kjcvLq+qqqftMsfTcmbnoDcvxgEAAAAAAAAAwJG3tmPFquqbk1zf3ad2uf/5Sd6Q5KLFU684Ry764j4AACAASURBVLefSvL92anzuqp6enfftTTHpUmuW1yeWvQHAAA4eFuHYWPWQ6j2sAXwsYGv6bFjg4b1xRet7rSP42aXDhs3v2TY95ckpwaOnR8f9j7Otwe+/0N/bAb+udDWqWEDt04O//uk7btnw9YcOO7YXfcMGlcnDnZcZsO+v52x82HjxvJ3Zgf935n5wNcTAACAQ2velfkIjuwaQ41js7ZwUHZCOxdV1RuTvCs7x33dleRhSf5skhcmeeii72/lHOGg7v5AVf1kkmuTPDnJO6vqx5N8MMljkrw4ydWL7v+ou39/Xd8MAAAAAAAAAACMzTrDQUnyiCQvWjx288YkL+juE7vcf0mShyd5XnaCQL90jj6vTvLSPdQJAAAAAAAAAACTs85w0PcmuSbJlyd5dHZ2DHpAks8muTnJbyf5+e5+1/km6e55kucvdiD6gSRPWcx1e5Ibk7yyu69f1zcBAAAAAAAAAABjtbZwUHffkOSGfZzvrUneul/zAQAAAAAAAAAcFd1bmffWpstYqUdQ49h4RQEAAAAAAAAAYKKEgwAAAAAAAAAAYKLWdqwYAAAAAAAAAACHwyyVWWrTZaw0hhrHxs5BAAAAAAAAAAAwUcJBAAAAAAAAAAAwUcJBAAAAAAAAAAAwUdubLgAAAAAAAAAAgPWadzLv2nQZK8170xVMj52DAAAAAAAAAABgooSDAAAAAAAAAABgohwrBgAAcNrWEfj7iRq4bfDQcdvHho1L0pccHzRufp9h407d/+JB404+cNj/tD55/2E/byfvN3zr51P3GTZ2PuwlzXzo2z/0V3E+cLnZwHEnh41Lku07h/3cHP/ssH21j98x7Of7+KdPDRq3fceJQeO27hz+otbdA8eeGvgD0AP3OB867qDt5b+J84G/jAAAAKzVvLcy78P/GegYahwbrygAAAAAAAAAAEyUcBAAAAAAAAAAAEyUcBAAAAAAAAAAAEzUsAPuAQAAAAAAAAAYjU5lntp0GSv1CGocGzsHAQAAAAAAAADARAkHAQAAAAAAAADARDlWDAAAAAAAAABg4mZdmfXhP7JrDDWOjZ2DAAAAAAAAAABgooSDAAAAAAAAAABgooSDAAAAAAAAAABgorY3XQAAAAAAAAAAAOs1763M+/DvITOGGsfGKwoAAAAAAAAAABMlHAQAAAAAAAAAABMlHAQAAAAAAAAAABO1vekCAAAA9t3WEfg7iKph444Ne236+EXDxt3n4kHjkuTUAy4ZNO7uhx0fNO6uhw57bU48ZNh7cfL+PWjc7D7DxiXJ/JL5oHG9PWxcjg2sdeCPd4a+NLNhC9ap4f/WbN09bM1jdw4bd/yOYR8BXfzJY4PGXfqJYf9mXHL7yUHjkmT7M3cPGld3nhg27uQ9g8ZlNvD3qYf/7h+4of8dng98bQAAALgg81TmPfSDl4MzH/zhELs5Ap+YAwAAAAAAAADA0SQcBAAAAAAAAAAAE+VYMQAAAAAAAACAievUKI7s6hHUODZ2DgIAAAAAAAAAgIkSDgIAAAAAAAAAgIkSDgIAAAAAAAAAgIna3nQBAAAAAAAAAACs17yTedemy1hp3puuYHrsHAQAAAAAAAAAABMlHAQAAAAAAAAAABPlWDEAAAAAAAAAgImb91bmffj3kBlDjWPjFQUAAAAAAAAAgIkSDgIAAAAAAAAAgIkSDgIAAAAAAAAAgIna3nQBAAAAR1rVsHHbxwYN6+MXDRo3f8Clg8adeNiwcUnyuc8f9j9Z7/r8Ya/p3Q/pQeNOPeDUoHG5dDZo2LGLh41LkouOzQeN29oa9tpUHey47mHv/dBx8/nA398ks9mwv9c6eWLY7/7Ju4aNu/shw8adGDju0gdcMmhcktz3Y8P+zbj49mG1bn3mrkHj6uQ9g8bl1MDf/R72+wQAAMD0zLsyH/g5yEEaQ41jY+cgAAAAAAAAAACYKOEgAAAAAAAAAACYKMeKAQAAAAAAAABM3DyVeQ7/kV1jqHFs7BwEAAAAAAAAAAATJRwEAAAAAAAAAAATJRwEAAAAAAAAAAATtb3pAgAAAAAAAAAAWK/uyrxr02Ws1COocWzsHAQAAAAAAAAAABMlHAQAAAAAAAAAABPlWDEAAAAAAAAA/g979x9reVrXB/z9nHPmzszuLBV2hcVdEAtN2aakJQVCAwGt1FjECrQ1Vm3cAIJtQiN/CLTauKL/iJhiaBuxUtcaldj6Y9GAlrZIUlt1NdrSIGoppLsiCywguzu7c+fe8/SPezacTmf2znzuPT++3/t6JU/me875fr7P5/z6Pufc+ZznAUZuPpBlxYaQ49CYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABip2aYTAAAAuKLJgH7P0IrrYM+mpbB+eqcUt//460pxDz/pTCnuwS+r3b8kOf/kWtzujfu1wHMXS2GnTu/V4k7V8pxO56W4JJm2Xoprxbiqan99zevRH6W//WLs/unaefHi2dp7ce/62p+OHrrhVCnu4rn6eX/vulqu507XzotnZ7Vcp587X4pr2S3FZa94Tuzrfd8nqY/78/p5EQAA4CSZ95b5mv9+UjGEHIdmQH9pBwAAAAAAAAAAroXiIAAAAAAAAAAAGCnLigEAAAAAAAAAjJxlxU4uMwcBAAAAAAAAAMBIKQ4CAAAAAAAAAICRUhwEAAAAAAAAAAAjNdt0AgAAAAAAAAAArFZPMk/bdBqH6ptOYITMHAQAAAAAAAAAACOlOAgAAAAAAAAAAEbKsmIAAAAAAAAAACM37y3zvv3Lig0hx6ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSs00nAAAAnACTgfwuoR1hLetp7T72nVOluP3HX1eKO//ks6W4Lzx1Wuyvl+KSZO/GvVLc7PqLpbid07W42XReiptOqnH1x7SqtfX3WbPePHuvnzOqf5DZL75uqq/TvVP7pbjdU7X+LhTPiUmyv1N7VKtxfVI7n9bO3sn0s7XXd+vF98V+7TlMklT7rKp+zpgf4T4CAAAM0Dwt8yP8PWNd5tn+HIdmIH+hBwAAAAAAAAAArpXiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFLVJe4BAAAAAAAAABiIeW+Z97bpNA41hByHxsxBAAAAAAAAAAAwUoqDAAAAAAAAAABgpCwrBgAAAAAAAAAwcpYVO7nMHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIzUbNMJAAAAAAAAAACwYr2l97bpLA43hBwHxsxBAAAAAAAAAAAwUoqDAAAAAAAAAABgpCwrBgAA8KhWn66275wqxc0fd7YU9/CTzpTivvDUaSnu/C29FLd308VSXJKcPnehFLezs1eKm03mpbjppPbYtFaLG5LJQO7jvDhV9Saew9m01mf1dTqtvi+mtbjd2X4pLkkuTE+X4s5PaufvpHY+bfPa+fu6vdpjOvmz4jnqkd1SXJKkD+O9DwAAcNLM0zLP9i/ZNYQch8bMQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEjNNp0AAAAAAAAAAACrNe8t8942ncahhpDj0Jg5CAAAAAAAAAAARkpxEAAAAAAAAAAAjJRlxQAAAAAAAAAARq73lj6AJbuGkOPQmDkIAAAAAAAAAABGSnEQAAAAAAAAAACMlOIgAAAAAAAAAAAYqdmmEwAAAAAAAAAAYLXmPZn3tuk0DjXvm85gfMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAwNWbDOT3Ba04Ne5sWu6yX3e6FHfhprOluAe/rJbr+SfX5uTdu+liKe70uQuluCQ5vbNXiptN90txk+LLprX1znM8WXN/J8GQHtPq1N/V1+m0eNpvrfY+bDu1/pIk52ph1bPU+fmpUtx0t3b+nl6ojRdnLhafi71aXJLkYvE91df8Xqx+rpnPjzcPAACANem9pQ9gWbEh5Dg0A/nLPgAAAAAAAAAAcK0UBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJGabToBAAAAAAAAAABWq/eWeW+bTuNQfQA5Do2ZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAAAAAAAAYOR6kt43ncXhBpDi4Jg5CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKnZphMAAAAAAAAAAGC15mmZp206jUMNIcehMXMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcuKAQDASTQZyO8EWnH62Gnt/vUzO7X+kuw97kwp7qEn1b6WnX9yKSx7N+6V4k6fu1CL26n1lySz6X4pbjrp5T4rJm29/XGyrfv1Ni/GTcuzf9fe90mS6in8XC3swn7tTp7frZ33Z+eLcQ/VxqdTu/Xzd5sXXzn7xbi+5vNw9XNU9XEBAAA4Jr239L79S3YNIcehGcj/CAAAAAAAAAAAANdKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABip2mLlAAAAAAAAAAAMxry3zHvbdBqHGkKOQ2PmIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKRmm04AAAAAAAAAAIDV6v2gbbsh5Dg0Zg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjtZHioNbaW1trfal95VXEfG1r7Rdaa/e21i4s/v2F1trXriFlAAAAAAAAAIDh6i19AC29bfqRGp21Fwe11v5Kkjdcw/6ttfbOJO9L8ooktyTZWfz7iiTva629s7Xm1QEAAAAAAAAAAEvWWhzUWpsk+ddJZkk+dZVhP5DktYvt30vy95M8b/Hv7y2uf22S7z++TAEAAAAAAAAAYPjWPXPQP07y3CQfSfKuw3ZurT0jyRsXF38nyQt67+/uvd/de393khcurk+SN7XWnr6CnAEAAAAAAAAAYJBm6+qotfaUfHF2n3+Y5CuvIuwN+WKOr++9P7x8Y+/9fGvt9Un+22K/70zy+mNJGAAA2Lzq6sHTaSlsft1Orb8kj9xUi334SbX7uHvjfiludv3FUtzOzl6tv2ktzySZTno5tmLS1tsfDEH1fTHvtXPb0d73tfNNL57694vn090ba7/Ve/jB2th2+gu1Ozg9Xx8Tpxdqj03mxee/O38DAABcjd5bevE7+zoNIcehWefMQf8qybkkP9l7//XDdm6ttSTfsLj4kd77b15uv8X1f7i4+PJFHAAAAAAAAAAAnHhrKQ5qrX1jkpcl+WyS77rKsK9Icsti+4OH7Pvo7bcmedq15gcAAAAAAAAAAGO08mXFWmtfkuRHFhff1Hv/9FWG3ra0/ZFD9l2+/bYkH7vKPgAAAAAAAAAARm/eW3kp8HUaQo5Ds/LioCRvTXJzkv+a5F3XEPeUpe17D9n3nivEXZXW2q2H7HLztR4TAAAAAAAAAAA2baXFQa21FyZ5TZK9JN/Re+/XEH7D0vaDh+z70NL2uWvo41H3HL4LAAAAAAAAAAAMy2RVB26t7ST5sSQtyT/vvX/oGg9xZml795B9Lyxtn73GfgAAAAAAAAAAYJRWOXPQP01yW5L/k+T7CvGPLG3vHLLv6aXthwt9HbYU2c1J7i4cFwAAAAAAAABg43o/aNtuCDkOzUqKg1prz0zyTxYXX997f+ix9r+CB5a2D1sq7Pql7cOWIPv/9N7vfazbW2vXekgAAAAAAAAAANi4Vc0c9IYczPbzv5Nc11r7psvs85eXtv9Ga+3mxfYvL4qJlgt2bj2kv+WZf+651mQBAAAAAAAAAGCMVlUc9OgyX38+yc9exf7/bGn7K5I8lOTDS9c985D45dv/4Cr6AwAAAAAAAAA4MQ6WFdv+lZMsK3b8JptO4DF8LMknFtsvPmTfFy3+/ZMkH19VQgAAAAAAAAAAMCQrKQ7qvd/ee2+P1ZJ831LIVy3d9vHFMXqSuxa3P7O19vzL9bW4/tGZg+5axAEAAAAAAAAAwIm3zTMHJcnbk+wttt/RWju7fOPi8jsWF/cW+wMAAAAAAAAAAElmm07gsfTe/6i19rYkb07ynCS/0Vr7wSQfTfL0JG9K8uzF7j/Ue//jzWQKAAAbMtn2ev8jmtTWv+6nT5Xi9m44XYpLkodvrD0XjzyhOPnpuYulsJ3TtbjZZF6KKz6FRzJpJpSFTau+D+e9ftKonm+q57fq+fThc9XxohZXHZ9Of64+Jk7O75bi2v5+rcPaU7h+R/ncNh/KnQQAALZZT0s/wnfvdenZ/hyHZquLgxa+O8kTk7wqB4VA777MPu9K8j3rTAoAAAAAAAAAALbd1v/MuPc+772/OsnXJbkrySeS7C7+vSvJS3vvr+m9+/kMAAAAAAAAAAAs2djMQb33O5LccQ37vzfJe1eVDwAAAAAAAADAWPVF23ZDyHFotn7mIAAAAAAAAAAAoEZxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKnZphMAAAAAAAAAAGC1em/pvW06jUMNIcehMXMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcuKAQAAAAAAAACMXV+0bTeEHAfGzEEAAAAAAAAAADBSioMAAAAAAAAAADgRWmtPbK29rLX2ltba+1prn2mt9UW78xj7uWPpuIe1rzyufi/HsmIAAAAAAAAAAJwU9206gXVTHAQAsC0ma57UcT5fb3+cbK3V4orvi376VClu98/VvyJdeELtPu49bq8Ud+p0LW42rb33p5PaQt+t1RcInxwhluM178X38Mh5jR6/ozym1U820+JHsOr5dFY8f198XG2MuvCEWtxRxsRTn6+Nw+2R3VqHrfjsd+9h1mjd3/cAAOByeksfwt951pvjPUn+IMnXrLifZx1y+8dW2bniIAAAAAAAAAAAToq3JLk7yd299/taa0/Liotzeu//c5XHP4ziIAAAAAAAAAAAToTe+/duOod1UxwEAAAAAAAAADByvQ9jheUh5Dg0FjoGAAAAAAAAAICRUhwEAAAAAAAAAAAr0lp7f2vt/tbabmvtU621X2+tvbm19vh19G9ZMQAAAAAAAAAAttHNrbXH3KH3fu+acjmKlyxtf2mSFy/am1prt/fe71pl54qDAAAAAAAAAABGrveW3h+70GYbXJLj3VcRss136kNJfinJbyf5RJJTSf5ikm9J8jVJviTJz7fWvr73/r5VJaE4CAAAAAAAAAAAjtfbe+93XOb630ryb1trr0vyo0mmSX68tfaM3vvDq0hEcRAAAAAAAAAAANvouUk+uekkKnrvnz/k9ne21p6T5DVJvizJK5P89CpyURwEAAAAAAAAAMA2+mTv/d5NJ7FC78xBcVCSvDiKgwAAAAAAAAAAKOntoG27IeR4fD68tH3LqjqZrOrAAAAAAAAAAADAFa2lEkpxEAAAAAAAAAAArN9fWtr+xKo6sawYAMBJNTkBdeLz+aYz4FGt9uOHPq29TvfPnirF7d5Qf1/s3tBrgWf3S2GnTtXippPa+6K14v3j2M1P1rTKW20Tz8XEe/HYVc9v1fNp9fx9sThe7N4wLcbVx8QzxXG4PVjrs+0V34vd+2lrnITvJgAAsAV6H8ZXoSHkeIxet7T9wVV14lsXAAAAAAAAAABcpdba7a21vmh3XOb2Z7XWnnHIMV6X5NWLi59M8ovHn+kBMwcBAAAAAAAAAHAitNZemGS5cOempe1ntNZuX96/935noZu/luTHW2sfSPK+JB9Kcn8O6nSemeRbk/zNxb77SV7Xe3+o0M9VURwEAAAAAAAAAMBJ8Zok33aF216waMvuLPYzTfKSRbuS+5O8uvf+nmIfV0VxEAAAAAAAAADA2PVF23ZDyPFw783BkmF/PcmzkzwpyY1JWpLPJvnvSX41yZ299y+sOhnFQQAAAAAAAAAAnAi999uT3H7EY9yZx5hRqPf+qST/ZtE2brLpBAAAAAAAAAAAgNUwcxAAAAAAAAAAwMj13tJ723QahxpCjkNj5iAAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkZptOAAAAAAAAAACANeibToBNMHMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcuKAQAwXpNiLfx8frx5HKaa55BMWi1uOi2Fzc/U4nbPFfNMsn9dbT7e6en9Wty09jqdTtY7b/Ckmaf4Sua9/nrj5Kq+bk7Ce7F6H6uPafV8Wj5/F8eL6vh0lDGxOg5Xx/1M9mpxa/7IdyQ+1wIAAMeg95Y+gL9JDSHHofFtDQAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKnZphMAAAAAAAAAAGDF+qJtuyHkODBmDgIAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAAAAAAAAAgNFri7bthpDjsJg5CAAAAAAAAAAARkpxEAAAAAAAAAAAjJTiIAAAAAAAAAAAGKnZphMAAAAAAAAAAGDF+qJtuyHkODBmDgIAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAALjURA39FbW23v5m01LY3pli3HX1+zc/My/FnZrW4qbN3LoAQ1Q9f0+L48XFM7X+9q6rfx6qjsM7xXG/rPq5pg9oDPa5FgAAWGZZsRPLt0MAAAAAAAAAABgpxUEAAAAAAAAAADBSioMAAAAAAAAAAGCkZptOAAAAAAAAAACAFetJett0Fofrm05gfMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARkpxEAAAAAAAAAAAjNRs0wkAAAAAAAAAALBavR+0bTeEHIfGzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADB2fdG23RByHBgzBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJFSHAQAAAAAAAAAACM123QCAADACdBaKazPar9nmO/U+pvvlMKSJH02L8VNJrUFtFtbbxxXNu+11xusU/V1OnHOuKJ1n4er40V1fJrvTEtxB7HrHfdb8XMGAADAidPbQdt2Q8hxYMwcBAAAAAAAAAAAI6U4CAAAAAAAAAAARsqyYgAAAAAAAAAAI9eSDGEFcYuKHT8zBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJFSHAQAAAAAAAAAACM123QCAAAAAAAAAACsWF+0bTeEHAfGzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkLCsGAAAAAAAAADB2vR20bTeEHAfGzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIzTadAAAAcAK04hrRxbj5rBg3LYUdmPZSWGu1uHWbDCRPgGtVPb/Ne3FsKyqPF8Xx6ShjYnUcXvfnBQAAgBOnL9q2G0KOA2PmIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFKWFQMAAAAAAAAAGDvLip1YZg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjpTgIAAAAAAAAAABGarbpBAAAAAAAAAAAWLG+aNtuCDkOjJmDAAAAAAAAAABgpBQHAQAAAAAAAADASFlWDAAAAAAAAABg7Ho7aNtuCDkOjJmDAAAAAAAAAABgpBQHAQAAAAAAAADASCkOAgAAAAAAAACAkZptOgEAAIAr6a24tnR1Seqj/Hyimmrra40DYLPWft4f0JhYHvcBAAC4Kq0ftG03hByHxsxBAAAAAAAAAAAwUoqDAAAAAAAAAABgpCwrBgAAAAAAAAAwdn3Rtt0QchwYMwcBAAAAAAAAAMBIKQ4CAAAAAAAAAICRUhwEAAAAAAAAAAAjpTgIAAAAAAAAAABGSnEQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUrNNJwAAAAAAAAAAwGq1JK1vOovDtU0nMEJmDgIAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAAGBrtV6c47Y6Ne68GHeEPnuvTZJbjas/OAAch7Wf9wc0JpbHfQAAAK5Obwdt2w0hx4ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSs00nAAAAAAAAAADAivVF23ZDyHFgzBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAAAAAAAAAABjZ1mxE8vMQQAAAAAAAAAAMFKKgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEjNVnXg1trjkrw0yXOTPCfJLUm+NMnZJJ9P8uEk703yrt77/VdxvK9N8tokz1sc59NJfjvJj/Xef3UV9wEAAAAAAAAAYAxaP2jbbgg5Ds3KioNyUMTzs1e47UuTvHjRvqu19q2991+73I6ttZbkR3NQGLTsliSvSPKK1tqPJfmO3ruXCAAAAAAAAAAALKyyOChJ7knygSS/u9j+0xwsZXZrkr+b5JVJbkryntbac3vv/+Myx/iBfLEw6PeSvDXJR5M8Pckbkzx7cfunk3zPyu4JAAAAAAAAAAAMzCqLgz7Qe3/qY9z+c621lyf5xSQ7Sb43yd9Z3qG19owcFAAlye8keVHv/eHF5btba+9J8sEcLFv2ptbaT/TeP3qcdwIAADgG1Uk+i3GTvWLcfinswH4rhfVei1u3eTHPiTmAgS1XPb+tW3m8KI5PRxkTq+Pwuj8vAAAAnDh90bbdEHIcmMmqDtx7P/RPCL33X0rykcXFF11mlzfkiwVMr18qDHo0/nyS1y8uzpJ8Zy1bAAAAAAAAAAAYn5UVB12Dhxb/nlm+srXWknzD4uJHeu+/ebngxfV/uLj48kUcAAAAAAAAAACceBstDmqt3Zbkry4ufuSSm78iyS2L7Q8ecqhHb781ydOOJTkAAAAAAAAAABi42eG7HK/W2nU5KPr5+iRvTDJd3PQjl+x629L2pYVDl1q+/bYkHztKjgAAAAAAAAAAo9IXbdsNIceBWUtxUGvt9iQ/8Ri7vC3JT19y3VOWtu89pIt7rhB3VVprtx6yy83XekwAAAAAAAAAANi0tc8cdInfT/IdvfffusxtNyxtP3jIXI0vvwAAIABJREFUcR5a2j5XyOOew3cBAAAAAAAAAIBhWVdx0C8l+Z3F9tkkT0/yjUlekeSnW2vf2Xv/lUtizixt7x5y/AtL22ePkigAAAAAAAAAwNi0ftC23RByHJq1FAf13j+f5PNLV92d5N2ttX+Q5CeT3NVae3Xv/c6lfR5Z2t45pIvTS9sPF1I8bCmym3OQMwAAAAAAAAAADMZGlxXrvf9Ua+1lOZhF6F+01u7qvX9ucfMDS7setlTY9Uvbhy1Bdrk87n2s21tr13pIAAAAAAAAAADYuMmmE0hy1+Lf65P8raXrlwt2bj3kGMsz/9xzHEkBAAAAAAAAAMDQbXTmoIVPL21/+dL2h5e2n3nIMZZv/4MjZwQAAAAAAAAAMCa9HbRtN4QcB2YbZg66ZWl7eUmwjyX5xGL7xYcc40WLf/8kycePJy0AAAAAAAAAABi2bSgO+ntL2x96dKP33vPFJcee2Vp7/uWCF9c/OnPQXYs4AAAAAAAAAAA48Va2rFhr7fYk7+69P/IY+7whyUsXFz+e5L9cssvbk3x7DvJ8R2vtRb33h5fizyZ5x+Li3mJ/AABg2xRr+NvevBQ32a31N9kthSVJ2l7ttxfzeW2K3F6cWrca15rfYVzJpPjYzE2PzBpVX6dc2brPw9Xxojo+HWVMrI7D1XG/+jkDAADgRPIV6kRaWXFQkjuS/HBr7edzUPTz0RwsG3ZDkmcl+ZYkL1jsu5vk23vve8sH6L3/UWvtbUnenOQ5SX6jtfaDi2M9Pcmbkjx7sfsP9d7/eIX3BwAAAAAAAAAABmWVxUFJ8oQczPzz7Y+xz71JXtV7/49XuP27kzwxyatyUAj07svs864k33OEPAEAAAAAAAAAYHRWWRz01UlekuSrktyW5ElJbkzySJL7kvx+kl9J8nO99/NXOkjvfZ7k1YsZiF6b5LlJbkrymSR3J3ln7/19K7wfAAAAAAAAAAAwSCsrDuq9fzQHy3+985iO994k7z2OYwEAAAAAAAAAnCStH7RtN4Qch2ay6QQAAAAAAAAAAIDVUBwEAAAAAAAAAAAjtbJlxQAAAAAAAAAA2BJ90bbdEHIcGDMHAQAAAAAAAADASCkOAgAAAAAAAACAkVIcBAAAAAAAAAAAIzXbdAIAAAAAAAAAAKxYT1rfdBJXYQg5DoyZgwAAAAAAAAAAYKQUBwEAAAAAAAAAwEhZVgwAAC41n6+3v8mAavb7mudz3dsvhc0eKcadr39FmjzSSnH7+7Xnf7/X+vMlEGCzqufv6nhRHZ9m5+tjfnUcro77Zev+XLMJPtcCAAAQfxcGAAAAAAAAABi/vmjbbgg5DoyfcgAAAAAAAAAAwEgpDgIAAAAAAAAAgJGyrBgAAAAAAAAAwNhZVuzEMnMQAAAAAAAAAACMlOIgAAAAAAAAAAAYKcVBAAAAAAAAAAAwUrNNJwAAAAAAAAAAwGq1ftC23RByHBozBwEAAAAAAAAAwEgpDgIAAAAAAAAAgJFSHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABip2aYTAACAlZnPN53B1TlKnpOB1PvPey1uf78UNnmkFrfzYDHPJNPzrRS3e2Faits/XXvu9ye119tsWnts5r32uCTJpNWfjyGo3r+jPKYM39jfF0ex7vfG/rzW3/5+8fxdHC92iuPTUcbE6jhcHffLnzOGZOyfa4fymRYAAIauL9q2G0KOA+NbFwAAAAAAAAAAjJTiIAAAAAAAAAAAGCnLigEAAAAAAAAAjFzrB23bDSHHoTFzEAAAAAAAAAAAjJTiIAAAAAAAAAAAGCnFQQAAAAAAAAAAMFKzTScAAAAAAAAAAMAa9E0nwCaYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyUZcUAAAAAAAAAAMauZxjLig0hx4ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAABgpxUEAAAAAAAAAADBSs00nAADAhsznm86Ak6TXFolu+7XX6fThi6W4nQdOl+IOYmtfr3YfnpbiLp6txc2mxcd0UnwOmwXCj9tkA4/pvLe19zkEm3guOH69+Pren9d+c3fxYu38neJ4sfNA7f7tPLBfikvq43B13K9+zmCLnITvJhO/0wUAYPNaP2jbbgg5Do1vJAAAAAAAAAAAMFKKgwAAAAAAAAAAYKQsKwYAAAAAAAAAMHZ90bbdEHIcGDMHAQAAAAAAAADASCkOAgAAAAAAAACAkVIcBAAAAAAAAAAAIzXbdAIAAAAAAAAAAKxW6wdt2w0hx6ExcxAAAAAAAAAAAIyU4iAAAAAAAAAAAE6E1toTW2sva629pbX2vtbaZ1prfdHuXFGf39Ra+7XW2p+21h5prX28tfZTrbXnr6K/S1lWDAAAAAAAAABg7PqibbvV53jfyntYaK2dSfLvkrzskpu+fNG+ubV2R+/9+1eZh5mDAAAAAAAAAAA4ie5J8h9WePx35YuFQR9I8vIkz0vy6iQfzUHdzltaa69ZYQ5mDgIAAAAAAAAA4MR4S5K7k9zde7+vtfa0JB877k5aay9O8s2Li7+c5BW99/3F5btba+9J8rtJnprkra21f997//xx55GYOQgAAAAAAAAAgBOi9/69vfdf6b2venmxNy7+3U/yj5YKgx7N4zNJ3rS4+PgczCa0EmYOAgDYFvP5pjOA1enFRaKL74t24WIpbufP9kpxSXL6s9NS3CNPqMXtXV/7Ord3av/wnS5jOqk9F9Mj/CSlelactCEsnD4sHlPWZd5bObYXY/fntbi9/doJbu9C7fw9+0JtvDj92dr79yhjYnUcLn8ern7OgHXyfQ8AgG3QF23bDSHHQ7TWziX56sXF9/fe773Crr+Q5AtJHpfklUl+eBX5mDkIAAAAAAAAAACOz/OSnF5sf/BKO/Xed5P85qMxrbVTq0hGcRAAAAAAAAAAAByf25a2P3LIvo/ePkvyF1aRjGXFAAAAAAAAAADYRje39thLgj/Gkl2b9JSl7cPyu+eSuA8fdzKKgwAAAAAAAAAARq71g7btLsnx7qsJWU0mR3LD0vaDh+z70NL2uRXkYlkxAAAAAAAAAAA4RmeWtncP2ffC0vbZFeRi5iAAAAAAAAAAALbSc5N8ctNJFDyytL1zyL6nl7YfXkEuioMAAAAAAAAAAEavL9q2+39z/GTv/d4NZXIUDyxtH7ZU2PVL24ctQVZiWTEAAAAAAAAAADg+ywVNtx6y71OWtu9ZQS6KgwAAAAAAAAAA4Bh9eGn7mYfs++jte0n+1yqSURwEAAAAAAAAAADH5+4ku4vtF19pp9baTpLnPxrTe9+90r5HoTgIAAAAAAAAAOAk6ANoI9B7fyDJf1pcfElr7UpLi70yyeMW27+4qnwUBwEAAAAAAAAAwFVqrd3eWuuLdscVdnvb4t9Zkn/ZWptecoybkvzg4uLnk/z4SpJdJAAAAAAAAAAAAKPXWnthkmcsXXXT0vYzWmu3L+/fe7+z0k/v/T+31t6d5JuS/O0k72+tvT3JJ5I8K8l3J3nqYvc3994/V+nnaigOAgCAIZvPa3GTgUwiOq/NIdsuXCzFzR64UIpLkrP3nyrFXXjC9PCdLuOhG2r97Z6qvWam01pca/uluCSZtlrcvNcCJ20kcxbDFqi+D4/WZy1ub14bE3cv1M7DebAWd+aztcf07P218/BRxsTqOFx+Eoei+rkNAADgmLR+0LbdGnJ8TZJvu8JtL1i0ZXceoa9X5WDZsJcm+apFWzZP8v2993ceoY9DDeR/BAAAAAAAAAAAYDh67w/33r8uybckeX+STyXZTXJPkp9J8sLe+x2rzsPMQQAAAAAAAAAAnAi999uT3H7EY9yZa5hRqPf+MzkoBtoIMwcBAAAAAAAAAMBImTkIAAAAAAAAAGDs+qJtuyHkODBmDgIAAAAAAAAAgJFSHAQAAAAAAAAAACNlWTEAAAAAAAAAgJFr/aBtuyHkODRmDgIAAAAAAAAAgJFSHAQAAAAAAAAAACOlOAgAAAAAAAAAAEZqtukEAAAAAAAAAABYsb5o224IOQ6MmYMAAAAAAAAAAGCkFAcBAAAAAAAAAMBIWVYMAADYXr04f+z+filscn631l+SM5+pxZ593JlS3MVztd96XNg5VYrbndUe07ZTCluo9Tmd1F43895KcZNmnmPGq/q+qNqf1/vb25+W4nZ3a38e23uodj49fX/t/H32vtq5pjo+HWVMrI7D5XEfAACAq2NZsRPLzEEAAAAAAAAAADBSioMAAAAAAAAAAGCkFAcBAAAAAAAAAMBI1RZVBwAAAAAAAABgMNqibbsh5Dg0Zg4CAAAAAAAAAICRUhwEAAAAAAAAAAAjZVkxAAAAAAAAAICx64u27YaQ48CYOQgAAAAAAAAAAEZKcRAAAAAAAAAAAIyU4iAAAAAAAAAAABip2aYTAAAAAAAAAABgxXrS+qaTuApDyHFgzBwEAAAAAAAAAAAjpTgIAAAAAAAAAABGyrJiAABwEs3ntbjJmn9f0Ivzx+7X7l97ZLfWX5LZFx4pxV1/X+1r2d51tbj9nVrchenpUlzO1cKSJDvVwP1S1KTVeiu+m8omg5j7mVWZ9+ILtagX+5sXX6Z7+9NaYJILu8Xz24O189vs/lp/1/1pKSzX37dXiquOT0cZE6vjcHncX7fq5ygAAIBN6xnGkl1DyHFgzBwEAAAAAAAAAP+XvbuPlfS66wP+/d293hfbITUEahGHQjGNQwsIiCPeEqNCIxRTkSBUEtpCICbQSikhIJICUlGgtLxEDaK0vKWxUlARlARDE1qoEiyIEuKgqKWKQ14I1MZJqPNCbK93r/fO6R/zrHay7O7ce+6dO/M8+/lIR3OemfN7zm/unZe9s785B2CiFAcBAAAAAAAAAMBEKQ4CAAAAAAAAAICJ6tscHQAAAAAAAACAcWnrToB1sHIQAAAAAAAAAABMlOIgAAAAAAAAAACYKMVBAAAAAAAAAAAwUdvrTgAAAAAAAAAAgNWqNm+bbgw5jo2VgwAAAAAAAAAAYKIUBwEAAAAAAAAAwETZVgwAAAAAAAAAYOra0DbdGHIcGSsHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7W97gQAAIARmc364raO+HsJrXNT6nO73VPW6bNdcScePNYVd/2Ja7vido/3/Rl4euuarri+n8rg+r6wdrwvbnur7/F9rPPhXdX3OJ216ptwDbY67+NRG9PPtFfrvI+7s764c7O+J8bOTv9HVWcfPtEVt/1g3+vbtR/o+9lc/8C5rrgTDz7aFdf7/nSQ98Tu9+Gj1vvvGgAAgJGqNm+bbgw5jo2VgwAAAAAAAAAAYKIUBwEAAAAAAAAAwETZVgwAAAAAAAAAYOra0DbdGHIcGSsHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7W97gQAAAAAAAAAAFitavO26caQ49hYOQgAAAAAAAAAACZKcRAAAAAAAAAAAEzUSouDquqLqur7q+q3q+q+qjpbVQ9X1bur6s6qevo+z/c1VfXaqrp/ONf9w/HXrOo+AAAAAAAAAACMXhtR41Btr+rEVXV3kmdc4qbjST5naN9SVf85yR2ttZ0rnKuS/GySF1500xOTPCfJc6rq55N8Z2vNwwQAAAAAAAAAALLalYOeOFw+kOSnknxDkqcl+dIkL0nyF8Pt/zTJnUvO9SO5UBj0jiTPG871vOE4w+0/fAh5AwAAAAAAAADAJKxs5aAk70ry/Ul+vbW2e9Ftbx1WDHpzkr+T5HlV9R9ba79/8Umq6uYk3zccvj3JM1prjw7H91TVbya5O8lTk7y0ql7dWnvfCu4PAAAAAAAAAACMysqKg1prX7vk9ger6nuS/NZw1Tck+WvFQUm+OxfyfNFCYdD585yuqhclecsw7sVJXnSQ3AEAgKvUAXYprp3HuuK2Pv7o8kGXcGq7byHYtnWqKy451hV1enZN53zJ2d3qitu9ru93cfxEX9z2sVlX3LGt3rij3027qm/OWev7HY5FW8P92511Pi9mfa8Z53b74nbO9j33zz3S/5qx/eG+j7mu/UDfz/ST/u/F34Xbm1MfOtMV1/t+0fv+dJD3RAAAADZUG9qmG0OOI7PKbcX24vcW+p998Y1VVUm+bjh8V2vtrZc6yXD9nwyHzx7iAAAAAAAAAADgqrbu4qDjC/1LfWXys5I8cejfveRc52+/KclnHiwtAAAAAAAAAAAYv5VtK7ZHty3033WJ25+y5PZc5vanJHl/b1IAAAAAAAAAAFNSbd423RhyHJu1FQdV1VaSly1c9auXGPakhf79S05532Xi9pLLTUuG3Lif8wEAAAAAAAAAwCZY58pB353kaUP/da21t19izOMW+g8vOd8jC/3r95nLfcuHAAAAAAAAAADAuGytY9Kqui3Jvx0O/zLJP7vM0JML/Z0lpz270D/VmRoAAAAAAAAAAEzGka8cVFV/N8nrhrnPJvlHrbUPXWb4mYX+8SWnPrHQf3SfaS3bhuzGJPfs85wAAAAAAAAAAJujrTsB1uFIi4Oq6rOS/E6SG5LsJnlea+3uK4Q8tNBftlXYdQv9ZVuQfYLW2v1Xur2q9nM6AAAAAAAAAADYCEe2rVhVfXqS/5nk0zOvRfu21trrloQtFu3ctGTs4uo/9+0/QwAAAAAAAAAAmJYjWTmoqp6Q5HeT/O3hqhe11l6zh9B3LvRvWTJ28fZ795EeAAAAAAAAAMCkVWuptvn7io0hx7FZ+cpBVfX4JP8jyecOV72stfYzewx/f5IHhv5tS8Y+Y7j8iyR/tp8cAQAAAAAAAABgilZaHFRV1yZ5fZIvGq761621H9trfGutJblrOLylqr7kMvN8SS6sHHTXEAcAAAAAAAAAAFe1lRUHVdXxJK9L8uXDVT/VWvvBjlO9Msm5of/TVXXqonlOJfnp4fDcMB4AAAAAAAAAAK562ys8939J8syh/8Ykr6qqv3eF8TuttXdffGVr7d1V9ZNJXpbkqUneXFU/luR9ST47yUuTfOEw/Cdaa+85rDsAAAAcktmsL25r5Tshf6KDLEK623cfa+exrrhjHz3dFXdtV1RSs5Ndccd2jnXOmJze6fuTdedT+h43j17fF7d94tzyQZdwzTW7XXHHjnU+n5Icq77HeHXG9eqdr7U65ExWN99uZ+zubt/j9LHH+p6L5852fnT08DVdYSc+3P+6f+0H+uKuf6DvOXzqQ2e64npfv3vfL3rfnw70nnjUev+dAQAAcLVpQ9t0Y8hxZFZZHPT1C/2/n+R/Lxn/50k+8zK3/UCST0vybZkXAv3KJca8KknPykQAAAAAAAAAADBJR/w13D6ttVlr7QVJbk9yV5IHkuwMl3cleVZr7Y7Wmq8JAQAAAAAAAADAYGUrB7UVrOXdWntDkjcc9nkBAAAAAAAAAKas2rxtujHkODajWDkIAAAAAAAAAADYP8VBAAAAAAAAAAAwUYqDAAAAAAAAAABgorbXnQAAAAAAAAAAACvWhrbpxpDjyFg5CAAAAAAAAAAAJkpxEAAAAAAAAAAATJTiIAAAAAAAAAAAmKjtdScAAAAAAAAAAMBqVZu3TTeGHMfGykEAAAAAAAAAADBRioMAAAAAAAAAAGCibCsGAABsrtmsL25rDd+DaJ1r3Z7b7Qqr7HTFHftIX57Xnuv7XRw7e6orLkm2T/f9yfrow8e64s58ct/j5rFP6svzsVN9v/tjJ/rikuTYsb7f49ZW3+OmOteA7o1rrY40bjbri0uS3d2+x9vu2b7Hdx7ti9v+eF/cyY/0/WxOfah/3fDrPnSuK+7Eg492xW19vC+udh7riut9v+h+f1qH3vd9AAAA9qYNbdONIceRsXIQAAAAAAAAAABMlOIgAAAAAAAAAACYKMVBAAAAAAAAAAAwUdvrTgAAAAAAAAAAgNWqNm+bbgw5jo2VgwAAAAAAAAAAYKIUBwEAAAAAAAAAwETZVgwAAAAAAAAAYOra0DbdGHIcGSsHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7W97gQAAAAAAAAAAFi9auvOgHWwchAAAAAAAAAAAEyU4iAAAAAAAAAAAJgo24oBAACsU+tcx/fcbldYdc639Vd9cScf68szSbYfOdkVd+Ljx7viHv2Uvu/PnP3kvj+tdx53rCtu99r+tZ8fO9kX27ZnfRMe68y1+sLS+6PZ7ZuwzvV/52rrTN+cx093xj3UF3fiI30/1FMf7nvun3xwpysuSbY/fqYrrk6f7YvbeawrLrudz6fe9wsAAAA4r7Vx/H05hhxHxspBAAAAAAAAAAAwUYqDAAAAAAAAAABgohQHAQAAAAAAAADARG2vOwEAAAAAAAAAAFar2rxtujHkODZWDgIAAAAAAAAAgIlSHAQAAAAAAAAAABNlWzEAAAAAAAAAgKlrQ9t0Y8hxZKwcBAAAAAAAAAAAE6U4CAAAAAAAAAAAJkpxEAAAAAAAAAAATNT2uhMAAAAAAAAAAGC1ajZvm24MOY6NlYMAAAAAAAAAAGCiFAcBAAAAAAAAAMBE2VYMAACYnlnnurNbI/r+RGt9cbt9P5s6s9MXd263Ky5Jrtk51xV37PTxrrgTHz3RFbfz+L4/rXce1/d427m+uuKS5Ny1fXPOjh/ri+sL6/8qU+9Tv/NhutX3tEiSbJ/uew4ff7gz7qG+O3n8r/qeh9sPne2K2zrd/0PtfZ1K7+tU7+twb9yY9L4PAwAAsFptaJtuDDmOzIg++QYAAAAAAAAAAPZDcRAAAAAAAAAAAEyU4iAAAAAAAAAAAJio7XUnAAAAAAAAAADAalWbt003hhzHxspBAAAAAAAAAAAwUYqDAAAAAAAAAABgomwrBgAAAAAAAAAwda3N26YbQ44jY+UgAAAAAAAAAACYKMVBAAAAAAAAAAAwUYqDAAAAAAAAAABgorbXnQAAAAAAAAAAAKtVbd423RhyHBsrBwEAAAAAAAAAwEQpDgIAAAAAAAAAgIlSHAQAAAAAAAAAABO1ve4EAAAANsZs1h+7NZLvXrTODbt74x7r3yC8On8fx84+1hW3dXqnK+6aj13TFXfyVF/c7OSxrrgkOdcZOztefXHbfXHpDEvnw23rXF/g1k7/43v7zG7fnJ1xxx7te15U5/OpNy67ffdvHtv5Gt77+jZ1B3lPBAAAYHP5M/iqNJJPrwEAAAAAAAAAgP1SHAQAAAAAAAAAABNlWzEAAAAAAAAAgImrNm+bbgw5jo2VgwAAAAAAAAAAYKIUBwEAAAAAAAAAwEQpDgIAAAAAAAAAgInaXncCAAAAAAAAAACsWGvztunGkOPIWDkIAAAAAAAAAAAmSnEQAAAAAAAAAABMlG3FAAAAAAAAAAAmrtq8bbox5Dg2Vg4CAAAAAAAAAICJUhwEAAAAAAAAAAATpTgIAAAAAAAAAAAmanvdCQAAAEzCbHa0822N5Lse7QAbhO92/kxnfXPW7m5f3JmdvriHO3+Hx471xSU5vt0X27Y7c63qm68zrnofb51xde4Az/tzfY+39D5Ou59PR/s8PNBrxkFix+Co32cAAACYnja0TTeGHEdmJJ8mAwAAAAAAAAAA+6U4CAAAAAAAAAAAJsq2YgAAAAAAAAAAE1dt3jbdGHIcGysHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7W97gQAAAAAAAAAAFixWZu3TTeGHEfGykEAAAAAAAAAADBRioMAAAAAAAAAAGCibCsGAAAAAAAAADB1bWibbgw5joyVgwAAAAAAAAAAYKIUBwEAAAAAAAAAwEQpDgIAAAAAAAAAgInaXncCAAAAdJjN+uK2RvQdkda5uXhvXOePNNUXWOeqb76tc31xB1DVmWtv3FE76sfaQcyOONd13Mep6339BgAAgAOqJDWCP/VH8onSqIzoU2EAAAAAAAAAAGA/FAcBAAAAAAAAAMBE2VYMAAAAAAAAAGDqWsaxhfgIUhwbKwcBAAAAAAAAAMBEKQ4CAAAAAAAAAICJUhwEAAAAAAAAAMBVp6o+o6p+sqrurapHquojVfW2qvreqrr2gOf+oapqe2xfeUh36ZK2V3lyAAAAAAAAAAA2QEuqrTuJPTiiHKvq9iS/nOTxC1dfm+TWod1RVc9qrf3p0WS0OoqDAAAAAAAAAAC4alTVFyT51cyLgR5O8m+SvCnJqSTPTfLtSZ6c5PVVdWtr7eEDTvl5S25//wHPf0WKgwAAAAAAAAAAuJq8MvPCoHNJntlae8vCbW+sqvck+fEktyR5SZKXH2Sy1tr/OUj8QW2tc3IAAAAAAAAAAI5AG1Fboaq6NclXDoevuqgw6LxXJLl36L+4qq5ZbVarpTgIAAAAAAAAAICrxbMX+q++1IDW2izJa4bDG3KhmGiUFAcBAAAAAAAAAHC1ePpw+UiSP7rCuLsX+l+xunRWT3EQAAAAAAAAAABXi6cMl+9trZ27wrh3XSKmS1X9blV9uKp2quovq+r3quplVXXDQc67V9tHMQkAAAAbYjY72vm2roLvpLTOTdB74w7yK6w6QDCHqvf3z+E76tdFAAAAWJNqLTWCzyQuyvHGWvKZVmvt/j2fu+pkkicMh1eMa619tKoeSXJdkiftdY7L+OqF/qcmuW1oL62q57fW7jrg+a9IcRAAAAAAAAAAAJvonj2M2c834h630H94D+PPFwddv485Fv1xkt9I8rYkDyS5JsmTk/zjJM9M8jeS/HpV/cPW2m93zrGU4iAAAAAAAAAAAK4GJxf6O3sYf3a4PNUx1ytbaz90iev/MMlrquo7kvxskmNJfrGqbm6tPdoxz1KKgwAAAAAAAAAA2ES3JvngIZ7vzEL/+B7Gnxgu912001r72JLbf66qnprkjiSfnuTrk/zyfufZC8VBAABtsuvPAAAgAElEQVQAAAAAAABTNxvapvvEHD/YWrv/EM/+0EJ/L1uFXTdc7mULsh4/l3lxUJLclhUVB22t4qQAAAAAAAAAALBJWmtnkjw4HN50pbFVdUMuFAfdt6KU3rnQf+KK5lAcBAAAAAAAAADAVePe4fLmqrrSjlu3XCLmsNWKzvsJbCsGAAAAAAAAADBx1VqqtXWnsdQR5PgHSZ6e+apAX5zkDy8z7raF/ptXlMvnLvQfWNEcVg4CAAAAAAAAAOCq8RsL/W+91ICq2kryzcPhx5K8aUW5fMdC/+4VzaE4CAAAAAAAAACAq0Nr7W1Jfn84fEFVfeklhn1PkqcM/Z9qrT22eGNVPb+q2tB+6OLgqvq8qrr5SnlU1XckecFw+MEkr9vH3dgX24oBAAAAAAAAAHA1+a7Mtwo7leR3qupHM18d6FSS5yZ54TDu3Ule0XH+L07yi1X1piS/neSPk3w48zqdW5L8kyT/YBi7m+Q7WmuP9N2V5RQHAQAAAAAAAABMXRvapjuCHFtr76iqb0zyS0k+KcmPXmLYu5Pc3lp7qHOaY0m+emiX8+EkL2it/WbnHHuiOAgAAAAAAAAAgKtKa+23qurzM19F6PYkNyXZSfLeJL+W5N+31k53nv4NmW8Z9qVJvjDJ30zyKUkqyUeS/K8k/z3Jna21jx/kfuyF4iAAAAAAAAAAAK46rbU/T/KSoe0n7s4kd17h9r9M8p+GtnaKgwAAAFid2aw/dmvr8PJgro1h3WjodJDXGwAAALgqtJF8PjSGHMfFJ60AAAAAAAAAADBRioMAAAAAAAAAAGCiFAcBAAAAAAAAAMBEba87AQAAAAAAAAAAVqvavG26MeQ4NlYOAgAAAAAAAACAiVIcBAAAAAAAAAAAE2VbMQAAAAAAAACAqWtt3jbdGHIcGSsHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7XS4qCq+rSq+tqqenlV/XZVPVhVbWh3dpzva6rqtVV1f1WdHS5fW1Vfs4L0AQAAAAAAAAAmoWbjaRyu7RWf/0OHcZKqqiQ/m+SFF930xCTPSfKcqvr5JN/ZWmuHMScAAAAAAAAAAIzdUW4rdl+S3+mM/ZFcKAx6R5LnJXnacPmO4foXJvnhgyQIAAAAAAAAAABTsuqVg16e5J4k97TWPlRVn5nk/fs5QVXdnOT7hsO3J3lGa+3R4fieqvrNJHcneWqSl1bVq1tr7zuM5AEAAFij2RGvH7x1lN+fgYk76ucvAAAAsFxr87bpxpDjyKz0k8/W2r9qrf231tpBthf77lwoYnrRQmHQ+TlOJ3nRcLid5MUHmAsAAAAAAAAAACZjo78WWVWV5OuGw3e11t56qXHD9X8yHD57iAMAAAAAAAAAgKvaRhcHJfmsJE8c+ncvGXv+9puSfOaqEgIAAAAAAAAAgLHYXj5krZ6y0H/XkrGLtz8lyfsPPx0AAAAAAAAAgBFqQ9t0Y8hxZDa9OOhJC/37l4y97zJxS1XVTUuG3Lif8wEAAAAAAAAAwCbY9OKgxy30H14y9pGF/vX7nOe+5UMAAAAAAAAAAGBcNr046ORCf2fJ2LML/VMryAUAAAAAAAAAYJSqtVTb/D27xpDj2Gx6cdCZhf7xJWNPLPQf3ec8y7YhuzHJPfs8JwAAAAAAAAAArNWmFwc9tNBftlXYdQv9ZVuQfYLW2v1Xur2q9nM6AAAAAAAAAADYCFvrTmCJxaKdm5aMXVz9574V5AIAAAAAAAAAAKOy6SsHvXOhf8uSsYu337uCXAAAAAAAAAAAxqm1edt0Y8hxZDZ95aD3J3lg6N+2ZOwzhsu/SPJnq0oIAAAAAAAAAADGYqOLg1prLcldw+EtVfUllxo3XH9+5aC7hjgAAAAAAAAAALiqbfq2YknyyiTfnnmuP11Vz2itPXr+xqo6leSnh8Nzw3gAAADYn9ls3RnszdZGf8+HVRvL4xQAAADYPC3JGD5asBzMoVtpcVBVfUWSmxeuesJC/+aqev7i+NbanRefo7X27qr6ySQvS/LUJG+uqh9L8r4kn53kpUm+cBj+E6219xzaHQAAAAAAAAAAgBFb9cpBdyT5lsvc9uVDW3TnZcb+QJJPS/JtmRcC/colxrwqyQ/uP0UAAAAAAAAAAJimUaxF3lqbtdZekOT2JHcleSDJznB5V5JntdbuaK2NYQEsAAAAAAAAAAA4EitdOai19vwkzz/E870hyRsO63wAAAAAAAAAAFeDai3V2rrTWGoMOY7NKFYOAgAAAAAAAAAA9k9xEAAAAAAAAAAATJTiIAAAAAAAAAAAmKjtdScAAAAAAAAAAMCKtSStrTuL5UaQ4thYOQgAAAAAAAAAACZKcRAAAAAAAAAAAEyUbcUAAAAAAAAAAKautZFsKzaCHEfGykEAAAAAAAAAADBRioMAAAAAAAAAAGCiFAcBAAAAAAAAAMBEba87AQAAAGAfZrP+2C3fEdoYB/k9AgAAAPSYDW3TjSHHkfGpIAAAAAAAAAAATJTiIAAAAAAAAAAAmCjbigEAAAAAAAAATFy1lmpt3WksNYYcx8bKQQAAAAAAAAAAMFGKgwAAAAAAAAAAYKIUBwEAAAAAAAAAwERtrzsBAAAAAAAAAABWrLV523RjyHFkrBwEAAAAAAAAAAATpTgIAAAAAAAAAAAmyrZiAAAAAAAAAACTN5JtxTKGHMfFykEAAAAAAAAAADBRioMAAAAAAAAAAGCiFAcBAAAAAAAAAMBEba87AQAAAAAAAAAAVqy1edt0Y8hxZKwcBAAAAAAAAAAAE6U4CAAAAAAAAAAAJsq2YgAAAAAAAAAAUzcb2qYbQ44jY+UgAAAAAAAAAACYKMVBAAAAAAAAAAAwUYqDAAAAAAAAAABgorbXnQAAAAAAAAAAAKtVraVaW3caS40hx7GxchAAAAAAAAAAAEyU4iAAAAAAAAAAAJgo24oBAAAAAAAAAExda/O26caQ48hYOQgAAAAAAAAAACZKcRAAAAAAAAAAAEyU4iAAAAAAAAAAAJio7XUnAAAAAOzDlu/5TELv73E2O9w8AAAAgKvHrM3bphtDjiPjE0UAAAAAAAAAAJgoxUEAAAAAAAAAADBRthUDAAAAAAAAAJi6lqSNYMuuEaQ4NlYOAgAAAAAAAACAiVIcBAAAAAAAAAAAE6U4CAAAAAAAAAAAJmp73QkAAAAAAAAAALBqLWlt3UnswRhyHBcrBwEAAAAAAAAAwEQpDgIAAAAAAAAAgIlSHAQAAAAAAAAAABO1ve4EAAAAAAAAAABYsdbmbdONIceRsXIQAAAAAAAAAABMlOIgAAAAAAAAAACYKNuKAQAAwDps+b4OHXofN7PZ4eYBAAAAjM+szdumG0OOI+OTSAAAAAAAAAAAmCjFQQAAAAAAAAAAMFGKgwAAAAAAAAAAYKK2150AAAAAAAAAAAAr1mbztunGkOPIWDkIAAAAAAAAAAAmSnEQAAAAAAAAAABMlG3FAAAAAAAAAACmrrV523RjyHFkrBwEAAAAAAAAAAATpTgIAAAAAAAAAAAmSnEQAAAAAAAAAABM1Pa6EwAAAAAAAAAAYMVmbd423RhyHBkrBwEAAAAAAAAAwEQpDgIAAAAAAAAAgImyrRgAAAAAAAAAwNS1Nm+bbgw5joyVgwAAAAAAAAAAYKIUBwEAAAAAAAAAwEQpDgIAAAAAAAAAgInaXncCAAAAAAAAAAAcgdbWnQFrYOUgAAAAAAAAAACYKMVBAAAAAAAAAAAwUbYVAwAAAAAAAACYutbGsa3YGHIcGSsHAQAAAAAAAADARCkOAgAAAAAAAACAiVIcBAAAAAAAAAAAE7W97gQAAAAAAAAAAFix2Syp2bqzWG42ghxHxspBAAAAAAAAAAAwUYqDAAAAAAAAAABgomwrBgAAAAAAAAAwda3N26YbQ44jY+UgAAAAAAAAAACYKMVBAAAAAAAAAAAwUYqDAAAAAAAAAABgorbXnQAAAAAAAAAAACvW2rxtujHkODJWDgIAAAAAAAAAgIlSHAQAAAAAAAAAABOlOAgAAAAAAAAAACZqe90JAAAAAAAAAACwYrOWVFt3FsvNRpDjyFg5CAAAAAAAAAAAJkpxEAAAAAAAAAAATJRtxQAAAAAAAAAAJq61WVqbrTuNpcaQ49hYOQgAAAAAAAAAACZKcRAAAAAAAAAAAEyU4iAAAAAAAAAAAJio7XUnAAAAAAAAAADAirUks7buLJYbQYpjY+UgAAAAAAAAAACYKMVBAAAAAAAAAAAwUbYVAwAAAAAAAACYutbmbdONIceRsXIQAAAAAAAAAABMlOIgAAAAAAAAAACYKMVBAAAAAAAAAAAwUdvrTgAAAAAAAAAAgBWbzZLM1p3FcrMR5DgyVg4CAAAAAAAAAICJUhwEAAAAAAAAAAATZVsxAAAAAAAAAICpa23eNt0YchwZKwcBAAAAAAAAAMBEKQ4CAAAAAAAAAICJUhwEAAAAAAAAAAATtb3uBAAAAGDUtnzvhhHofZzOZoebBwAAALA2bTZLy+b/rd98HnHofIIJAAAAAAAAAAATpTgIAAAAAAAAAAAmyrZiAAAAAAAAAABT19q8bbox5DgyVg4CAAAAAAAAAICJUhwEAAAAAAAAAAATpTgIAAAAAAAAAAAmanvdCQAAAAAAAAAAsGKtJbO27iyWayPIcWSsHAQAAAAAAAAAABOlOAgAAAAAAAAAACbKtmIAAAAAAAAAAFPXWpLZurNYzrZih250KwdV1WdU1U9W1b1V9UhVfaSq3lZV31tV1647PwAAAAAAAAAA2BSjWjmoqm5P8stJHr9w9bVJbh3aHVX1rNban64jPwAAAAAAAAAA2CSjWTmoqr4gya9mXhj0cJIfSPJlSb4qyS8Mw56c5PVVdf1akgQAAAAAAAAAgA0yppWDXpn5KkHnkjyztfaWhdveWFXvSfLjSW5J8pIkLz/6FAEAAAAAAAAANk+btbRq605jqdY2P8exGcXKQVV1a5KvHA5fdVFh0HmvSHLv0H9xVV1zFLkBAAAAAAAAAMCmGkVxUJJnL/RffakBrbVZktcMhzfkQjERAAAAAAAAAABclcayrdjTh8tHkvzRFcbdvdD/iiS/u7KMAAAAAAAAAADGos2SzNadxXJtBDmOzFiKg54yXL63tXbuCuPedYmYparqpiVDbtzruQAAAAAAAAAA2HxV9RlJ/kWS25N8RpKzSd6b5FeT/IfW2ulDmue5Sb41yednvhvWB5P8fpKfaa299TDmuJKNLw6qqpNJnjAc3n+lsa21j1bVI0muS/KkfUxzX2d6AAAAAAAAAACMTFXdnuSXkzx+4eprk9w6tDuq6lmttT89wBwnk/xakq+96Ka/NbRvqqofaq39cO8ce7G1ypMfksct9B/ew/hHhsvrV5ALAAAAAAAAAAAjVlVfkPnqQI/PvBblB5J8WZKvSvILw7AnJ3l9VR2k/uRVuVAY9KYkz07ytCQvSPK+zOt2Xl5VdxxgjqU2fuWgJCcX+jt7GH92uDy1jzmWrTJ0Y5J79nE+AAAAAAAAAICN0WYtrdq601iqtSPJ8ZWZrxJ0LskzW2tvWbjtjVX1niQ/nuSWJC9J8vL9TlBVtyX5puHwt5I8p7W2OxzfU1W/meSPMt/O7Mer6r+21j7WdW+WGMPKQWcW+sf3MP7EcPnoXidord1/pZb5Xm8AAAAAAAAAAIxYVd2a5CuHw1ddVBh03iuS3Dv0X1xV13RM9X3D5W6Sf75QGJQkaa09mOSlw+ENma8mtBJjKA56aKG/l6Warhsu97IFGQAAAAAAAAAAV49nL/RffakBrbVZktcMhzfkQjHRngxbkX3VcPi7w8I0l/LaJB8f+l+/nzn2Y+OLg1prZ5I8OBzedKWxVXVDLhQH3bfKvAAAAAAAAAAAGJ2nD5ePZL6t1+XcvdD/in3O8bRc2Pnq7ssNaq3tJHnr+ZjOFYqW2vjioMH5pZpurqrtK4y75RIxAAAAAAAAAABXtzYbT1utpwyX722tnbvCuHddIma/c1x8nivNs53kc/Y5z55cqdBmk/xB5pVb1yX54iR/eJlxty3033yI8x873/nABz5wiKcFALjgzK5dUQFGaVbrzgBWp7V1ZwBwVbv//svtPAAA0O+i//M+drlxTM/ZnElG8Kf+2ZxZPLyx6sqfv11hy66/pqpOJnnCcHjFuNbaR6vqkcxrVZ601zkGi+OX5be4M9aTkrxzn3MtNZbioN9I8i+H/rfmEsVBVbWV5JuHw48ledMhzv+p5ztPe9rTDvG0AAAAAABwaU960p3rTgEAmL5PTfLn606Co3FP3rjuFHrcs4cx+/n23uMW+nv51vb54qDr9zHHfud5ZKG/33n2ZBTbirXW3pbk94fDF1TVl15i2PfkwrJMP9Vae+xIkgMAAAAAAAAAYAxOLvR39jD+7HB5aoXznF3o73eePRnLykFJ8l2ZbxV2KsnvVNWPZr460Kkkz03ywmHcu5O84pDn/uMktw79/5dk95DPD4zTjblQqXprkg+uMRdgurzWAEfBaw1wFLzWAEfBaw1wFLzWAEdhla81x3Jh95w/PsTzspk+mP1vibUpbszh12gs7ll2fA/jTwyXj65wnhML/f3OsyejKQ5qrb2jqr4xyS8l+aQkP3qJYe9Ocntr7aFDnvtskrcf5jmB8btob8sP7mcvS4C98loDHAWvNcBR8FoDHAWvNcBR8FoDHIUjeK2xldhVorV2LslY36tWkfdiPcletvC6brjcyxZkvfNct9Df7zx7Moptxc5rrf1Wks9P8u8yLwQ6neRjmRfuvDTJF7bW3ru+DAEAAAAAAAAA2ESttTNJHhwOb7rS2Kq6IRcKd+7b51SLhU1XnCefuLLTfufZk9GsHHRea+3Pk7xkaAAAAAAAAAAAsFf3Jnl6kpurantYXelSbrkoZj/eeZnzXGmec0lWsiDOqFYOAgAAAID/397dR/tW1fUef3/weHjSlCRsoDJEMTllFIJ5UB691C3BMjQLG+pBzLQ7uEJIKNZF7MHE0stVU0QLzHtVKIiALPEBFMIAh3XvSOBcRW+AiTyIyIMc0e/9Y83tXm1/j+e3z+Hs336/xjhjz/lb3zV/a/9xvmOtub9rTkmSJEmSpBlc0X7uDOw3Iu6QXvvKKb/jGmDTgHH+gyRrgfUL51TVpmGxs7A4SJIkSZIkSZIkSZIkSavF3/TaxwwKSLId8NLWvQv41DRfUFXfAj7RuocnGba12FHAD7X2BdN8xzQsDpIkSZIkSZIkSZIkSdKqUFVXA59p3WOTHDAg7ERgXWufUVXf6R9MsiFJtX9vHPJVf9J+rgHeleRhS8bYFXhL694FvG+632RyFgdJkiRJkiRJkiRJkiRpNXkNcD9d4c7Hkrw+yfokhyU5Ezi9xW0E/nRzvqCqPgl8uHV/Ebg0yS8m2T/JMcBngT3a8ddV1Tc295cZZ82WGliSJEmSJEmSJEmSJEna1lTV55P8KvBBum29/mhA2EbgiLZF2OZ6eRv/ucBh7V/f94Dfr6ozZ/iOsSwOkqTNVFU3A3mor0PSfDPXSNoazDWStgZzjaStwVwjaWsw10jaGsw10pZXVRcl2YduFaEjgMcDm4AvAucB76yq+2b8jvuBI5K8GNgA/BTwaOBWuq3N3llVV83yHZNIVW3p75AkSZIkSZIkSZIkSZL0ENjuob4ASZIkSZIkSZIkSZIkSVuGxUGSJEmSJEmSJEmSJEnSnLI4SJIkSZIkSZIkSZIkSZpTFgdJkiRJkiRJkiRJkiRJc8riIEmSJEmSJEmSJEmSJGlOWRwkSZIkSZIkSZIkSZIkzSmLgyRJkiRJkiRJkiRJkqQ5ZXGQJEmSJEmSJEmSJEmSNKcsDpKkKSXZI8mrk3wkyQ1J7k3y7SQ3J7kwydFJ1kwx3k8keU+SLya5P8ltST6d5DenGUfS/Gn55k+SXNdyzZ1Jrk7y2iQ7PdTXJ2nblOTpSU5J8tEkNyV5IMk9STYmOTvJQVOO9/NJzm/3Og+0n+cn+fkt9TtIWtmSnJ6kev8OneAcc42ksZLsmuR3klyZ5GstX3w1yT8leWuSAyYYw3wjaagka5Mcm+Tvk/x773nqhiR/nmT9hOOYa6RVJsluSY5M8qY2J3N775no7M0Yb+Y8kmSnJCe1OeU7Wz67rs057zHtNUla2VJVD/U1SNKKkeRNwO8CGRN6LfCCqvq3MeMdC7wL2H5IyGeBI6vqjmmvVdLKluQI4H8CjxoScgPw3Kq6cetdlaRtXZLLgYMnCP1L4BVVtWnEWAHeA7xyxDjvBV5VPlhKapL8FN3zUP9Fh8Oq6rIh8eYaSRNJ8ivAu4HHjAi7sKqeP+R8842kkZI8AbgE+MkxoW8HThyUK8w10uqVZNT/6XOqasOE4yxLHknyZLqc9tQhId8EXlxVfzfJdUla+Vw5SJKmsztdYdC9wAeBY4ADgf2BlwDXtLj9gY8necSwgZL8Z7obuO2BW4H/CjwT+AXg/Ba2Hjg/iflaWkXaH9XOpSsMugd4A/As4D8BZ7WwpwKXjMozklalx7WfXwXOAF4I/AxwAPDbwC3t+EuAs8eM9QcsTkR9Hji6jXV069OO//4yXLekOdCeW86iKwz6+oSnmWskjZXkpcCH6QqDvg6cBvwssB9wBN2cyqXAd0YMY76RNFRbwb1fGPS/gQ10z1I/B7yJbk4Y4ATgtUOGMtdIArgJ+NhmnjtzHmlzxhezWBh0Ft3c8rPo5prvoZt7Pi/JPpt5nZJWGFcOkqQpJHkLcAfw7qr61oDjDwP+F/Ci9tF/q6ofuEFrD5vXAXsBdwNPr6ovLYl5F/BbrfuyqvrAsv0ikrZpST4FHAo8CBxcVVctOX4ScHrrnlpVb9q6VyhpW5XkYuADwF9X1XcHHN8VuBL4sfbRwVX1mQFxe9Hdq6yhWwHk4Kq6v3d8J+ByuoLoB4G9l97LSFp9khxP9yb99cAFwOvboYErB5lrJE0iyTq6P4RtD3wGeF5VfXNI7NpBKyOabySNk+QFwF+17lXAQUufqZLs1449HPgGsFtVPdg7bq6RVrEkp9G9QH5NVd2a5InAl9vhiVYOWq48kuSNwKmt+ztV9dYlxw8APt2+51NV9ZyJf1FJK5YrUUjSFKrq5Ko6fVBhUDv+XbqCnoWJqBcOGeqX6QqDAN485CHwJLqHzIW2pFUgyTPoCoMA3r+0MKj5U7qHRIDjkzx8a1ybpG1fVR1ZVecOKgxqx28HTux9NOxe5QQWtwQ6rj8R1ca5DziuddcAx2/+VUuaB20bjoUXI17N4jPRKOYaSZN4B11h0O3AUcMKgwBGbJlqvpE0zrN77TcPeqaqqs/RrcQBsAuw95IQc420ilXVqVV1cVXdOsMwM+eRNlf8mta9jm4ueem1XgW8v3UPa8WPkuacxUGStMyq6g66ZWcBnjwk7Pm99tlDxrmPblshgKclecqyXKCkbV0/P/zFoICq+h7dyiDQTUYduoWvSdJ8uazX/oF7lba3/S+17vVV9dlBg7TPb2jd57fzJK1efwY8gu6N2MvGBZtrJE0iyd50W2AAvLMVOk87hvlG0iTW9to3jojrv+S5/ULDXCNpVsuYRw4FHt3a57S55EHO7rWPmvqCJa04FgdJ0pax8GA47KbroPbzhqr62ohxLu+1D5z5qiStBAv54V7gcyPizA+SNld/0nvQvcqewONa+/IBx/sWjj8eeOJslyVppUryIuBI4E4mX/XUXCNpEr/Sa5+30EiyS5KnJHnMBGOYbyRNYmOv/aQRcQsvWBTwf3ufm2skzWq58shBA+IGuZZuDhqcX5ZWBYuDJGmZJdkNWNe61w84/gi6G7aBx5foH183NErSPFn4v/7F/r71A5gfJG2uQ3rtQfci68YcZ8hxc5G0CiV5NHBG655cVbdNeKq5RtIk1ref3wSuS/LrSf6FrhhxI3B7khuTnNrmWwYx30iaxIeAu1v75CQPWxqQZF/giNb9cFXd3TtsrpE0q+XKIxON0+aeF1ZDMxdJq4DFQZK0/E5icU/YcwccfzywsMzjzWPGuqnXfsKM1yVpG5dkB2DX1h2ZH6rqGyy+2WF+kDSRJNsBr+t9NOhepZ9TvFeRNM7pwI8C/wi8f4rzzDWSJvHj7edXgHcAHwT2WRKzJ/BG4Kokuw8Yw3wjaaxW4LwBuB94NnBNkpcmWZ/k8CSn0q3AsRb4Z+C3lwxhrpE0q+XKIwv9e6vqrgnH+ZEk24+MlLTiWRwkScsoyTOB41v3ZuDPBoQ9ste+Z8yQ9/baw96AkzQ/pskPsJgjzA+SJnUC8DOtfUFVXTsgxnsVSRNJciDwCuBB4FVVVVOcbq6RNIkfbj/3Bv4LcBfwKmA3YAfgGcBHW8zTgPNaMXSf+UbSRKrqAmB/uoLnnwbOAa4CLqUrQryPrijowKr62pLTzTWSZrVceWRhnGnmlweNI2nOWBwkScskyWOBv6JbNaiAl1XVfQNCd+i1N40Z9oFee8fZrlDSCjBNfoDFHGF+kDRWkkOAP27drwOvHhLqvYqksZKsBd5Ltyrq26vq/0w5hLlG0iR2bj+3B74L/EJVnVlVt1XVA63Q+UgWC4SeBRy1ZAzzjaSJJHk48GLgeSyu/N73WOBo4NABx8w1kma1XHlkYZxp5pcHjSNpzlgcJGkuJVmTpJbh34YJv++RwCV0W4YBnFJVnxwS/u1ee+2YofvLON4/ybVIWtGmyQ+wmCPMD5JGSvITwAV0RcwPAC+qqluHhHuvImkSpwDrgH8DTtuM8801kibRzxXnVdVnlwZU1ffotnhfcPSIMcw3kgZKsjPwceANwGPotk5dR5cXHgX8HHAF3YplFyV5zZIhzDWSZrVceWRhnGnmlweNI2nOWBwkSTNKsgNwIbBf++htVfXHI075Vq89bpnGnXvtSZaAlLSyTZMfYDFHmB8kDRPQNvMAAAgBSURBVJVkT+BjwC50b9wfXVWXjzjFexVJIyXZG3h96x5XVfeOih/CXCNpEv1c8dFhQVX1r8AtrfuMEWOYbyQNcxpwcGsfW1UnV9X1VbWpqu6uqkuBw4BP0a0q9LYk+/TON9dImtVy5ZGFcaaZXx40jqQ5s+ahvgBJ2hKq6sEk65ZhqH8fdTDJGuBcugdDgPdV1Yljxry513780KjOE3rtm8bESlrhqurbSW4HdmVMfkiyC4sPb+YHSQMl2Z3u7dfd6bY9fXlVXTDmNO9VJI1zAt1bqDcCOyX5tQExT+u1n5PkR1v7olZMZK6RNImbgIX8cfOowBb7OGC3JZ+bbySNlCTAMa27sarOGRTX5px/j24Foe3aOSe0w+YaSbNarjxyM/BMYOckj66quyYY57aqemBEnKQ5YHGQpLlVVddvyfGTbAf8Jd0e1AAfAX5zguu6J8lNdDdde48J7x+/bnOuU9KKcx1wELBXkjVV9eCQOPODpJGS7ApcCjypfXRcVX1gglO/0Gt7ryJpkIWl558EfGiC+N/rtfcE7sVcI2ky/8riSkAPGxO7cHzpM5T5RtI4jwV+uLU/Pyb2c712P2eYayTNarnyyBeAF/TifmBbVvj+y+9PHjKGpDnktmKStPnOBBbekL0YeEnb534SV7SfT+29QTvIIb32lVNen6SVaSE/7MzidoWDmB8kDZXkUcA/AD/ePnpdVb1rwtO/DHy1tQ8ZFcjisvu3AF+Z5holrXrmGkmT+HSv/eShUZ2FguhblnxuvpE0Tr+ocNxL9Q8fcp65RtKsliuPXNFrjxpnfxZXpnd+WVoFLA6SpM2Q5G3AK1r3E8ALq+o7UwzxN732hiHfsRPwotb9QlVtnPY6Ja1I/fxwzKCAtnLZS1v3Lrr97iUJ+P49xCXA09tHf1hVb5n0/Koq4MLW3TvJ+iHfs57FN9UubOdJWgWqakNVZdQ/4LTeKYf1jn2ljWGukTSJvwUW5luOGhaU5BDgMa37mf4x842kCdwJ3N3aB7TVNIbp/6H9ywsNc42kWS1jHrkM+GZrv6xtnTjIhl573Bb0kuaAxUGSNKUkb2RxL+l/BH5pM/ZivQD4Umu/Psmgt9/eCuzSa0taBarqahYns49NcsCAsBOBda19xpTFiZLmWJK1dPcZz24fnVFVv7sZQ/13Ft+CfUeSHZd8z47AO1r3wRYvSdMy10gaqaruAN7Xuj+b5NeWxiR5JP8xP5w5YCjzjaSh2mrwl7Tu7sAbBsUl2QXov3hx8ZIQc42kWc2cR6pqE/A/Wncd8NqlMW3O+djWvbyqrpn90iVt62JRsiRNLslxLN5U3QL8KosV2MPcMOgP90meC1xEV6h5K/AHwNV0BUG/weKesFcAh1bVd2f+BSStCEn2pVvKdUfgHuCP6FYH2pFuO8NXttCNwP5V9a2H4jolbXuS/DWLb9V/EjgeGPXQt2nY6oRJ3gy8rnU/TzcJ/iW6LT1OBvZtx95cVafMeOmS5kx7qeLU1j2sqi4bEmeukTRSkh8BrgX2oPsj2HuA8+lW+fhJulyx8Pb8u6vqt4aMY76RNFSSvYHPATu1jy4CzgFuBHYA1tM9X+3Rjn+iqg4fMI65RlqlkhwI7NX7aFcWX/y+ksWCZwCq6uwh48ycR1rx9LXAj7WP3gt8GLgfOAw4BXhE6z+rqv55kt9R0spmcZAkTSHJZYzf63WpPReWzh8w3m8A7wTWDjn3auCIqrp9yu+UtMIleR7wQeCHhoRspMsPX9x6VyVpW5dk2ge8/1dVTxwy1nbAWcDLR5z/fuCV7U1bSfq+KYqDzDWSxkqyjm6Lsb1GhP058KphK6uabySNk+Rw4EN0f9Af5ZPAC6vqGwPGMNdIq1SSs4GXTRrftmMeNM6y5JEkewF/BzxlSMjdwK9X1dJV0CTNKbcVk6SHUFWdBexHd6N3I/Bt4A661YJeDTzbwiBpdaqqi4B9gLfTFQLdB9xF98bHycC+FgZJ2pKq6ntVdSxwBN2e918FNrWfFwLPrapXOKEtaRbmGkmTqKrrgJ8GTgL+CbiTLlfcDHwEeE5VHTtqy2XzjaRxqurjdCuRnQxcBtwGfIduZY0vA+cCzwcOH1QY1MYw10iayXLlkTZ3vC9dTruWbm75PuAGujnnfSwMklYXVw6SJEmSJEmSJEmSJEmS5pQrB0mSJEmSJEmSJEmSJElzyuIgSZIkSZIkSZIkSZIkaU5ZHCRJkiRJkiRJkiRJkiTNKYuDJEmSJEmSJEmSJEmSpDllcZAkSZIkSZIkSZIkSZI0pywOkiRJkiRJkiRJkiRJkuaUxUGSJEmSJEmSJEmSJEnSnLI4SJIkSZIkSZIkSZIkSZpTFgdJkiRJkiRJkiRJkiRJc8riIEmSJEmSJEmSJEmSJGlOWRwkSZIkSZIkSZIkSZIkzSmLgyRJkiRJkiRJkiRJkqQ5ZXGQJEmSJEmSJEmSJEmSNKcsDpIkSZIkSZIkSZIkSZLmlMVBkiRJkiRJkiRJkiRJ0pyyOEiSJEmSJEmSJEmSJEmaUxYHSZIkSZIkSZIkSZIkSXPK4iBJkiRJkiRJkiRJkiRpTlkcJEmSJEmSJEmSJEmSJM0pi4MkSZIkSZIkSZIkSZKkOWVxkCRJkiRJkiRJkiRJkjSnLA6SJEmSJEmSJEmSJEmS5pTFQZIkSZIkSZIkSZIkSdKcsjhIkiRJkiRJkiRJkiRJmlMWB0mSJEmSJEmSJEmSJElz6v8DAKI153JiN4gAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 3200x1200 with 2 Axes>"
       ]
@@ -309,6 +278,15 @@
     "time_loop(1000)\n",
     "plot_ρs()"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "assert np.isfinite(dh.gather_array(ρ.name)).all()"
+   ]
   }
  ],
  "metadata": {
diff --git a/doc/notebooks/09_tutorial_shanchen_twocomponent.ipynb b/doc/notebooks/09_tutorial_shanchen_twocomponent.ipynb
index 526db1ebfa4268bddb45c2df44b95f0de8c20df0..077e53f808699e1caea33ea85eac33da29ff2b33 100644
--- a/doc/notebooks/09_tutorial_shanchen_twocomponent.ipynb
+++ b/doc/notebooks/09_tutorial_shanchen_twocomponent.ipynb
@@ -255,6 +255,9 @@
     "\n",
     "    dh.fill(ρ_b.name, 0.9, slice_obj=ps.make_slice[:, :0.5])\n",
     "    dh.fill(ρ_b.name, 0.1, slice_obj=ps.make_slice[:, 0.5:])\n",
+    "    \n",
+    "    dh.fill(f_a.name, 0.0)\n",
+    "    dh.fill(f_b.name, 0.0)\n",
     "\n",
     "    dh.run_kernel(init_a_kernel)\n",
     "    dh.run_kernel(init_b_kernel)\n",
diff --git a/lbmpy_tests/shan_chen/test_shan_chen_two_component.py b/lbmpy_tests/shan_chen/test_shan_chen_two_component.py
new file mode 100644
index 0000000000000000000000000000000000000000..451527195ff7287c252c92b170e56f248381d4ee
--- /dev/null
+++ b/lbmpy_tests/shan_chen/test_shan_chen_two_component.py
@@ -0,0 +1,175 @@
+"""
+Test Shan-Chen two-component implementation against reference implementation
+"""
+
+import lbmpy
+
+import pystencils as ps
+import sympy as sp
+import numpy as np
+
+
+def test_shan_chen_two_component():
+    from lbmpy.enums import Stencil
+    from lbmpy import LBMConfig, ForceModel, create_lb_update_rule
+    from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
+    from lbmpy.creationfunctions import create_stream_pull_with_output_kernel
+    from lbmpy.maxwellian_equilibrium import get_weights
+
+    N = 64
+    omega_a = 1.
+    omega_b = 1.
+
+    # interaction strength
+    g_aa = 0.
+    g_ab = g_ba = 6.
+    g_bb = 0.
+
+    rho0 = 1.
+
+    stencil = lbmpy.LBStencil(Stencil.D2Q9)
+    weights = get_weights(stencil, c_s_sq=sp.Rational(1, 3))
+
+    dim = stencil.D
+    dh = ps.create_data_handling((N, ) * dim, periodicity=True, default_target=ps.Target.CPU)
+
+    src_a = dh.add_array('src_a', values_per_cell=stencil.Q)
+    dst_a = dh.add_array_like('dst_a', 'src_a')
+
+    src_b = dh.add_array('src_b', values_per_cell=stencil.Q)
+    dst_b = dh.add_array_like('dst_b', 'src_b')
+
+    ρ_a = dh.add_array('rho_a')
+    ρ_b = dh.add_array('rho_b')
+    u_a = dh.add_array('u_a', values_per_cell=stencil.D)
+    u_b = dh.add_array('u_b', values_per_cell=stencil.D)
+    u_bary = dh.add_array_like('u_bary', u_a.name)
+
+    f_a = dh.add_array('f_a', values_per_cell=stencil.D)
+    f_b = dh.add_array_like('f_b', f_a.name)
+
+    def psi(dens):
+        return rho0 * (1. - sp.exp(-dens / rho0))
+
+    zero_vec = sp.Matrix([0] * stencil.D)
+
+    force_a = zero_vec
+    for factor, ρ in zip([g_aa, g_ab], [ρ_a, ρ_b]):
+        force_a += sum((psi(ρ[d]) * w_d * sp.Matrix(d)
+                        for d, w_d in zip(stencil, weights)),
+                       zero_vec) * psi(ρ_a.center) * -1 * factor
+
+    force_b = zero_vec
+    for factor, ρ in zip([g_ba, g_bb], [ρ_a, ρ_b]):
+        force_b += sum((psi(ρ[d]) * w_d * sp.Matrix(d)
+                        for d, w_d in zip(stencil, weights)),
+                       zero_vec) * psi(ρ_b.center) * -1 * factor
+
+    f_expressions = ps.AssignmentCollection([
+        ps.Assignment(f_a.center_vector, force_a),
+        ps.Assignment(f_b.center_vector, force_b)
+    ])
+
+    # calculate the velocity without force correction
+    u_temp = ps.Assignment(u_bary.center_vector,
+                           (ρ_a.center * u_a.center_vector
+                            - f_a.center_vector / 2 + ρ_b.center * u_b.center_vector
+                            - f_b.center_vector / 2) / (ρ_a.center + ρ_b.center))
+
+    # add the force correction to the velocity
+    u_corr = ps.Assignment(u_bary.center_vector,
+                           u_bary.center_vector
+                           + (f_a.center_vector / 2 + f_b.center_vector / 2) / (ρ_a.center + ρ_b.center))
+
+    lbm_config_a = LBMConfig(stencil=stencil, relaxation_rate=omega_a, compressible=True,
+                             velocity_input=u_bary, density_input=ρ_a, force_model=ForceModel.GUO,
+                             force=f_a, kernel_type='collide_only')
+
+    lbm_config_b = LBMConfig(stencil=stencil, relaxation_rate=omega_b, compressible=True,
+                             velocity_input=u_bary, density_input=ρ_b, force_model=ForceModel.GUO,
+                             force=f_b, kernel_type='collide_only')
+
+    collision_a = create_lb_update_rule(lbm_config=lbm_config_a,
+                                        optimization={'symbolic_field': src_a})
+
+    collision_b = create_lb_update_rule(lbm_config=lbm_config_b,
+                                        optimization={'symbolic_field': src_b})
+
+    stream_a = create_stream_pull_with_output_kernel(collision_a.method, src_a, dst_a,
+                                                     {'density': ρ_a, 'velocity': u_a})
+    stream_b = create_stream_pull_with_output_kernel(collision_b.method, src_b, dst_b,
+                                                     {'density': ρ_b, 'velocity': u_b})
+
+    config = ps.CreateKernelConfig(target=dh.default_target)
+
+    stream_a_kernel = ps.create_kernel(stream_a, config=config).compile()
+    stream_b_kernel = ps.create_kernel(stream_b, config=config).compile()
+    collision_a_kernel = ps.create_kernel(collision_a, config=config).compile()
+    collision_b_kernel = ps.create_kernel(collision_b, config=config).compile()
+
+    force_kernel = ps.create_kernel(f_expressions, config=config).compile()
+    u_temp_kernel = ps.create_kernel(u_temp, config=config).compile()
+    u_corr_kernel = ps.create_kernel(u_corr, config=config).compile()
+
+    init_a = macroscopic_values_setter(collision_a.method, velocity=(0, 0),
+                                       pdfs=src_a.center_vector, density=ρ_a.center)
+    init_b = macroscopic_values_setter(collision_b.method, velocity=(0, 0),
+                                       pdfs=src_b.center_vector, density=ρ_b.center)
+    init_a_kernel = ps.create_kernel(init_a, ghost_layers=0).compile()
+    init_b_kernel = ps.create_kernel(init_b, ghost_layers=0).compile()
+
+    sync_pdfs = dh.synchronization_function([src_a.name, src_b.name])
+    sync_ρs = dh.synchronization_function([ρ_a.name, ρ_b.name])
+
+    dh.fill(ρ_a.name, 0.1, slice_obj=ps.make_slice[:, :0.5])
+    dh.fill(ρ_a.name, 0.9, slice_obj=ps.make_slice[:, 0.5:])
+
+    dh.fill(ρ_b.name, 0.9, slice_obj=ps.make_slice[:, :0.5])
+    dh.fill(ρ_b.name, 0.1, slice_obj=ps.make_slice[:, 0.5:])
+
+    dh.fill(u_a.name, 0.0)
+    dh.fill(u_b.name, 0.0)
+    dh.fill(f_a.name, 0.0)
+    dh.fill(f_b.name, 0.0)
+    dh.run_kernel(u_temp_kernel)
+
+    dh.run_kernel(init_a_kernel)
+    dh.run_kernel(init_b_kernel)
+
+    for i in range(1000):
+        sync_ρs()
+        dh.run_kernel(force_kernel)
+        dh.run_kernel(u_corr_kernel)
+        dh.run_kernel(collision_a_kernel)
+        dh.run_kernel(collision_b_kernel)
+
+        sync_pdfs()
+        dh.run_kernel(stream_a_kernel)
+        dh.run_kernel(stream_b_kernel)
+        dh.run_kernel(u_temp_kernel)
+
+        dh.swap(src_a.name, dst_a.name)
+        dh.swap(src_b.name, dst_b.name)
+    
+    # reference generated from https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp with
+    # const int nsteps = 1000;
+    # const int noutput = 1000;
+    # const int nfluids = 2;
+    # const double gA = 0;
+
+    ref_a = np.array([0.213948, 0.0816724, 0.0516763, 0.0470179, 0.0480882, 0.0504771, 0.0531983, 0.0560094, 0.0588071,
+                      0.0615311, 0.064102, 0.0664467, 0.0684708, 0.070091, 0.0712222, 0.0718055, 0.0718055, 0.0712222,
+                      0.070091, 0.0684708, 0.0664467, 0.064102, 0.0615311, 0.0588071, 0.0560094, 0.0531983, 0.0504771,
+                      0.0480882, 0.0470179, 0.0516763, 0.0816724, 0.213948, 0.517153, 0.833334, 0.982884, 1.0151,
+                      1.01361, 1.0043, 0.993178, 0.981793, 0.970546, 0.959798, 0.949751, 0.940746, 0.933035, 0.926947,
+                      0.922713, 0.920548, 0.920548, 0.922713, 0.926947, 0.933035, 0.940746, 0.949751, 0.959798,
+                      0.970546, 0.981793, 0.993178, 1.0043, 1.01361, 1.0151, 0.982884, 0.833334, 0.517153])
+    ref_b = np.array([0.517153, 0.833334, 0.982884, 1.0151, 1.01361, 1.0043, 0.993178, 0.981793, 0.970546, 0.959798,
+                      0.949751, 0.940746, 0.933035, 0.926947, 0.922713, 0.920548, 0.920548, 0.922713, 0.926947,
+                      0.933035, 0.940746, 0.949751, 0.959798, 0.970546, 0.981793, 0.993178, 1.0043, 1.01361, 1.0151,
+                      0.982884, 0.833334, 0.517153, 0.213948, 0.0816724, 0.0516763, 0.0470179, 0.0480882, 0.0504771,
+                      0.0531983, 0.0560094, 0.0588071, 0.0615311, 0.064102, 0.0664467, 0.0684708, 0.070091, 0.0712222,
+                      0.0718055, 0.0718055, 0.0712222, 0.070091, 0.0684708, 0.0664467, 0.064102, 0.0615311, 0.0588071,
+                      0.0560094, 0.0531983, 0.0504771, 0.0480882, 0.0470179, 0.0516763, 0.0816724, 0.213948])
+    assert np.allclose(dh.gather_array(ρ_a.name)[0], ref_a)
+    assert np.allclose(dh.gather_array(ρ_b.name)[0], ref_b)
diff --git a/lbmpy_tests/shan_chen/test_shan_chen_two_phase.py b/lbmpy_tests/shan_chen/test_shan_chen_two_phase.py
new file mode 100644
index 0000000000000000000000000000000000000000..18a7dd2e32e52f50af8463adc634571b1657c025
--- /dev/null
+++ b/lbmpy_tests/shan_chen/test_shan_chen_two_phase.py
@@ -0,0 +1,93 @@
+"""
+Test Shan-Chen two-phase implementation against reference implementation
+"""
+
+import lbmpy
+
+import pystencils as ps
+import sympy as sp
+import numpy as np
+
+
+def test_shan_chen_two_phase():
+    from lbmpy.enums import Stencil
+    from lbmpy import LBMConfig, ForceModel, create_lb_update_rule
+    from lbmpy.macroscopic_value_kernels import macroscopic_values_setter
+    from lbmpy.creationfunctions import create_stream_pull_with_output_kernel, create_lb_method
+    from lbmpy.maxwellian_equilibrium import get_weights
+
+    N = 64
+    omega = 1.
+    g_aa = -4.7
+    rho0 = 1.
+
+    stencil = lbmpy.LBStencil(Stencil.D2Q9)
+    weights = get_weights(stencil, c_s_sq=sp.Rational(1, 3))
+
+    dh = ps.create_data_handling((N, ) * stencil.D, periodicity=True, default_target=ps.Target.CPU)
+
+    src = dh.add_array('src', values_per_cell=stencil.Q)
+    dst = dh.add_array_like('dst', 'src')
+
+    ρ = dh.add_array('rho')
+
+    def psi(dens):
+        return rho0 * (1. - sp.exp(-dens / rho0))
+
+    zero_vec = sp.Matrix([0] * stencil.D)
+
+    force = sum((psi(ρ[d]) * w_d * sp.Matrix(d)
+                 for d, w_d in zip(stencil, weights)), zero_vec) * psi(ρ.center) * -1 * g_aa
+
+    lbm_config = LBMConfig(stencil=stencil, relaxation_rate=omega, compressible=True,
+                           force_model=ForceModel.GUO, force=force, kernel_type='collide_only')
+
+    collision = create_lb_update_rule(lbm_config=lbm_config,
+                                      optimization={'symbolic_field': src})
+
+    stream = create_stream_pull_with_output_kernel(collision.method, src, dst, {'density': ρ})
+
+    config = ps.CreateKernelConfig(target=dh.default_target, cpu_openmp=False)
+
+    stream_kernel = ps.create_kernel(stream, config=config).compile()
+    collision_kernel = ps.create_kernel(collision, config=config).compile()
+
+    method_without_force = create_lb_method(LBMConfig(stencil=stencil, relaxation_rate=omega, compressible=True))
+    init_assignments = macroscopic_values_setter(method_without_force, velocity=(0, 0),
+                                                 pdfs=src.center_vector, density=ρ.center)
+
+    init_kernel = ps.create_kernel(init_assignments, ghost_layers=0, config=config).compile()
+
+    for x in range(N):
+        for y in range(N):
+            if (x - N / 2)**2 + (y - N / 2)**2 <= 15**2:
+                dh.fill(ρ.name, 2.1, slice_obj=[x, y])
+            else:
+                dh.fill(ρ.name, 0.15, slice_obj=[x, y])
+
+    dh.run_kernel(init_kernel)
+
+    sync_pdfs = dh.synchronization_function([src.name])
+    sync_ρs = dh.synchronization_function([ρ.name])
+
+    for i in range(1000):
+        sync_ρs()
+        dh.run_kernel(collision_kernel)
+
+        sync_pdfs()
+        dh.run_kernel(stream_kernel)
+
+        dh.swap(src.name, dst.name)
+
+    # reference generated from https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp with
+    # const int nsteps = 1000;
+    # const int noutput = 1000;
+
+    ref = np.array([0.185757, 0.185753, 0.185743, 0.185727, 0.185703, 0.185672, 0.185636, 0.185599, 0.185586, 0.185694,
+                    0.186302, 0.188901, 0.19923, 0.238074, 0.365271, 0.660658, 1.06766, 1.39673, 1.56644, 1.63217,
+                    1.65412, 1.66064, 1.66207, 1.66189, 1.66123, 1.66048, 1.65977, 1.65914, 1.65861, 1.6582, 1.6579,
+                    1.65772, 1.65766, 1.65772, 1.6579, 1.6582, 1.65861, 1.65914, 1.65977, 1.66048, 1.66123, 1.66189,
+                    1.66207, 1.66064, 1.65412, 1.63217, 1.56644, 1.39673, 1.06766, 0.660658, 0.365271, 0.238074,
+                    0.19923, 0.188901, 0.186302, 0.185694, 0.185586, 0.185599, 0.185636, 0.185672, 0.185703, 0.185727,
+                    0.185743, 0.185753])
+    assert np.allclose(dh.gather_array(ρ.name)[N // 2], ref)