Explore projects
-
Markus Holzer / waLBerla
GNU General Public License v3.0 onlywaLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively parallel framework for multi physics applications.
Updated -
Ravi Ayyala / waLBerla
GNU General Public License v3.0 onlywaLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively parallel framework for multi physics applications.
Updated -
Frederik Hennig / lbmpy
GNU Affero General Public License v3.0Run fluid simulations based on the lattice Boltzmann method.
Updated -
Christoph Alt / waLBerla
GNU General Public License v3.0 onlywaLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively parallel framework for multi physics applications.
Updated -
pycodegen / pystencils-benchmark
GNU Affero General Public License v3.0Updated -
Christoph Alt / cb-util
GNU General Public License v3.0 or laterCollection of functions and scripts for continuous benchmarking
Updated -
Michael Zikeli / waLBerla
GNU General Public License v3.0 onlywaLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively parallel framework for multi physics applications.
Updated -
Updated
-
Updated
-
Template for student theses written at LSS, based on the memoir document class.
Updated -
Jonas Plewinski / waLBerla
GNU General Public License v3.0 onlywaLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively parallel framework for multi physics applications.
Updated -
Anirudh Jonnalagadda / pystencils
GNU Affero General Public License v3.0Speed up stencil computations on numpy arrays.
Updated -
Anirudh Jonnalagadda / lbmpy
GNU Affero General Public License v3.0Run fluid simulations based on the lattice Boltzmann method.
Updated -
Updated
-
brendan-waters / pystencils-sfg
GNU General Public License v3.0 or laterA source file generator to bridge the semantic gap between code emitted by pystencils and your C/C++/CUDA/HIP project.
Updated -
Alexander Reinauer / pystencils
GNU Affero General Public License v3.0Speed up stencil computations on numpy arrays.
Updated -
Updated
-
Updated
-
Updated
-
Updated